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Mobile advertising using in-app ads has increased in popularity along with the 

substantial number of current free mobile applications in the app stores. This relatively 

new type of advertising has raised several concerns during the past few years. The first 

concern is resource consumption, such as the battery consumption that mobile 

advertising entails and the network traffic overhead that it consumes to download the 

ads. The second concern is mobile ads click fraud that threatens the mobile advertising 

economy.  

 

While several efforts revealed key observations regarding ads-related energy 

and bandwidth consumption, they did not compare these two types of consumptions 

among different ad networks. Unlike some previous work that just mentioned the ad 

networks associated with the tested apps, this thesis evaluates bandwidth and energy 

consumption and compares them among several popular ad networks that support ads 

for Android applications. The experimental procedure followed in this study 

demonstrated that resource consumption varies significantly among networks based on 

our statistical tests: For the same testing environment and duration, the bandwidth 

consumption in monetary value is 6.1$ for the ad network “Mobfox”, and 0.2$ for the 

ad network “Millennial Media”; the battery consumption in standby time is 1.3 min for 

the ad network “AppFlood”, and 33.2 min for the ad network “Flurry Mediation”. In 

addition, this study highlights a common behavior when fetching ads, where ads are 

fetched at the beginning of app runtime and displayed throughout the application 

session.  

 

From a security perspective, although most of the popular ad networks use 

many techniques to detect click fraud, they do not protect the client from possible 

collusion between publishers and ad networks. In addition, ad networks are not able to 

monitor the user’s activity for click fraud detection, once they are redirected to the 

advertising site after clicking the ad. In this thesis, we propose a new crowdsource 

based system that collaborates with both advertisers and ad networks in order to protect 

both parties from any possible click fraudulent acts. The system benefits from both a 

global view, where it gathers multiple ad requests data corresponding to different ad 

network-publisher-advertiser combinations, and a detailed view, where it is able to track 

the user’s engagement in each advertising website. Our results demonstrated that our 
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approach offers a lower false positive rate (0.1) when detecting click fraud as opposed 

to proposed solutions in the literature, while maintaining a high true positive rate (0.9). 

Furthermore, we propose a new mobile ads charging model that benefits from 

our system to charge advertisers based on the duration spent in the advertiser’s website 

or any other measurable criteria. 
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CHAPTER 1 

INTRODUCTION 
 

This chapter presents an overview of mobile advertising, highlighting two major 

concerns in this industry: mobile ads resource consumption and mobile ads click fraud 

detection. In addition, it explains the different charging models adopted in mobile 

advertising. It also introduces the motivation and objectives of this thesis. Finally, this 

chapter presents an outline for the thesis. 

 

1.1. Mobile Ads Overview: 

With the increasing number of free apps in the app stores (as high as 84.8% of the 

total available apps in Google Play Store according to a recent study [1]), in-app ads are 

gaining more popularity among developers who wish to generate revenues from their 

free apps. In fact, according to a report published by Juniper Research, it is predicted for 

in-app advertising to grow to around $17 billion by the year 2018 [2].  

The term “in-app ads” represents ads that are displayed in mobile applications, 

whereas the term “mobile ads” actually represents ads that are displayed on 

smartphones in general (in both applications and mobile websites). Similarly to the 

literature, we will be using them interchangeably in this thesis.    
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1.1-1: Mobile Advertising Main Components [67] 

 
There are four main components in the mobile advertising community (figure 1.1-

1): 

1) Advertiser: An advertiser is any individual (not necessarily a technical expert), 

who is willing to pay to have his ads displayed. 

2) Publishers: A publisher is any application’s developer who wish to generate 

revenues by displaying ads in return in his/her application. 

3) Ad Network: An ad network is a company specialized in mobile advertising 

who works as a relay between advertisers and publishers. Advertisers contact 

the ad network and specify the ads to be displayed. Publishers also contact the 

ad network and follows an integration process (explained in section 3).  

4) User: A user is any individual that uses a mobile application, and interacts with 

ads featured in this application (the interaction type is explained below).  

 

1.2. Mobile Ads Resource Consumption 

In-app ads are a great and easy way for the developer to achieve a large number of 

downloads and at the same time generate a profit. Nonetheless, this mobile advertising 
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comes with a price. A recent study highlighted the fact that mobile ads cause a relatively 

significant network overhead that might in some cases cost more than the paid version 

of the app [3]. Another study showed that almost 65-70% of the total energy consumed 

is caused by ads in several free apps (such as Angry Birds and fchess) [4, 5]. 

 

1.2.1. Motivation and Objectives 

Many efforts have been made to evaluate the power consumption caused by ads 

[6], and furthermore to mitigate this power consumption, such as adopting an ads 

prefetching technique [7, 8]. 

However, none of these studies compared this resource consumption among 

different ad networks. The first part of this thesis focuses on bandwidth and energy 

consumption and their comparisons among several popular ad networks. 

 

1.3. Mobile Ads Click Fraud Detection 

Mobile ads click fraud is another major concern in the advertising community. 

Click fraud, also known as click spam, is when the user clicks on the ad in a mobile 

application not because of interest in this ad, but rather to generate a revenue from the 

associated ad network, or in some cases, to inflict losses on a competitor advertiser by 

consuming the advertiser’s allowed ads per day [36]. Researchers estimated advertisers’ 

loss caused by click fraud at $1 billion in 2013 [35]. In fact, it is predicted for 

advertisers to lose $ 6.3 billion due to click fraud in 2016 [68].  

Furthermore, in [37], the author describes a $7.5 billion scandal in the click fraud 

domain, where ad networks conspired with publishers, by selling bots to publishers who 
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used them in order to generate higher revenues (for both publisher and ad network) at 

the expense of the advertiser. 

 

1.3.1. Motivation and Objectives 

Although most of the ad networks use many click fraud detection techniques to 

protect their reputation as a secure advertising medium, they do not offer guarantees for 

the client from a potential conspiracy between publishers and ad networks. In addition, 

ad networks are not able to monitor the user’s activity, once redirected to the advertising 

site after clicking the ad. Thus, a click fraud detection mechanism that protects the 

advertiser from potential malicious ad network–publisher collaboration is needed. 

Many researchers investigated existing click fraud attacks [38-44] and proposed 

new click fraud detection systems for ad networks without collaborating with 

advertisers [45-49]. Other studies proposed new click fraud detection systems that 

enable advertisers to detect click fraud without collaborating with ad networks [36, 50, 

51]. Nonetheless, these advertisers click fraud system are prone to a high false positive 

rate since they do not offer a global view (many clicks from one application), but 

instead judge click fraud on a per click basis. 

In the second part of this thesis, we propose a new click fraud system that follows 

a crowdsource based approach to detect click spam by collaborating with the different 

advertisers that wish to display their ads in a secure and reliable way. In fact, our 

findings show that a crowd source approach can lower the false positive rate. We make 

two main contributions in the click fraud detection domain since our work is 1) the first 

crowdsource based click fraud detection system, and 2) the first approach that protects 

both advertisers and ad networks. 
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1.4.  Mobile Ads Charging Models 

There are three main mobile charging models used nowadays in the market known 

as: 1) Cost-per-thousand-impressions (CPM from cost-per-mille in Latin), 2) Cost-per-

click (CPC), and 3) cost-per-action (CPA). These charging models determine how for 

each ad display and interaction, the ad network charges the advertisers, and how it pays 

the publishers. Although the exact pricing differs from one ad network to another (i.e. 

how much they pay the publisher and charge the advertiser), the action that triggers this 

transaction depends on the adopted charging model.  

To better understand each charging model, we need first to explain the term 

“Conversion”. “Conversion” is used in the mobile advertising community to express a 

successful advertising transaction, i.e. whenever an ad display leads to the desired 

output (the type of the output depends on the charging model) [66].  

 In the cost-per-thousand-impressions (CPM) charging model, the conversion is 

an ad view: The advertiser pays for each 1,000 ad displays; the publisher is paid in 

return a percentage of the ad network’s profit, whenever a user views an ad in his 

application.  

In the cost-per-click (CPC) charging model, the conversion is an ad click: The 

advertiser pays for each performed ad click; the publisher is paid in return whenever a 

user clicks on a displayed ad. 

In the cost-per-action (CPA) charging model, the conversion is an action: The 

advertiser pays for each performed action. Once the user clicks on a mobile ad, he will 

be redirected to the advertiser’s website where he might complete an action. An action 

can be a simple registration by the user, a purchase, a file download… The publisher is 
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paid in return for each action performed. The CPA model is also known as the pay-per-

action (PPA) model, or cost-per-acquisition (CPA) model. 

 

1.4.1. Motivation and Objectives 

The CPC model and CPM models are usually more desirable by publishers [65] 

for many reasons:  

1) CPA model is considered a new model in the mobile advertising community 

and is not as popular as CPC and CPM.  

2) In CPC and CPM models, publishers have more control on the enhancement of 

conversions, since they can change how and when to display ads (to a certain 

extent because they have to respect ads-display rules imposed by ad networks). 

For example, they can display ads on main pages usually accessed by users. 

