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B.2 The Carathéodory Pseudometric . . . . . . . . . . . . . . . . . . . . . . . . . 5

B.3 The Kobayashi Pseudometric . . . . . . . . . . . . . . . . . . . . . . . . . . 8

B.4 Further Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B.4.1 Comparison Between the Two Pseudometrics . . . . . . . . . . . . . 13

B.4.2 Hyperbolic Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

C Complex Geodesics 16

C.1 Main definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.2 Study of Complex Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.3 A Mapping Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi





Appendix A

Introduction

In one complex variable, the celebrated Riemann Mapping Theorem states that a nonempty

proper and simply connected domain of C is biholomorphically equivalent to the unit disk

∆. However, such a classification result does not hold in higher dimension. Indeed, In 1907

Poincaré observed that the unit ball B and the polydisk ∆×· · ·×∆ are not biholomorphically

invariant in Cn for n ≥ 2. The classification of domains with boundary in Several Complex

Variables is a difficult question and one needs to introduce biholomorphic invariants that

capture the geometry of the domains. In this vein, biholomorphically invariant metrics

appear to be an important tool in Several Complex Variables which generalize the concept

of Hermitian metrics. The Carathéodory and Kobayashi pseudometrics are instances of such

metrics; both generalize the Poincaré metric and play an important role in the classification

of domains and are particularly adapted for the study of holomorphic maps. The present

thesis is dedicated to the study of these two pseudometrics and related geodesics.

The thesis is organized as follows. We begin by recalling Schwarz Lemma which is

the starting point of the theory of invariant metrics. This leads us to define on the unit

disk a metric invariant under automorphisms, namely the Poincaré metric. From a metric

viewpoint, the Schwarz Lemma states that Poincaré metric decreases under the action of
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holomorphic maps and that automorphisms are isometries. An important question arises of

whether the Poincaré metric can be generalized in Several Complex Variables. This motivates

us to introduce invariant pseudometrics and pseudodistances. We focus our study on the

Carathéodory and the Kobayashi pseudodistances and pseudometrics whose invariance under

biholomorphims follows directly from their definitions. We show that in the case of the unit

disk ∆ ⊂ C, the Carathéodory, Kobayashi and Poincaré distances coincide. However, we

note that in general, these pseudodistances may degenerate and we focus our attention on

the hyperbolic case, where both of them are actually (positive definite) distances. The main

objects of our study are complex geodesics issued from these distances and metrics. The

existence and unicity of complex geodesics is in general a difficult problem. We first study

the main properties of geodesics. We then present an application of complex geodesics to

a mapping problem. More precisely, given two domains D1 and D2 in Cn satisfying certain

geometric assumptions the only holomorphic maps preserving the relative Carathéodory or

Kobayashi distances between them are linear. This result may be viewed as a generalization

of Schwarz Lemma and Cartan uniqueness Theorem.
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Appendix B

Invariant Metrics

In the previous 40 years, invariant metrics have proved to be essential tools in the study

of function theory and geometry of several complex variables. We present in this section a

survey of the theory of invariant metrics. For a complete expository see [6].

B.1 The Poincaré Disk

In the late nineteenth century, Henri Poincaré presented the very unique idea of equipping

the unit disk ∆ = {ζ ∈ C : |ζ| < 1} in the complex plane C with a metric that is invariant

under automorphisms of ∆. The construction of this invariant metric comes naturally from

the Schwarz Lemma. The way that an invariant metric is thereby constructed is closely

identified to the broader Pick-Ahlfors Lemma B.1.2. We take this opportunity to review

those ideas.

Lemma B.1.1 (Schwarz Lemma [4]).

Let f : ∆→ ∆ be holomorphic and assume f(0) = 0.

Then |f(z)| 6 |z| ∀z ∈ ∆ and |f ′(0)| 6 1.

Moreover, |f(z)| = |z| ∀z ∈ ∆ or |f ′(0)| = 1 if and only if f is a rotation where f(z) = eiθ
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for some θ ∈ R.

Lemma B.1.2 (Pick-Ahlfors Lemma [4]).

Let f : ∆→ ∆ be holomorphic and take ζ and ζ ′ in ∆. Then we have:

∣∣∣∣∣ f(ζ)− f(ζ ′)

1− f(ζ)f(ζ ′)

∣∣∣∣∣ 6
∣∣∣∣ ζ − ζ ′1− ζζ ′

∣∣∣∣ and
|f ′(ζ)|

1− |f(ζ)|2
6

1

1− |ζ|2

The latter inequality motivates the following definition:

Definition B.1.3. The infinitesimal Poincaré metric on ∆ is the function k

from ∆× C to R+ given by

(ζ, v) 7→ k(ζ, v) =
|v|

1− |ζ|2

where ζ is a point in ∆ and v is a vector in C.

One of the most important analytical properties satisfied by the Poincaré metric is the

decreasing property which states that when f is a holomorphic map from ∆ to ∆ then

k(f(ζ), f ′(ζ)v) 6 k(ζ, v) for any ζ ∈ ∆ and v ∈ C. This is directly ensured by Pick-Ahlfors

Lemma B.1.2.

