

AMERICAN UNIVERSITY OF BEIRUT

PLAN-BASED VERSUS AGILE SOFTWARE

DEVELOPMENT: A QUANTITATIVE APPROACH

by

HIBA JAMAL ITANI

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master of Engineering Management

to the Engineering Management Program

of the Faculty of Engineering and Architecture

at the American University of Beirut

Beirut, Lebanon

April 2015

v

ACKNOWLEDGMENTS

My work wouldn’t have been possible hadn’t it been for the blessings that Allah

has given me and the people He has put in my way.

I would like to express my sincere gratitude to my thesis advisor, Dr. Ali

Yassine, for his continuous advice and support throughout my research process. I have

learned so much from you.

I would like to thank Dr. Bacel Maddah for his help and for always being an

inspiration. His interesting insights are among the main reasons I pursued this research.

I would also like to thank Dr. Fadi Zaraket for his valuable input and professional

advice.

Last but not least, I want to express my deep appreciation and gratitude to

family, especially my parents, who have always supported me and sacrificed much of

their time, effort, and resources for my sake.

vi

AN ABSTRACT OF THE THESIS OF

Hiba Itani for Master of Engineering Management

Major: Engineering Management

Title: Plan-based versus Agile Software Development: A Quantitative Approach

A major decision that can influence the success of a project is the software

development method used, which is the structure imposed on the software development

process. Qualitative research suggests that neither plan-based methods nor agile

methods are optimal for all types of projects. However, quantitative research on this

topic is scarce.

In this study, we propose a model that compares the structures of the Waterfall

and Scrum software development methods taking into consideration factors such as

project size, team size, and requirement volatility. This model aims to aid in choosing

the software development method that minimizes effort based on the characteristics of

the project. Our results indicate that for highly volatile projects and large projects,

Scrum is better than Waterfall, while for projects with low volatility and small projects,

Waterfall is more desirable.”

vii

CONTENTS

ACKNOWLEDGMENTS .. v

ABSTRACT ... vi

LIST OF ILLUSTRATIONS .. ix

LIST OF TABLES ... x

Chapter

I. INTRODUCTION ... 1

II. BACKGROUND ... 5

 A. Brief Overview of Software Engineering History

 B. Plan-based Methods .. 6

1. Waterfall Model .. 7

2. V-shaped Model .. 9

 3. Iterative Plan-based Models.. 10

 C. Agile Methods ... 10

1. The Agile Manifesto ... 10

2. Scrum .. 12

III. LITERATURE REVIEW ... 19

 A. Quantifying Project Success .. 19

 B. Software Size Estimation ... 21

Lines of Code ... 21

1. Function Point Analysis (FPA) .. 21

2. Use Case Points (UCP) ... 22

3. Story Points .. 24

 C. Software Cost Estimation Methods .. 25

 1. Algorithmic models .. 25

2. Analytical Models ... 26

viii

3. Expert Judgment ... 27

4. Analogy ... 28

 D. Comparative Literature .. 28

1. Qualitative Comparison .. 28

2. Quantitative Comparison .. 30

IV. MODEL .. 32

A. Model Assumptions .. 32

1. General Assumptions.. 32

2. Scrum Model Assumptions .. 33

3. Optimizing Effort ... 33

4. Using Use Case Points.. 33

B. Proposed Model .. 34

1. Estimating Effort .. 35

2. Estimating Effort per UCP ... 41

3. Accounting for Requirements Volatility .. 42

 4. The Final Model.. 45

V. ANALYSIS.. 47

 A. Illustrative Example .. 47

 B. Waterfall Model .. 47

 C. Scrum Model ... 49

 D. Waterfall versus Scrum ... 51

 E. Comparing the Results to the Literature .. 54

VI. CONCLUSION AND FUTURE WORK 55

REFERENCES ... 57

Appendix

I. Agile Manifesto Principles.. 61

II. Software Development Methods ... 612

ix

ILLUSTRATIONS

Figure Page

1. Waterfall Model ……………………………………………………………….7

2. V-Model for Software Development ………………………………………….9

3. Product Backlog used in the Scrum Process ...……………………………….13

4. Sprint Backlog used in the Scrum Process …………………………………...14

5. Sprint Burndown Chart …………………...…………………………………...15

6. The Scrum Development Process ……………………..……………………….17

7. Calculating Use Case Points …………………………………………………...24

8. Requirement Volatility Distribution as a Function of Percent Effort Spent43

9. Waterfall Relative Cost of Change as a Function of Percent Effort Spent ……44

10. Scrum Relative Cost of Change as a Function of Percent Effort Spent ……….44

11. Waterfall Effort as a Function of Project Size …………………………………48

12. Waterfall Time as a Function of Project Size ………………………………….49

13. Waterfall Number of Developers as a Function of Project Size ………………49

14. Scrum Effort as Function of Project Size ……………………………………...50

15. Scrum Number of Developers as a Function of Project Size ………………….50

16. Scrum Time as a Function of Project Size ……………………………………..51

17. Ratio of Waterfall Effort to Scrum Effort versus Project Size ………………..52

18. Ratio of Waterfall Number of Developers to Scrum Number of Developers as a

Function of Project Size ………………………………………………………..53

19. Ratio of Waterfall Time to Scrum Time as a Function of Project Size ……….53

20. Choice of Model Depending on Size and Volatility …………………………...54

21. The Spiral Model for Software Development ………………………………....63

22. The Rational Unified Process of Software Development ……………………..64

23. Workflow of the Extreme Programming Method ……………………………..65

x

TABLES

Table Page

1. Comparison between Plan-based and Agile Methods ……………………... 30

2. Parameters Used in the Model ……………………………………………... 34

3. Effort and Time Distribution following Standard Scrum ………………….. 38

4. Effort and Time Distribution following Framework-1 …………………….. 39

5. Effort and Time Distribution following Framework-2 …………………….. 40

1

CHAPTER I

INTRODUCTION

With the increase in software complexity, software projects are often exceeding

time and budget constraints, and suffering from ineffective coding and difficulties in

software maintenance. The term “Software Crisis” was coined in the first NATO Software

Engineering Conference in 1968 to refer to these problems. As a result of the software

crisis, the processes and tools to design and build software efficiently became an area of

high concern, and the field of software engineering emerged (O'Regan, 2008).

Efforts to improve software development have been helpful so far; however, the

success rates of software projects are still not satisfactory. According to the CHAOS report,

the percentage of projects that are delivered on time, on budget, and with the required

features and functions has increased from 29% in year 2004 to 39% in year 2012 (Standish

Group, 2013). While some factors that lead to project failure are uncontrollable, sometimes

informed managerial decisions can make all the difference. A major decision that can

influence the success of a project is the software development model, which is the structure

imposed on the software development process.

Traditionally, the software development process had been a plan-based Waterfall

model where software is developed in sequential phases (Royce, 1970). That is, the

requirements of the project are negotiated and agreed on. Then, specifications that

2

formalize the requirements are set and a design for the system is put in place. Based on that,

the system is implemented through a series of refinement activities that include coding, unit

testing, and integration of the different code units. Then, verification, functional system

testing and acceptance testing take place. Testing might result in design and code changes

causing a cycle in the process. Finally, the software is released and maintained as needed.

This systematic approach faced major problems especially when the requirements

of software were susceptible to change or when the product requirements could not be fully

agreed on initially. Other processes such as the V-model introduced variations to the

traditional waterfall model by trying to better account for change management. However,

the need for more flexible methodologies was still present, which gave rise to iterative and

agile methods.

Iterative methods such as the Spiral Model introduced by Boehm (Boehm, 1988)

and the Rational Unified Process (RUP) introduced by IBM (Eeles and Houston, 2002)

aim to reduce risk through developing software in smaller portions. While iterative methods

are not as rigid as traditional methods, they entail that requirements elicitation and analysis

activities are to be done before the implementation of the project begins. For this reason,

these methods are still classified as big-design-up-front or plan-based methods. Agile

methods, on the other hand, follow an incremental and iterative software process where the

different phases of software development including requirements analysis are interleaved in

order to accommodate changing requirements, encourage customer involvement and create

opportunities for learning and improvement.

In 2001, a group of seventeen leading software practitioners came together to

discuss the problems with existing software methodologies and wrote “The Agile

3

Manifesto” that includes a description of the values that support agile or lightweight

software development. Based on the values and principles set by the agile manifesto, a

distinction between agile and non-agile practices emerged, and more focus was given to

implement agile practices in software development.

Agile practices were able to find several supporters among software practitioners

and with time, agile practices increased in popularity in the software industry. According to

the “8th Annual State of Agile Survey”, 52% of the 3,501 software developers surveyed

(mostly from North America and Europe) said that they are using agile to manage the

majority of their projects (APLN, 2013). Agile methods have joined the mainstream of

development approaches and even large companies including HP, IBM, Oracle, and

Microsoft are using agile methods (Moniruzzaman and Hossain, 2013).

So does that mean that agile methodologies are deemed automatically better than

plan-based ones? The short answer for this question is no. Neither agile nor plan-driven

methods represent a methodological silver bullet; however, one software process can be

better than the other under different circumstances (Lindvall et al., 2002). Although a lot of

research has been conducted to better understand the circumstances under which agile

methods are preferable, most of this research uses expert judgment or empirical methods.

While these approaches have their advantages, they have limitations when it comes to

analyzing how the different factors influencing the software development processes do so,

and how these factors interact with each other. Quantitative modeling could help overcome

these limitations.

