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Title: The Study of Deriving a Higher Order Moving Mesh Scheme 

 

 

 

 

The formulation and implementation of a higher-order accurate scheme for 

arbitrary moving mesh problems, is presented. The governing equations are formulated 

according to the Arbitrary Lagrangian-Eulerian (ALE) approach in a form that satisfies 

the Geometrical Conservation Laws (GCL) in an intrinsic manner. The contribution of 

this work is achieved by the technique used to deal with the introduced moving mesh 

term represented by face mesh velocities. The method replaces the aforementioned face 

mesh velocities by equivalent volumetric face increments on which the formulated 

explicit higher order scheme is applied. The scheme is implemented on the three 

dimensional MATLAB unstructured Finite Volume Method (u-FVM) solver where 

several test cases are conducted and simulated on static and arbitrary moving grids with 

their results being presented and analyzed. The results indicate that the set obtained 

from higher order mesh treatment tend to overlap with the results of the static mesh, 

hence, proving the effectiveness of the formulated scheme. 
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CHAPTER I 

INTRODUCTION 

There are three important steps that have to be followed carefully in the computational 

modeling of any physical process; we list: 

(i)                             Problem definition 

(ii)                           Mathematical modeling 

(iii)                         Computer simulation. 

The most important prerequisite to the aforementioned steps is the correct treatment of 

the geometry of the problem. Meshing the geometry in an adequate framework is 

needed for the solution to be realistic, logical and as exact as possible to the 

experimental results. 

For our interest, in Computational Fluid Dynamics (CFD), physical conservation laws 

represented in Partial Differential Equations (PDEs) are to be solved numerically on 

discrete grids using adequate algorithms. Such algorithms of numerical solving depend 

on the chosen frame of discretizing the partial differential equations, whether Finite 

Difference Method (FDM), Finite Element Method (FEM) or Finite Volume Method 

(FVM). 

Finite Difference framework is the oldest discretization approach where it uses the 

differential form of the governing equations. The discretization procedure uses a 

topologically square network of lines over the computational domain under study, and 

at each grid point, the differential equations are approximated by terms from the 

neighboring grid points. For each grid point, a single algebraic equation is obtained. 

Taylor series expansion or polynomial fitting is used to obtain first or second order 

derivative terms of the governing equations. 
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The topology of discretization followed in the FDM acted as a potential bottleneck of 

the method when handling complex geometries in multiple dimensions. This issue 

motivated using the integral form of the PDEs and subsequently led to the development 

of the FEM and FVM approaches. 

Finite Element framework is usually associated with solid mechanics, however it can be 

applied to fluid flows but with special care to ensure the continuity of mass (Ferziger 

and Peric 2002). This approach divides the domain into triangular or quadrilateral 

elements where the differential equation is multiplied by an arbitrary test function to 

later integrate both over the whole domain. Since this approach is predominantly used 

in unstructured meshes, it is well suited to deal with arbitrary geometries, as the grids 

are easily refined, however the resulted discretized system of equations is difficult to 

solve. 

  In the Finite Volume framework, the solution domain is filled with a mesh. This mesh 

is used to define the storage locations of each variable stating mainly the vertex-

centered and cell-centered methods. Finite control volumes are constructed around each 

storage location, and the governing equations are integrated over each control volume in 

a conservative form. The volume integrals are converted to surface integrals by means 

of Gauss’ divergence theorem, and the surface integrals are then approximated in terms 

of variables defined at the adjacent storage locations, depending on the order of the 

scheme selected. Hence, according to this process, the differential equations are 

replaced by algebraic equations: one for each conservation equation for each control 

volume. 

Although FEM must be carefully formulated to be conservative, it is more stable than 

the FVM approach (Surana, et al. 2006) but the latter is conservative by phenomena. 
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However, FEM requires more memory and has slower solution times than the FVM 

(Huebner, Thornton and Byrom 1995). For time-dependent problems, the finite volume 

principle has traditionally been used to discretize the spatial dimensions and temporal 

dimensions. If, on another side, the mesh undergoes motion, these methods require the 

use of Leibniz rule (Spiegel 1997) (Kaplan 1973) (Hildebrand 1976) to account for 

mesh motion. 

  

A.      Thesis Objective: 

In our presented work, the finite volume method is adopted and all the discretization of 

the partial differential equations will be casted according to this method. The main 

objective of the presented dissertation is the development of a high order scheme that 

will discretize the moving mesh term developed when allowing the mesh to move 

arbitrarily with time. The Geometric Conservation Laws that accompany the moving 

mesh phenomena are well treated and satisfied in the governing equations. Several test 

cases are simulated to ensure that the proposed scheme is valid and provides reliable 

results. 

  

B.      Thesis Significance: 

Nowadays, fluid structure interaction problems are encountered in diverse scientific 

areas and the rapid progress in this field urged us to develop the capabilities of the 

unstructured Finite Volume Method (u-FVM) solver base on MATLAB software so as 

to introduce the mesh motion along with its relative changes and generated terms into 

the code and trying to deal effectively with them. The significance of this work, serves 
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into the development of the computational field by introducing a scheme that will help 

researchers improve their computational codes. 

  

C.      Thesis Organization: 

The remaining of this thesis is divided into chapters that cover the main boundaries of 

the research topic. The next chapter i.e. the second chapter reviews the literature 

associated with the topic of this work and presents work that is prerequisite or related to 

the topic. Following that, in the third chapter the governing equations are derived in an 

Arbitrary Lagrangian-Eulerian (ALE) frame after introducing and elaborating on the 

ALE approach. The fourth chapter briefly describes the u-FVM code by presenting its 

main functions and the borderline of how a simulation is performed in it. Chapter five 

describes how the mesh nodes are moved arbitrary in time and discuss the technique 

used to calculate the generated face volumetric increments satisfying the Geometric 

Conservation Laws (GCL). Chapter six presents and highlights the validity of the high 

order scheme formulated and implemented in the u-FVM code by applying and 

addressing the results of several test cases. The thesis is wrapped up in a conclusion 

presented in Chapter seven. 
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CHAPTER II 

LITERATURE REVIEW 

 

A. Background  

Over the past decades, two categories of generated grids are differentiated in the 

literature of CFD as: 

i) Domain-Conformal Grid Methods. 

ii) Non Domain-Conformal Grid Methods.  

The term “Immersed Boundary” was first introduced by Peskin in the aim of studying 

cardiac mechanics and blood flow patterns around heart valves (Peskin 1972). Peskin’s 

contribution was to carry out the entire simulation on a Cartesian grid that did not 

conform to the geometry of the heart. Moreover, the author formulated a procedure for 

imposing the effect of his new Immersed Boundary Method (IBM in short) on the flow. 

Since then, Peskin’s pioneering method evolved into a generally useful method for 

problems involving fluid-structure interaction. Another related class of methods, 

referred as “Cartesian Grid Methods”, were proposed and developed to simulate 

inviscid flows on Cartesian grids for the cases of complex embedded boundaries (Beyer 

1992, Clarke, Hassan et al. 1986, De Zeeuw, Powell 1991). The aforementioned 

methods were further extended to cover unsteady viscous flows (Ye, Mittal et al. 1999, 

Udaykumar, Shyy et al. 1996) and by that they had similar capabilities as the IB 

methods. In order to avoid any conflict between the two set of methods, and to 

encompass a broader group which includes all the methods that simulate viscous flows 

with immersed or embedded boundaries on non-conformal boundary grids, we will refer 

to both set of methods by the term “Non Domain-Conformal Grid Methods”. 
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The major treatment that needs specific attention while developing Non Domain-

Conformal Grid methods is how to impose the boundary conditions in the algorithm. 

The boundary conditions are indirectly enforced into the discretization process of flow 

equations (for example: Navier-Stokes in an incompressible flow) after undergoing 

certain modifications, of which, a source term (also called a forcing factor) that 

represents the effect of the boundary is added to the discretized equations. 

There exist two approaches for implementing the forcing factor. In the first approach, 

called the continuous forcing approach, the forcing factor is enforced into the governing 

flow equations before discretizing them on the Cartesian grid. The equations are then 

discretized and solved over the entire domain of interest. Many applications have been 

reported in the literature in accordance to this approach with elastic and rigid boundaries 

in biological fluid dynamics (Beyer 1992, Peskin 1982, Peskin 2002), in studies on 

insects (Miller, Peskin 2004, Miller, Peskin 2005), and in multiphase flows (Unverdi, 

Tryggvason 1992, McIntyre 2011). However, this approach requires solving the 

governing equations inside the immersed body which will make the problem 

burdensome with increasing Reynolds number and on another side, the introduced 

forcing terms generally don’t behave well in the rigid limit.  

In the second approach, called the discrete forcing approach, the governing equations 

are first discretized on a Cartesian grid without regarding the immersed boundary. Then, 

boundary conditions are either imposed directly or indirectly on the immersed boundary 

and this opens up two distinguished categories in this approach. Direct forcing methods 

introduce a discrete momentum source that, when integrated over a time step, 

identically forces the velocity to the prescribed value on the immersed boundary. On the 

other hand, in the Indirect Imposition category, Mohd-Yosuf (Mohd-Yusof 1997) 
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attempted to develop a method that extracts the forcing directly from the numerical 

solution so as an a priori prediction can be determined. Then,  Verzicco et al. (Verzicco, 

Mohd-Yusof et al. 1998) applied the direct forcing method to a finite-difference code 

for large eddy simulation of flow in an engine cylinder. On the other hand, the need to 

retain the “sharp” interface of the immersed boundary especially at high Reynolds 

numbers with greater emphasis on the local accuracy near the immersed boundary has 

opened up a new category of direct discrete forcing. Two methods fit in this category, 

one suiting the finite difference frame of work called the ghost-cell finite difference 

method and the other suiting the finite volume frame being called the cut-cell finite 

volume method. The first method uses ghost-cells, which are defined as cells in the solid 

region having at least one neighbor in the fluid region. In this method, each ghost cell 

will have a special implicit interpolation scheme devised to it. Several authors proposed 

adequate interpolation schemes, we mention among (Ghias, Mittal et al. 2004, 

Majumdar, Iaccarino et al. 2001). Irrespective of the chosen interpolation scheme, the 

modified discrete equations of the ghost cells can be solved simultaneously with the 

discretized Navier-Stokes equations for fluid nodes. The second method in this 

category, called the cut-cell method, uses a finite volume work frame. Remarking that 

finite volume methods are the only to guarantee strict local and global conservation of 

mass and momentum, the cells of this method in the Cartesian grid that are cut by the 

immersed boundary are identified, and the intersection of the boundary with the sides of 

these cells is determined. Cells that are cut by the immersed boundary, and whose cells 

centers lie in the fluid domain, are reshaped by dumping the portion of these cells that 

lies in the solid domain. Neighboring cells grip portions of cut-cells, whose centers lie 
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in the solid domain which results in formulating trapezoidal control volumes (Ye, Mittal 

et al. 1999).  

The major advantage of the discrete forcing approach is the absence of the user-defined 

parameters in the forcing but the details of implementation still depend strongly on the 

numerical algorithm used to discretize the equations. Yet, there exists a major 

disadvantage in this approach which lies in the difficulty of including boundary motion 

and this makes the approach less desirable to use for problems involving moving 

boundaries. 