This metric is also invariant under automorphisms of ∆, meaning that when f is an automorphism

of ∆, we have k(f(p), f ′(p)v) = k(p, v) for any ζ ∈ ∆ and v ∈ C.

Given the Poincaré metric, we define the corresponding integrated length and distance:

Definition B.1.4. Let γ be a path of class C1 from [0, 1] to ∆. We define the length of γ

to be

l(γ) =

∫ 1

0

k (γ(t), γ′(t)) dt.

The Poincaré distance between two points ζ and ζ ′ in ∆ is

ω(ζ, ζ ′) = inf
{
l(γ), γ : [0, 1]

C1

−→ ∆, γ(0) = ζ, γ(1) = ζ ′
}
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The important properties of ω are summarized in the following theorem (see [4]):

Theorem B.1.5.

1. (∆, ω) is a metric space and induces the same topology as the one of the Euclidean

distance.

2. (∆, ω) is complete.

3. Let f : ∆ → ∆ be holomorphic then for ζ ∈ ∆ and v ∈ C, we have the decreasing

property expressed by ω(f(ζ), f ′(ζ)v) 6 ω(ζ, v).

4. For any automorphism f of the unit disk, we have an isometry expressed by

ω(f(ζ), f ′(ζ)v) = ω(ζ, v) for ζ ∈ ∆ and v ∈ C.

An explicit formula for the Poincaré distance between ζ, ζ ′ ∈ ∆ is given by

ω(ζ, ζ ′) =
1

2
ln

(
1 + |Bζ′(ζ)|
1− |Bζ′(ζ)|

)

where Bζ′(ζ) =
ζ − ζ ′

1− ζ ′ζ
is the Blaschke function or Möbius transformation.

Poincaré’s construction of this metric is special to the disk. It is of our interest to equip

any domain in higher dimensional complex space with a biholomorphically invariant metric.

Examples of the generalizations of the Poincaré metric in higher dimensions are given by

the Carathéodory pseudometric and the Kobayashi pseudometric. The present thesis is

committed to the study of those two pseudometrics.
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B.2 The Carathéodory Pseudometric

In 1927, Constantin Carathédory [3] constructed an invariant pseudometric that now holds

his name. We will prove that the Carathéodory pseudometric coincides with the Poincaré

metric on the unit disk in C and is invariant under biholomorphic mappings. But first let

us start by defining this pseudometric and giving some examples.

Definition B.2.1. Given a domain D in Cn and two points p and q in D, we define the

Carathéodory pseudodistance between p and q as

cD(p, q) = sup
f
ω (f(p), f(q))

where the least upper bound is taken over all holomorphic maps f from D into the unit disk

∆ and ω(ζ, ζ ′) is the Poincaré distance between ζ and ζ ′ ∈ ∆.

Remark 1. The Carathéodory pseudodistance is not necessarily a distance.

For example on C, we have cC(p, q) = 0 ∀ p, q ∈ C since any holomorphic function f : C→ ∆

is constant by Liouville Theorem.

We now introduce the Carathéodory pseudometric.

Definition B.2.2. Let D be a domain in Cn, p a point in D and v ∈ Cn a tangent vector.

The Carathéodory pseudometric is defined as

γD(p, v) = sup {k (f(p), df(p)v) such that f : D → ∆ is holomorphic}

where the least upper bound extends over all holomorphic maps f from D into the unit disk

∆.

Remark 2. If v =
n∑
k=1

vk
∂

∂zk
then the differential is expressed by df(v) =

n∑
k=1

∂f

∂zk
vk.
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Remark 3. We can define the Carathéodory pseudometric by

γD(p, v) = sup
f
{|df(p)v| such that f : D → ∆ is holomorphic and f(p) = 0}.

Indeed, let α = sup {k (f(p), df(p)v) such that f : D → ∆ is holomorphic} and let

β = sup {|df(p)v| such that f : D → ∆ is holomorphic and f(p) = 0}. It is clear that β is

less than α. Conversely, when assuming f(p) = a 6= 0 we can take g ◦f where g(ζ) =
ζ − a
1− aζ

which results in g ◦ f(p) = 0 and we conclude by taking the supremum over g ◦ f .

A remarkable fact is that the Carathéodory pseudodistance(respectively pseudometric)

coincides with the Poincaré distance(respectively metric) on the unit disk ∆:

Lemma B.2.3. In the case of the disk, we have c∆(ζ, ζ ′) = ω(ζ, ζ ′) and γ∆(ζ, v) = k(ζ, v).

Proof: Let ζ, ζ ′ ∈ ∆. We have ω(ζ, ζ ′) 6 supω(f(ζ), f(ζ ′)) = c∆(ζ, ζ ′) since the identity map

I : ∆ → ∆ is holomorphic. Moreover by the decreasing property of the Poincaré distance,

ω(f(ζ), f(ζ ′)) 6 ω(ζ, ζ ′) for any function f . So c∆(ζ, ζ ′) 6 ω(ζ, ζ ′).

