

AMERICAN UNIVERSITY OF BEIRUT

THE STUDY OF DERIVING A HIGHER ORDER MOVING

MESH SCHEME

by

HUSSEIN YOUSSEF MAANIEH

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master of Mechanical Engineering

to the Department of Mechanical Engineering

of the Faculty of Engineering and Architecture

at the American University of Beirut

Beirut, Lebanon

April 2016

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT RELEASE FORM

Student Name: ____Maanieh___________Hussein_______________Youssef________

 Last First Middle

 Master’s Thesis Master’s Project Doctoral Dissertation

 X I authorize the American University of Beirut to: (a) reproduce hard or

electronic copies of my thesis, dissertation, or project; (b) include such copies in the

archives and digital repositories of the University; and (c) make freely available such

copies to third parties for research or educational purposes.

 I authorize the American University of Beirut, three years after the date of

submitting my thesis, dissertation, or project, to: (a) reproduce hard or electronic

copies of it; (b) include such copies in the archives and digital repositories of the

University; and (c) make freely available such copies to third parties for research or

educational purposes.

_______________________________________May 6th, 2016________

Signature Date

v

ACKNOWLEDGMENTS

I want to give more than thanks to my amazing family members and lovely

fiancé for supporting and motivating me along these years to finish this

accomplishment.

My recognition and gratitude are addressed to the duo, Professor Fadl

Moukalled and Professor Marwan Darwish, for their substantial support, assistance and

patience that led this work to be accomplished.

Special thanks are addressed to Professor Kamel Ghali for giving time to be a

part of the committee to discuss this work, as well as to the C.F.D. group at the

American University of Beirut and to all the graduate students who supported me

throughout my work.

vi

AN ABSTRACT OF THE THESIS OF

Hussein Youssef Maanieh for Master of Mechanical Engineering

 Major: Mechanical Engineering

Title: The Study of Deriving a Higher Order Moving Mesh Scheme

The formulation and implementation of a higher-order accurate scheme for

arbitrary moving mesh problems, is presented. The governing equations are formulated

according to the Arbitrary Lagrangian-Eulerian (ALE) approach in a form that satisfies

the Geometrical Conservation Laws (GCL) in an intrinsic manner. The contribution of

this work is achieved by the technique used to deal with the introduced moving mesh

term represented by face mesh velocities. The method replaces the aforementioned face

mesh velocities by equivalent volumetric face increments on which the formulated

explicit higher order scheme is applied. The scheme is implemented on the three

dimensional MATLAB unstructured Finite Volume Method (u-FVM) solver where

several test cases are conducted and simulated on static and arbitrary moving grids with

their results being presented and analyzed. The results indicate that the set obtained

from higher order mesh treatment tend to overlap with the results of the static mesh,

hence, proving the effectiveness of the formulated scheme.

vii

CONTENTS

ACKNOWLEDGEMENTS……………………………………………....

 v

ABSTRACT……………………………………………………………………

 vi

LIST OF ILLUSTRATIONS…………………………………….………

 x

LIST OF TABLES…………………………………………………………..

 xii

Chapter

 I. INTRODUCTION…………………………………………………….…

A. Thesis Objective…………………………………………………………..

B. Thesis Significance………………………………………………………..

C. Thesis Organization……………………………………………………….

 1

 3

 3

 4

 II.

LITERATURE REVIEW………………………………………......

 5

 Appendix VA)

ABSTRACT ..

 vi

LIST OF ILLUSTRATIONS ..

 ix

LIST OF TABLES ..

 xi

Chapter

I. INTRODUCTION……………………………………………

……………………….

 1

A. Background ………………………………………………………………

 5

 B. Flow with Moving Boundaries……………………………………….….

 8

C. Arbitrary Lagrangian-Eulerian Formulation……………………………..

 10

D. Geometric Conservation Laws…………………………………………..

 11

III. UFVM DESCRIPTION………………………………………….. 14

 A. Introduction ……………………………………………………………

 14

B. The Basic Structure…………………………………………...............

 14

viii

1. Case Setup ………………………….…………………………. 14

2. Setting the Geometry…….………………................................ 16

3. Setting up the Model……………………………………………

4. Setup of the Computational Field………………………………

5. Equation Discretization…………………………………………

6. Equation Assembly……………………………………………..

7. Solving the Equations…………………………………………..

8. Correcting the Equations…………………………………..…...

9. Computing the Residuals……………………………………….

10. Plotting Utilities……………………………………………….

18

20

21

21

23

23

24

25

C. Gradient Calculation………………………………………….………… 26

1. Cell Based Method …………………………………………….

………………………..CommerciaMails.…………………………

………………..

 27

2. Node Based Method………………………….………………… 28

D. Interpolation Schemes…………………………………………………...

………………………………………………………………………………

….... ……………………………………………………………

 28

E. Solution Algorithm ………………………………………...................... 31

IV. GOVERNING EQUATIONS…………………….……………… 32

32

A. Introduction………………………………………................................

B. The Arbitrary Lagrangian-Eulerian Approach………………………….

 32

 32

1. Introduction…………………………………………………….

…………Revenues……………………..

…………………...………………………………....

 32

3232

2
2. The Lagrangian and Eulerian Descriptions……….…………… 34

3. The Arbitrary Lagrangian-Eulerian Approach………………… 36

a. Kinematical Descriptions…………...........................

...…………………………………………...

…………………………………………………………

………………………………………………………….

 36

b. The Equations Formulation…….……………………. 41

i. Material, Spatial and

ReferentialTimeDerivatives…………..

ii. Temporal Derivation of Integrals over

Moving Control Volumes…………….

iii. The Integral ALE Form of the

Conservation Equations………………

iv. The Discretized ALE Conservation

Equations……………………………..

 41

 44

 45

 48

C. The Geometric Conservation Laws……………………………………. 49

1. Derivation of GCL Equations………………………………….. 50

2. Discretization of Laws’ Equations………………………………

52

3. Implementation of the G.C.L……………………………………

53

ix

V. MESH MOVEMENT…………………….…………………………. 55

BIBLIOGRAPHY…………………………………………………………………………..

85

VI. HIGH ORDER MESH MOVEMENT SCHEME….…….. 63

 A. Test Case 1: Transient Diffusion of a Scalar………………………….

65

B. Test Case 2: Transient Advection of a Scalar with Inclined Velocity

Field………………………………………………………………………..

C. Test Case 3: Transient Advection of a Scalar with Rotational Velocity

Field………………………………………………………………………..

D. Test Case 4: Navier Stokes’ Equations in a Flow Problem…………….

68

76

80

VII

.
CONCLUSION AND FUTURE WORK……………….…… 84

x

ILLUSTRATIONS

Figure Page

3.1 The basic structure of a user- developed UFVM MATLAB test

case……………………………………………………………...……

15

3.2 The basic structure of an OPENFOAM test case………………….... 16

3.3 The basic structure of UFVM stored arrays…………......................... 18

3.4 The basic internal arrays’ structure of an equation in UFVM……..... 20

3.5 Coefficients’ and Neighbors’ arrays in a UFVM test case................... 22

3.6 A sample plot of a chosen field in a UFVM code……….................... 35

3.7 Residuals plot generated from a UFVM simulation……….................. 26

3.8 Velocity vectors plot of a UFVM advection test case………................ 26

4.1 The transformation functions between computational, referential and

spatial domains………………………………………….....................

38

5.1

The movement of a hexahedral control volume in time………….......

56

5.2

5.3

5.4

5.5

5.6

5.7

The movement of a triangular face of an unstructured control volume

in time………………………………..

Calculation method of the volumetric face increment following the

pyramid approach………………………………………………………

Technique of calculating the generated volumetric face increment……

A sketch of splitting the generated volume of a face volumetric

increment into two at the diagonal……………………………………..

The initial and final moving mesh configurations of an adopted

domain………………………………………………………………….

Residuals plot of the volumetric conservation law……………………..

56

57

61

61

62

62

xi

6.1 Initial and final mesh configurations of a transient diffusion of a scalar

case ……………………………………………………………...……

67

6.2 Results showing the scalar values over the domain on a static and

moving mesh configuration …………………....................................

68

6.3 Static mesh results using Upwind advection scheme – conf. 1............... 71

6.4 Moving mesh results using Upwind advection scheme – conf. 1…..... 71

6.5 Static mesh results using QUICK advection scheme – conf. 1.............. 71

6.6 Moving mesh results using QUICK advection scheme – conf. 1…….. 71

6.7 Static mesh results using Upwind advection scheme – conf. 2.............. 72

6.8 Moving mesh results using Upwind advection scheme – conf. 2…..... 72

6.9 Static mesh results using QUICK advection scheme – conf. 2.............. 72

6.10 Moving mesh results using QUICK advection scheme – conf. 2…….. 72

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

Results of mesh configuration 1 using upwind and QUICK as

advections schemes on static and moving grids......................................

Results of mesh configuration 2 using upwind and QUICK as

advections schemes on static and moving grids ……………….………

Initial static mesh configuration of the adopted domain………….……

Moved mesh configuration of the adopted domain……...……………..

Velocity vectors field across the adopted domain……..……………….

Static and moving mesh results of a scalar (T) at section A-A using

first and second order moving mesh schemes………………………….

Pressure field across a static meshed domain…………………………..

Pressure field across a moved mesh domain…………………………...

Static and moving mesh results at section A-A using first and second

order moving mesh schemes…………………………………………...

73

75

78

78

78

79

82

82

83

xii

TABLES

Table Page

6.1. Test case conditions and parameters of a transient diffusion of a scalar

problem..

66

6.2. Test case conditions and parameters of a transient advection of a

scalar problem with an inclined velocity vector field.............................

70

6.3. Test case conditions and parameters of a transient advection of a

scalar problem with a rotational velocity vector field.............................

77

6.4. Test case conditions and parameters of a flow problem solving the

Navier-Stokes’ Equations on Smith Hutton geometry............................

81

 1

CHAPTER I

INTRODUCTION

There are three important steps that have to be followed carefully in the computational

modeling of any physical process; we list:

(i) Problem definition

(ii) Mathematical modeling

(iii) Computer simulation.

The most important prerequisite to the aforementioned steps is the correct treatment of

the geometry of the problem. Meshing the geometry in an adequate framework is

needed for the solution to be realistic, logical and as exact as possible to the

experimental results.

For our interest, in Computational Fluid Dynamics (CFD), physical conservation laws

represented in Partial Differential Equations (PDEs) are to be solved numerically on

discrete grids using adequate algorithms. Such algorithms of numerical solving depend

on the chosen frame of discretizing the partial differential equations, whether Finite

Difference Method (FDM), Finite Element Method (FEM) or Finite Volume Method

(FVM).

Finite Difference framework is the oldest discretization approach where it uses the

differential form of the governing equations. The discretization procedure uses a

topologically square network of lines over the computational domain under study, and

at each grid point, the differential equations are approximated by terms from the

neighboring grid points. For each grid point, a single algebraic equation is obtained.

Taylor series expansion or polynomial fitting is used to obtain first or second order

derivative terms of the governing equations.

 2

The topology of discretization followed in the FDM acted as a potential bottleneck of

the method when handling complex geometries in multiple dimensions. This issue

motivated using the integral form of the PDEs and subsequently led to the development

of the FEM and FVM approaches.

Finite Element framework is usually associated with solid mechanics, however it can be

applied to fluid flows but with special care to ensure the continuity of mass (Ferziger

and Peric 2002). This approach divides the domain into triangular or quadrilateral

elements where the differential equation is multiplied by an arbitrary test function to

later integrate both over the whole domain. Since this approach is predominantly used

in unstructured meshes, it is well suited to deal with arbitrary geometries, as the grids

are easily refined, however the resulted discretized system of equations is difficult to

solve.

 In the Finite Volume framework, the solution domain is filled with a mesh. This mesh

is used to define the storage locations of each variable stating mainly the vertex-

centered and cell-centered methods. Finite control volumes are constructed around each

storage location, and the governing equations are integrated over each control volume in

a conservative form. The volume integrals are converted to surface integrals by means

of Gauss’ divergence theorem, and the surface integrals are then approximated in terms

of variables defined at the adjacent storage locations, depending on the order of the

scheme selected. Hence, according to this process, the differential equations are

replaced by algebraic equations: one for each conservation equation for each control

volume.

Although FEM must be carefully formulated to be conservative, it is more stable than

the FVM approach (Surana, et al. 2006) but the latter is conservative by phenomena.

 3

However, FEM requires more memory and has slower solution times than the FVM

(Huebner, Thornton and Byrom 1995). For time-dependent problems, the finite volume

principle has traditionally been used to discretize the spatial dimensions and temporal

dimensions. If, on another side, the mesh undergoes motion, these methods require the

use of Leibniz rule (Spiegel 1997) (Kaplan 1973) (Hildebrand 1976) to account for

mesh motion.

A. Thesis Objective:

In our presented work, the finite volume method is adopted and all the discretization of

the partial differential equations will be casted according to this method. The main

objective of the presented dissertation is the development of a high order scheme that

will discretize the moving mesh term developed when allowing the mesh to move

arbitrarily with time. The Geometric Conservation Laws that accompany the moving

mesh phenomena are well treated and satisfied in the governing equations. Several test

cases are simulated to ensure that the proposed scheme is valid and provides reliable

results.