B. Flow with Moving Immersed Boundaries 

Most of the methods described in the Non Domain-Conformal Grid Methods category 

follow the Eulerian-Lagrangian frame, wherein the governing equations are represented 

in a Eulerian form and solved on a stationary grid while the moving boundaries are 

tracked following a Lagrangian treatment. Among these methods, we can distinguish 

the procedure adopted to track the immersed boundary as well as the methodology used 

to represent its influence on the underlying Eulerian flow-field. In this manner, Peskin’s 

Immersed Boundary Method (Peskin 1982) tracks the boundary as a separate and sharp 

Lagrangian body while its influence is represented by a diffusing effect on the fluid 

field. However, for the methods of cut cell and ghost cell previously described, the 

immersed boundary is treated as a sharp Lagrangian body and at the same stage it is 

represented as such in the underlying Eulerian flow-field. One can also differentiate on 

another basis between the aforementioned Non Domain-Conformal Grid Methods and 

the Volume-of-Fluid methods (Hirt, Nichols 1981, Scardovelli, Zaleski 1999, Anderson, 

McFadden et al. 1998) where the last preserve the diffuse nature of the boundary in 

tracking along with representing its effect on the flow field.  
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Literature on sharp-interface methods such as cut-cell methods has pointed out an 

important issue to be realized and dealt with in order to enable boundary motion. As the 

immersed boundary moves across the fixed Cartesian grid, “freshly-established” cells, 

or in other words cells in the fluid field that were inside the solid field at the prior time 

step, are encountered. This is considered as a spatial discontinuity and is usually 

associated with sharp immersed boundaries, hence leading to a temporal discontinuity 

for the cells lying near the moving boundary (Mittal and Iaccarino 2005). Adding up, 

another disadvantage is associated with the Immersed Boundary Methods that is 

because the immersed boundary is smeared across few cell-widths where the point force 

is represented on a finite size mesh. 

After all, the drawback of Non Domain-Conformal Grid Methods remains in its 

complicated treatment of the fluid structure interaction by accurately tracking the 

interface and accurately estimating the velocity field near it. 

We turn our attention now to the Domain-Conformal Grid Methods. These methods are 

considered as a better choice than Non Domain-Conformal Grid Methods for Fluid-

Structure Interaction (FSI) problems, with moderately complex interface and medium 

deformations or movements in the solid domain. We remark for instance that the 

generation of body conformal grids to the FSI interface permits the estimation of 

accurate solutions of the tractions and velocities near the FSI interface. In this category, 

the external mesh faces match up with the body interface and the external bounding 

faces of the domain. Simulating flows with moving boundaries using body-conformal 

grids requires the generation of a new grid at each time step as well as a technique to 

project the solution onto the new grid. When simulating moving bodies on body-

conformal grids, the partial differential equations should be cast in Arbitrary 
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Lagrangian-Eulerian (ALE) frame of reference (Donea, Huerta et al. 2004), where the 

idea is to move the mesh with minimal distortion. Throughout the years, significant 

progress has been witnessed in simulating flows with moving boundaries on body-

conformal grid methods (Baum, Luo et al. 1998, Ramamurti, Sandberg 2001, Tezduyar 

2001). 

C. Arbitrary Lagrangian-Eulerian Formulation 

 The ALE formulation which can be viewed as a mesh movement strategy is adopted in 

cases where the CFD equations are defined on domains with continuously moving or 

deforming grids with time due to boundary movement. The governing equations are 

enforced over the control volumes whose geometrical shape and position are neither 

constant in time, thereby the grid positioning geometric quantities and velocities of the 

moving or deforming grid points must be determined. Accurately determining these 

parameters is an essential factor to ensure the conservation of mass and momentum 

over the moving grid. For a general problem, the grid positioning geometric quantities 

are usually available as a function of time particularly if the grid deformation is 

governed by a set of partial differential equations. The ALE formulation is particularly 

useful for problems involving fluid-structure interaction based on the coupling between 

the fluid dynamics models and the finite element models of aircraft structure 

(Bendiksen 2011, Bennett, Edwards 1998, Schuster, Liu et al. 2003, Yurkovich 2003). 

The ALE formulation has been intensively employed in problems involving small and 

large structure displacements with no topological changes in the structure domain. A 

recent and interesting application of the ALE formulation occurs in the medical field, 

where undergoing experiments and extracting quantitative flow information is very 

difficult, time consuming and expensive (Taylor, Hughes et al. 1998). Among other 
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applications, the ALE formulation was used as well for soil-structure interaction and the 

detailed analysis can be found in (Shahrour, Benchekh 1992). We focus our attention in 

this study on the implementation of the moving grid concept along with establishing the 

corresponding ALE flow equations in a finite volume discretization scheme for general 

boundary-fitted grids. 

 The major task while simulating the ALE equations is the determination of the 

variable geometric parameters, which is governed by the satisfaction of the so-called 

Geometric Conservation Laws (GCL in short). 

D. Geometric Conservation Laws 

While reviewing the literature on Computational Fluid Dynamics, it comes into notice 

that two additional equations that formulate, for static or moving meshes, the balance 

between the relevant geometric parameters have sometimes been ignored. This led to 

the misrepresentation of the convective velocities thus violating the conservation laws 

and producing extra sources or sinks in the physically conservative media. These errors 

have been witnessed and investigated by (Hindman 1982, Demirdžić, Perić 1988). 

Furthermore, violating these laws leads to the occurrence of severe restrictions on 

numerical solvers (Demirdžić, Perić 1988, Vinokur 1989). The importance of the GCL 

has long been ignored and the errors resulting from the non-satisfaction of the laws have 

been regarded to other sources (Amsden, Ruppel et al. 1980, Viviand, Ghazzi 1976). 

The two equations, called Geometric Conservation Laws helps establishing the 

conservative relations between the surfaces and volumes of the control volumes in the 

discretized domain. The first equation states that cell volumes must be enclosed by all 

its surfaces, and hence is referred as the Space Conservation Law (SCL in short). The 

second equation states that the volumetric increment of a moving control volume must 
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be equal to the sum of the changes along the surfaces that enclose the volume of the 

control volume, and is called the Volumetric Conservation Law (VCL in short). 

Satisfying the two aforementioned equations is crucial in order to achieve the global 

conservation of the domain of interest. 

Among several numerical solutions to problems with moving boundaries that are 

reported in literature (Gosman, Johns 1978, Krause 1979, Durst, Pereira et al. 1986), the 

SCL was first included into the set of mass, momentum and energy equations by 

(Trulio, Trigger 1961), but it wasn’t recognized until (Thomas, Lombard 1978, Thomas, 

Lombard 1979) rediscovered the equation and marked out the necessity of satisfying it 

numerically along with solving the set of governing equations.  

In the study of (Demirdžić, Perić 1988), the authors defined the grid surface velocities 

in an explicit manner so that the rate of change of the cell volume obtained from the 

VCL exactly equalizes the actual geometrical rate of change. Care was not addressed to 

the path of the vertices or nodes of the moving surfaces of a control volume of the 

moving mesh unlike the study of (Trepanier, Reggio et al. 1991), where the latter 

figured out that for the 2-D and axisymmetric cases, the computed facial increments 

should be independent of the order of nodal motions, and the facial volumetric 

variations following any permutation must sum up to the same total volumetric 

variation of the moving element in the discretized domain. This was not the case for the 

3-D problems where each permutation would define a different volumetric increment, in 

this case the investigators tend to average the value obtained from all the possible 

permutations to the movement of the nodes of an element. In the paper of Zhang et al., 

the authors implemented the approach of moving the grid onto Finite Volume 
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framework and elaborated as well on the suggested modifications in the flux terms 

(Zhang, Reggio et al. 1993). 
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CHAPTER III 

U-FVM DESCRIPTION 

A. Introduction 

u-FVM is a general MATLAB® code developed to solve over three 

dimensional unstructured as well as structured grids following the finite volume method 

approach. 

The code has the capability of solving a wide range of flow problems with single or 

multi-fluids and transport phenomena problems. u-FVM which stems from unstructured 

Finite Volume Method is an academic fully accessible code that stresses on 

programming simplicity, organization and reliability over speed of performance. The 

organized structure of the code allows the user to develop it by embedding new 

functions within the main code to further enhance its capabilities.   

B. The Basic Structure 

1. Case Setup 

u-FVM code is composed of several task oriented functions in the form of MATLAB® 

script files each devoted to a specific task. These set of functions that mimic the 

numeric of the Finite Volume Method, act all together in the aim of solving any 

specified case. The user can setup a case file by creating a script file in the MATLAB® 

editor and importing the appropriate functions in a wise order as illustrated in the Figure 

3.1 below. The user should have the basic knowledge of the physics of his case problem 

so that to be able to determine which functions to include in the case problem script file. 
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% Convection-Diffusion Problem Solved on Static Grid 

1. clear all; 

2.       clc; 

3.       global Domain 

4.       cfdSetupDomain; 
%Reading the Geometry from OpenFOAM® 
5.       cfdReadOpenFOAM®Mesh('Domain25CV'); 
% setup Fluid 
6.       cfdSetupFluid('water','MW',18); 

7.       cfdSetIsTransient; 

8.       cfdSetIsMoving(false); 
%Creating the Property Fields 
9.       cfdSetupProperty('Density:water','constant','1000'); 

10. cfdSetupProperty('SpecificHeat:water','constant','4.186'); 
11. cfdSetupProperty('conduction:water','constant','4.186'); 
12. cfdSetupProperty('Velx:water','constant','10'); 
13. cfdSetupProperty('Vely:water','constant','10'); 
14. cfdSetupProperty('Velz:water','constant','0'); 
% Setting the equation:   
%======================= 
15. cfdSetupEquation('T:water','ic','10','urf',1); 
% Adding the terms constituting the equation with appropriate coefficients 
16. cfdAddTerm('T:water','Transient','coefficientName','Density:water',... 

'coeffiecientName','SpecificHeat:water'); 

17. cfdAddTerm('T:water','Diffusion','coefficientName','conduction:water'); 
18. cfdAddTerm('T:water','Convection','coefficientName','Density:water',...'scheme','UPWIND'); 
% Specifying the Boundary Conditions for the equation 
19. cfdSetBC('T:water',1,'type','Specified Value','value','10');%InletBC 
20. cfdSetBC('T:water',2,'type','Outlet'); % Outlet BC 
21. cfdSetBC('T:water',3,'type','Specified Value','value','0');%SideWalls 
22. cfdSetBC('T:water',4,'type','empty'); % Front & Back 
% Creating an Mdot Field 
23. cfdSetupMdotFields; 
% Initializing the special array for each field 
24. cfdInitializeFields; 
25. time_i=0; 
26. time_f=7; 
27. dt=1; 
% Starting the Time loop 
28. for time=time_i:dt:time_f 
29. k=1; 
30. time_p=time; 
31. time_c=time_p+dt; 
32. cfdSetTime(time_c) 
33. cfdSetDt(dt) 
34. cfdTransientUpdate; 
35. fprintf('%s %d \n', 'Time:', time_c); 
36. disp('---------------------'); 
% Internal Iterations  
37. for iter=1:100 
38. cfdUpdateFields; 
39. fprintf('%s\n %d \n','Iteration: ',iter); 
40. cfdAssembleAndCorrectEquation('T:water');   
41. end 
% Plotting the temperature field and the residuals of the equation 
42. cfdPlotField('T:water',k);   
43. colorbar; 
44. cfdPlotResiduals; 
% A step to save the Phi Field at each time step 
45. cfdSavePhiAtEachTimeStep('T:water',k); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       
46. end 

Figure 3.1: The body of a test case in u-FVM MATLAB code 
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The illustrated case problem example above is governed by the simple temperature 

transport equation of the form presented in Equation 3.1:  

Equation 3.1 

 ( ) 0
T

vT T
t





   


 

2. Setting the Geometry 

As seen in the above illustration (Figure 3.1), the first requirement when setting up a 

case problem is to import the geometry of the problem. uFVM has the ability to read the 

geometrical information necessary for building 

the geometry and the mesh generated from an 

OpenFOAM® case folder. OpenFOAM® (Jasak, 

Jemcov et al. 2013), which stands for Open 

Source Field Operation and Manipulation, is an 

open source object-oriented C++ continuum 

mechanics library that has the characteristic of 

converting geometries and meshes generated by 

any of the major mesh generators and CAD 

systems by the use of some specific commands 

(ansysToFoam, cfxToFoam, 

fluent3DMeshToFoam, gambitToFoam, 

star3ToFoam among others.)  