There are various plan-based and agile development approaches that are used

among software practitioners today. Popular plan-based methods include the Waterfall

4

model, the V-Model, the Spiral Model, and the Rational Unified Process (RUP). Popular

agile methods include Scrum, Extreme Programming (XP), and Feature-Driven

Development (FDD). While it is useful to compare plan-based approaches to agile ones on

a general level, for a more specific and quantitative comparison, we have decided to focus

on comparing Scrum to the traditional Waterfall method.

We aim to highlight the advantages and disadvantages of plan-based and agile

methods by modeling the effort required for each of these processes under variable

conditions and analyzing the results. For this purpose, we devised a model that compares a

popular plan-based method, Waterfall, to a popular agile method, Scrum. We took into

account the size of the project, the structure of the method used, and effects of requirements

volatility. Our results indicate that Scrum is better under high volatility conditions while

Waterfall is better when there is no or very low requirement volatility. Moreover, our

model indicates that Scrum is more desirable for bigger projects.

5

CHAPTER II

BACKGROUND

This section includes a brief overview of software engineering history, a

description of popular plan-based methods, and a description of popular agile methods.

This background is important for understanding the context of this research.

A. Brief Overview of Software Engineering History

“Waterfall” and “Scrum” development methods are not ancient concepts; rather

they are the results of the evolution of the field of software engineering over the past few

decades. During the 1960’s the main approach towards software development was the

“code and fix” approach where coding and testing happen with very little planning and

design effort. However, software complexity was posing challenges and many projects

were running over time and budget constraints and facing severe problems concerning

efficiency and quality. This led the NATO Science Committee to hold two conferences in

the 1968 and 1969 to address the situation. The conclusions of these conferences

encouraged the emergence of more organized methods and formal practices in software

management (Boehm, 2006).

During the 1970s, a more structured approach towards software development was

becoming dominant. Software practices included software development practices where

requirements and design phases preceded coding and testing. The 1970s decade witnessed

6

the rise of the Waterfall formal method where the system is designed, the code is written

and tested, and the project is maintained all in a sequential manner.

Despite the big leap in software engineering that formal methods provided, there

was still a lot to be done regarding improving software productivity and processes. During

the 1980s and 1990s, a lot of effort was invested in understanding the factors effecting

software development productivity such as staffing, prototyping, and process improvement.

Towards the end the twentieth century and the beginning of the twenty first, Waterfall and

similar approaches were facing difficulties in adapting to rapidly changing requirements

and iterative approaches with less up-front planning were becoming popular as opposed to

the big-design-up-front traditional methods such as the Waterfall method. In 2001, a clear

distinction between plan-based and agile methods was made through the set of values

identified by the “Agile Manifesto”. After the agile manifesto, not only did existing agile

methods gain more popularity, but also new agile methods started emerging.

Today, both traditional methods and agile methods are being used in the software

development industry, and the challenge lies in knowing which development method is

better suited for a given software development project.

B. Plan-based Methods

There are several plan-based methods used the software industry. The most basic

plan-based method is the Waterfall Model. After the Waterfall model was introduced there

were some variations of it such as the V-model. These models are known as traditional

7

plan-based models. Moreover, iterative plan-based methods such as the Spiral model and

the Rational Unified Process (RUP) are also popular in the software industry.

1. Waterfall Model

“Waterfall” is the word used to describe the sequential software development

model suggested by Royce in 1970 (Royce, 1970). The model divides activities of software

development into distinct phases that should be completed in a stage-wise fashion. These

phases are: system requirements, software requirements, analysis, program design, coding,

testing, and operations. Figure 1 represents the waterfall model (Royce, 1970).

Figure 1: Waterfall Model

The project starts with defining system requirements which include components of

the system such as required hardware and software tools. The next step is defining software

8

requirements or the functionality that the software is expected to deliver. These

requirements are usually documented and could be used as a contract between the customer

and the entity responsible for developing the software. Analysis includes understanding the

requirements and determining how they interact with each other and other applications like

databases and user interfaces. Implementation of the system begins by program design

which consists of high level architectural design and a detailed design for the different

software components. After design is finalized, the coding phase begins and software is

developed based on system specification and design. To verify and validate the system, a

series of tests should be performed to check if the system meets the functional and non-

functional requirements and to find and fix any errors in the system. Finally, the system is

released and maintained in the operations phase of the Waterfall model.

Modified waterfall models have used the same sequential activities identified by

Royce’s model but represented in a different way. For example, some models consider

software requirements and analysis as one phase and architectural and detailed design as

two separate phases (Mohammed et al., 2010). Moreover, the different phases of the

waterfall are separate in the sense that one phase has to be finalized before the next phase

begins. However, there could be feedback from current phases to older ones. For example,

errors revealed in testing require moving back to the coding phase. While all of these

phases are linked together, they are usually the responsibility of more than one entity. That

is to say that a customer or an analyst can identify the requirements, while design could be

done by software designers and code and testing by software developers.

9

2. V-shaped Model

The V-shaped model is another traditional approach to software development

sometimes considered as an extension to the Waterfall Model. This model also consists of

sequential phases; however more emphasis is placed on system validation and verification.

The testing phase of the Waterfall Model is made more explicit, and the relationships

between testing and other phases of the model are clearly identified (Rowen, 1990). Testing

includes unit testing for the different components of the system, interface testing to check

that these components interact with each other as planned, system testing to verify that the

non-functional requirements such as security and reliability are met, and acceptance testing

to make sure that the system performs as the customers want it to. Figure 2 is a

representation of the V-model (Easterbrook, 2001).

Figure 2: V-Model for Software Development

10

3. Iterative Plan-based Models

Iterative plan-based models are considered non-agile because they depend on big-

design-up-front, unlike agile methods which don’t allocate a lot of resources for design

before development. Two of the most popular iterative plan-based methods, the Spiral

model and the Rational Unified Process (RUP), are discussed in the Appendix.

C. Agile Methods

Agile methods are described as methods that adhere to the values and principles of

the “Agile Manifesto”. In this section, we give a brief overview of the Agile Manifesto and

agile methods in general, and we describe one of the most widely used agile methods,

Scrum.

1. The Agile Manifesto

Towards the end of the twentieth century, heavyweight traditional approaches to

software development received serious criticism among software practitioners and

lightweight software development methods started emerging. These lightweight, or agile,

approaches focused on releasing portions of working software instead of following a plan-

based approach with big design up-front.

On February 11-13, 2001, seventeen professionals representing supporters of

different lightweight methodologies met at a ski resort in Utah. Their meeting resulted in

what is now a milestone in the world of software development: The formation of the “Agile

11

Alliance” and the emergence of “The Agile Manifesto”. The Agile Alliance members

identified the core values that agile methods are based on. Accordingly, The Agile

Manifesto states (Alliance, 2001):

“We are uncovering better ways of developing software by doing it and

helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the

left more.”

Moreover, this group also set principles behind the agile manifesto to guide agile

practices. The twelve principles of Agile Software are listed in the Appendix.

While there is no clear definition for the term “Agile Development”, there is

consensus that the values and principles suggested by the agile manifesto present guidelines

for agility in software development. Based on that, several software development methods

have been marked as agile, and although these methods have different processes and

activities, they share the same values and principles stated above.

According to the 8th annual state of agile survey and Forrester Inc Survey of Agile

methodologies used, the most popular agile methods include Scrum, extreme programming,

and Feature Driven Development (APLN, 2013), (West et al., 2010). We will provide a

description of the Scrum methodology which was listed as the most popular agile method

with 73% of the respondents asked about agile methods used answering that it is Scrum or

12

a Scrum variant. A description of Extreme Programming and Feature Driven Development

is present in the Appendix.

2. Scrum

Scrum is a structured agile method with a focus on the framework used to manage

complex software development (Sutherland and Schaber, 2013). That is to say, many of the

practices identified in XP can be used in Scrum as long as the framework set by Scrum is

not violated.

Scrum implements an iterative and incremental approach to increase predictability

and control over risk. This iterative process happens in cycles called sprints where there is

time for planning before each sprint, time for development, time for presenting a working

demo of the functional product, and time for reflecting and learning from each sprint.

The three pillars that scrum aims for are transparency, inspection, and adaptation.

The Scrum framework is structured to accommodate those pillars though identifying roles

for the Scrum team members, tracking Scrum artifacts, and setting time-boxed Scrum

events.

There are three main roles in every scrum team: a product owner responsible for

maximizing the value of the product, a development team which consists of seven (plus or

minus two) dedicated members who are responsible for a big part of the planning and for

implementing the plan in increments, and a Scrum master which is responsible for ensuring

that Scrum practices and rules are being followed.

13

Scrum identifies artifacts that help in tracking progress and explaining work flow.

These artifacts are the product backlog, the sprint backlog, and the product increment.

The product backlog represents a list of requirements that need to be present in the

final product ordered by priority. The product owner identifies the items on the list and the

way they are ordered based on what would maximize product value. This list is highly

flexible and evolves over time to allow for changing requirements and modifying scope.

Details like a description and an estimate of the items on the backlog is also present

although high priority items on the top of the list are usually more detailed than lower

priority items. While the product owner is responsible for this artifact, the Scrum master

and members of the development team regularly help the product owner manage the

product backlog through a process called backlog grooming where items on the list can be

reordered, estimated, modified, or even added. Figure 3 shows an example of a product

backlog (Sutherland, 2010).

Figure 3: Product Backlog used in the Scrum Process

The sprint backlog is a subset of the product backlog which includes the

requirements that should be achieved by the end of the coming sprint. The sprint backlog is

therefore the functionality that is expected to be delivered by the development team at the

end of a sprint. The sprint backlog is managed by the development team during the

14

planning and development phases. It has much more detail than the product backlog as it

presents a clear idea of the process followed and can be updated on a daily basis to show

the work done so far and the work remaining. Figure 4 shows an example of a sprint

backlog (Sutherland, 2010). As shown in the example, each sprint task is assigned a

member or volunteer and has an estimated effort which could be updated on a daily basis.