Let α = sup {k (f(ζ), f ′(ζ)v) such that f : ∆→ ∆ is holomorphic}. Let ζ ∈ ∆ and v ∈ C

and I : ∆→ ∆, then k (f(ζ), f ′(ζ)v) 6 k(ζ, v). This implies that α 6 k(ζ, v)

One of the main properties of this pseudometric is the decreasing property under holomorphic

maps.

Proposition B.2.4. Let F : D → D′ be holomorphic. Then we have

cD′(F (p), F (q)) 6 cD(p, q) and γD′(F (p), F (v)) 6 γD(p, v)

This is known as the decreasing property of the Carathéodory pseudodistance and pseudometric.

Proof. Let F be a holomorophic map from D to D′. And let g be holomorphic from D′ to
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∆. Then the map g ◦ F is holomorphic from D to ∆. We know that

cD(p, q) = sup
f
ω(f(p), f(q)) > ω (g ◦ F (p), g ◦ F (q)).

Taking the supremum over all g : D′ → ∆ yields cD′(F (p), F (q)) 6 cD(p, q).

Remark 4. If f : ∆→ D is holomorphic then cD(f(ζ), f(ζ ′)) 6 ω(ζ, ζ ′).

An important consequence is the following:

Corollary B.2.5. If D ⊂ D′ ⊂ Cn then cD′(p, q) 6 cD(p, q).

Proof. This follows directly from Prosposition B.2.4 applied to the inclusion map i : D → D′.

As a main consequence we prove that the Carathéodory pseudodistance and pseudometric

are invariant under biholomorphisms:

Corollary B.2.6. If F : D → D′ is biholomorphic then:

i) F is an isometry in the Carathéodory metric: γD′(F (p), F (v)) = γD(p, v) for p ∈ D, v ∈ C.

ii) F preserves distances: cD′(F (p), F (q)) = cD(p, q) for every two points p and q in D.

Proof. This is directly obtained from applying Proposition B.2.4 to F and F−1.

The automorphisms of the unit ball (see [8]) act transitively on B; in such case, we call the

domain homogeneous. This is why it suffices to compute the Carathéodory pseudodistance

(resp. pseudometric) at 0 and p = (p1, 0, ..., 0) (resp. at 0 and v = (v1, 0, ..., 0)).

Example B.2.7. We have cB(0, p) = ω(0, p1) where p = (p1, 0, ..., 0).

Proof. Let ||.|| : Cn → R+ be a norm on Cn, and B the unit ball for this norm. Take z ∈ B,

and define φ : ∆ → B by φ(ζ) =
ζ

||p||
p. Then the decreasing property and Lemma B.2.3
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yield in cB(0, p) 6 ω(0, ||p||). On the other hand, taking the map π from B → ∆ defined

by π(p1, ..., pn) = p1 then c∆(π(0), π(p)) 6 cB(0, p) resulting in c∆(0, p1) 6 cB(0, p). And the

result follows directly.

Example B.2.8. γB(0, v) = k(0, ||v||) = ||v||

Proof. First, let’s prove that γB(0, v) 6 ||v||. Take ϕ : ∆→ B defined by ϕ(ζ) =
ζ

||v||
v where

ζ ∈ ∆. By the decreasing property in Proposition B.2.4, we have γB(0, ϕ′(0)) 6 γ∆(0, 1).

But γ∆(0, 1) = k(0, 1) = 1, then γB

(
0,

v

||v||

)
6 1 and so γB(0, v) 6 ||v||.

On the other hand, using unitary transformations, it suffices to prove γB(0, v) > ||v|| for

v = (v1, 0, ..., 0) since γ is invariant under biholomorphisms. Take f : B → ∆ having

f(0, ..., 0) = 0 and f ′(v1, 0, ..., 0) = v1. Then γB(0, v) = sup{k(f(0), df(p)v)} > ||v||.

B.3 The Kobayashi Pseudometric

In 1967, Shoshichi Kobayashi [6] introduced a pseudodistance dD on a domain D of Cn using

holomorphic disks. In 1971, Halsey Royden [10] introduced an infinitesimal pseudometric

KD such that its integrated pseudodistance coincides with dD. We will start by defining this

pseudometric and then study some of its properties that we will need for our study. It can

be thought of as the dual of the Carathéodory pseudometric but with holomorphic maps

from the disk into the domain D as opposed to holomorphic maps from D to ∆.

Definition B.3.1. A holomorphic map ϕ : ∆→ D is called a holomorphic disk.

Definition B.3.2. Let D be a domain in Cn, p a point in D and v ∈ Cn a tangent vector.

The Kobayashi pseudometric is defined as

KD(p, v) = inf

{
1

r
, ϕ : ∆

holom−−−→ D,ϕ(0) = p, ϕ′(0) = rv

}
8



where the greatest lower bound is taken over all holomorphic disks ϕ in D.

Remark 5. The definition of the Kobayashi pseudometric can be given in the following form

where the holomorphic disks map ∆r = {ζ ∈ C : |ζ| < r} to D:

KD(p, v) = inf

{
1

r
, ϕ : ∆r

holom−−−→ D,ϕ(0) = p, ϕ′(0) = v

}

In other words, the Kobayashi pseudometric measures the size of holomorphic disks contained

in D.