The ‘ ’ directory is the first time sub-folder that 

contains the initial conditions of each property or 

variable as shown in Figure 3.2. The ‘constant’ directory contains the dynamicMeshDict 

0 Figure 3.2: The basic structure of an Open 
FOAM test case 
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that is a dictionary only created for dynamic mesh, and a ‘polyMesh’ directory special 

for the description of the problem’s geometry. The ‘system’ directory contains 

dictionaries that define the case setup, the controlDict is concerned with the general 

control parameters of the test case, the fvSchemes defines the discretization schemes 

while the fvSolution contains information about the solution algorithms and relaxations 

to be used in the simulation. 

After obtaining the mesh in an OpenFOAM® format, UFVM can easily read and 

recognize all the needed geometrical data through the use of a specialized function 

cfdReadOpenFoamMesh. This function starts by reading the points file from 

OpenFOAM® case folder (constant/polyMesh directory) and storing the x, y, z 

coordinates into a structure array called the nodes array, then the faces file is read and 

the nodes’ indices, that constitute each face, are stored into the faces structure array. 

Information about the patches and the associated patch faces is then read from the 

boundary file and stored in the boundary structure array. Finally, the owners and 

neighbors files are read and the elements structure array is composed. At this stage, the 

available data enables us to construct the elements and setup the mesh nodes’ 

connectivity. The mesh is then processed in UFVM using cfdProcessOpenFoamMesh 

where the volume and centroid coordinates of each element are calculated as well as the 

surface area, the interpolation factor and other properties for each face among other 

geometrical entities. 

Now, the mesh structure array contains: the nodes array storing the centroid coordinates 

of each node, its index, the element/s and the faces for which it belongs; the faces array 

storing the index of each face as well as its centroid’s coordinates, area, interpolation 

factor, area vector, the owner and the neighbor, patch index and the nodes that construct 
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it; the elements array storing the index, the neighboring elements’ indexes, the faces’ 

and the nodes’ indexes constructing the element, volume, face sign and centroid’s 

coordinates. Moreover, a boundary structure array is created that contains the boundary 

types included in the problem and read from the OpenFOAM® boundary file. The 

boundary array contains an index as well as the type of the boundary, the number of 

faces and the start face index. The previously described arrays are presented in Figure 

3.3. 

 

 

 

 

  

 

 

 

3. Setting up the Model 

Before setting up the underlying physical equations that are the major constituent of any 

case problem, the fluid/s involved in the case problem should be defined by the function 

cfdSetupFluid. This function is responsible for defining the type of the fluid (continuous 

or disperse), its username, molecular weight, mode (compressible or incompressible) in 

addition to some other related information. It should be noted at this stage that all the 

data to be used by other functions are saved in a global structure array named as 

Domain. The thermo-physical variables appearing in the governing equations should be 

defined as well in a special function cfdSetupProperty. In this function, the user should 

Figure 3.3: The basic structure of uFVM 
arrays. 
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specify the username, type and under relaxation factor among other input information 

that will be stored in an element mesh field.  

Next, the setup of the governing equations of any case problem can proceed by using 

the function cfdSetupEquation. This is where we describe and define the type of the 

equation (scalar or vector), the initial conditions and the under-relaxation factor. The 

user can also choose which gradient type to be used for the derivatives appearing in the 

conservation equations. A field for each equation is stored on an element mesh size 

array in the global Domain structure. For each defined equation, the user can then add 

various associated terms (transient, convection, diffusion, pressure gradient, stress, 

source, electric potential, darcy, buoyancy, and drag among others) that will constitute 

the equation. Each term is defined in the code using the function cfdAddTerm. This 

function relates each term along with the coefficients (density, viscosity, diffusion 

coefficient among others) to its equation where the information will be stored for later 

assembly. The associated boundary conditions of each equation are then added using the 

function cfdAddBC where the type of the boundary (inlet, outlet, specified value, 

specified flux, slip, no slip among others) and its value, if needed, are defined. If one of 

the equations of any fluid defined in a case problem contains a convective term, then the 

user shall setup a ‘mdot’ (mass flow rate: density multiplied by the dot product of the 

velocity vector and the area vector) field that creates a mesh field covering the faces of 

the domain under study.   

The internal structure of an equation (‘T:water’ for instance) is presented in Figure 3.4 

below. 
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Figure 3.3: The basic structure of an equation in a u-FVM test case 

4. Setup of the Computational Field 

In this section, we will describe how the fields are initialized in the code, each on its 

prescribed locale (elements, faces, nodes). Adding the function cfdInitializeFields into 

the case problem script file will automatically initialize the equation field, the property 

field and the ‘mdot’ field. An equation is initialized over the elements by computing and 
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distributing the initial conditions onto each interior element along with the boundary 

conditions previously defined. After that, a property is initialized over the associated 

mesh field, whether calculated from a formula or a constant value, over elements or 

faces. The ‘mdot’ field is initialized as well by calling the density field (which is a 

property already defined and initialized) along with the velocity field to compute the 

value over each face of the mesh. Storing all the initialized fields in the appropriate 

arrays for later communication is done by each associated function 

(cfdInitializeEquation, cfdInitiazeProperty, cfdInitializeMdotField). 

5. Equation Discretization 

After the environment has been suited according to the chosen case and all the fields 

have been initialized and prepared for the solution procedure, the function  

cfdAssembleAndCorrectEquation is invoked in order to assemble, solve and correct the 

equations governing the modeled problem. This function should be stated precisely for 

each equation if several equations occur in the problem. 

6. Equation Assembly 

 For each equation, the internal function cfdAssembleEquation is responsible 

for assembling the terms that have already been associated to the specified equation. A 

coefficient array containing the coefficient matrices of the ,  and with the size of 

the number of control volumes of the domain, is created using the cfdSetupCoefficients 

function. 

ac bc anb
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Illustrations for the coefficients’ and the neighbors array are presented in Figure 3.5. 

 

 

 A process is initiated in cfdAssembleEquationTerms to loop over each term and 

calculate its fluxes according to a selected or default scheme. The calculated face fluxes 

and element fluxes are then assembled according to the discretized form into the global 

coefficient matrix by cfdAssembleIntoGlobalMatrixFaceFluxes or 

Figure 3.4: The coefficients and neighbors’ arrays in a u-FVM test case 
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cfdAssembleIntoGlobalMatrixElementFluxes respectively. After assembling all the 

terms of a single equation and obtaining the complete coefficient array, the under-

relaxation factor already specified for each equation is applied over the initial 

coefficient matrix .                                 

7. Solving the Equations 

The solving procedure in the uFVM code is based on one of two implemented 

solvers, the successive over-relaxation method (SOR) and the Incomplete lower upper 

decomposition with no fill-in ILU(0) solver. The iterative SOR method is a 

generalization of and an improvement on the Gauss-Seidel Method for solving a linear 

system of equations. The coefficient array containing the coefficient matrices is 

imported to the solver that in turn loops over the elements of the domain to solve, get 

and update the  in which the solver solves for according to Equation 3.2: 

Equation 3.2 

c NB NB

NB
c

c

b a

a










 

On the other hand, the ILU(0) method follows the methodology of solving the system of 

equations in a residual form and has been used as a standard smoother with algebraic 

multi-grid solvers in many applications. ILU(0) is implemented in the uFVM code and 

can be selected by the user as the solver of the modeled problem. 

8. Correcting the Equations 

Whether the user is solving a unique simple scalar equation or a set of scalar 

and vector equations (Navier Stokes’ Equations), the equations have to be corrected 

using the cfdCorrectEquation function along with several internal functions specific for 

ac

dphi
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the correction of each type of equation velocity, scalar or pressure (which has specific 

treatment). In the scalar type or vector type, that resembles the scalar equation yet have 

a three components to be considered, the value of phi is updated and corrected by 

adding the  term previously computed from the solving part for the internal 

elements. Boundary conditions are corrected respectively each according to the 

specified type by the use of adequate functions (cfdCorrectWallZeroFluxBC, 

cfdCorrectWallSpecifiedFluxBC, cfdCorrectInletInletBC, cfdCorrectOutletZeroFluxBC 

among others). The pressure equation is corrected by the use of cfdCorrectPPField and 

cfdCorrectPressureEquation because we need to correct the pressure correction 

equation and then the pressure field. After that, the velocity and the ‘mdot’ fields need 

to be corrected at the interior elements-faces as well the boundaries.  

9. Computing the Residuals 

The residual of each equation or each component of an equation (in case the 

equation is of the vector type) is calculated using the cfdComputeResidual where the 

residual on each control volume is computed and averaged over the domain. At this 

stage one residual value for the whole equation or component of an equation is stored. 

The residual is needed as an indicator for the convergence of the solution and can 

plotted by a specific function to be mentioned later. First, a scaled for the equation to 

be solved is calculated as Equation 3.3: 

Equation 3.3 

max min maxmax( , ( ))scale abs      

Then, the residuals are scaled using Equation 3.4: 

dphi


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Equation 3.4 

,

c c c NB NB

NB
c scaled

elements c scale

b a a

R
a



 



 




  

And finally, the root-mean square residual is employed as in Equation 3.5: 

Equation 3.5 

2

,

,

,

( )c scaled

c cells

c scaled

R

R
number of cells



 


 

10. Plotting Utilities 

Several plotting functions are available in uFVM code so that the results of any case 

problem can be visualized as well as the mesh and the geometry.  

 cfdPlotMesh plots the domain under consideration of a case problem along with 

the mesh that covers it.  

 cfdPlotElements plots any element the user choose or a set of specified elements 

using the index of each. 

 cfdPlotFaces plots the faces of the domain using their index.  

 cfdPlotPatches plots the full boundary patch that the user choose by using the 

index of the patch already defined in earlier stages of a case problem. 

 cfdPlotField plots any field defined in the solver. Refer to Figure 3.6. 

 

 

 

Figure 3.5: A sample plot of a chosen field in u-FVM code  
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 cfdPlotResiduals plots the residual value of each equation or component of an 

equation versus per iteration. Refer to Figure 3.7. 

