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IPsec is a point-to-point protocol that provides security between IP nodes and
solves many network security problems by providing authentication, integrity and
confidentiality. However, the point-to-point nature of IPsec does not allow the
formation of a scalable IPsec network. Our aim is to design and implement an al-
gorithm, k-Constrained Connected Dominating Set (k-CCDS), that constructs a
scalable IPsec network, by creating a backbone which reduces the total number of
Security Associations (SAs) needed to maintain a secure network, while satisfying
the following three constraints: k-connected dominating set providing alternate
disjoint paths, degree-constrained paths by limiting the number simultaneous SAs
allowed on each node, and a shortest path by upper-bounding the cost of a path
between two nodes (number of SAs a packet has to travel). The algorithm will
form a backbone of IPsec gateways, where an SA exists between any two gate-
ways that are directly connected and are part of the shortest path. When a node
wants to communicate with another node (backbone or non-backbone), rather
than forming an SA with the target node it will form an SA with the backbone
IPsec gateway it is connected to which in turn will forward the packets securely
through the backbone. Furthermore, k-CCDS can be used not only to form IPsec
scalable networks, but also to construct any network architecture that requires
the satisfaction of the provided three constraints. Our experimental results have
shown that k-CCDS reduces the number of SAs required to construct scalable
IPsec networks and the number of links needed to efficiently route packets in
general scalable networks by 67% to 99.8% depending on the size of the network.
Additionally, the proposed algorithm is proven to find a relaxed solution when a
solution with the provided constraints does not exist.
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Chapter 1

Introduction

The network layer Internet Protocol (IP) provides an unreliable, best-effort, con-
nectionless and insecure packet delivery service. It is an unreliable service because
packets can get lost, be delivered out of order, get delayed and arrive as dupli-
cates at the target host. It is a best-effort service because the network will do
its best to deliver a packet. It is a connectionless service because routers do not
have any state. It does not have any inherent security as it is easy to forge an IP
packet’s address, modify its content, replay old packets, and inspect the content
of packets. In general, there is no guarantee that the received datagrams are from
the claimed sender, contain the original intended data and that the original data
was not inspected by an attacker (eavesdropper) during its transmission.

1.1 IPsec Overview

IP Security (IPsec) [3] protects IP packets by providing data origin authentica-
tion, data integrity, data confidentiality and protection from replay attacks [4].
IPsec protects IP datagrams and higher layer protocols (e.g. TCP and UDP)
which can be exchanged between hosts, between network security gateways (e.g.
firewalls or routers), or between hosts and security gateways. There exists a
mandatory-to-implement suite of algorithms to ensure interoperability between
different implementations. Shared keys are required by the security services of
IPsec to provide authentication and/or confidentiality. The key management pro-
tocol is called Internet Key Exchange (IKE) [5].
IPsec supports two protocols which can be used separately or together:

• Authentication Header (AH): provides data origin authentication, data
integrity and anti-replay protection.To identify an AH header, the IPv4
protocol field or the IPv6 next header field is set to 51.

• Encapsulating Security Payload (ESP): provides data origin authentica-
tion, data integrity, data confidentiality and anti-replay protection. To
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identify an ESP header, the IPv4 protocol field or the IPv6 next header
field is set to 50.

The IPsec protocols ESP and AH can be used in two modes:

• Transport mode: is used to protect the upper layer protocols such as TCP
and UDP. The IPsec protocol, ESP or AH, header is inserted in front
of the upper layer header and after the IP header. Transport mode is
used to provide end-to-end security and hence it cannot provide identity
protection because the IP address is sent in the clear.

• Tunnel mode: is used to protect the entire IP packet. In Tunnel mode,
the IPsec protocol, ESP or AH, header is added in front of the original
(inner) IP header and the new (outer) IP header is added in front of the
IPsec header, where the new IP header can be the same or different from
the original header based on the destination. The inner header specifies
the communication endpoint whereas the outer IP header specifies the
cryptographic or security gateway endpoint, which allows it to provide
identity protection.

Every host in the network can have IPsec connections to multiple hosts using
tunneling. To be able to distinguish between these connections and to create a
communication contract between end-hosts, IPsec uses a communication identi-
fier called Security Associations (SA) which are stored in the Security Association
Database (SADB). An SA is used to identify the traffic that should be protected
and with whom this protection is performed. Hence, both IPsec endpoints share
the same SA. Every SA is identified by: Security Parameter Index (SPI) located
in the IPsec header to uniquely identify an SA, IPsec protocol used and the desti-
nation address with which protection is performed. SA being unidirectional, two
SAs are needed at each end-host to create an IPsec connection, one for inbound
traffic and the other for outbound traffic.

To provide a secure communication channel between end-hosts, the users must
be able to specify the required policies. The Security Policies (SP) are used to
identify the level of security that should be applied to the traffic, in other words
the authentication algorithms eg. HMAC-SHA-256, and encryption algorithms,
eg. AES that should be used to protect the traffic. All the security policies
are then stored in the Security Policy Database (SPD). Once a new traffic is
obtained or generated at a host, the SPD is consulted to identify the traffic to
be protected, how to protect it (through SPs), and with whom the protection
is shared (through SAs). Based on the fields in the SPD, the traffic is either
discarded, protected, or bypassed. SPD entries that define the action “protect”
will point to an SA(s) that identify the state used to protect the packet.

The SPD of IPsec calls the Internet Key Exchange (IKE) [5] to create the SAs
between two end-hosts. IKE operates inside the Internet Security Association &
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Key Management Protocol (ISAKMP) [6] framework, which defines the packet
formats and exchanged message construct, and is a combination of Oakley [7]
and SKEME [8] protocols which define the steps two end-hosts must follow to
create a shared and authenticated key. IKE SAs are initially created between
the IKE peers which are the IPsec peers, and then the IPsec SA keys are derived
from the IKE SA keys. IKE has its own policy settings through which it creates
its SAs. It defines a policy in terms of protection suits, where each suit defines
at least the encryption algorithm, the hash algorithm, the Diffie-Hellman group,
and the method of authentication. These policies are stored in the IKE Policy
Database and are weighted based on their order of preference.

The creation of the IKE SAs is known as Phase 1, which can operate in two
modes: Main mode and Aggressive mode. After the creation of IKE SAs by
Phase 1, the creation of IPsec SAs is known as Phase 2 which operates in Quick
mode only.

1.2 Motivation

IPsec being a point-to-point protocol has limitations in constructing scalable
secure networks which are the following:

• Two IPsec SAs are required between any two nodes to have secure com-
munication between them in the network. Hence, we need a large number
of SAs.

• Large memory is required to store all the security associations (SAs),
which may cause a problem on limited memory-constrained devices.

• We have a large overhead in configuring and maintaining Phases 1 & 2
for each IPsec channel. Additionally, we have a frequent renewal of keys
for each pair of IPsec peers.

Assuming that we have N nodes in a network, the total number of SAs needed
to have a secure network is 2N(N-1). Consider a scenario of 1,000 nodes trying
to establish a secure connection with each other using IPsec: every node needs
to establish an end-to-end IPsec channel with every other node. Since each node
needs two Security Associations (SAs), one for inbound traffic and another for
outbound traffic, then every node needs to maintain 1,998 SAs to provide IPsec
protection to these nodes. Furthermore, the total number of SAs needed to have
a secure IPsec network is 1,998,000! After establishing a secure connection, the
Internet Key Exchange (IKE) should periodically renew keys used to secure the
communication to reduce the probability of someone compromising the secured
system. An IPsec gateway or customer edges (CE) can be applied at the edge
of our network, to provide security services to the clients connected to the IPsec
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CE in a protected subnet. Because of the point-to-point nature of IPsec commu-
nication, IPsec gateways must be stable, highly reliable and scalable [9].

In this research, we propose the design of a backbone that allows the con-
struction of a scalable IPsec network. Rather than establishing an SA as a com-
munication channel between every two nodes, the corresponding non-backbone or
backbone IPsec gateway will create a secure and reliable connection through the
backbone IPsec gateways by creating a chain of SAs, which will connect the node
securely to the requested backbone or non-backbone target IPsec gateway. We de-
signed an algorithm, k-Constrained Connected Dominating Set (k-CCDS), that
constructs a scalable secure network while satisfying the following constraints:
minimize the size of the backbone, provide k alternate disjoint paths to overcome
node or link failures, minimize the cost of a path through limiting the number
of SAs traversed, and upper bound the number of SAs allowed on each node.
Furthermore, k-CCDS is not limited to construct IPsec scalable networks only.
It is a general algorithm that can be applied to construct any scalable network
architecture that requires the satisfaction of the stated constraints.

The rest of the thesis is organized as follows. In Chapter 2 we review the pre-
vious work done in this domain. Chapter 3 presents our system model. Chapter
4 demonstrates and explains the algorithms that we have developed to construct
our model. Chapter 5 includes the proofs that demonstrate the correctness of
our algorithms. In Chapter 6 we run experiments using our model, verify its cor-
rectness and performance, and compare with existing models. Finally, Chapter
7 concludes the thesis work.
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Chapter 2

Literature Review

The aim of this literature review is to give a general overview about some impor-
tant concepts related to the thesis work.

2.1 VPN and IPsec Scalability

Francesco Palmieri in [10] analyzes and tests the scalability, weaknesses and
strengths of two fast growing and highly performing VPN [11] architectures which
provide secure connectivity through the insecure internet network. The first is
IP layer overlay tunnel based VPNs, IPsec [3], and the second is peer network
based VPNs, MPLS [12]. IPsec being a point-to-point protocol provides end-
to-end strong security to its end-points through the insecure network, however
it suffers from scalability issues, whereas the tag based MPLS architecture pro-
vides scalability meanwhile maintaining its high performance and isolated traffic
through intelligent forwarding and tagging, but suffers from the customer’s need
of service provider’s trust. IPsec has scalability issues because every host needs
to have a tunnel with every other host in the network (number of hosts squared),
which increases the computational overhead to maintain SAs and routing infor-
mation, and this complexity and liability increases with the increase in the size
of the network. Unlike IPsec, MPLS networks are scalable since customer edges
(CE) do not need to know or maintain any information regarding other CEs or
even run MPLS. This is possible because the provider edge (PE) is responsible in
forwarding the packets through the provider core using smart routing techniques.

The author in [10] presents two extreme designs of IPsec networks; the first
is the star topology where a single hub is responsible in relaying all the traffic
between any two spokes by having each spoke have a pair of SAs toward the
hub only, and the hub to have a pair of SAs with every spoke in the network.
This solves the scalability problem but adds an overhead because every packet
of every spoke has to be processed , encrypted and decrypted, by the hub which
adds a lot of processing overhead and significant latency (due to maintaining all
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the SAs and processing all network packets). The second scenario is the full mesh
topology which has high security but a critical scalability problem, although it
provides a lower latency compared with the star topology. MPLS VPN is highly
scalable [10] because the provider core is transparent to the CEs and no tunneling,
encryption, is used to keep connectivity between the communicating parties; it
maintains scalability and security through creating private networks by using the
inherent connectionless nature of TCP/IP networks. What the CEs need to know
is simply the PE they should communicate with to connect with the network.

De Clercq et al. in [13] analyze in details the scalability issues that occur
due to the architecture of MPLS VPN based networks. In layer 3 network-
based VPNs, the intelligence and processing is concentrated in the PE router
which must provide and maintain isolated contexts for different VPNs by first
implementing Virtual Routers (VR), and second by creating tunnels between
PE routers, where MPLS shows promising results. For large scalable networks
consisting of thousands of VPNs, every PE has to maintain a large number of VRs,
hence the need of a large number of routing and forwarding tables in addition
to the presence of a large routing table needed to maintain internet connectivity.
From the perspective of routing distribution and processing which is dependent
on the number of VRs in PEs that belong to a certain VPN, whether the peer
model [14] or the overlay model [12] is used, the absence of intelligent mechanisms
that minimizes the propagation and processing of routing information will lead
to an increase in the frequency of the update sessions and thus an increase in
the negative impact on scalability. MPLS can solve the scalability problem that
arises due to tunneling by multiplexing tunnels of VRs on two different PEs in
a larger tunnel and thus the provider backbone needs to have the knowledge of
these large tunnels only. Although MPLS VPN solves the scalability problem to
a certain extent, it does not provide strong security because it does not use any
cryptographic functions such as encryption and authentication.

