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AN ABSTRACT OF THE THESIS OF 

 

Mohammad Omar Barakat  for  Master of Engineering 

Major: Civil and Engineering 

 

 

Title: An agent-based framework for studying occupant multi-comfort level in academic 

buildings 

 

 

 

With the trend towards low energy or energy efficient buildings that diminish 

fossil fuel usage and carbon emissions, getting occupants actively involved during the 

design and operation phases of buildings is vital in achieving high energy performance 

without jeopardizing occupant satisfaction or comfort level. However, recent tools did 

not examine simultaneously, while considering different occupant behavior types, 

visual, thermal and acoustic comfort levels. This paper presents work targeted at 

efficiently studying occupant multi-comfort level using agent-based modeling with the 

ultimate aim of reducing energy consumption within academic buildings. The proposed 

model was capable of testing different parameters and variables affecting occupant 

behavior. Several scenarios were examined and statistical results demonstrated that (1) 

the presence of different occupant behavior types is deemed necessary for a more 

realistic overall model , (2) the absence of windows results in an acoustic satisfaction 

with an increase in HVAC off and medium level uses, and high lighting usage, and (3) 

the overall light usage decreases when two light switches instead of one are introduced. 
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CHAPTER 1 

INTRODUCTION 

 

1. Background 

 

With the expected increase in global population by 39% in 2035 [1], relying on 

new renewable resources of energy such as solar energy, wind energy, wave energy 

among many others has become imperative. Besides opting for alternative energy 

resources, current use of energy should be optimized [2]. Recently, attention has been 

placed on energy efficient buildings. Although several types of buildings exist, targeting 

the commercial type, in particular academic buildings, is of paramount importance, as 

the occupants seldom have the incentive to reduce their energy consumption [3-7].  

For this purpose, several building energy optimization tools were created and are 

categorized into two main groups: (1) tools that assessed the relative energy 

performance of design alternatives [8-13], and (2) tools that evaluated the impact of 

occupant behavior in improving energy consumption estimates of design alternatives 

and optimizing energy use at the building operation phase [4-6, 14-21]. 

However, these tools did not examine simultaneously, while considering 

different occupant behavior types, visual, thermal and acoustic comfort levels. 
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2. Objectives and Scope of Work 

The overaching objective of the present study is to design and implement a 

comprehensive framework aiming at studying occupant multi-comfort level in academic 

buildings using agent-based modeling. Four specific interim objectives are identified in 

the proposed initiative: 

 Understand the effect of environmental space conditions on occupant behavior 

through varying conditions separately 

 Study how dependent relationship among all comfort levels (thermal, visual and 

acoustic) would impact energy consumption 

 Understand why different occupant behavior types (green, neutral, non-green) 

should be considered 

 Understand the emergent effect of occupants interaction within the space 

  

3. Thesis structure 

Besides this introductory chapter, the thesis consists of two appendices which 

include the detailed results, discussions and conclusions. 

 Appendix A is a review article. It is a detailed critical review of the literature on 

tools developed to optimize energy in commercial buildings. 

 Appendix B is a research article. It presents the proposed framework and the 

ABM model developed in addition to the statistically analyzed results.  
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APPENDIX A A Review of  Building Energy Optimization 

Tools  
 

ABSTRACT 

This paper presents a review of published research articles that focused on 

energy consumption within commercial buildings. The presented papers are categorized 

into two main groups that include (1) tools that assessed the relative energy 

performance of design alternatives, and (2) tools that evaluated the impact of occupant 

behavior in improving energy consumption estimates of design alternatives and 

optimizing energy use at the building operation phase. The objective of this study is to 

shed light on what have been developed  in the field of commercial buildings and 

energy optimization and provide future researchers with access to relevant and diverse 

body of prior research efforts. The review revealed that there is substantial room for 

improvement and adoption of new tools to further optimize energy consumption within 

commercial buildings, in particular academic buildings. 

 

KEYWORDS 

Energy Consumption, Energy Optimization, Buildings, Occupant Behavior, Comfort 

Level 

 

 

A.1.  INTRODUCTION 

This paper aims at summarizing published work on the topic of energy 

optimization in commercial buildings. The review is divided into two main sections 

covering (1) tools that assessed the relative energy performance of alternative designs, 

and (2) tools that evaluated the impact of occupant behavior in improving energy 
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consumption estimates of design alternatives and optimizing energy use at the building 

operation phase. In each main section, the available tools and a summary of the 

methodologies, were discussed. The main objectives of this paper are thereby to (1) 

gather, in one resource, published articles from the field of building energy optimization 

to provide future researchers with rapid access to information, (2) present recent tools 

and methodologies developed to optimize energy use in commercial buildings, and (3) 

provide a summary of the major findings from this set of papers and highlight the needs 

for future research.  

 

A.2.  LITERATURE REVIEW 

The rapid increase in energy consumption and the limited resources of non-

renewable energy triggered researchers to look for new resources in order to fulfill the 

needs of future generations. With the expected increase of the population by 39% in 

2035 [1], people had to search for new renewable resources of energy such as solar 

energy, wind energy, wave energy among many others. Besides finding new energy 

resources, current use of energy should be optimized. According to Yang et al. [2], 

reductions in energy expenses and decrease in the environmental pollution may be 

achieved by reducing consumption of building’s energy. For clarification, people spend 

more than 90% of their time indoors [3]. Consequently, 40% of the global energy is 

consumed by buildings [4-7]. Therefore, energy consumption should be optimized to 

limit the current and future use of energy in buildings which will increase by 19% [8]. 

Although there are several types of buildings, targeting commercial ones is most 

important. Occupants of commercial buildings do not have any incentive to save energy. 

They focus more on completing their jobs rather than on saving energy [9]. 

Consequently, it was stated that energy consumed during nonworking hours is typically 
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more than half of the total energy consumed by commercial buildings [7, 10]. This is 

mainly due to behavior of occupants such as keeping electrical devices, HVAC, 

appliances and lights on when leaving. Specifically, university and office buildings 

consume the highest energy among commercial buildings [7]. Thus, there is a huge 

room to optimize energy consumption through conserving energy during the operation 

phase and improving the design of buildings as well to be more energy friendly. 

There are several possible ways to reduce energy consumption of buildings such 

as coming up with better designs that would consume less energy. In order to estimate 

the amount of energy that would be consumed, several energy simulation tools were 

developed. These tools aided engineers at the design phase to assess their designs from 

the perspective of energy consumptions. Some of these tools are Green Building Studio, 

eQuest, EnergyPlus, and many others. In general, these simulation tools take the 

building geometry and materials to estimate how much energy would be consumed. 

However, when more than one design alternative is present, it would not be efficient to 

do multiple models and evaluate each one separately. Therefore, researchers 

investigated several approaches to find tools that would inspect all available alternatives 

and choose the most suitable one. 

 

 

A.2.1       Tools that assessed energy performance of design alternatives  

Traditionally, architects and civil engineers are the main parties involved at early 

stages of the design phase. After developing the full design of the project, both parties 

forward the project to mechanical engineers. However, when mechanical engineers 

intervene at a late stage in the design phase to apply energy analysis, any proposed 

solution would incur a relatively huge cost with a minor influence. On the other hand, 

the new arising technology of BIM allows all parties in the project to share the same 
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model and to get involved in the design of the project from the very beginning [11]. 

Therefore, mechanical engineers were capable of testing several energy saving 

alternatives at early stages. As a result, applying any of these alternatives would be 

highly effective with a considerable construction cost [12]. These alternatives were 

explored using energy simulation tools such as Blast, EnergyPlus, Trace, eQuest among 

many others [11]. In order to improve the coupling between BIM tools and energy 

simulation tools, gbXML was created to exchange energy information. The availability 

of this combined technology facilitated the advancement in the field of energy and 

buildings. When considering different alternatives, engineers usually target the option 

that optimizes energy most. However, this option might greatly increase construction 

costs. Therefore, Chen and Gao [13] stated that a tool should be developed in order to 

choose the alternative that optimizes both energy consumption and construction costs. 

Thus, a multi-objective generic algorithm was used since it minimizes several variables 

at the same time. In order to do so, a group of possible solutions should be proposed. 

The algorithm forms possible combinations and tests each one. The one with minimum 

output cost and highest energy savings is chosen. This approach was developed using 

Autodesk Revit, Integrated Energy Solutions (IES) and Matlab optimization tool [13]. 

The BIM model of the project under question was created using Autodesk Revit. A 

gbXML format of the BIM model was then exported and imported into IES. Within 

IES, the total energy consumption per year was obtained. From the obtained results, 

Chen and Gao [13] created empirical formulas that were used to estimate the energy 

performance of all possible design combinations. In addition to energy consumptions, 

construction costs had to be estimated. Hence, it was obtained from RSMeans online 

database [13]. As an application of this approach, Chen and Gao [13] considered 

building orientation with respect to the true north and windows to walls ratio as design 
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variables. Using the proposed methodology, the best combination of both variables was 

obtained. 

Similar to what have been discussed before, Nour et al. [14] developed a tool 

that is capable of finding the most feasible building design based on the selection of 

building materials. With the huge variety of materials available to be used in buildings, 

researchers studied the use of energy efficient ones to optimize energy consumed [14, 

15]. In the study done, different types of windows, walls, insulating materials and roof 

segments were considered. As a start, quantity takeoff for all elements used was done 

using Autodesk Revit. Then, random combinations of all options available were created. 