 

Figure 3.6: Residuals plot generated while simulating a u-FVM test case 

 cfdPlotVelocity plots the mesh and the velocity vectors on the centroid of each 

control volumes and on boundary faces. Refer to Figure 3.8. 

 

 

 

 

Figure 3.7: Velocity vectors plot of a u-FVM advection test case 

C. Gradient Calculation  

For structured orthogonal grids, the gradient of a scalar at a given element centroid can 

be easily computed using the definition of the derivatives. This phenomenon becomes 

more complicated when general unstructured grids are involved. The usual approach is 

to make use of Green-Gauss theorem, which states that the surface integral of a scalar 

function is equal to the volume integral (over the volume bound by the surface) of the 

gradient of the scalar function (Pfeffer 1991) as presented in Equation 3.6: 
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Equation 3.6 

 

Where is the surface normal pointing outwards from the control volume. Assuming 

that is constant over the control volume, the Green-Gauss equation can be written as 

Equation 3.7. 

Equation 3.7 

 

Next, the integral over the surface is approximated as a summation of the average scalar 

value in each face times the face's surface vector as in Equation 3.8. 

Equation 3.8 

 

The average face value is computed following two approaches, the first is cell based 

in which the face value is computed using the values at its straddling cells using 

cfdComputeGradientGauss and the other approach is node based in which the face 

value is computed using the values at its straddling nodes using 

cfdComputeGradientNodal. 

The use of any of the two mentioned methods is not specific; they can be used in any 

occasion once the face gradient is required. 

1. Cell-Based Method 

In the cell-based method, we define  as the weighing geometric factor between cells 

P and N as in Equation 3.9. 

Ñf

f f

g f
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Equation 3.9 

 

Then, a simple approximation for the face value is defined by a compact stencil, where 

only the cells straddling the face are only involved in the interpolation. Such an 

approximation is also known as the weighted approximation and can be written as 

Equation 3.10. 

Equation 3.10 

 

We sum the values of  for the faces constituting the element and divide by the 

volume of the control volume to obtain an average gradient. 

2. Node-Based Method 

 In the node-based method, the value of  can be computed as the mean of the nodes 

defining the face. First, the values at the nodes are obtained by an interpolation from 

elements to nodes. Then, the values at the nodes are interpolated into faces using a 

specific interpolation scheme to be described in a later section. We the sum the values 

of  for the faces constituting the element and divide by the volume of the control 

volume to obtain an average gradient. 

D. Interpolation Schemes  

Several interpolation functions are included in the uFVM code each serves for a specific 

function. A summary of these interpolation functions is given below. 

f f = g ffP + (1- g f )fN

f f

f f

f f



 
 
 

    29 
 
 

 cfdInterpolateFromElementsToNodes function is used to compute the gradient 

according to the node-based method and in the cfdPlotField function. A loop 

over all the nodes is performed and for each node an array stores the elements 

sharing the specified node. The value of each element is divided by the 

magnitude of the distance from the node to each element’s centroid and we sum 

up to obtain the value at the node.  

 cfdInterpolateFromElementsToFaces function is used to assemble the stress, 

diffusion and ‘mdot’ terms as well as in the initialization of the fields. Three 

interpolation schemes (Hyperbolic, Upwind and Average) are implemented in 

this function so that the user can choose which to use when computing any face 

value from elements values. 

 cfdInterpolateFromNodesTofaces function is used to compute the gradient 

according to the node-based method. For a single face, the value at each node 

constituting the face is divided by the magnitude of the distance from the face 

centroid to the node centroid and a summation of these values gives the value at 

the selected face. 

 cfdInterpolateGradientsFromElementsToInteriorFaces function is used to 

interpolate the gradients from elements to interior faces according to the selected 

interpolation scheme. Four interpolation schemes are implemented in this 

function (Average, Upwind, Downwind and Corrected Average). The Average 

schemes depends on the weighing geometric factor and includes the owner and 

neighbor of the interior face, while the Upwind scheme uses the value of the 

upwind element and the Downwind uses the value of the downwind element 

depending on the direction of the ‘mdot’ vector at the specified interior face. 



 
 
 

    30 
 
 

The corrected Average scheme resembles the average scheme but with the 

introduction of a correction to the interpolated gradient following the below 

mathematical Equations 3.11, 3.12, 3.13 and 3.14. 

Equation 3.11 

 

Where, Equations 3.12 through 3.14 define the parameters of Equation 3.11. 

Equation 3.12 

      

 
 

Equation 3.13 

eCF =
d

dCF    

     

 

Equation 3.14 

dCF = c - f  
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E. Solution Algorithm: 

The solution algorithm in the UFVM-3D code for the calculation of unsteady flows with 

moving mesh arrangement is envisaged to be composed of the following sequence of 

steps: 

1. Provide the initial grid and the values of the dependent variables (initial conditions). 

2. Determine the location of each grid node after the time has advanced by , which 

represents the new mesh configuration. Attention should be paid to the boundaries 

when moving with time. The number of control volumes is kept constant 

throughout the simulation. 

3. Assemble and solve the equations for the velocity components, employing the 

currently available pressure and mass fluxes.  

4. Calculate the new mass fluxes to update the field using the new velocity 

components. 

5. Assemble and solve the pressure correction equation.   

6. Correct the mass fluxes, velocity components and pressure by the calculated 

pressure correction.  

7. Assemble and solve any other scalar equation which may be coupled with the 

momentum and update the fluid properties if necessary. 

8. Return to step 3 and repeat until a converged solution is obtained. 

Advance the time by the time increment  and return to step 2; repeat the process until 

the prescribed number of time steps is completed. 
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CHAPTER IV 

GOVERNING EQUATIONS 

A. Introduction: 

In order to cover a wider variety of flow problems, the grid is enabled to move 

with time in a prescribed manner. This grid movement is introduced under the frame of 

the Arbitrary Lagrangian-Eulerian (ALE in short) approach that deals with the changes 

to be considered while formulating the conservation equations. In this chapter, we will 

formulate our equations of fluid flow in the ALE form which in turn will ensure that the 

geometric conservation laws (GCL in short) such as space conservation law (SCL in 

short) and Volumetric conservation law (VCL in short) are satisfied in an intrinsic 

manner. Further, we will elaborate on the approach of moving the mesh randomly in 

time the difficulties that rise accordingly. 

B. The Arbitrary Lagrangian-Eulerian Approach: 

1. Introduction: 

There exists several approaches for solving fluid flow problems with moving 

boundaries and moving meshes, we mention of which the integrated space-time 

approach (Zwart, Raithby et al. 1998, Zwart, Raithby et al. 1999), the Arbitrary 

Lagrangian-Eulerian (ALE) approach (Demirdžić, Perić 1990), and the boundary-

transformation approach (Ralph, Pedley 1989, Guilmineau, Queutey 2002). Among the 

mentioned approaches, the ALE approach appears more convenient to implement 
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because of having high capabilities in mesh transformation. Thus, the ALE approach 

will be adopted in this work to solve problems involving moving grids. 

The numerical simulation of flow problems may involve in certain situations strong 

distortions of the continuum under consideration especially in the case of free surface 

flows, fluid-fluid, or fluid-structure interaction. Hence, when developing a computer 

code, it is essential to choose the convenient kinematical description of the continuum 

to be studied. The algorithms of continuum mechanics basically follow one of two 

classical approaches for the continuum motion: The Lagrangian approach or the 

Eulerian approach. The Arbitrary Lagrangian-Eulerian approach (ALE in short) was 

originally developed to overcome the drawbacks of each of the Lagrangian and Eulerian 

approaches on one side and on the other side to benefit of the advantages of each 

approach when followed alone as best as possible. The Lagrangian approach or the 

method of characteristics, where each node of the computational mesh sticks and 

follows a corresponding material particle during motion, is usually suitable for the 

simulations of incompressible fluid dynamics problems but is mainly used in structural 

mechanics. This approach allows for easy tracking of the free surfaces and interfaces 

between fluids and/or structures. The weakness of this approach lies in its inability to 

follow large structural motions of the computational domain without requiring frequent 

re-meshing procedures. On the other hand, the Eulerian approach is mainly preferred to 

be used in fluid dynamics. It is in this approach that the continuum under consideration 

moves with respect to the fixed computational grid. Here, large structural motions in the 

continuum motion can be handled with relative ease comparable to that of the 

Lagrangian approach, but generally at the expense of interface precision and flow 

resolution. 
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In the ALE approach, computational nodes are allowed to move with the continuum 

with an arbitrary specified velocity that if exactly match the velocity of the material 

leads to the pure Lagrangian treatment, or if exactly equals to zero leads to the pure 

Eulerian treatment. 

In this chapter, we will establish the conservation equations governing fluid flow 

according to the ALE approach in a finite volume frame of work for the incorporation 

of the ALE capabilities increases the strength. Two challenges will rise in the ALE 

approach are the time accuracy achievement and the satisfaction of the geometric 

conservation laws while marching in time. 

2. The Lagrangian and Eulerian Descriptions: 

In the continuum mechanics, two domains are generally used: the material domain 

n

XR   where n represents the spatial dimensions, and the spatial domain
 
R

x
. Noting 

that X and x represent the material points’ coordinates and the spatial points’ 

coordinates respectively, we consider that  is a continuous medium in the space n and 

that  0,t   is the time variable. 

The Lagrangian approach describes how the computational grid follows the material 

points in their motion. As previously stated, it is in this approach that the grid points are 

permanently attached to the same material points; hence, the motion can be related 

directly between the spatial coordinates and the material coordinates and is defined by 

the following mapping functionj : 
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Equation: 4-1 

 

The above expression represents a change of coordinates and should verify the 

following condition:  

Equation: 4-2 

 

In order to have a reversible mapping function , so as to identify the 

initial position of the material particles at any instant of time t , the above expression 

should satisfy the condition (at: 0t  , 0N ). 

At this stage, it is suitable to represent the gradient of  in a matrix form: 

Equation: 4-3 

 

Where 0T

represents a null row vector and the material velocity v  is:  

Equation: 4-4 

 

With the symbol  X
 meaning that we hold the material coordinate X fixed with time. 

It is to be pointed out that there occur no convective effects in the Lagrangian approach 

since the material points correspond to the same spatial points during the motion, i.e. the 

substantial (material) derivative simplifies to a time derivative. 
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On another hand, the Eulerian approach describes as time goes by, the physical 

properties of the fluid particles crossing a through a fixed region of space. In this 

approach, the continuum moves with respect to the fixed computational grid points and 

the conservation equations are derived in spatial coordinates x  and time coordinates t . 

In this case, the material velocity v of any node on the mesh represents the velocity of 

the corresponding material point concurring at the same time t  with the node under 

consideration. Therefore, the velocity v  is expressed relative to the fixed computational 

grid points without any relation to the initial configuration and/or the material points’ 

coordinates X . It is expressed according to the following form: 
 

Due to the fact that the Eulerian approach separates and distinguishes the material 

points from the computational points, convective effects come to appear in the flow 

equations to include the relative motion between the physical material and the 

computational grid. 

