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Title: Importance of Lower-Bound Shear Strength in the Assessment of the Probability of 

Failure of Spatially Random Clayey Slopes 

 

 The stability of a soil slope is traditionally evaluated by adopting a deterministic 

approach that is based on a target global factor of safety that is calculated either through 

limit equilibrium methods or through finite element analyses.  

 Due to the uncertainties that affect the risk of slope failures, recent studies have 

attempted to solve slope stability problems using reliability theory. Recently, probabilistic 

geotechnical analyses in which nonlinear finite-element methods are combined with 

random field generation techniques have been adopted to quantify the effect of spatial 

variability in soil properties on the risk of failure of slopes. This approach is currently 

referred to in the literature as the Random Finite Element Method (RFEM).  

 In this study, a robust probabilistic slope stability analysis using the RFEM is 

conducted to investigate the effect of including a lower-bound shear strength in the 

probabilistic model describing the uncertainty in the undrained shear strength of clayey 

slopes. Another objective of this study is to investigate the sensitivity of the reliability of 

clayey slopes to the random field generated in the analysis.   

 Finally, the results obtained from the simulated analyses are used to recommend 

design factors of safety that would result in acceptable probabilities of failure for undrained 

clayey slopes.   
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CHAPTER 1 

INTRODUCTION 

 

A. Background 

 Slope stability analysis is an established discipline in geotechnical engineering 

that is continuously attracting interest at the levels of fundamental research and practice 

(Griffiths and Marquez, 2007). The stability of a soil slope is traditionally evaluated by 

adopting a deterministic approach that is based on a target global factor of safety (FS). 

FS is generally evaluated either through limit equilibrium methods (LEM) or through 

finite element analyses and it is calculated using nominal soil parameters’ values. 

Decisions regarding the stability of soil slopes are based on this nominal FS which may 

not reflect the actual risk level that is inherent in the slope design. The common practice 

adopts factors of safety that generally exceed 1.5 (Terzaghi and Peck 1948). 

The uncertainties inherent in slope stability analyses are many and include the different 

dimensions of geometry and soil parameters. The deterministic approach relies on the 

global FS to account for the different sources of uncertainties and reduce the slopes’ risk 

of failure. Li and Lumb (1987) report that adopting the factor of safety as a measure of 

risk does not show consistency due to the fact that different slopes might show the same 

FS yet, present different risk levels depending on the variability of the soil properties. 
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The nominal FS may not reflect the actual stability situation presented in the real slope 

due to the spatial variability that could exist in the field (Jha and Ching, 2013). 

Slope stability problems exhibit uncertainties on different parametrical and 

methodological dimensions. These uncertainties pertain to the soil heterogeneity even 

within the same layer but most importantly, they do exist on the level of the method 

itself. Deterministic approaches do not deal with the uncertainties of soil properties. On 

the other hand, probabilistic approaches are more amenable to a realistic assessment of 

the risk of failure by incorporating all sources of uncertainty which will affect the 

reliability of the slope.  

Reliability analyses that targeted slope stability problems grabbed the attention 

of researchers in the past few decades. The main differences among the probabilistic 

methods adopted in the literature pertain to the assumptions, limitations, capability to 

handle complex problems, and mathematical complexity (Faour 2014).  Several 

researchers have analyzed the effect of spatial variability in soil properties on the 

stability of the slopes. Li and Lumb (1987), Christian et al. (1994), Malkawi et al. 

(2000), El- Ramly et al. (2002), Low (2003), Babu and Mukesh (2004), Cho (2007), 

Cho (2010), and Wang et al. (2011) accounted for the effect of spatial variability by 

using different limit equilibirum methods (LEM) along with random field theory. Both 

the random field theory and Limit equilibrium methods were used to assess the 

reliability of soil slopes. 

 In the above publications, different approaches were adopted in incoporating 

spatial variability in soil properties in the analysis of slopes. For instance, Malkawi et al. 

(2000) and Low (2003) studied the effect of spatial variability by varying the coefficient 
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of variation (COV) of the soil properties. Li and Lumb (1987), El- Ramly et al. (2002), 

Cho (2007), and Wang et al. (2011) adopted isotropic correlation structures to generate 

their random fields. On the other hand, Babu and Mukesh (2004) used random fields 

that are decribed by anisotropic correlation structure. They reported that the isotropic 

representation would induce an overestimation in the probabilities of failure of slopes. 