In order to assess all combinations, a while loop using Java engine was generated. 

Within this loop, energy consumption and life cycle cost (LCC) were estimated using 

EnergyPlus and LCC databases respectively. Thus, the ultimate combination of all 

materials was chosen and transferred back to the BIM model for update [14]. 

When applying any similar tool to what had been discussed earlier for energy 

simulation and optimization, the user was obliged to leave the BIM platform and open 

another energy simulation tool. Hence, a simulation tool capable of combining both 

platforms was created within Autodesk Revit [16]. To achieve this, information from 

the BIM model should be read by the energy simulation plugin. However, some 

information in the BIM model might not be important to be delivered to the energy 

model and vice versa. For illustration, a room in the BIM model does not always 

resemble a thermal zone [16]. On the contrary, the information about the thermal zone 

limits, that is required by the energy simulation tool, is not present in the BIM model. 

Consequently, a certain level of information translation was required in order to have a 

fully developed building energy model that can be tested using the energy simulation 

plugin within Revit. For this reason, Revit2Modilca library was used to fulfill the above 
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mentioned objective. Upon using the modified model information, energy simulation 

was done using Dymola that is an Integrated Development Environment for Modelica 

[16]. Finally, results and plots of the simulation were reported within Autodesk Revit 

user interface. Using this plugin would facilitate engineers’ work and increase 

interoperability between modeling tools and energy simulation tools to get more reliable 

results. 

In addition to design improvements and energy optimization, some parties aimed 

further to have LEED (Leadership in Energy and Environmental Design) certified 

projects. To be eligible to obtain this certification, the project should have a sustainable 

design achieving a number of LEED points. According to points collected, the project 

can be classified as a LEED certified, LEED-silver, LEED-gold or LEED-platinum. 

Consequently, there will be lots of requirements regarding building materials and many 

others. If referring to these requirements would take place at a late stage of the design 

phase, then it would be very difficult to fulfill it as discussed earlier. Therefore, two 

tools that carry out energy optimization and attain LEED points at an early stage in the 

design phase were generated [12, 17]. As an illustration, Jalaei and Jrade [12] states that 

analyzing consumption of energy at the conceptual design phase allows engineers to 

make better decisions regarding the selection of the most applicable sustainable design. 

For this purpose, an external database for material families was created to be used in 

Autodesk Revit. Using these materials, a BIM model was drawn using Autodesk Revit. 

Moreover, a plugin was developed to export a gbXML and IFC files and to import it to 

the ECOTECT energy simulation tool that is called automatically as well. Finally, cost 

and LEED points were calculated directly through getting bill of quantities and detailed 

information about every component from the BIM model. In like manner, Bank et al. 

[17] developed another tool that created a link between Anylogic and Revit to transfer 
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data and to implement the optimized alternative. This link was created between a system 

dynamics decision making software and a BIM software. The transferred data was used 

to make decisions regarding design alternatives. These decisions were optimized to 

offer the most suitable sustainable building design. Using proper sustainability 

indicators, decisions were made and transferred back to the BIM model in order to 

apply components modifications. 

 

A.2.2 Tools that used Occupant Behavior for Estimating and Optimizing Energy 

Consumption  

Although the aforementioned developed tools were capable of assessing design 

alternatives, estimated figures of energy consumption obtained from these tools deviate 

from the actual energy consumed by 30% to 40% [18]. This is due to the fact that 

current building energy modeling tools do not consider the effects of occupant 

behaviors on energy. Instead, it considers fixed occupancy schedules and fixed 

environmental conditions. Therefore, these estimations may underestimate or 

overestimate what energy would actually be consumed during the operation phase of the 

building lifecycle. On the other hand, studies showed that occupant behavior has 

considerable effect on energy consumption [9, 19]. If these behaviors are properly 

oriented, it can reduce energy consumption significantly up to 40% of the total energy 

consumed [5, 18].  

Occupant behavior is defined as the actions taken to increase the level of 

satisfaction which will affect the level of energy consumed. In commercial buildings, 

the use of energy would be direct through using personal electrical appliances. 

However, the use of HVAC system, lights, water system and other services are 

considered to be indirect use of energy. Studies showed that a change in occupant 
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behavior may result in higher energy savings than implementing new technological 

solutions [10]. Therefore, several parties focused on studying the impact of the 

occupants’ behavior on energy use. This was done using agent based modeling. 

Agent based modeling is one of the most powerful simulation techniques that 

has been developed lately [20]. This technique allows researchers and users to simulate 

real life systems by looking to its constituent units. These units are called agents 

whereby every agent, a member of a group of decision making individuals, within this 

environment will have its own properties that will trigger it to act in a similar way to 

what it would have done in real life [21]. This heterogeneity in agents’ abilities and 

features illustrates the differences in their behavior towards dealing with a certain 

situation [5]. Beside their features, agents’ behavior is influenced by the factors present 

in the surrounding environment. Although agents’ behavior can be modeled using other 

techniques, agent based modeling is the best among others due to its emergent property, 

naturality and flexibility [21]. First of all, ABM offers the emergent property. It is not 

only important to know the behavior of the single agent. On the contrary, applying any 

idea on a group of agents and looking on their behavior as independent agents gives a 

wrong vision of what would actually happen if this idea were to be implemented. People 

decisions in real life are not only affected by their individual properties and the 

surrounding factors but also by their interaction with other agents. In other words, a 

personal network of an agent affects its behavior [5]. Therefore, when looking for the 

behavior of any agent, it is highly important to place all agents within one environment 

and allow them to interact in order to know the emergent behavior of the system as a 

whole. When doing so, it becomes possible to get a more reliable simulation of what 

would actually happen when implementing any idea [22]. Moreover, naturality and 

flexibility of ABM is another powerful property. Instead of transforming a behavior to 
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mathematical equations which is quite cumbersome, it is more natural to represent it as 

a behavior of an agent. By this, it becomes more flexible to visualize all agents while 

adding parameters and variables to the system rather than coming up with textual 

information such as complex equations. There are several platforms that adopt agent 

based modeling. However, the programs that were mostly used by researchers are 

Anylogic, NetLogo and Matlab. 

Therefore, when testing what-if scenarios, it is highly important to study the 

impact of each case on both building and occupants. Consequently, Andrews et al. [9] 

came up with a modeling framework that was capable of assessing alternatives at the 

operation phase. First of all, the building geometry was modeled using Google 

SketchUp. Then, the building model and building systems (HVAC, lighting, etc.) were 

entered into OpenStudio. Using these information, the energy model of the building was 

created using EnergyPlus. In order to reduce deviations from actual energy 

consumptions, the energy model was calibrated using utility bills and other objective 

data. Additionally, occupant behavior was modeled using NetLogo based on survey 

data. The EnergyPlus and NetLogo models were integrated and recalibrated since 

applying any alternative would have an effect on building energy consumption and on 

occupant behavior. Finally, all sub-models were linked together using a connective 

tissue of Java code to form a dynamic simulation system [9]. Eventually, what-if 

scenarios were considered and the output was analyzed to choose the best alternative. 

Although applying new technologies or testing different design alternatives might 

reduce energy consumption, changing occupant behavior is another way to save energy 

[5]. 

In general, the behavior of a person is highly affected by his/her social network. 

Therefore, Jain et al. [6] indicated that social influence motivates energy savings. More 
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precisely, users were encouraged to adopt a green friendly energy behavior. Therefore, 

it is important to show the change in occupant behavior with time in energy simulation 

tools rather than taking it to be static [6, 18, 23]. 

Energy consumption campaign and peer to peer effect are two factors that 

influence energy consumption behavior of occupants positively [18]. An energy 

simulation model was established by Azar and Menassa [18] to study the impact of the 

above mentioned factors. Occupants within this model had three different energy 

consumption behaviors: high energy consumers, medium energy consumers and low 

energy consumers. Each behavior had a unique energy consumption rate and an initial 

level of influence that were imported into the agent based model. With every iteration of 

the model, the level of influence of energy behaviors will be updated according to the 

interaction of occupants with the environment and with other agent in the space. 

Consequently, the number of occupants in each category will be updated. Finally, using 

the rates imported, energy consumption of each category is calculated. The model keeps 

iterating until total simulation time is reached. Upon adding the two influencing factors, 

electrical consumption dropped by 25.2% and gas consumption dropped by 4.7% [18]. 

Thus, it is highly important to model occupants with different energy behaviors that 

change over time. 

For further minimization of the deviations of building energy simulation outputs, 

Menassa et al. [24] developed the model created by Azar and Menassa [18] further and 

coupled it with energy simulation tool. Azar and Menassa [18] recognized that the agent 

based model can account for different energy behaviors but it cannot get actual energy 

consumption rates. On the other side, DOE2, an energy simulation federate, lacked the 

ability to account for different energy behaviors but it is capable of estimating actual 

energy consumption rates. Therefore, Menassa et al. [24] developed a model whereby it 
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coupled the DOE2 federate with the agent based model federate to overcome the 

deficiencies present in each tool. The coupling was achieved using CERTI 

implementation of high-level architecture. In order to facilitate the flow of information 

between DOE2 federate and agent based model federate, two parameters, 

energyConsumption and behaviorLevel, were defined in CERTI. The model worked as 

follows. First of all, the building model was imported into the DOE2 federate. This 

federate performed energy simulation and exported energy consumption rates. The ratio 

of the obtained rates to the actual energy consumption rates was saved as the 

energyConsumption parameter in CERTI federate. Within the agent based model, green 

and non-green occupants were considered. The energyConsumption parameter was then 

imported to the agent based model as the level of influence of green occupants. 