B. Thesis Significance:

Nowadays, fluid structure interaction problems are encountered in diverse scientific

areas and the rapid progress in this field urged us to develop the capabilities of the

unstructured Finite Volume Method (u-FVM) solver base on MATLAB software so as

to introduce the mesh motion along with its relative changes and generated terms into

the code and trying to deal effectively with them. The significance of this work, serves

 4

into the development of the computational field by introducing a scheme that will help

researchers improve their computational codes.

C. Thesis Organization:

The remaining of this thesis is divided into chapters that cover the main boundaries of

the research topic. The next chapter i.e. the second chapter reviews the literature

associated with the topic of this work and presents work that is prerequisite or related to

the topic. Following that, in the third chapter the governing equations are derived in an

Arbitrary Lagrangian-Eulerian (ALE) frame after introducing and elaborating on the

ALE approach. The fourth chapter briefly describes the u-FVM code by presenting its

main functions and the borderline of how a simulation is performed in it. Chapter five

describes how the mesh nodes are moved arbitrary in time and discuss the technique

used to calculate the generated face volumetric increments satisfying the Geometric

Conservation Laws (GCL). Chapter six presents and highlights the validity of the high

order scheme formulated and implemented in the u-FVM code by applying and

addressing the results of several test cases. The thesis is wrapped up in a conclusion

presented in Chapter seven.

 5

CHAPTER II

LITERATURE REVIEW

A. Background

Over the past decades, two categories of generated grids are differentiated in the

literature of CFD as:

i) Domain-Conformal Grid Methods.

ii) Non Domain-Conformal Grid Methods.

The term “Immersed Boundary” was first introduced by Peskin in the aim of studying

cardiac mechanics and blood flow patterns around heart valves (Peskin 1972). Peskin’s

contribution was to carry out the entire simulation on a Cartesian grid that did not

conform to the geometry of the heart. Moreover, the author formulated a procedure for

imposing the effect of his new Immersed Boundary Method (IBM in short) on the flow.

Since then, Peskin’s pioneering method evolved into a generally useful method for

problems involving fluid-structure interaction. Another related class of methods,

referred as “Cartesian Grid Methods”, were proposed and developed to simulate

inviscid flows on Cartesian grids for the cases of complex embedded boundaries (Beyer

1992, Clarke, Hassan et al. 1986, De Zeeuw, Powell 1991). The aforementioned

methods were further extended to cover unsteady viscous flows (Ye, Mittal et al. 1999,

Udaykumar, Shyy et al. 1996) and by that they had similar capabilities as the IB

methods. In order to avoid any conflict between the two set of methods, and to

encompass a broader group which includes all the methods that simulate viscous flows

with immersed or embedded boundaries on non-conformal boundary grids, we will refer

to both set of methods by the term “Non Domain-Conformal Grid Methods”.

 6

The major treatment that needs specific attention while developing Non Domain-

Conformal Grid methods is how to impose the boundary conditions in the algorithm.

The boundary conditions are indirectly enforced into the discretization process of flow

equations (for example: Navier-Stokes in an incompressible flow) after undergoing

certain modifications, of which, a source term (also called a forcing factor) that

represents the effect of the boundary is added to the discretized equations.

There exist two approaches for implementing the forcing factor. In the first approach,

called the continuous forcing approach, the forcing factor is enforced into the governing

flow equations before discretizing them on the Cartesian grid. The equations are then

discretized and solved over the entire domain of interest. Many applications have been

reported in the literature in accordance to this approach with elastic and rigid boundaries

in biological fluid dynamics (Beyer 1992, Peskin 1982, Peskin 2002), in studies on

insects (Miller, Peskin 2004, Miller, Peskin 2005), and in multiphase flows (Unverdi,

Tryggvason 1992, McIntyre 2011). However, this approach requires solving the

governing equations inside the immersed body which will make the problem

burdensome with increasing Reynolds number and on another side, the introduced

forcing terms generally don’t behave well in the rigid limit.

In the second approach, called the discrete forcing approach, the governing equations

are first discretized on a Cartesian grid without regarding the immersed boundary. Then,

boundary conditions are either imposed directly or indirectly on the immersed boundary

and this opens up two distinguished categories in this approach. Direct forcing methods

introduce a discrete momentum source that, when integrated over a time step,

identically forces the velocity to the prescribed value on the immersed boundary. On the

other hand, in the Indirect Imposition category, Mohd-Yosuf (Mohd-Yusof 1997)

 7

attempted to develop a method that extracts the forcing directly from the numerical

solution so as an a priori prediction can be determined. Then, Verzicco et al. (Verzicco,

Mohd-Yusof et al. 1998) applied the direct forcing method to a finite-difference code

for large eddy simulation of flow in an engine cylinder. On the other hand, the need to

retain the “sharp” interface of the immersed boundary especially at high Reynolds

numbers with greater emphasis on the local accuracy near the immersed boundary has

opened up a new category of direct discrete forcing. Two methods fit in this category,

one suiting the finite difference frame of work called the ghost-cell finite difference

method and the other suiting the finite volume frame being called the cut-cell finite

volume method. The first method uses ghost-cells, which are defined as cells in the solid

region having at least one neighbor in the fluid region. In this method, each ghost cell

will have a special implicit interpolation scheme devised to it. Several authors proposed

adequate interpolation schemes, we mention among (Ghias, Mittal et al. 2004,

Majumdar, Iaccarino et al. 2001). Irrespective of the chosen interpolation scheme, the

modified discrete equations of the ghost cells can be solved simultaneously with the

discretized Navier-Stokes equations for fluid nodes. The second method in this

category, called the cut-cell method, uses a finite volume work frame. Remarking that

finite volume methods are the only to guarantee strict local and global conservation of

mass and momentum, the cells of this method in the Cartesian grid that are cut by the

immersed boundary are identified, and the intersection of the boundary with the sides of

these cells is determined. Cells that are cut by the immersed boundary, and whose cells

centers lie in the fluid domain, are reshaped by dumping the portion of these cells that

lies in the solid domain. Neighboring cells grip portions of cut-cells, whose centers lie

 8

in the solid domain which results in formulating trapezoidal control volumes (Ye, Mittal

et al. 1999).

The major advantage of the discrete forcing approach is the absence of the user-defined

parameters in the forcing but the details of implementation still depend strongly on the

numerical algorithm used to discretize the equations. Yet, there exists a major

disadvantage in this approach which lies in the difficulty of including boundary motion

and this makes the approach less desirable to use for problems involving moving

boundaries.

B. Flow with Moving Immersed Boundaries

Most of the methods described in the Non Domain-Conformal Grid Methods category

follow the Eulerian-Lagrangian frame, wherein the governing equations are represented

in a Eulerian form and solved on a stationary grid while the moving boundaries are

tracked following a Lagrangian treatment. Among these methods, we can distinguish

the procedure adopted to track the immersed boundary as well as the methodology used

to represent its influence on the underlying Eulerian flow-field. In this manner, Peskin’s

Immersed Boundary Method (Peskin 1982) tracks the boundary as a separate and sharp

Lagrangian body while its influence is represented by a diffusing effect on the fluid

field. However, for the methods of cut cell and ghost cell previously described, the

immersed boundary is treated as a sharp Lagrangian body and at the same stage it is

represented as such in the underlying Eulerian flow-field. One can also differentiate on

another basis between the aforementioned Non Domain-Conformal Grid Methods and

the Volume-of-Fluid methods (Hirt, Nichols 1981, Scardovelli, Zaleski 1999, Anderson,

McFadden et al. 1998) where the last preserve the diffuse nature of the boundary in

tracking along with representing its effect on the flow field.

 9

Literature on sharp-interface methods such as cut-cell methods has pointed out an

important issue to be realized and dealt with in order to enable boundary motion. As the

immersed boundary moves across the fixed Cartesian grid, “freshly-established” cells,

or in other words cells in the fluid field that were inside the solid field at the prior time

step, are encountered. This is considered as a spatial discontinuity and is usually

associated with sharp immersed boundaries, hence leading to a temporal discontinuity

for the cells lying near the moving boundary (Mittal and Iaccarino 2005). Adding up,

another disadvantage is associated with the Immersed Boundary Methods that is

because the immersed boundary is smeared across few cell-widths where the point force

is represented on a finite size mesh.

After all, the drawback of Non Domain-Conformal Grid Methods remains in its

complicated treatment of the fluid structure interaction by accurately tracking the

interface and accurately estimating the velocity field near it.

We turn our attention now to the Domain-Conformal Grid Methods. These methods are

considered as a better choice than Non Domain-Conformal Grid Methods for Fluid-

Structure Interaction (FSI) problems, with moderately complex interface and medium

deformations or movements in the solid domain. We remark for instance that the

generation of body conformal grids to the FSI interface permits the estimation of

accurate solutions of the tractions and velocities near the FSI interface. In this category,

the external mesh faces match up with the body interface and the external bounding

faces of the domain. Simulating flows with moving boundaries using body-conformal

grids requires the generation of a new grid at each time step as well as a technique to

project the solution onto the new grid. When simulating moving bodies on body-

conformal grids, the partial differential equations should be cast in Arbitrary

 10

Lagrangian-Eulerian (ALE) frame of reference (Donea, Huerta et al. 2004), where the

idea is to move the mesh with minimal distortion. Throughout the years, significant

progress has been witnessed in simulating flows with moving boundaries on body-

conformal grid methods (Baum, Luo et al. 1998, Ramamurti, Sandberg 2001, Tezduyar

2001).

C. Arbitrary Lagrangian-Eulerian Formulation

 The ALE formulation which can be viewed as a mesh movement strategy is adopted in

cases where the CFD equations are defined on domains with continuously moving or

deforming grids with time due to boundary movement. The governing equations are

enforced over the control volumes whose geometrical shape and position are neither

constant in time, thereby the grid positioning geometric quantities and velocities of the

moving or deforming grid points must be determined. Accurately determining these

parameters is an essential factor to ensure the conservation of mass and momentum

over the moving grid. For a general problem, the grid positioning geometric quantities

are usually available as a function of time particularly if the grid deformation is

governed by a set of partial differential equations. The ALE formulation is particularly

useful for problems involving fluid-structure interaction based on the coupling between

the fluid dynamics models and the finite element models of aircraft structure

(Bendiksen 2011, Bennett, Edwards 1998, Schuster, Liu et al. 2003, Yurkovich 2003).

The ALE formulation has been intensively employed in problems involving small and

large structure displacements with no topological changes in the structure domain. A

recent and interesting application of the ALE formulation occurs in the medical field,

where undergoing experiments and extracting quantitative flow information is very

difficult, time consuming and expensive (Taylor, Hughes et al. 1998). Among other

 11

applications, the ALE formulation was used as well for soil-structure interaction and the

detailed analysis can be found in (Shahrour, Benchekh 1992). We focus our attention in

this study on the implementation of the moving grid concept along with establishing the

corresponding ALE flow equations in a finite volume discretization scheme for general

boundary-fitted grids.

 The major task while simulating the ALE equations is the determination of the

variable geometric parameters, which is governed by the satisfaction of the so-called

Geometric Conservation Laws (GCL in short).

D. Geometric Conservation Laws

While reviewing the literature on Computational Fluid Dynamics, it comes into notice

that two additional equations that formulate, for static or moving meshes, the balance

between the relevant geometric parameters have sometimes been ignored. This led to

the misrepresentation of the convective velocities thus violating the conservation laws

and producing extra sources or sinks in the physically conservative media. These errors

have been witnessed and investigated by (Hindman 1982, Demirdžić, Perić 1988).

Furthermore, violating these laws leads to the occurrence of severe restrictions on

numerical solvers (Demirdžić, Perić 1988, Vinokur 1989). The importance of the GCL

has long been ignored and the errors resulting from the non-satisfaction of the laws have

been regarded to other sources (Amsden, Ruppel et al. 1980, Viviand, Ghazzi 1976).

The two equations, called Geometric Conservation Laws helps establishing the

conservative relations between the surfaces and volumes of the control volumes in the

discretized domain. The first equation states that cell volumes must be enclosed by all

its surfaces, and hence is referred as the Space Conservation Law (SCL in short). The

second equation states that the volumetric increment of a moving control volume must

 12

be equal to the sum of the changes along the surfaces that enclose the volume of the

control volume, and is called the Volumetric Conservation Law (VCL in short).

Satisfying the two aforementioned equations is crucial in order to achieve the global

conservation of the domain of interest.

Among several numerical solutions to problems with moving boundaries that are

reported in literature (Gosman, Johns 1978, Krause 1979, Durst, Pereira et al. 1986), the

SCL was first included into the set of mass, momentum and energy equations by

(Trulio, Trigger 1961), but it wasn’t recognized until (Thomas, Lombard 1978, Thomas,

Lombard 1979) rediscovered the equation and marked out the necessity of satisfying it

numerically along with solving the set of governing equations.