Although MPLS VPN tries to implement security by creating private and
isolated network, it doesnt provide any authentication and confidentiality [10],
which becomes significantly important to protect the MPLS VPN from attackers
when it is connected to the internet [13]. To incorporate control layer authenti-
cation, the authentication feature of BGP can be used to prevent the injection
of wrong routes on the PEs by analyzing the label of the packets. In the absence
of strong security, since the provider network cannot be fully trustable because
it can depend on other SP networks to provide VPN to CEs, accidental mis-
routing can occur and thus different VPNs can access and eavesdrop each others
data. Additionally, the lack of authentication prevents the filtering of data traffic
coming from masqueraded or malicious PEs and CEs.

The addition of data layer confidentiality can take two forms [13]; customer
based CE-CE end-to-end encryption and network based PE-PE encryption. CE-
CE encryption alone does not provide protection from VPN resource spoofing
because an intruder can inject malicious traffic on the CE-PE links and thus
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the PE cannot know if the traffic is authentic or not, and will therefore forward
the malicious packets. To prevent CE-PE eavesdropping and injections, further
encryption and authentication can be added to this link which adds an extra
processing overhead. Adding these cryptographic functions to maintain strong
security degrades the scalability of the network because it adds processing due
to the heavy cryptographic functions and an increase in memory consumption.
PE-PE IPsec transport mode with IP tunneled MPLS packets is recommended
by the authors in [15] which can reduce the number of SAs needed, but the
need of CE-PE security to have a fully secure network is unavoidable, and thus
additional SAs are negotiated. Furthermore, we can observe that if a certain
PE-PE connection or PE is compromised, all the VPNs that have VRs in these
PEs will become vulnerable because they use the same IPsec in transport mode
to provide security.

Therefore, the authors in [13] showed that we have a tradeoff between scala-
bility and strong security. As for the experiments performed in [10], the response
time and performance of MPLS VPN, in terms of CPU and memory usage, was
better compared to classical IPsec, however both showed similar results in terms
of throughput. As for the scalability which is the most important factor, since
the analysis has been done on 3 provider routers, 2 PEs and 4 CEs, it does not
really capture the performance of MPLS VPN in scalable networks because scal-
able networks consist of hundreds and thousands of nodes.

Group VPN by Juniper [16] [17] and GET VPN (Group Encrypted Transport
VPN) by Cisco [18] are extensions of IPsec protocol that allow the creation of
secure scalable networks. Unlike traditional IPsec, nodes do not have a point
to point tunnel or SA with every other network entity they want to securely
communicate with. In Group VPN we have the concept of a trusted group,
where all the members share a single group SA (SA TEK) and encrypt/decrypt
the traffic of any other group member. Hence, the number of IPsec SAs needed
is reduced from n2 to 1, where n represents the number of nodes or members of
the network. Thus Group VPN is a tunnel-less protocol because all the members
share the same SA and no tunnel is created between any two group members.
Furthermore, Group VPN provides tunnel header preservation. This is possible
because of its tunnel-less nature where IPsec packets have the same inner and
outer IP header, and thus the source and destination addresses are preserved.
This allows Group VPN to route its encrypted packets using the already existing
underlying network infrastructure rather than creating an overlay network. A
Group VPN consists of a Group Controller and Group Members. During the
first phase of creation of a group, every host that wants to join the group creates
a unique IKE Phase 1 SA with the group controller as in traditional IPsec, and
specifies the group it wants to register with after authenticating itself with the
controller. The group controller in return sends all the necessary group keyes,
policies and SAs, using IKE SA, to the newly joining group member. This allows
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the new group member to communicate with any other group member. As in
traditional IPsec, we know that keys expire and to prevent the risk of leakage,
the group controller periodically sends rekey messages to all group members, IKE
Phase 2 shared by all members, which contains the new group SAs and keys before
the expiration of the old group SA. As we can notice, we have two different types
of traffic in Group VPN: control messages such as rekeys exchange between group
controller and members which are encrypted and decrypted using Key Encryption
Key (KEK), and data plane messages such as data packets between different
group members which are encrypted and decrypted by group members using
Traffic Encryption Key (TEK). In Group VPN [16] [17] when a group member
cannot communicate with the group controller, it will stop forwarding traffic by
default. This is known as fail-closed. In the fail-open scenario, only specific traffic
is allowed to be forwarded through the group member without being encrypted
until connectivity is restored, while the remaining obtained traffic is discarded. To
add redundancy and prevent single point of failure [18], multiple group controllers
or key servers can be used cooperatively to provide recovery from failure. The
following are the most important services that are not supported by Group and
GET VPN: high availability, Group VPN is recommended to be used in private
networks, the whole group is compromised if a group member or the controller
is compromised, overlapping Group VPNs can create mismatched SAs, and NAT
traversal problems because of tunnel header preservation.

2.2 Degree Constrained Minimum Spanning Tree

The authors in [19] formulate the degree-constrained minimum spanning tree
(DCMST) problem and provide three algorithms to generate a DCMST: primal
method, dual method and branch & bound method (B&B). DCMST problem can
be described as finding a MST such that the number of connections (in-degree
and out-degree) of every node does not exceed a given degree constraint. The
primal method is a modification of Prims algorithm such that, the inclusion of any
new edge into the tree does not violate the degree constraint. The dual method
starts by creating a MST by running Prims algorithm, and fixes the nodes that
are violating the degree constraint by finding a replacement path that minimizes
the penalty of the cost on the DCMST. The B&B method [20], calculates the
lower bound for each node by finding the MST through exclusion and inclusion
of edges, which is very similar to the traveling salesman problem. The B&B
method converges to a general optimal solution, however it requires more storage
compared to the primal and dual methods, and the running time increases rapidly
as the number of nodes is increased.
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2.3 Dominating Set Problem

2.3.1 Dominating Set Generalization

In [21], the authors formalize the dominating set generalization problem and pro-
vide an approximate algorithm in calculating the dominating set of a graph. The
aim of the dominating set problem is to find a dominating set with minimal car-
dinality such that, every node in G is either in the dominating set or is connected
to at least ki vertices of the set. They propose an approximate algorithm that
calculates the dominating set of a graph but it takes exponential time. To find a
small dominating set the authors propose that, it is better to assume that vertices
of high degree should belong to the dominating set with higher probability than
vertices of small degree.

2.3.2 Vector Connectivity

The authors in [22] formalize the vector connectivity problem and provide vari-
ations of their algorithm to be applied on three different types of graphs: split
graphs, co-graphs and trees. Their motivation for vector connectivity comes from
challenges in domination, connectivity and information propagation in social and
other networks. Vector connectivity is studied by the authors because it provides
connectivity between parts of a graph via node-disjoint (alternate) paths. The
vector connectivity problem is very similar to the dominating set problem with
an additional constraint that a node that does not belong to the dominating set
must have k node disjoint paths, without having any restriction on the length
of the involved disjoint paths. The authors propose that, vector connectivity
can be solved in polynomial time on split graphs, co-graphs and trees. It can
be approximated within a factor of ln(n) + 2 in polynomial time. This is possi-
ble because, vector connectivity can be recast as a particular case of minimum
sub-modular cover problem which allows to apply classical approximation due to
Wolsey. However, no general algorithm has been proposed that could work on
any type of graph.

2.3.3 Connected Dominating Set in Ad Hoc Wireless Net-
works

Wu et al. [1] [23] propose an approximation algorithm that can quickly determine
the dominating set (DS) in a given connected network because finding an exact
solution is NP-hard. In addition to that, they discuss procedures to update and
recalculate the dominating set when the underlying network topology changes
and describe efficient routing using connected dominating set (CDS). A subset of
vertices of a graph called gateways or backbone nodes, is a Dominating Set (DS) if
every vertex not in the subset is adjacent to at least one vertex in the subset. The
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main advantage of a connected dominating set based routing is that it centralizes
the whole network into a small CDS sub-network, where only the backbone keeps
the routing information and there is no need to recalculate the routing tables
as long as there are no changes in the network topology. The proposed process
called Marking Process decides which nodes will eventually belong to the DS,
and extends it by introducing two rules through assigning unique id to nodes to
solve the problem of having the whole graph as DS when graph is symmetric.
Every vertex in the graph has a marker m(v) ∀v ∈ V that can be either true or
false. Initially all the nodes are unmarked (False). The nodes that we mark will
eventually form the backbone of the DS of our graph.

Figure 2.1: Example of Ad-Hoc Wireless Network [1]

In Figure 2.1 for example, B will be marked because its neighbors A and C
or D and C are not connected. Similarly C will be marked because its neighbors
B and E are not connected. The gateway host keeps information about gateway
membership of the entire sub-network and local routing table. If shortest path
routing is used, then the source sends a request to all its gateway neighbors to
calculate the shortest path to the destination. They will reply by sending the
minimum route length to the source. The source node will then pick the smallest
one as its routing path.

2.3.4 k-Connected k-Dominating Set in Ad Hoc Wireless
Networks

The authors in [2] propose and compare four construction protocols to obtain a
CDS that maintains a certain degree of redundancy in the backbone for fault tol-
erance and routing flexibility; they allowed every node to have different paths to
the backbone to avoid loss of important data during link or node failures. A node
set is k-dominating if every vertex is either in the set or has k connections to the
DS. Hence, the aim is to obtain a k-CDS as a virtual backbone that can survive
failures of at least k-1 nodes. Four construction algorithms are proposed, which
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are localized and rely only on neighborhood information because they are low
cost and quickly converging. The time-complexity to verify the k-connectivity,
k-node disjoint paths, of a graph is O(k2|E||V |).

Localized CDS algorithms are either probabilistic or deterministic. The first
two algorithms, k-Gossip and k-Grid, have s probabilistic approach which incurs
very low overhead and maintains a CDS with high probability, but produces
a relatively large backbone and highly depends on network parameters. The
third algorithm, k-CDS, is a deterministic algorithm which guarantees a CDS
in connected networks because it uses smart selection methods, however it has
a high computation/construction cost: Node v has a non-backbone status if for
any two neighbors u and w, k node disjoint replacement paths exist that connects
u and w via several intermediate nodes with high priorities than v. The fourth
construction protocol is a hybrid paradigm that enables 1-CDS algorithm to
construct k-CDS with high probability in dense networks and does not depend on
any network parameters. It makes the migration process simpler and easier when
extending an existing CDS algorithm to k-CDS compared to other construction
algorithms which need to modify their CDS construction algorithm and hence
make it more complex to obtain a k-CDS. It randomly partitions the network
into k sub-networks with different colors (probabilistic approach) and applies a
traditional CDS algorithm to each sub-network (deterministic part). Then joins
the k-colored backbones forming a k-CDS: Node v has a non-backbone status if
for any two neighbors, u and w, a replacement paths exist that connect u and w
via several intermediate nodes (if any) with the same color as v and with higher
priority than v. The following table provided by the authors, summarizes the
comparison between the four k-CDS construction algorithms:

Figure 2.2: Comparison of k -CDS Algorithms [2]
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2.4 Shortest Path Routing

The authors in [24] [25] propose an algorithm to construct a Bluetooth scatternet
spanning given sensor nodes such that the total energy consumption during a
single round of data transfer from every sensor node to the base station is kept to
a minimum by making the total size of the scatternet as small as possible. The
main difference between the design in [24] and [25] is that, in [25] the devices are
capable of power control hence the energy needed for transmission depends on
the distance (cost of an edge is not necessarily a unit cost) whereas in [24] the
devices are not capable of power control hence it is independent of the distance
between nodes (the edges have unit cost). The algorithm in [25] starts by forming
a shortest path tree from the source using Dijkstra’s single source shortest path
algorithm [26]. However, after obtaining the SPT the degree constraint of some
nodes will not be satisfied. The algorithm then searches for the nodes that are
violating the degree constraint. For every violating node, the first algorithm
checks for every child if they can be connected to some other node, with minimal
penalty, whose degree constraint is not violated when this new connection is added
and if the connection is not part of the original SPT. Then for every child the
connection that has the minimum penalty is selected and from all the children of
the violating node the one with the minimal penalty among the minimal penalties
is chosen to be disconnected from the violating node and connected to the newly
selected node. The second algorithm tries to minimize this penalty by checking
the descendants of the chosen child if they can be reconnected with a shorter
path (less cost) to the SPT without violating a degree constraint. This whole
process is repeated until the degree constraint of every node is satisfied. As

Figure 2.3: SPT Example with Degree Constraint Violation

an example assume that after running Dijkstra’s algorithm we obtain the SPT
shown in Figure 2.3 where the yellow edges are part of the SPT. Also assume that
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node K is violating the degree constraint. Next assume that connecting S to M

Figure 2.4: SPT Example After Fixing Degree Constraint Violation

minimizes the penalty we obtained in Figure 2.4, where the label of S increased
by 2 and so did the label of R. Since the penalty of node R can be minimized by

Figure 2.5: SPT Example with Minimum Penalty

connecting it to F, we finally obtain an increase in the label of S by 2 and the
label of R by 1 rather than 2 as shown in Figure 2.5.
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Chapter 3

System Model

In IPsec networks, any two hosts that want to communicate securely with one
other have to create an end-to-end IPsec connection by creating a pair of IPsec
SAs through Phase 1 & 2 modes of exchange. Additionally, the keys that are
used to provide confidentiality and data origin authentication have to be renewed
periodically to prevent the compromise of the channel by attackers. However, as
the network gets larger the number of SAs needed at each node increases together
with the complexity in maintaining all these connections, reserving memory for
the SADB and SPD, and renewing keys.
Our goal is the design of a scalable IPsec network that solves these problems
in large IPsec networks by constructing a trusted backbone from a given set of
nodes that provides security between end-hosts through secure and reliable IPsec
gateways. In our scalable architecture, we do not maintain any end-to-end IPsec
SAs. Rather, the links that are chosen to be part of constructed network are
secured individually using IPsec. Therefore, a chain of IPsec connections or SAs
exist between two hosts that want to communicate with one other.