Chok et al. (2007) conducted reliability analyses by assuming that the undrained shear 

strength of clayey slopes (Su) is an uncertain parameter. They conducted stability 

analyses by varying the slope geometry (angle and height ratio of the slope), spatial 

correlation length (smooth and rough), and statistical parameters of the lognormal 

distribution characterizing Su.  

 From the finite element school perspective, a major drawback of the LEM is that 

it requires a priori assumption of the shape and location of the failure surface, which 

may be a misleading representation of the realistic failure case. It isn’t until the late 90’s 

that the idea of the finite element started to grab the attention of the researchers 

particularly in the area of slope stability. Griffiths and Lane (1999) introduced the finite 

element method in the slope stability analyses and showed its advantages over the 

traditional LEM. According to Griffiths and Lane (1999), nonlinear FE overcomes the 

limitations of LEM due the natural occurrence of the failure surface through the 

elements of the soil mass witnessing the weakest shear strength values that are 

incapable of sustaining the applied shear stresses. Hence, the need for preliminary 

assumptions about the failure surface is eliminated by FE. Moreover, the assumption 

about side forces in the LEM formulation is also eliminated by FE.  
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 Given the advantages of the FE in analyzing the stability of soil slopes, it was 

naturally extended to what is referred to now as the Random Finite Element Method 

(RFEM) by which Griffiths and many other researchers pursued a more rigorous 

method of probabilistic geotechnical analysis. The RFEM combines nonlinear finite-

element methods with random field generation techniques to quantify the effect of 

spatial variability in soil properties on the risk of failure of slopes. Some of these studies 

include the work of Griffiths and Fenton (2000), Griffiths and Fenton (2004), Griffiths 

et al. (2009a), Griffiths et al. (2009b), Griffiths et al. (2010a), Griffiths et al. (2010b) 

and Jha and Ching (2013). The approach captures the effect of soil spatial variability 

and fully accounts for spatial correlation and averaging. The advantages of RFEM over 

LEM are quite similar to those of FE in that it does not require a predetermination of the 

shape or the location of the failure plane. 

 The RFEM was incorporated by Fenton and Griffiths in a slope stability analysis 

software called Rslope2d. The Software models a single-layered soil system using 

anisotropic random fields and is capable of evaluating the probability of failure of a 

slope using Monte Carlo simulations within a Finite Element setting. The software 

divides the slope into a mesh of 8-node quadrilateral elements and computes the plane 

strain deformation of an elastic-plastic Von-Mises solid via the viscoplastic strain 

method. The elements are assigned with random soil properties based on a 

predetermined statistical distribution (Normal, Lognormal or Bounded). The probability 

of slope failure is then computed as a function of the assigned properties (Griffiths and 

Fenton, 2004). 
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 The RFEM is capable of accounting for the soil spatial variability effect by 

taking into account the spatial correlation and averaging approaches. Thus, the Random 

Finite Element Method (RFEM) has been adopted to quantify the effect of spatial 

variability in soil properties on the risk of failure of slopes (Griffiths and Fenton 2000, 

Griffiths and Fenton 2004, Griffiths et al. 2007, Griffiths et al. 2009, Griffiths et al. 

2010 and Jha and Ching 2013).  

Griffiths (2000) studied the effect of the scale of fluctuation and the coefficient of 

variation of soil properties on the reliability of slopes. Griffiths and Fenton (2004) 

compared simple and advanced probabilistic approaches to study the effect of spatial 

variability and local averaging on the probability of failure of slope. Moreover, Griffiths 

(2009) built on the work done by Griffiths and Fenton (2004) and studied the effect of 

the inclination angle of the slope on the probability of failure. Additionally, Griffiths 

(2010) performed a comparison between limit equilibrium methods and the random 

finite element method to indicate the importance and superiority of the RFEM in 

assessing the stability of slopes.  