In the study of (Demirdžić, Perić 1988), the authors defined the grid surface velocities

in an explicit manner so that the rate of change of the cell volume obtained from the

VCL exactly equalizes the actual geometrical rate of change. Care was not addressed to

the path of the vertices or nodes of the moving surfaces of a control volume of the

moving mesh unlike the study of (Trepanier, Reggio et al. 1991), where the latter

figured out that for the 2-D and axisymmetric cases, the computed facial increments

should be independent of the order of nodal motions, and the facial volumetric

variations following any permutation must sum up to the same total volumetric

variation of the moving element in the discretized domain. This was not the case for the

3-D problems where each permutation would define a different volumetric increment, in

this case the investigators tend to average the value obtained from all the possible

permutations to the movement of the nodes of an element. In the paper of Zhang et al.,

the authors implemented the approach of moving the grid onto Finite Volume

 13

framework and elaborated as well on the suggested modifications in the flux terms

(Zhang, Reggio et al. 1993).

 14

CHAPTER III

U-FVM DESCRIPTION

A. Introduction

u-FVM is a general MATLAB® code developed to solve over three

dimensional unstructured as well as structured grids following the finite volume method

approach.

The code has the capability of solving a wide range of flow problems with single or

multi-fluids and transport phenomena problems. u-FVM which stems from unstructured

Finite Volume Method is an academic fully accessible code that stresses on

programming simplicity, organization and reliability over speed of performance. The

organized structure of the code allows the user to develop it by embedding new

functions within the main code to further enhance its capabilities.

B. The Basic Structure

1. Case Setup

u-FVM code is composed of several task oriented functions in the form of MATLAB®

script files each devoted to a specific task. These set of functions that mimic the

numeric of the Finite Volume Method, act all together in the aim of solving any

specified case. The user can setup a case file by creating a script file in the MATLAB®

editor and importing the appropriate functions in a wise order as illustrated in the Figure

3.1 below. The user should have the basic knowledge of the physics of his case problem

so that to be able to determine which functions to include in the case problem script file.

 15

% Convection-Diffusion Problem Solved on Static Grid

1. clear all;

2. clc;

3. global Domain

4. cfdSetupDomain;
%Reading the Geometry from OpenFOAM®
5. cfdReadOpenFOAM®Mesh('Domain25CV');
% setup Fluid
6. cfdSetupFluid('water','MW',18);

7. cfdSetIsTransient;

8. cfdSetIsMoving(false);
%Creating the Property Fields
9. cfdSetupProperty('Density:water','constant','1000');

10. cfdSetupProperty('SpecificHeat:water','constant','4.186');
11. cfdSetupProperty('conduction:water','constant','4.186');
12. cfdSetupProperty('Velx:water','constant','10');
13. cfdSetupProperty('Vely:water','constant','10');
14. cfdSetupProperty('Velz:water','constant','0');
% Setting the equation:
%=======================
15. cfdSetupEquation('T:water','ic','10','urf',1);
% Adding the terms constituting the equation with appropriate coefficients
16. cfdAddTerm('T:water','Transient','coefficientName','Density:water',...

'coeffiecientName','SpecificHeat:water');

17. cfdAddTerm('T:water','Diffusion','coefficientName','conduction:water');
18. cfdAddTerm('T:water','Convection','coefficientName','Density:water',...'scheme','UPWIND');
% Specifying the Boundary Conditions for the equation
19. cfdSetBC('T:water',1,'type','Specified Value','value','10');%InletBC
20. cfdSetBC('T:water',2,'type','Outlet'); % Outlet BC
21. cfdSetBC('T:water',3,'type','Specified Value','value','0');%SideWalls
22. cfdSetBC('T:water',4,'type','empty'); % Front & Back
% Creating an Mdot Field
23. cfdSetupMdotFields;
% Initializing the special array for each field
24. cfdInitializeFields;
25. time_i=0;
26. time_f=7;
27. dt=1;
% Starting the Time loop
28. for time=time_i:dt:time_f
29. k=1;
30. time_p=time;
31. time_c=time_p+dt;
32. cfdSetTime(time_c)
33. cfdSetDt(dt)
34. cfdTransientUpdate;
35. fprintf('%s %d \n', 'Time:', time_c);
36. disp('---------------------');
% Internal Iterations
37. for iter=1:100
38. cfdUpdateFields;
39. fprintf('%s\n %d \n','Iteration: ',iter);
40. cfdAssembleAndCorrectEquation('T:water');
41. end
% Plotting the temperature field and the residuals of the equation
42. cfdPlotField('T:water',k);
43. colorbar;
44. cfdPlotResiduals;
% A step to save the Phi Field at each time step
45. cfdSavePhiAtEachTimeStep('T:water',k);
%%%
46. end

Figure 3.1: The body of a test case in u-FVM MATLAB code

 16

The illustrated case problem example above is governed by the simple temperature

transport equation of the form presented in Equation 3.1:

Equation 3.1

 () 0
T

vT T
t





   



2. Setting the Geometry

As seen in the above illustration (Figure 3.1), the first requirement when setting up a

case problem is to import the geometry of the problem. uFVM has the ability to read the

geometrical information necessary for building

the geometry and the mesh generated from an

OpenFOAM® case folder. OpenFOAM® (Jasak,

Jemcov et al. 2013), which stands for Open

Source Field Operation and Manipulation, is an

open source object-oriented C++ continuum

mechanics library that has the characteristic of

converting geometries and meshes generated by

any of the major mesh generators and CAD

systems by the use of some specific commands

(ansysToFoam, cfxToFoam,

fluent3DMeshToFoam, gambitToFoam,

star3ToFoam among others.)

The ‘ ’ directory is the first time sub-folder that

contains the initial conditions of each property or

variable as shown in Figure 3.2. The ‘constant’ directory contains the dynamicMeshDict

0 Figure 3.2: The basic structure of an Open
FOAM test case

 17

that is a dictionary only created for dynamic mesh, and a ‘polyMesh’ directory special

for the description of the problem’s geometry. The ‘system’ directory contains

dictionaries that define the case setup, the controlDict is concerned with the general

control parameters of the test case, the fvSchemes defines the discretization schemes

while the fvSolution contains information about the solution algorithms and relaxations

to be used in the simulation.

After obtaining the mesh in an OpenFOAM® format, UFVM can easily read and

recognize all the needed geometrical data through the use of a specialized function

cfdReadOpenFoamMesh. This function starts by reading the points file from

OpenFOAM® case folder (constant/polyMesh directory) and storing the x, y, z

coordinates into a structure array called the nodes array, then the faces file is read and

the nodes’ indices, that constitute each face, are stored into the faces structure array.

Information about the patches and the associated patch faces is then read from the

boundary file and stored in the boundary structure array. Finally, the owners and

neighbors files are read and the elements structure array is composed. At this stage, the

available data enables us to construct the elements and setup the mesh nodes’

connectivity. The mesh is then processed in UFVM using cfdProcessOpenFoamMesh

where the volume and centroid coordinates of each element are calculated as well as the

surface area, the interpolation factor and other properties for each face among other

geometrical entities.

Now, the mesh structure array contains: the nodes array storing the centroid coordinates

of each node, its index, the element/s and the faces for which it belongs; the faces array

storing the index of each face as well as its centroid’s coordinates, area, interpolation

factor, area vector, the owner and the neighbor, patch index and the nodes that construct

 18

it; the elements array storing the index, the neighboring elements’ indexes, the faces’

and the nodes’ indexes constructing the element, volume, face sign and centroid’s

coordinates. Moreover, a boundary structure array is created that contains the boundary

types included in the problem and read from the OpenFOAM® boundary file. The

boundary array contains an index as well as the type of the boundary, the number of

faces and the start face index. The previously described arrays are presented in Figure

3.3.

3. Setting up the Model

Before setting up the underlying physical equations that are the major constituent of any

case problem, the fluid/s involved in the case problem should be defined by the function

cfdSetupFluid. This function is responsible for defining the type of the fluid (continuous

or disperse), its username, molecular weight, mode (compressible or incompressible) in

addition to some other related information. It should be noted at this stage that all the

data to be used by other functions are saved in a global structure array named as

Domain. The thermo-physical variables appearing in the governing equations should be

defined as well in a special function cfdSetupProperty. In this function, the user should

Figure 3.3: The basic structure of uFVM
arrays.

 19

specify the username, type and under relaxation factor among other input information

that will be stored in an element mesh field.

Next, the setup of the governing equations of any case problem can proceed by using

the function cfdSetupEquation. This is where we describe and define the type of the

equation (scalar or vector), the initial conditions and the under-relaxation factor. The

user can also choose which gradient type to be used for the derivatives appearing in the

conservation equations. A field for each equation is stored on an element mesh size

array in the global Domain structure. For each defined equation, the user can then add

various associated terms (transient, convection, diffusion, pressure gradient, stress,

source, electric potential, darcy, buoyancy, and drag among others) that will constitute

the equation. Each term is defined in the code using the function cfdAddTerm. This

function relates each term along with the coefficients (density, viscosity, diffusion

coefficient among others) to its equation where the information will be stored for later

assembly. The associated boundary conditions of each equation are then added using the

function cfdAddBC where the type of the boundary (inlet, outlet, specified value,

specified flux, slip, no slip among others) and its value, if needed, are defined. If one of

the equations of any fluid defined in a case problem contains a convective term, then the

user shall setup a ‘mdot’ (mass flow rate: density multiplied by the dot product of the

velocity vector and the area vector) field that creates a mesh field covering the faces of

the domain under study.

The internal structure of an equation (‘T:water’ for instance) is presented in Figure 3.4

below.

 20

Figure 3.3: The basic structure of an equation in a u-FVM test case

4. Setup of the Computational Field

In this section, we will describe how the fields are initialized in the code, each on its

prescribed locale (elements, faces, nodes). Adding the function cfdInitializeFields into

the case problem script file will automatically initialize the equation field, the property

field and the ‘mdot’ field. An equation is initialized over the elements by computing and

 21

distributing the initial conditions onto each interior element along with the boundary

conditions previously defined. After that, a property is initialized over the associated

mesh field, whether calculated from a formula or a constant value, over elements or

faces. The ‘mdot’ field is initialized as well by calling the density field (which is a

property already defined and initialized) along with the velocity field to compute the

value over each face of the mesh. Storing all the initialized fields in the appropriate

arrays for later communication is done by each associated function

(cfdInitializeEquation, cfdInitiazeProperty, cfdInitializeMdotField).

5. Equation Discretization

After the environment has been suited according to the chosen case and all the fields

have been initialized and prepared for the solution procedure, the function

cfdAssembleAndCorrectEquation is invoked in order to assemble, solve and correct the

equations governing the modeled problem. This function should be stated precisely for

each equation if several equations occur in the problem.

6. Equation Assembly

 For each equation, the internal function cfdAssembleEquation is responsible

for assembling the terms that have already been associated to the specified equation. A

coefficient array containing the coefficient matrices of the , and with the size of

the number of control volumes of the domain, is created using the cfdSetupCoefficients

function.

ac bc anb

 22

Illustrations for the coefficients’ and the neighbors array are presented in Figure 3.5.

 A process is initiated in cfdAssembleEquationTerms to loop over each term and

calculate its fluxes according to a selected or default scheme. The calculated face fluxes

and element fluxes are then assembled according to the discretized form into the global

coefficient matrix by cfdAssembleIntoGlobalMatrixFaceFluxes or

Figure 3.4: The coefficients and neighbors’ arrays in a u-FVM test case

 23

cfdAssembleIntoGlobalMatrixElementFluxes respectively. After assembling all the

terms of a single equation and obtaining the complete coefficient array, the under-

relaxation factor already specified for each equation is applied over the initial

coefficient matrix .

7. Solving the Equations

The solving procedure in the uFVM code is based on one of two implemented

solvers, the successive over-relaxation method (SOR) and the Incomplete lower upper

decomposition with no fill-in ILU(0) solver. The iterative SOR method is a

generalization of and an improvement on the Gauss-Seidel Method for solving a linear

system of equations. The coefficient array containing the coefficient matrices is

imported to the solver that in turn loops over the elements of the domain to solve, get

and update the in which the solver solves for according to Equation 3.2:

Equation 3.2

c NB NB

NB
c

c

b a

a










On the other hand, the ILU(0) method follows the methodology of solving the system of

equations in a residual form and has been used as a standard smoother with algebraic

multi-grid solvers in many applications. ILU(0) is implemented in the uFVM code and

can be selected by the user as the solver of the modeled problem.

8. Correcting the Equations

Whether the user is solving a unique simple scalar equation or a set of scalar

and vector equations (Navier Stokes’ Equations), the equations have to be corrected

using the cfdCorrectEquation function along with several internal functions specific for

ac

dphi

 24

the correction of each type of equation velocity, scalar or pressure (which has specific

treatment). In the scalar type or vector type, that resembles the scalar equation yet have

a three components to be considered, the value of phi is updated and corrected by

adding the term previously computed from the solving part for the internal

elements. Boundary conditions are corrected respectively each according to the

specified type by the use of adequate functions (cfdCorrectWallZeroFluxBC,

cfdCorrectWallSpecifiedFluxBC, cfdCorrectInletInletBC, cfdCorrectOutletZeroFluxBC

among others). The pressure equation is corrected by the use of cfdCorrectPPField and

cfdCorrectPressureEquation because we need to correct the pressure correction

equation and then the pressure field. After that, the velocity and the ‘mdot’ fields need

to be corrected at the interior elements-faces as well the boundaries.