However, the level of influence of non-green occupants was assumed to be between 0 

and level of influence of green occupants. Based on the obtained actual figures, the 

Anylogic federate, the federate of the agent based model, ran the simulation to update 

number of occupants in each category based on the previously mentioned interactions. 

The obtained number of green and non-green occupants was then exported to the 

CERTI federate to be saved as behaviorLevel parameter. Then, this parameter was 

imported to the DOE2 federate where every category had its own energy use 

characteristics. Based on the number of both categories, the total energy consumption 

was estimated again and the ratio of estimated consumption rates to the actual rates 

were then saved as energyConsumption parameter. Similarly, the model kept on 

recapitulating until the energy consumption estimated reach the actual one. 

In addition to external factors, achieving great comfort levels is one of the most 

important factors that affects the behavior of occupants. An occupant in a building 

might be disssatisfied due to the conditions of the system he is in. For example, if the 
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temperature in the room was high enough, the occupant will feel hot. As a result, he 

might either turn the HVAC or open the window. Consequently, the action made to 

increase the thermal satisfaction of the occupant affects the consumption of energy in 

buildings [25]. Therefore, [26] simulated multiple models of occupant behaviors. 

Occupants in the model aimed to increase their thermal comfort. At the start of the 

simulation, the occupant present in the space observed the surrounding conditions to get 

information about number of agent, clothing level and the activity level that he will do 

in the space. Based on these information and climate data, PMV, thermal satisfaction 

factor, is calculated using EnergyPlus. If the PMV was not according to standards, the 

occupant checked possible behaviors to increase thermal satisfaction. For each behavior, 

a cost was calculated to check the probability of doing a behavior. This probability was 

calculated using a cost function that takes behavioral beliefs, control beliefs and 

normative beliefs into considerations [26]. Behavioral belief represented the expected 

outcome of the behavior whether it would have a positive or a negative consequence. 

Control belief represented beliefs about the factors in the surrounding environment that 

would assist or hinder the attempt to make a certain behavior. Normative belief 

expressed beliefs about important people in the space that might accept or reject the 

behavior that would be carried out. According to this function, the agent ranked all 

behaviors to choose the one having the highest cost. Based on the chosen behavior, the 

system conditions were updated and the new PMV is calculated. Finally, the behavior 

was interpreted to check if comfort was achieved, if energy was saved and if it affected 

others within the same space. The coefficients used in the cost functions were updated 

based on behavior interpretations. Consequently, this model simulated actual occupant 

behavior that would be carried out to achieve thermal comfort. 
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In order to further understand the influence of occupants’ behavior on energy 

consumption in commercial buildings, Kavulya and Becerik-Gercer [27] observed 

occupants’ activities for 5 weeks. To simplify the problem statement, energy 

consumption of desktop computers, laptops and printers were only monitored. A load 

monitoring apparatus was used to measure consumption. Besides, Arduino sketch 

upload was used to calculate other electrical figures such as real power, apparent power, 

power factor, root mean square current and root mean square voltage. Using these 

apparatuses, appliances power consumption was logged every second. In order to know 

the behavior behind such consumption, visual observations were done. Interpretation of 

the effect of occupant behavior on energy consumptions showed that 38% of the 

consumed energy was wasted during standby modes [27]. Consequently, energy 

consumption would simply be optimized if occupants turn off the appliances they do not 

want to work on. Thus, if occupants were aware of the energy they waste and were 

asked to turn what they do not need off, around 40% of the energy would be saved 

without any effort. 

In addition to optimize standby wasted energy, focusing on reducing non-wasted 

energy consumption is essential to reach long-term savings [28]. In order to study the 

direct influence of occupant behavior on energy consumption, Azar and Menassa [28] 

considered three typical building sizes, small, medium and large, that were assumed to 

consume energy during operating hours only. Moreover, five main weather conditions 

were taken into consideration that were subdivided into dry type and moist type each. 

Combinations of two factors resulted in 30 different building models that were 

developed in eQuest. When developing the models, standards were used to define 

building and energy properties. Furthermore, occupancy schedules were assumed to be 

that of the US national average schedule of office buildings. Upon running the models, 
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total energy consumption of buildings were estimated. For the purpose of knowing the 

effect behavior of occupants on energy use, nine variables were varied individually. 

These variables were: 1) after-hours equipment use, 2) after-hours lighting use, 3) 

occupied hours cooling temperature set points, 4) occupied hours heating temperature 

set, 5) unoccupied hours cooling temperature set points, 6) unoccupied hours heating 

temperature set, 7) after-hours active HVAC system, 8) hot water consumption and 9) 

building schedule [28]. As a result, influence coefficient or each parameter was 

calculated. The influence coefficient showed the ratio of change in output to that of the 

input with respect to the base case. For illustration, results showed that hot water 

consumption had an influence coefficient value of +1.2 [28]. Accordingly, if the 

consumption of hot water increased by 1%, the total building energy used will increase 

by 1.2%. Similarly, a -1.4 influence coefficient for unoccupied hours heating 

temperature set points parameter means that an increase of 1% in that parameter will 

cause a decrease of 1.4% in total energy consumption [28]. 

If users were able to know the energy consumption and the influence of their 

behaviors on it, it might be possible to save up to 80% of energy consumed [29, 30]. 

Thus, several commercial parties designed energy dashboards to allow users visualize 

their energy consumption. Although these dashboards were appealing, it did not always 

show what a user needs to see [30, 31]. Consequently, [30]  proposed a framework to 

show components that should be included in energy dashboards. The platform of this 

dashboard was developed based on the software/hardware it would have been installed 

in. Within these dashboards, dynamic data and static data were utilized. Dynamic data 

and static data demonstrate real-time sensor data obtained from sensors placed in 

buildings intentioned and information about buildings that does not change often 

respectively [30]. For clarification, figures of energy consumptions, such as electricity, 
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gas and water consumption, are considered to be dynamic data. On the other hand, 

buildings temperature, humidity and CO2 emissions for example are considered to be 

static data. Occupants will not only be able to check their energy consumption, but also 

they will be able to take wiser decisions regarding their behavior that will decrease 

energy consumption [30]. 

Although energy use in buildings is relatively high, 35% of the occupants are not 

satisfied with indoor thermal conditions [32-34]. For this reason, Klein et al. [35] 

created a multi-agent comfort and energy system (MACES). When building 

management systems are designed, full occupancy of buildings is considered to set 

building indoor conditions. However, monitoring actual occupancy levels, even at peak 

times, indicated that occupancy in office buildings is at most one third the full 

occupancy assumed [35]. Therefore, four control strategies, manual, reactive, proactive 

and proactive – MDP, were tested to improve energy consumption and comfort levels. 

To find the best strategy, MACES was developed. First of all, the system received 

information about building occupants and the physical buildings to figure out 

occupancy schedules, rooms and thermal zones. Then, a virtual building model was 

developed whereby agents were proxy agents. These proxy agents resembled a real 

occupant through his/her mobile application. Information from agents and real-word 

sensors will form the model inputs [35]. The first system tested was the manual system. 

Within this baseline system, temperatures were set according to previously defined 

setpoints. Moreover, lights were considered always on when occupants enter a space 

and stochastically turned off when leaving. Besides, appliances were considered to be 

always on. On the other hand, the reactive system reacted according to actual occupancy 

and occupancy preferences in each zone. As for proactive system, lighting and 

temperature were adjusted according to actual occupancy and occupancy preferences in 
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each zone based on scheduled occupancy. Finally, the proactive – MDP system is 

similar to the proactive system, but agents had the option to reallocate their meetings. 

Upon testing the four systems in MACES, it was proved that the three systems were 

better than the baseline one. The energy simulation of reactive, proactive and proactive 

– MDP showed a reduction in energy consumption by 4.46%, 6.86% and 12.17% 

respectively. As a result, applying proactive – MDP energy system will yield the highest 

energy saving rate with an acceptable occupancy comfort levels. Spending an additional 

effort on developing the proactive – MDP system, [36] worked on developing the idea 

of schedule flexibility. Transformative energy saving schedule leveraging agent 

(TESLA) was developed in order to save energy through changing occupant schedules. 

TESLA took inputs, information regarding occupants’ schedules such as location, 

preferred meeting time, number of attendees, etc., form occupants and their proxy 

agents. Upon receiving these information, it aimed to form energy efficient schedules. 

The schedules considered flexibility in meetings time, location, and user preferences 

according to energy satisfaction [36]. At first, an algorithm was used to arrange all 

meetings and to come up with the schedule meeting including all requests that have 

flexibility. Then, another algorithm arranged meetings within the flexible range to find 

the most energy efficient schedule. When assuming the full amount of flexibility, 

TESLA was able to reach a 48.08% of energy savings. Thus, applying such tool to 

manage meeting schedules will reduce consumed energy significantly. 