3. The Arbitrary Lagrangian-Eulerian Approach: 

a. Kinematical Description 

The Lagrangian approach, of which each point of the computational mesh coincides 

with a corresponding material point during motion, is mainly used in structural 

mechanics. This approach eases up the procedure of tracking the free surfaces and 

interfaces between different materials. Its weakness is its inability to represent large 

distortions of the computational domain without the aid of frequent re-meshing 

techniques. On the Other hand, the Eulerian approach is usually followed in fluid 

dynamics. In this approach, large distortions of the continuum motion can be managed 
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and followed, but with some compromise with the precision of the interface definition 

and the resolution of flow details (Donea, Huerta et al. 2004). 

From these aforementioned drawbacks of the two approaches, the ALE approach 

emerges to combine the best aspects of the two approaches when followed each alone 

i.e. the large distortions are handled with more resolution. 

In the ALE approach, the points of the computational mesh may be moved with the 

continuum configuration according to an arbitrary specified velocity, that if exactly 

match the velocity of the material leads to the pure Lagrangian approach treatment, or if 

exactly equals to zero leads to the pure Eulerian approach treatment. Hence, we can say 

that the ALE approach comes as a generalization technique where the pure Lagrangian 

and the pure Eulerian approaches would be special cases. In this chapter, we will 

establish the conservation equations governing fluid flow in the ALE form. 

ALE methods were first presented in a finite difference and a finite volume frame of 

work. The original advancements on this approach were proposed by (Noh 1963), 

(Franck, Lazarus 1964), (Trulio 1966), and (Hirt, Amsden et al. 1974) among others. 

The approach was afterwards introduced in the finite element frame where early 

applications are included in the work of (Donéa, Fasoli-Stella et al. 1977), (Belytschko, 

Kennedy et al. 1980), (Belytschko, Kennedy 1978) and (Hughes, Liu et al. 1981). On 

another hand, some authors like (Naderi, Darbandi et al. 2010) attempted to incorporate 

the ALE approach in a mixed finite volume-element frame. 

In the ALE kinematical description, neither the material domain RX nor the spatial 

domain Rx is considered as the reference. For this reason, a third domain Rc is suggested 

and referred as the referential domain. Assuming that  represents the referential 

points’ coordinates that track the grid points. The referential domain is transformed into 
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the material and spatial domains by the transformation functions   and   respectively. 

The particle motion   is also expressed in terms of   and   according to the 

following independent form: 
1    . The transformations from/to the three domains 

are illustrated in Figure 4.1. 

Figure: 4.1: The transformation functions between the Computational, Material and Spatial Domains 

 

For further elaboration, the transformation of   from the referential domain to the 

spatial domain, which represents the motion of the computational points in the spatial 

domain, is expressed by: 

Equation: 4-5 

0 0: , ,final x finalR t t R t t           

Equation: 4-6 

     , , ,t t x t     

And the gradient of  is represented as: 
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Equation: 4-7 

   ,

'

,
0 1

t

T

x
v

t







 
        

 

 

In the above representation, can be written as: 

Equation: 4-8 

 ' ,
x

v t
t 







 

With the symbol  
 meaning that we hold the referential domain   fixed in time. 

At this point, we can note that the material and mesh velocities,  and  respectively, 

are represented as a derivative with respect to time, that is because the material and the 

mesh are moving with respect to the observer. 

It is adequate at this stage to represent the inverse of the transformation function   

directly as follows: 

Equation: 4-9 

1

0 0: , ,final finalX
R t t R t t            

Equation: 4-10 

 

And the gradient of this transformation function is expressed in a matrix form as 

follows:  

Equation: 4-11 

 

And the particle velocity in the referential domain  is defined as follows: 
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Equation: 4-12 

 

With the material domain  being held fixed. 

After defining the three velocities ,  and , it is convenient to define a relation 

between them by differentiating equation ( ) according to the following form: 

Equation: 4-13 

 
 

 
  

 
 

 
 

 
 

1 1
1, , , , ,

, , , , ,
X t X t X t t X t

X t t X t t X t

    
 

 

 
    

 
    

 

The velocities relation can also be represented in a matrix form: 

Equation: 4-14 

 

Applying block multiplication to the matrix equation: 

Equation: 4-15 

 

That returns for the material velocity as, 

Equation: 4-16 

 

Or,  

1   
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Equation: 4-17 

 

The new velocity  is referred as the convective velocity and represents the relative 

velocity between the material and the computational mesh. The reader should not 

confuse between and , as  is the particle velocity as seen from the referential 

domain, whereas  is the particle velocity relative to the mesh as seen from the spatial 

domain. We can notice that  is composed of  and , and both are dependents on 

coordinate x .  

b. The Equations Formulation 

At this point, the conservation laws of mass, momentum and energy in the ALE 

framework are presented. One of the prerequisites to achieve the mentioned framework 

is to relate the material (total) time derivative to the referential time derivative which is 

described in the following subsection: 

i. Material, Spatial and Referential Time Derivatives 

Consider a scalar physical quantity referred as ( , )f x t , *( , )f t and **( , )f X t  in the 

spatial, referential and material domains respectively. We shall note here that the star 

superscripts are used to differentiate between the functional forms for each domain. 

Referring to the Figure: 4-2-1, the spatial quantity ( , )f x t and the material quantity

**( , )f X t  are related by the particle motion , which has been previously introduced, 

according to the following form: 

Equation: 4-18 

   ** , ( , ),f X t f X t t  

And for simplicity can be represented as: 
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Equation: 4-19 

**f f   

The gradient of the above expression is presented as: 

Equation: 4-20 

 
 

 
 

 
 

**
, , ,

, , ,

f f
X t x t X t

X t x t X t

  


  
 

Or in a corresponding matrix form: 

Equation: 4-21 

 

The above form settles after block multiplication on two expressions: 

First, 

Equation: 4-22 

 

Second, 

Equation: 4-23 

 

The second equation relates the material time derivative to the spatial time derivative 

and can be cast in a better form to yield:  

Equation: 4-24 

 

To ease the representation, the above form can be equivalently written as: 
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Equation: 4-25 

 

Interpreting the previous form, we mention that the material (total) time derivative is the 

local variation plus the convective term representing the relative motion between the 

material and the spatial domain. 

The transformation   will help us extend the previous relation between the material and 

spatial time derivatives to include now the referential time derivative and the following 

expression is obtained: 

Equation: 4-26 

1** *f f    

The gradient of the above expression is written as: 

Equation: 4-27 

 
 

 
 

 

1** *
, , ( , )

, , ,

f f
X t t X t

X t t X t






  


  
 

Or in an equivalent matrix form as follows: 

Equation: 4-28 

 

And after applying the block multiplication provides the new expression: 
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Equation: 4-29 

 

At this stage, it is convenient to present the fundamental Arbitrary Lagrangian-Eulerian 

relation between the material time derivative, referential time derivative and the spatial 

gradient as follows: 

Equation: 4-30 

 

The above ALE relation presents the time derivative of the physical quantity f for a 

given particle X -the material derivative, which consists of the local derivative (holding 

the reference coordinate  fixed in time) in addition to a convection term that accounts 

for the relative velocity . 

Before establishing the integral form of the basic conservation laws for mass, 

momentum and energy, we are required to consider the rate of change of scalar and 

vector integrals over a moving volume occupied by fluid. 

ii. Temporal Derivation of Integrals over Moving Control Volumes 

Starting from a Lagrangian frame, consider a material volume represented by tV  in 

which it is bounded by a smooth closed surface tS . The consisting points of the volume 

shall move with the material velocity  such that tx S . A material volume in 

this frame is a volume that permanently consists of the same particles of fluid under 

consideration. The material time derivative of the integral of a scalar function ( , )f x t  

over the material volume tV  that is changing with time is represented by the following 

expression: 



 
 
 

    45 
 
 

Equation: 4-31 

 

The above expression is referred as the Reynolds Transport Theorem (RTT in short) and 

holds for the smooth function ( , )f x t . The first term on the right side represents the 

volume integral of the rate of change of the function ( , )f x t  over a space-fixed control 

volume that coincides with the material-moving volume at a considered time instant t . 

On the same side, the second term represents the flux of the scalar quantity f  against a 

fixed boundary cS  that coincides with the closed surface tS  at the same instant of time 

that brings cV  with tV . We note that n  in the surface integral denotes the unit vector 

always pointing outwards in a normal direction to the surface, while v  is the material 

velocity of the points constituting the boundary tS . 

Adding that the following expression is valid: 

Equation: 4-32 

 

We hence obtain the alternative form of the RTT as follows: 

Equation: 4-33 

 

iii. The Integral ALE form of the Conservation Equations 

Consider an arbitrary control volume tV  with its boundary t tS V   moving with a mesh 

velocity , 
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Equation: 4-34 

 

The function ( , )f x t  can be replaced by density  , momentum  or energy E  

respectively to start casting the integral ALE form of the mass, momentum and energy 

conservation equations. 

We start the casting procedure from the well-known Eulerian forms by introducing the 

ALE differential form of the equations as follows: 

Mass:  

Equation: 4-35 

 

Momentum: 

Equation: 4-36 

 

Energy:  

Equation: 4-37 

 

Noting that   is the mass density,  is the material velocity,   denotes the Cauchy 

stress tensor,  is the specific body force vector and E  is the specific total energy. 

The differential form of the ALE conservation laws is presented as such: 

Mass: 



 
 
 

    47 
 
 

Equation: 4-38 

 

Momentum: 

Equation: 4-39 

 

Energy: 

Equation: 4-40 

 

The differential conservation of mass equation is with the aid of the material derivative 

integrated over a control volume to yield: 

Equation: 4-41 

 

Manipulating the above equality, we get: 

Equation: 4-42 

 

Now, by the aid of the above expression, we successively replace the scalar function 

( , )f x t  in Equation: 4-34 by the respective fluid density, momentum and specific total 

energy, we get the following bunch of conservation equations in the ALE form:  

Integral ALE Mass Conservation Equation: 
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Equation: 4-43 

 

Integral ALE Momentum Conservation Equation: 

Equation: 4-44 

 

Integral ALE Energy Conservation Equation: 

Equation: 4-45 

 

To close up this section, we validate the equations formulation by ensuring that the 

integral forms for the Lagrangian and Eulerian approaches are special cases of the 

above ALE forms. The Lagrangian approach corresponds to the situation when  

i.e. , while the Eulerian approach corresponds to the situation of which  i.e. 

. 

iv.  The Discretized ALE Conservation Equations 

The discretization process of the momentum equation and the other conservation 

equations over moving grids resembles in its principle that followed for stationary grids. 

Yet, the transient term is discretized in a more general manner by taking into account 

the changes in the control volumes’ volume that show up as the grid moves in time. 

Using the implicit Euler temporal scheme, we discretize the transient term as follows:  
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Equation: 4-46 

   
1

t

t n t n

V

V V
dV

t t

 


  
  


   

Turning our attention into the continuity equation, we attempt to modify Equation: 4-2-

42 by the aid of Equation: 5-2-16 and present it in the following form: 

Equation: 4-47 

 

The term on the left-hand side represents physically the total mass flux crossing the 

surface of a control volume in a stationary grid. The right hand side of Equation: 4-2-46 

constitutes the contribution of the grid movement. For a fully conservative moving grid 

procedure, the right hand side shall equate zero. This is achieved when the mass fluxes 

due to the grid movement cancel out the unsteady term of the equation. This procedure 

has to be accomplished according to the Volumetric Conservation Law to be presented 

in a following section. The first term of the right-hand side is added to the mass fluxes 

which are computed while solving the continuity (pressure-correction) equation, while 

the second term is added to the source term.  