9. Computing the Residuals

The residual of each equation or each component of an equation (in case the

equation is of the vector type) is calculated using the cfdComputeResidual where the

residual on each control volume is computed and averaged over the domain. At this

stage one residual value for the whole equation or component of an equation is stored.

The residual is needed as an indicator for the convergence of the solution and can

plotted by a specific function to be mentioned later. First, a scaled for the equation to

be solved is calculated as Equation 3.3:

Equation 3.3

max min maxmax(, ())scale abs    

Then, the residuals are scaled using Equation 3.4:

dphi



 25

Equation 3.4

,

c c c NB NB

NB
c scaled

elements c scale

b a a

R
a



 



 






And finally, the root-mean square residual is employed as in Equation 3.5:

Equation 3.5

2

,

,

,

()c scaled

c cells

c scaled

R

R
number of cells



 



10. Plotting Utilities

Several plotting functions are available in uFVM code so that the results of any case

problem can be visualized as well as the mesh and the geometry.

 cfdPlotMesh plots the domain under consideration of a case problem along with

the mesh that covers it.

 cfdPlotElements plots any element the user choose or a set of specified elements

using the index of each.

 cfdPlotFaces plots the faces of the domain using their index.

 cfdPlotPatches plots the full boundary patch that the user choose by using the

index of the patch already defined in earlier stages of a case problem.

 cfdPlotField plots any field defined in the solver. Refer to Figure 3.6.

Figure 3.5: A sample plot of a chosen field in u-FVM code

 26

 cfdPlotResiduals plots the residual value of each equation or component of an

equation versus per iteration. Refer to Figure 3.7.

Figure 3.6: Residuals plot generated while simulating a u-FVM test case

 cfdPlotVelocity plots the mesh and the velocity vectors on the centroid of each

control volumes and on boundary faces. Refer to Figure 3.8.

Figure 3.7: Velocity vectors plot of a u-FVM advection test case

C. Gradient Calculation

For structured orthogonal grids, the gradient of a scalar at a given element centroid can

be easily computed using the definition of the derivatives. This phenomenon becomes

more complicated when general unstructured grids are involved. The usual approach is

to make use of Green-Gauss theorem, which states that the surface integral of a scalar

function is equal to the volume integral (over the volume bound by the surface) of the

gradient of the scalar function (Pfeffer 1991) as presented in Equation 3.6:

 27

Equation 3.6

Where is the surface normal pointing outwards from the control volume. Assuming

that is constant over the control volume, the Green-Gauss equation can be written as

Equation 3.7.

Equation 3.7

Next, the integral over the surface is approximated as a summation of the average scalar

value in each face times the face's surface vector as in Equation 3.8.

Equation 3.8

The average face value is computed following two approaches, the first is cell based

in which the face value is computed using the values at its straddling cells using

cfdComputeGradientGauss and the other approach is node based in which the face

value is computed using the values at its straddling nodes using

cfdComputeGradientNodal.

The use of any of the two mentioned methods is not specific; they can be used in any

occasion once the face gradient is required.

1. Cell-Based Method

In the cell-based method, we define as the weighing geometric factor between cells

P and N as in Equation 3.9.

Ñf

f f

g f

 28

Equation 3.9

Then, a simple approximation for the face value is defined by a compact stencil, where

only the cells straddling the face are only involved in the interpolation. Such an

approximation is also known as the weighted approximation and can be written as

Equation 3.10.

Equation 3.10

We sum the values of for the faces constituting the element and divide by the

volume of the control volume to obtain an average gradient.

2. Node-Based Method

 In the node-based method, the value of can be computed as the mean of the nodes

defining the face. First, the values at the nodes are obtained by an interpolation from

elements to nodes. Then, the values at the nodes are interpolated into faces using a

specific interpolation scheme to be described in a later section. We the sum the values

of for the faces constituting the element and divide by the volume of the control

volume to obtain an average gradient.

D. Interpolation Schemes

Several interpolation functions are included in the uFVM code each serves for a specific

function. A summary of these interpolation functions is given below.

f f = g ffP + (1- g f)fN

f f

f f

f f

 29

 cfdInterpolateFromElementsToNodes function is used to compute the gradient

according to the node-based method and in the cfdPlotField function. A loop

over all the nodes is performed and for each node an array stores the elements

sharing the specified node. The value of each element is divided by the

magnitude of the distance from the node to each element’s centroid and we sum

up to obtain the value at the node.

 cfdInterpolateFromElementsToFaces function is used to assemble the stress,

diffusion and ‘mdot’ terms as well as in the initialization of the fields. Three

interpolation schemes (Hyperbolic, Upwind and Average) are implemented in

this function so that the user can choose which to use when computing any face

value from elements values.

 cfdInterpolateFromNodesTofaces function is used to compute the gradient

according to the node-based method. For a single face, the value at each node

constituting the face is divided by the magnitude of the distance from the face

centroid to the node centroid and a summation of these values gives the value at

the selected face.

 cfdInterpolateGradientsFromElementsToInteriorFaces function is used to

interpolate the gradients from elements to interior faces according to the selected

interpolation scheme. Four interpolation schemes are implemented in this

function (Average, Upwind, Downwind and Corrected Average). The Average

schemes depends on the weighing geometric factor and includes the owner and

neighbor of the interior face, while the Upwind scheme uses the value of the

upwind element and the Downwind uses the value of the downwind element

depending on the direction of the ‘mdot’ vector at the specified interior face.

 30

The corrected Average scheme resembles the average scheme but with the

introduction of a correction to the interpolated gradient following the below

mathematical Equations 3.11, 3.12, 3.13 and 3.14.

Equation 3.11

Where, Equations 3.12 through 3.14 define the parameters of Equation 3.11.

Equation 3.12

Equation 3.13

eCF =
d

dCF

Equation 3.14

dCF = c - f

Ñf f = Ñf f +
fF -fC

dCF

- Ñf f ×eCF()
é

ë
ê

ù

û
úeCF

Ñf f = gCÑfC + gFÑfF

 31

E. Solution Algorithm:

The solution algorithm in the UFVM-3D code for the calculation of unsteady flows with

moving mesh arrangement is envisaged to be composed of the following sequence of

steps:

1. Provide the initial grid and the values of the dependent variables (initial conditions).

2. Determine the location of each grid node after the time has advanced by , which

represents the new mesh configuration. Attention should be paid to the boundaries

when moving with time. The number of control volumes is kept constant

throughout the simulation.

3. Assemble and solve the equations for the velocity components, employing the

currently available pressure and mass fluxes.

4. Calculate the new mass fluxes to update the field using the new velocity

components.

5. Assemble and solve the pressure correction equation.

6. Correct the mass fluxes, velocity components and pressure by the calculated

pressure correction.

7. Assemble and solve any other scalar equation which may be coupled with the

momentum and update the fluid properties if necessary.

8. Return to step 3 and repeat until a converged solution is obtained.

Advance the time by the time increment and return to step 2; repeat the process until

the prescribed number of time steps is completed.

 32

CHAPTER IV

GOVERNING EQUATIONS

A. Introduction:

In order to cover a wider variety of flow problems, the grid is enabled to move

with time in a prescribed manner. This grid movement is introduced under the frame of

the Arbitrary Lagrangian-Eulerian (ALE in short) approach that deals with the changes

to be considered while formulating the conservation equations. In this chapter, we will

formulate our equations of fluid flow in the ALE form which in turn will ensure that the

geometric conservation laws (GCL in short) such as space conservation law (SCL in

short) and Volumetric conservation law (VCL in short) are satisfied in an intrinsic

manner. Further, we will elaborate on the approach of moving the mesh randomly in

time the difficulties that rise accordingly.

B. The Arbitrary Lagrangian-Eulerian Approach:

1. Introduction:

There exists several approaches for solving fluid flow problems with moving

boundaries and moving meshes, we mention of which the integrated space-time

approach (Zwart, Raithby et al. 1998, Zwart, Raithby et al. 1999), the Arbitrary

Lagrangian-Eulerian (ALE) approach (Demirdžić, Perić 1990), and the boundary-

transformation approach (Ralph, Pedley 1989, Guilmineau, Queutey 2002). Among the

mentioned approaches, the ALE approach appears more convenient to implement

 33

because of having high capabilities in mesh transformation. Thus, the ALE approach

will be adopted in this work to solve problems involving moving grids.

The numerical simulation of flow problems may involve in certain situations strong

distortions of the continuum under consideration especially in the case of free surface

flows, fluid-fluid, or fluid-structure interaction. Hence, when developing a computer

code, it is essential to choose the convenient kinematical description of the continuum

to be studied. The algorithms of continuum mechanics basically follow one of two

classical approaches for the continuum motion: The Lagrangian approach or the

Eulerian approach. The Arbitrary Lagrangian-Eulerian approach (ALE in short) was

originally developed to overcome the drawbacks of each of the Lagrangian and Eulerian

approaches on one side and on the other side to benefit of the advantages of each

approach when followed alone as best as possible. The Lagrangian approach or the

method of characteristics, where each node of the computational mesh sticks and

follows a corresponding material particle during motion, is usually suitable for the

simulations of incompressible fluid dynamics problems but is mainly used in structural

mechanics. This approach allows for easy tracking of the free surfaces and interfaces

between fluids and/or structures. The weakness of this approach lies in its inability to

follow large structural motions of the computational domain without requiring frequent

re-meshing procedures. On the other hand, the Eulerian approach is mainly preferred to

be used in fluid dynamics. It is in this approach that the continuum under consideration

moves with respect to the fixed computational grid. Here, large structural motions in the

continuum motion can be handled with relative ease comparable to that of the

Lagrangian approach, but generally at the expense of interface precision and flow

resolution.

 34

In the ALE approach, computational nodes are allowed to move with the continuum

with an arbitrary specified velocity that if exactly match the velocity of the material

leads to the pure Lagrangian treatment, or if exactly equals to zero leads to the pure

Eulerian treatment.

In this chapter, we will establish the conservation equations governing fluid flow

according to the ALE approach in a finite volume frame of work for the incorporation

of the ALE capabilities increases the strength. Two challenges will rise in the ALE

approach are the time accuracy achievement and the satisfaction of the geometric

conservation laws while marching in time.

2. The Lagrangian and Eulerian Descriptions:

In the continuum mechanics, two domains are generally used: the material domain

n

XR  where n represents the spatial dimensions, and the spatial domain

R

x
. Noting

that X and x represent the material points’ coordinates and the spatial points’

coordinates respectively, we consider that is a continuous medium in the space n and

that  0,t   is the time variable.

The Lagrangian approach describes how the computational grid follows the material

points in their motion. As previously stated, it is in this approach that the grid points are

permanently attached to the same material points; hence, the motion can be related

directly between the spatial coordinates and the material coordinates and is defined by

the following mapping functionj :

 35

Equation: 4-1

The above expression represents a change of coordinates and should verify the

following condition:

Equation: 4-2

In order to have a reversible mapping function , so as to identify the

initial position of the material particles at any instant of time t , the above expression

should satisfy the condition (at: 0t  , 0N).

At this stage, it is suitable to represent the gradient of  in a matrix form:

Equation: 4-3

Where 0T

represents a null row vector and the material velocity v is:

Equation: 4-4

With the symbol  X
 meaning that we hold the material coordinate X fixed with time.

It is to be pointed out that there occur no convective effects in the Lagrangian approach

since the material points correspond to the same spatial points during the motion, i.e. the

substantial (material) derivative simplifies to a time derivative.

 36

On another hand, the Eulerian approach describes as time goes by, the physical

properties of the fluid particles crossing a through a fixed region of space. In this

approach, the continuum moves with respect to the fixed computational grid points and

the conservation equations are derived in spatial coordinates x and time coordinates t .

In this case, the material velocity v of any node on the mesh represents the velocity of

the corresponding material point concurring at the same time t with the node under

consideration. Therefore, the velocity v is expressed relative to the fixed computational

grid points without any relation to the initial configuration and/or the material points’

coordinates X . It is expressed according to the following form:

Due to the fact that the Eulerian approach separates and distinguishes the material

points from the computational points, convective effects come to appear in the flow

equations to include the relative motion between the physical material and the

computational grid.

3. The Arbitrary Lagrangian-Eulerian Approach:

a. Kinematical Description

The Lagrangian approach, of which each point of the computational mesh coincides

with a corresponding material point during motion, is mainly used in structural

mechanics. This approach eases up the procedure of tracking the free surfaces and

interfaces between different materials. Its weakness is its inability to represent large

distortions of the computational domain without the aid of frequent re-meshing

techniques. On the Other hand, the Eulerian approach is usually followed in fluid

dynamics. In this approach, large distortions of the continuum motion can be managed

 37

and followed, but with some compromise with the precision of the interface definition

and the resolution of flow details (Donea, Huerta et al. 2004).

From these aforementioned drawbacks of the two approaches, the ALE approach

emerges to combine the best aspects of the two approaches when followed each alone

i.e. the large distortions are handled with more resolution.