Furthermore, Jazizadeh et al. [34] developed a mobile application that captured 

occupants comfort profile and adjusted indoor qualities accordingly in order to increase 

satisfaction levels of the majority. Using the mobile application, occupants were able to 

express their satisfaction toward temperature, light intensity and airflow. In addition, 

GPS was used to shortlist buildings options. However, the user had to enter his exact 
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location manually. This data was then inputted to the building system that adjusted the 

indoor conditions accordingly to reach a minimum of 20% of dissatisfaction [34]. In 

order to capture data regarding building indoor quality, [34] designed a sensor box that 

hosted: 1) temperature sensor, 2) CO2 sensor, 3) relative humidity sensor, 4) sound 

sensor, 5) light intensity sensor, 6) passive infrared sensor, 7) motion sensor and 8) door 

sensor. The data was logged every minute [34]. As a result of increasing satisfaction 

percentages, productivity and health of occupants were improved [32, 34, 37]. 

 

A.3.  SUMMARY OF MAIN FINDINGS  

Optimization of current building energy use triggered several researchers to 

develop tools aiming at reducing energy consumption in commercial buildings. These 

tools can be divided into two main categories. The first category includes tools that 

assessed the relative energy performance of design alternatives. Others developed tools 

to optimize both energy consumption and cost of implementation. Moreover, low 

interoperability triggered some researchers to develop Autodesk Revit plugins and 

simultaneously visualize graphical building information together with  energy 

consumption data. However, researchers observed that occupant behavior has a great 

influence on energy consumption. Therefore, the second category of developed tools 

incorporate occupant behavior to improve energy estimates at the design phase and 

optimize energy comsumption at the operation phase. To understand the effect of 

occupant behavior on energy consumption, researchers stated that 54% of the energy is 

wasted during non-working hours and 38% of the energy during working hours is 

wasted by appliances placed on standby mode. Thus, orienting the occupant behavior in 

a good way can highly affect energy consumption. For more detailed information, other 

researchers worked on calculating the influence factor of each behavior. Even with all 
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this waste, 35% of the occupants are still not satisfied with the indoor qualities. 

Therefore, researchers worked on improving indoor qualities through capturing 

occupants comfort levels. Other researchers tried to save energy through arranging 

meetings within flexibilities to create an efficient meeting schedules. Moreover, prior 

research efforts created a tool to assess the effect of social influence on occupant 

behavior. Finally, researchers created a framework whereby occupants changed their 

behaviors to increase thermal satisfaction/comfort levels. 

 

A.4.  NEED FOR FUTURE RESEARCH 

The summary of main findings presented in the previous section shows that 

there is a need for a tool that would mimic actual world environment where occupants 

within the same space should interact to increase their satisfaction levels. For this 

reason, this tool should be able to overcome the limitations of previously developed 

tools. Consequently, potential areas for future research in this field are summarized 

below: 

1. Consideration of acoustic comfort is needed to model a real world environment 

where occupants would behave to achieve ultimate satisfaction. For example, 

when the occupant closes the window to achieve acoustical comfort, he might 

feel hot and turn the HVAC system on. Thus, the energy consumed by the 

HVAC system is mainly due to acoustic dissatisfaction. 

2. Consideration of occupant multi-comfort levels is needed to have a reliable 

model. This is due to the fact that the behavior of the occupant might affect 

more than one comfort level simultaneously. As mentioned in the previous 

example, the state of the window affected both acoustic and thermal comfort. 

Moreover, when the occupant is visually unsatisfied, he might open the shades. 
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However, the occupant might be unsatisfied thermally due to the sun effect. 

Therefore, the state of the shades affected both thermal and visual comfort. For 

this reason, considering simultaneously all comfort levels is of paramount 

importance. 

3. Different occupant behavior types should be considered when testing for multi-

comfort levels. As previously mentioned, occupants within the same space 

might have different behaviors. For illustration, occupants behavior may be 

classified into three categories, green, non-green and neutral.  

4. Different categories of occupants within the same space should be considered. 

Wihtin the same space, occupants with different statuses may meet and interact. 

For illustration, professors may meet with students in offices. However, the 

professors might have a higher decision power than students to control the state 

of variables within the system. Therefore, occupants with different decision 

powers should be modeled. 

5. Leaving behavior of occupants should be taken into consideration to have a full 

insight about the occupant behavior. As previously mentioned, more than half 

of the energy is wasted during non-working hours. For illustration, the occupant 

might leave lights, HVAC system and electrical appliances on when leaving. 

Therefore, the leaving behavior of occupants should be modeled. 

6. Consideration of the position of occupants within the space is needed. 

Occupants within the same space might be unsatisfied on a different level. For 

example, occupants in proximity to the HVAC supply units will be more 

satisfied that others in the space and vice versa. Moreover, occupants near the 

window might be more satisfied/unsatisfied visually than others due the sun 
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light effect. Therefore, the position of occupant should be considered when 

modeling multi-comfort levels. 
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APPENDIX B STUDYING OCCUPANT MULTI-COMFORT 

LEVEL IN ACADEMIC BUILDINGS USING AGENT BASED 

MODELING 
 

ABSTRACT 

With the trend towards low energy or energy efficient buildings that diminish 

fossil fuel usage and carbon emissions, getting occupants actively involved during the 

design and operation phases of buildings is vital in achieving high energy performance 

without jeopardizing occupant satisfaction or comfort level. However, recent tools did 

not examine simultaneously, while considering different occupant behavior types, 

visual, thermal and acoustic comfort levels. This paper presents work targeted at 

efficiently studying occupant multi-comfort level using agent-based modeling with the 

ultimate aim of reducing energy consumption within academic buildings. The proposed 

model was capable of testing different parameters and variables affecting occupant 

behavior. Several scenarios were examined and statistical results demonstrated that (1) 

the presence of different occupant behavior types is deemed necessary for a more 

realistic overall model , (2) the absence of windows results in an acoustic satisfaction 

with an increase in HVAC off and medium level uses, and high lighting usage, and (3) 

the overall light usage decreases when two light switches instead of one are introduced. 

 

KEYWORDS 

Academic Buildings, Occupant Behavior, Occupant Multi-Comfort Level, Occupant 

Interaction, ABM, Energy Optimization 
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B.1.      INTRODUCTION  

With the expected increase in global population by 39% in 2035 [1], relying on 

new renewable resources of energy such as solar energy, wind energy, wave energy 

among many others has become imperative. Besides opting for alternative energy 

resources, current use of energy should be optimized. Recently, attention has been 

placed on energy efficient buildings [2]. As a matter of fact, increasing energy use 

efficiency is one of the key approaches for energy consumption and carbon emissions 

reduction as part of the climate change mitigating efforts. According to Yang et al. [2], 

reductions in energy expenses and decrease in the environmental pollution may be 

achieved by reducing the consumption of energy in buildings. People spend more than 

90% of their time indoors [3], and as such around 40% of the global energy is consumed 

by buildings [4-7]. Therefore, efficient energy use should be adopted especially that it is 

anticipated that the energy consumption in buildings is expected to increase by 19% in 

the upcoming years [8]. 

Although several types of buildings exist, targeting the commercial type, in 

particular academic buildings, is of paramount importance, as the occupants seldom 

have the incentive to reduce their energy consumption [7]. They usually focus on 

completing their job tasks rather than saving on energy [9]. Additionally, it was stated 

that the energy consumed in commercial buildings during non-working hours is 

typically more than half of the total energy consumed [7, 10] as typical occupant 

behavior includes keeping the HVAC, electronic devices, appliances and lights on even 

when not needed or upon exiting the space.  

Therefore, getting occupants actively involved during the design and operation 

phases of buildings is vital in achieving high energy performance without jeopardizing 

occupant satisfaction or comfort level. However, recent tools did not examine 
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simultaneously, while considering different occupant behavior types, visual, thermal 

and acoustic comfort levels. The overarching goal of the paper is to design and 

implement a comprehensive framework aiming at studying occupant multi-comfort 

level in academic buildings using agent-based modeling. The proposed model was 

capable of testing different parameters and variables affecting occupant behavior. 

Several scenarios were examined and statistical results demonstrated that (1) the 

presence of different occupant behavior types is deemed necessary for a more realistic 

overall model , (2) the absence of windows results in an acoustic satisfaction with an 

increase in HVAC low and medium level uses, and high lighting usage, and (3) the 

overall light usage decreases when two light switches instead of one are introduced. 

The remainder of the paper is organized as follows. Section B.2 shed light on 

prior research efforts on energy optimization and occupant behavior, while Section B.3 

presents the limitations of existing approaches and the proposed study’s contributions. 

Section B.4 describes both the design and implementation of the agent-based proposed 

framework. Results and statistical analysis are detailed in Section B.5. Section B.6 

discusses our findings, concludes the paper and states envisioned future steps to further 

enhance the overall model. 

 

B.2. LITERATURE REVIEW 
 

Recent energy optimization needs in commercial buildings necessitated the 

development of several tools. These tools can be divided into two main categories: (1) 

tools that assessed the relative energy performance of design alternatives, and (2) tools 

that evaluated the impact of occupant behavior in improving energy consumption 

estimates of design alternatives and optimizing energy use at the building operation 

phase. 
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B.2.1       Building Energy Simulation Tools 

To estimate the level of energy consumption at the building design phase and 

assess different design alternatives, several tools were developed that include but are not 

limited to Green Building Studio, eQuest, EnergyPlus, etc [11]. These energy 

simulation tools rely mainly on the building geometry and materials [11] or LEED 

requirements [11, 12] to estimate the amount of energy consumed and decide upon the 

best alternative [13]. However, the implementation cost of the most energy efficient 

alternative is often high. Consequently, other researchers developed multi-generic tools 

that optimized both energy consumption and implementation cost [14]. On the other 

hand, Autodesk Revit plugins have been developed [15] to avoid manually coupling 

energy simulation and design BIM tools. These plugins allowed rapid assessment of 

design alternatives through generation of energy consumption estimates and graphical 

output all within the same Revit interface.  