Whereas, in the CPA model, the conversion is beyond their reach and is based 

on the quality of the advertiser’s website. 

3) Many users after being redirected to the advertiser’s website show interest in 

the website by browsing it for a certain duration. However, it is possible that 

although they are interested in the website, they won’t complete any of the 

actions determined by current CPA models (such as registration, download, 

purchase…). In fact, in [66] the authors explained a “click-to-conversion 

delay” phenomenon in the mobile advertising industry, where the action 

performed by the user is not directly performed after clicking on an ad, making 

it harder to track CPA conversions. For example, a user interested in cosmetics 

products click on a cosmetic ad and browse the advertiser’s website without 

completing any purchases. The next week, after she had become aware of this 
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website, she browses the cosmetics website and completes a purchase. In this 

case, it is hard to accurately associate the conversion to the triggering event. 

Furthermore, many websites’ main goal is brand awareness where no action is 

needed by the user. Thus, CPA models require a metric that efficiently reflects 

the user’s interest in the advertised website such as the duration spent on the 

website.  

 

On the other hand, advertisers tend to prefer the CPA model because they pay 

only for the desired actions once completed. In the CPC and CPM models, the 

advertisers pay for the ad views and clicks regardless of whether it generates users 

interests (conversions in this context), making the CPA model less risky for them.  

Therefore, we propose a new mobile ads charging model that benefits from our 

CFC system to charge advertisers based on the duration spent in the advertiser’s website 

or any other measurable criteria. 

 

1.5.  Thesis Structure 

The remainder of this thesis is organized as follows: Chapter 2 discusses first, the 

related work highlighting the resource consumption caused by ads followed by the 

related work highlighting the click fraud detection systems proposed in the literature 

and finally, the related work of the CPA domain. Chapter 3 presents the first part of this 

thesis: A comparison of in-app ads traffic in different ad networks from a resource 

consumption’s perspective. It explains the followed experimental procedure, the results 

of our test implementation, the analysis of the results, and a conclusion of this first part. 

Chapter 4 presents the second part of this thesis: Using crowdsourcing for click fraud 
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detection. It presents the architecture of our proposed system, the experimental setup, 

the results of our implementation, the analysis of the obtained results, the new proposed 

CPA model, and a conclusion of this second part. Chapter 5 presents the conclusion of 

this thesis and the future work.  
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CHAPTER 2 

LITERATURE REVIEW 
 

This chapter provides first a literature review of the different resource 

consumption studies related to mobile ads, second a literature review of the different 

click fraud detection approaches proposed in the literature and third a literature review 

of the different charging models studies related to CPA.  

 

2.1. Resource Consumption Literature 

In recent studies, three approaches have been followed in terms of assessing the 

effect of in-app ads on the mobile device resources consumption. 

 

2.1.1.  Bandwidth Consumption 

The first approach evaluates the bandwidth consumption caused by mobile ads: 

Zhang et al. analyzed the network overhead caused by ads and analytics data in 

applications and assessed how much this overhead costs in terms of  bandwidth 

consumption and the associated monetary value. They showed that in most cases the 

free version of an app actually costs more than the paid version due to ads-related 

bandwidth consumption [3]. However, they did not study energy consumption caused 

by ads. 

 

2.1.2.  Battery Consumption 

The second approach evaluates the battery consumption caused by in-app ads: 

Pathak et al. proposed an energy profiler tool called "eProf" where energy is evaluated 
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per thread and per process in each application, taking into consideration the 

asynchronous power behavior found in smartphones, where “the effect on a 

component’s power state due to a program entity lasts beyond the end of that program 

entity” [4]. According to their study, almost 65-70% of the total energy consumed is 

caused by ads in several free apps (such as Angry Birds and fchess) [4,5].  

Prochkova et al. compared energy consumption between mobile game apps that 

contain ads and mobile games that don't. They demonstrated how the increasing ad 

refresh rate directly and negatively affects power consumption [6].  

Gui et al [32] investigated both bandwidth and battery consumption caused by ads 

in 21 different applications. By comparing these applications with and without ads, they 

concluded that with the use of ads, the bandwidth consumption increases to 97% more 

and the battery consumption increases to 15% more. However, their study was based on 

only one ad network (Google Mobile Ads [15]). 

 

2.1.3.  Resource Consumption Minimization 

The third approach proposes a solution for minimizing resource consumption: 

Vallina-Rodriguez et al. used a large data set of traffic from a European mobile carrier 

to evaluate network ads traffic and highlighted several inefficiencies in the current ad 

systems, such as redundant downloaded data. Based on these inefficiencies, they 

proposed a new technique of prefetching ads called "adCache” that reduces resource 

consumption [7].  

Chen et al. also assessed the benefits of prefetching ads. The results showed that 

ads behavior changes between different apps, which makes it hard to efficiently save 

energy using this prefetching technique [8].  
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P. Mohan et al. contributed to the ads prefetching technique by proposing a model 

that takes into consideration usage prediction such as the number of ad slots needed for 

future use depending on the user's behavior, while also respecting the ad expiration 

deadline and other constraints [9]. 

Khan et al. presented "CAMEO" a new mobile advertisements framework that 

uses predictive prefetching of ads to reduce resource consumption. In addition, 

CAMEO's main goal is to establish a negotiation protocol between ad networks and ISP 

to reduce the bandwidth cost imposed by the ISP [10, 11].  

Seneviratne et al. addressed user privacy issues in terms of targeted ads in mobile 

applications. They proposed a new framework called “CAARETA” based on personal 

cloudlets that works as an intermediate agent between the ad network and the mobile 

device. They explained how this framework can respect the user's privacy while 

achieving targeted ads and at the same time helps reduce resource consumption. 

However, they did not perform any implementation [12]. 

 

2.1.4.  Resource Consumption Literature Summary 

While these studies revealed several key observations regarding ad-related energy 

consumption, they did not compare resource consumption among different ad networks. 

In addition, some of these works evaluate only the network overhead associated with 

ads without focusing on the related battery consumption [3], whereas others focus only 

on battery consumption caused by ads, without highlighting the related network traffic 

generated [6]. Our work evaluates both the bandwidth and the energy consumption of 

ads and compares them among several chosen ad Networks.   
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2.1.4-1: Key Features of different ads-related analysis approaches. 

Ref. 

Focuses on 

energy 

consumption 

Focuses on 

network 

overhead 

Solution for 

minimizing 

resource 

consumption 

Compares traffic 

and power 

consumption 

[6, 8] Yes No No No 

[3] No Yes No No 

[12] No Yes Yes No 

[9] Yes No Yes No 

[4, 5, 7, 

10, 11] 
Yes Yes Yes No 

Our 

Work 
Yes Yes No Yes 

 

Table 2.1.4-1 summarizes the key features offered by the related work to mobile 

ads resource consumption and our work. Although our approach doesn’t offer any 

techniques to decrease the power consumption of ads, it does offer a new perspective as 

to how ad networks behave differently and thus vary in their associated ads resource 

consumption. 

 

2.2.  Click Fraud Detection Literature 

In recent studies, three approaches have been followed in terms of evaluating 

different click fraud techniques, impact and solutions. 

 

2.2.1. Click Fraud Investigation and Analysis 

The first approach investigates and measures the prevalence of existing click fraud 

attacks and threats. However, none of these studies proposed any tool that can be used 

to defend against click spam.  

Dave et. al conducted a click fraud measurement analysis where they showed that 

for a certain ad network, over 95% of users redirected to their website after clicking on 

an ad, spent less than one second on their landing page [36].  
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Cho et al created an automated click fraud tool that generates virtual ad clicks 

while changing the device identifier to a random value with each request and proved 

that six out of eight ad networks were actually vulnerable to this attack [38].  

Following a machine learning approach while testing over 165K apps for click 

fraud, Crussell et al. showed that 30% of apps requested ads while in the background 

and 27% of apps generated clicks without any user interaction [39].  

Blizzard T. et al studied an existing malware on ad websites that generates 

fraudulent clicks by redirecting the user to an intermediate page where the user has to 

click again on the ad (to double the revenue) [40].  

Alrwais S. et al. conducted a detailed investigation of a large scale cybercriminal 

attack known as “Operational Ghost Click”, where attackers used a DNS changer 

malware to hijack ads impressions and ad clicks from victim publishers [41].  

Stone-Gross B. et al. presented a detailed analysis of how ad exchange (where ad 

networks sell/buy their publisher’s ad space to/from another ad network) actually works 

and what are the different ad fraud threats in ad exchange [42].  

Pearce P. et al. used real ad traffic traces provided by an ad network to study the 

behavior of a famous large-scale click fraud botnet called “ZeroAccess”. Based on the 

analyzed behavior of this botnet, they estimated the loss of revenues from the 

advertiser’s side to be around 100K per day [43].  