Proof. Let α = inf
ϕ

{
1

r
, ϕ : ∆

holom−−−→ D,ϕ(0) = p, ϕ′(0) = rv

}
and let

β = inf
ϕ

{
1

r
, ϕ : ∆r

holom−−−→ D,ϕ(0) = p, ϕ′(0) = v

}
. First, in order to prove that β is less than

α, we let ϕ : ∆ → D be a holomorphic disk such that ϕ(0) = p and ϕ′(0) = rv. Consider

ϕ̃ = ϕ ◦ g : ∆r → ∆→ D where g(ζ) = ζ
r
. Since ϕ̃(0) = ϕ(0) = p and ϕ̃′(0) = v, then β 6 1

r

for all 1
r

as in α concluding that β is less than α.

Conversely, to prove that α is less than β, let 1
r

be as in β then we have ϕ from ∆r to

D such that ϕ(0) = p and ϕ′(0) = v. Let ψ(ζ) = ϕ(rζ) : ∆ → D. This holomorphic disk

satisfies ψ(0) = ϕ(0) = p and ψ′(0) = ϕ′(0)r = rv. Then 1
r

is as in α and so α 6 1
r

for all r

concluding that α is less than β.

We will use either definition as the need emerges. We now introduce the integrated

Kobayashi pseudodistance:

Definition B.3.3. Let D be a domain in Cn. We define the Kobayashi length to be

l(γ) =

∫ 1

0

KD (γ(t), γ′(t)) dt

where γ : [0, 1]
C1

−→ D and γ(0) = p and γ(1) = p′. We then define the Kobayashi pseudodistance
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between two points p and p′ in D to be

dD(p, p′) = inf
γ
l(γ) = inf

γ

∫ 1

0

KD (γ(t), γ′(t)) dt

where the greatest lower bound is taken over all smooth paths γ connecting p and p′ in D

where γ(0) = p and γ(1) = p′.

Remark 6. It was observed by Royden [10] that the KD is upper semi-continuous. This

legitimates the definition of the length.

Remark 7. The Kobayashi pseudo-distance is not necessarily a distance. For example on

C, we have dC(p, q) = 0 since KC(p, v) = 0 ∀p ∈ C and v ∈ Cn.

Indeed take ϕ : ∆r → C s.t. ϕ(ζ) = p+ ζv. We have ϕ(0) = p and ϕ′(0) = v.

KC(p, v) = inf
ϕ

{
1

r
, ϕ : ∆r

holom−−−→ C, ϕ(0) = p, ϕ′(0) = v

}
6

1

r
, ∀r > 0.

Then 0 6 KC(p, v) 6 1
r
, ∀r > 0. And thus KC(p, v) = 0 ∀p and v.

Similarly to the Carathéodory pseudometric and pseudodistance, we have:

Lemma B.3.4. In the case of the disk, we have K∆(p, v) = k(p, v) and d∆(p, p′) = ω(p, p′)

for all p, p′ ∈ ∆ and v ∈ Cn.

Proof. Let v ∈ C r {0} and let ϕ : ∆ → ∆ be holomorphic such that ϕ(0) = 0 and

ϕ′(0) = rv. By Schwarz Lemma B.1.1, we know that |ϕ′(0)| 6 1; resulting in 1
r
> |v| and

so K∆(0, v) > |v|. Consider ϕ0 : ∆ → ∆ such that ϕ0(ζ) = ζv
|v| . In this case, ϕ0(0) = 0 and

ϕ′0(0) = v
|v| . Thus we have, K∆(0, v) 6 |v|. We conclude that K∆(0, v) = k(0, v) .

Since the Poincaré metric and the Kobayashi pseudometric are invariant under automorphisms

of the unit disk (by corollary B.3.9), we haveK∆(p, v) = K∆(0, B′p(p)v) = k(0, B′p(p)v) = k(p, v).

where Bp(ζ) =
ζ − p
1− p̄ζ

.

The result for the distance follows from the fact that the Poincaré distance and the

Kobayashi distance are both integrated distances.

10



One of the main property of the Kobayashi pseudometric is the decreasing property under

holomorphic maps.

Lemma B.3.5. Let F be holomorphic from D to D′, then we have

KD′(F (p), dF (p)v) 6 KD(p, v)

This is known as the decreasing property of the Kobayashi pseudometric.

Proof. Let α = inf
{

1
r
, ϕ : ∆

holom−−−→ D,ϕ(0) = p, ϕ′(0) = rv
}

= KD(p, v) and let

β = inf
{

1
r
, ϕ : ∆

holom−−−→ D′, ϕ(0) = F (p), ϕ′(0) = F ′(p)rv
}

= KD′ (F (p), F ′(p)v). Let 1
r

be

as in α. Then there exists a holomorphic disk φ : ∆→ D such that φ(0) = p and φ′(0) = rv.

Define the holomorphic disk ϕ to be F ◦ φ : ∆→ D′.