 

B.2.2 Building Energy Simulation Tools and Occupant Behavior 

Measured energy consumption in buildings has demonstrated large 

discrepancies with the original estimates. Among various factors contributing to the 

discrepancies, occupant behavior is a driving factor [16, 17]. As such, several new 

developed models used occupant behavior to improve upon the original energy 

estimates and optimize energy consumption at the operation phase, often using agent-

based modeling [18]. This simulation paradigm is a powerful technique mimicing real 

life systems by looking into its constituent units and testing what-if scenarios [9]. These 

units are called agents whereby every agent, a member of a group of decision making 

individuals within this environment, has its own properties that trigger replicating 

certain real-life acts [19]. As such and unlike traditional tools, ABM allows evaluating 
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the impact of each scenario on both the buildings and occupants, thereby identifying the 

most energy efficient design alternative [16, 17].  

Focusing on building operation, energy efficiency measures can be effective in 

addressing the problem of high building energy consumption. As a matter of fact, 

researchers have observed that occupant behavior has a great influence on energy 

consumption at the operation phase [9, 20]. Studies found that 54% of the energy in a 

building is wasted during non-working hours and 38% during working hours due to 

appliances being typically placed on standby mode [7, 10, 21]. Accordingly, with 

occupants adopting energy conscious behaviors, energy consumption can be greatly 

reduced [5, 16]. For that purpose, some tools used ABM and looked at the effect of 

occupant behavior on energy consumption by computing the weight of each behavior’s 

influence factors [17]. It was concluded, for example, that an increase of hot water 

consumption by 1% leads to an increase of total building energy consumption by 1.2% 

[17]. On the other hand, previous work [22] found that occupants consumed more 

energy when occupying large size rooms due to a higher HVAC and light power usage 

[22]. In this case, energy efficient efforts were channeled toward creating efficient 

meeting schedules and reallocating occupants in the right rooms [22]. 

It is worth mentioning that typical occupant behavior includes how an occupant 

sets comfort criteria. Although the percentages of waste energy are relatively high, 

approximately 35% of the occupants are still not satisfied with the indoor qualities [23]. 

Therefore, researchers worked on improving indoor qualities through capturing 

occupants comfort levels using mobile cellphone applications [23]. As an illustration, 

occupants within the area studied were asked to specify their satisfaction level toward 

the room temperature, air flow and light intensity. Based on this input data, the 

buildings’ indoor conditions were adjusted to increase the comfort levels of the majority 
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of occupants. Moreover, researchers studied the impact of occupant behavior on energy 

consumption based on decisions taken to increase satisfactory levels. For illustration, if 

the occupant chooses to open a window, it can affect the HVAC system [24]. Therefore, 

Lee and Malkawi [25] created a tool whereby occupants changed their behaviors to 

increase thermal satisfaction levels. Occupants interacted with others in the same space 

and whenever comfort was not achieved, they would adjust the system variables to 

increase their comfort level.  

 

 

B.3.  LIMITATIONS OF EXISTING APPROACHES AND RESEARCH 

CONTRIBUTIONS 

Although the field of energy and buildings is evolving rapidly, existing 

approaches in the literature have several limitations that should be overcome in order to 

achieve a reliable model capable of better mimicing real-life situations. First of all, 

acoustic comfort of occupants was not considered. Only thermal and visual satisfaction 

were taken into consideration. However, the behavior of occupant attempting at 

increasing acoustic satisfaction might affect the energy consumption in buildings. For 

illustration, the occupant might close the window to avoid the outside noise. 

Consequently, he might feel hot and turn the HVAC system on. Thus, the energy 

consumed by the HVAC system resulted was due to acoustic dissatisfaction. Thus, 

achieving acoustic comfort might impact energy consumption within buildings. 

Therefore, acoustic comfort was considered in the model when simulating the behavior 

of occupants. 

Moreover, when previous approaches considered thermal and visual comfort 

only, the interaction of both comfort levels was ignored. In other words, it was assumed 

that the behavior adopted to increase thermal satisfaction was completely independent 
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from the behavior implemented to increase visual satisfaction. On the contrary, the state 

of certain variables in the system might affect more than one comfort level. For 

example, if the occupant was unsatisfied visually, he might open the shades to have sun 

light. However, he might feel hot because of the sun effect. As a result, the occupant 

might increase the level of the HVAC system to increase his thermal satisfaction. 

Consequently, the state of the shades affected both, thermal and visual comfort and both 

were simultaneously considered in the model. 

In addition, different occupant behaviors were not considered when testing 

multi-comfort levels. Occupants might either have green, neutral or non-green behavior. 

For illustration, green occupants when feeling hot would rather open the window than 

turn the HVAC system on. On the contrary, non-green occupants would on average 

decide to turn the HVAC system on rather than open the window. Thus, considering 

different behaviors might have a great impact on occupant comfort and energy 

consumption. For this reason, different occupant behaviors were incorporated in the 

model. 

Similarly, different categories of occupants were not considered. Occupants with 

different statuses might meet and interact within the same space. For example, a senior 

engineer might be in meeting with a junior engineer. However, the senior engineer 

would have a higher decision power to alter system conditions and achieve ultimate 

satisfaction. Therefore, the decision power of different occupant categories might not be 

equal which could affect their behavior in increasing their comfort. Thus, this issue was 

addressed within the simulation model.  

Furthermore, the leaving behavior of occupants was not taken into consideration 

when modeling occupant behavior. Tools used to simulate occupant comfort assumed 

that energy is consumed during working hours only. However, it was mentioned 
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previously that energy wasted during non-working hours might exceed half the total 

amount consumed. For illustration, occupants have several options to do when leaving. 

For example, the occupant might leave everything on, or he might turn some/all systems 

and appliances off. For this reason, the leaving behavior of the occupant should be 

modeled to have a full insight about the impact of occupant behavior on energy 

consumption in buildings.  

Finally, the position of occupants within the space studied was not considered. 

When the size of the space studied is large enough, then identical occupants within the 

same space might be unsatisfied differently. For illustration, consider the case where an 

occupant would be adjacent to the window (occupant A) and the other one would be 

relatively away from it (occupant B). For example, occupant A would be more satisfied 

visually than occupant B when shades are open only. On the other hand, occupant B 

would be more satisfied thermally than occupant A because occupant B would not be 

affected by sun radiations unlike occupant A. For this reason, the position of the 

occupant should be considered when taking the size of the space tested into 

consideration. Therefore, the position of occupants need to be taken into consideration. 

All of the aforementioned limitations show that there is a great need for a new 

flexible tool capable of imitating actual world environments where occupants of 

different behaviors and categories interact within the same space to increase their 

satisfaction levels. This necessitated the development of an agent-based framework 

targeted at studying occupant multi-comfort level in buildings with the ultimate goal of 

optimizing energy use in academic buildings in particular.  
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B.4.  METHODOLOGY 

The methodology adopted in this study is divided into two main tasks: (1) 

Design of a comprehensive agent-based framework or taxonomy for studying occupant 

multi-comfort level in academic buildings, and (2) Development of an agent-based 

model addressing several framework key components.  

 

B.4.1       Proposed Framework Taxonomy 

Prior to presenting the proposed agent-based framework, a set of parameters and 

variables should be defined. Parameters are the set of conditions that are defined at the 

start of the simulation and kept fixed through out the simulation process. On the other 

hand, variables are the set of conditions that are defined at the start of the simulation 

and that change during the process according to rules and definitons [26]. Figure B-1 

depicts different parameters and variables deemed necessary for modeling occupant 

multi-comfort levels. 

 

Figure B-1: Model Parameters and Variables 
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As shown in Figure B-1, the occupant’s adaptive comfort behavior is influenced 

by conditions related to both  the system and the occupants themselves. For instance, the 

floor level and the orientation of the space in question are considered to be system 

parameters, while the occupant behavior type (e.g. green, neutral, and non-green) as 

well as the occupant category (e.g. department heads, faculty members, students, etc.) 

are considered to be occupant parameters. At the start of the simulation model, all 

parameters are set according to a pool of available options. Based on these parameters, 

the occupants behave to increase their comfort and satisfaction levels. On the other 

hand, the HVAC level, door, window, lights and shades statuses are considered to be 

direct system variables. However, occupants within the system are capable of adjusting 

these variables to increase their comfort. Furthermore, time (i.e. time of the day or 

season), temperature, humidity and airflow are considered to be indirect system 

variables and are adjusted according to the direct ones. Moreover, the time deliberated 

within the simulation model is considered to be a system variable that can be attuned 

automatically. Besides, occupants are given the choice to adjust their cloth and activity 

levels to enhance their comfort, thereby rendering these conditions as occupant 

variables.  

Based on the aforementioned parameters and variables, Figure B-2 presents the 

agent-based framework designed to address existing limitations and study occupant 

multi-comfort level in academic buildings. The proposed framework consists of eight 

key components explained in the following subsections.  
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Figure B-2: Proposed Framework 
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B.4.1.1  Tracking and Localizing Occupants  

The first component (Figure B-3) consists of tracking occupants as they enter the 

studied space and frequently updating their location.  