In the ALE approach, the points of the computational mesh may be moved with the

continuum configuration according to an arbitrary specified velocity, that if exactly

match the velocity of the material leads to the pure Lagrangian approach treatment, or if

exactly equals to zero leads to the pure Eulerian approach treatment. Hence, we can say

that the ALE approach comes as a generalization technique where the pure Lagrangian

and the pure Eulerian approaches would be special cases. In this chapter, we will

establish the conservation equations governing fluid flow in the ALE form.

ALE methods were first presented in a finite difference and a finite volume frame of

work. The original advancements on this approach were proposed by (Noh 1963),

(Franck, Lazarus 1964), (Trulio 1966), and (Hirt, Amsden et al. 1974) among others.

The approach was afterwards introduced in the finite element frame where early

applications are included in the work of (Donéa, Fasoli-Stella et al. 1977), (Belytschko,

Kennedy et al. 1980), (Belytschko, Kennedy 1978) and (Hughes, Liu et al. 1981). On

another hand, some authors like (Naderi, Darbandi et al. 2010) attempted to incorporate

the ALE approach in a mixed finite volume-element frame.

In the ALE kinematical description, neither the material domain RX nor the spatial

domain Rx is considered as the reference. For this reason, a third domain Rc is suggested

and referred as the referential domain. Assuming that represents the referential

points’ coordinates that track the grid points. The referential domain is transformed into

 38

the material and spatial domains by the transformation functions  and  respectively.

The particle motion  is also expressed in terms of  and  according to the

following independent form:
1    . The transformations from/to the three domains

are illustrated in Figure 4.1.

Figure: 4.1: The transformation functions between the Computational, Material and Spatial Domains

For further elaboration, the transformation of  from the referential domain to the

spatial domain, which represents the motion of the computational points in the spatial

domain, is expressed by:

Equation: 4-5

0 0: , ,final x finalR t t R t t         

Equation: 4-6

     , , ,t t x t   

And the gradient of  is represented as:

 39

Equation: 4-7

   ,

'

,
0 1

t

T

x
v

t







 
        

 

In the above representation, can be written as:

Equation: 4-8

 ' ,
x

v t
t 







With the symbol  
 meaning that we hold the referential domain  fixed in time.

At this point, we can note that the material and mesh velocities, and respectively,

are represented as a derivative with respect to time, that is because the material and the

mesh are moving with respect to the observer.

It is adequate at this stage to represent the inverse of the transformation function 

directly as follows:

Equation: 4-9

1

0 0: , ,final finalX
R t t R t t          

Equation: 4-10

And the gradient of this transformation function is expressed in a matrix form as

follows:

Equation: 4-11

And the particle velocity in the referential domain is defined as follows:

 40

Equation: 4-12

With the material domain being held fixed.

After defining the three velocities , and , it is convenient to define a relation

between them by differentiating equation () according to the following form:

Equation: 4-13

 
 

 
  

 
 

 
 

 
 

1 1
1, , , , ,

, , , , ,
X t X t X t t X t

X t t X t t X t

    
 

 

 
    

 
    

The velocities relation can also be represented in a matrix form:

Equation: 4-14

Applying block multiplication to the matrix equation:

Equation: 4-15

That returns for the material velocity as,

Equation: 4-16

Or,

1   

 41

Equation: 4-17

The new velocity is referred as the convective velocity and represents the relative

velocity between the material and the computational mesh. The reader should not

confuse between and , as is the particle velocity as seen from the referential

domain, whereas is the particle velocity relative to the mesh as seen from the spatial

domain. We can notice that is composed of and , and both are dependents on

coordinate x .

b. The Equations Formulation

At this point, the conservation laws of mass, momentum and energy in the ALE

framework are presented. One of the prerequisites to achieve the mentioned framework

is to relate the material (total) time derivative to the referential time derivative which is

described in the following subsection:

i. Material, Spatial and Referential Time Derivatives

Consider a scalar physical quantity referred as (,)f x t , *(,)f t and **(,)f X t in the

spatial, referential and material domains respectively. We shall note here that the star

superscripts are used to differentiate between the functional forms for each domain.

Referring to the Figure: 4-2-1, the spatial quantity (,)f x t and the material quantity

**(,)f X t are related by the particle motion , which has been previously introduced,

according to the following form:

Equation: 4-18

   ** , (,),f X t f X t t

And for simplicity can be represented as:

 42

Equation: 4-19

**f f 

The gradient of the above expression is presented as:

Equation: 4-20

 
 

 
 

 
 

**
, , ,

, , ,

f f
X t x t X t

X t x t X t

  


  

Or in a corresponding matrix form:

Equation: 4-21

The above form settles after block multiplication on two expressions:

First,

Equation: 4-22

Second,

Equation: 4-23

The second equation relates the material time derivative to the spatial time derivative

and can be cast in a better form to yield:

Equation: 4-24

To ease the representation, the above form can be equivalently written as:

 43

Equation: 4-25

Interpreting the previous form, we mention that the material (total) time derivative is the

local variation plus the convective term representing the relative motion between the

material and the spatial domain.

The transformation  will help us extend the previous relation between the material and

spatial time derivatives to include now the referential time derivative and the following

expression is obtained:

Equation: 4-26

1** *f f  

The gradient of the above expression is written as:

Equation: 4-27

 
 

 
 

 

1** *
, , (,)

, , ,

f f
X t t X t

X t t X t






  


  

Or in an equivalent matrix form as follows:

Equation: 4-28

And after applying the block multiplication provides the new expression:

 44

Equation: 4-29

At this stage, it is convenient to present the fundamental Arbitrary Lagrangian-Eulerian

relation between the material time derivative, referential time derivative and the spatial

gradient as follows:

Equation: 4-30

The above ALE relation presents the time derivative of the physical quantity f for a

given particle X -the material derivative, which consists of the local derivative (holding

the reference coordinate  fixed in time) in addition to a convection term that accounts

for the relative velocity .

Before establishing the integral form of the basic conservation laws for mass,

momentum and energy, we are required to consider the rate of change of scalar and

vector integrals over a moving volume occupied by fluid.

ii. Temporal Derivation of Integrals over Moving Control Volumes

Starting from a Lagrangian frame, consider a material volume represented by tV in

which it is bounded by a smooth closed surface tS . The consisting points of the volume

shall move with the material velocity such that tx S . A material volume in

this frame is a volume that permanently consists of the same particles of fluid under

consideration. The material time derivative of the integral of a scalar function (,)f x t

over the material volume tV that is changing with time is represented by the following

expression:

 45

Equation: 4-31

The above expression is referred as the Reynolds Transport Theorem (RTT in short) and

holds for the smooth function (,)f x t . The first term on the right side represents the

volume integral of the rate of change of the function (,)f x t over a space-fixed control

volume that coincides with the material-moving volume at a considered time instant t .

On the same side, the second term represents the flux of the scalar quantity f against a

fixed boundary cS that coincides with the closed surface tS at the same instant of time

that brings cV with tV . We note that n in the surface integral denotes the unit vector

always pointing outwards in a normal direction to the surface, while v is the material

velocity of the points constituting the boundary tS .

Adding that the following expression is valid:

Equation: 4-32

We hence obtain the alternative form of the RTT as follows:

Equation: 4-33

iii. The Integral ALE form of the Conservation Equations

Consider an arbitrary control volume tV with its boundary t tS V  moving with a mesh

velocity ,

 46

Equation: 4-34

The function (,)f x t can be replaced by density  , momentum or energy E

respectively to start casting the integral ALE form of the mass, momentum and energy

conservation equations.

We start the casting procedure from the well-known Eulerian forms by introducing the

ALE differential form of the equations as follows:

Mass:

Equation: 4-35

Momentum:

Equation: 4-36

Energy:

Equation: 4-37

Noting that  is the mass density, is the material velocity,  denotes the Cauchy

stress tensor, is the specific body force vector and E is the specific total energy.

The differential form of the ALE conservation laws is presented as such:

Mass:

 47

Equation: 4-38

Momentum:

Equation: 4-39

Energy:

Equation: 4-40

The differential conservation of mass equation is with the aid of the material derivative

integrated over a control volume to yield:

Equation: 4-41

Manipulating the above equality, we get:

Equation: 4-42

Now, by the aid of the above expression, we successively replace the scalar function

(,)f x t in Equation: 4-34 by the respective fluid density, momentum and specific total

energy, we get the following bunch of conservation equations in the ALE form:

Integral ALE Mass Conservation Equation:

 48

Equation: 4-43

Integral ALE Momentum Conservation Equation:

Equation: 4-44

Integral ALE Energy Conservation Equation:

Equation: 4-45

To close up this section, we validate the equations formulation by ensuring that the

integral forms for the Lagrangian and Eulerian approaches are special cases of the

above ALE forms. The Lagrangian approach corresponds to the situation when

i.e. , while the Eulerian approach corresponds to the situation of which i.e.

.

iv. The Discretized ALE Conservation Equations

The discretization process of the momentum equation and the other conservation

equations over moving grids resembles in its principle that followed for stationary grids.

Yet, the transient term is discretized in a more general manner by taking into account

the changes in the control volumes’ volume that show up as the grid moves in time.

Using the implicit Euler temporal scheme, we discretize the transient term as follows:

 49

Equation: 4-46

   
1

t

t n t n

V

V V
dV

t t

 


  
  


 

Turning our attention into the continuity equation, we attempt to modify Equation: 4-2-

42 by the aid of Equation: 5-2-16 and present it in the following form:

Equation: 4-47

The term on the left-hand side represents physically the total mass flux crossing the

surface of a control volume in a stationary grid. The right hand side of Equation: 4-2-46

constitutes the contribution of the grid movement. For a fully conservative moving grid

procedure, the right hand side shall equate zero. This is achieved when the mass fluxes

due to the grid movement cancel out the unsteady term of the equation. This procedure

has to be accomplished according to the Volumetric Conservation Law to be presented

in a following section. The first term of the right-hand side is added to the mass fluxes

which are computed while solving the continuity (pressure-correction) equation, while

the second term is added to the source term.

C. The Geometric Conservation Laws:

Upon designing any numerical code for solving the flow equations on grids moving

with time, it is necessary to compute some geometric quantities that involve the grid

velocity and grid points’ positions. Two equations come to the foreground called the

Geometric Conservation Laws (GCL in short) (Thomas, Lombard 1979), which form

for static and moving grids, the balance between the relevant applicable geometric

parameters, have long been ignored in the literature. The first law referred as the Space

 50

Conservation Law (SCL in short) states that the cells’ volume should be enclosed by its

surfaces during the motion, while the second law referred as the Volume Conservation

Law (VCL in short) states that the volumetric increment of a moving control volume

should equalize the sum of the changes along its enclosing surfaces. Ensuring the

satisfaction of the GCL into the numerical algorithm is advised to avoid undesirable

errors in flow fields, moreover, violating these laws may misrepresent the convective

fluxes and extra sources may be encountered (Vinokur 1989).

1. Derivation of GCL Equations

We start this section by presenting the general scalar transport equation in its simplified

form representing the main four terms from left to right as: transient, convective,

diffusive and source terms. The equation is as follows:

Equation: 4- 48

Upon integrating over the control volume, we get the following expression:

Equation: 4- 49

Then with the aid of the Gauss divergence theorem that relates the volume integral to

the surface integral (Pfeffer 1991), we get the following form in terms of the variable 

:

Equation: 4- 50

 
 . .

V S S V

dV v dS dS QdV
t


  


   

   

Generalizing the set of equations (Equation: 4-2-43, Equation: 4-2-44 and Equation: 4-

2-45), we can write the general scalar transport equation in an ALE form as follows:

 51

Equation: 4- 51

The GCL requires that the state q = cons tant be an exact solution of the above equation

above and by that, the zero viscous fluxes resulted from the differentiation of a constant

field are cancelled out. The source term is to be neglected, the density is considered

unity and the flow velocity equalizes to zero all to yield

Equation: 4- 52

Equation: 4-3-5 captures the change in time of the total volume of a control volume

moving with time (referred as ()V t) to the net motion of the bounding surfaces. The

equation is hence labeled as the Volumetric Conservation Law.

The second geometric conservation law is called the Space Conservation Law and is

obtained by assuming a uniform flow field oriented in an arbitrary direction on a non-

moving grid. This will result in the following analytical definition:

Equation: 4- 53

The above equations will be next discretized and transformed into algebraic equations

connecting values at neighboring cells to each other. The discretization process involves

approximating the transient, convection, diffusion, and source terms by equivalent

algebraic relations through the use of interpolation profiles.

 52

2. Discretization of Laws’ Equations

Starting with the VCL equation (Equation: 4-3-8), we follow the first order fully

implicit-scheme (Backward Euler) to integrate in time to get:

Equation: 4- 54

()

t t t t t

t

d V V
V t dt

dt t

  




Let
t t tV V  , and

t t tV V  such that the following expression is obtained:

Equation: 4- 55

But, we have to note that:

Equation: 4- 56

Hence, the discretized form of the VCL equation is presented as follows:

Equation: 4- 57

   

1

t t t Nf

iface iface

V V V

t t






  
    


To clarify more, the time change of volume of a control volume must equate the sum of

the volume increments of each enclosing face divided by the corresponding time step.