Figure 4: Sprint Backlog used in the Scrum Process

The sprint backlog helps the team achieve transparency which is essential for

tracking and managing progress. An effective tool used by Scrum teams to track progress is

the sprint burndown chart which visually shows progress as a function of time. Figure 5

shows an example of a sprint burndown chart (Sutherland, 2010). According to the figure

below, the team seems to be behind schedule and the speed of development is lower than

expected. The technical term used to refer to the speed of development is the velocity of the

team. In this example, the team should improve its velocity in order to finish the required

tasks on time. Similar tools can be used to measure the progress of the project or a portion

of the project known as a release.

15

Figure 5: Sprint Burndown Chart (Sutherland, 2010)

Based on the product backlog and work achieved after each sprint, the product

increment is delivered. The product increment is simply an aggregate of all the functional

product backlog items developed during the last sprint and all previous sprints. Since the

Scrum team works on achieving shippable functionality by the end of each sprint, the

product increment is the part of the product which can be released for use upon the request

of the product owner.

After understanding the different roles and Scrum artifacts, the workflow of the

Scrum framework can be explained through the well-defined and time-boxed Scrum events.

The main events in each sprint are: The sprint planning meeting, the daily Scrum, the sprint

review, and the sprint retrospective.

Before each sprint, a sprint planning meeting takes place. This meeting is set to be

eight hours for a one month sprint or 4 hours for a two week sprint. The meeting consists of

16

two main parts. The first part of the meeting is dedicated to agree on the items of the

product backlog that are to be included in the sprint backlog, or in other words, to agree on

the requirements that would be delivered at the end of the sprint. The second part of the

meeting revolves around how the development team intends to accomplish the functionality

by the end of the sprint. This includes designing the system and giving detailed estimates

for the tasks to be completed.

After the sprint planning meeting, the actual development of the system happens

during the sprint which is typically one week to four weeks long. During the sprint, a daily

Scrum standup meeting takes place where all the development team, in addition to the

Scrum master, meet for fifteen minutes at the beginning of each day to update each other

about their progress since the last meeting, what they plan to do before the next meeting,

and any obstacles that they are facing. The daily Scrum helps in improving communication,

discovering and solving problems, and removes the need for managerial meetings during

development.

If all goes according to plan, by the end of the sprint, the development team should

have a working demo with the functionality agreed on. The product increment is shown to

the product owner and possibly other stakeholders at the sprint review meeting which is

time-boxed to four-hours for a four week sprint and two-hours for a two week sprint. Based

on that meeting, the product owner gives feedback, identifies what has been done and what

needs more work, and cooperates with the development team to agree on what should be

done next. The meeting results in a revised backlog and valuable input for the next sprint

planning meeting.

17

Last but not least, before a new sprint begins and the cycle repeats, a sprint

retrospective meeting is held to reflect on how the sprint went and suggest improvements to

the development process accordingly. This meeting is time-boxed to three hours for a one

month sprint and shorter if the sprint is shorter. Figure 6 shows a summary of the main

Scrum concepts that we have discussed (Sutherland, 2010).

Figure 6: The Scrum Development Process (Sutherland, 2010)

18

In case of large-scale agile development, Larman suggested two Scrum

frameworks that scale up the Scrum process in an effective way. These frameworks are

very similar to the Standard Scrum method discussed above with few differences.

Framework-1 is applied for team sizes larger than ten but less than one hundred. This

framework is centered around the idea of splitting the developers in teams, where each

team has a Scrum master and product owner. These teams coordinate with each other

before, during, and after each sprint. If the number teams exceeds ten, framework-2 is

applied. Framework-2 splits the teams in different areas, where the teams in each area are

specialized in one requirement area. The different areas as well as the different teams

coordinate with each other and with the product owners before, during, and after each sprint

(Larman and Vodde, 2013).

19

CHAPTER III

LITERATURE REVIEW

This section gives an overview of popular Software Engineering methods with

special focus on Waterfall and Scrum. It also includes a list of advantages and

disadvantages for using agile methods and a general idea about relevant research done in

this area.

A. Quantifying Project Success

The aim of project management is the success of the project. Studies found that the

attributes of success for a project are quality, scope (meeting all customer requirements),

and meeting time and cost constraints (Cohn and Ford, 2003), (Lindvall et al., 2004).

Software quality is defined by the quality models created by McCall and Boehm

(McCall et al., 1977), (Boehm et al., 1978). These models identify measurable software

quality factors such as correctness, reliability, efficiency, portability, flexibility and others.

They also identify how these metrics are measurable. For example, flexibility is defined by

McCall as “the effort required to modify an operational program” (McCall et al., 1977).

Scope refers to the requirements set by the customer. These requirements can

undergo changes, additions, or deletions. Changes to requirements are known as scope

churn, requirement additions are known as scope creep, and deletion of requirements is

known as scope scrap (Kulk and Verhoef, 2008). To achieve project success, the project

20

must meet the customer requirements after it undergoes requirements churn, requirements

scrap, and requirements creep. Certain guidelines can be specified ahead of time to limit

changes in scope.

Although meeting all the requirements and having a good quality product are

essential factors, these are measures of produce performance. In order to assess the success

of a project process performance such as time and cost should be also taken into account

(Shao et al., 2014). Although both plan-based and agile methods promise to deliver a good

quality product meeting all requirements, a major concern remains regarding how effective

these methods are in meeting schedule and budget constraints. While timeliness could be

measured as the overall time it takes to finish a project (in hours or months), quantifying

cost is not as straight forward. Cost can include monetary as well as other resources such as

human resources.

While it is hard to optimize all of these factors at the same time, it is worth noting

that these factors are not independent of each other. For example, Harter et. al. found that

product quality is usually better when the time spent on the project is also reduced (Harter

et al., 2000). Moreover, some metrics can be used to reflect more than one factor of project

performance. Effort, often measured in man-hours, is a measure that combines two aspects:

time and cost.

Nevertheless, sometimes success factors collide and compromises have to be made

depending on customer priorities. That is to say, we can demand that certain scope or

quality constraints are met and try to minimize the cost of the project accordingly.

21

B. Software Size Estimation

The effort, cost, budget, and time required to develop a software product depend

on the size of the project. Therefore, software size estimation metrics should be

investigated to understand how software size could be quantified. Software size is used to

quantify software length, functionality, and complexity (Bajwa, 2009). Popular size metrics

include lines of code, use case points, function points, and story points.

1. Lines of Code

One way to measure software size is by counting the lines of code. Although this

metric is widely used, it is not simple. When using lines of code as a metric for software

size, it is important to define exactly what is being measured. There are many variations for

lines of code. For example, there is some ambiguity as to if lines of code include data

definitions, comments, and job control language, and whether physical or instructional lines

of code should be measured (Kan, 2002). Although lines of code are easy to count once a

definition is set, they do not reflect the functionality or complexity of the system (Bajwa,

2009).

2. Function Point Analysis (FPA)

 Function points are a very popular method to measure the size of the system

by measuring its functionality. Function points relate to five software components: Number

of user inputs, number of user outputs, number of user inquiries, number of internal logical

files, and number of external interfaces. Software requirements are classified into these five

22

categories and are then weighted according to the complexity of the software to obtain the

unadjusted function points. The function points are then adjusted to include the factors

captured the Value Adjusted Factor (VAF) (Cheung et al., 1999).

The Value Adjusted Factor adjusts the unadjusted function point count by up to

35% and is based on the degree of influence of the 14 General System Characteristics

(GSC) which are: Data communications, distributed data processing, performance, heavily

used configuration, transaction rate, online data entry, end-user efficiency, online update,

complex processing, reusability, installation ease, operational ease, multiple sites, and

facilitate change (Bundschuh and Dekkers, 2008).

Function point analysis well documented and has set standards for calculation.

Unlike lines of code, it can be calculated during the early phases of a project. A

disadvantage of the function point method is that it is hard and sometimes costly to

calculate especially if the project is big.

3. Use Case Points (UCP)

 A use case can be defined as a list of steps or a description of the sequences

of interactions possible between the system and other actors within the scope of a certain

goal (Adolph et al., 2002). In object oriented programming, use cases are often used as a

tool to model the functional requirements of a system. Influenced by the function point

method, use case points are another measure of size based on functionality.

The first step for calculating the use case points of a system given its use cases is

to calculate the unadjusted actor weight. This is done by categorizing the actors in the use

23

case model as simple actors (other systems with defined application programming

interfaces), average actors (other systems interacting through internet protocols), and

complex actors (such as a person interacting through a graphical user interface). By

counting the number of actors in each category and multiplying the number of simple

actors by 1, the number of average actors by 2, and the number of complex actors by 3, we

get the unadjusted actor weight (Anda et al., 2001).

The second step is to find the unadjusted use case weight by classifying use cases

into simple, average, and complex depending on the number of transactions in the use

cases. A use case with 3 or less transactions is multiplied by 5, a use case with 4 to 7

transactions is multiplied by 10, and a use case that has more than 7 transactions is

multiplied by 15. The unadjusted use case weight is then added to the unadjusted actor

weight to obtain the unadjusted use case points.

 These unadjusted use case points are then adjusted to reflect technical and

environmental factors (Anda et al., 2001). Figure 7 shows a summary of the method used to

find use case points.

24

Figure 7: Calculating Use Case Points

Use case points are a good indicator of functionality, complexity and effort, and

they can be calculated early on in the project. However, they require having a set of use

cases which is not always available especially in agile projects.