Miller B. et al. operated two families of bots in a controlled environment to 

monitor how botnet ad fraud, also known as clickbot, works in action [44]. 
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2.2.2. Click Fraud Detection - Ad Network’s Side 

The second category in the literature proposes solutions that perform click fraud 

detection on the ad network’s side without collaborating with advertisers: Liu et al. 

created a tool that detects click fraud attacks known as “placement ads” such as hidden 

ads, ads out of context, and numerous ads per page [45]. Juels et al. proposed a new ad 

fraud mitigation technique that protects the pay-per-click charging model by 

cryptographically authenticating legitimate users [46]. Vasumati D. et al. used a data 

mining classification algorithm to identify fraudulent clicks [47]. Li W. et al. proposed a 

new ad framework that uses ARM Trustzone services to securely fetch ad placement 

and application-related information, and then to sign this information with the user’s 

signature [48]. Haddadi H. et al. proposed a new click fraud detection technique where 

they fabricated random ads, known as bluff ads, with the assumption that a non-

malicious user would not normally click a random ad when its content is not relevant to 

her [49]. 

 

2.2.3. Click Fraud Detection - Advertiser’s Side 

The third category of literature proposes solutions that perform click fraud 

detection on the advertiser’s side without collaborating with ad networks. Dave et al. 

proposed a new framework that enables advertisers to detect potential spam clicks on 

their ads based on several criterion such as the duration spent by the user on their 

websites [36]. Xu H. et al. proposed a new ad fraud detection mechanism deployed and 

managed by the advertisers. First, they identify bots by checking browser related 

information of the user after clicking an ad and landing on the advertiser’s page; and 

then they identify sophisticated bots or human clickers, by monitoring user behavior 
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such as the duration spent on the advertiser’s website and mouse events [50]. Vani M. et 

al. used network ad traces collected from the advertiser’s side to extract click related 

information (such as user IP address, user agent values, time of access, etc.) and 

employed a node-tag based algorithm to differentiate spam and non-spam applications 

[51]. 

 

2.2.4. Click Fraud Detection Literature Summary 

While these studies proposed many solutions for click fraud detection, they did 

not offer a crowdsource based approach that can benefit from the large-scale 

crowdsourcing view to accurately detect malicious publishers and victim advertisers 

attacked by their competitors. In addition, some of these proposed fraud detection 

methods are managed by ad networks without collaborating with advertisers, whereas 

others are managed by advertisers without collaborating with ad networks. 

Unlike previous works that offer a solution either managed by advertisers or ad 

networks, our work features a new party called CFC (Click Fraud Crowdsourcing), 

trusted by both ad networks and advertisers, which main objective is to detect malicious 

clicks by crowdsourcing multiple ad click requests from different advertisers. Table 

2.2.4-2 summarizes the key features in the click fraud literature and compares them to 

our work (CFC). Although our approach doesn’t investigate existing click fraud attacks 

and threats, it offers a solution that protects both advertisers and ad networks. 
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2.2.4-2: Literature review summary vs. our work 

Ref. 

Offer Click 

Fraud Tool 

trusted by Ad 

Networks 

Offer Click 

Fraud Tool 

trusted by 

Advertisers 

Investigate 

existing click 

fraud attacks 

and threats 

Offer Click Fraud Tool 

managed by a party 

trusted by both ad 

networks and 

advertisers 

[38 - 44] No No Yes No 

[36] No Yes Yes No 

[45 - 49] Yes No No No 

[50, 51] No Yes No No 

CFC Yes Yes No Yes 

 

2.3. CPA Charging Model Literature 
 

In recent studies, two approaches have been followed in terms of evaluating the 

CPA charging model, its advantages, concerns and possible enhancements.  

 

2.3.1. CPA – General Overview 

The first approach presents an overview of the CPA charging model, its 

advantages and disadvantages, and compares it with CPC and CPM model. Studies in 

this category did not address security concerns in the CPA model, but rather economical 

concerns of CPA. 

Pechuán et al [57] presented an overview of the CPA model, its advantages and 

disadvantages. Mahdian et al [58] also explained how the CPA model works: its 

framework, its advantages, and the challenges that it faces (in terms of feasibility, user 

privacy….). Rosales et al [59] Provided an analysis of conversion rates in CPA or CPC 

models (where conversion is not guaranteed as opposed to CPM). By analyzing ads 

traffic logs from an ad exchange company called YAHOO’s Right Media Exchange 

(RMX), they proved how the ad size directly affects the click-through-rate CTR (rate of 

ads being clicked after display) but not the conversion-rate CVR (rate of users 
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performing actions in CPA). Whereas, the parameters age and gender affects CVR but 

doesn’t affect the CTR. 

Many studies addressed the CPA charging model from an economical approach: 

Hu et al [60] evaluated from an economical point of view, the benefits and costs of the 

CPC and CPA model to both advertisers and publishers, by applying an economic 

framework that measures many key elements such as the ratios of purchases to clicks. 

Ross et al [61] proposed a new approach that follows a combined contract of CPA 

(including CPC) and CPM models that can be financially beneficial to both publishers 

and advertisers. Dellarocas et al [62] also explained several economical concerns of the 

CPA model. Hu et al [63] suggested that the optimal contract between the advertiser and 

publisher that encourages them both to enhance their advertising efforts should be a 

combination of the CPM, CPC and CPA model. 

 

2.3.2. CPA – Security Overview 

The second approach addresses different security concerns of the CPA model, and 

some studies propose solutions to these threats. Pechuán et al [57] presented briefly 

many types of CPA scams such as cookie stuffing where in the context of web 

advertising the publisher leaves cookies in the user’s browser without the consent of the 

latter, in order to falsify a user’s visit to the advertiser’s website. They also proposed 

possible solutions/improvements for CPA scam detection, however, they did not present 

any detail explanations to support their proposed solutions. A major concern in the CPA 

security field is the possible misreports of actions by advertisers: Agarwal et al [64] 

highlighted several risks of using CPA pricing model, including the misreports of 

actions by advertisers to reduce advertising campaign costs.  
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Studies in this domain primarily focused on the bidding auction system employed 

in this charging model to determine the ad to be shown for a given ad slot: Mahdian et 

al [58] explained a rank-by-revenue bidding model used to determine which advertiser’s 

ad will be displayed in an ad slot. The advertiser’s chance of winning an ad bid 

increases whenever he reports an action, although he is charged for each reported 

action, it might reduce his incentive of misreporting actions. Nazerzadeh et al [65] 

presented a mathematical bidding representation that can be used in the CPA pricing 

model. Similarly to [58], they demonstrated how their approach limits the incentive of 

advertisers being dishonest when reporting actions.  

Ding et al [66] proposed a simple solution for detecting when advertisers under-

report actions on their websites (to reduce their campaign costs in the CPA model). 

Their approach is based on a comparison between the advertisers’ reported actions, and 

feedback from volunteered users who performed actions on these advertisers’ websites 

after clicking on their ads. 

 

2.3.3. CPA Charging Model Literature Summary 

While the rank-by-revenue bidding model potentially reduces the advertisers’ 

incentive of under-reporting performed actions on their websites, it does not offer a 

guaranteed metric to determine how much an advertiser should be charged (and thus 

how much a publisher should be paid), since the advertiser might preserve a balance 

between  his campaign costs and his ranking, by reporting some actions and neglecting 

to report others.  

Therefore, a secure measuring system that doesn’t rely on the advertiser’s input is 

required. Furthermore, as explained earlier, the actions used in the current CPA model 
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might not reflect true user’s interests in many cases, thus we propose a new mobile ads 

charging model that benefits from our CFC system to charge advertisers based on the 

duration spent in the advertiser’s website (or any other measurable criteria). Table 

2.3.3-3 compare our proposed CPA model with the literature. 

 

2.3.3-3: CPA Literature vs Our Work 

Reference 

Present CPA 

overview (not 

security) 

Present CPA 

overview (security) 

Present Solution 

controlled by 

advertiser 

Present Solution 

controlled by party 

trusted by advertiser 

and publisher 

[59 - 63] Yes No No No 

[57, 58] Yes Yes Yes No 

[64] No Yes No No 

[65, 66] No Yes Yes No 

Our Work Yes No No Yes 

 

2.4.  Summary 
 

This chapter presented the literature review of two major concerns in the mobile 

advertising industry: Resource consumption and click fraud. In addition, it presented the 

related work performed in the CPA charging model. Furthermore, It introduced the 

contribution performed in this thesis to overcome these concerns.   
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CHAPTER 3 

RESOURCE CONSUMPTION COMPARISON 

 
This chapter presents the first part of the thesis: a comparison of in-app ads traffic 

in different ad networks. It explains the followed experimental procedure, the results of 

our implementation, the analysis of the obtained results and a conclusion of this first 

part. 

 

3.1.  Implementation 

To study the effect of in-app ads on bandwidth and battery consumption, the 

following experimental procedure was followed. To integrate ads in an application such 

as a game, the developer has a wide range of ad networks to choose from. In fact, 

according to a recent study, there are currently over 400 mobile ad networks [13].  

 Although several ad types are used such as banners, custom native ads, 

notifications, interstitial ads (an image that covers the entire screen), video ads, among 

many other types, we evaluate the following ad types: 

 

3.1.1.  Banner ads  

Banner ads are in fact considered to be the most popular type of mobile ads [14]. 