Moving to the SCL equation (Equation: 4-3-9), the discrete form is presented as

follows:

Equation: 4- 58

 53

It is to be noticed that the SCL discrete equation emphasizes the necessity of evaluating

the surface vectors of each control volume’s surfaces exactly such that the summation

of the term on the left hand side equates zero. The SCL has been ignored in the

literature and some authors used the SCL term in representing the Volumetric

Conservation Law without coming to mention the SCL as in (Demirdžić, Perić 1988,

Demirdžić, Perić 1990).

A numerical algorithm is said to satisfy the Geometric Conservation Laws (VCL and

SCL simultaneously) if the geometric parameters respect Equation: 4-3-5 and Equation:

4-3-6 respectively. Satisfying the two equations is crucial to achieve the global

conservation in the domain of interest. The volumes and surfaces are the main

fundamentally considered geometric parameters. Therefore, maintaining volumes and

surfaces according to the prescribed equations is the key to satisfy the GCLs. However,

many numerical algorithms may have other geometrical parameters and hence,

computing these dependent parameters in terms of volumes and surfaces is a subsequent

technique to get through the satisfaction of the GCLs.

3. Implementation of the GCL:

The integral form of the VCL for an arbitrary moving control volume was previously

given by:

Equation: 4- 59

for, , , ,ifaces e w n s

Remembering that the total volumetric rate of change of the control volume was

presented as:

 54

Equation: 4- 60

ifacesifaces
VV

t t




 



Where each component is decomposed as:

Equation: 4- 61

' .
iface new

iface iface

V
v S

t






The convective term in any conservation equation for an arbitrary variable  ( may be

1, u , v , w or) is semi-discretized as follows:

Equation: 4- 62

The total rate of change of the cell volume is hence calculated from the known grid

point positions. This method does not require the definition of grid velocities rather the

volumetric increment of each bounding surface is calculated at each time step.

This approach proposed by (Demirdžić, Perić 1988) is considered as an easier approach

relative to the explicit one especially when applied to three dimensional algorithms,

where at each control volume’s surface, three grid velocity components would have to

be calculated. As opposed here, our adopted approach proposes the calculation of a

single rate of change of the cell volume from a single volumetric increment of each

bounding surface.

 55

CHAPTER V

MESH MOVEMENT

When introducing the topic of mesh movement, one will expect that all the mesh nodes

move randomly in time, which is a logical general expectation that was taken into

consideration in our work. In this chapter, we will elaborate on the approach of moving

the internal mesh nodes randomly in time and the arising consequences that were not

resolved exactly. This fact has leaded us to the original assumption of moving the

internal mesh nodes in constant magnitude and direction during each time step.

In the UFVM code, we already know the coordinates of the new locations of each grid

point of the computational domain. Yet, we have to deal with the change in the volume

of each control volume due to the grid movement. Each bounding surface of the control

volume would move following a certain direction and owning a certain magnitude; the

fact that will introduce a volumetric increment of each bounding surface that must sum

up to the total volumetric change of the control volume so as to satisfy the Volumetric

Conservation Law. Practically, we loop over the faces of the initial mesh configuration

just before the mesh starts its movement, and as the nodes move in a prescribed manner,

we have the information of the new location of each node forming a certain control

volume. The initial configuration along with the information about the new locations of

the grid nodes creates the volumetric increment of each surface enclosing a control

volume that we aim on computing. First, we locate a center for the volumetric

increment of each moving surface that is by summing up the coordinates of the nodes

(initial nodes’ coordinates along with the coordinates of the new location) and dividing

by twice the number of initial nodes. Geometrically, the center will be located in a place

 56

bounded by the nodes and inside the virtually drawn volumetric increment. After that,

we form vectors relative to each node (at its old and new location) having the center

already spotted as the vectors’ tip. An illustration of the described treatment is presented

in the sketches of Figures 5.1 and 5.2 below, where a hexahedron shaped volumetric

increment is created due to the motion of a face between two consecutive time intervals.

Figure: 5. 1: A sketch showing a surface movement with time of a hexahedral control volume

Figure: 5.2: A sketch showing the movement of a triangular face with time

As shown in the (Figure 5-1), the volumetric increment of one of the surfaces of the

hexahedral control volume has a cuboid shape with eight nodes; four of which are the

surface’s initial configuration at the initial time step and the other four represent the

respective new locations of the nodes at the next time step. Hence, eight vectors are

introduced in this situation for this single surface. These vectors will be used to compute

the volume of the virtual pyramids formed by considering each face of the cuboid

 57

volumetric increment as the base of the pyramid, whereas the tip of the pyramids is the

center previously located and computed. As illustrated in the Figure (5-3), six virtual

pyramids appear (one of them is sketched) and the volume each virtual pyramid is

calculated according to the following expression, refer to Equation 5.1:

Equation: 5.1

Figure: 5.3: A sketch showing the calculation method of the volume increment of a moving surface in 3-D (Pyramid

Method)

For the case when the faces of a control volume are triangular, the face volumetric

increment would take the shape of a triangular prism and we would compute the volume

of 3 rectangular pyramids along with two triangular pyramids to get the total volumetric

increment of a single triangular face of the control volume. (Figure 5.2)

We have to point out at this stage that throughout the work, we will assume that the

nodal velocities are constant in magnitude and direction during each time step.

It is imperative to note that in our work, we intend to move the interior faces and

keeping the boundary fixed in time, hence, due to the movement of the internal mesh at

 58

each time step, all the geometric parameters are reprocessed and recalculated according

to the new prescribed positions of the nodes.

We recall that the main target in the moving mesh methods is to exactly satisfy the

geometric conservation laws represented by the volumetric and space conservation

laws. The volumetric conservation law needs more effort to ensure its satisfaction than

the space conservation law due to the need to calculate exactly the volumetric

increments resulting from the random movement of the interior nodes and hence interior

faces. Hence, the target is to try to calculate the face volume increments as exact as

possible so that the volumetric conservation equation is essentially satisfied exactly. We

proposed an approach for calculating the face volumetric increments which constitutes

of the following:

First, we focused on working on control volumes having quadrilateral faces so that we

thought of dividing each face into four triangles simply by getting a rough face center.

The center is obtained by summing the coordinates of the four face vertices that are

already known and dividing by four afterwards. The obtained center will certainly be

bounded by the four vertices and hence belongs to the face of the control volume. Once

the center is obtained, four triangles can be constructed having the face center as a

common vertex that belongs to the four triangles while the other two vertices represent

respectively other vertices of the face.

Respectively from the formed four triangles on the original face configuration, we

extrude four wedges to the four triangles formed on the face configuration at the new

time step. As we already know the location of the four vertices of the face at the new

time location, the mentioned four extruded wedges are simply formed by matching the

vertices at the original location to those at the new location respectively including the

 59

center of the face. At this stage, each of the four wedges is divided into eight pyramids

with triangular bases as an attempt to calculate the volume of the wedges and hence

computing the volume of the volume increment relative to each face of the control

volume as in Figure 5.4.

We notice here that we have missed an important point in our previous attempt to

calculate the volume of the volumetric face increments that lies in our assumption about

the center of the face. After applying the previous attempt, we faced inaccurate

representation of the face volumetric increments because the face center that we

averaged does not necessarily lie on the face. Random motion of the vertices of each

face may form a skew face rather than forming a plane face and that makes it difficult to

calculate a volume of a geometrical shape with skew faces. This fact leads us to our new

attempt where we dispense the use of the face center on the original face and the new

face at the new time level, and by that we don’t need to ensure that a face center

essentially lie on a skew face. Now, each quadrilateral face of the control volume is cut

at the diagonal to form only two triangles. In a similar approach as the previous, the

vertices of the two formed triangles are matched with their respective locations at the

new time step to form two wedges (refer to Figure 5.5), which in turn are each divided

into eight pyramids with triangular base and the volume increment is computed

accordingly. We attempt to switch the diagonal that we used in the first stage of this

approach and average the computed volume increment to get an approximation for the

face volume increment. The results of all face increments of a single control volume

were after all compared with the total change of volume of the whole control volume

and the results were not as exact as needed to adopt the approach, that is because we

 60

couldn’t compute exactly the volume of geometry with faces that are not planar. At this

point, we decided to turn our attention towards the constant movement of the mesh

nodes so as to avoid random motion and its skew faces problem.

The discretized form of the geometric conservation equation is modified to the

following form presented in Equation 5.2:

Equation 5.2

Our task at this stage is to ensure that the left hand side of the equation approaches zero

as much as possible.

We adopted a simple cubic geometry to elaborate on the mesh movement consequences

and to check the VCL satisfaction, or in other form to check the satisfaction of Equation

5.2. The geometry consists of a cube (10 m in each dimension) divided into 3 control

volumes in each dimension. The case consists of 27 elements, 54 internal faces and 54

boundary faces. The internal faces are allowed to move in a constant magnitude and

direction by moving the nodes that constitute them by a factor of 0.1 m. in the x-

direction and a factor of 0.2 m. in the y-direction at each time step. The test is done on

three time steps, each of which represents 1 second in time. The initial configuration of

the case is presented in Figure 5.6 in an isometric view, along with the respective

configurations of the first, second and third time steps as top and isometric views

respectively.

V
t()

-V
t-Dt()

Dt
-

dV

Dt

é

ë
ê

ù

û
ú

ifaceiface=1

Nf

å = 0

 61

Figure 5.4: A sketch showing the technique of calculating volume of a generated volumetric face increment

Figure 5.5: A sketch showing the case of splitting the generated volume of a face volumetric increment into two at the
diagonal

 62

Equation 5.2 is checked on each of the 25 control volumes of the adopted geometry,

where Equation 5.2 is coded and the results presented in Figure 5.7, which are

practically the error of the equation, tend to the order of 10-13. Such results are accepted

as they approach zero and they signify that our approach of calculating the face

volumetric increments is as accurate as the degree.

 10-13

Figure 5.6: The initial and final moving mesh configuration. Left: to right: isometric vies of the initial configuration, top view
of the final configuration, isometric vies of the final mesh configuration.

Figure 5.7: Results showing the left hand side of Equation 5.2

 63

CHAPTER VI

HIGH ORDER MESH MOVEMENT SCHEME

This chapter is dedicated to discuss the implementation of a higher order scheme

associated with the mesh movement that deals effectively with its resulting

consequences. Several test cases are adopted and simulated for the aim of analyzing the

effect of a first order then a second order scheme applied to discretize the mesh

movement term; after which, the results are compared to the same test cases’ static

mesh results.

The mesh motion effect appears in our code as we update the mass flow rate () after

the mesh has moved to its new configuration directly at any second time step (the first

time step will always constitute of the initial mesh configuration). At this point we have

to note that in our study; only the internal faces of the mesh are allowed to move

arbitrary in time keeping the boundaries fixed. This assumption essentially requires the

satisfaction of the Volumetric Conservation Law i.e. the mesh nodes’ movement must

not affect the conservation laws. After the mesh faces move simply by moving the mesh

nodes, we tend to recalculate all the geometrical parameters that are involved in the

motion, and a new array storing the new information is generated. At this stage, the

mass flow rate has to be updated as well and it is here where we devoted a scheme to

handle the motion consequences.

Initially, the mass flow rate () term is calculated in the u-FVM code according to

Equation 6.1:

 64

Equation 6.1

Where,  is the density, is the face area and is the fluid velocity.

The motion of the mesh introduces a modification to the mass flow rate described in

Equation 6-1; this modification is in the form of a new velocity that is subtracted

(exempting the discussion about the sign of the new velocity) from the fluid velocity.

The new velocity is the velocity of the mesh is reshaped in our work and a new mass

flow rate occurs according to Equation 6.2:

Equation 6.2

Where, Vol is the volumetric increment that is explicitly calculated for each mesh

face, and t is the defined time step.

Following this technique of replacing the face velocities with face volumetric

increments discretized by higher order schemes has not been spotted in the literature for

Finite Volume framework. The technique treats the resulting face volumetric increments

in an explicit way as we do not solve for the latter rather we calculate and store the

associated increment at each time step.

Currently, the above consideration is a first order treatment to the mesh movement mass

flow rate. The volumetric increment of each face is calculated according to the

procedure explained in Chapter 5. Yet, our mission is to implement a higher order

scheme to discretize the face volumetric increments resulting from the mesh faces’

motion.

 65

The introduced scheme for the mesh movement basically resembles the convective

second order upwind scheme (SOU), in the sense that we store the volumetric increment

of the specific face at an older time step and use it along with the currently calculated

volumetric increment to produce the face mass flow rate modification as presented in

Equation 6.3. The total mass flow rate now takes the mesh motion with its

consequences into consideration and is presented in Equation 6-4.

Equation 6.3

Equation 6.4

Using Taylor series expansion for the formulated scheme, the truncation error can be

found to be as presented in Equation 6.5:

Equation 6.5

2 ''' 33 1
...

8 4

ivTE x t x t       

This clearly indicates that the formulated scheme is a second order accurate scheme.

The derivation of the truncation error can be found in (Moukalled, Mangani et al. 2015).

A. Test Case 1: Transient Diffusion of a Scalar

The first test case adopted in our study is the case of solving and simulating a transient

diffusion equation of a scalar (T). A brief description of the case geometry, the mesh

information and the various conditions and parameters used in the solution procedure is

tabulated in Table 6.1.