3.1 Objectives

The following are the objectives that we meet through designing the algorithms
for the construction of a scalable secure network:

3.1.1 Connected Network

Connectivity is one of the important concepts in networking and graph theory. As
Mengers Theorem [27] states, it is the minimum number of edges whose removal
results in a disconnected graph. A graph is connected when we have a route
from every node to any other node in our graph. In other words, there are no
unreachable nodes. The connectivity of a network is a measure of the robustness
of the network.

14



3.1.2 Shortest Path

The shortest path problem is the problem of finding a path between two nodes
in such a way that the sum of the weights or costs of the edges belonging to this
path is minimized. In our design, the first constraint is to control the cost of
the shortest path by bounding the allowed maximum number of SAs required to
travel from one host to the other. It is important to have a bound on the cost
of a path because long paths cannot achieve fast convergence neither have a low
maintenance cost. In addition to that, shortest path reduces the latency and
response time of the network.

3.1.3 Degree Constraint

The aim of a degree constrained graph is to have a balance in the distribution
of the load in the network. To have a scalable IPsec network, the SAs should be
evenly distributed across the nodes in the backbone. The second constraint puts
a limit on the maximum number of SAs that are allowed on each node.

3.1.4 Dominating Set

A set of nodes is a dominating set if all the nodes in the network are either in
this set or have a neighbor in this set. Applications of a connected dominating
set in wireless networks include:

• Reduction in routing overhead: through the removal of links between
non-backbone nodes, the maintenance cost and the size of the routing
tables can be reduced. We can also avoid excessive broadcast redundancy
by having only the backbone nodes forward the broadcast packets.

• Area Coverage: it gives us a good approximation about the node coverage
of a connected dominating set.

Although minimizing the size of the connected dominating set will increase
the efficiency of the network, it will not take redundancy into consideration. To
add redundancy on top of minimizing the size of the Connected Dominating Set
(CDS), we need to provide alternate routing paths to the nodes in the network.
It is natural for a node to fail due to some damage, energy depletion, and long
terms of usage or node movement. The addition of this redundancy will overcome
these faults that occur and provide routing flexibility through providing alternate
disjoint paths.

3.2 Definitions

Non-Backbone node: if every combination of neighbors of a node has k alternate
disjoint paths between each other satisfying degree constraint and path bound,
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then the node becomes a non-backbone node. This means that the neighbors can
reach one another without this node.

Backbone node: if any combination of neighbors of a node does not have k al-
ternate disjoint paths between each other satisfying degree and path constraints
through the backbone, then the node becomes a backbone node. This means that
the neighbors cannot reach one another without this node.

Backbone: is a collection of backbone nodes, constructed dynamically, that pro-
vides connectivity to the graph. Any node can reach to any other node in the
graph through the backbone. The backbone is responsible for carrying informa-
tion between any two nodes and can tolerate at least k − 1 simultaneous node
failures while maintaining connectivity.

Cost of an Edge: it represents the number of routers, hops or SAs between
two nodes, where the edge exists in between.

Connected Graph: if every node can reach to any other node in the graph, a
graph G is said to be connected. In other words, there is a path between any two
nodes in the graph.

k-vertex connectivity or k-connectivity : A graph G is k-vertex connected if it
is connected and removing k-1 nodes from it does not create a disconnected
graph of G. In other words, any two nodes in the graph are connected via k-node
disjoint paths (Manger’s Theorem) [27].

k-CDS : A node set V ′ ⊆ V is k-dominating set of G if every node is either
in the set V ′ or connected to at least k neighbors in the set V ′. A k-dominating
set is a k-CDS if the generated subgraph G[V ′] of V ′is k-vertex connected [2].

k-coverage condition: Node v has a non-backbone status if for any two neigh-
bors u and w, k node disjoint alternate paths exist that connect u and w via
several intermediate nodes with higher IDs than v [2].

k-constrained-coverage condition: Node v has a non-backbone status if for any
two neighbors u and w, k alternate node disjoint paths exist that connect u and w
through the backbone via several intermediate nodes with higher priorities than
v satisfying the degree and path constraints.

Neighborhood : The neighborhood N(i) of a vertex i ∈ V is the set of all neighbors
of i in G.
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3.3 System Design

To obtain a secure link in current networks, a node has to establish an end-to-end
secure channel with every other node it wants to communicate with. This has
scalability issues in a large network since every host will have SAs equal to two
times the number of nodes it wants to establish an end-to-end secure link with.
In our design we aim to solve the scalability problem by creating a backbone
through Algorithm 1, described in Chapter 4, that contains a subset of these
nodes which are selected based on certain parameters (i.e. priority). This allows
the non-backbone nodes, also called Non-Backbone IPsec Gateways to establish
an IPsec connection with the backbone nodes, also called Backbone IPsec Gate-
ways, they are closest to and that reliable IPsec gateway itself will have secure
IPsec connections with a chain of backbone IPsec gateways hence allowing a se-
cure data transmission between any two nodes in the network. It is important
to note that all the nodes in the network must be trusted, belonging to the same
large network, and hence the ability to create a chain of IPsec SAs.

The nodes that lie outside of the backbone can communicate with any other
node in the network through the backbone gateways only, thus having only one
SA with the backbone node rather than having an SA with every node in the net-
work. To minimize the number of SAs negotiated inside the backbone, we ensure
that any IPsec communication path has minimal cost satisfying the properties of
Degree Constrained Shortest Path Tree (DCSPT) and the number of SAs that
are part of the path have a certain upper bound that should not be exceeded. It
is important to have a limit on the number of SAs, through the degree constraint,
that a node can have to solve the problems that traditional IPsec networks suffer
from as mentioned above. However, this scalable architecture introduces a very
critical problem that traditional IPsec networks did not have. Since we have a
chain of SAs that provide security between end-hosts, we have an increase in
the latency of the network because of the increase in the number of encryptions
and decryptions needed, which is proportional to the number of edges that are
part of the IPsec path. Traditional networks did not suffer from this problem
since they had one encryption and decryption due to the point-to-point nature
of IPsec. Therefore, we untangle this problem by the introduction of the sec-
ond constraint which is the bound on the number of edges that form a part of
the IPsec chain between two securely communicating end-points. Finally to add
redundancy against node failures, we use the concept of k-CDS to ensure that
every node can reach to any other node in the graph through k alternate disjoint
paths. Furthermore, even if one of the nodes is compromised by an attacker,
the presence of k alternate paths allows us to consider the compromised node
as failing and thus an alternate path with minimal costing chain of IPsec SAs is
chosen out of the remaining k − 1 possibilities.
As show in Figure 3.1, the backbone IPsec gateways that are responsible for
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transmitting the secure data from the non-backbone IPsec gateway, are selected
to be part of the backbone because they have a higher priority, they constitute
the shortest path from the source towards the destination, they are connected to
at least k other backbone nodes, they do not exceed the maximum number of
SAs that they are allowed to have and this secure connection satisfies the upper
bound on the number of SAs that a path is allowed to contain. This allows the
creation of a chain of secure IPsec connections between backbone nodes and be-
tween backbone and non-backbone nodes through satisfying the degree and path
constraints. The backbone node is responsible for connecting any node with any
other node in the graph, whereas a non-backbone node is allowed to communicate
only through the backbone nodes it is connected to.

Figure 3.1: Scalable IPsec Network Example

3.3.1 Problem Statement

To formalize our problem and design algorithms to construct our scalable archi-
tecture, we used different concepts from graph theory, that are further explained
in details in Chapters 4 and 5, and obtained the following problem statement:

Given an undirected k-connected graph G(V ,E) with n=|V | representing the
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number of nodes in graph G and a cost c(e) associated with every edge e ∈ E
such that c(e)>0. Generate a subgraph G′ of G where V ′ forms a k-CCDS satis-
fying the following constraints:

• An upper bound m on the cost of a path between nodes i.e. c(p) =
Σj−1

i c(vi, vi+1) � m

• A degree constraint vector d=(dv : v ∈ V ) i.e. degree(v)� dv

• The creation of a k-CDS subgraph with k alternate disjoint paths

3.3.2 Network Architecture

We mapped realistic networks consisting of hosts or end-points such as servers,
subnets and virtual machines, and connectors such as Ethernet cables, virtual
overlay tunnels and wireless connections into a graph theoretic representation.
The network is hence a graph where a host or an end-point is represented as a
node, whereas a connector between two hosts is represented as an edge or a link
between two nodes. Every edge can have a certain weight or a cost where the
cost can represent the bandwidth of a link or the number of intermediate nodes
such as routers or switches between its nodes. There are two types of graphs,
directed and undirected graphs. A directed graph is a graph where every edge
is unidirectional, in other words the traffic can flow from the originating node
towards the target node and not the other way around. To support a flow in
both directions we need an additional connection from the target node towards
the flow originating node. This allows the two nodes to communicate with one
another. In an undirected graph the links are bidirectional where a single link is
needed to support the flow of data between the two nodes.

In our IPsec architecture, the weights of edges represent the number of SAs
or encryption/decryption required between two nodes. Considering the example
shown in Figure 3.2, both paths are equivalent to each another. When the weight
of an edge is equal to 1 that means that there exists a single encryption and
decryption between the two nodes, for example between Node1 and Node2. If
we have a weight w > 1 that means that there exists w − 1 intermediate nodes
between end-nodes of the link and hence we have w encryptions and decryptions
that are happening along the link, for example between Node2 and intermediate
router, and between the router and Node3.
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Figure 3.2: Count of Cost of a Path

Thus, the cost of a path will be equal to sum of the costs of the edges and
with this consideration we can control the latency originating from these crypto-
graphic functions by bounding them from above by a certain cost m as stated in
the problem statement, which in itself is a bound on the number of SAs on a path.
In Figure 3.2 for example, the total cost of the path is equal to 3, hence 3 pairs
of SAs are needed. Similarly for general network architectures, the weight w of
an edge represents the number of hop counts between two nodes. If it is equal to
one then there is a direct connection between the nodes, else if it is greater than
one that means that there exists w − 1 nodes (i.e. routers or switches) between
these two nodes.

The links in our architecture are assumed to be undirected edges, and hence
the degree of a node is equal to the sum of the links connected to that node. For
IPsec networks, the edges are logical overlay links which represent a tunnel be-
tween two nodes. As an example consider again Figure 3.2, the degree of Node2
is equal to 2. Although the links are considered to be undirected, the number of
SAs used by a node is two times the degree of a node; to provide node-to-node
security we need an SA for inbound traffic and another for outbound traffic. To
control the number of SAs at each node we introduced the second constraint
called the degree constraint vector d which contains the number of SAs allowed
at each node. A degree constraint of two for Node2 means that Node2 is allowed
to have a maximum of two connections as part of a shortest path and hence a
maximum of two pairs of SAs.

A k-Connected Dominating Set is a set where every node in the network is
either in this set or is connected to this set with at least k neighbors. The nodes
that are part of the set form the backbone of our network, whereas the nodes
that lie outside are the non-backbone nodes that are connected to at least k
backbone nodes. Forming a 1-CDS allows us to attain a minimal backbone and
thus maximizes efficiency, however it does not provide any redundancy in our
network. Therefore to obtain a certain redundancy we use k-CDS and in return
minimally increase the size of our backbone. Thus our last constraint, constraint
three, states the degree of redundancy of our network. A k-CDS network can
tolerate the failure of at least k− 1 simultaneous nodes. As an example consider
Figure 3.1 from Section 3.3 which is a k-CDS with k = 2. We can observe that
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every node in our network has at least 2 connections, where the non-backbone
nodes have at least 2 connections to backbone nodes. This constraint allows us
to maintain connectivity with the failure of at least a node in our network.