 

 
Figure B-3: First Framework Component 

 

This part of the framework makes use of indoor position tracking technologies, 

such as Wireless Local Area Networks (WLAN), Radio Frequency Identification 

(RFID), Ultra-Wideband (UWB) [27, 28], etc., whereby sensors (e.g. wristbands, tags, 

badges, etc.) are mounted on occupants and followed over the network Given the nature 

of the environment in question (i.e. academic buildings), it was decided to adopt WLAN 

as a potential tracking solution and make use of the on-campus Wi-Fi network. Several 

commercial available tools were researched and the authors’ choice landed on a 

WLAN-based Real-Time Location System (RTLS) called Ekahau because it is widely 

used in the healthcare sector for people and equipment tracking, temperature and 

humidity monitoring, and workflow process improvement [29]. Using this technology, 
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the model can detect the presence of occupants in space and start its first iteration from 

the “occupant arriving to space” state. Moreover, it can acquire the occupant’s exact 

location, visualize it on a BIM-based floor plan and determine his/her proximity to 

HVAC diffusers, windows, etc., thereby studying the satisfaction levels vis-à-vis 

position within space . Once the occupant is located in the space, the system parameters, 

space floor level and space orientation, are automatically identified. 

 

B.4.1.2  Setting Conditions for Other System and Occupant Variables and Parameters  

As shown in Figure B-4, the second component of the proposed framework sets 

conditions for all variables and parameters within the space that affect occupants’ 

satisfaction or multi-comfort level.  

 

 

Figure B-4: Second Framework Component 
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Clo values should be taken into consideration because the occupant typically 

changes his clothing level to reach thermal satisfaction. Examples of Clo values 

attributed to some of the clothing options are shown in Table B-1. 

 

Table B-1: Occupant Clo Value (Source: [30]) 

Clothing 
Insulation 

Clo 

Shirts 

Tube top 0.06 

Short sleeve 0.09 

Light blouse with long 

sleeves 
0.15 

Light shirt with long 

sleeves 
0.2 

Normal with long 

sleeves 
0.25 

Flannel shirt with long 

sleeves 
0.3 

Long sleeves with 

turtleneck blouse 
0.34 

Trousers 

Shorts 0.06 

Walking shorts 0.11 

Light trousers 0.2 

Normal trousers 0.25 

Flannel trousers 0.28 

Overalls 0.28 

Sweaters 

Sleeveless vest 0.12 

Thin sweater 0.2 

Long thin sleeves with 

turtleneck 
0.26 

Thick sweater 0.35 

Long thick sleeves with 

turtleneck 
0.37 

 

For example, if the occupant is wearing light trousers and a thin sweater, then 

his Clo value would be be 0.4.  

Similarly, the Met value is important and considered as well since it affects the 

occupant’s thermal comfort. Table B-2 shows the Met values of the activities that can 
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be performed by occupants within a space. A Met value is a physiological measure 

expressing the energy cost of physical activities [31]. For example, if an occupant is 

working on the computer, then the Met value is 1.9.  

 

Table B-2: Met Value of the Occupant (Source: [31]) 

Activity 
MET 

value 
Activity 

MET 

value 

Taking classes 1.82 
Work: Architecture and 

Engineering 
1.64 

Taking classes: personal 

interest 
2.4 

Work: Life, Physical, and 

Social Science 
2 

Research work 1.8 
Work: Community and 

Social Services 
2.08 

Eating and drinking 1.5 Work: Legal 1.5 

Socializing and 

communicating with others 
1.5 

Work: Education, Training, 

and Library 
2.5 

Teaching 1.6 

Work: Arts, Design, 

Entertainment, Sports, 

Media 

2.13 

Standing at Rest 1 
Work: Healthcare 

Practitioner and Technical 
2.22 

Seated relaxed 1 Work: Healthcare Support 2.83 

Relaxing, thinking 1.21 Work: Protective Service 2.56 

Listening to/playing music 

(not radio) 
1.38 

Work: Food Preparation and 

Serving Related 
2.58 

Computer use 1.9 
Work: Bldg & Grounds 

Cleaning, Maintenance 
3.58 

Reading for personal interest 1.6 
Work: Personal Care and 

Service 
2.53 

Writing for personal interest 1.8 
Work: Sales and Related 

Occupations 
2 

Telephone calls 1.5 
Work: Office and 

Administrative Support 
1.83 

Work: Management 1.73 
Work: Construction and 

Extraction 
4.29 

Work: Business and 

Financial 
1.67 

Work: Installation, 

Maintenance, and Repair 
3.19 

Work: Computer and 

Mathematical 
1.58 Work: Production 2.69 

 

http://en.wikipedia.org/wiki/Physiological
http://en.wikipedia.org/wiki/Exercise
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In addition to Clo and Met values, thermal, visual and acoustic preferences of 

occupants are specified according to pre-defined ranges for different behavior types.  

On the other hand, conditions should be set for the system variables considered 

as external factors. This includes regulating door, window, shades, and lights statuses. 

In general, these variables are considered as binary with open/closed or on/off options. 

Additionally, conditions are set for the HVAC level and range from off, low, medium to 

high. Moreover, time variable conditions are set based on the whole day timeframe and 

seasonal division of the year. Finally, temperature, humidity and air flow values are 

determined and acquired  from respective sensors located in the ambient environment.   

 

B.4.1.3  Calculating Satisfaction Variables  

Based on the internal and external factors defined in the previous components, 

this part of the framework, shown in Figure B-5, reaches the “observe” state, and 

analyzes the situation by calculating the satisfaction variables. 

 

 

Figure B-5: Third Framework Component 
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Table B-3: Impact of Internal and External Factors on Comfort Levels 

Factors 
Thermal 

Comfort 

Visual 

Comfort 

Acoustic 

Comfort 

In
te

rn
a
l 

Thermal Preference √ --- --- 

Visual Preference --- √ --- 

Acoustic Preference --- --- √ 

Clo Value √ --- --- 

Met Value √ √ √ 

E
x
te

rn
a
l 

Space floor Level --- --- √ 

Space Orientation √ --- √ 

Temperature √ --- --- 

Humidity √ --- --- 

Air Flow √ --- --- 

Time √ √ √ 

HVAC System √ --- √ 

Door √ --- √ 

Window √ √ √ 

Shades √ √ --- 

Lights --- √ --- 

 

The table mainly displays the direct effect of each factor on the different comfort 

levels. To begin with, the Clo value affects thermal satisfaction only. On the other hand, 

the Met value affects all comfort levels. For example, an occupant dealing with a 

stressful task might lead to thermal dissatisfaction while an occupant wanting to 

concentrate on a certain activity yield to light and noise levels adjusted to be within  his 

desired ranges.  

Moving to external factors, the floor level of the studied space is considered to 

affect acoustic comfort. As the floor level increases, the effect of outdoor 

crowd/equipment  noise decreases. Besides, the orientation of a space located on the 

same floor level affects both thermal and acoustic comfort. For instance, spaces/offices 

located on the south side of the building and not directly affected by the sun’s heat 

create a better thermal comfort level and a different acoustic comfort level when 
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compared to north side spaces. On the other hand, temperature, humidity and air flow 

only affect occupant’s thermal comfort. However, the time factor is considered to 

impact all satisfaction/comfort levels. For clarification, during summer time, the 

occupants typically feel more hot at noon than in the morning. Besides, occupants 

consume more light at night than during the day. Additionally, outside noise is 

remarkably high during peak day times. On the other side, the HVAC system level and 

type affect thermal and acoustic comfort. For example, a room temperature not set at the 

occupant desired level, leads to thermal dissatisfaction, while the noise generated by the 

system might affect the acoustic comfort of occupants. Therefore, the level of HVAC 

affect both thermal and acoustic comfort. Similarly, the door’s state has an impact on 

thermal and acoustic satisfaction. When the door is open, the occupant might increase 

the level of the HVAC system to compensate for air loss. Moreover, noise coming from 

others on the same floor level might affect the occupant’s acoustic comfort. In the case 

of windows, any comfort level might be affected. As an illustration, the occupant might 

open the window when he feels hot. However, other occupants of different behavior 

type might open the window as well as increase the level of the HVAC system. 

Needless to say, an open window might lead to acoustic dissatisfaction due to outdoor 

noise. Furthermore, the type of window glass used greatly impacts all comfort levels. 

For example, when tinted glass is used, sunlight’s effect decreases which in turn affects 

visual satisfaction.  When tempered glass is used, the heat due to sun effect decreases. 

As a result, the occupant would be thermally satisfied when opening the shades. On the 

other hand, the status of shades affects occupant thermal and visual comfort levels. 

When the shades are closed, the occupant is unsatisfied visually because of insufficient 

light while he is thermally satisfied because the sun’s heat is blocked. Finally, the state 

of lights only affects visual comfort. 
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B.4.1.4  Identifying Occupant Satisfaction State  

Based on the computed satisfaction variables, the fourth component of the 

proposed framework (Figure B-6) updates the occupant satisfaction state. As an 

illustration, the occupant might be unsatisfied thermally, visually, or acoustically. 