We have ϕ(0) = F ◦ φ(0) = F (p) and ϕ′(0) = (F ◦ φ)′(0) = F ′(p)rv. So 1
r
∈ B where

B =

{
1

r
, ϕ : ∆

holom−−−→ D′, ϕ(0) = F (p), ϕ′(0) = F ′(p)rv

}
.

We conclude that β 6 1
r

for all r. This implies that KD′(F (p), dF (p)v) 6 KD(p, v).

It follows

Proposition B.3.6. Let F : D → D′ be holomorphic. Then we have

dD′(F (p), F (p′)) 6 dD(p, p′)

This is known as the decreasing property of the Kobayashi pseudodistance.

Proof. Let F : D
holom−−−→ D′ then (by Lemma B.3.5) we have

KD′(F (p), F (p′)) 6 KD(p, v). Let γ : [0, 1]
C1

−→ D s.t. γ(0) = p and γ(1) = v and integrate

from 0 to 1 with respect to t to get:

11



∫ 1

0

KD′ (F (γ(t)) , F ′ (γ(t)) γ′(t)) 6
∫ 1

0

KD (γ(t), γ′(t)) .

This implies that l(F ◦ γ) 6 l(γ), ∀γ. This results in the following:

dD′(F (p), F (p′)) 6 l(F ◦ γ) 6 l(γ), ∀γ implying that dD′(F (p), F (p′)) is a lower bound for

L(γ). But dD(p, p′) is the greatest lower bound for L(γ) thus dD′(F (p), F (p′)) 6 dD(p, p′).

Corollary B.3.7. If D ⊂ D′ then we have dD′ 6 dD and KD′ 6 KD.

Proof. Apply the previous proposition to the inclusion map i : D → D′.

Example B.3.8. dCn = 0

Indeed F : C→ C× {0} is biholomorphic where ζ → (ζ, 0, ..., 0).

Then dC×{0} ((z1, 0, ..., 0), (z2, 0..., 0)) = dC(z1, z2) = 0. Since C × {0} ⊂ Cn thus by the

decreasing property (corollary B.3.9), we obtain dCn 6 dC×{0} = 0.

We now prove the invariance of the Kobayashi pseudo metric and pseudo distance under

biholomorphisms.

Corollary B.3.9.

i) If F : D → D′ is a biholomorphism then KD′(F (p), dF (p)v) = KD(p, v).

ii) If F : D → D′ is a biholomorphism then F is an isometry for the corresponding

pseudodistances; i.e. dD′(F (p), F (p′)) = dD(p, p′).

Proof. Apply the previous proposition to F−1 : D′ → D which is holomorphic to get

dD (F−1(F (p)), F−1(F (p′))) 6 dD′ (F (p), F (p′)). And so dD(p, p′) 6 dD′ (F (p), F (p′)). Thus

we have equality of distances. The same holds for the pseudo metric.

Little is known about explicitly calculating the Kobayashi metric. For special domains

such as the disk, the automorphism group is a powerful tool for obtaining an explicit formula.

Let us now, just for illustrative purposes, calculate the Kobayashi metric on the unit ball.

Once more we will use the fact that the group of automorphisms act transitively on B.

12



Example B.3.10. We have KB(0, v) = ||v||.

Proof. First, let’s prove that KB(0, v) 6 ||v||. Take ϕ : ∆ → B defined by ϕ(ζ) = ζv/||v||

where ζ ∈ ∆. Then ϕ(0) = 0 and ϕ′(0) =
v

||v||
. Since ϕ′(ζ) =

v

||v||
, this shows that

KB(0, v) 6 ||v|| by the definition of KB.

Second, sinceK is invariant under biholomorphism, we proveKB(0, v) > ||v|| for v = (v1, 0, ..., 0).

Take ϕ : ∆→ B having ϕ(0) = 0 and ϕ′(0) = (rv1, 0, ..., 0). We choose ϕ1 : ∆→ ∆ and we

apply (Schwarz Lemma B.1.1) to get |rv1| 6 1; i.e. 1
r
> |v|. Thus KB(0, v) > ||v||.

B.4 Further Properties

B.4.1 Comparison Between the Two Pseudometrics

We have seen that the Kobayashi pseudometric and the Carathéodory pseudometric coincide

in many cases such as in C, ∆ and B. But in general, we have:

Proposition B.4.1. For D a domain in Cn, p ∈ D and v ∈ Cn

γD(p, v) 6 KD(p, v) and cD 6 dD

Proof. Let f : D → ∆ be holomorphic then by the decreasing property of K (lemma B.3.5),

we have k (f(p), df(p)v) 6 KD(p, v) .Then sup{k(f(p), df(p)v)} 6 KD(p, v) and thus we

obtain γD(p, v) 6 KD(p, v).

An example where these two pseudometrics don’t coincide is given by the following:

Example B.4.2. Consider the Hartogs domain

D = ∆×∆ \
{

(z, w) ∈ C2 such that |z| 6 r and |w| > s
}
.
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|z|

|w|

1r

1

s

It follows from Barth [2] that the Carathéodory and Kobayashi distances do not coincide

on D. Also note that by Hartog’s Theorem, any holomorphic function f : D → ∆ extends

to the bidisk f̃ : ∆×∆→ ∆. It follows that cD is the restriction of c∆×∆ to D.