C. The Geometric Conservation Laws: 

Upon designing any numerical code for solving the flow equations on grids moving 

with time, it is necessary to compute some geometric quantities that involve the grid 

velocity and grid points’ positions. Two equations come to the foreground called the 

Geometric Conservation Laws (GCL in short) (Thomas, Lombard 1979), which form 

for static and moving grids, the balance between the relevant applicable geometric 

parameters, have long been ignored in the literature. The first law referred as the Space 
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Conservation Law (SCL in short) states that the cells’ volume should be enclosed by its 

surfaces during the motion, while the second law referred as the Volume Conservation 

Law (VCL in short) states that the volumetric increment of a moving control volume 

should equalize the sum of the changes along its enclosing surfaces. Ensuring the 

satisfaction of the GCL into the numerical algorithm is advised to avoid undesirable 

errors in flow fields, moreover, violating these laws may misrepresent the convective 

fluxes and extra sources may be encountered (Vinokur 1989). 

1.  Derivation of GCL Equations 

We start this section by presenting the general scalar transport equation in its simplified 

form representing the main four terms from left to right as: transient, convective, 

diffusive and source terms. The equation is as follows: 

Equation: 4- 48 

 

Upon integrating over the control volume, we get the following expression: 

Equation: 4- 49 

 

Then with the aid of the Gauss divergence theorem that relates the volume integral to 

the surface integral (Pfeffer 1991), we get the following form in terms of the variable 

: 

Equation: 4- 50 

 
 . .

V S S V

dV v dS dS QdV
t


  


   

     

Generalizing the set of equations (Equation: 4-2-43, Equation: 4-2-44 and Equation: 4-

2-45), we can write the general scalar transport equation in an ALE form as follows: 
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Equation: 4- 51 

 

The GCL requires that the state   q = cons tant  be an exact solution of the above equation 

above and by that, the zero viscous fluxes resulted from the differentiation of a constant 

field are cancelled out. The source term is to be neglected, the density is considered 

unity and the flow velocity equalizes to zero all to yield  

Equation: 4- 52 

 

Equation: 4-3-5 captures the change in time of the total volume of a control volume 

moving with time (referred as ( )V t ) to the net motion of the bounding surfaces. The 

equation is hence labeled as the Volumetric Conservation Law. 

The second geometric conservation law is called the Space Conservation Law and is 

obtained by assuming a uniform flow field oriented in an arbitrary direction on a non-

moving grid. This will result in the following analytical definition:  

Equation: 4- 53 

 

The above equations will be next discretized and transformed into algebraic equations 

connecting values at neighboring cells to each other. The discretization process involves 

approximating the transient, convection, diffusion, and source terms by equivalent 

algebraic relations through the use of interpolation profiles. 
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2. Discretization of Laws’ Equations 

Starting with the VCL equation (Equation: 4-3-8), we follow the first order fully 

implicit-scheme (Backward Euler) to integrate in time to get:   

Equation: 4- 54 

( )

t t t t t

t

d V V
V t dt

dt t

  


  

Let
t t tV V  , and 

t t tV V  such that the following expression is obtained: 

Equation: 4- 55 

 

But, we have to note that: 

Equation: 4- 56 

 

Hence, the discretized form of the VCL equation is presented as follows: 

Equation: 4- 57 

   

1

t t t Nf
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t t






  
    
  

To clarify more, the time change of volume of a control volume must equate the sum of 

the volume increments of each enclosing face divided by the corresponding time step. 

Moving to the SCL equation (Equation: 4-3-9), the discrete form is presented as 

follows: 

Equation: 4- 58 
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It is to be noticed that the SCL discrete equation emphasizes the necessity of evaluating 

the surface vectors of each control volume’s surfaces exactly such that the summation 

of the term on the left hand side equates zero. The SCL has been ignored in the 

literature and some authors used the SCL term in representing the Volumetric 

Conservation Law without coming to mention the SCL as in (Demirdžić, Perić 1988, 

Demirdžić, Perić 1990). 

A numerical algorithm is said to satisfy the Geometric Conservation Laws (VCL and 

SCL simultaneously) if the geometric parameters respect Equation: 4-3-5 and Equation: 

4-3-6 respectively. Satisfying the two equations is crucial to achieve the global 

conservation in the domain of interest. The volumes and surfaces are the main 

fundamentally considered geometric parameters. Therefore, maintaining volumes and 

surfaces according to the prescribed equations is the key to satisfy the GCLs. However, 

many numerical algorithms may have other geometrical parameters and hence, 

computing these dependent parameters in terms of volumes and surfaces is a subsequent 

technique to get through the satisfaction of the GCLs. 

3. Implementation of the GCL: 

The integral form of the VCL for an arbitrary moving control volume was previously 

given by: 

Equation: 4- 59 

for, , , ,ifaces e w n s  

Remembering that the total volumetric rate of change of the control volume was 

presented as: 
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Equation: 4- 60 

ifacesifaces
VV

t t


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
 

Where each component is decomposed as: 

Equation: 4- 61 

' .
iface new

iface iface

V
v S

t



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The convective term in any conservation equation for an arbitrary variable  (  may be 

1, u , v , w or ) is semi-discretized as follows: 

Equation: 4- 62 

 

The total rate of change of the cell volume is hence calculated from the known grid 

point positions. This method does not require the definition of grid velocities rather the 

volumetric increment of each bounding surface is calculated at each time step. 

This approach proposed by (Demirdžić, Perić 1988) is considered as an easier approach 

relative to the explicit one especially when applied to three dimensional algorithms, 

where at each control volume’s surface, three grid velocity components would have to 

be calculated. As opposed here, our adopted approach proposes the calculation of a 

single rate of change of the cell volume from a single volumetric increment of each 

bounding surface. 
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CHAPTER V 

MESH MOVEMENT 

 

When introducing the topic of mesh movement, one will expect that all the mesh nodes 

move randomly in time, which is a logical general expectation that was taken into 

consideration in our work. In this chapter, we will elaborate on the approach of moving 

the internal mesh nodes randomly in time and the arising consequences that were not 

resolved exactly. This fact has leaded us to the original assumption of moving the 

internal mesh nodes in constant magnitude and direction during each time step. 

In the UFVM code, we already know the coordinates of the new locations of each grid 

point of the computational domain. Yet, we have to deal with the change in the volume 

of each control volume due to the grid movement. Each bounding surface of the control 

volume would move following a certain direction and owning a certain magnitude; the 

fact that will introduce a volumetric increment of each bounding surface that must sum 

up to the total volumetric change of the control volume so as to satisfy the Volumetric 

Conservation Law. Practically, we loop over the faces of the initial mesh configuration 

just before the mesh starts its movement, and as the nodes move in a prescribed manner, 

we have the information of the new location of each node forming a certain control 

volume. The initial configuration along with the information about the new locations of 

the grid nodes creates the volumetric increment of each surface enclosing a control 

volume that we aim on computing. First, we locate a center for the volumetric 

increment of each moving surface that is by summing up the coordinates of the nodes 

(initial nodes’ coordinates along with the coordinates of the new location) and dividing 

by twice the number of initial nodes. Geometrically, the center will be located in a place 
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bounded by the nodes and inside the virtually drawn volumetric increment. After that, 

we form vectors relative to each node (at its old and new location) having the center 

already spotted as the vectors’ tip. An illustration of the described treatment is presented 

in the sketches of Figures 5.1 and 5.2 below, where a hexahedron shaped volumetric 

increment is created due to the motion of a face between two consecutive time intervals. 

Figure: 5. 1: A sketch showing a surface movement with time of a hexahedral control volume 

 

Figure: 5.2: A sketch showing the movement of a triangular face with time 

 

As shown in the (Figure 5-1), the volumetric increment of one of the surfaces of the 

hexahedral control volume has a cuboid shape with eight nodes; four of which are the 

surface’s initial configuration at the initial time step and the other four represent the 

respective new locations of the nodes at the next time step. Hence, eight vectors are 

introduced in this situation for this single surface. These vectors will be used to compute 

the volume of the virtual pyramids formed by considering each face of the cuboid 
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volumetric increment as the base of the pyramid, whereas the tip of the pyramids is the 

center previously located and computed. As illustrated in the Figure (5-3), six virtual 

pyramids appear (one of them is sketched) and the volume each virtual pyramid is 

calculated according to the following expression, refer to Equation 5.1: 

Equation: 5.1 

 

Figure: 5.3: A sketch showing the calculation method of the volume increment of a moving surface in 3-D (Pyramid 

Method) 

 

For the case when the faces of a control volume are triangular, the face volumetric 

increment would take the shape of a triangular prism and we would compute the volume 

of 3 rectangular pyramids along with two triangular pyramids to get the total volumetric 

increment of a single triangular face of the control volume. (Figure 5.2) 

We have to point out at this stage that throughout the work, we will assume that the 

nodal velocities are constant in magnitude and direction during each time step. 

It is imperative to note that in our work, we intend to move the interior faces and 

keeping the boundary fixed in time, hence, due to the movement of the internal mesh at 
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each time step, all the geometric parameters are reprocessed and recalculated according 

to the new prescribed positions of the nodes.  

We recall that the main target in the moving mesh methods is to exactly satisfy the 

geometric conservation laws represented by the volumetric and space conservation 

laws. The volumetric conservation law needs more effort to ensure its satisfaction than 

the space conservation law due to the need to calculate exactly the volumetric 

increments resulting from the random movement of the interior nodes and hence interior 

faces. Hence, the target is to try to calculate the face volume increments as exact as 

possible so that the volumetric conservation equation is essentially satisfied exactly. We 

proposed an approach for calculating the face volumetric increments which constitutes 

of the following: 

First, we focused on working on control volumes having quadrilateral faces so that we 

thought of dividing each face into four triangles simply by getting a rough face center. 

The center is obtained by summing the coordinates of the four face vertices that are 

already known and dividing by four afterwards. The obtained center will certainly be 

bounded by the four vertices and hence belongs to the face of the control volume. Once 

the center is obtained, four triangles can be constructed having the face center as a 

common vertex that belongs to the four triangles while the other two vertices represent 

respectively other vertices of the face.  

Respectively from the formed four triangles on the original face configuration, we 

extrude four wedges to the four triangles formed on the face configuration at the new 

time step. As we already know the location of the four vertices of the face at the new 

time location, the mentioned four extruded wedges are simply formed by matching the 

vertices at the original location to those at the new location respectively including the 
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center of the face. At this stage, each of the four wedges is divided into eight pyramids 

with triangular bases as an attempt to calculate the volume of the wedges and hence 

computing the volume of the volume increment relative to each face of the control 

volume as in Figure 5.4. 