Therefore, we tested ten different ad networks for this type of ads: AdMob [15], Flurry 

[16], Appia [17], AppFlood [18], RevMob [19], MobPartner [20], Millennial Media 

[21], InMobi [22], MoPub [23] and MobFox [24]. In addition, we tested two Mediation 

ad networks where each hosts ads come from multiple sources (ad networks): AdMob 

Mediation [15] and Flurry Mediation [16].  
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For each selected ad network, an Android application was created. Each 

application displays a white background and a banner (with dimensions 350 by 50 

pixels) at the top of the screen. At run time, the application connects to the hosted ad 

network, fetches the ads and displays them in the banner. 

 

3.1.2.  Interstitial ads  

Interstitial ads are most effective while promoting games [25]. We tested ten 

different ad networks for this type of ads: Millennial Media [21], InMobi [22], MoPub 

[23], MobFox [24], Flurry [16], AppFlood [18], Appia [17], LeadBolt [26], MobPartner 

[20] and RevMob [19].  

For each selected network, an Android application was created. Each application 

displays a white background. At launch time the application connects to the hosted ad 

network, fetches the ads and displays a static full screen interstitial ad. 

 

3.1.3.  Video Interstitial Ads  

With high user views, video ads have gained popularity among developers [25]. 

We tested five different ad networks for this type of ads: Millennial Media [21], InMobi 

[22], MobFox [24], MoPub [23], and Flurry [16].  

Also, in this case, for each selected network, an Android application was created. 

Each application displays a white background. At launch time the application connects 

to the hosted ad network, fetches the ads and displays a full screen video interstitial ad. 
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3.1.4.  Implementation Settings 

The created applications connect to the Internet using Wi-Fi only (Mobile data 

option is turned off). The same level of brightness for device screen (approximately 

45%) and same screen is used during this implementation. 

The application "Power Tutor" [4] is used to obtain the battery consumption 

values. The "Data usage" option integrated by default in the Android operating system 

is used to get the bandwidth consumption values. The experiments were performed on a 

"S4 Mini: GT-I9190" smartphone running Android version 4.2.2.  

 

3.1.5.  Implementation Challenges 

Several ad networks (Airpush [27], Admoda [28], Smaato [29], GreyStripe [30], 

madvertise [31]) did not approve our request to test their ads for this educational 

purpose. 

In addition, several ad networks (InMobi [22], Millennial Media [21], MoPub 

[23], MobFox [24] and MobPartner [20]), did not successfully fetch any ads from 

Lebanon, this is due to the fact that these ad networks do not currently have any ads 

targeting Lebanon. 

Therefore, the experiments were conducted from Lebanon and then repeated when 

connected to a router with VPN connection to Canada which made our device appear as 

if it is in Canada. This provided insight into whether location plays a role in the resource 

consumption. Note that the focus of the study is a comparative analysis and thus the 

accuracy of the absolute values obtained is not as critical to the analysis as is the relative 

differences. Therefore, the main experimental focus was on the consistency of the setup 

and tests conducted. 
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3.1.6.  Ads Integration Steps 

Most of the ad networks follow the same integration steps: First, the developer 

must create an account, an application, and an “ad placement”. Also, the developer must 

download and integrate the ad network’s SDK and finally integrate in the application a 

custom component that either represents the banner or displays a full screen 

image/video. 

 

3.2. Implementation Results 

Figure 3.2-2 and figure 3.2-3 show the results of the banner ad testing experiments 

performed in this study. AdMob [15], Flurry [16], AdMob Mediation [15], Flurry 

Mediation [16], and MobFox [24] enable the developer to control the refresh interval of 

the ad, meaning how often the ads change. This value typically ranges from 30 seconds 

to 120 seconds. We tested these ad networks for two refresh intervals: 30 seconds and 

60 seconds. Appia [17], AppFlood [18], MobPartner [20], Millennial Media [21], 

InMobi [22], MoPub [23] and RevMob [19] follow a different refresh mechanism: 

instead of refreshing the ad according to a defined refresh interval, the ad is refreshed 

whenever the application is first launched and remains the same until the application is 

re-launched again. Therefore, we tested these seven ad networks for one app launch. 

We used the following abbreviation for the ad networks’ names: Admob: A; 

Flurry: F; Admob Mediation: AM; Flurry Mediation: FM; Mobfox: M; Appia: AP; 

Appflood: AF; Revmob: RM; Mobpartner: MP; Millennial Media: MM; Inmobi: I; 

Mopub: MPB; Leadbolt: L.  

The results in figures 3.2.2-7 are sorted by clusters that we performed using 

Matlab. The clustering process and objective will be discussed later in this section. 
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For each refresh criterion (or app launch in the case of the second set of ad 

networks), we tested three experiment durations: 1 minute, 5 minutes and 10 minutes. 

The experiment was repeated five times, in order to obtain more reliable statistics. Then, 

the averages and standard deviations for these five experiments were calculated (as 

shown in figures 3.2.2-7). 

Figure 3.2-4 and figure 3.2-5 show the results of the interstitial ads experiments 

performed in this research. We tested each ad network for one-minute experiment 

duration five times each. 

Figure 3.2-6 and figure 3.2-7 show the results of the video interstitial ads 

experiments performed in this research. We tested each ad network for one- and five-

minute experiment durations, five times each. 

 

 

3.2-2 : Banner Ads Battery Results 
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3.2-3: Banner Ads Bandwidth Results 

 

 

3.2-4: Interstitial Ads Battery Results 



26 

 

3.2-5: Interstitial Ads Bandwidth Results 

 

 

3.2-6: Video Ads Battery Results 

 

 

3.2-7: Video Ads Bandwidth Results 
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3.2-8: Banner Battery Results in two locations 

 

 

3.2-9: Banner Bandwidth Results in two locations 

 

Based on the information collected during our experiments (summarized in the 

figures), we used Matlab to do a K-means clustering of the bandwidth and battery 

consumption for each ads type. By clustering our results (shown in table 3.2-3) we are 

able to categorize the ad networks into three clusters (for each ad type and measurement 

type). This categorization helps us better assess the difference between the ad networks 

in resource consumption. K-means clustering enables us to specify the number of 

clusters that we wish to have; therefore, we chose to have three clusters (high, medium, 

low) for each experiment (except for the video ads battery results where two clusters 

were used, since the video battery results clearly seemed to belong to two groups only). 
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3.2-4: K-means Clustering Results and Associated t-test Results 

Ad  Type 
 Measurement 

Type 
Cluster 1 Cluster 2 Cluster 3 

P value 

(C1, C2) 

P value 

(C1, C3) 

P value 

(C2, C3) 

Banner 

 Battery 

(J/ 10 min) 
A; AM; FM 

F; M; RM; 

MPB 

AP; AF; MP; 

MM; I 

2.80243E-

12 

3.29468E-

28 

1.61078E-

05 

 
Bandwidth 

(J/ 10 min) 
F FM 

A; AM; M; AP; 

AF; RM; MM; 

MP; I; MPB 

2.2302E-08 
5.67053E-

10 

5.48044E-

07 

Interstitial 

 Battery 

(J/ 1 min) 

MM; AF; 

AP; MP; RM 
M I; MPB; F; L 

0.0003026

37 

0.0006679

1 

0.00034703

7 

 Bandwidth 

(J/ 1 min) 

MM; I; F; 

AF; AP 
M; L; MP MPB; RM 

8.43095E-

07 

9.71991E-

05 

0.00082224

9 

Video 

 Battery 

(J/ 1 min) 

MM; M; 

MPB 
I; F NA 

0.0264255

76 
NA NA 

 Bandwidth 

(J/ 1 min) 
MM I, MPB, F M 

0.0103614

37 

0.0002011

6 

0.00115768

5 

 

3.2-5: Canada and Lebanon t-test Results 

 P value (Canada - Lebanon) 

Battery 0.127714802 

Bandwidth 0.450460748 

 

To evaluate the significance of the bandwidth and battery consumption 

differences between the different clustered ad networks, we applied the statistical test 

known as t-test and calculated the resulting P-value between the clusters for each ad 

type (banner, interstitial and video) and each measurement type (bandwidth and 

battery). As shown in Table 3.2-4, all the P-values are below 0.05 (5% error), which 

means that for a given ad type, the battery consumption between the different ad 

networks clusters is statistically significantly different, and the bandwidth consumption 

between the different ad networks clusters is also statistically significantly different. 

By calculating the average bandwidth/battery of each cluster A, compared to 

cluster B, for each ad type, we got the following results:  
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For the banner battery, cluster 1 is 2.93 times more than cluster 2, and 9.57 times 

more than cluster 3; cluster 2 is 1.69 times more than cluster 3. For the banner 

bandwidth, cluster 1 is 4.09 times more than cluster 2, and 20.27 times more than 

cluster 3; cluster 2 is 3.18 times more than cluster 3.  

For the interstitial battery, cluster 2 is 10.93 times more than cluster 1, and 4.94 

times more than cluster 3; cluster 3 is 0.5 times more than cluster 1. For the interstitial 

bandwidth, cluster 3 is 4.44 times more than cluster 1, and 1.48 times more than cluster 

2; cluster 2 is 1.19 times more than cluster 1. 