In IPsec networks we have an SA between any two nodes as long as the
underlying physical network is connected. Since an SA exists between any two
nodes, we have a logical overlay full mesh network as can be seen in Figure 3.3(a).
This allows us to obtain the following two scenarios:

• When k-CCDS is run on the logical network, we ensure that we have k
alternate disjoint paths between any two nodes. However, the underlying
physical network might not have this required configuration. This means
that when a node fails in the physical network the entire network might
get disconnected, but this is not reflected on the logical full mesh network,
where when a node fails we still have a k − 1 connected graph. However,
our aim is to satisfy k-CCDS on the logical network and hence we are not
interested in the underlying network because the overlay network is a virtual
one.

• The problem that occurs in the first scenario can be solved with the con-
straint that the underlying physical network is a k connected network. In
other words, when a node fails in the logical network it also fails in the
physical network but there still exists k− 1 alternate disjoint paths in both
networks, unlike the first scenario. This allows us to obtain a consistency
between the logical and the physical network, bearing in mind that the
physical network is not a full mesh whereas the logical network is a logical
full mesh, and k-CCDS is till applied on the logical network.

3.3.3 IPsec Gateways

We use the term IPSec gateway because every node in the subnetwork whether it
is a non-backbone or backbone node, is connected to private customer networks.
The nodes that are part of the private network can communicate with any other
node that is also a part of another private network which is connected to a back-
bone or non-backbone node. Hence, the nodes of our k-Constrained Connected
Dominating Set (k-CCDS) network serve as IPsec gateways to the hosts that
are part of the private network. Therefore when constructing the architecture of
a network, the private networks are not taken into consideration because they
connect to other hosts in the network through the IPsec gateways. When a host
in a private network wants to communicate with any other host in the network,
it creates an IPsec SA with the IPsec gateway it is connected to, which in turn
creates a chain of SAs through the backbone nodes to the IPsec gateway of the
target host of another private network it wants to communicate with.
One can raise the following question: Shouldn’t the SAs created in the private
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network be taken into consideration while constructing k-CCDS? Since the nodes
in a private network trust one another, all the nodes that are part of the private
network can use Group VPN [16] [18]. Group VPN is an extension of IPsec ar-
chitecture which creates an SA that is shared by a group of devices. Using group
VPN, all the hosts that form part of the private network use a single SA created
by the key server or group controller to communicate with one another, and the
IPsec gateway will serve as the link between the inner and outer networks.

3.3.4 Example of a Scalable IPsec Network

Consider the full mesh represented in Figure 3.3 consisting of five nodes, edge
weight 1 or 2, and assume that every node wants to communicate securely with
any other node in the network. Since we have an IPsec network and the links are
tunnel endpoints, any node can communicate with any other node and hence the
need of a full mesh virtual network. The requirements for the generation of the
backbone that are inputted to the algorithms for this specific example are: k=2,
degree constraint d=3 and path bound m = 5. In traditional networks, Figure
3.3(a), every node has to establish a separate IPsec connection with every other
node to have an end-to-end security. Since we have five nodes in our network,
every node must have 8 SAs to ensure secure connection with every node and
hence a total of 40 SAs is needed. Whereas in the scalable IPsec network, Figure
3.3(b) which was generated by Algorithm 1 described in Chapter 4, Node1 and
Node2 were generated to have a non-backbone status whereas the remaining
three nodes were chosen as backbone IPsec gateways. The two non-backbone
gateways need to be connected to only one of the backbone IPsec gateways to
reach securely to any other node in the network but since k=2 they should have
at least another alternate path for redundancy, and in this particular example
they have three possible connections, through nodes Node3 or Node4 or Node5,
from which the one with the minimum number of hops and DCSPT satisfaction
is chosen. Therefore, nodes Node1 and Node2 require 2 SAs each (one link to
connect to the backbone) whereas the remaining contain a minimum of 4 SAs
and additional 2 SAs for each non-backbone node if it is connected through a
particular backbone node, hence we will obtain a total of 20 SAs. Additionally,
this network can sustain the failure of at least a node which will not result in a
disconnected network and hence the nodes can communicate with each other as if
no failure has occurred, because alternate node disjoint paths exist. For example,
assume that node Node3 fails, which results in the network configuration show
in Figure 3.3(c). We can observe that the non-backbone IPsec gateways, nodes
Node1 and Node2, can still communicate with each other through the path that
contains backbone IPsec gateways Node4 and Node5. It is also important to note
that in current networks any node has a SA with every other node in the network,
whereas in our scalable design the gateways that are not part of the backbone do
not have any connection with other non-backbone gateways but rather connect to
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every other non-backbone node through the nodes that are part of the backbone.

Figure 3.3: Scalable Full-Mesh IPsec Network

3.4 Routing using k-CCDS

A non-backbone node is connected to k other backbone nodes in the network to
have alternate paths in the case of failure of up to k-1 backbone nodes. There-
fore, it can reach to any other node in the network through any of the backbone
nodes. Assuming that a node wants to communicate with another node in the
network, it has k different possibilities to choose from. The path that will be
chosen has to satisfy the degree and path constraints and has to minimize the
number of SAs chosen along the path as much as possible. Thus the proposed
procedure for non-backbone nodes is to run DCSPT, Algorithm 2 from Chapter
4, from every backbone node it is connected to and choose the path that uses
the minimal number of SAs. As for a backbone node, it can directly run DCSPT
from itself as the source and choose the returned path to communicate with any
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other node in the network which itself contains the minimum number of SAs.

Although the described procedure allows us to route the information cor-
rectly and securely by using the shortest path that satisfies the degree and path
constraints, the DCSPT algorithm must become an integral part of the routing
mechanism of the nodes which leads to the requirement of a new instance of an
overlay routing protocol [13]. This requires the modification of the routing proto-
col of all the nodes that are part of the k-CCDS, which is not feasible, and leads
to an increase in the complexity of processing and maintaining these routes with
the increase in the size of the network, and the addition of further complexity
due to changing routes arising from node failures. An innovative and feasible so-
lution is the utilization of Software Defined Networking (SDN) which is changing
the way networks are being designed and managed by introducing a separation
between the control and data planes. This separation allows the centralization
of network logic and topology in the Network Operating System (NOS) or the
control plane, hence allowing the simplification of the network forwarding devices
into network switches.

SDN architecture is divided into three different layers with the possibility of
virtualization being introduced in any plane. The three layers are: data, control,
and application planes. The data plane consists of switches which could either
be physical and support the OpenFlow (OF) protocol [28], virtual OF switches
such as Open vSwitch (OVS) [29], or a hybrid of both. Data plane switches
carry the responsibility of forwarding traffic to correct destinations based on the
flow entries in their flow tables which are inserted by the control plane through
a southbound API such as OpenFlow. The control plane has an overview of
the topology of the entire network and it represents the functionalities of the
traditional non-SDN switches being abstracted in the controllers. A controller
translates the requirements and policies from the application plane, obtained
through a northbound API such as REST, to OF rules and enforces them on the
data plane switches. The application plane is a new virtualization layer intro-
duced through SDN, which allows developers to write applications and convey
their requirements to the corresponding controllers.

The Open vSwitch Database (OVSDB) management protocol [30] [31] is an
OpenFlow configuration protocol that is designed to control and manage data
plane switch implementations, particularly OVS implementation. OVSDB con-
sists of the OVSDB-server and a switch daemon that configures the OVS switches
based on the configuration information that it obtains from the controller through
the OVSDB-server. The controller is connected to every node in the network,
hence it has an overview of the topology of the network and the ability to con-
figure them using the OVSDB management protocol. k-CCDS can be run as an
application on the controller, which will be used to identify the backbone and
non-backbone nodes or switches and accordingly, based on the marking process,
the links that will be protected through IPsec. Using OVSDB, the marked links
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that are part of the backbone will be configured to be IPsec tunnels and every
non-backbone will be configured to have a tunnel with a backbone node. As
for the routing problem that has been mentioned, the application running on
the controller will determine for each node through DCSPT the path, out of k
possibilities, that is the shortest satisfying the constraints and hence the SAs
or tunnels that will be used to reach to all other nodes in the network. After
determining the IPsec links that will be used, the controller can easily install the
corresponding flow rules on all the nodes of the network and thus allow routing
of the packets securely between any two nodes by using the shortest path satis-
fying the degree and path constraint. Since the controller and switches exchange
OF EchoRequest and EchoReply messages for liveliness, bandwidth and latency
information, when a backbone node fails in the network the controller will not
receive any of these messages from the failing node and thus will conclude that
this node is not part of the network anymore. The non-backbone nodes that
used to connect to the network using the failing backbone node will not be con-
nected anymore, but since through DCSPT the controller knows the remaining
k-1 alternate disjoint paths for this non-backbone node, it will determine the next
shortest path and install the corresponding flow rules on the network nodes and
thus maintain the connectivity in the network.

3.5 k-CCDS Security vs. Scalability

As we have seen in Chapter 2, there is always a trade-off between security and
scalability. In our system we do not have any point to point IPsec tunnels, rather
a chain of IPsec SAs which allows us to reduce the number of SAs needed to
obtain a secure and scalable connected network. When a backbone node obtains
a packet that should be forwarded to the IPsec chain’s next backbone node, it
firstly decrypts the packet because it has a direct tunnel with the first backbone
node that it is obtaining the packet from, encrypt the packet again based on
the SA and SP entries for the IPsec connection with the chain’s next backbone
node, and finally forward the encrypted packet to eventually reach securely to the
destination. Since a node is decrypting and encrypting the packets, during the
interval of after-decryption and before-encryption the packet’s content will not be
confidential and thus can be read by the node. But since we have assumed during
our design that the network could be trusted as in MPLS VPNs, this would not
be problematic and thus allow us to preserve networks security.

However, during the event of exploitation of the node by an attacker, we have
the following two scenarios; if we know that the node is under the control of the
attacker, what we can do is assume that the node has failed and thus choose an
alternate path out of the remaining k-1 possibilities. Therefore, this node will
not be used by the network anymore and will be considered to be nonexistent
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which solves the security problem. However if we cannot detect that the node is
under the control of a malicious user, then only the paths that go through this
node will be exploited because now the attacker can read all the packet content
during that small window of time. We have the same problem in Group VPN
and Get VPN; if the group controller or any group member is exploited not only
part of the group is affected, rather the whole group is exploited because every
group member can encrypt and decrypt the packets of any other other member
through sharing a group SA and thus the attacker can decrypt all the packets.
Although k-CCDS does not solve the latter problem, however it allows the user to
choose a middle-ground solution. The algorithm allows the constructed network
to range from a very scalable and weakly secured network eg. the star topology
to a non-scalable and highly secured network eg. full-mesh topology. The con-
straints of k-CCDS provides the user with the flexibility of obtaining a network
based on the priority of the requirements eg. scalability, security, redundancy,
latency etc. To elaborate the idea further, assume that a network consists of
1000 nodes and a user wants to create a scalable and secure IPsec network. If
very strong security and redundancy is not a top priority for the user, eg. traffic
contains video and audio streaming, the user can choose a very scalable design by
setting d=999, m=2 and k=1 which generates the star topology and reduces the
number of SAs from 2,000,000 to 3996. If very strong security is a top priority
eg. traffic containing private information, then scalability cannot be provided
because of the trade-off between them, the user can choose d=999, m=1, and
k=2 which generates the full mesh topology and thus obtain 2,000,00 SAs, which
prevents the effect of exploit of a node on any other node in the network. If a user
requires certain scalability and high security, then he can choose d=50, m=3 and
k=2 which generates a k-CCDS subgraph where the number of SAs are reduced
from 2,000,000 to 4008, and thus construct a secure and scalable network. As ob-
served, the algorithm gives the flexibility to the user to choose either scalability,
security, or a mixture of both. As for the second security problem that we have
mentioned, if only a specific application requires a very high security, SSL is a
solution over the k-CCDS network for that particular application which provides
end-to-end security for the application specific packets. Furthermore, Group and
GET VPN provide scalability by extending the IPsec protocol, however k-CCDS
uses IPsec without any modification to construct scalable secure networks.
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Chapter 4

Algorithms

In this chapter we demonstrate and explain the different algorithms that we have
used to construct the scalable architecture we have described in Chapter 3.