 In a recent study, Jha and Ching (2013) performed a robust and rigorous 

probabilistic slope stability analysis using the Random Finite Element Method to study 

the effect of slope geometry, mean and coefficient of variation of the soil parameters, 

and the scale of fluctuation on the probability of failure of undrained slopes. The 

authors conducted the study by collecting a database for 34 real undrained engineered 

slope cases. The paper aimed at quantifying the effect of spatial variability in the 

undrained shear strength of clays on the probability of failure of the slopes. An 

advanced model of spatial variability that takes into account vertical and horizontal 
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spatial variability was adopted. The vertical scale of fluctuation in the undrained shear 

strength was back-calculated for each case in the database using the simplified method 

presented in Phoon and Kulhawy (1999). The horizontal scale of fluctuation in the 

undrained shear strength was assumed due to the lack of soil data (boreholes) needed to 

quantify the lateral spatial variability. One of the major contributions of the paper is a 

relationship between the mean and the coefficient of variation of the factor of safety 

from one hand and the slope geometry, mean and the coefficient of variation of the soil 

properties, and the scale of fluctuation in the undrained shear strength on the other hand.  

 In slope stability problems involving clayey slopes, the uncertainty in the 

undrained shear strength of the clay generally governs the probability of failure of the 

slope. In most of the published work where reliability analyses were conducted for 

undrained slopes, the uncertainty in the undrained shear strength was modeled using 

conventional lognormal distributions. It could be argued that for clays with relatively 

low sensitivities, the undrained shear strength will always have a minimum non-zero 

value that is represented by the fully remolded undrained shear strength of the same 

clay. For deposits of clay with typical high spatial variabilities (typical coefficients of 

variation between 0.3 and 0.5), the left hand tail of a conventional lognormal 

distribution is incapable of incorporating the presence of a non-zero lower-bound shear 

strength and may not constitute a realistic model of the uncertainty in the undrained 

shear strength.  

 A more realistic probability distribution with the capability of incorporating a 

physical lower-bound value of shear strength may result in more reliable estimates of 

the risk of failure of an undrained slope. Gilbert et al. (2005) and Najjar and Gilbert 
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(2009) adopted a lognormal distribution that is truncated at a lower-bound value to 

model the uncertainties in the factor of safety of a drained clayey slope and in the 

capacity of deep foundations in sands and clays, respectively. A truncated lognormal 

distribution is convenient because the parameters describing the distribution are the 

same as those of the nontruncated distribution with the addition of one extra parameter, 

the lower-bound value. In all of the above studies, it was found that the incorporation of 

a realistic, physical lower bound to model a geotechnical capacity or a factor of safety 

could result in significant reductions in the  probability of failure of a geotechnical 

structure and would this increase the reliability of the design. The major objective of 

this thesis will be to investigate the effectiveness of introducing a lower-bound shear 

strength in slope reliability assessments involving the RFEM.  

  

B. Objectives and approach of research 

 The major objective of this thesis is to investigate the incorporation of a physical 

lower-bound shear strength in the probability model describing the uncertainty in the 

undrained shear strength of a clayey slope. The lower bound will be represented by the 

remolded undrained shear strength of the clay, which is a well-known property that 

could be determined using information about the sensitivity of the clay. The basis for 

the existence of the lower bound shear strength is the fact that the remolded undrained 

shear strength of clay constitutes the minimum possible value of strength for that 

particular clay. The remolded strength is reflected in the sensitivity of the clay which 

generally varies from 1.5 to 4 in clays of low to average sensitivity.  
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 The main goal of this thesis is to investigate the effect of including lower-bound 

shear strength on the design factor of safety that is required to yield a given target level 

of reliability (or probability of failure). The effect of the lower-bound will be showcased 

for different design problems, whereby the parameters that will be investigated are the  

COV of the undrained shear strength Su, horizontal and vertical correlation distances, 

and sensitivity of the clay. The results pertaining to the assumption of random fields 

will be compared to those of the more traditional “homogeneous” slopes cases to shed 

light on the importance of realistically modeling the spatial variability in the reliability-

based design of slopes.  

 The main backbone of the thesis will be RFEM (the random finite element 

method); The Rslope2D software will be the tool adopted for the quantification of the 

probability of failure of the undrained slopes that are designed with different 

deterministic factors of safety with and without a lower bound undrained shear strength. 