For the video battery, cluster 2 is 0.7 times more than cluster 1. For the video 

bandwidth, cluster 3 is 6.09 times more than cluster 1, and 1.95 times more than cluster 

2; cluster 2 is 1.39 times more than cluster 1. 

Based on the data collected during our experiments (summarized in figure 3.2-8 

and figure 3.2-9), we applied the statistical t-test (as shown in table 3.2-5) and 

calculated first, the resulting P-value between the bandwidth consumption of the 

different ad networks in Lebanon and the bandwidth consumption of the different ad 

networks in Canada. Then we calculated the resulting P-value between the battery 

consumption of the different ad networks in Lebanon and the battery consumption of 

the different ad networks in Canada. Both P-values are above 5%, which means that the 

bandwidth and battery consumption do not differ statistically significantly between the 

two locations (Lebanon and Canada). 

Based on recorded standby energy values for several time intervals in [33], we 

used linear regression to predict the equivalent standby time lost due to ad network 

battery consumption as shown in Table 3.2-6. For example, by using an application that 
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displays AdMob banner for only 10 minutes, we will be losing 24.8 minutes of standby 

energy. 

Based on the average cost per MB of AT&T in 2015 [34] ($0.07 per MB), we 

calculated the equivalent monetary value of our recorded results for a one week of use 

(as shown in table 3.2-7). For example, using an application that hosts Flurry banner ads 

for a 10 minutes duration (for a period of one week) costs 2.5$, whereas using an 

application that hosts Mobfox video ads for a 5 minutes duration (for a period of one 

week) costs 6.1$. 

 

3.2-6: Battery Consumption Results in Standby time (min) 

Ad Type Banner Interstitial Video 

Experiment 

Duration 
10 min 3 min 5 min 

A 24.8 NA NA 

F 10.7 2.9 4.7 

AM 19.2 NA NA 

FM 33.2 NA NA 

M 13.9 23.8 0.4 

AP 1.8 0.4 NA 

AF 1.3 1.2 NA 

RM 11.8 1.3 NA 

MP 5.7 0.7 NA 

MM 4.6 0.7 4 

I 2.7 3.1 2.3 

MPB 8.2 2.1 2.7 

L NA 3.7 NA 
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3.2-7: Bandwidth Results in Monetary Values ($) (for one week) 

Ad Type Banner Interstitial Video 

Experiment 

Duration 
10 min 1 min 5 min 

A 0.2 NA NA 

F 2.5 0.2 1.5 

AM 0.1 NA NA 

FM 0.5 NA NA 

M 0.1 0.3 6.1 

AP 0.1 0.1 NA 

AF 0.1 0.1 NA 

RM 0.1 0.5 NA 

MP 0.1 0.2 NA 

MM 0.1 0.2 0.2 

I 0.3 0.1 1.2 

MPB 0.4 0.6 0.8 

L NA 0.2 NA 
 
 
 

3.3.  Results Analysis 

The results shown in the figures highlight several key findings related to in-app ads. 

1) While battery consumption has increased with the use of mediation in 

Flurry ad network, it has decreased with the use of mediation in adMob ad 

network (shown in fig. 3.2-2). 

2) On the other hand, bandwidth consumption has actually decreased with the 

use of mediation for Flurry ad network and remained the same for adMob 

(shown in fig. 3.2-3). 

3) The bandwidth and the battery consumption are not always directly 

related: For example, in comparison to other ad networks, AdMob has a 

high battery consumption level with a low bandwidth consumption level, 

whereas Flurry has a low battery consumption level with a high bandwidth 

consumption level (shown in fig. 3.2.2-7). 
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4) Most of the experiments showed that the battery consumption is not 

consistent across the experiment’s duration (shown in fig. 3.2-2, 3.2-4, 3.2-

6, and 3.2-8): it is higher when the application first launches in the [0-1] 

minute interval than in the rest of the experiment’s duration. For example, 

if we use an application that displays Millennial Media video ads for a 5 

minutes interval, we will have a battery consumption of 9.32 J. However, 

if we launched the same application 5 times (for a one minute interval for 

each time) we would have a 5 * [1 minute battery consumption= 9.22] = 5 

× 9.22 = 46.1 J.  

5) In most of the experiments, the bandwidth consumption is not consistent 

across experiment’s duration (shown in fig. 3.2-3, 3.2-5, 3.2-7, and 3.2-9): 

it is much higher when the application first launches [0-1] minute interval 

and it decreases with duration. For example, in a one minute interval using 

Flurry video ads, the bandwidth consumption is 3010 KB, whereas, in a 5 

minutes interval it is 3034 KB. 

6) Using the application “Shark for root” on a rooted device (Samsung S3 

GT-I9300 running Android version 4.4.4), we noticed that there exists an 

authentication process between the application and the ad network’s server 

at the beginning of the application’s session. We believe this authentication 

process causes an inconsistency in both bandwidth and battery 

consumption throughout the application’s session (demonstrated in points 

4 and 5). 

7) The battery consumption of ad networks varies with the use of different ad 

categories (shown in fig. 3.2-2, 3.2-4 and 3.2-6). For example, for a one 
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minute interval, the battery consumption using InMobi is 3.38 J for banner 

ads, 4.92 J for interstitial ads and 10.64 J for video ads. In fact, by 

comparing the battery consumption of the same ad network, for the same 

duration, with the use of different ad categories (banner, interstitial and 

video ads), we found that interstitial ads have the lowest battery 

consumption, while video and banner ads are very similar. 

8) Expectedly, the bandwidth consumption of the same ad network is very 

different with the use of different ad categories (shown in fig. 3.2-3, 3.2-5 

and 3.2-7). For example, for a one minute interval, it is 1067 KB for 

MoPub interstitial ads and 87.49 KB for MoPub banner ads, whereas it is 

1968 KB for MoPub video ads. 

9) Based on Table 3.2-5 P-value results (above 5%), we can conclude that the 

bandwidth and battery consumption do not differ significantly between two 

locations (Lebanon and Canada). 

10) As shown in the t-test results in Table 3.2-4, for a given ad type, the 

battery consumption between the different ad networks clusters is 

statistically significantly different, and the bandwidth consumption 

between the different ad networks clusters is also statistically significantly 

different. 

 

3.4.  Resource Consumption Analysis Conclusion and Future Work 

This first part of the thesis evaluates the bandwidth and battery consumption of in-

app ads among several ad networks. The experimental procedure followed in this study 

demonstrates that resource consumption varies among networks and is usually 
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consistent in the same ad network for a given duration. In addition, this study highlights 

a common behavior of fetching ads between several ad networks where ads are fetched 

at the beginning of runtime and displayed throughout the application session. This 

variation and significance of resource consumption indicates that developers need to 

take into consideration the bandwidth and battery consumptions when choosing the 

right ad network. On the other hand, the ad networks should adopt an ad-fetching 

mechanism that does not include large network overhead or unnecessarily heavy battery 

consumption. Furthermore, ad networks should adopt a transparent approach where they 

specify clearly the bandwidth and battery consumption associated with their ads 

fetching platform. Future work includes the evaluation of additional ad networks, 

testing on several devices, and a more accurate way to measure the variation of this 

consumption across time. 

 

3.5.  Summary 

This chapter presented the first section of this thesis: a comparison of mobile ads 

traffic between different ad networks in terms of bandwidth and battery consumption. It 

explained the experimental procedure that was followed in this section, the obtained 

results, and its analysis. In addition, it provides an insight on the future work that could 

enhance this study and a conclusion of this section. 
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CHAPTER 4 

CLICK FRAUD DETECTION 

 
This chapter presents the second part of this thesis: click fraud detection using a 

crowdsourcing approach. It presents the architecture of our proposed system, the 

experimental setup, the results of our implementation, the analysis of the obtained 

results, and a conclusion of this part of the thesis. 

 

4.1. Proposed Solution 

Our proposed system is composed of four components (as shown in Figure 4.1-

10). 

 

4.1-10: CFC Proposed solution 

 

4.1.1. Phone Component 

The phone component is on the client side, and similar to traditional ad network 

frameworks, the publisher integrates in her app an ad component in the form of a single 

jar file, which is published by the ad network on its website after merging it with 



36 

another jar file created by the CFC party in order to handle click fraud detection. The 

new file has its own billing mechanism that handles the selection of ads to show. This 

phone component fetches ads, displays them, and manages clicks by displaying the 

advertised websites on ad clicks and sending clicks information to the CFC party 

simultaneously (explained in section 4.2). 

 

4.1.2.  Ad Network Component 

This component behaves similarly to classical ad network systems; it acts as a 

relay between different publishers and advertisers, by selecting which ads to send to the 

publisher for display, charging advertisers for each ad click and paying the publisher a 

percentage of the charged money. 

 

4.1.3.  Advertiser Component 

After a user clicks on an ad featured by the phone component, she will be 

redirected to the advertiser’s website, which represents the advertiser component. 