 

 

Figure B-6: Fourth Framework Component 

 

B.4.1.5  Enhancing Occupant Satisfaction State 

According to the last recorded unsatisfied state, the fifth component, presented 

in Figure B-7, offers the occupant a set of possible behaviors that can enhance his/her 

satisfaction level. 
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Figure B-7: Fifth Framework Component 

 

As discussed earlier, the probability of reaching any satisfaction state is affected 

by both the occupant behavior type and occupant category existing in the space. For 

example, occupants labeled as green adopt energy-efficient behaviors and positively 

impact others. On the other hand, one category of occupants such as students meeting 

with another category such as professors, might lead the unsatisfied thermally students 

to change his Clo level before asking the professor to adjust the HVAC level. Given the 

agent-based modeling inherent nature, occupants interact with each other and decide 

upon certain behaviors, thereby updating the probability of certain satisfaction/comfort 

levels being reached within the studied space.  

 

B.4.1.6  Acting and Updating System Factors’ Conditions 

Figure B-8 represents the “act” state in the proposed framework. Upon acting, 

the system factors’ conditions get updated. For instance, the HVAC level might increase 
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Figure B-8: Sixth Framework Component 

 

B.4.1.7  Examining Occupant Updated Comfort Levels 

The seventh component of the proposed framework, presented in Figure B-9, 

evaluates and interprets the behavior adopted and check whether occupant satisfaction 

or comfort was achieved. At this stage, it is important to assess the effect of the adopted 

behavior on comfort levels to ensure desirable results. For example, an occupant feeling 

hot in an office with a closed window decides to open it with the hope of increasing 

his/her thermal satisfaction. However, if the outside temperature is higher, then the 

previous opening act does not incur a positive impact on the satisfaction level and the 

probability afore-computed in the fifth component needs to be rectified and updated.  
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Figure B-9: Seventh Framework Component 

 

B.4.1.8  Inspecting Occupant’s Location and Behavior Prior to Exiting Space   

Figure B-10 depicts the last framework component. It inspects the position of 

the occupant and checks whether he/she is staying in the space. 

 

 

Figure B-10: Eigth Framework Component 
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In this case, if ultimate satisfaction has not yet been reached, then the occupant 

goes into the loop again until desired satisfaction/comfort is achieved or he/she no 

longer wants to remain in the space. As shown in Figure B-11, the occupant has two 

options upon leaving, either change system variables and update model conditions or 

keep everything as is. The choice depends largely on the occupant behavior type. For 

instance, in the case of green occupants , there is a high probability of turning off the 

HVAC system, lights and appliances than leaving without adjusting the system 

variables as is the case of non-green occupants. As for neutral occupants, equal 

probabilities exist toward both options. The above allows the occupant leaving behavior 

to be captured and assessed and gives an insight on the actual impact of this behavior on 

energy consumption. 

 

 

Figure B-11: Leaving Behavior Model 
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B.4.2 Agent-Based Model Development 

In this section, an agent-based model, targeting several of the framework 

components (i.e. 2-6) and some associated parameters and variables, was developed 

using the multi-paradigm modeling tool, Anylogic [26]. Within Anylogic, all agents and 

common variables are usually defined in the Main window as shown in Figure B-12. 

 

Figure B-12: ABM Model Agents and Variables 

 

In this case, occupants were the only agents considered in this model. However, 

three different occupant groups, i.e. green (gOccupant), neutral (occupant) and non-

green (nOccupant), were created to cater for different behaviors. The three pools of 

agents shared the same space and variables (i.e. window, shades, lights, HVAC and 

crowd). As aforementioned, the first three variables were considered binary. On the 

other hand, the HVAC had four different levels, namely off, low, medium and high. 

Similarly, the crowd or outside noise, had three different levels; low, medium and high. 

Variables specific to each agent were added on the Agent window. Figure B-12 displays 

as well a number of datasets created to store variables’data at each iteration. These were 

then exported to MS Excel for further analysis. Most importantly, connections shown on 

the Main window above have the purpose of linking agents together to allow their 

interaction within the same environment. A last item is an event that was added to stop 

the simulation model after completing a pre-specified number of iterations. 
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Figure B-13: Multi-Comfort Agent Statechart 
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Figure B-13 illustrates a multi-comfort agent statechart that is applicable to other 

agents as well but with different behavioral properties. In this case, a satisfied state and 

four unsatisfied states were defined. More specifically, at the unsatisfied side of the 

statechart, many options exist. The occupant was considered to be unsatisfied visually, 

acoustically, and/or thermally. Moreover, the unsatisfied thermally state was subdivided 

into unsatisfied thermally hot and unsatisfied thermally cold. In addition, two variables, 

thermal and acoustic preferences, were added at the agent layer to specify desired levels 

for occupants in the space, and an event, “Evaluate”, was added to evaluate the 

occupant dissatisfaction. It is worth mentioning, that the model studies and examines an 

office space and occupant multi-comfort levels during day time hours and in the 

summer season.  

Initially, as shown in Figure B-13, conditions of common variables and agent 

specific variables were randomly generated (e.g. if (randomtrue…)). Based on these 

conditions, the “Evaluate” event specifies the unsatisfied state of the occupant. 

Consequently, the occupant had to opt for one of the available behaviors to increase 

his/her comfort level. Each behavior was assigned a certain probability that varied 

according to the occupant type (i.e green, neutral, and non-green). Table B-4 illustrates 

the probabilities associated with each behavior. For instance, when lights were off and 

shades were closed, the event “Evaluate” triggered a message to inform the model that 

the occupant was unsatisfied visually. As a result, the occupant moved from the 

satisfied state to the unsatisfied visually state. Accordingly, the occupant had two 

options to enhance his/her visual satisfaction state; (1) turn the lights on, or (2) open the 

shades (Table B-4). 
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Table B-4: Probabilities of Behavior 

State Behavior 

Probability of behavior 

Green 

Occupant 

Neutral 

Occupant 

Non-green 

Occupant 

Unsatisfied 

Visually 

Turning lights on 0.25 0.5 0.75 

Opening shades 0.75 0.5 0.25 

Unsatisfied 

Thermally 

Hot 

Increasing HVAC 

Level 
0.25 0.5 0.75 

Closing the shades 0.75 0.5 0.25 

Unsatisfied 

Thermally 

Cold 

Decreasing HVAC 

Level 
0.75 0.5 0.25 

Opening window 0.25 0.5 0.75 

Unsatisfied 

Acoustically 

Closing the window 0.5 0.5 0.5 

Bear the outside noise 0.5 0.5 0.5 

 

As shown in Table B-4, if the occupant is a green occupant,there is a 75% 

chance of opening the shades and 25% chance of turning the lights on. On the other 

side, when the HVAC level of the space was less than the HVAC preference of the 

occupant, the “Evaluate” event sent a message to the system that allowed the occupant 

to move to the unsatisfied thermally hot state, thereby left with either increasing the 

HVAC level or closing the shades if open. On the contrary, when the HVAC level of the 

space was greater than the desired one of the occupant, the “Evaluate” event sent a 

message to the system allowing the occupant to move to the unsatisfied thermally cold 

state. Hence, for a non-green occupant, for example, there is a 25% chance of 

decreasing the HVAC system level and a 75% chance of opening the window if closed. 

Besides visual and thermal comfort levels, the acoustic one was examined as well. 

When the outside noise level was higher than the preference level of the occupant, an 

unsatisfied acoustically state was reached, and for all occupant types, there was an equal 

chance of closing the window or bearing the outside noise. 
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B.5.  RESULTS AND STATISTICAL ANALYSIS 

Upon running the simulation model for 10,000 iterations, the graphs shown in 

Figure B-14 were generated. With a log of 10,000 iterations, a relatively high power of 

statistical tests can be possibly reached. The charts plotted the state of each variable in 

the model versus time. For illustration, at a certain time in space, the charts depict  that 

when shades are closed, lights are on. Besides, when the HVAC level is high, the 

window is closed.  

 

 

Figure B-14: System Variables Output Graphs 

 

To analyze the results statistically, RStudio was used [32]. It is a software 

programming language and environment for statistical computing and graphics. Within 

RStudio, the data exported to the excel sheets were stored as a 10,000 length vector. The 

code shown in Figure B-15 was then used to divide the original vector of data into 100 

vectors having 100 results each. 
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Figure B-15: Data Vector Creation Code 

 

The next step involved computing the probability of occurrence of each state and 

storing it in a new vector. In the case of HVAC for example, the probability of having 

an off level was calculated by counting the number of zero digits presented in each 

vector. In order to check whether the trend of the data follows a normal distribution, two 

approaches were adopted: (1) plotting probability histograms for different levels (Figure 

B-16) and visually drawing a conclusion about data normality, or (2) carrying out a 

statistical test, in particular the Shapiro-Wilk test [33] as shown in Figure B-17. 

 

 

Figure B-16: Sample Histogram of Low HVAC Level 

hvac=read.csv("C:/HVAC.csv", header=F) 

hvac=hvac[,2] 

off_Single=rep(NA,100) 

low_Single=rep(NA,100) 

med_Single=rep(NA,100) 

high_Single=rep(NA,100) 

for (i in 1:100){ 

  off_Single[i]=sum(hvac[((i-1)*100+1):((i-1)*100+100)] == 0) 

  low_Single[i]=sum(hvac[((i-1)*100+1):((i-1)*100+100)] == 1) 

  med_Single[i]=sum(hvac[((i-1)*100+1):((i-1)*100+100)] == 2) 

  high_Single[i]=sum(hvac[((i-1)*100+1):((i-1)*100+100)] == 3) 

} 
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Figure B-17: Statistical Analysis Code 

 

 

The null-hypothesis of this statistical test is that the data is normally distributed. 