The aim of the first algorithm is to construct a subgraph of G, k-Constrained
Connected Dominating Set (k-CCDS), consisting of backbone and non-backbone
nodes that form a k Connected Dominating Set (k -CDS) satisfying the degree
and path constraints. The foundation of the algorithm is based on the research
done in [2] where the authors introduced the k -Coverage condition. k-CCDS
starts initially by sorting the nodes in descending order of priority, where the
priority of a node is based on the degree of a node and/or unique ID where
the nodes that have a higher degree and/or larger ID have a higher priority.
The notion of priority is important because first, it allows us to know which
nodes will be part of the backbone and second, it avoids the destruction of the
connectedness of the graph when k -1 nodes fail simultaneously. This allows us to
create the backbone dynamically because when a node is tested for a combination
of neighbors reaching one another, the path has to go through the “current”
backbone. Therefore, the node with the highest priority will always be part of
the backbone. As the number of nodes in the backbone increases, the probability
of a node being non-backbone node increases because it has more chance of finding
k alternate disjoint paths satisfying the degree and path constraints, through the
backbone, for its combination of neighbors.Initially, all the nodes are marked as
non-backbone nodes and we start from the highest priority node. For a node to
remain a non-backbone node, every combination of its neighbors are checked if
they have k alternate disjoint paths, through the backbone, between each other
that satisfies the degree and path constraints (lines 3-29). If every combination
of neighbors has k alternate paths satisfying both constraints, then the node
remains a non-backbone node. However, if there exists at least one combination
of neighbors that does not satisfy any of the three stated conditions, then the
node is marked to be a backbone node, thus expanding the backbone by this
node (lines 25-32). A path between two neighbors of a node is found by running
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DCSPT, Algorithm 2, which returns us Dijsktra’s shortest path, if it exists, where
every node satisfies the given degree constraint (line 13). When no DCSPT is
returned, that means there exists at least one node on the path that cannot satisfy
the given degree constraint d (lines 14-16). If Algorithm 2 returns a DCSPT,
then that means the degree constraint of every node of the path is satisfied. We
proceed by calculating the number of hops between these two neighbors which
is the sum of the costs of the edges of the path returned by DCSPT (line 17).
If the calculated distance does not exceed the path bound, then the path bound
constraint has been satisfied. This means that we have found 1 disjoint path
satisfying both constraints. What remains to satisfy is k−1 such alternate paths
(lines 18-19). To check if the last constraint is satisfied, we temporarily remove
the nodes that are part of the newly found path from G (line 20), and repeat the
same procedure again (finding DCSPT and checking path bound). This allows
us to know if k alternate disjoint paths exist between these neighbors that satisfy
the degree and path constraints. This whole procedure is repeated for every two
neighbors of every node of G to construct our backbone.
Given that a solution exists, i.e. the inputs k, path bound and degree constraint
can find the desired subgraph, the algorithm will construct a k -CCDS which
tolerates the failure of at least k−1 nodes. If a solution does not exist, then
the last part of the algorithm will find a solution by relaxing the degree and
path constraints (lines 34-52). The algorithm starts by assuming that no node is
failing in the graph, and hence for each backbone node it runs DCSPT to check
if it can reach to every node in the graph by satisfying the degree constraint.
If there exists at least one node on the path that does not satisfy the degree
constraint, DCSPT returns the violating nodes. What the algorithm does is
that it fixes the degree constraint of that violating node by incrementing it by 1
(lines 39-43). This procedure is repeated until no node on the path is violating
the degree constraint. This new degree constraint is called the relaxed degree
constraint. After obtaining the relaxed degree constraint, we find the longest
path of this shortest path, diameter of the path, by running Dijskstra’s shortest
path algorithm from the node that is furthest from the evaluated backbone node.
Hence, we obtain the cost of the diameter. We compare it with the path bound
and if it is greater, then we relax the path bound constraint by setting the path
bound equal to the cost of the diameter of the tree (lines 45-49). The same
procedure is repeated by removing all possible combinations of 1,2,...,k−1 nodes
from the graph, testing if the constraints are not satisfied and if not satisfied
relaxing the constraints to find a solution. Therefore, we can find a k -CCDS
that satisfies the relaxed conditions.The relaxed conditions can further be used
to run Algorithm 1 again to obtain a k -CCDS with a smaller backbone. Finally,
it is important to note that we mark the edges connecting backbone nodes that
haven’t been used (are not part of any DCSPT) to remove them from our network
architecture (line 45). Let nb represent the number of backbone nodes, then the
running time of k -CCDS is in the order of O(kdnbn

32n + k
(
nb

k

)
dn2

b2
n).
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Algorithm 1 k -CCDS(G,d ,k,m)

Input: Graph G (V , E), degree constraint vector d= (dv : v ∈ V ), the number
of alternate paths k and the upper bound on path cost m

Output: k-CCDS subgraph of G (V , E) satisfying degree and path constraints
which contains the Backbone Status of nodes, fixed/relaxed d and m if they
exist.

1: Initialize the status of each node in G as a non-backbone node.
2: Assign a unique priority to every node in G by sorting the degrees in descend-

ing order and/or assigning a larger unique ID for higher priority nodes.
3: for every node v ∈ G[V ] in descending priorities do
4: nonBackboneStatus=1
5: for every combination of neighbors u and w of v do
6: l=0 // l represents the number of disjoint paths obtained from u
7: Temporarily remove node v from graph G
8: Temporarily decrement du by 1: du = du − 1
9: for the size of degree(u) do
10: if l == k then
11: break // We found k alternate disjoint paths
12: end if
13: Call DCSPT(G,d ,u,nodes with Backbone status)
14: if DCSPT cannot be found then
15: break
16: end if
17: numberOfHops= DCSPTdistance(u,w)
18: if numberOfHops ≤ m and u and w reach one another then
19: l = l + 1 // We have found a node disjoint path
20: Disregard the nodes that were part of this path to find a new

disjoint path during the next iteration
21: else
22: break
23: end if
24: end for
25: if l < k then
26: nonBackboneStatus=0
27: break // if any combination fails, this node cannot be a non-backbone
28: end if
29: end for
30: if nonBackboneStatus==0 then
31: Change status of v to backbone
32: end if
33: end for
34: // If 0,1,..k-1 nodes fail, check whether the constraints are still satisfied. If

they are not satisfied, we relax them.
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35: for r=0,1,...,k-1 do
36: for every combination of r backbone nodes do
37: Temporarily remove the combination of r backbone nodes when r > 0
38: for every remaining node v that has backbone status do
39: repeat
40: Call DCSPT(G,d ,v,nodes with Backbone status)
41: if DCSPT returns violating node then
42: dviolating = dviolating + 1
43: end if
44: until no violating node is returned
45: Mark the edges that are part of DCSPT
46: Run Dijkstra from node u that is furthest from v to obtain the longest shortest

path Psl of the tree
47: if Psl > m then
48: m=Psl

49: end if
50: end for
51: end for
52: end for
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Figure 4.1: Flow Chart of Algorithm 1

Algorithm 2, Degree Constrained Shortest Path Tree, aims at finding a degree
constrained shortest path by fixing the nodes, found on Dijkstra’s path, violating
the provided degree constraint. This algorithm is a variation of the idea that
has been provided by the authors in [24] [25] [19]. It initially calls Constrained
Dijsktra’s algorithm, Algorithm 3, that returns a shortest path that runs through
the backbone (line 1). In other words, non-backbone nodes are not allowed to be
the link between backbone nodes or between a backbone or non-backbone node.
The next step is to check for every backbone node starting from the top of the
height of the tree if they are violating the degree constraint (lines 2-4). We start
from the top of the height of the tree because once a node is fixed and we go
further down the tree, even if changes are done in the lower part, the upper part
will not be affected because nodes that are further down the tree are descendants
of the nodes of the upper level of the tree, and hence any change in the lower
parts effects on the descendants that are in further lower levels of the tree and
not on the nodes, parents, that are at higher levels of the tree. Non-backbone
nodes are not checked because constrained Dijkstra allows them to have only
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one connection and that is only with a backbone node. If there does not exist
a node violating the given degree constraint, the result is returned without any
modification. However, if a backbone node is violating the degree constraint we
need to fix it, in return increasing the cost of the shortest path with a minimal
penalty. Hence, we have a tradeoff between fixing violating nodes and obtaining
a minimal shortest path.
When fixing a node v violating the degree constraint, every child c of the vio-
lating node is checked if it can be connected to any other node p in the graph,
where the edge in between is not part of Dijkstra’s shortest path generated by
Algorithm 3 and the new node p can accept new connections without violating
its degree constraint. Furthermore it cannot be the case that the child node c is
a backbone node and the penalty node p is a non-backbone node, or c and p are
non-backbone nodes (line 7). We have this condition because we cannot allow
non-backbone nodes to have connections with each other since they are allowed
to connect to others only through the backbone, and we cannot allow backbone
nodes to be connected to the path through a non-backbone node. For every child
node c that can be connected to other nodes p through satisfying the stated con-
ditions, the node that adds a minimal penalty on the cost of the shortest path
will be chosen based on the following formula (lines 8-11):

Penaltyc = min∀p[distance(s, p) + cost(c, p)− distance(c, c)]× (numberOfDescendants(c) + 1)

Once the minimal penalty node is obtained for each child node, the minimal
one of all the children is chosen to be disconnected from the violating node and
to be reconnected to the new penalty node (lines 13-16):

AddedPenalty = min∀c Penaltyc

After reconnecting to the new penalty node, we need to increase the distance of
the descendants and the child node from the source by distance(s,m) + cost(m,
u) − distance(s,u) (line 15). By continuing this process, Algorithm 4 is called
which checks for each descendant of the child node now connected to the penalty
node, if it can be reconnected to other node to reduce the penalty, hence mini-
mizing the total cost of the shortest path (lines 17-19). The process is repeated
until no backbone node is violating the degree constraint. This procedure allows
us to obtain a DCSPT. Let d represent the maximum number of times the degree
of a violating node has been fixed and nb the number of backbone nodes, then
the running time of Algorithm 2 is in the order of O(dnb2

n)
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Algorithm 2 DCSPT(G,d ,s,B)

Input: Graph G (V , E), degree constraint vector d= (dv : v ∈ V ), source s and
nodes that have backbone status B.

Output: Degree Constrained Shortest Path Tree (DCSPT) satisfying d or an
empty set and the violating node if DCSPT cannot be formed.

1: Form SPT from s using modified Dijkstra’s single source shortest path algo-
rithm constrainedDijsktra (G,s,B)

2: for each level p = 0 to height(SPT) do
3: for each node v of level p that has backbone status in B do
4: while degree(v)> dv do
5: for every child u of v do
6: for each node m that is connected to u but edge /∈ SPT do
7: if degree(m)< dm and m is not a descendant of u and

¬ (B(u)==0 and B(m)==0) and
¬ (B(u)==1 and B(m)==0) then

8: penaltyu(m) = [distance(s,m) + cost(m, u) − distance(s,u)]
×(numberOfDescendants(u) +1)

9: end if
10: end for
11: Choose the minimal penalty penaltyu of node u among all m
12: end for
13: Choose u that has the minimal penalty among all children of v.
14: Disconnect u from v
15: Update the distance between u and the nodes that are its descendants by

[distance(s,m) + cost(m, u) − distance(s,u)]
16: Connect u to m
17: if u has descendants then
18: UpdateDescendants(G,u,B)
19: end if
20: end while
21: end for
22: end for
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Figure 4.2: Flow Chart of Algorithm 2

Algorithm 3, Constrained Dijkstra, is similar to Dijkstras algorithm, however
it does not allow any nodes that are not part of the backbone yet to be the link
between any two nodes. In other words, a non-backbone node cannot be the link
that connects a backbone or non-backbone node to any other node in the graph.
Hence, only backbone nodes can be the link between any two nodes. The remain-
ing nodes that are not part of the backbone, so far, will have a single connection
to a backbone node depending on Dijsktra’s algorithm. As for the variable i that
has been introduced, whenever Dijkstra’s source s is a non-backbone node, then
initially we’ll allow it to reach to one backbone node only and not to any other
backbone or non-backbone node. As for the remaining non-backbones node, since
i is incremented, Constrained Dijkstra will not allow it to form a link between
any nodes and thus it will connect them to backbone nodes only (lines 13-22).
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Algorithm 3 ConstrainedDijkstra(G,s,B)

Input: Graph G (V , E), source s and nodes that have backbone status B
Output: Constrained Dijkstra’s shortest path tree.
1: Create vertex set Q
2: for each node v in graph G do
3: distance(v)=∞
4: parent(v)=NULL
5: Add v to Q
6: end for
7: distance(s)=0
8: i = 0
9: while Q �= ∅ do
10: u=node in Q with minimum distance
11: Remove u from Q
12: for each neighbor v of u do
13: if (B(v)==0 and B(u)==0) or (B(v)==1 and B(u)==0 and i¬ = 0)

then
14: continue
15: end if
16: altDistance=distance(u)+cost(u,v)
17: if altDistance<distance(v) then
18: distance(v)=altDistance
19: parent(v)=u
20: i = i+ 1
21: end if
22: end for
23: end while

Update Descendants, Algorithm 4, is the continuation of Algorithm 2 where
we check if we can minimize the penalty that has been added to the shortest
path. For every descendant node of a child node that has been connected to a
new node in Algorithm 2, we check if we can reconnect the descendants to other
nodes in the graph and minimize the added penalty to the shortest path. Every
descendant r of the child u is checked if it can be connected to any other node
f in the graph, where the edge in between is not part of Dijkstra’s shortest path
generated by Algorithm 3 and the new node f can accept new connections with-
out violating its degree constraint. Furthermore, it cannot be the case that r is
a backbone node and the penalty node f is a non-backbone node, or r and f are
non-backbone nodes (line 4). Additionally, we calculate the amount with which
the penalty can be reduced and check if this penalty is negative:

Penaltyr=min∀f [distance(s,f) + cost(f ,r) − distance(s,r)]
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For every penalty minimizing node f that can be connected to descendant node
r through satisfying the stated conditions and whose added cost is negative, the
node that adds a minimal penalty, largest negative, on the cost of the shortest
path will be chosen. Hence, the descendant node r is disconnected from u and
is now connected to the new penalty minimizing node f (lines 8-10). Further-
more, the distance of the descendants from the source node is updated by adding
distance(s,f)+cost(f ,r)−distance(s,r) to it, which is a negative value (line 11).
This procedure allows us to minimize the penalty that has been added to the
DCSPT generated by Algorithm 2. Now, since the descendants of r are not part
of the descendants of u, this algorithm will not be applied on the descendants of
r anymore, hence we can run this algorithm recursively on the descendants of r
by calling UpdateDescendats(G,r,B).