 

4.1.4.  CFC Component (Server Side) 

After collecting a large number of clicks (to be determined by the CFC 

administrator) from different phone components of ad networks using the CFC service, 

a crowdsource based calculation is performed. We will refer to this click-fraud-

crowdsourcing-algorithm as “CFCA” in the rest of the thesis. The motivation behind our 

crowdsource based approach is based on two main needs: on one hand, an ad network is 

able to monitor and assess many clicks from different apps, however, it is not able to 

monitor the user’s activity for click fraud detection once she is redirected to the 
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advertising site; on the other hand, while an advertiser is able to monitor the user 

activity on her site (for example the duration spent on the site), however, the judgment 

is per click and is therefore prone to a high false positive rate [36]. 

Accordingly, if a user clicks on an ad, and after being redirected to the advertiser’s 

website, she shows no interest in this website, she will be flagged as malicious for 

exiting the website after few seconds. Our proposed solution addresses these two 

shortcomings by combining both the click information provided by the ad networks and 

the user activity information provided by the advertiser. 

In addition to the CFCA, the CFC party manages several APIs that communicate 

with the CFC phone component integrated in the client side and a corresponding online 

database (explained in section 4.2). 

 

4.1.5. CPA Enhanced Model 

Our proposed mobile ads charging model benefits from our CFC system to charge 

advertisers based on different measurable criteria such as the duration spent in the 

advertiser’s website. As opposed to current CPA systems that relies on the advertisers’ 

to report the actions to be charged for, our CFC model presents a secure framework in 

which the duration is measured by a trusted party. In addition, our system reduces the 

work load on the advertisers, since they are not required to perform any integration on 

their websites or perform any action reporting to the ad network. Our system in fact is 

transparent to both advertiser and publisher. 

For billing purposes the CFC must send the captured actions (ad request with 

duration information) to the corresponding ad network. The ad network can define the 
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pricing scheme for different durations, for example, charge the advertisers if the 

duration spent on the advertiser’s website by the user is more than one minute. 

 

4.2.  Phone Component CFC Steps 

 

4.2-11: CFC Steps 

 

 
4.2-12; CFC Client and Online Database 

 
 
 
 
 
 

CFC Banner Ads 

Advertiser’s Website 

CFC Online Database 
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Using Android Studio, we built the CFC phone component as an exported jar file. 

We used an obfuscation tool, “Proguard” [54] that obfuscates our jar file targeting for 

example classes and variables names. We inspected the effect of this obfuscation using 

a decompiler tool called “Java Decompiler” [55]. As expected, we were not able to 

reconstruct the classes in our jar file by reverse engineering. To test its functionalities, 

we created a sample publisher’s Android application (figure 4.2-12) that hosts ads using 

this library, in order to generate a revenue on every ad click. 

When the application starts, our library requests an ad to show from the ad 

network by sending the publisher’s ID (Figure 4.2-11 – step 1). Unlike traditional ad 

fetching systems where each ad network manages its own publishers’ identification 

system, this ID is generated by the CFC party and given to the publisher by the ad 

network. This is to ensure that each publisher has a unique identifier among all the ad 

networks registered with our CFC services. Using the LAMP server [58], We built the 

API request_ad(publisher_id), managed by the ad network, that takes as input the 

publisher’s ID and returns information about a selected ad to display on the publisher’s 

application in JSON format (Figure 4.2-11 – step 2). After fetching the ad, the library 

parses the JSON response and displays the ad in a simple banner. 

In currently existing ad fetching systems, ad networks follow an ad selection 

process where they decide which ad to send for display based on many factors such as 

the bidding placed on the ad by the advertiser, application’s specific targeting 

mechanism, whether the ad was already displayed in the corresponding application, etc. 

However, this ad selection process is beyond the scope of this thesis. For simplicity, we 

are generating a generic ad in the form of a textual title, a textual descriptive content, an 

ad ID, and a corresponding ad URL. 
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When the user clicks on an ad, the library performs several sequential requests 

(Figure 4.2-11): 

Step 3-4: For billing purposes, using the following API 

request_billing_from_adnetwork(publisher_id, ad_id), the library informs the ad 

network that an ad is clicked, by sending the publisher’s ID and the ad ID (Figure 4.2-

11- step 3). After confirming this publisher-ad ID combination, the ad network returns a 

confirmation billing JSON response to the publisher (Figure 4.2-11 - step 4). 

Steps 1, 2, 3 and 4 are performed in a very similar way to existing ad fetching 

systems. However, the following additional steps are presented in our system: 

Steps 5-6-7 (Ad clicked challenge): We consider, intuitively, an ad click as 

potentially fraudulent, if after clicking on the ad and being redirected to the advertiser’s 

landing webpage, the user spends less than a certain time (we assume 5 seconds) before 

exiting the advertised website. Therefore, the CFC client library sends a request to the 

CFC server to indicate that an ad view session has begun on the client side. This API 

defined as request_ad_clicked_challenge(publisher_id, IP_address, state, 

challenge_token, session_id, timestamp) takes as input in step 5, the publisher’s id and 

the user’s IP address, a timestamp (of when the ad was clicked) and a state integer of 

value 1 (the fields challenge_token and session_id are NULL in step 5). This non-local 

IP address is fetched on the client side using an external API called “ipify” [52]. The 

CFC server saves this information in its online database with a state field of value 1 and 

a timestamp. The server saves the ad-opened-timestamp for future reference. 

In step 6, and to verify that the extracted IP is not spoofed, the CFC server 

challenges the client side, by sending a random token and a created session ID. To 

prove its IP address legitimacy (step 7), the client sends back the challenge token using 
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the same API with a state equals to 2, and the session ID. The state field identified by 

the returned session id is updated to 2 in the online CFC database (after verifying that 

the previous state value of this session is 1). The state field is used to keep track of the 

actions performed by the client side, for example, a state of value 2 means that the user 

has clicked on the ad but hasn’t exited the advertised website yet.  

Step 8 (Ad View): After receiving a confirmation of the ad click challenge from 

the server, an Android native component known as a Webview is called and managed 

by the phone CFC component. The benefit of using Webview in this proposed system, 

is the ability to detect when the user exists the advertiser’s website, by either clicking 

the native Android back button, or by clicking the Exit button. This Web view requests 

the corresponding ad URL and loads the advertised website in its view. We created a 

sample advertiser’s website to test this step. 

Step 9, 10, 11 (Ad closed challenge): Once the Webview is closed (by detecting 

the call of the onbackpressed() Android method), or the application is no longer visible 

(by detecting when it’s no longer in foreground after clicking the exit button), the client 

library informs the CFC server of the ad view session ending, by sending the session’s 

ID, publisher’s ID, user’s IP address, the new timestamp (of when the ad was closed) 

and state of value 3 (step 9). The CFC server then updates state value of the record 

identified by the session’s ID to 3 (after verifying that the previous state value of this 

session is 2). 

Similarly to the ad-clicked-challenge explained in steps 6 and 7, to verify if the 

client’s IP is spoofed, the server generates a new random challenge token and sends it 

back to the client in step 10. To prove that its IP is not spoofed, the client sends back 
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the new challenge token with the session’s ID, publisher’s ID, IP address and a state of 

value 4. 

After verifying that the credentials sent by the client are correct and that the 

previous session state value is 3, the CFC server decides whether to consider this ad 

session as potentially malicious or not, based on the difference between the previous 

saved timestamp and the current received timestamp, which represents the duration 

spent on the advertiser’s website. The CFC admin can determine the minimum duration 

that is required to consider this ad session as non-malicious, for example 5 seconds. The 

ad requests that are flagged as potentially malicious, are updated in the database with a 

state value of 5. The ad requests that are flagged as non-malicious are updated in the 

online database with a state of value 4. Ad requests saved in the online database of both 

flags 4 and 5 are added to the CFCA for analysis (explained in section 4.2.). 

 

4.2.1.  CFCA Component (Server Side) 

Besides managing the APIs and the online database, the server performs the 

CFCA in order to identify malicious publishers. The intuition behind our algorithm is 

based on the following idea: It is likely that a legitimate app (associated with a 

publisher) will have many non-malicious users that clicked on an ad and exited the ad 

webpage because they simply were not interested anymore in the landing page. 

However, it is unlikely that a non-malicious app has a high number of these suspicious 

requests. To reduce the false positive rate, we compare the percentage of malicious 

clicks per publisher to a starting point determined by the CFCA admin.  

This system benefits from both a global view, where it gathers multiple ad 

requests data corresponding to different ad network-publisher-advertiser combinations, 
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and a detailed view, where it is able to track the user’s engagement in each advertising 

website. 

 

4.2.1.1. CFCA Dataset 

To evaluate the performance of our algorithm, we generated the following dataset 

using Matlab: 

We created  a population of ad clicks of size N in a given period. An ad click in 

this context represents a session in which the user clicked on an in-app ad, viewed the 

advertiser’s website for a certain duration (not necessarily less than five seconds), and 

closed the ad webview after performing the handshake, i.e. ad request that completed 

the 11 CFC steps with state = 4 (duration > 5 seconds) or state = 5 (duration < 5 

seconds). By detecting publishers who used spoofed IPs based on the saved state in the 

online database (state = 1, 2 or 3), we are able to immediately filter these suspicious 

publishers. Therefore, we do not need to take them into consideration in our CFCA 

duration based algorithm.  