B.4.2 Hyperbolic Domains

We have seen that on specific domains such as C the Kobayashi pseudodistance degenerates,

whereas it turns out to be a distance on other domains such as B. This induces the following

definition:

Definition B.4.3. We say that a domain D in C is Kobayashi hyperbolic if the Kobayashi

pseudodistance dD is a distance.

Lemma B.4.4. For D ⊂ Cn bounded, we have D is Kobayashi hyperbolic.

Definition B.4.5. We say that a domain D is Brody hyperbolic if there are no non-constant

entire maps in D; that is, all holomorphic maps f must be constants.

Example B.4.6. 1. For D ⊂ C bounded, D is Brody hyperbolic by Liouville Theorem.

14



2. According to the Little Picard Theorem Cr {0, 1} is Brody hyperbolic.

We have the following propostion:

Proposition B.4.7.

i) If D is Kobayashi hyperbolic, then D is Brody hyperbolic.

ii) For compact D, Brody hyperbolicity is equivalent to Kobayashi hyperbolicity.

Proof. i) If D is not Brody hyperbolic then we have a non-constant entire map ϕ : C→ D.

By the decreasing property, D is not hyperbolic.

ii) See [6].

Example B.4.8. i) C is not Kobayashi hyperbolic since C is not Brody hyperbolic. This is

shown by observing that C contains entire functions from ζ to ζ.

ii) Cr {0} is not Kobayashi hyperbolic since it contains the holomorphic function from C to

Cr {0} where ζ goes to eζ.

iii) Cr {0, 1} is Kobayashi hyperbolic.
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Appendix C

Complex Geodesics

C.1 Main definitions

Let D ⊂ Cn be a domain. Assume that cD and dD are distances and let ϕ : ∆ → D be a

holomorphic disk.

Definition C.1.1. ϕ is an infinitesimal K-extremal map (respectively infinitesimal C-extremal

map) for p ∈ D and v ∈ Cn if there exist ζ ∈ ∆ and v0 ∈ C such that ϕ(ζ) = p, ϕ′(ζ)v0 = v

and

KD(p, v) = k(ζ, v0)

(respectively γD(p, v) = k(ζ, v0)).

Definition C.1.2. ϕ is an infinitesimal K-complex geodesic (respectively infinitesimal C-complex

geodesic) if ϕ is an infinitesimal K-extremal map (respectively C-extremal map) for ϕ(ζ),

ϕ′(ζ)v0 for all ζ ∈ ∆ and v0 ∈ C.

Definition C.1.3. ϕ is a K-extremal map (respectively C-extremal) for p, q ∈ D if there

exist ζ, ζ ′ ∈ ∆ such that

dD(ϕ(ζ), ϕ(ζ ′)) = ω(ζ, ζ ′)
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(respectively cD(ϕ(ζ), ϕ(ζ ′)) = ω(ζ, ζ ′)).

Definition C.1.4. ϕ is a K-complex geodesic (respectively C-complex geodesic) if ϕ is a

K-extremal map (respectively C-extremal map) for ϕ(ζ), ϕ(ζ ′) for all ζ, ζ ′ ∈ ∆, that is if ϕ

is an isometry for the relative Kobayashi distances (respectively Carathéodory distances).

A consequence of Proposition B.4.1 and the decreasing properties is:

Lemma C.1.5. 1. If ϕ is C-complex geodesic then ϕ is K-complex geodesic.

2. If ϕ is infinitesimal C-extremal map then ϕ is infinitesimal K-extremal map.

3. If ϕ is a C-extremal map then ϕ is a K-extremal map.

Proof. 1. Let ϕ be a C-complex geodesic then for all ζ0, ζ ∈ ∆, cD(ϕ(ζ0), ϕ(ζ)) = ω(ζ0, ζ).

But from Proposition B.4.1 and the decreasing property of the Kobayashi pseudometric

we know that cD(ϕ(ζ0), ϕ(ζ)) 6 dD(ϕ(ζ0), ϕ(ζ)) 6 ω(ζ0, ζ). And the result is

dD(ϕ(ζ0), ϕ(ζ)) = ω(ζ0, ζ)

for all ζ0, ζ ∈ ∆ meaning that ϕ is K-complex geodesic.

2. Since ϕ is a holomorphic disk then for p ∈ D and v ∈ Cn we have KD(p, v) 6 k(ζ, v0)

by Lemma B.3.5. But ϕ is an infinitesimal C-extremal map which results in

γD(p, v) = k(ζ, v0) 6 KD(p, v) by Proposition B.4.1. This proves that ϕ is infinitesimal

K-extremal map.

3. Let ϕ be a C-extremal map then for p, q ∈ D, there exist ζ, ζ ′ ∈ ∆ such that

ω(ζ, ζ ′) = cD(ϕ(ζ), ϕ(ζ ′)) 6 dD(f(ζ0), ϕ(ζ)) 6 ω(ζ, ζ ′)

where we conclude that ϕ is a K-extremal map.
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C.2 Study of Complex Geodesics

An important and difficult question is to characterize complex geodesics and study their

existence and uniqueness. The main result is (see Proposition 3.2 [12] and Proposition 2.6.3

[1])

Theorem C.2.1. If ϕ is an infinitesimal C-extremal map then ϕ is a C-complex geodesic.