4. Story Points

Story points are used by Scrum teams to estimate the size of the functionality that

will be implemented in the next sprint. Requirements identified in the product backlog are

rewritten in the form of user stories. User stories describe a set of functionalities that is

independent, negotiable, valuable to users and customers, estimable, small, and testable

(Cohn, 2004). The scrum team assigns story points to user stories by a paired comparison

25

process. Based on how much story points the team expects to be able to complete in one

sprint, the team then selects which user stories to implement. This process is not

standardized and differs from one team to another (Felhman and Santillo, 2010). Therefore,

the story point method is often criticized for being highly subjective.

C. Software Cost Estimation Methods

Several software estimation methods have been developed to estimate the time,

cost, and effort required to complete a software project. These methods include estimation

through algorithmic models, expert judgment, and estimation by analogy (Boehm, 2007).

Our analytical model uses some of the results obtained by using these methods in order to

make reasonable assumptions.

1. Algorithmic models

There are several algorithmic models used for software estimation purposes like

the Constructive Cost Model (COCOMO), the Constructive Systems Engineering Model

(COSYSMO), Software Lifecycle Management (SLIM), and Function Point Analysis

(FPA) (Shepperd et al., 1996). These models provide estimates for cost based on a set of

variables or cost drivers (Boehm, 2007).

For example, the COCOMO model is based on an empirical study of 63 projects.

The basic model estimates development effort and time given the size of the project and the

mode of development. Intermediate and advanced versions of the model exist to account for

26

cost drivers such as product, hardware, personnel, and project attributes across different

phases of the project (Merlo–Schett et. al, 2003).

According to the USC COCOMO reference manual (Horowitz, 1994), the

development time and effort can be estimated for Waterfall projects for which the

constraints are somewhat flexible as:

𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑜𝑟𝑡 = 3 × (𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑆𝑖𝑧𝑒)1.12

𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑇𝑖𝑚𝑒 = 2.5 × (𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑜𝑟𝑡)0.35

Note that the project size used by COCOMO is expressed in thousands of

delivered code instruction. Moreover, the number of developers required to finish the

project is expressed as:

𝑁 =
𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑜𝑟𝑡

𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑇𝑖𝑚𝑒

2. Analytical Models

There are several models that use an analytical method to gain interesting insights

about software engineering. In our model, we aim to compare traditional methods to agile

methods by formally modeling these methodologies. That will allow for deep analysis of

these models similar to how modeling certain aspects of software development has allowed

others to come up with interesting insights.

One model that uses analytical methods to come up with insightful results

regarding iterative development is the model suggested by Koushik and Mookerjee

(Koushik and Mookerjee, 1995). This model finds the optimal size of a team and the

optimal number of modules to be integrated in one iteration in order to minimize the effort

27

needed for coordination activities. They show that as the time available decreases, the level

of coordination decreases and the team size increases. They also show that with large

teams, integrating more modules per iteration is better, and that as the system size

increases, more coordination is required.

Another quantitative model that offers valuable insight is suggested by Jansi and

Rajeswari. Jansi and Rajeswari suggested an approach for sprint planning in agile methods

based on an integer planning model. Their model aims to maximize utility by choosing

optimal number of stories to be included in each sprint (Jansi and Rajeswari, 2015).

A study on organizing knowledge workforce for specified iterative software

development tasks minimizes the time needed for a project subject to budget constraints by

assigning the right tasks to the right people. Their model results in interesting insights on

allocation of resources for an iterative software project (Shao et al., 2014).

3. Expert Judgment

Expert judgment as name implies is the process of consulting experts to estimate

the cost, time, or effort that a project may take. This can be done informally, or through a

formal technique like the Delphi method where the most reliable consensus of opinion is

considered for a group of experts (Rowe and Wright, 1999). Although widely used, this

method is subjective in nature and is not very useful in visualizing how sensitive the project

is to changes in its characteristics.

28

4. Analogy

This method consists of describing the project in terms of variables and then

finding projects similar to the project under study. Historic data about effort, cost, and time

derived from for similar completed projects can be used to find estimates for the new

project. This method can be troublesome especially in the stages of finding similar projects

and evaluating the degree of similarity (Shepperd et al., 1996).

D. Comparative Literature

Traditional and agile methods have been compared with respect to many aspects.

While most of the research on this topic is qualitative in nature, some quantitative research

also exists. These methods differ from our model by the tools used and the aspects being

compared.

1. Qualitative Comparison

According to Kumar and Bhatia, the benefits of the agile methodology over the

traditional plan-based method include handling change of requirements since the customers

are directly involved in the development process, fault detection as testing is performed

frequently, increased performance with the help of daily meetings, flexibility of design, and

improvement in quality. However, they also point out that the agile has limitation when

compared to plan-based methods. The limitations of agile methods include not having

enough focus on product design, having big managerial overhead, and needing a lot of

coordination and communication (Kumar and Bhatia, 2012).

29

According to Awad, the number of developers needed by traditional

methodologies is bigger than the number of developers required with agile methods

especially with large projects, and traditional methods are more effective for larger teams

than agile methods. Moreover, he points out that heavyweight methods involve many

activities that lead to longer time until delivery such as documentation, design documents,

and writing analysis, which means that for tight deadlines, agile is preferred over traditional

methods (Awad, 2005).

According to Boehm and Turner, there is no method that can be labeled as the

most suitable for all software projects. They argue that agile methods are good at handling

changeability and invisibility due to constant communication and sharing, but do not handle

complexity and conformity in an ideal way because they do not scale up very well, and they

do not enforce much discipline and order in the workplace. Moreover, they mention that

plan-driven methods are good at handling conformity and invisibility by investing in

documentation, but they fail to handle changeability and complexity in a proper manner.

Boehm and Turner also point out that iterative and waterfall methods have home grounds

were one clearly dominates the other. Agile methods are more suited for projects that need

to respond to change and turbulent environments, while the plan-based methods like the

waterfall model are more suitable for predictable projects, large teams, stable environments,

and situations where it is difficult for the customer to be dedicated on-site (Boehm and

Turner, 2003).

Table 1 below summarizes some major differences between agile and traditional

methods.

30

Table 1: Comparison between Plan-based and Agile Methods

Aspect Plan-based Methods Agile Methods

Software Development

Lifecycle

Sequential (Moniruzzaman and

Hossain, 2013)

Evolutionary; Iterative and

incremental (Moniruzzaman

and Hossain, 2013)

Customer Involvement Only during the beginning of

the project (Hoda et al., 2010)

Essential to the success of the

project; Throughout the project

(Ahmed, 2010)

Documentation Comprehensive

(Moniruzzaman and Hossain,

2013)

Light (Moniruzzaman and

Hossain, 2013)

Development Team Tightly controlled by project

manager (Moniruzzaman and

Hossain, 2013)

Self-directed (Moniruzzaman

and Hossain, 2013)

Number of Developers Large for large projects Usually small even for large

projects

Project Management Tasks Schedule series of events,

schedule people and resources,

calculate critical paths, etc…

(Dubakov and Stevens, 2008)

Product/Release backlog

maintenance, burn down

reports, task board,

etc…(Dubakov and Stevens,

2008)

Popular Supporting

Development Tools

MS project, Subversion,

Bugzilla, etc…(CapTech,

2015)

XPlanner, ScrumWorks,

Rally,VersionOne, Jira, etc…

(CapTech, 2015)

Cost of Change Exponential (Boehm et al.,

2008)

Flat (Cockburn, 2000)

Change Attitude Avoids change (Moniruzzaman

and Hossain, 2013)

Welcomes change

(Moniruzzaman and Hossain,

2013)

Knowledge Management Explicit Tacit

Upfront Planning Heavy Light

2. Quantitative Comparison

Quantitative comparison between plan-based and agile development is scarce.

However, there are a few models in the literature that use quantitative tools to compare

plan-based and agile methods.

31

For example, a system dynamics model based on the relationships between system

variables is used to compare agile methods to the traditional plan-based method. The model

describes the behavior of Scrum, Kanban, and Waterfall under similar starting conditions,

and then compares agile methods to plan-based methods in terms of performance (Cocco et

al., 2011).

Empirical research is also used to compare Waterfall to iterative models.

According to the results of an empirical study on phase effort distribution data from the

China Software Benchmarking Standard Group (CSBSG) database, iterative processes

employ less effort percentage in plan and requirement, design, and test phases, and more

effort in the coding phase (Yang et al., 2008).

32

CHAPTER IV

MODEL

In this chapter we list the assumptions we used for building our model. Then, we

derive the model that takes into account the different structures of Waterfall and Scrum

software development methods and the effects of requirements volatility.

A. Model Assumptions

Finding the best development method for a software project is a complex problem

with many variables. In our approach, we narrowed down the problem by making several

assumptions.

1. General Assumptions

First, we assume that the decision of the optimal software development method is

limited to Waterfall and Scrum. In reality, the optimal development method can be neither.

The reason for narrowing down our analysis to Waterfall and Scrum is that these two

development methods are good representatives of the traditional and agile methods

respectively. Moreover, we assume that both development methods are applicable to the

project. Sometimes, Scrum or Waterfall is inapplicable like when customer involvement is

infeasible or when the requirements cannot be known upfront. We also assume that in

either case the project is always successful.

33

2. Scrum Model Assumptions

For Scrum, we assume that a sprint is two-weeks long, ten working days, and that

the scrum team consists of three to ten developers, a scrum master, and a product owner

which is a good practice for a Scrum project. Having less than three developers decreases

interactions and productivity gains, while having more than ten developers requires too

much coordination. For big projects, Scrum is scaled up by following Scrum of Scrums.