 66

Table 6.1: Transient Diffusion of a scalar

Geometry Dimensions 1x1x0.1 m.

Mesh

Number of Elements 400

Number of Faces 1640

Number of Nodes 882

Number of Interior Faces 760

Number of Patches 5

Patch 1: “left side”-type: wall

Patch 2: “bottom side”- type: wall

Patch 3: “right side”- type: wall

Patch 4: “top side”- type: wall

Patch 5: “front & Back sides”- type: empty

Fluid Water

Molecular Weight = 18

Thermal expansion ratio =

Density= 1000 kg/m3

Mode: Incompressible

Viscous model: Laminar

Conditions

Boundary Conditions
Scalar

(T)

Patch 1: Specified value “2”

Patch 2: Specified value “2”

Patch 3: Specified value “2”

Patch 4: Specified value “2”

Patch 5: empty

Initial Conditions Constant “1” over all the domain

Under-Relaxation Factor 0.8

Number of Internal Iterations 50

Maximum Residuals Allowed

Parameters

Initial Time 1 second

Time Step 0.1 seconds

Final Time 10 seconds

Mesh Movement per time step 3% Accumulative

 67

According to the previously described boundary conditions, all the control volumes

obtained a value of (2) after reaching the steady state at time=6 seconds. Figure 6.1

shows how the mesh is modified after moving for 10 seconds in time. The whole

domain (i.e. all the control volumes) obtained a scalar value of (2), similar to the static

mesh configuration. It can be noticed from the obtained set of results that the mesh

movement did not affect the solution of the transient diffusion equation; this is because

the mesh movement terms do not appear in the diffusion term. Ideally, when the mesh

moves in time, the solution of any diffusion equation shall remain unaffected by the

mesh motion and this was our case. Figure 6.2 presents the solution of the equation

across section A-A as shown in Figure 6.1 and reveals a more clear comparison between

the static mesh results and the results obtained from the applied first order and second

order schemes. The three sets of results overlap at the same solution.

It is to be noted that using a first order scheme for the discretization of the mesh

movement term or any higher order scheme will not show any effect on the solution.

Figure 6.1 Initial and final mesh configurations of Transient Diffusion of a Scalar Test case

 68

This test case is conducted to make sure that no diffusive terms are generated or if so,

are dealt with not to affect the final solution.

B. Test Case 2: Transient Advection of a Scalar with Inclined Velocity Field

The current test case is conducted to solve and simulate a transient advection equation

of a scalar (T) over a geometry described in Table 6.2. We attempt in this case to

simulate the same equation with the same parameters, initial and boundary conditions

onto two mesh configurations. The first mesh configuration is composed of 400 control

volumes whereas the second configuration is a denser mesh composed of 1600 control

volumes. Each mesh configuration is simulated on a static mesh, then the mesh is

allowed to move in a controlled random manner and results are obtained after

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sc
al

ar
 (

T)

Section A-A

Static mesh results

Results obtained using first order scheme for mesh movement

Results obtained using second order scheme for mesh movement

Figure 6.2 Chart presenting the results from static and moving mesh configurations

 69

implementing the first order and the second order schemes for mesh movement

respectively. In both mesh configurations, we used two different schemes for the

advection term: the Upwind scheme (first order) and the QUICK scheme (second

order). The results are obtained and presented in the upcoming figures. Figure 6.3

presents the solution of scalar (T) on static mesh of the first configuration while Figure

6-4 presents the solution of scalar (T) on a moving mesh, both using an Upwind

advection scheme. Figures 6.5 and 6.6 present the solution of the scalar (T) under the

first mesh configuration case for a static mesh and a moving mesh respectively, both

using a QUICK advection scheme. Figures 6.7, 6.8, 6.9 and 6.10 use the second mesh

configuration (denser grid) to show the solution of scalar (T) on a static mesh (Figure

6.7) and a moving mesh (Figure 6.8) using the Upwind advection scheme. The QUICK

scheme is used as the advection scheme on a static mesh (Figure 6.8) and a moving

mesh (Figure 6.9) under the second mesh configuration.

 70

Table 6.2: Transient Advection of a scalar – Inclined Velocity Vectors

Geometry

Dimensions 1x1x0.1 m.

Number of Patches 5

Patch 1: “right and top sides”-type: outlet

Patch 2: “left side”- type: inlet

Patch 3: “bottom side”- type: inlet

Patch 4: “front & Back sides”- type: empty

Fluid Water

Molecular Weight = 18

Thermal expansion ratio =

Density= 1000 kg/m3

Mode: Incompressible

Viscous model: Laminar

Conditions

Boundary Conditions Scalar (T)

Patch 1: Outlet

Patch 2: Specified value “2”

Patch 3: Specified value “1”

Patch 4: symmetry

Initial Conditions Constant “1” over all the domain

Under-Relaxation Factor 0.8

Number of Internal

Iterations
50

Maximum Residuals

Allowed

Parameters

Initial Time 1 second

Time Step 0.1 seconds

Final Time 10 seconds

Mesh Movement per time

step
3% Accumulative

Mesh Configurations

 First Mesh Configuration Second Mesh Configuration

Number of Elements 400 1600

Number of Faces 1640 6480

Number of Nodes 882 3362

Number of Interior Faces 760 3120

 71

While analyzing the first mesh configuration represented by the set of Figures 6.3, 6.4,

6.5 and 6.6, we notice that the results obtained from the moved mesh cases follow the

results of the static mesh and follow as well the order of the scheme employed for the

convective term. Yet, we can notice the captured distraction in the plotted scalar field in

Figure 6.6 due to the plotting function that assigns a respective color to each control

volume. Because the control volumes have an irregular shape in the moved mesh

configurations, these distractions are obviously realized. This is the reason why we

introduced a denser mesh (second mesh configuration) in Figures 6.7, 6.8, 6.9 and 6.10

respectively as an attempt to show how the distractions in the plotted scalar field are

reduced. Using an even denser mesh will decrease more the smearing of the plotted

field.

Figure 6.3 Results obtained from a static mesh
using an Upwind advection scheme

Figure 6.4 Results obtained from a moving mesh using
an Upwind advection scheme

Figure 6.5 Results obtained from a static mesh
using a QUICK advection scheme

Figure 6.6 Results obtained from a moving mesh
using a QUICK advection scheme

 72

Figure 6.7 Results obtained from a static mesh
using an Upwind advection scheme

Figure 6.8 Results obtained from a moving mesh using an
Upwing advection scheme

Figure 6.9 Results obtained from a static mesh
using a QUICK advection scheme

Figure 6.10 Results obtained from a moving mesh
using a QUICK advection scheme

 73

The chart in Figure 6.11 presents the two sets of results assigned to the first mesh

configuration. The first set of results in the above chart is obtained by using the upwind

scheme to discretize the advection term of the transient advection equation simulated on

a static mesh; then on a moving mesh employing the first order scheme for mesh

movement and after that, on a moving mesh employing the second order mesh

movement scheme. The results are plotted over the control volumes cut at the middle of

the domain at section A-A as shown in Figure 6.3. The results of the second order mesh

movement scheme are closer to the results of the static mesh than those of the first order

mesh movement scheme. As decided, the upwind scheme is replaced by the QUICK

scheme to deal with the discretization of the advection term of the equation. The second

set of results is obtained also for a static mesh, and for a moved mesh employing the

first order mesh movement scheme as well as a moved mesh employing the second

0

0.5

1

1.5

2

2.5
Sc

al
ar

 (
T)

Section A-A

Static Mesh Results
Results using first order scheme for mesh movement
Results using the second order scheme for mesh movement
static mesh results- Upwind scheme
results using first order scheme for mesh movement- upwind convective scheme
results using second order scheme for mesh movement- Ypwind convective scheme

Figure 6.11 Chart showing the results of the first mesh configuration using an Upwind and a QUICK advection scheme on
static and moving grids

 74

order mesh movement scheme yet employing the QUICK scheme for the advection

term. Similarly as before, the results obtained from the second order mesh movement

scheme are closer to the static mesh results than those of the first order mesh movement

scheme. Moreover, we notice that the set of results where the QUICK scheme is

employed to discretize the advection term is more compact than the set of results with

the Upwind scheme adopted. A more compact set of results is translated as a positive

fact because the results would be closer to each other.

The chart in Figure 6.12, presents the two sets of results, along the middle of the domain

at the section B-B shown in Figure 6.7, obtained when conducting the second denser

mesh configuration. Basically, the two sets of results resemble those of the first mesh

configuration; yet, the denser mesh affected the results by bringing each set of results

closer to each other. While comparing the charts of Figure 6.11 and that of Figure 6.12,

it is noticed how the two set of results (the first with the upwind advection scheme and

the second with the QUICK advection scheme) on the second mesh configuration are

closer to the static mesh results than on the first mesh configuration. This elaborates that

using a denser mesh will improve the results obtained from the moved mesh and allow

them to overlap with the results when the mesh is static.

 75

0

0.5

1

1.5

2

2.5

Sc
al

ar
 (

T)

Section B-B
Static mesh results

Results using first order scheme for mesh movement

Results using second order scheme for mesh movement

static mesh results -Upwind scheme

first order scheme for mesh movement - upwind scheme

second order scheme for mesh movement - upwind scheme

Figure 6.12 Chart showing the results of the second mesh configuration using an Upwind and a QUICK advection scheme on static and moving
grids

 76

C. Test Case 3: Transient Advection of a Scalar with Rotational Velocity Field

The following test case solves the same equation as the previous case which is the

transient advection of a scalar. It is performed on the geometry described in the Table

6.3 along with the associated parameters and required conditions. Here, the velocity

field is not an inclined field but rather is a rotational field distributed across the domain

(refer to Figure 6.15). Figure 6.13 presents the initial mesh configuration that is the

same mesh used in a static simulation. Figure 6.14 presents the final mesh configuration

after moving in time for 10 seconds as stated in Table 6.3. The results are captured

along section A-A shown in Figure 6.13 and plotted in the chart of Figure 6.16.

The orientation of the velocity vectors did not affect the work of the proposed higher

order scheme for handling the mesh motion term. Figure 6.16 shows how the three set

of results follow the same profile trend and shows as well that the results generated

from the moving mesh case with the higher order scheme applied therein tend to

overlap with the results obtained when simulating the same equation on a static mesh

more than those results obtained from the moving mesh case with the first order scheme

for mesh movement applied therein. This chart ensures that the formulated scheme is

resolving the effects of the mesh motion properly enough to provide results close

enough to the results of a static mesh simulation.

 77

Table 6.3: Transient Advection of a scalar – Rotational Velocity Vectors

Geometry Dimensions 2x1x0.1 m.

Mesh

Number of Elements 800

Number of Faces 3260

Number of Nodes 1722

Number of Interior Faces 1540

 5

Patch 1: “left section of first half of bottom

face”-type: inlet

Patch 2: “right section of first half of

bottom face”- type: inlet

Patch 3: “second half of bottom face”-

type: outlet

Patch 4: “front & Back sides”- type: empty

Number of

Patches
Water

Molecular Weight = 18

Thermal expansion ratio =

Density= 1000 kg/m3

Mode: Incompressible

Viscous model: Laminar

Conditions

Boundary Conditions Scalar (T)

Patch 1: Specified value “2”

Patch 2: Specified value “1”

Patch 3: Outlet

Patch 4: Zero Flux

Initial Conditions Constant “0.5” over all the domain

Under-Relaxation Factor 0.8

Number of Internal

Iterations
50

Maximum Residuals

Allowed

Parameters

Initial Time 1 second

Time Step 0.1 seconds

Final Time 10 seconds

Mesh Movement per time

step
3% Accumulative

 Velocity vector formula [2*y.*(1-x.^2);-2*x.*(1-y.^2);0]

 78

Figure 6.13 Static mesh configuration of the adopted domain.

Figure 6.14 Moved mesh configuration of the adopted domain.

Figure 6.15 Velocity field across the adopted domain.

 79

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sc
al

ar
 (

T)

Section A-A
Static mesh results

Results obtained using a first order scheme for mesh
movement
Results obtained using a second order scheme for mesh
movement

Figure 6.16 Chart presenting the results of Scalar (T) along section A-A for a static mesh as well as for a moving
mesh using a first order and a second order scheme for mesh movement

 80

D. Test Case 4: Navier Stokes’ Equations in a Flow Problem

At this stage, we decided to solve the Navier Stokes’ equations in a pressure-based

solver as an attempt to test the validity of the mesh movement in such a situation. The

adopted geometry that is described in Table 6.4 is allowed to move in an arbitrary

manner each time step and the results of pressure were recorded and plotted over the

domain. The patches of the mesh are presented in Table 6.4 and the outcome is three

sets of generated results; the first is when the mesh was remained static within time, the

second is when the mesh was allowed to move arbitrary with the application of the first

order mesh movement scheme and the third is when the mesh is moved arbitrary with

the second order accurate mesh movement scheme applied within.

The pressure filed is plotted in Figure 6.17 for the static mesh and in Figure 6.18 for the

moved mesh.