Algorithm 4 UpdateDescendants(G,u,B)

Input: Graph G (V , E), node u and nodes that have backbone status B
Output: DCSPT with minimized penalty
1: for every descendant r of u do
2: for every node f that is connected to r but edge /∈ SPT do
3: Calculate penalty=distance(s,f)+cost(f ,r) − distance(s,r)
4: if degree(f)< df and f is not a descendant of r and

¬ (B(r)==0 and B(f)==0) and
¬ (B(r)==1 and B(f)==0) and penalty< 0 then

5: Make this node f a possible candidate of exchange
6: end if
7: end for
8: Choose the minimal penalty of node r among all f
9: Disconnect r from its parent u
10: Connect r to f
11: After modifying the connection, update the distance of r from s and the

nodes that are descendants of r by distance(s,f)+cost(f ,r)−distance(s,r)
12: [Optionally we can call UpdateDescendats(G,r,B) recursively to further min-

imize the penalty]
13: end for
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Chapter 5

Proof of Algorithms

5.1 Problem Statement

Given an undirected k-connected graph G(V ,E) with n=|V | representing the
number of nodes in graph G and a cost c(e) associated with every edge e ∈ E
such that c(e)>0. Generate a subgraph G′ of G where V ′ forms a k-CCDS satis-
fying the following constraints:

• An upper bound m on the cost of a path between nodes i.e. c(p) =
Σj−1

i c(vi, vi+1) � m

• A degree constraint vector d=(dv : v ∈ V ) i.e. degree(v)� dv

• The creation of a k-CDS subgraph with k alternate disjoint paths

5.2 Proof of Theorems

Assuming that a solution exists where the path bound and degree constraint sat-
isfy k-CCDS construction, we can thus prove the correctness of our algorithms
by proving the following:

Theorem 1: A non-backbone node u has at least k connections to the back-
bone, or k alternate disjoint paths exist between every combinations of neighbors
of u.

Proof. Assume that a non-backbone node u does not have k connections to the
backbone or k alternate disjoint paths do not exist between at least a combination
of neighbors of u.

In Algorithm 1, DCSPT is called for every combination of neighbors of node
u, ∀vi, vj ∈ N(u) where i �= j, which calculates the degree constrained shortest
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path from vi to vj based on Algorithm 2. Algorithm 2 initially runs Algorithm
3, Constrained Dijkstra, and proceeds by fixing the nodes that violate the degree
constraint. If there still ∃v ∈ (vi, vi+1, ..., vj) where degree(v)> dv, Algorithm 2
returns an empty set φ.
If an empty set φ is returned for any combination of neighbors, u is marked as a
backbone node. If a non-empty set is returned which means that degree(v)� dv
∀v ∈ (vi, vi+1, ..., vj), but if the other neighbor vj is not reachable, an infinite dis-
tance between them by Dijkstra’s algorithm, the node is marked as a backbone
node.
Given that φ is not returned and all nodes are reachable, DCSPT(vi) is run at
most k times ∀vi, vj ∈ N(u) where i �= j , and if during any iteration a degree
constrained shortest path has c(vi, vi+1, ..., vj) > m, the node is marked as a back-
bone node. However, if k alternate disjoint paths satisfying c(vi, vi+1, ..., vj) � m
and degree(v)� dv ∀v ∈ (vi, vi+1, ..., vj) are found through the backbone for every
combination of neighbors vi and vj of node u where i �= j, then node u is marked
as a non-backbone node contradicting to the assumption that a non-backbone
node does not have k connections to the backbone. Therefore, a non-backbone
node has at least k connections to the backbone of the subgraph G′. �

Theorem 2: The k alternate disjoint paths of every combination of neighbors
of a non-backbone node satisfy the degree constraint.

Proof. Assume that k alternate disjoint paths of at least a combination of neigh-
bors of a non-backbone node u do not satisfy the degree constraint. Then
∃vi, vj ∈ N(u) where i �= j for at least one out of k alternate disjoint paths
that does not satisfy the degree constraint. This means that, Algorithm 2 re-
turns an empty set because ∃v ∈ (vi, vi+1, ..., vj) where degree(v)> dv which
cannot be fixed in any possible way. Hence Algorithm 1 will assign this node as
a backbone node contradicting the assumption that this node is a non-backbone
node. Therefore, the k alternate disjoint paths of any combination of neighbors
of a non-backbone node satisfy the degree constraint. �

Theorem 3: Every combination of neighbors of a non-backbone node can
reach one another through k alternate disjoint paths satisfying the degree con-
straint.

Proof. Assume that there exists a combination of neighbors of a non-backbone
node u that cannot reach one another through k alternate disjoint paths satisfying
the degree constraint. Then ∃vi, vj ∈ N(v) where i �= j of a non-backbone node u
that reach to one another with less than k alternate disjoint paths satisfying the
degree constraint. Hence, there exists some alternate disjoint paths that do not
satisfy the degree constraint. Thus by proof 2, this node should be a backbone
node contradicting to the assumption that it is a non-backbone node. Therefore,
every combination of neighbors of a non-backbone node can reach one another
through k alternate disjoint paths satisfying the degree constraint. �
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Theorem 4: Given that a path exists through the backbone and the degree
constraint of all nodes is satisfied, Algorithm 2 (DCSPT) finds a minimal cost
Dijkstra path.

Proof. Given that a path exists through the backbone and the degree constraint
of all nodes is satisfied, Algorithm 2 (DCSPT) finds a non-minimal cost Dijkstra
path.
Algorithm 2 initially calls Algorithm 3 which is constrained Dijkstra. Algorithm
3 returns the shortest path Ps = (vi, vi+1, ..., vj) from a source node s, where
certain nodes could be violating the degree constraint degree(v)> dv for v ∈ Ps.
Algorithm 2 tries to fix the degree constraint of the nodes that are violating it by
breaking certain connections and reconnecting them to some other nodes that do
not violate the degree constraint, but in return increases the shortest path with a
certain penalty. Given that the degree constraint of every node is satisfied, then
a minimal cost Dijkstra path exists that connects the nodes together.
If ∃v ∈ Ps where degree(v)> dv and it cannot be fixed, then a solution does not
exist and hence the algorithm returns an empty set. But we initially assumed
that degree(v)� dv ∀v ∈ V , hence this could not be the case and the degree
constraint of all violating nodes will be fixed.
When fixing a node v violating the degree constraint, every child c of the violating
node is checked if it can be connected to any other node p in the graph, where
(c, p) /∈ Ps and degree(p)< dp. For every child node c that can be connected to
other nodes p, the node that adds a minimal penalty on the cost of the shortest
path will be chosen based on the following formula:
Penaltyc = min∀p[distance(s, p) + cost(c, p)− distance(c, c)]× (numberOfDescendants(c) + 1)

Once the minimal penalty node is obtained for each child node, the minimal one
of all the children is chosen to be disconnected from the violating node and to be
reconnected to the new penalty node. The process is repeated until no node is
violating the degree constraint:

AddedPenalty = min∀c Penaltyc

Since we are always choosing the minimal penalty out of all possibilities, then the
cost that is added to the original path generated by Algorithm 2 will be minimal.
Furthermore, Algorithm 4 is used to further minimize the penalties, due to fixing
the degree of violating nodes in DCSPT, by reconnecting the descendants of the
child to other nodes that minimize the added penalty by adding the following
negative value:

Penaltyr=min∀f [distance(s,f) + cost(f ,r) − distance(s,r)]

Therefore, the minimal cost shortest Dijkstra path satisfying the degree con-
straint is obtained, contradicting the assumption that Algorithm 2 (DCSPT)
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finds a non-minimal cost Dijkstra path. �
Theorem 5: If the k-constrained-coverage condition is applied to a k con-

nected network G, the resultant backbone V ′ forms a k-CDS of G satisfying the
degree and path constraints. The resultant backbone V ′ is said to form a k-CCDS
of G.

Proof. First we recall the following Lemma and Theorem that have been proven
in [2]:
Lemma: A node set V ′ is a k-CDS of network G if after removing any k − 1
nodes from V ′ , the remaining part of V ′ is a CDS of the remaining part of G.

Theorem: If the k-coverage condition is applied to a k connected network G,
the resultant virtual backbone V ′ forms a k-CDS of G.

Therefore, Theorem 5 is a corollary of the theorem that has been provided by
the authors in [2]. Assume that the resulting backbone V ′ does not form a k-
CCDS of G. Then the generated k-CCDS does not satisfy the degree and path
constraints. However, we have assumed that a solution exists and based on
the provided lemma, theorem and k-constrained-coverage definition, we have a
contradiction i.e. the given degree and path constraints satisfy k-constrained-
coverage condition. Therefore, if the k-constrained-coverage condition is applied
to a k connected network G, the resultant backbone V ′ forms a k-CCDS of G. �

Theorem 6: If a given set of conditions (degree and path constraints) cannot
be satisfied in the backbone, Algorithm 1 finds the relaxed conditions.

Proof. Assume that Algorithm 1 does not find the relaxed conditions. Then there
exists some node in the backbone that returns an empty set φ when Algorithm
2 is run, or when Dijkstra path Ps is returned we obtain c(Ps) > m.
The last part of Algorithm 1 checks for every backbone node if they satisfy the
constraints when 0, 1, ..., k− 1 combination of backbone nodes are removed from
the backbone V ′. For every remaining backbone node, we run Algorithm 2 from it.
If an empty set is returned, then the violating node is also returned and hence the
violator’s degree constraint is incremented, dvviolating

= dvviolating
+1 and Algorithm

2 is run again. The process continues until degree(v)� dv ∀v ∈ Ps = (vi, vi+1, , vj)
and hence a non-empty set is returned. Similarly, the path constraint is checked.
The longest shortest path for that Dijkstra path Ps is found as we have shown in
proof 4. If it does not satisfy the path bound c(Ps) > m, then the path bound
is set to the value of this path, m = c(Ps). The same process continues for
every backbone node. Eventually, the path bound will be equal to the diameter
of the graph; hence all paths will satisfy the path bound. Similarly, the degree
constraints of all the nodes will be satisfied, contradicting the assumption that
Algorithm 1 does not find the relaxed conditions. Therefore, Algorithm 1 finds
the relaxed conditions. �
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Theorem 7: Given a large full mesh network where edges are equally weighted,
and k-CCDS exists (no need to relax conditions). If the first non-backbone neigh-
bor of the “current” evaluated node reaches to any other non-backbone neighbor
through the backbone satisfying the three constraints, then this evaluated node
is a non-backbone and the backbone has been found.