Moreover, we assume that the first sprint does not include development activities, and that

there is only one release: the final release, which is a reasonable assumption for a project

that could be developed using the Waterfall method.

3. Optimizing Effort

We have decided to select the development method based on minimum effort

required. Effort gives a good indication about the cost of the project as well as the time

needed. Moreover, we assume that the project will be completed meeting the requirements

for quality and scope which are reflected in the inputs of the model as the size of the

project.

4. Using Use Case Points

For this model, we assume that the size of the project is measured by the number

of use case points (UCPs). Although using UCPs as a size metric means that some

additional effort might have to be done in order to form use cases and determine the UCPs,

it can be deduced at the early stages of the project, and is applicable to both Waterfall and

34

Scrum as long as the development is object-oriented. We favored UCPs over function

points and lines of code because function points are more costly. As for story points, they

are a good measure for Scrum projects, but they are not applicable for Waterfall projects.

McKinsey & Company published an article in 2013 encouraging software

practitioners to apply use cases and use case points as project metrics based on their own

experience (Huskin et al., 2013). They argue that UCPs can be calculated in the early stages

of a project and then modified as the project progresses, which makes them very useful for

project planning even for agile projects.

Another supportive argument for the applicability of UCPs to agile projects is a

case study of effort estimation in a project following agile software development using use

case points. The study concludes that when UCPs were applied to an agile project, they

produced estimates close to the actual effort spent on developing a project (Ani and Basri,

2013).

B. Proposed Model

The objective is to minimize effort by selecting the suitable software development

process given the size of the project in UCP, the effort per UCP, and requirement volatility.

Table 2 presents the parameters used in the model with their respective symbols.

Table 2: Parameters Used in the Model

Parameter Symbol

Project original size (UCP) S

Waterfall total effort (man-hours) EW

Scrum total effort (man-hours) ES

35

Required effort per UCP (man-hours) EUCP

Implementation effort per UCP (man-hours) IEUCP

Development effort per sprint for Scrum (man-hours) DES

Total effort per sprint for Scrum (man-hours) TES

Number of developers for Waterfall NW

Number of developers for Scrum NS

Number of teams for Scrum D

Number of areas for Scrum A

A binary indicator that is 1 in case there is more than one scrum team b1

A binary indicator that is 1 in case there is more than one scrum area b2

Waterfall total time (hours) TW

Scrum total time (hours) TS

Number of Sprints (Scrum) SPR

Relative cost of change for Waterfall across the project lifecycle CW

Relative cost of change for Scrum across the project lifecycle CS

Average expected requirements volatility across the project lifecycle RV

1. Estimating Effort

a. Waterfall

In case of no requirement volatility, the total Waterfall effort for the project is the

size of the project in UCP times the needed effort to complete one UCP,

𝐸𝑊 = 𝑆 × 𝐸𝑈𝐶𝑃.

In the case of requirement volatility, we account for it by multiplying the total

effort by a factor that accounts for both volatility and the cost of volatility,

𝐸𝑊 = 𝑆 × 𝐸𝑈𝐶𝑃 × (1 + 𝐶𝑜𝑠𝑡𝑤 × 𝑅𝑉).

b. Standard Scrum

Estimating the effort needed for the scrum process can be done by estimating the

number of sprints needed to complete the project and multiplying the number of sprints by

36

the estimated effort per sprint. Since scrum can be scaled up by using the frameworks

suggested by Scrum of Scrums, we will find the effort per sprint for a standard scrum team

of 10 or less developers, for a group of ten or less scrum teams following Framework-1,

and for a group of more than 10 teams following Framework-2 (Larman and Vodde, 2013).

For the case of no requirement volatility, we start by estimating the effort per

sprint. A sprint includes a sprint planning meeting, daily Scrum meetings, a sprint review

meeting, a sprint retrospective meeting, backlog grooming, and the actual implementation

of the product. The sprint planning is time-boxed to four hours for a two-week sprint cycle.

All the developers, in addition to the Scrum master, attend this meeting. Therefore the

effort required for the sprint planning meeting is estimated to be (N+1) people × 4

hours/sprint = 4× (N+1) man-hours/sprint.

The daily Scrum meeting is time-boxed to 15 minutes and it is attended by the

Scrum master and the developers. Considering that the sprint is 10 working days, and that

the daily scrum is done every day except for the first and last day, the effort required for

daily Scrum meetings is estimated to be (N+1) people × 8 days × 0.25 hours/day = 2×

(N+1) man-hours/sprint.

Backlog grooming is the process of refining the product backlog. It usually

happens during the sprint development time and is attended by the Scrum master and the

development team. Backlog grooming is estimated to take five to ten percent of the sprint

time (Sutherland, 2010). We estimate the effort needed for backlog grooming to be one

working day or 8(N+1) man-hours/sprint, at 10% of sprint time.

37

The sprint review and sprint retrospective meetings are held at the end of the sprint

and are estimated to take two hours each on average for a two-week sprint though this time

can be a little less or more. The Scrum master and the developers are expected to

participate in these meetings. Therefore, the effort required for these two meetings is

estimated to be (N+1) people × 4 hours/sprint = 4× (N+1) man-hours/sprint.

For a two-week sprint, the time spent on development of the product is the time

spent on other activities subtracted from the total time available. Assuming that there are

five working days per week and eight hours per day, the total time available during a two-

week sprint is 10×8= 80 hours. The time spent on sprint planning, daily Scrum meetings,

and sprint review and retrospective meeting is 4 + 8 ×0.25 + 8 + 4= 18 hours/sprint.

Therefore the time available for development is estimated to be 62 hours/sprint.

Knowing the implementation effort per UCP, and taking into account that the first

sprint is spent on activities other than development such as high level design, we can find

the number of sprints required as

𝑆𝑃𝑅 = ⌈
(𝑆 × 𝐼𝐸𝑈𝐶𝑃 × (1 + 𝐶𝑜𝑠𝑡𝑆 × 𝑅𝑉))

𝐷𝐸𝑆
⌉ + 1

The total effort per sprint is therefore the sum of the effort required for all

activities is

𝑇𝐸𝑆 = 4 × (𝑁 + 1) + 2 × (𝑁 + 1) + 8 × (𝑁 + 1) + 4 × (𝑁 + 1) + 62 × 𝑁

= 80 × 𝑁 + 18.

Table 3 summarizes the effort and time distribution within one sprint following

Standard Scrum having a total of N developers.

38

Table 3: Effort and Time Distribution following Standard Scrum

Activity Effort (in man-hours) Time (in hours)

Sprint Planning 4(N+1) 4

Daily Scrum 2(N+1) 2

Product Backlog Refinement 8(N+1) 8

Sprint Review 2(N+1) 2

Team Retrospect 2(N+1) 2

Development 62N 80-18=62

The total effort for the project is

𝐸𝑆 = 𝑆𝑃𝑅 × 𝑇𝐸𝑆 = (⌈
(𝑆 ×𝐼𝐸𝑈𝐶𝑃×(1+𝐶𝑜𝑠𝑡𝑆×𝑅𝑉))

62 𝑁
⌉ + 1) × (80𝑁 + 18)).

𝑇𝐸𝑆 is the total effort needed per sprint and can be deduced by summing up the

efforts for the different activities during the sprint shown in Table 3.

c. Scrum of scrums: Framework-1

In the case of more than ten developers per team, the developers should be split

into smaller teams that coordinate with each other, where each team has its own Scrum

master (Larman and Vodde, 2013). These teams work in parallel in a way very similar to

the typical scrum framework but that differs in the following aspects. First, the sprint

planning meeting 1 which consists of two hours is performed jointly by all teams with two

members from each team attending it. Second, there is an interteam coordination meeting

that takes around 3 hours per sprint and is attended by a developer from each team. Product

backlog refinement is performed by all developers and Scrum masters during the middle of

39

a sprint and it takes around 8 hours. Moreover, the sprint review meeting is a common

meeting attended by two developers from each team, and a joint retrospect meeting of

about an hour and a half takes place at the beginning of the next sprint, and is attended by

one developer from each team in addition to the Scrum masters. We assume that during the

sprint review and interteam coordination meetings, the rest of the development team is

working on implementation tasks.

Table 4 below summarizes the effort and time distribution within one sprint

following Framework-1 having D number of teams and a total of N developers.

Table 4: Effort and Time Distribution following Framework-1

Activity Effort (in man-hours) Time (in hours)

Sprint Planning 1 4D 2

Sprint Planning 2 2(N+D) 2

Daily Scrum 2(N+D) 2

Interteam coordination 3D 3

Product Backlog Refinement 8(N+D) 8

Sprint Review 4D 2

Team Retrospect 2(N+D) 2

Joint Retrospect 3(D) 1.5

Development 60.5N - (3D + 4D) = 60.5N - 7D 80 - 19.5 = 60.5

In this case, 𝐸𝑆 = 𝑆𝑃𝑅 × 𝑇𝐸𝑆 = (⌈
(𝑆 ×𝐼𝐸𝑈𝐶𝑃×(1+𝐶𝑜𝑠𝑡𝑆×𝑅𝑉))

60.5𝑁−7𝐷
⌉ + 1) × (74.5𝑁 +

21𝐷)).

40

d. Scrum of Scrums: Framework-2

In case the number of teams exceeds 10, another framework is suggested to help

the team coordinate with each other (Larman and Vodde, 2013). Framework-2 is very

similar to Framework-1 but it splits groups of teams into different areas. Each group of

teams is responsible for a certain area. The same structure of framework-1 applies with the

exception of a Sprint pre-planning meeting which occurs before every sprint for the overall

product and expected to take around 2 hours, an additional two-hour Overall Sprint Review

meeting, and an hour and a half Overall Sprint Retrospect meeting all of which are usually

attended by two developers from each area. We denote by A the number of areas.