The pressure field along section B-B shown in Figure 6.17 is plotted in chart of Figure

6.19. The same trend is respected for the three set of results as shown in Figure 6.19

while realizing that the generated results from the second order scheme are better than

the results of the first order scheme for mesh motion in the sense that the first approach

and tend to overlap clearly with the results obtained from the static mesh. Such an

outcome along with the previous results obtained from the several presented test cases

are sufficient to prove the validity of the higher order scheme adopted to discretize the

moving mesh term.

 81

Table 6.4: Flow Problem – Solving Navier-Stokes’ Equations – Smith Hutton Case

Geometry Dimensions 2x1x0.1 m.

Mesh

Number of Elements 800

Number of Faces 3260

Number of Nodes 1722

Number of Interior Faces 1540

Number of Patches 5

Patch 1: “left section of first half of

bottom face”-type: inlet

Patch 2: “right section of first half

of bottom face”- type: inlet

Patch 3: “second half of bottom

face”- type: outlet

Patch 4: “front & Back sides”- type:

empty

Fluid Water

Molecular Weight = 18

Thermal expansion ratio =

Viscosity = 0.0008 Pa.s

Density= 1000 kg/m3

Mode: Incompressible

Viscous model: Laminar

Conditions

Boundary Conditions

Velocity eqn.

Patch 1: Specified value “[0,2,0]”

Patch 2: Specified value “[0,1,0]”

Patch 3: Outlet “[0,0,0]”

Patch 4: Zero Flux

Pressure eqn.

Patch 1: Inlet

Patch 2: Inlet

Patch 3: Specified Value “0”

Patch 4: No Slip

Initial Conditions
Velocity eqn.

Constant “[0.5,0.5,0.5]” over all the

domain

Pressure eqn. Constant “0” over all the domain

Under-Relaxation Factor 0.8

Number of Internal Iterations 50

Maximum Residuals Allowed

Parameters

Initial Time 1 second

Time Step 0.1 seconds

Final Time 75 seconds

Mesh Movement per time step 3% Accumulative

 82

Figure 6.17 Pressure field plot on a static mesh configuration

Figure 6.18 Pressure field plot on a moved mesh configuration

 83

The concept of moving into higher order schemes for the discretization of the mesh

motion term i.e. moving into third and even higher order schemes is promising, as long

as the scheme is constructed in a way that satisfies the geometrical conservation laws.

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
re

ss
u

re
 (

P
a)

Section A-A

Static mesh results

Results obtained using a first order scheme for mesh movement

Results obtained using a second order scheme for mesh movement

Figure 6.19 Chart presenting the pressure solution along section A-A for static mesh configuration and moved mesh configurations
using a first order and a second order scheme for mesh movement

 84

CHAPTER VII

CONCLUSION

The main objective of this work was to develop the capabilities of the u-FVM solver to

cover problems with moving grids. The contribution of applying a special technique of

replacing the mesh movement term i.e. the generated mesh velocity in the governing

equations by the volumetric face increments and explicitly calculating this term has

shown its validity in Chapter 5. A high order scheme for the treatment of the

aforementioned mesh movement term was addressed, discussed and implemented in

Chapter 6, where the results have proved its improvement to the u-FVM results. The

contribution can serve the field of fluid-structure interaction and free surface flow

problems, as it is widely involved in the field of fluid-structure interaction problems.

Further and future work can be proposed to apply higher order schemes for the mesh

movement term discretization and adopt real life cases for simulation.

 85

BIBLIOGRAPHY

Amsden A, Ruppel H, Hirt C. 1980. SALE: A simplified ALE computer program for

fluid flow at all speeds. US Department of Commerce, National Technical

Information Service.

Anderson D, McFadden GB, Wheeler A. 1998. Diffuse-interface methods in fluid

mechanics. Annu Rev Fluid Mech 30(1):139-65.

Baum JD, Luo H, Loehner R. 1998. The numerical simulation of strongly unsteady

flows with hundreds of moving bodies. AIAA Pap 788.

Belytschko T and Kennedy JM. 1978. Computer models for subassembly simulation.

Nucl Eng Des 49(1):17-38.

Belytschko T, Kennedy JM, Schoeberle D. 1980. Quasi-eulerian finite element

formulation for fluid-structure interaction. Journal of Pressure Vessel Technology

102(1):62-9.

Bendiksen OO. 2011. Review of unsteady transonic aerodynamics: Theory and

applications. Prog Aerospace Sci 47(2):135-67.

Bennett RM and Edwards JW. 1998. An overview of recent developments in

computational aeroelasticity. AIAA Paper 98:2421.

Beyer RP. 1992. A computational model of the cochlea using the immersed boundary

method. Journal of Computational Physics 98(1):145-62.

Clarke DK, Hassan H, Salas M. 1986. Euler calculations for multielement airfoils using

cartesian grids. Aiaa j 24(3):353-8.

De Zeeuw D and Powell KG. 1991. An adaptively refined cartesian mesh solver for the

euler equations. AIAA Paper (91-1542).

Demirdžić I and Perić M. 1990. Finite volume method for prediction of fluid flow in

arbitrarily shaped domains with moving boundaries. Int J Numer Methods Fluids

10(7):771-90.

Demirdžić I and Perić M. 1988. Space conservation law in finite volume calculations of

fluid flow. Int J Numer Methods Fluids 8(9):1037-50.

Donea J, Huerta A, Ponthot J-, Rodríguez-Ferran A. 2004. Arbitrary Lagrangian–

Eulerian methods. Encyclopedia of Computational Mechanics 1(14).

Donéa J, Fasoli-Stella P, Giuliani S. 1977. Lagrangian and eulerian finite element

techniques for transient fluid-structure interaction problems. In: Structural

mechanics in reactor technology.

 86

Durst F, Pereira J, Scheuerer G. 1986. Calculations and experimental investigations of

the laminar unsteady flow in a pipe expansion. Finite Approximations in Fluid

Mechanics: 43-55.

Franck R and Lazarus R. 1964. Mixed eulerian-lagrangian method. Methods in

Computational Physics 3:47-67.

Ghias R, Mittal R, Lund TS. 2004. A non-body conformal grid method for simulation of

compressible flows with complex immersed boundaries. AIAA Paper 80:2004.

Gosman A and Johns R. 1978. Development of a predictive tool for in-cylinder gas

motion in engines. Development of a Predictive Tool for in-Cylinder Gas Motion

in Engines.

Guilmineau E and Queutey P. 2002. A numerical simulation of vortex shedding from an

oscillating circular cylinder. J Fluids Struct 16(6):773-94.

Hindman RG. 1982. Generalized coordinate forms of governing fluid equations and

associated geometrically induced errors. Aiaa j 20(10):1359-67.

Hirt C, Amsden AA, Cook J. 1974. An arbitrary lagrangian-eulerian computing method

for all flow speeds. Journal of Computational Physics 14(3):227-53.

Hirt CW and Nichols BD. 1981. Volume of fluid (VOF) method for the dynamics of

free boundaries. Journal of Computational Physics 39(1):201-25.

Hughes TJ, Liu WK, Zimmermann TK. 1981. Lagrangian-eulerian finite element

formulation for incompressible viscous flows. Comput Methods Appl Mech Eng

29(3):329-49.

Jasak H, Jemcov A, Tukovic Z. 2013. OpenFOAM: A C library for complex physics

simulations. .

Krause EGON. 1979. The computation of three dimensional viscous flows. In its

computational fluid dyn. 26 p.

Majumdar S, Iaccarino G, Durbin P. 2001. RANS solvers with adaptive structured

boundary non-conforming grids. Annual Research Briefs, Center for Turbulence

Research, Stanford University :353-466.

McIntyre SM. 2011. An adaptive immersed boundary method for cfd simulation of

multiphase flows with moving internal bodies. The Pennsylvania State University.

Miller LA and Peskin CS. 2005. A computational fluid dynamics of 'clap and fling' in

the smallest insects. J Exp Biol 208(Pt 2):195-212.

Miller LA and Peskin CS. 2004. When vortices stick: An aerodynamic transition in tiny

insect flight. J Exp Biol 207(Pt 17):3073-88.

 87

Mittal R and Iaccarino G. 2005. Immersed boundary methods. Annu Rev Fluid Mech

37:239-61.

Mohd-Yusof J. 1997. Combined immersed-boundary/B-spline methods for simulations

of ow in complex geometries. Annual Research Briefs.NASA Ames Research

Center= Stanford University Center of Turbulence Research: Stanford :317-27.

Moukalled F, Mangani L, Darwish M. 2015. The finite volume method in

computational fluid dynamics an advanced introduction with OpenFOAM® and

matlab. 1st ed. Springer International Publishing.

Naderi A, Darbandi M, Taeibi‐Rahni M. 2010. Developing a unified FVE‐ALE

approach to solve unsteady fluid flow with moving boundaries. Int J Numer

Methods Fluids 63(1):40-68.

Noh W. 1963. A time-dependent two-space dimensional coupled eulerian-lagrangian

code. Methods in Computational Physics 3:117-79.

Osler TJ. 1972. The integral analog of the leibniz rule. Mathematics of Computation

:903-15.

Peskin CS. 2002. The immersed boundary method. Acta Numerica 11:479-517.

Peskin CS. 1982. The fluid dynamics of heart valves: Experimental, theoretical, and

computational methods. Annu Rev Fluid Mech 14(1):235-59.

Peskin CS,. 1972. Flow patterns around heart valves : A digital computer method for

solving the equations of motion. .

Pfeffer WF. 1991. The gauss-green theorem. Advances in Mathematics 87(1):93-147.

Ralph M and Pedley T. 1989. Viscous and inviscid flows in a channel with a moving

indentation. J Fluid Mech 209:543-66.

Ramamurti R and Sandberg W. 2001. Simulation of flow about flapping airfoils using

finite element incompressible flow solver. Aiaa 39(2):253-60.

Scardovelli R and Zaleski S. 1999. Direct numerical simulation of free-surface and

interfacial flow. Annu Rev Fluid Mech 31(1):567-603.

Schuster DM, Liu DD, Huttsell LJ. 2003. Computational aeroelasticity: Success,

progress, challenge. J Aircr 40(5):843-56.

Shahrour I. and Benchekh B. 1992. Analysis of the soil structure interaction under

monotonic and cyclic loadings. Proceedings of the first european conference on

numerical methods in engineering, bruxelles, elsevier, amsterdam.

 88

Taylor CA, Hughes TJ, Zarins CK. 1998. Finite element modeling of blood flow in

arteries. Comput Methods Appl Mech Eng 158(1):155-96.

Tezduyar TE. 2001. Finite element methods for flow problems with moving boundaries

and interfaces. Archives of Computational Methods in Engineering 8(2):83-130.

Thomas P and Lombard C. 1979. Geometric conservation law and its application to

flow computations on moving grids. Aiaa j 17(10):1030-7.

Thomas PD and Lombard CK. 1978. The geometric conservation law-A link between

finite-difference and finite-volume methods of flow computation on moving grids.

11th fluid and plasma dynamics conference.

Trepanier J, Reggio M, Zhang H, Camarero R. 1991. A finite-volume method for the

euler equations on arbitrary lagrangian-eulerian grids. Comput Fluids 20(4):399-

409.

Trulio JG. 1966. Theory and structure of the AFTON codes. DTIC Document.

Trulio JG and Trigger KR. 1961. Numerical solution of the one-dimensional

hydrodynamic equations in an arbitrary time-dependent coordinate system.

University of California Lawrence Radiation Laboratory Report UCLR-6522 .

Udaykumar H, Shyy W, Rao M. 1996. Elafint: A mixed Eulerian–Lagrangian method

for fluid flows with complex and moving boundaries. Int J Numer Methods Fluids

22(8):691-712.

Unverdi SO and Tryggvason G. 1992. A front-tracking method for viscous,

incompressible, multi-fluid flows. Journal of Computational Physics 100(1):25-37.

Verzicco R, Mohd-Yusof J, Orlandi P, Haworth D. 1998. LES in complex geometries

using boundary body forces. Center for Turbulence Research Proceedings of the

Summer Program, NASA Ames Stanford University :171-86.

Vinokur M. 1989. An analysis of finite-difference and finite-volume formulations of

conservation laws. Journal of Computational Physics 81(1):1-52.

Viviand Henri and Ghazzi Walid. 1976. Numerical solution of the compressible navier-

stokes equations at high reynolds numbers with applications to the blunt body

problem. Proceedings of the fifth international conference on numerical methods in

fluid dynamics june 28–July 2, 1976 twente university, enschedeSpringer. 434 p.

Ye T, Mittal R, Udaykumar H, Shyy W. 1999. An accurate cartesian grid method for

viscous incompressible flows with complex immersed boundaries. Journal of

Computational Physics 156(2):209-40.

Yurkovich R. 2003. Status of unsteady aerodynamic prediction for flutter of high-

performance aircraft. J 40(5):832-42.

 89

Zhang H, Reggio M, Trepanier J, Camarero R. 1993. Discrete form of the GCL for

moving meshes and its implementation in CFD schemes. Comput Fluids 22(1):9-

23.

Zwart P, Raithby G, Raw M. 1999. The integrated space-time finite volume method and

its application to moving boundary problems. Journal of Computational Physics

154(2):497-519.

	SKM_C454e16050611020
	Thesis_Hussein_Maanieh