Proof. Let ϕ be an infinitesimal C-extremal map for p ∈ D and v ∈ Cn then there exist

ζ0 ∈ ∆ and v0 ∈ C such that ϕ(ζ0) = p, ϕ′(ζ0)v0 = v and γD(p, v) = k(ζ0, v0).

We can assume ζ0 = 0 ; since otherwise, we compose ϕ with the automorphism of ∆

ψ(ζ) =
ζ0 + ζ

1 + ζ0ζ
where ϕ ◦ ψ(0) = p and (ϕ ◦ ψ)′(0)v0 = (1− |ζ0|2)v which gives

γD (ϕ(ζ0), (ϕ ◦ ψ)′(0)v0) = (1− |ζ0|2)γD(p, v) = |v0|.

Given γD

(
ϕ(0), ϕ′(0)

v0

|v0|

)
= 1, then there exists a sequence hν : D → ∆ of holomorphic

disks such that hν(ϕ(0)) = 0 and

lim
ν→∞

∣∣∣∣dhν(ϕ(0))ϕ′(0)
v0

|v0|

∣∣∣∣ = 1.

By Montel’s Theorem, every family of holomorphic maps {hν ◦ ϕ}, where hν ◦ ϕ is from ∆

to ∆, admits a subsequence {hνj ◦ ϕ} that converges normally on compacts of ∆ to a map

g : ∆→ ∆ having g(0) = lim
j→∞

(hνj ◦ ϕ)(0) = lim
ν→∞

hν(ϕ(0)) = 0. By Weierstrass Theorem, we

have

|g′(0)| = lim
j→∞

∣∣∣∣dhνj(ϕ(0))ϕ′(0)
v0

|v0|

∣∣∣∣ = lim
j→∞
|d(hν ◦ ϕ(0))| = 1.

By Schwarz lemma, g is a biholomorphism.

18



By the decreasing property, we have

cD(ϕ(0), ϕ(ζ)) 6 ω(0, ζ).

Applying the decreasing property on hvj yields in

ω(hνj(ϕ(0)), hνj(ϕ(0))) 6 ω(0, ζ).

As j →∞,

ω(hνj(ϕ(0)), hνj(ϕ(0)))→ ω(g(0), g(ζ)).

But because g is biholomorphic then by Theorem B.1.5 we have,

ω(g(0), g(ζ)) = ω(0, ζ).

Combining these inequalities results in

ω(0, ζ) = ω(g(0), g(ζ)) 6 cD(ϕ(0), ϕ(ζ)) 6 ω(0, ζ).

Therefore cD(ϕ(0), ϕ(ζ)) = ω(0, ζ) for all ζ ∈ ∆ showing that ϕ is a C-complex geodesic.

The result also holds in the case of extremal maps (Proposition 3.3 [12] and Proposition

2.6.3 [1]]

Theorem C.2.2. If ϕ is a C-extremal map then ϕ is a C-complex geodesic.

Proof. Let ϕ be a C-extremal map for p, q ∈ D then there exist ζ0, ζ1 ∈ ∆ such that

cD(ϕ(ζ0), ϕ(ζ1)) = ω(ζ0, ζ1). Then there exists a sequence of holomorphic functions hν :

D → ∆ such that

lim
ν→∞

w(hν(ϕ(ζ0)), hν(ϕ(ζ1))) = w(ζ0, ζ1)
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By Montel’s Theorem, since hν ◦ ϕ : ∆ → ∆ is holomorphic for all ν, then there exists a

subsequence {hνj ◦ ϕ} normally convergent on compacts of ∆ to a holomorphic g : ∆ → ∆

such that ω(g(ζ0), g(ζ1)) = ω(ζ0, ζ1). Then by Ahlfors Pick Lemma, g is biholomorphic, and

therefore for all ζ ∈ ∆ we have

cD(ϕ(ζ0), ϕ(ζ)) 6 ω(ζ0, ζ)

by remark 4. On the other hand, we have

ω(hνj(ϕ(0)), hνj(ϕ(ζ0))) 6 ω(ζ0, ζ)

by the decreasing property on hνj . Therefore cD(ϕ(0), ϕ(ζ)) = ω(0, ζ) for all ζ ∈ ∆ showing

that ϕ is a C-complex geodesic.

C.3 A Mapping Problem

In this section we will study a rigidity mapping problem between two domains of Cn. We

first introduce some geometric notions.

Definition C.3.1. A domain D is called convex if for any two points x, y ∈ D and t in the

interval [0, 1], the segment joining x and y lies in D; meaning that, (1− t)x+ ty ∈ D.

Example C.3.2. The domains ∆, B, and Cn are convex whereas the following star-shaped
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domain is not convex.

Definition C.3.3. We say a point x0 ∈ ∂D is a complex extreme point of D if the only

vector y ∈ Cn such that x0 + ∆y ⊂ D is y = 0; where ∆y = {ζy such that ζ ∈ ∆}.