 

We notice here that we have missed an important point in our previous attempt to 

calculate the volume of the volumetric face increments that lies in our assumption about 

the center of the face. After applying the previous attempt, we faced inaccurate 

representation of the face volumetric increments because the face center that we 

averaged does not necessarily lie on the face. Random motion of the vertices of each 

face may form a skew face rather than forming a plane face and that makes it difficult to 

calculate a volume of a geometrical shape with skew faces. This fact leads us to our new 

attempt where we dispense the use of the face center on the original face and the new 

face at the new time level, and by that we don’t need to ensure that a face center 

essentially lie on a skew face. Now, each quadrilateral face of the control volume is cut 

at the diagonal to form only two triangles. In a similar approach as the previous, the 

vertices of the two formed triangles are matched with their respective locations at the 

new time step to form two wedges (refer to Figure 5.5), which in turn are each divided 

into eight pyramids with triangular base and the volume increment is computed 

accordingly. We attempt to switch the diagonal that we used in the first stage of this 

approach and average the computed volume increment to get an approximation for the 

face volume increment. The results of all face increments of a single control volume 

were after all compared with the total change of volume of the whole control volume 

and the results were not as exact as needed to adopt the approach, that is because we 
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couldn’t compute exactly the volume of geometry with faces that are not planar. At this 

point, we decided to turn our attention towards the constant movement of the mesh 

nodes so as to avoid random motion and its skew faces problem.  

The discretized form of the geometric conservation equation is modified to the 

following form presented in Equation 5.2:  

Equation 5.2 

 

Our task at this stage is to ensure that the left hand side of the equation approaches zero 

as much as possible.  

We adopted a simple cubic geometry to elaborate on the mesh movement consequences 

and to check the VCL satisfaction, or in other form to check the satisfaction of Equation 

5.2.  The geometry consists of a cube (10 m in each dimension) divided into 3 control 

volumes in each dimension. The case consists of 27 elements, 54 internal faces and 54 

boundary faces. The internal faces are allowed to move in a constant magnitude and 

direction by moving the nodes that constitute them by a factor of 0.1 m. in the x-

direction and a factor of 0.2 m. in the y-direction at each time step. The test is done on 

three time steps, each of which represents 1 second in time. The initial configuration of 

the case is presented in Figure 5.6 in an isometric view, along with the respective 

configurations of the first, second and third time steps as top and isometric views 

respectively.  
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Figure 5.4: A sketch showing the technique of calculating volume of a generated volumetric face increment 

Figure 5.5: A sketch showing the case of splitting the generated volume of a face volumetric increment into two at the 
diagonal 
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Equation 5.2 is checked on each of the 25 control volumes of the adopted geometry, 

where Equation 5.2 is coded and the results presented in Figure 5.7, which are 

practically the error of the equation, tend to the order of  10-13. Such results are accepted 

as they approach zero and they signify that our approach of calculating the face 

volumetric increments is as accurate as the  degree. 

 

 

 10-13

Figure 5.6: The initial and final moving mesh configuration. Left: to right: isometric vies of the initial configuration, top view 
of the final configuration, isometric vies of the final mesh configuration. 

Figure 5.7: Results showing the left hand side of Equation 5.2 
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CHAPTER VI 

HIGH ORDER MESH MOVEMENT SCHEME 

 

This chapter is dedicated to discuss the implementation of a higher order scheme 

associated with the mesh movement that deals effectively with its resulting 

consequences. Several test cases are adopted and simulated for the aim of analyzing the 

effect of a first order then a second order scheme applied to discretize the mesh 

movement term; after which, the results are compared to the same test cases’ static 

mesh results.  

The mesh motion effect appears in our code as we update the mass flow rate ( ) after 

the mesh has moved to its new configuration directly at any second time step (the first 

time step will always constitute of the initial mesh configuration). At this point we have 

to note that in our study; only the internal faces of the mesh are allowed to move 

arbitrary in time keeping the boundaries fixed. This assumption essentially requires the 

satisfaction of the Volumetric Conservation Law i.e. the mesh nodes’ movement must 

not affect the conservation laws. After the mesh faces move simply by moving the mesh 

nodes, we tend to recalculate all the geometrical parameters that are involved in the 

motion, and a new array storing the new information is generated. At this stage, the 

mass flow rate has to be updated as well and it is here where we devoted a scheme to 

handle the motion consequences. 

Initially, the mass flow rate ( ) term is calculated in the u-FVM code according to 

Equation 6.1: 
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Equation 6.1 

 

Where,  is the density,  is the face area and is the fluid velocity.  

The motion of the mesh introduces a modification to the mass flow rate described in 

Equation 6-1; this modification is in the form of a new velocity that is subtracted 

(exempting the discussion about the sign of the new velocity) from the fluid velocity. 

The new velocity is the velocity of the mesh is reshaped in our work and a new mass 

flow rate occurs according to Equation 6.2:  

Equation 6.2 

 

Where, Vol  is the volumetric increment that is explicitly calculated for each mesh 

face, and t is the defined time step. 

Following this technique of replacing the face velocities with face volumetric 

increments discretized by higher order schemes has not been spotted in the literature for 

Finite Volume framework. The technique treats the resulting face volumetric increments 

in an explicit way as we do not solve for the latter rather we calculate and store the 

associated increment at each time step. 

Currently, the above consideration is a first order treatment to the mesh movement mass 

flow rate. The volumetric increment of each face is calculated according to the 

procedure explained in Chapter 5. Yet, our mission is to implement a higher order 

scheme to discretize the face volumetric increments resulting from the mesh faces’ 

motion.  
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The introduced scheme for the mesh movement basically resembles the convective 

second order upwind scheme (SOU), in the sense that we store the volumetric increment 

of the specific face at an older time step and use it along with the currently calculated 

volumetric increment to produce the face mass flow rate modification as presented in 

Equation 6.3. The total mass flow rate now takes the mesh motion with its 

consequences into consideration and is presented in Equation 6-4.  

Equation 6.3 

 

Equation 6.4 

 

Using Taylor series expansion for the formulated scheme, the truncation error can be 

found to be as presented in Equation 6.5: 

Equation 6.5 

2 ''' 33 1
...

8 4

ivTE x t x t       
  

This clearly indicates that the formulated scheme is a second order accurate scheme. 

The derivation of the truncation error can be found in (Moukalled, Mangani et al. 2015). 

A. Test Case 1: Transient Diffusion of a Scalar 

The first test case adopted in our study is the case of solving and simulating a transient 

diffusion equation of a scalar (T). A brief description of the case geometry, the mesh 

information and the various conditions and parameters used in the solution procedure is 

tabulated in Table 6.1. 
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Table 6.1: Transient Diffusion of a scalar 

Geometry Dimensions 1x1x0.1 m. 

Mesh 

Number of Elements 400 

Number of Faces 1640 

Number of Nodes 882 

Number of Interior Faces 760 

Number of Patches 5 

Patch 1: “left side”-type: wall 

Patch 2: “bottom side”- type: wall 

Patch 3: “right side”- type: wall 

Patch 4: “top side”- type: wall 

Patch 5: “front & Back sides”- type: empty 

Fluid  Water 

Molecular Weight = 18 

Thermal expansion ratio =  

Density= 1000 kg/m3 

Mode: Incompressible 

Viscous model: Laminar 

Conditions 

Boundary Conditions 
Scalar 

(T) 

Patch 1: Specified value “2” 

Patch 2: Specified value “2” 

Patch 3: Specified value “2” 

Patch 4: Specified value “2” 

Patch 5: empty 

Initial Conditions Constant “1” over all the domain 

Under-Relaxation Factor 0.8 

Number of Internal Iterations 50 

Maximum Residuals Allowed  

Parameters 

Initial Time 1 second 

Time Step 0.1 seconds 

Final Time 10 seconds 

Mesh Movement per time step 3% Accumulative 
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According to the previously described boundary conditions, all the control volumes 

obtained a value of (2) after reaching the steady state at time=6 seconds. Figure 6.1 

shows how the mesh is modified after moving for 10 seconds in time. The whole 

domain (i.e. all the control volumes) obtained a scalar value of (2), similar to the static 

mesh configuration. It can be noticed from the obtained set of results that the mesh 

movement did not affect the solution of the transient diffusion equation; this is because 

the mesh movement terms do not appear in the diffusion term. Ideally, when the mesh 

moves in time, the solution of any diffusion equation shall remain unaffected by the 

mesh motion and this was our case. Figure 6.2 presents the solution of the equation 

across section A-A as shown in Figure 6.1 and reveals a more clear comparison between 

the static mesh results and the results obtained from the applied first order and second 

order schemes. The three sets of results overlap at the same solution. 

 

 

It is to be noted that using a first order scheme for the discretization of the mesh 

movement term or any higher order scheme will not show any effect on the solution. 

Figure 6.1 Initial and final mesh configurations of Transient Diffusion of a Scalar Test case 
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This test case is conducted to make sure that no diffusive terms are generated or if so, 

are dealt with not to affect the final solution. 

 

 

 

B. Test Case 2: Transient Advection of a Scalar with Inclined Velocity Field 

 

The current test case is conducted to solve and simulate a transient advection equation 

of a scalar (T) over a geometry described in Table 6.2. We attempt in this case to 

simulate the same equation with the same parameters, initial and boundary conditions 

onto two mesh configurations. The first mesh configuration is composed of 400 control 

volumes whereas the second configuration is a denser mesh composed of 1600 control 

volumes. Each mesh configuration is simulated on a static mesh, then the mesh is 

allowed to move in a controlled random manner and results are obtained after 
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Figure 6.2 Chart presenting the results from static and moving mesh configurations  
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implementing the first order and the second order schemes for mesh movement 

respectively. In both mesh configurations, we used two different schemes for the 

advection term: the Upwind scheme (first order) and the QUICK scheme (second 

order). The results are obtained and presented in the upcoming figures. Figure 6.3 

presents the solution of scalar (T) on static mesh of the first configuration while Figure 

6-4 presents the solution of scalar (T) on a moving mesh, both using an Upwind 

advection scheme. Figures 6.5 and 6.6 present the solution of the scalar (T) under the 

first mesh configuration case for a static mesh and a moving mesh respectively, both 

using a QUICK advection scheme. Figures 6.7, 6.8, 6.9 and 6.10 use the second mesh 

configuration (denser grid) to show the solution of scalar (T) on a static mesh (Figure 

6.7) and a moving mesh (Figure 6.8) using the Upwind advection scheme. The QUICK 

scheme is used as the advection scheme on a static mesh (Figure 6.8) and a moving 

mesh (Figure 6.9) under the second mesh configuration. 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

    70 
 
 

 

 

Table 6.2: Transient Advection of a scalar – Inclined Velocity Vectors 

Geometry 

Dimensions 1x1x0.1 m. 