The created N ad requests correspond to a total number of publishers TNP. We set 

a fixed percentage of malicious publishers MPP. We consider a publisher to be 

malicious if he performs any type of click fraud by sequentially clicking on ads and 

exiting the advertiser’s website (closing immediately the ad Webview), to open a new 

ad Webview and generate further revenue. We consider an ad request to be suspicious if 

the state saved in the online database corresponding to this instance, is equal to 5, which 

means the duration spent on the advertiser’s website is less than or equal to five 

seconds. For each of these malicious publishers, we set a random percentage of 

suspicious clicks RMC, such that RMC is larger or equal to a truth starting point 
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TruthST (RMC >= TruthST). This TruthST is the lower limit used to classify the 

publishers as honest or malicious in the created dataset. In other words, if 30% of a 

publisher’s clicks are suspicious, then this publisher is malicious (30% > TruthST). This 

classification is considered as the truth and is different than our CFCA algorithm. The 

total number of ad requests per malicious publisher is TNMP. 

For each of the honest publishers, we set a random percentage of suspicious clicks 

RHC, such that RHC is less than the truth lower limit TruthST (RHC < TruthST). The 

total number of ad requests per honest publisher is TNHP. 

 

4.2.1.2.  CFCA Classification 

To simulate ads traffic in the real world, we generated multiple iterations: each 

iteration corresponds to a time slot in which a random number NR of samples (ad 

requests) is taken from the total population N without replacement. In the real world, 

each iteration correspond to whenever the CFC administrator fetches ad requests rows 

from the online database. These samples are used as input to CFCA in order to classify 

the publishers as honest/malicious.  

In each iteration, we classify each publisher based on a CFCA starting point 

CFCAST as: 1) Honest, if the percentage of suspicious clicks from the total ad requests 

of this publisher does not exceed the CFCAST 2) Malicious, if the percentage of 

suspicious clicks from the total ad requests of this publisher exceeds the CFCAST and 

3) Not Classified, if the total number of ad requests of this publisher is less than 

MinNbre (to have statistically significant data). 
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4.2.2.  Attacker’s Model 

To evaluate the robustness of our click fraud detection system, we tested many 

different attackers’ models whose goal is to generate high revenues from ad networks: 

Type A: A malicious publisher (without spoofing IP) creates a sequential click 

automated tool that doesn’t spend a long duration on the advertiser’s website, since it’s 

forced to exit the ad Webview to open another new ad immediately. Defense: This 

attack is easily detected by the proposed system since the duration spent on the 

advertiser’s website is calculated and it is used to determine whether the publisher is 

malicious or not. 

Type B: A malicious publisher (without spoofing IP) places ads next to buttons, in 

order to trick user into clicking them. This fraudulent act is known as placement ads in 

the literature. Defense: Since such user is not necessarily interested in the ad, he will 

most likely exit the ad webpage directly, and thus this small session duration will be 

flagged by the proposed system as potentially malicious. However, there is a slight 

chance that, although tricked into clicking it, the user spends more than 5 seconds on the 

advertised website. We consider these redirected ad requests as non-malicious since 

they did actually spend more than 5 seconds on the website and thus could become 

customers from the advertiser’s point of view.  

Type C: A malicious publisher (without spoofing IP), after completing the ad-

clicked-challenge closes the Webview in less than 5 seconds, to be able to open a new 

ad session. However, being on the client’s side, he is able to drop the request generated 

by the library on Webview closing (when duration spent was less than 5 seconds), and 

fabricate this request after 5 seconds has passed. The goal of this attack is to be able to 

sequentially click on ads to generate higher revenues without spending the required 
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duration on the advertiser’s website and without being detected. Defense: Although the 

attacker is able to drop the legitimate ad closing request and fabricate it, and by that to 

falsify the duration spent on the advertiser’s website, however, since the IP is not 

spoofed, the CFC server can identify the user by IP and therefore limit this attack to just 

one undetected ad request. If the malicious publisher fabricates many falsified ad 

requests, the CFC can detect abnormal entries of the same IP. For example, it is not 

feasible for the same user identified by IP, to spend more than 5 seconds on 3 different 

websites in a given time interval less than 15 seconds. 

Type D: A malicious publisher, uses a spoofed IP address to be considered as a 

new user with each ad request. Defense: Whether this publisher fakes IP before or after 

completing the first ad-clicked-challenge (steps 5, 6, 7), since he did not complete both 

challenges, his state in the online database will not be updated to 4 (4 being the final 

state of the ad requests considered as non-malicious). As explained in section 4.2.2.1, 

the CFCA can simply time-out the ad requests with a state different than 4 and a 

reasonably old timestamp (to take into consideration honest sessions that still haven’t 

completed both challenges). 

Type E: A malicious publisher, hires multiple human clickers to imitate the 

normal user’s behavior by clicking on the ad and spending enough time to avoid being 

detected by our system. Defense: In addition to being forced to spend more than 5 

seconds on each advertising website, the proposed system is able to identify the human 

clicker by his IP, which limits the number of fraudulent clicks per human clicker before 

being detected as malicious by our system.  
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4.3.  Implementation 

To evaluate the efficiency of our method under different scenarios, we created the 

following base set: the total number of ad requests N = 500,000, the total number of 

publishers TNP = 500, and the truth lower limit used for classification TruthST = 25 

(different than CFCAST). We used a total number of requests per malicious publishers  

5,000 < TNMP < 6,000, and a total number of requests per honest publishers  1 < NHP 

< 1,500, with a minimum number of request to be able to classify a publisher as 

MinNbre = 100. Note that TNMP is higher than TNHP because clicking on an ad is 

considered as a rare event in the mobile advertising industry [56], which makes the 

number of expected clicks to be low. Therefore, if the total number of clicks is high, 

then it is most likely that a high percentage of it is malicious. 

We evaluated our model under different scenarios: we tested three different 

percentages of malicious publishers MPP = 5, MPP = 10 and MPP = 15. For each of 

these scenarios, we tested our CFCA using different CFCA starting point  CFCAST = 

[10,20,30,40,50,60,70,80]. We calculated the False Positive Rate FPR (figure 4.4-12), 

True Positive Rate TPR (figure 4.4-13), and Accuracy ACC (figure 4.4-14) in each 

iteration.  

As part of their proposed methodology, the authors of [36] used the duration spent 

on the advertiser’s website to detect malicious clicks on a per click basis, which means 

that every ad request that results in an advertisement view of less than 5 seconds for 

example is considered as malicious. This duration is calculated by the advertiser and 

thus cannot be trusted by the publisher. In addition, as mentioned before, it is likely that 

a legitimate app generates an honest ad click request without spending more than 5 
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seconds on the advertising website because the user lost interest in the landing page. 

However, it is unlikely that a non-malicious app has a high number of these requests. 

We compared our proposed method with their approach by using our CFCA 

algorithm with our base set, different CFCA starting point CFCAST = 

[10,20,30,40,50,60,70,80], and a starting point of 1 for their results (to simulate their 

per-click approach). Similarly to our method, we calculated for the literature, the False 

Positive Rate FPR (figure 4.4-12), True Positive Rate TPR (figure 4.4-13), and 

Accuracy ACC (figure 4.4-14) in each iteration.  

 

4.4.  Results and Analysis 

The results presented in figure 4.4-12, figure 4.4-13 and figure 4.4-14, correspond 

to the iteration number I = 25. 

 

 

4.4-13: FPR CFCA vs FPR Literature at Iteration I = 25 
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4.4-14: TPR CFCA vs TPR Literature at Iteration I = 25 

 

 

4.4-15: Accuracy CFCA vs Accuracy Literature at Iteration I = 25 

 

Based on the figure 4.4-12, for a percentage of malicious publishers MPP = 10, 

our model presents a low false positive rate starting from FPR = 0.21 when using 
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CFCA starting point of CFCAST = 20, and it decreases to FPR = 0 with the increase of 

CFCA starting point to CFCAST = [30, 40, 50, 60, 70, 80]. As expected, the FPR 

calculated based on the literature approach by adopting a starting point = 1 presents a 

very high false positive rate with an average of FPR = 0.964 for the different CFCAST 

scenarios.  

Based on the figure 4.4-13, our model presents a high true positive rate TPR = 1 

when using a CFCA starting point of CFCAST = 10 or CFCAST = 20. The TPR is 

reduced to TPR = 0.937 with the increase of the starting point to CFCAST = 30. As 

expected, it decreases with the increase of the CFCAST continuously. Whereas, the 

TPR calculated based on the literature review remains TPR = 1 for all the different 

scenarios.  

 Based on the figure 4.4-14, our model presents a high accuracy ACC = 0.82 when 

using a CFCA starting point of CFCAST = 20, and it increases to ACC = 0.98 with the 

increase of the CFCA starting point to CFCAST = 30. It maintains this high level of 

accuracy for the rest of the CFCA starting points.  