Thus, if the p-value is less than the chosen confidence level (e.g. 0.05), then the null 

hypothesis is rejected and there is evidence that the data tested are not from a normally 

distributed set. On the contrary, if the p-value is greater than the chosen confidence 

level, then the null hypothesis that the data came from a normally distributed set cannot 

berejected. After failing to reject normality, F-test is used to check whether two datasets 

compared against each other have equal variances [34]. This test is shown in Figure B-

17 as var.test. The hypothesis of data having equal variance is tested. Similarly, if the p-

value generated is greater than the confidence level used (0.05), then the test fails to 

reject the null hypothesis. Both normality and equal variances tests should be checked 

when applying the T-test since this latter can only be applied to normal sets of data and 

it should be indicated whether the data has equal variance or not. The T-test (Figure B-

17) was used to test the hypothesis under question [35]. Similar to other tests, the p-

value generated is compared to the assumed confidence level. One last step include 

calculating the power of the T-test applied. This power is a good representation of the 

capability of the test applied in rejecting the null hypothesis when it is false [36].  

In the following subsections, the aformentioned statistical analysis is applied on 

three different scenarios: (1) Single Behavior vs. Multiple Occupant Behavior, (2) 

shapiro.test(off_Single) 

shapiro.test(off_Multi) 

var.test(high_Single,high_Multi) 

#H0: high_Single = high_Multi 

#Ha: high_Single =! high_Multi 

t.test(high_Single, high_Multi, alternative="two.sided", 

var.equal=T) 

power.t.test(n=100,delta=mu,sd=SD,sig.level=0.05,type="two.sample",

alternative="two.sided") 

http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/P-value
http://en.wikipedia.org/wiki/Alpha_level
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Control Model vs. No Window Model, and (3) Control Model vs. Different Light Level 

Models to check different comfort levels. Information used in these scenarios are 

summarized in Table B-5. 

 

Table B-5: Model, Parameters and Variables 

 

 

B.5.1       Scenario I: Single Behavior vs. Multiple Behavior 

In order to check the effect of having different types of occupant behavior within 

the same space, a single behavior model was tested against a multiple behavior model. 

In the first model, six neutral occupants were considered. On the other hand, two 

occupants from each type were considered in the second model. The statistical results 

are displayed both in Table B-6 and Figure B-18. 
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Table B-6: Scenario I Statistical Details 

 

 

Figure B-18: Scenario I Results for Different HVAC Uses 

 

Upon applying the Shapiro-Wilk test, the p-values generated for the datasets of 

all variables were greater than 0.05. Thus, it failed to reject that the data is normal. The 
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F-test was then applied and the corresponding outcome was implemented in the T-test. 

As shown in Table B-6, the tested or null hypothesis states that the results from both 

models are the same. However, the p-values generated by the T-test were less than 0.05, 

which rejected the aforementioned hypothesis. This is clearly shown in Figure B-18 

where the blue lines (i.e. p-values) fell in the rejection zone, that is outside the area 

delimited by the red lines. Consequently, the p-values generated by the T-test were less 

than 0.05 which rejected the aforementioned hypothesis. The power of the T-tests 

applied was on average greater than 80%. Thus, when considering multiple behaviors of 

occupants, the emergent effect of these behaviors on the system was totally different 

than that of the single behavior. Therefore, it is important to consider multiple occupant 

behaviors to have a somewhat realistic model. 

 

B.5.2 Scenario II: Control Model vs. No Window Model 

In order to check the effect of the window on occupant behavior, the window 

variable was removed from the control model. The control model is assumed to be the 

multiple behavior model having all the properties discussed in Section B.4. When the 

window was removed, occupants had to always switch lights on in order to be satisfied 

visually. Moreover, occupants were always satisfied acoustically since there was no 

source of outside noise. However, the difference in the results of HVAC use were 

statistically analyzed and displayed both in Table B-7 and Figure B-19. 
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Table B-7: Scenario II Statistical Details 

 

 

Figure B-19: Scenario II Results for Different HVAC Uses 

 

When running the Shapiro-Wilk test, the results of all datasets generated a p-

value greater than 0.05 except for the dataset of “HVAC off no window” case but it was 

assumed to be greater than 0.05. Thus, the test failed to reject that datasets belonged to a 

normal distribution. After that, the F-test of the first two pairs, (1) “HVAC off control” 
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and “HVAC off no window” and (2) “HVAC low control” and “HVAC low no 

window”, yielded a p-value less than 0.05 rejecting the fact that the two datasets had 

equal variances which was taken into consideration when applying the T-test. On the 

other hand, the test for variances equality of the second pairs, (1) “HVAC medium 

control” and “HVAC medium no window” and (2) “HVAC high control” and” HVAC 

high no window”, generated a p-value greater than 0.05. Thus, it failed to reject that the 

two datasets had equal variance which was taken into consideration when applying the 

T-test. When applying the T-test, the results failed to reject that when window is 

removed, low and high levels of HVAC were used less than in the control model. On 

the contrary, the T-test results failed to reject that off and medium levels of HVAC were 

used more in the “no window” model than in the control model. These results are 

further confirmed in Figure B-19, where each of the blue lines (p-values) fell in the 

rejection zone of the respective null hypothesis, that is the smallest area under the curve 

bounded by the red lines. On the other hand, a common behavior of occupants in the 

control model includes opening the shades to be satisfied visually and increasing the 

HVAC level to be satisfied thermally because of the sun heat effect. However, when the 

window was removed, occupants did not have the option to open the shades. Therefore, 

they were not affected by the sun heat and did not have to increase the level of HVAC. 

Consequently, the low and high levels of HVAC use decreased and the off and medium 

levels of HVAC use increased. The power of T-test applied was on average greater than 

0.9 which proved that the T-test is capable of rejecting the hypothesis tested 90% of the 

times when it is false which prove the reliability of the statistical results. 
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B.5.3 Scenario III: Control Model vs. Different Lights Level Model 

In the third scenario, it was assumed that the office space is equipped with two 

light switches and an additional light switch was added to the control model. In other 

words, when being unsatisfied visually, occupants had the chance to (1) open the 

shades, (2) open the shades and turn half the lights on, (3) open the shades and turn all 

lights on, (4) keep the shades closed and turn half the lights on, or (5) keep the shades 

closed and turn all lights on. On the other hand, occupants in the control model had the 

chance to (1) open the shades while lights are off, (2) open the shades while lights are 

on or (3) keep the shades closed and turn the lights on. This variable was changed to 

check whether the addition of an intermediate light level would decrease the use of full 

light level. The statistical results are displayed both in Table B-8 and Figure B-20. 

 

Table B-8: Scenario III Statistical Details 
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Figure B-20: Scenario III Results for Full Light Use 

 

Normality testing for all datasets of the control model and of the different light 

levels model generated a p-value greater than 0.05. Thus, it failed to reject that these 

datasets followed a normal distribution. Moreover, equality of variances test yielded, as 

shown in Table B-8, a p-value less than 0.05, which was taken into consideration in the 

T-test. Figure B-20 shows the results of the applied T-test, where the blue line (i.e. p-

value) fell in the rejection zone of the null hypothesis. Thus, it failed to reject that the 

full level of lights was used in the new model less than that in the control model. The 

power of T-test applied was 1 which proved that the T-test was 100% of the times 

capable of rejecting the hypothesis when it is false. Thus, it is highly recommended to 

have 2 switches in the office space rather than only one. 
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B.6.  CONCLUSION AND FUTURE WORK 

Energy consumption in academic buildings is a complex issue due to a wide 

variety of uses and energy services and therefore the energy demand of individual 

buildings need to be well understood. Researchers worked thereby on developing 

several tools that are capable of optimizing energy consumed in buildings . These tools 

were either developed to assess several design alternatives or incorporated occupant 

behavior to better comprehend its effect on energy use. However, they lack the ability to 

imitate a real world environment where different types of occupants target ultimate 

satisfaction and comfort on so many levels (i.e visual, thermal, and acoustic). As such, a 

new agent-based framework was proposed and designed in this paper to overcome the 

aforementioned limitations and study occupant multi-comfort level for building energy 

optimization. Moreover, the flexibility of the developed agent-based model facilitated 

the process of removing and adding new variables to test their effect on occupant 

behavior and on the model performance as a whole. For instance, the effect of having 

different occupant types within the space,no window or two light switches was studied 

and tested. In this case, results showed that (1) the presence of different occupant 

behavior types is deemed necessary for a more realistic overall model , (2) the absence 

of windows results in an acoustic satisfaction with an increase in HVAC off and 

medium level uses, and high lighting usage, and (3) the overall light usage decreases 

when two light switches instead of one are introduced. 

While the proposed agent-based model has achieved promising results under 

different scenarios, it exhibits some limitations and further examination is needed to 

advance this line of research. Future research is needed to cover all components of the 

proposed framework and associated variables and parameters such as environmental 

conditions (temperature, humidity, etc.), indoor environment quality (IEQ), 
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representative times of the day, occupants’ clothing and activity levels, and different 

categories of occupants. Additional work is needed to implement a cost function and 

assess the overall cost of the emergent effect of occupant behavior on the system as well 

as model the leaving behavior of occupants using tracking technologies. Furthermore, 

the location-based components can be extended to track mobile occupants’ cellphones 

connected over a Wi-Fi network. The authors will be also working on studying the 

effect of implementing new technologies and sensors in buildings on occupants’ 

behavior and the system as a whole. 
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