Table 5 summarizes the effort and time distribution within one sprint following

framework-2 having D number of teams, A number of areas, and a total of N developers.

Table 5: Effort and Time Distribution following Framework-2

Activity Effort (in man-hours) Time (in hours)

Sprint Pre-Planning 4A 2

Sprint Planning 1 4D 2

Sprint Planning 2 2(N + D) 2

Daily Scrum 2(N + D) 2

Interteam coordination 3D 3

Product Backlog Refinement 8(N + D) 8

Product Sprint Review 4A 2

Sprint Review by Area 4D 2

Team Retrospect 2(N + D) 2

Joint Retrospect by Area 3D 1.5

Overall Joint retrospect 3A 1.5

Development 59N - (3D + 4A + 4D) = 59N - 7D - 4A 80 - 21=59

In this case, total effort is

41

𝐸𝑆 = 𝑆𝑃𝑅 × 𝑇𝐸𝑆 = (⌈
(𝑆 ×𝐼𝐸𝑈𝐶𝑃×(1+𝐶𝑜𝑠𝑡𝑆×𝑅𝑉))

59𝑁−7𝐷−4𝐴
⌉ + 1) × (73𝑁 + 21𝐷 + 7𝐴).

e. A general form

Let b1 and b2 be two binary indicators. In case of standard scrum, b1 and b2 are

zero. In case of Framework-1, b1 = 1 and b2 = 0, and in case of Framework-2, b1 = 1 and b2

= 1. Then we can write

𝐸𝑆 = 𝑆𝑃𝑅 × 𝑇𝐸𝑆 = (⌈
(𝑆 ×𝐼𝐸𝑈𝐶𝑃×(1+𝐶𝑜𝑠𝑡𝑆×𝑅𝑉))

62𝑁+𝑏1(−1.5𝑁−7𝐷)+𝑏2(−1.5𝑁−4𝐴)
⌉ + 1) × [80 𝑁 + 18 + 𝑏1 (−5.5 𝑁 + 21 𝐷 − 18) +

𝑏2 (−1.5 𝑁 + 7 𝐴)]

𝑇𝑆 = (⌈
(𝑆 × 𝐼𝐸𝑈𝐶𝑃 × (1 + 𝐶𝑜𝑠𝑡𝑆 × 𝑅𝑉))

62𝑁 + 𝑏1(−1.5𝑁 − 7𝐷) + 𝑏2(−1.5𝑁 − 4𝐴)
⌉ + 1) × 80

2. Estimating Effort per UCP

Some research about estimating effort per UCP is available for both Waterfall and

agile, e.g. Schneider and Winters (2001), Ani and Basri (2013), and Karner (1993).

However, these estimations have been criticized by Ribu, and it is recommended that each

organization estimate effort per UCP based on its own historical data (Ribu, 2001). If no

historical data is available a value for effort per UCP can be assumed to be 20 man-

hours/UCP (Karner, 1993). For Scrum, the implementation effort per UCP discussed in the

model does not include requirements and high level design. Knowing that requirements and

high level design is 24% of total project effort, we can assume that the implementation

effort per UCP is effort per UCP×0.76 (Tan, 2012). Therefore, a typical value for 𝐼𝐸𝑈𝐶𝑃 is

15.2.

42

3. Accounting for Requirements Volatility

Requirement volatility, RV, is the percentage requirements that are expected to

change across the project. According to Peña, the average volatility of a project is 22% with

standard deviation 16% (Peña, 2012).

Cost of change is the cost it takes to implement a change. This cost varies

depending on the percentage effort completed when this change arrives. Moreover, change

doesn’t arrive uniformly over the project lifecycle.

In case historical data is available regarding the cost of change across the project,

this data should be used to find values for CW and CS , the cost of change for Waterfall and

Scrum accordingly. However, in the absence of historical data, we find reasonable values

for CW and CS as we will discuss.

Since we assumed that the project is always successful, we should assume that the

requirements volatility will decrease with time with no volatility arriving at the end of the

project. Otherwise, the Waterfall model might face difficulties that might lead to failure.

Therefore, we assume that the requirements volatility distribution as a function of percent

effort completed follows a triangular distribution as shown in Figure 8, where no volatility

arrives during the last 10% of the project.

43

Figure 8: Requirement Volatility Distribution as a Function of Percent Effort Spent

For Waterfall the relative cost of change depends on the phase where the change

arrives. For the requirements phase, the relative cost to fix is 1, for the design phase the

relative cost to fix is 5, for the code phase the relative cost to fix is 10, for the testing phase,

the relative cost to fix is 50, and for the operations phase the relative cost to fix is 100 or

more (Boehm,1981).

In order to model the relative cost of change for Waterfall in a way that reflects

this exponential increase with project progress, the Waterfall relative cost to change is

assumed to be 100x, where x is the percent effort completed as shown in Figure 9.

According to this assumption, the relative cost to fix increases exponentially as the project

progresses varying from 1 to 100.

44

Figure 9: Waterfall Relative Cost of Change as a Function of Percent Effort Spent

For agile development, the cost of change curve can be assumed to be of the order

O(log(n)) (Cockburn, 2000). We model the relative cost of change for Scrum as

log(100x+1) where x is the portion of project completed, and log is the natural logarithm as

shown in Figure 10.

Figure 10: Scrum Relative Cost of Change as a Function of Percent Effort Spent

45

Therefore, for Waterfall the total cost of change over the course of the project is

𝐶𝑜𝑠𝑡𝑊 = ∫ (
2×(0.9−𝑥)

0.92 × 100𝑥) 𝑑𝑥 = 6.747
0.9

0
.

For Scrum, the total cost of change over the course of the project is

𝐶𝑜𝑠𝑡𝑆 = ∫ (
2 × (0.9 − 𝑥)

0.92
× log (100𝑥 + 1))

0.9

0

𝑑𝑥 = 3.1.

4. The Final Model

For Waterfall, the total effort is expressed as

𝐸𝑊 = 𝑆 × 𝐸𝑈𝐶𝑃 × (1 + 𝑅𝑉 × 𝐶𝑜𝑠𝑡𝑊)

According to COCOMO, assuming the project has somewhat flexible constraints,

the project time and number of developers required to finish the project can be expressed as

(Merlo–Schett et. al, 2003),

𝑇𝑊 = 2.5 × (𝐸𝑊)0.35

𝑁 =
𝐸𝑊

𝑇𝑊

The total effort of the Scrum model is found by solving the following optimization

problem, where N (team size) is the decision variable, and D, A, 𝑏1, and 𝑏2are auxiliary

decision variables.

Minimize 𝐸𝑆 = 𝑆𝑃𝑅 × [80 𝑁 + 18 + 𝑏1 (−5.5 𝑁 + 21 𝐷 − 18) + 𝑏2 (−1.5 𝑁 + 7 𝐴)]

Subject to

𝑆𝑃𝑅 = (⌈
𝑆 × 𝐼𝐸𝑆 × (1 + 𝑅𝑉 × 𝐶𝑜𝑠𝑡𝑆)

 𝐷𝐸𝑆

⌉ + 1)

𝐷 = ⌈
𝑁

10
⌉

46

𝐴 = ⌈
𝐷

10
⌉

𝑏1 ≡D>10

𝑏2 ≡ 𝐴 > 10

𝐷𝐸𝑆 = 62𝑁 + 𝑏1(−1.5𝑁 − 7𝐷) + 𝑏2(−1.5𝑁 − 4𝐴)

𝑁 > 2

N is an integer, 𝑏1 𝑎𝑛𝑑 𝑏2 𝑎𝑟𝑒 𝑏𝑖𝑛𝑎𝑟𝑦.

We are concerned with the ratio

𝑅 =
𝐸𝑆

𝐸𝑊

The Scrum development method minimizes effort, and is therefore preferred over

Waterfall, if and only if 𝑅 < 1.

47

CHAPTER V

ANALYSIS

A. Illustrative Example

To show how the model can be applied, we present an illustrative example.

Consider a project of size 500 UCP that has an average requirement volatility of 22% over

the project lifecycle. We assume that the effort needed per UCP is 20 man-hours, which is

the value suggested by Karner (Karner, 1993). Consequently, we assume that the

implementation effort per UCP is 𝐸𝑈𝐶𝑃× Ratio of implementation effort = 20×0.76=15.2

man-hours.

In this case, applying the Waterfall model to these given values results in a

required effort of 155.3 person-months, 11 developers, and 14.6 months, while applying

the Scrum optimization model results in a minimum effort of 110.7 person-months, an

optimal number of developers 9 people and required time of 12 months. According to the

suggested model, Scrum is better for minimizing effort in this case.

B. Waterfall Model

Applying the same parameters of the illustrative example to different project sizes

and requirement volatility levels for the Waterfall model yields a range of required efforts

presented in Figure 11. Average volatility refers to a requirement volatility of 22%, low

48

volatility refers to a requirement volatility of 6% which is one standard deviation below the

average (22-16), high volatility refers to a requirement volatility of 38% which is one

standard deviation above the average (22+16), and no requirement volatility refers to a

requirement volatility of 0%.

Figure 11: Waterfall Effort as a Function of Project Size

We note that for a given requirement volatility level, the required effort for

Waterfall is linear as a function of project size. The higher the volatility level is, the steeper

the slope. The required time and number of developers for different project sizes under

various volatility conditions are shown in Figures 12 and 13 below. These functions are as

a direct result of applying the formulas suggested by the COCOMO model.