Proof. Based on Algorithm 1, k-CCDS, to decide if a node remains a non-
backbone node, we need to test if every combination of its neighbors can reach
one another through the backbone satisfying the three constraints. Let n ∈ N(u)
be the first neighbor and m ∈ N(u) be any other neighbor of u. If k alternate
disjoint paths do not exist between nodes m and n, then the backbone is not fully
constructed yet and hence u becomes a backbone node. If k alternate disjoint
paths exist between nodes m and n:
Case 1 : Assume n is a backbone node and m is a non-evaluated non-backbone
node or a backbone node. We need to check if k constrained paths exist between
nodes m and n. Since k alternate disjoint paths exist and since k-CCDS can be
constructed, then there exists k constrained paths between nodes m and n.
Case 2 : Let n and m be non-evaluated nodes where both have lower priority
than u. Since k alternate disjoint paths exist between nodes m and n satisfying
the constraints, then we move to the next non-evaluated neighbor p ∈ N(u).
However, since we have a full mesh network and all edges are equally weighted, p
is an exact replica of n and so are all the remaining non-evaluated nodes. Thus it
is enough to test m and n only rather than all combinations with m. Once done
with the first neighbor m, we need to choose n as our evaluation node and check
it with p and all other remaining nodes. However, n is also an exact replica of
m and thus we will obtain the same results. Therefore, it is enough to test if m
and n have k constrained paths with one another because if it exists, it exists for
all remaining non-evaluated node combinations.
Therefore, when k alternate constrained disjoint paths exist between nodes m
and n, then we have a fully constructed backbone. Furthermore, since all non-
backbone and backbone combinations satisfy the constraints and a single non-
evaluated non-backbone constraint satisfaction is implied to all remaining com-
binations, we can mark node u as a non-backbone node without evaluating the
remaining combinations. Thus, when the backbone is fully constructed it is
enough to test one combination out of (N − size(backbone))×N2 combinations
to know that all remaining nodes are non-backbone nodes. �
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Chapter 6

Experimental Results

The algorithms described in Chapter 4 have been implemented using MATLAB,
executed using multi-threading and tested thoroughly for correctness and effi-
ciency. Furthermore, a testing algorithm has been developed, Algorithm 6, to
validate the correctness of the results that have been generated by the system
algorithms.

6.1 Network Architecture

6.1.1 Scalable IPsec Networks

The logical connection between two hosts is identified by 2 Security Associations
(SA) at each host, where one is used for inbound traffic and another for outbound
traffic assuming that one protocol is being used i.e. ESP or AH. If ESP and AH
are used together, then we need 2 SAs for each protocol and hence a total of
4 SAs at each node. Since IPsec tunnels are virtual links and every node can
communicate securely through the overlay network, we can represent a network as
a full mesh where each link represents a tunnel or an SA. Therefore we represented
IPsec gateways as nodes and the SAs as undirected edges for every combination
of nodes. In all our simulations, we assumed that only one protocol is used and
the weight of an edge is taken to be equal to one, which means intermediary
routers do not exist between two communicating parties. Additionally, since the
degree of all the nodes are equal, we assigned unique IDs to the nodes and used it
as our priority. However, the algorithm allows us to set the weight to any positive
value.

6.1.2 General Scalable Networks

General scalable networks consist of computers or servers that are connected to
each other through routers, switches, hubs etc. where the complexity of manage-
ment and effective scalability increase with the increase in the number of users in
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the network. To test our k-CCDS algorithm on general networks, we considered
the nodes of our graph to represent routers, and the weight of the undirected
edges as the number of intermediary hops needed to reach from one router to the
other. For our simulations, we considered the weight of all edges to be equal to
one. Since routers are complex devices that provide different functionalities, they
have a limitation on the number of connections that they can handle efficiently.
In realistic networks, most of the routers consist of 8 to 16 physical connections.
The priority of nodes is based on the degree of each node in G, where the edges
are uniformly distributed between 8 and 16.

6.2 Scalable IPsec Experimental Results

6.2.1 Simulation Parameters & Algorithm

The experiments are carefully designed to test the importance of the improve-
ments introduced by our proposed k-CCDS algorithm while depicting realistic
networks as much as possible. Furthermore, a solution exists for the tested sce-
narios and hence there was no need to relax the degree and/or path constraints.
To test the effect of different parameters, we varied one of the parameters and
fixed the remaining ones. The parameters that we have used along our experi-
ments are summarized in the following table:

Parameter Name Range of Values
Number of Nodes 10-1000

Number of Alternate Paths k 1-4
Path Bound m 2-7

Degree Constraint d N
4
to (N − 1)

Number of Edges from a Node N-1
Weight of an Edge 1

Table 6.1: Simulation Parameters for IPsec Networks

The path bound is taken to be a maximum of 7 in all experiments to prevent
the effect of latency due to the presence of encryption and decryption between
every two tunnel end-points.
The following algorithm, Algorithm 5, has been used to generate all the results
that are included in this section. It calls k-CCDS to find the total number of SAs
needed to construct a scalable IPsec network. Additionally, it calls Algorithm 6
to test the k-CCDS satisfaction of the subgraph generated from G:
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Algorithm 5 Simulation Algorithm for Scalable IPsec Networks

Input: Parameters stated in Table 6.1.
Output: Total number of needed SAs, backbone size and k-CCDS subgraph.
1: Generate graph G which is a full mesh, based on the number of nodes, edge

weight, and number of edges from a node.
2: Check if the generated graph G is connected by checking if its diameter is

not ∞. If it is not connected, then return an error.
3: Call k-CCDS(G,d ,k,m)
4: GB=G // BackboneGraph GB will contain the edges that will be included as

part of the final k-CCDS subgraph
5: // Construct k-CCDS subgraph
6: for ∀v ∈ G do
7: for ∀u ∈ G where u �= v do

// Remove connections between non-backbones nodes
8: if eu,v ∈ E and u and v are non-backbones then
9: Remove the edge eu,v from GB

10: end if
// Remove unused connections between backbone nodes

11: if eu,v ∈ E and u & v are backbones and eu,v /∈ any DCSPT then
12: Remove the edge eu,v from GB which was marked in Algorthm 1

because it hasn’t been used as part of any shortest path.
13: end if
14: end for
15: end for
16: SA=0 // Calculate total SAs used
17: for ∀v ∈ GB do
18: if v is a non-backbone node then
19: // 2 SAs for the non-backbone and 2 for the backbone it is connected to
20: SA=SA+4
21: else
22: for ∀u ∈ GB where u �= v do
23: if eu,v ∈ EB and u & v are backbone nodes then
24: SA=SA+2
25: end if
26: end for
27: end if
28: end for
29: Run test Algorithm 6

Algorithm 5 starts by generating a full mesh graph, and calls the k-CCDS
based on the inputted parameters to return the nodes that have been chosen as a
backbone in addition to the fixed pathbound and degree constraint if they have
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been relaxed (lines 1-3). The backbone status of nodes is then used to remove the
edges that exist between non-backbone nodes (lines 8-9) and the links that exist
between backbone nodes given that they haven’t been used by any path to provide
constrained connectivity (lines 11-12). After obtaining our k-CCDS subgraph, we
need to calculate the total number of SAs in our scalable IPsec network. For non-
backbones nodes, since they use only one link out of k possibilities, we have 2
SAs for it and 2 SAs for the backbone node it is connected to (lines 18-20). As
for the backbone nodes, if it is connected to another backbone node then we
add 2 SAs for this former backbone node (lines 22-26). Hence, we obtain our
k-CCDS architecture and the total number of SAs require by the scalable IPsec
network. Finally, we can run the test algorithm to make sure that all nodes are
connected and, degree and path constraints are satisfied when 0,1,...,k-1 nodes
fail simultaneously.

6.2.2 Test Algorithm

Algorithm 6 TestBackboneConnectivity(GB,d ,m,B)

Input: Backbone graph GB(V , EB), degree constraint d , path bound m, and
nodes that have backbone status B

Output: If constructed k-CCDS passes the test, return True. Else return False
with the error message.

1: for r=0,1,...,k-1 do
2: for every combination of r nodes do
3: Temporarily remove the combination of r nodes when r > 0
4: for every remaining node v do
5: Call DCSPT(G,d ,v,B)
6: if DCSPT returns violating node p then // degree(p)> dp
7: Return False with the following error message “Degree Constraint

cannot be satisfied at violating node p when DCSPT is run from v”
8: end if

// Test if every node is reachable
9: for every remaining node u where u �= v do
10: distance=DCSPTdistance(v,u);
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11: if distance==∞ or distance> m then
12: Return False with the following error message “Path Bound

cannot be satisfied at node u starting from node v”
13: end if
14: end for
15: end for
16: end for
17: return True
18: end for

6.2.3 Algorithm Efficiency

The running time of DCSPT, Algorithm 2, on full mesh networks increases ex-
ponentially as the number of nodes in the network increases. Furthermore, for
the evaluation of non-backbone nodes once the backbone is constructed and to
decide that a node remains a non-backbone node, DCSPT is run on N −M non-
backbone nodes (N − 1)2 times because we need to test if every combination of
neighbors of a node has k constrained paths, where M represents the number of
backbone nodes. To improve the performance of our algorithm on large networks,
we applied Theorem 3 from Chapter 5 on k-CCDS (Algorithm 1) and thus de-
creased the number of times DCSPT is called for the evaluation of non-backbone
nodes from (N −M)× (N − 1)2 to 1.

6.2.4 Experimental Results

In our first scalable IPsec experiment, we varied the number of nodes between 10
and 1000 and the edges from each node was fixed to be equal to N-1 because of
the full mesh nature of the overlay IPsec network. As for our input parameters,
we fixed the degree constraint d=N-1 and the path bound m=2, and varied k
between 1 and 4 (from no failure toleration to the toleration of at least 3 failures).
This experiment provides us with the best results because the degree constraint
was relaxed to the maximum, however the path bound was minimized which is a
highly desirable feature.
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Figure 6.1: Experiment 1 - Scalable IPsec SA Improvement

Figure 6.2: Experiment 1 - Scalable IPsec SA Improvement Scaled
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Figure 6.3: Experiment 1 - Scalable IPsec % Reduction of SAs

As we observe in Figures 6.1 and 6.2, the number of SAs have been reduced
vastly from millions to a couple of thousands. For example, for a network consist-
ing of 1000 nodes when k=4, the number of IPsec SAs have been reduced from
1,998,000 in traditional IPsec networks to 4020 in our scalable IPsec architecture.
Furthermore, any node can reach to any other node in the network by using a
maximum of 2 SAs. The detailed results are presented in Table 6.2:

N\k 1 2 3 4
10 36/180 40/180 48/180 60/180
50 196/4900 200/4900 208/4900 220/4900
100 396/19800 400/19800 408 /19800 420/19800
500 1996/499000 2000/499000 2008/499000 2020/499000
1000 3996/1998000 4000/1998000 4008/1998000 4020/1998000

Table 6.2: Total Number of SAs of Experiment 1
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Figure 6.4: Experiment 1 - Scalable IPsec Number of Backbones

As for the number of backbone nodes shown in Figure 6.4, we have a minimal
increase in the size of the backbone while adding redundancy in the network,
which is a beneficial trade-off based on the results shown in the figure. For ex-
ample, the size of the backbone has increased from 1 to 5 when k was increased
from 1 to 4.

In our second experiment, we varied the number of nodes between 10 and
1000 and the edges from each node was fixed to be equal to N-1 because of the
full mesh representation of IPsec networks. As for our input parameters, we fixed
k=2 and the path bound m � 7, and varied the degree constraint d between N

4
,

N
2
and 3N

4
. For d= N

4
a solution exists when m > 4 and for the remaining cases a

solution exists whenm > 2. The reason why we needm > 4 is because every node
can have a maximum of N

4
SAs, and since the network has N nodes to provide

full IPsec connectivity, 4 backbone nodes are needed to provide connectivity to
the whole network and thus the need of 3 SAs in between. Furthermore, when
two non-backbone nodes need to communicate, since each has a connection to a
backbone node, the total cost of the path will be equal to 5, thus the reason for
m > 4.
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Figure 6.5: Experiment 2 - Scalable IPsec SA Improvement

Figure 6.6: Experiment 2 - Scalable IPsec SA Improvement Scaled
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Figure 6.7: Experiment 2 - Scalable IPsec % Reduction of SAs

As observed in Figures 6.5 and 6.6, we obtained results very close to Exper-
iment 1 which represents the best case scenario. To make Experiment 2 more
realistic from the networking point of view, we varied the degree constraint d .
Although m was increased for different degree constraints to find a solution, in
both cases it was bounded above by 7 and hence the latency remains minimal.
For the case d=N

4
we can use m = 5 and for the remaining two cases we can

use m = 3. Furthermore, the total number of SAs remains minimal approaching
the results of the first experiment. We can conclude that scenarios with realistic
input parameters provide results that are very close to the ideal case scenario.
The detailed results are represented in Table 6.3:

N\d N
4

N
2

3N
4

10 60/180 48/180 40/180
50 236/4900 208/4900 208/4900
100 436/19800 408/19800 408 /19800
500 2036/499000 2008/499000 2008/499000
1000 4036/1998000 4008/1998000 4008/1998000

Table 6.3: Total Number of SAs of Experiment 2
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Figure 6.8: Experiment 2 - Scalable IPsec Number of Backbones

As for the number of backbone nodes shown in Figure 6.8, the maximum
which is six is reached when d=N

4
which is still minimal compared to 1000 nodes.