Example C.3.4. All the boundary points on the disk ball B are extreme points whereas in

the bidisk ∆×∆ ⊂ C2, the vertices are extreme points while the point (1, 0) is not an extreme

point.

Definition C.3.5. A domain D ∈ Cn is called balanced if whenever z ∈ D and λ ∈ C such

that |λ| 6 1 then λz ∈ D.

Note that balanced domains are symmetric with respect the origin.

Example C.3.6. The following figure is not balanced.

21



Example C.3.7. In Cn, balls centered at the origin are balanced domains.

A beautiful result arises when we take specific geometric conditions on two domains D1

and D2 proving that any holomorphic map preserving the Carathéodory distances between

them must be linear (Theorem 3 [12]).

Theorem C.3.8. Let D1 and D2 be two bounded, convex, balanced open neighborhoods of 0

in Cn and let F : D1 → D2 be holomorphic such that F (0) = 0 and

cD2(0, F (x)) = cD1(0, x)

for all x ∈ D1. If every point of ∂D2 is a complex extreme point of D2, then F is the

restriction to D1 of a linear map from Cn to Cn:

F (x) = dF (0)x for all x ∈ D1.

Proof. Let D1 and D2 be two bounded, convex, balanced open neighborhoods of 0 in Cn.

Let u ∈ ∂D1 and consider the holomorphic disk ϕ : ∆→ D1 given by ϕ(ζ) = ζu. Let V be

an open neighborhood of u ∈ ∂D1. We need to find a sequence ζn → 1 such that ϕ(ζn)→ u.

Let ζn = 1− 1
n

then ϕ(1− 1
n
) = (1− 1

n
)u→ u then for large n, ϕ(1− 1

n
) ∈ V ∩D1. And so

ϕ(∆1− 1
n
) ⊂ D1.

Step 1: We prove that ϕ is a C-complex geodesic. Let ζ be in ∆. By the decreasing

property of the Carathéodory metric (Proposition B.2.4), we have cD1(0, ζu) 6 ω(0, ζ).

Since ∆u ⊂ D1 we then consider the map D1 → spanu to obtain

ω(0, ζ) 6 c∆u(0, ζu) 6 cD1(0, ζu) 6 ω(0, ζ).

Thus cD1(ϕ(0), ϕ(ζ)) = ω(0, ζ) for all ζ ∈ ∆ meaning that ϕ is a C-complex geodesic.
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Step 2: We prove that F ◦ ϕ is a C-complex geodesic.

By assumption, we have cD2(0, F (x)) = cD1(0, x) for all x ∈ D1. Let ζ ∈ ∆ and x = ζu ∈ D1.

Knowing that F (0) = 0, we have for all ζ ∈ ∆,

cD2 (F ◦ ϕ(0), F ◦ ϕ(ζ)) = ω(0, ζ).

This shows that F ◦ ϕ is a C-complex geodesic.

Step 3: It follows from Vesentini [11] that F ◦ ϕ is linear.

Step 4: We conclude that F is a linear map from D1 to Cn.

Let F (x) = dF (0)x + P2(x) + P3(x) + ... be the Taylor power series expansion of F around

0, where P2, P3, ... are homogeneous polynomials of degrees 2, 3, ... in Cn. Since F is linear,

then for all x ∈ D1, we have P2(x) = 0, P3(x) = 0, ... and we end up with

F (x) = dF (0)x for all x ∈ D1.

Thus F is a linear map from D1 to Cn.

Remark 8. In Theorem C.3.8, instead of assuming cD2(0, F (x)) = cD1(0, x) for all x ∈ D,

we can prove the linearity of F by assuming that the Kobayashi distances are preserved:

dD2(0, F (x)) = dD1(0, x) for all x ∈ D.

In the special case D1 and D2 are Euclidean balls in Cn we obtain a direct corollary

(Lemma 4.1 [12]):

Corollary C.3.9. Let B1 and B2 be the open unit balls for Cn and assume that every

boundary point of B2 is a complex extreme point of B2. If F : B1 → B2 is holomorphic
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such that

||F (x)|| = ||x|| for all x ∈ B1

then F must be linear: F (x) = dF (0)x for all x ∈ B1.

Theorem C.3.8 can be interpreted as the higher dimensional generalization of Schwarz

Lemma; indeed the result follows directly from Theorem C.3.8 applied to D1 = D2 = ∆.

Theorem C.3.8 can also be interpreted as the metric version of Cartan’s Uniqueness Theorem

which we state and prove for the unit ball:

Theorem C.3.10 (Cartan’s Uniqueness Theorem). Let F : B→ B be holomorphic. Assume

that F (0) = 0 and dF (0) = Id.

Then F (z) = z for all z ∈ B.

Proof. Consider F : B→ B holomorphic such that F (0) = 0 and dF (0) = Id. Since dF (0) =

Id we have γB(0, dF (0)v) = γB(0, v) for all v ∈ Cn. By Theorem C.3.8 we know that F is the

restriction to B of a linear map from Cn into Cn, namely F (z) = dF (0)z for all z ∈ B.
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