Number of Patches 5 

Patch 1: “right and top sides”-type: outlet 

Patch 2: “left side”- type: inlet 

Patch 3: “bottom side”- type: inlet 

Patch 4: “front & Back sides”- type: empty 

Fluid  Water 

Molecular Weight = 18 

Thermal expansion ratio =  

Density= 1000 kg/m3 

Mode: Incompressible 

Viscous model: Laminar 

Conditions 

Boundary Conditions Scalar (T) 

Patch 1: Outlet 

Patch 2: Specified value “2” 

Patch 3: Specified value “1” 

Patch 4: symmetry 

Initial Conditions Constant “1” over all the domain 

Under-Relaxation Factor 0.8 

Number of Internal 

Iterations 
50 

Maximum Residuals 

Allowed  

Parameters 

Initial Time 1 second 

Time Step 0.1 seconds 

Final Time 10 seconds 

Mesh Movement per time 

step 
3% Accumulative 

Mesh Configurations 

 First Mesh Configuration Second Mesh Configuration 

Number of Elements 400 1600 

Number of Faces 1640 6480 

Number of Nodes 882 3362 

Number of Interior Faces 760 3120 
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While analyzing the first mesh configuration represented by the set of Figures 6.3, 6.4, 

6.5 and 6.6, we notice that the results obtained from the moved mesh cases follow the 

results of the static mesh and follow as well the order of the scheme employed for the 

convective term. Yet, we can notice the captured distraction in the plotted scalar field in 

Figure 6.6 due to the plotting function that assigns a respective color to each control 

volume. Because the control volumes have an irregular shape in the moved mesh 

configurations, these distractions are obviously realized. This is the reason why we 

introduced a denser mesh (second mesh configuration) in Figures 6.7, 6.8, 6.9 and 6.10 

respectively as an attempt to show how the distractions in the plotted scalar field are 

reduced. Using an even denser mesh will decrease more the smearing of the plotted 

field. 

 

 

 

 

 

 

 

Figure 6.3 Results obtained from a static mesh 
using an Upwind advection scheme 

Figure 6.4 Results obtained from a moving mesh using 
an Upwind advection scheme 

Figure 6.5 Results obtained from a static mesh 
using a QUICK advection scheme 

Figure 6.6 Results obtained from a moving mesh 
using a QUICK advection scheme 
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Figure 6.7 Results obtained from a static mesh 
using an Upwind advection scheme 

Figure 6.8 Results obtained from a moving mesh using an 
Upwing advection scheme 

Figure 6.9 Results obtained from a static mesh 
using a QUICK advection scheme 

Figure 6.10 Results obtained from a moving mesh 
using a QUICK advection scheme 



 
 
 

    73 
 
 

 

 

 

 

 

 

 

 

The chart in Figure 6.11 presents the two sets of results assigned to the first mesh 

configuration. The first set of results in the above chart is obtained by using the upwind 

scheme to discretize the advection term of the transient advection equation simulated on 

a static mesh; then on a moving mesh employing the first order scheme for mesh 

movement and after that, on a moving mesh employing the second order mesh 

movement scheme. The results are plotted over the control volumes cut at the middle of 

the domain at section A-A as shown in Figure 6.3. The results of the second order mesh 

movement scheme are closer to the results of the static mesh than those of the first order 

mesh movement scheme. As decided, the upwind scheme is replaced by the QUICK 

scheme to deal with the discretization of the advection term of the equation. The second 

set of results is obtained also for a static mesh, and for a moved mesh employing the 

first order mesh movement scheme as well as a moved mesh employing the second 
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Figure 6.11 Chart showing the results of the first mesh configuration using an Upwind and a QUICK advection scheme on 
static and moving grids 
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order mesh movement scheme yet employing the QUICK scheme for the advection 

term. Similarly as before, the results obtained from the second order mesh movement 

scheme are closer to the static mesh results than those of the first order mesh movement 

scheme. Moreover, we notice that the set of results where the QUICK scheme is 

employed to discretize the advection term is more compact than the set of results with 

the Upwind scheme adopted. A more compact set of results is translated as a positive 

fact because the results would be closer to each other. 

The chart in Figure 6.12, presents the two sets of results, along the middle of the domain 

at the section B-B shown in Figure 6.7, obtained when conducting the second denser 

mesh configuration. Basically, the two sets of results resemble those of the first mesh 

configuration; yet, the denser mesh affected the results by bringing each set of results 

closer to each other. While comparing the charts of Figure 6.11 and that of Figure 6.12, 

it is noticed how the two set of results (the first with the upwind advection scheme and 

the second with the QUICK advection scheme) on the second mesh configuration are 

closer to the static mesh results than on the first mesh configuration. This elaborates that 

using a denser mesh will improve the results obtained from the moved mesh and allow 

them to overlap with the results when the mesh is static. 
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Figure 6.12 Chart showing the results of the second mesh configuration using an Upwind and a QUICK advection scheme on static and moving 
grids 
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C. Test Case 3: Transient Advection of a Scalar with Rotational Velocity Field 

 

The following test case solves the same equation as the previous case which is the 

transient advection of a scalar. It is performed on the geometry described in the Table 

6.3 along with the associated parameters and required conditions. Here, the velocity 

field is not an inclined field but rather is a rotational field distributed across the domain 

(refer to Figure 6.15). Figure 6.13 presents the initial mesh configuration that is the 

same mesh used in a static simulation. Figure 6.14 presents the final mesh configuration 

after moving in time for 10 seconds as stated in Table 6.3. The results are captured 

along section A-A shown in Figure 6.13 and plotted in the chart of Figure 6.16. 

The orientation of the velocity vectors did not affect the work of the proposed higher 

order scheme for handling the mesh motion term. Figure 6.16 shows how the three set 

of results follow the same profile trend and shows as well that the results generated 

from the moving mesh case with the higher order scheme applied therein tend to 

overlap with the results obtained when simulating the same equation on a static mesh 

more than those results obtained from the moving mesh case with the first order scheme 

for mesh movement applied therein. This chart ensures that the formulated scheme is 

resolving the effects of the mesh motion properly enough to provide results close 

enough to the results of a static mesh simulation. 

 

 

 

 



 
 
 

    77 
 
 

 

 

 

 

Table 6.3: Transient Advection of a scalar – Rotational Velocity Vectors 

Geometry Dimensions 2x1x0.1 m. 

Mesh 

Number of Elements 800 

Number of Faces 3260 

Number of Nodes 1722 

Number of Interior Faces 1540 

 5 

Patch 1: “left section of first half of bottom 

face”-type: inlet 

Patch 2: “right section of first half of 

bottom face”- type: inlet 

Patch 3: “second half of bottom face”- 

type: outlet 

Patch 4: “front & Back sides”- type: empty 

Number of 

Patches 
Water 

Molecular Weight = 18 

Thermal expansion ratio =  

Density= 1000 kg/m3 

Mode: Incompressible 

Viscous model: Laminar 

Conditions 

Boundary Conditions Scalar (T) 

Patch 1: Specified value “2” 

Patch 2: Specified value “1” 

Patch 3: Outlet 

Patch 4: Zero Flux 

Initial Conditions Constant “0.5” over all the domain 

Under-Relaxation Factor 0.8 

Number of Internal 

Iterations 
50 

Maximum Residuals 

Allowed  

Parameters 

Initial Time 1 second 

Time Step 0.1 seconds 

Final Time 10 seconds 

Mesh Movement per time 

step 
3% Accumulative 

 Velocity vector formula [2*y.*(1-x.^2);-2*x.*(1-y.^2);0] 
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Figure 6.13 Static mesh configuration of the adopted domain. 

Figure 6.14 Moved mesh configuration of the adopted domain. 

 

Figure 6.15 Velocity field across the adopted domain. 
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Figure 6.16 Chart presenting the results of Scalar (T) along section A-A for a static mesh as well as for a moving 
mesh using a first order and a second order scheme for mesh movement 
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D. Test Case 4: Navier Stokes’ Equations in a Flow Problem 
 
At this stage, we decided to solve the Navier Stokes’ equations in a pressure-based 

solver as an attempt to test the validity of the mesh movement in such a situation. The 

adopted geometry that is described in Table 6.4 is allowed to move in an arbitrary 

manner each time step and the results of pressure were recorded and plotted over the 

domain. The patches of the mesh are presented in Table 6.4 and the outcome is three 

sets of generated results; the first is when the mesh was remained static within time, the 

second is when the mesh was allowed to move arbitrary with the application of the first 

order mesh movement scheme and the third is when the mesh is moved arbitrary with 

the second order accurate mesh movement scheme applied within.  

The pressure filed is plotted in Figure 6.17 for the static mesh and in Figure 6.18 for the 

moved mesh.  

The pressure field along section B-B shown in Figure 6.17 is plotted in chart of Figure 

6.19. The same trend is respected for the three set of results as shown in Figure 6.19 

while realizing that the generated results from the second order scheme are better than 

the results of the first order scheme for mesh motion in the sense that the first approach 

and tend to overlap clearly with the results obtained from the static mesh. Such an 

outcome along with the previous results obtained from the several presented test cases 

are sufficient to prove the validity of the higher order scheme adopted to discretize the 

moving mesh term. 

 

 

 

 



 
 
 

    81 
 
 

 

Table 6.4: Flow Problem – Solving Navier-Stokes’ Equations – Smith Hutton Case 

Geometry Dimensions 2x1x0.1 m. 

Mesh 

Number of Elements 800 

Number of Faces 3260 

Number of Nodes 1722 

Number of Interior Faces 1540 

Number of Patches 5 

Patch 1: “left section of first half of 

bottom face”-type: inlet 

Patch 2: “right section of first half 

of bottom face”- type: inlet 

Patch 3: “second half of bottom 

face”- type: outlet 

Patch 4: “front & Back sides”- type: 

empty 

Fluid  Water 

Molecular Weight = 18 

Thermal expansion ratio =  

Viscosity = 0.0008 Pa.s 

Density= 1000 kg/m3 

Mode: Incompressible 

Viscous model: Laminar 

Conditions 

Boundary Conditions 

Velocity eqn. 

Patch 1: Specified value “[0,2,0]” 

Patch 2: Specified value “[0,1,0]” 

Patch 3: Outlet “[0,0,0]” 

Patch 4: Zero Flux 

Pressure eqn. 

Patch 1: Inlet 

Patch 2: Inlet 

Patch 3: Specified Value “0” 

Patch 4: No Slip 

Initial Conditions 
Velocity eqn. 

Constant “[0.5,0.5,0.5]” over all the 

domain 

Pressure eqn. Constant “0” over all the domain 

Under-Relaxation Factor 0.8 

Number of Internal Iterations 50 

Maximum Residuals Allowed  

Parameters 

Initial Time 1 second 

Time Step 0.1 seconds 

Final Time 75 seconds 

Mesh Movement per time step 3% Accumulative 
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Figure 6.17 Pressure field plot on a static mesh configuration 

Figure 6.18 Pressure field plot on a moved mesh configuration 
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The concept of moving into higher order schemes for the discretization of the mesh 

motion term i.e. moving into third and even higher order schemes is promising, as long 

as the scheme is constructed in a way that satisfies the geometrical conservation laws. 
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Figure 6.19 Chart presenting the pressure solution along section A-A for static mesh configuration and moved mesh configurations 
using a first order and a second order scheme for mesh movement 
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CHAPTER VII 

CONCLUSION 

The main objective of this work was to develop the capabilities of the u-FVM solver to 

cover problems with moving grids. The contribution of applying a special technique of 

replacing the mesh movement term i.e. the generated mesh velocity in the governing 

equations by the volumetric face increments and explicitly calculating this term has 

shown its validity in Chapter 5. A high order scheme for the treatment of the 

aforementioned mesh movement term was addressed, discussed and implemented in 

Chapter 6, where the results have proved its improvement to the u-FVM results. The 

contribution can serve the field of fluid-structure interaction and free surface flow 

problems, as it is widely involved in the field of fluid-structure interaction problems. 

Further and future work can be proposed to apply higher order schemes for the mesh 

movement term discretization and adopt real life cases for simulation. 
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