 

4.4.1.1. CFCA ROC Curve 

Based on our results, we can conclude that changing the malicious publisher 

percentage MPP did not highly affect the results, except when measuring the accuracy 

in each iteration. Whereas, the effect of changing the CFCAST is visible in the figures.  

Therefore, in order to determine the appropriate CFCA starting point to use, we 

generated the ROC curve for iteration I = 25 using our base set with a malicious 

publisher percentage of MPP = 10 (figure 4.4-15). Depending on how aggressive we 

would like our model to be we can select between two CFCA starting points CFCAST 



51 

= 20 (TPR =  1, FPR = 0.21) or CFCAST = 30 (TPR = 0.93, FPR = 0). Another 

method to determine which starting point to use is the F-measure (also known as F1 

score) that takes into consideration the precision (also known as positive predictive 

value) and the recall (also known as the sensitivity or TPR). The F1 score when using 

CFCAST = 20 is F1Score = 0.6532 , whereas it’s F1Score = 0.967 when using 

CFCAST = 30.  

 

 

4.4-16: CFCA ROC Curve 

 

4.4.1.2. CFCA Convergence 

To evaluate how fast our proposed model is able to achieve a high true positive 

rate while maintaining a low false positive rate and a high accuracy level, we tested it at 

different low iterations (I = 5, I = 6, I = 7, I = 8, I = 10…). We conclude that our system 

converges starting at iteration I = 7 (figure 4.4-16, figure 4.4-17, figure 4.4-18), whereas 

CFCAST = 30 

CFCAST = 20 
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it presents Null FPR values at earlier iterations (I < 7). It is expected not to have any 

FPR values at very low iterations (I < 7), because FP = TP = 0 in this case since we set a 

minimum of 100 requests per publisher to be able to classify him.  

 

4.4-17: FPR CFCA vs FPR Literature at Iteration: 7 
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4.4-18: TPR CFCA vs TPR Literature at Iteration: 7 

 

4.4-19: ACC CFCA vs ACC Literature at Iteration: 7 

 

4.4.1.3. CFC Duration Accuracy 

To measure the accuracy of the duration captured by the CFC phone component, 

we clicked on the ad webview in our Android application (figure 4.2-12), closed the ad 

webview after registering manually the duration of this ad view (not using CFC), and 

compared it with the duration saved in the online database (calculated by the CFC 

phone component). We repeated this experiment 30 times for a duration less than 5 

seconds, and 30 times for a duration higher than 5 seconds and calculated the accuracy 

of the duration in each of these experiment. As shown in table 4.4.1-8, the accuracy of 

the duration measured by our CFC phone component in both types of experiments is 

very high (85.46% and 90,73%). 
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4.4.1-8: CFC Duration Accuracy 

Duration Average 

Accuracy(%) 

Average (Sec) STDEV(Sec) 

Less than 5 seconds 

(30 experiments) 

85.461 0.497 0.0896 

More than 5 seconds 

(30 experiments) 

90.737 0.799 0.0653 

 

4.4.1.4. CFCA Resource Consumption 

To measure the resource consumption of our CFC phone component, we created a 

sample Android application that displays a white background and our CFC banner ad. 

At run time, the CFC phone component fetches an  ad and displays it in the CFC banner 

ad. We clicked on the ad, spent 5 seconds on the advertiser’s website, and closed the ad. 

The goal of this experiment is to measure the bandwidth and battery consumption 

caused by the CFC ad opened/closed challenges or any other component implemented 

in our system that are not adopted by traditional ad networks such as the 

opening/closing of the Webview. Therefore, we used an experiment duration of 30 

seconds that is sufficient enough to be able to achieve these two handshakes, ad 

webview opening and ad webview closing, regardless of the duration spent on the 

advertiser’s website. We do not address the resource consumed while browsing the 

advertiser’s website since it depends on the content delivered by each advertiser’s 

website. To have a more accurate final result, we repeated the experiment 10 times (30 

seconds duration each). 

We created another Android application that integrates AdMob [15] banner ads. 

We repeated the same experimental procedure by clicking on the ad in each experiment. 

Unlike our CFC system, after clicking an ad, AdMob [15] opens either the Google Play 

Store in case the ad is an Android application ad, or opens the default web browser in 
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the phone such as Google chrome. Therefore, we evaluated also the bandwidth and 

battery consumption in Google Play Store or the default web browser (depending on the 

ad clicked) during these experiments. To have a more accurate final result, we repeated 

the experiment 10 times (30 seconds duration each). 

As shown in table 4.4.1-9, our proposed model consumes in terms of battery 

consumption on average 0.7851 J/30 seconds, whereas Admob [15] consumes on 

average 12.13 J/30 seconds, and 3.03 J/ 30 seconds to display the advertiser’s 

application in the Google Play Store. 

As shown in table 4.4.1-9, our proposed model consumes in terms of bandwidth 

consumption on average 18.494 KB/30 seconds, whereas AdMob [15] consumes on 

average 385 KB/30 seconds, and 144.44 KB/ 30 seconds to display the advertiser’s 

application in the Google Play Store. 

Based on these experiments we can conclude that both bandwidth and battery 

consumptions in CFC are very minimal compared to the popular ad network AdMob 

[15]. 

 

4.4.1-9: Resource Consumption Comparison 

Ad Network 
Bandwidth (KB/30 seconds) Battery (J/30 seconds) 

Average STD Average STD 

CFC 18.494 5.098 0.7851 0.213 

AdMob [15] 385 26.13 12.13 2.24 

Google Play Store  144.44 154.68 3.03 1.348 

 

4.5. CFC Conclusion and future work 

In this thesis, we proposed a new crowdsource based system that collaborates with 

both advertisers and ad networks in order to protect both parties from click fraudulent 
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acts. This system manages ad fetching, ad clicks, and monitors the activity of redirected 

users on the advertiser’s website. It is able to track the user’s duration in each 

advertising website and at the same time to gather multiple ad requests data 

corresponding to different ad network-publisher-advertiser combinations. In addition, 

the information gathered securely in our proposed model can be used as an 

enhancement to the CPA model. 

Our results showed that our proposed method is suitable to lower the false positive 

rate (FPR = 0 with CFCAST = 30) when detecting click fraud as opposed to proposed 

solutions in the literature (FPR = 1) while having a high true positive rate at the same 

time (TPR = 0.93 with CFCAST = 30). Our system is transparent to both the publisher 

and the advertiser in terms of implementation.   

However, our framework represents three main limitations: it requires an 

additional step to be performed by the ad network to merge its library with the phone 

CFC library, it presents a privacy concern since the IP associated with the used 

application and timestamp is sent to the CFC server, and it requires the advertisers and 

ad networks to trust the CFC party.  

In future work, we will implement a crowdsource based algorithm that detects 

whether an advertiser is attacked by its competitors, and whether the user installed an 

advertised application, in case he is redirected after clicking the ad, to an application 

download page instead of an advertising website. 

 

4.6.  Summary 

This chapter presents the second part of this thesis: Using crowdsourcing for click 

fraud detection. It explains the proposed solution, the implementation followed in both 



57 

client and server side, the attackers’ models that are covered by CFC, and the proposed 

CPA model. In addition, it presents the obtained results of our experiments, and its 

analysis. In addition, it provides an insight on the future work that could enhance our 

CFC model and a conclusion of this section. 
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CHAPTER 5 

CONCLUSION & FUTURE WORK 

 

In the first part of the thesis we evaluated the bandwidth and battery consumption 

of in-app ads among several ad networks. The experimental procedure followed in this 

study demonstrates that resource consumption varies among networks and is usually 

consistent in the same ad network for a given duration. In addition, this study highlights 

a common behavior of fetching ads between several ad networks where ads are fetched 

at the beginning of runtime and displayed throughout the application session. This 

variation and significance of resource consumption indicates that developers need to 

take into consideration the bandwidth and battery consumptions when choosing the 

right ad network. On the other hand, the ad networks should adopt an ad-fetching 

mechanism that does not include large network overhead or unnecessarily heavy battery 

consumption. Furthermore, ad networks should adopt a transparent approach where they 

specify clearly the bandwidth and battery consumption associated with their ads 

fetching platform. Future work includes the evaluation of additional ad networks, 

testing on several devices, and a more accurate way to measure the variation of this 

consumption across time. 

In the second part of the thesis, we proposed a new crowdsource based system that 

collaborates with both advertisers and ad networks in order to protect both parties from 

click fraudulent acts. This system manages ad fetching, ad clicks, and monitors the 

activity of redirected users on the advertiser’s website. It is able to track the user’s 

duration in each advertising website and at the same time to gather multiple ad requests 

data corresponding to different ad network-publisher-advertiser combinations. In 
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addition, the information gathered securely in our proposed model can be used as an 

enhancement to the CPA model. 

Our results showed that our proposed method is suitable to lower the false positive 

rate (FPR = 0 with CFCAST = 30) when detecting click fraud as opposed to proposed 

solutions in the literature (FPR = 1) while having a high true positive rate at the same 

time (TPR = 0.93 with CFCAST = 30). Our system is transparent to both the publisher 

and the advertiser in terms of implementation. 
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