Analyzing the results of both experiments show that we were able to reduce
the total number of SAs by 67% when N = 10 d=N

4
and up to 99.8% when

N = 1000 and d=3N
4

as observed in Figures 6.3 & 6.7. It can also be deduced that
the increase in the size of the network has no effect on the number of backbone
nodes needed to have a k-CCDS of G, and the nodes with higher priorities formed
the backbone of our network. The path bound m is the minimal possible in
traditional IPsec networks by being equal to one which is the main reason why
we have a very large number of SAs. The proposed algorithm increases the path
bound m minimally to have a control over the latency and in return provides a
smaller number of total IPsec SAs by forming a backbone of IPsec gateways. The
degree constraint d in traditional IPsec networks is always N −1, whereas in our
design it is variable and we have seen through Experiment 2 that setting it as
N
4
will allow m to be less than 7 and also obtain a small backbone. As for the

alternate disjoint paths that add redundancy, we have at least one in traditional
IPsec networks because it depends in the way the underlying physical network
is connected, whereas k-CCDS guarantees that the overlay network has at least
k − 1 node disjoint paths. We can summarize and compare k-CCDS to current
IPsec networks with the following table:
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Traditional IPsec Scalable IPsec
Alternate Paths k At least 1 1,2,3,4,...,k

Degree Constraint d Fixed N − 1 Variable 2,5,10,...,N − 1
Path Bound m 1 minimize by setting 2 � m � 7

Table 6.4: Traditional IPsec vs. Scalable IPsec

To calculate the expected total number of SAs, we first recall the following
theorem from [2]:

Theorem: The expected number of backbone nodes selected by the k-coverage
condition is O(k) times the size of a minimal k-CDS.

Let n represent the total number of nodes in a network and NB the expected
number of non-backbone nodes such that

NB = n− sizeof(min k-CDS)×O(k)
Hence, the expected number of SAs that have been removed between backbone
and non-backbone nodes is 4ΣNB

i=1 (degree(vnon−backbone,i)−1). The expected num-
ber of SAs that are removed between backbone nodes is a function of the number
of backbone nodes because it depends on the links that haven’t been marked in
Algorithm 1. Thus the # of unmarked links is a function of backbone nodes eg.
f(backbone). Therefore, the expected total number of SAs in a k -CCDS subgraph
is:

2Σn
i=1degree(vi)− 4ΣNB

i=1 (degree(vnon−backbone,i − 1)− 4×#ofunmarkedlinks

6.3 General Scalable Networks

6.3.1 Simulation Parameters & Algorithm

The number of nodes and edges used in our experiments represent realistic general
networks as much as possible. In general network, the number of physical links
from a router varies between 8 and 16, and thus for our experimental scenarios
we varied it uniformly between 8 and 16. As for the number of nodes we varied
it between 50 and 500 to show the improvements that our algorithm introduces
in large scalable networks. Furthermore, a solution exists for the tested scenarios
and hence there was no need to relax the degree and/or path constraints. The
parameters that we have used along our experiments are summarized in the fol-
lowing table:
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Parameter Name Range of Values
Number of Nodes 50-500

Number of Alternate Paths k 1,2
Path Bound m 10-20

Degree Constraint d 10,12,14,16
Number of Edges from a Node 8-16

Weight of an Edge 1

Table 6.5: Simulation Parameters for General Networks

Algorithm 7 uses the algorithms described in Chapter 4, and hence is very
similar in construct to Algorithm 5. What differs is the generation of the graph
which is random, and the procedure of calculating the number of links needed
to construct scalable general networks. Furthermore, it calls Algorithm 6 to test
the k-CCDS satisfaction of the subgraph generated from G:

Algorithm 7 Simulation Algorithm for Scalable General Networks

Input: Parameters stated in Table 6.5.
Output: Total number of needed links, backbone size and k-CCDS subgraph.
1: Generate a random graph G based on the number of nodes, edge weight, and

number of edges from a node.
2: Check if the generated graph G is connected by checking if its diameter is

not ∞. If it is not connected, then return an error.
3: Call k-CCDS(G,d ,k,m)
4: GB=G // BackboneGraph GB will contain the edges that will be included as

part of the final k-CCDS subgraph
5: // Construct k-CCDS subgraph
6: for ∀v ∈ G do
7: for ∀u ∈ G where u �= v do

// Remove connections between non-backbones nodes
8: if eu,v ∈ E and u and v are non-backbones then
9: Remove the edge eu,v from GB

10: end if
// Remove unused connections between backbone nodes

11: if eu,v ∈ E and u & v are backbones and eu,v /∈ any DCSPT then
12: Remove the edge eu,v from GB which was marked in Algorthm 1

because it hasn’t been used as part of any shortest path.
13: end if
14: end for
15: end for
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16: Links=0 // Calculate total links used
17: for ∀v ∈ GB do
18: if v is a non-backbone node then
19: // A link between the non-backbone and a backbone node.
20: Links=Links+1
21: else
22: for ∀u ∈ GB where u �= v do
23: if eu,v ∈ EB and u & v are backbone nodes then
24: Links=Links+1
25: end if
26: end for
27: end if
28: end for
29: Run test Algorithm 6

6.3.2 Experimental Results

In the first scalable general networks experiment, the number of nodes was varied
between 50 and 500, and the edges uniformly between 8 and 16. The aim of
this experiment is to check the improvements of the algorithm that we obtain
through varying the degree constraint. Hence we fixed the path bound m=20, the
alternate disjoint paths k=2, and we varied the degree constraint d between 10
and 16 . Since we are randomly creating our graph based on our input parameters,
we repeated the simulations 10 times for every combination of input parameters.

Figure 6.9: Experiment 1 - General Networks Links’ Improvement
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Figure 6.10: Experiment 1 - General Networks Links’ Improvement Scaled

Figure 6.11: Experiment 1 - General Networks % Reduction of Links

As we can observe in Figures 6.9 and 6.10, the number of links required has
been reduced from thousands to a couple of hundreds. For example, for a network
consisting of 500 nodes where d=12, the number of links has been reduced from
2991 to 791. The detailed results are presented in Table 6.6:
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N\d 10 12 14 16
50 79.3/303.3 75.3/300.1 76/300.3 79.2/300.6
100 169/596.3 168.6/599.8 166.5/604.7 160.5/602.03
500 833/2992 816.5/3004.8 805.5/3010.8 814.4/3008.9

Table 6.6: Total Number of Links of Experiment 1

N\d 10 12 14 16
50 4.3982 6.0194 6.4979 6.4601
100 9.798 10.6583 16.2429 12.4833
500 36.046 33.6961 23.2959 34.7121

Table 6.7: Standard Deviation of Scalable Network Links of Experiment 1

N\d 10 12 14 16
50 10.2529 10.0824 10.7295 8.0581
100 9.0068 13.0196 8.3673 12.85
500 20.2649 15.6274 27.8239 29.9275

Table 6.8: Standard Deviation of Traditional Network Links of Experiment 1

Figure 6.12: Experiment 1 - General Networks Number of Backbones
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N\d 10 12 14 16
50 1.0593 1.2867 1.2867 0.8489
100 1.3984 2.2136 2.3594 1.7159
500 4.2201 7.0597 4.2151 5.7966

Table 6.9: Standard Deviation of Number of Backbones of Experiment 1

As for the number of non-backbone nodes, we can observe in Figure 6.12 that
the number of backbone nodes represents only 35% of the total number of nodes
which is small taking into consideration the small number of physical links avail-
able at each node (8 to 16).

In our second experiment, we varied the number of nodes between 50 and
500, and the number of edges uniformly between 8 and 16 as in Experiment
1. As for the other input parameters, we fixed the path bound m=20 and the
degree constraint d= 0.5E = 12, and varied k between 1 and 2. In general
scalable networks having a single alternate path is considered to be enough. As
in Experiment 1, we repeated every simulation 10 times due to random generation
of graphs.

Figure 6.13: Experiment 2 - General Networks Links’ Improvement
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Figure 6.14: Experiment 2 - General Networks % Reduction of Links

We can see through Figure 6.13 that we have reduced the number of links
needed by at least 70%. It is logical to have the number of links needed for
k = 2 to be larger than k = 1 because in the former case we need to have an
alternate path between any two nodes, while in the latter case we do not have any
redundancy in the network. Although we do not have any redundancy constraint
for k = 1, we can still observe the improvement introduced by k−CCDS which
reach up to 81%. The results observed can be summarized in Table 6.10:

N\k 1 2
50 55/298.9 75.3/300.1
100 121.2/600.2 168.6/599.8
500 605.2857/3000.1 816.5/3004.8

Table 6.10: Total Number of Links of Experiment 2

N\k 1 2
50 4 6.0194
100 7.0993 10.6583
500 18.7146 33.6961

Table 6.11: Standard Deviation of Scalable Network Links of Experiment 2
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N\k 1 2
50 5.9526 10.0824
100 12.3989 13.0196
500 34.0804 15.6274

Table 6.12: Standard Deviation of Traditional Network Links of Experiment 2

Figure 6.15: Experiment 2 - General Networks Number of Backbones

N\k 1 2
50 0.9944 1.2867
100 2.1705 2.2136
500 5.127 7.0597

Table 6.13: Standard Deviation of Number of Backbones of Experiment 2

As for the number of backbone nodes shown in Figure 6.15, it constitutes a
maximum of 32% of the total number of network nodes which is considered to be
small.

Analyzing the results of both experiments show that we were able to reduce
the total number of links by 71% when N = 100 d=12 and up to 80% when
N = 500 and k = 1 as observed in Figures 6.11 and 6.14. It can also be observed
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that the increase in the size of the network does not have a large effect on the
number of backbone nodes needed to have a k-CCDS of G, and the nodes with
higher priorities formed the backbone of our network. Furthermore, k−CCDS
allows us to obtain k alternate disjoint paths in our general networks however
it is enough to have one or two alternate paths, whereas in traditional general
networks we cannot guarantee that we have alternate disjoint paths. As for the
path bound it is similar to the path bound in realistic current general networks
and hence we allowed it to be a maximum of 20 for large networks. We can
summarize and compare k-CCDS to current general networks with the Table
6.14:

General Networks Scalable General Networks
Alternate Paths k At least 1 1,2,3,...,k

Degree Constraint d No constraint, Fixed 8,16 Variable 8,...,16
Path Bound m 10-20 10-20

Table 6.14: General Networks vs. Scalable General Networks
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Chapter 7

Conclusion and Future Work

In our research we designed and implemented k-CCDS that reduces the num-
ber of SAs needed compared to traditional IPsec networks by 66% to more than
99.5%. This results in the reduction of latency which is generated from the heavy
cryptographic functions due to the presence of large number of SAs, reduction of
memory required to store the SAs and SPs, and finally minimizing configuration
overheads for key exchanges. The proposed architecture is not only applicable to
IPsec networks, but also to any type of networks that requires the satisfaction
of certain constraints i.e. bounds on number of devices on nodes, bound on the
cost of a path and improving network redundancy. We can thus conclude that,
k-CCDS is a general algorithm that constructs a k connected network consisting
of backbone and non-backbone nodes which can sustain a failure of at least k− 1
nodes. When a node wants to communicate with any other node, the paths that
are used for transmission are the shortest costing paths and the number of con-
nections (degree) are equally balance between all backbone nodes. The results
that we have obtained in Chapter 6 confirm the improvements that k-CCDS in-
troduces in the construction of both scalable IPsec networks and general scalable
networks. Furthermore, if a k-CCDS cannot be constructed with the given in-
put parameters, the algorithm will find the relaxed degree and path constraints,
which can be further used as the new input parameters to construct a k-CCDS.

Future work includes improving the efficiency of DCSPT algorithm , re-
establishing new alternate paths when failures occur, dynamically adding new
nodes that want to join the network, and finally constructing a k-CCDS network
consisting of smaller k-CCDS networks.
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Appendix A

Abbreviations

AH Authentication Header
DCSPT Degree Constrained Shortest Path Tree
ESP Encapsulating Security Payload
IKE Internet Key Exchange
IPsec IP security
k-CCDS k Constrained Connected Dominating Set
k-CDS k Connected Dominating Set
SA Security Association
SADB Security Association Database
SP Security Policy
SPD Security Policy Database
SPI Security Parameter Index
SPT Shortest Path Tree
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