49

Figure 12: Waterfall Time as a Function of Project Size

Figure 13: Waterfall Number of Developers as a Function of Project Size

C. Scrum Model

Applying the same parameters of the illustrative example to different project sizes

and requirement volatility levels for the Waterfall model yields a range of required efforts

presented in Figure 14. These efforts are derived by solving the optimization problem of

minimizing effort with the number of developers as a decision variable. We notice that the

Scrum model is less sensitive to requirements volatility and to project size. This means that

Scrum is better at handling change and it scales up better than Waterfall. Since the Scrum

methodology was modeled as a non-linear optimization model, a formalized solution is

difficult to find.

50

Figure 14: Scrum Effort as Function of Project Size

The optimal number of developers for different project sizes under various

requirements volatility levels is shown in Figure 15. We notice from the results that unlike

Waterfall, for high volatility levels, and for bigger projects, the optimal number of

developers only slightly increases. We also notice that in some cases, a bigger project

requires fewer developers in order to minimize effort. This is due to the nonlinear nature of

the Scrum model suggested.

Figure 15: Scrum Number of Developers as a Function of Project Size

51

As for the time needed to complete a project following the Scrum methodology

and minimizing effort, the results are shown in Figure 16. The results indicate that there are

cases where a bigger project needs less time than a smaller one, or when a project with no

requirements volatility needs more time than one with high volatility. However, the pattern

in general shows that for bigger projects and higher volatility more time is needed. The

reason for this variation is because the optimal number of developers as shown previously

does not behave linearly with respect to requirement volatility or project size.

Figure 16: Scrum Time as a Function of Project Size

D. Waterfall versus Scrum

Although analyzing the Waterfall model and Scrum model individually is

important, we are mostly concerned with knowing which model is more suitable under

given circumstances. Particularly, we are interested in the ratio of Waterfall effort to Scrum

effort. Plotting this ratio as a function of project size under different volatility rates yields

the results shown in Figure 17. According to the results, Scrum is favorable under most

conditions. Waterfall is only favorable under conditions where there is no or very low

requirements volatility. Moreover, for bigger projects, Scrum is preferred over Waterfall.

52

Figure 17: Ratio of Waterfall Effort to Scrum Effort versus Project Size

As for the number of developers needed to complete the project, the ratio of

number of developers needed when following Waterfall according to COCOMO to the

number of developers needed following the Scrum model that optimizes effort as a function

of project size is shown in Figure 18. For large projects, Waterfall requires a large number

of people to finish the project, especially in the case of high requirements volatility.

However, when the project size is not large, it is not always clear which method requires

more developers.

Figure 18: Ratio of Waterfall Number of Developers to Scrum Number of Developers

as a Function of Project Size

53

Consequently, it is not strange that for large projects Scrum projects require more

time that Waterfall projects as shown in Figure 19. Since the objective of the model was to

minimize effort, having a smaller number of developers results in needing more time to

finish the project. In case there is a project deadline to meet, a time constraint could be

added to the optimization model. This would lead to a different set of solutions where

Waterfall might prove to be better than Scrum in some circumstances where it had been

considered to be worse without the time constraint. Moreover, in case the customer is

interested in minimizing the time needed to finish the project, the model should be altered

to have the objective of minimizing time with the number of developers as a decision

variable.

Figure 19: Ratio of Waterfall Time to Scrum Time as a Function of Project Size

We summarize the basic findings on the choice of software development method

depending on size and volatility in the framework shown in Figure 20. These results are

applicable under the values we considered in the illustrative example. For different values

for effort per UCP, implementation effort per UCP, cost of change for Waterfall and

Scrum, and requirement volatility levels, this framework might not apply, although the

54

general idea that Scrum is better under high volatility and large projects might still be

viable.

Figure 20: Choice of Model Depending on Size and Volatility

E. Comparing the Results to the Literature

Our model supports the literature suggesting that agile is more suitable for highly

volatile projects while plan-based methods are more appropriate for conditions under which

the requirements are stable. Moreover, as suggested by the literature, our model also

suggests that for bigger project size, the number of developers needed by agile is less than

that needed by plan-based methods.

However, while most of the comparative literature suggests that agile is more

suited for smaller projects and traditional methods work better for big projects, our model

suggests the opposite. Perhaps one reason for that discrepancy is that Scrum of Scrums

might be often ignored or underestimated when comparing agile to plan-based methods.

55

CHAPTER VI

CONCLUSION AND FUTURE WORK

All in all, we have presented a comparative model that aims to minimize the effort

needed to complete a project by choosing the optimal software development method. Our

proposed model takes into account the different structures of the Waterfall of Scrum

software development methods, project size, implementation effort per use case point

(productivity), and the effects of requirements volatility with the team size as a decision

variable. We proved quantitatively that Scrum is more suitable for situations where there is

high requirement volatility. Moreover, we showed that Scrum is better for large projects,

while Waterfall is better for smaller projects.

Our results agree with the literature suggesting that agile methods are better for

highly volatile environments, but they do not concur with the literature suggesting that

traditional methods are better than agile methods for large projects. A deeper investigation

of how large projects behave when following Scrum of Scrums can shed light on the

flexibility and scalability of Scrum.

One limitation of this study is that inputs to the model such as implementation

effort per UCP and cost to change for Waterfall and Scrum were suggested based on loose

assumptions. These values depend on historical data for accuracy. Another limitation is that

the success of the project is taken for granted. A major concern in software engineering is

maximizing project success in terms of achieving all the required features within the

56

required time and budget. In this aspect, Waterfall and Scrum are incomparable. Moreover,

we consider that enough resources are allocated to address any requirement volatility at any

time. In reality, there might be a certain percentage of effort that is allocated for customer

involvement during a given phase in the software development lifecycle. If the available

resources in one phase are not enough to deal with customer requests to change, these

changes need to be carried over to future phase where cost of change is higher.

In order to address these limitations, future work could include improving on our

model by getting more accurate estimates to some of the model inputs such as

implementation effort per UCP and cost to change for Waterfall and Scrum. In addition,

other models such as one that compares Spiral development to Scrum can be developed

with the objective of maximizing project success taking into account resources allocated for

customer involvement. Such a model would address concerns related to success or failure

of the project in light of requirements volatility and the ability of these models to handle

volatility that could arrive late in the project lifecycle.

57

REFERENCES

Adolph, S., Cockburn, A., & Bramble, P. (2002). Patterns for effective use cases. Addison-
Wesley Longman Publishing Co., Inc.

Ahmed, A., Ahmad, S., Ehsan, N., Mirza, E., & Sarwar, S. Z. (2010, June). Agile software
development: Impact on productivity and quality. In Management of Innovation and Technology
(ICMIT), 2010 IEEE International Conference on (pp. 287-291). IEEE.

Alliance, A. (2001). Agile manifesto. Online at http://www.agilemanifesto.org.

Anda, B., Dreiem, H., Sjøberg, D. I., & Jørgensen, M. (2001). Estimating software development
effort based on use cases—experiences from industry. In ≪ UML≫ 2001—The Unified
Modeling Language. Modeling Languages, Concepts, and Tools (pp. 487-502). Springer Berlin
Heidelberg.

Ani, Z. C., & Basri, S. (2013). A CASE STUDY OF EFFORT ESTIMATION IN AGILE
SOFTWARE DEVELOPMENT USING USE CASE POINTS. Science International, 25(4).

APLN, V. O. (2013). 2nd Annual Survey. The State of Agile. VersionOne website.

Awad, M. A. (2005). A comparison between agile and traditional software development
methodologies. University of Western Australia.

Bajwa, S. S. (2009). Investigating the Nature of Relationship between Software Size and
Development Effort. Department of Interaction and System Design, Blekinge Institute of
Technology. Master of Science.

Beck, K. (1999). Embracing change with extreme programming. Computer,32(10), 70-77.

Beck, K. (2000). Extreme programming explained: embrace change. Addison-Wesley
Professional.

Boehm, B. (2006). A view of 20th and 21st century software engineering. In Proceedings of the
28th international conference on Software engineering (pp. 12-29). ACM.

Boehm, B. W. (1981). Software engineering economics (Vol. 197). Englewood Cliffs (NJ):
Prentice-hall.

Boehm, B. W. (1988). A spiral model of software development and
enhancement. Computer, 21(5), 61-72.

Boehm, B. W. (2007). Software engineering economics. Software Engineering: Barry W. Boehm's
Lifetime Contributions to Software Development, Management, and Research, 69, 117.

Boehm, B. W., Brown, J. R., & Kaspar, H. (1978). Characteristics of software quality.

http://www.agilemanifesto.org/

58

Boehm, B., & Turner, R. (2003, June). Observations on balancing discipline and agility. In Agile
Development Conference, 2003. ADC 2003. Proceedings of the (pp. 32-39). IEEE.

Boehm, B., Abts, C., Clark, B., & Devnani-Chulani, S. (1997). COCOMO II model definition
manual. The University of Southern California.

Boehm, B., Valerdi, R., & Honour, E. (2008). The ROI of systems engineering: Some

quantitative results for software intensive systems. Systems Engineering, 11(3), 221-234.

Bundschuh, M., & Dekkers, C. (2008). The IFPUG Function Point Counting Method. The IT
Measurement Compendium: Estimating and Benchmarking Success with Functional Size
Measurement, 323-363.

Cao, L. (2005). Modeling dynamics in agile software development. Georgia State University.

CapTech. (2015). A Comparative Look at Top Agile Tools. Online at
https://www.captechconsulting.com/blogs/a-comparative-look-at-top-agile-tools

Cheung, Y., Willis, R., & Milne, B. (1999). Software benchmarks using function point
analysis. Benchmarking: An International Journal, 6(3), 269-276.

Cocco, L., Mannaro, K., Concas, G., & Marchesi, M. (2011). Simulating kanban and scrum vs.
waterfall with system dynamics. In Agile Processes in Software Engineering and Extreme
Programming (pp. 117-131). Springer Berlin Heidelberg.

Cockburn, A. (2000). Reexamining the cost of change curve. on-line:
http://ronjeffries.com/xprog/articles/cost_of_change/.

Cohn, M. (2004). User stories applied: For agile software development. Addison-Wesley
Professional.

Cohn, M., & Ford, D. (2003). Introducing an agile process to an organization.Computer, 36(6),
74-78.

Dubakov, M., & Stevens, P. (2008). Agile Tools: The Good, the Bad and the Ugly. Report,
TargetProcess, Inc.

Easterbrook, S. (2001). Software Lifecycles. University of Toronto Department of Computer
Science.

Eeles, P. & Houston, K. (2002). Building J2EE applications with the rational unified process.
Addison-Wesley Longman Publishing Co., Inc..

Felhman, T., & Santillo, L. (2010). From Story Points to COSMIC Function Points in Agile
Software Development–A Six Sigma perspective. In International Workshop on Software
Measurement–IWSM.

Goyal, S (2008). Agile Techniques for Project Management and Software Engineering.

Harter, D. E., Krishnan, M. S., & Slaughter, S. A. (2000). Effects of process maturity on quality,
cycle time, and effort in software product development.Management Science, 46(4), 451-466.

http://ronjeffries.com/xprog/articles/cost_of_change/

59

Heidelberg. June, 2014.

Hoda, R., Noble, J., & Marshall, S. (2010). Agile undercover: when customers don’t
collaborate. In Agile Processes in Software Engineering and Extreme Programming (pp. 73-
87). Springer Berlin

Horowitz, E. (1994). USC COCOMO Reference Manual. In University of Southern California.

Huskins, M. Kaplan, J.,& Krishnakanthan, K. (2013). Enhancing the efficiency and
effectiveness of application development. McKinsey & Company.

Jansi, S., & Rajeswari, M. K. (2015). A Greedy Heuristic Approach for Sprint Planning in Agile
Software Development.

Jones, C. (2007). Estimating software costs. McGraw-Hill

Kan, S. H. (2002). Metrics and models in software quality engineering. Addison-Wesley
Longman Publishing Co., Inc.

Karner, G. (1993). Resource estimation for objectory projects. Objective Systems SF AB, 17.

Koushik, M., Mookerjee, V. (1995). Modeling Coordination in Software Construction: An
analytical approach

Kulk, G. P., & Verhoef, C. (2008). Quantifying requirements volatility effects.Science of
Computer Programming, 72(3), 136-175.

Kumar, G., & Bhatia, P. K. (2012). Impact of Agile Methodology on Software Development
Process. International Journal of Computer Technology and Electronics Engineering (IJCTEE)
Volume, 2.

Larman, C., & Vodde, B. (2013). Scaling Agile Development. CrossTalk, 9.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., & Zelkowitz, M. (2002).
Empirical findings in agile methods. In Extreme Programming and Agile Methods—XP/Agile
Universe 2002 (pp. 197-207). Springer Berlin Heidelberg.

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., & Kahkonen, T.
(2004). Agile software development in large organizations.Computer, 37(12), 26-34.
McCall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in software quality. General
Electric, National Technical Information Service.

Merlo–Schett, N., Glinz, M., & Mukhija, A. Seminar on Software Cost Estimation WS
2002/2003.

Mohammed, N., Munassar, A., & Govardhan, A. (2010). A Comparison Between Five Models
Of Software Engineering.

Moniruzzaman, A. B. M., & Hossain, D. S. A. (2013). Comparative Study on Agile software
development methodologies. arXiv preprint arXiv:1307.3356.

60

O'Regan, G. (2008). A brief history of computing. Springer.

Peña, M. E. (2012). Quantifying the impact of requirements volatility on systems engineering effort.
University of Southern California.

Ribu, K. (2001). Estimating object-oriented software projects with use cases. In University of
Oslo, Dept.

Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: issues and
analysis. International journal of forecasting, 15(4), 353-375

Rowen, R. B. (1990). Software project management under incomplete and ambiguous
specifications. Engineering Management, IEEE Transactions on,37(1), 10-21.

Royce, W.W. “Managing the Development of Large Software Systems,”1-9. Proceedings of
IEEE WESCON, August 1970. IEEE, 1970 (originally published by TRW).

Schneider, G., & Winters, J. P. (2001). Applying use cases: a practical guide. Pearson
Education.

Shao, B., Yin, P. Y., & Chen, A. N. (2014). Organizing knowledge workforce for specified
iterative software development tasks. Decision Support Systems, 59, 15-27.

Shepperd, M., Schofield, C., & Kitchenham, B. (1996, May). Effort estimation using analogy.
In Proceedings of the 18th international conference on Software engineering (pp. 170-178).
IEEE Computer Society.

STANDISH GROUP. (2013). The CHAOS Manifesto–Think Big, Act Small, last accessed on 27
June, 2014.

Sutherland, J. (2010). Scrum handbook. Online (12.10. 2012): jeffsutherland.
com/Scrumhandbook. pdf.

Sutherland, J., & Schaber, K. (2013). The Scrum Guide TM.

Tan, T. (2012). Domain-based effort distribution model for software cost estimation (Doctoral
dissertation, University of Southern California).

Thakurta, R., & Ahlemann, F. (2010, January). Understanding requirements volatility in
software projects-an empirical investigation of volatility awareness, management approaches
and their applicability. In System Sciences (HICSS), 2010 43rd Hawaii International
Conference on (pp. 1-10). IEEE.

West, D., Grant, T., Gerush, M., & D’silva, D. (2010). Agile development: Mainstream adoption
has changed agility. Forrester Research, 2, 41.

Yang, Y., He, M., Li, M., Wang, Q., & Boehm, B. (2008, October). Phase distribution of software
development effort. In Proceedings of the Second ACM-IEEE international symposium on Empirical
software engineering and measurement (pp. 61-69). ACM.

61

APPENDIX

For completion, we list the agile manifesto principles to give a clearer idea about

agile, and we list other models to consider for future work such as the Spiral Model, the

Rational Unified Process, Extreme Programming, and Feature Driven Development.

I. Agile Manifesto Principles

“Our highest priority is to satisfy the customer through early and continuous

delivery

of valuable software.

Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity--the art of maximizing the amount of work not done--is essential.

62

The best architectures, requirements, and designs emerge from self-organizing

teams.

At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly”

II. Software Development Methods

Spiral Model

The Spiral Model (Boehm, 1988) is an iterative model that focuses on reducing

risk. This model has four sectors which are repeated throughout the project lifecycle in an

iterative manner where each iteration is called a spiral. These sectors are: Objective setting

where specific objectives for the phases are identified, risk assessment and reduction where

the activities are prioritized to reduce risk though risk analysis and prototyping,

development and validation, and planning of the next phase.

As shown in Figure 21 (Boehm, 1988), each spiral in the model represents a phase

or a round of software development. There is a specific round for each of feasibility study,

concept of operation, top level requirements and specifications, software design, and

implementation of the system. Each of these rounds in turn passes through the four sectors

of the spiral model.

63

Figure 21: The Spiral Model for Software Development (Boehm, 1988)

Rational Unified Process

Another popular iterative model is the Rational Unified Process (RUP). The

Rational Unified Process divides software development into four phases: Inception,

elaboration, construction, and transition. It also identifies core processes and how they are

distributed along the phases of the model as shown in Figure 22 (Eeles and Houston, 2002).

Moreover, the phases of the software development lifecycle are further divided into

iterations where the first few iterations focus on activities such as business modeling and

requirements (inception processes), while the last few iterations focus on testing and

deployment activities (transition processes).

64

Figure 22: The Rational Unified Process of Software Development (Eeles and

Houston, 2002)

Extreme Programming

Extreme Programming is a well-known agile method that was created in the

1990’s and is still used by many software developers nowadays. The driving values of the

Extreme Programming (XP) method are communication, simplicity, feedback, courage, and

respect.

Based on these values, principles and practices that achieve flexible and effective

development are identified. The practices implemented by Extreme Programming

supporters include but are not limited to pair programming, incremental development,

customer involvement, shared code ownership, planning for releases, continuous

integration, and test-first programming. While some of these practices can be implemented

65

in other software development methods, they work well together under the umbrella of

extreme programming and have shown success in the software industry (Beck, 1999).

Extreme Programming follows an iterative development process. Requirements

are identified for each release or portion of the product. During the implementation of each

release, several iterations take place to further divide the work into smaller tasks and

accommodate changes. Before each release and iteration, a release planning meeting and an

iteration planning meeting are held accordingly. Feedback from acceptance tests guides the

development of future iterations and releases. Figure 23 (Beck, 2000) describes the

Extreme Programming method workflow.

Figure 23: Workflow of the Extreme Programming Method [adopted from Beck,

2000]

Feature Driven Development

As the name implies, the Feature Driven Development method divides the project

into features. A feature is defined as a function that maps to a step in some activity and that

can be completed in less than two weeks. This method consists of five main processes:

66

Developing an overall model, building a features list, planning by feature, designing by

feature, and building by feature.

This method assumes that an object oriented (OO) approach is used in software

development and gives special attention to OO concepts such as relationships between

objects and classes. The Feature-Driven Development approach assigns a responsible

individual for every class (unit of code in OO). Teams that consist of different class owners

work together to design and build a feature in an iterative manner. Since there is regular

building by feature, a demo is always readily available for customers (Goyal, 2008).