The originality of this work centers on incorporating the lower bound shear strength 

within the random field. It is worth noting that no published work in the literature has 

addressed this aspect of the problem. 

 

C. Organization of thesis 

 In chapter 2, a literature review of some of the recent works done in this field 

will be addressed. The literature review covers some of the work done on spatial 

variability in slope stability analyses that are based on traditional limit equilibrium 
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methods and more advanced finite element methods.  In chapter 3, a description of the 

tools used throughout this study is conducted; the RFEM software input parameters are 

discussed in addition to the assumptions made hereafter. In chapter 4, the reliability of a 

homogeneous vs. spatially variable clayey slope is assessed while highlighting the effect 

of the lower-bound undrained shear strength. In chapter 5, the sensitivity of the slope 

reliability to the random field of the undrained strength is investigated. Typical 

correlation length values were adopted in the analyses.  In chapter 6, an attempt is made 

to recommend factors of safety that would result in target probabilities of failure for 

spatially random clayey slopes for the case where the COV of Su is equal to 0.5. 

Conclusions and contributions of this research are presented in chapter 7.  
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CHAPTER 2 

LITERATURE REVIEW 

 

A. Introduction 

 Most geotechnical analyses adopt a deterministic approach in analyzing the 

stability of soil slopes. However, this area of geotechnical engineering presents various 

types and levels of uncertainties. Many researchers invested in this area in order to 

realistically account for the uncertainties that affect the risk of failure of slopes. One of 

the main sources of uncertainty is the spatial variability of soil properties even within 

homogeneous layers as a result of depositional and post depositional processes (Lacasse 

and Nadim, 1996). Accordingly, numerous studies have been undertaken in recent years 

to develop a probabilistic slope stability analysis that deals with the uncertainties of soil 

properties in a systematic manner (Alonso, 1976; Vanmarcke, 1977b; Li and Lumb, 

1987; Christian et al., 1994; Griffiths and Fenton, 2004).  

 In what follows is a literature review section that covers some of the work done 

on spatial variability in slope stability analyses that are based on traditional limit 

equilibrium methods (LEM) and finite element methods (FEM) which are used either in 

their simplistic or more advanced forms (Random Finite Element Method, RFEM). 
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B. Studies involving LEM with random field theory 

  Most traditional limit equilibrium methods (LEM) do not consider the effect of 

spatial variability; however, some researchers investigated the impact of spatial 

variability of soil properties on the slope analysis by combining the LEM with the 

random field theory. The theory of random fields (Varmarcke 1977a, 1977b, 1983) is a 

common approach for modeling the spatial variability of soil properties.  

 

1. Li and Lumb (1987) 

 Li and Lumb (1987) conducted one of the earliest probabilistic slope stability analyses 

combining LEM with the random field theory. The Morgenstern and Price method (1965) was 

adopted in the slope stability analysis. Li and Lumb implemented the First Order Second 

Moment Method (FOSM) for computing and analyzing the reliability of slopes. The authors 

considered spatial variability in their study by defining an isotropic correlation structure. There 

results indicate that the probability of failure of the slope is sensitive to the scale of fluctuation. 

As result, they recommended that the reliability analyst must exert additional efforts in 

estimating the scale of fluctuation. Assuming perfect correlation in soil properties leads to an 

overestimation of the probabilities of failure. Nevertheless, Li and Lumb showed that the 

deterministic critical slip surface and the surface associated with the minimum reliability index 

are located closely to each other. Hence, the recommendations for the analysis were to start the 

analysis with an initial guess based on the deterministic critical slip surface. Then a deeper 

search should be conducted ending up with the critical slip surface having minimum reliability 

index. 
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2. Christian et al. (1994) 

 Christian et al. (1994) adopted the First Order Second Moment Method (FOSM) 

to evaluate the reliability index of slopes and they chose a well-known case history 

which is James Bay Embankments to perform the analysis on. Spatial variability and 

local averaging were both considered in the probabilistic analysis. Bishop’s method of 

slices and the Morgenstern and Price method were used to evaluate the factor of safety 

of the dyke. The authors report difficulties in identifying the autocorrelation distance 

and bias error of the models used to predict the factor of safety. They state that even 

though bias constitutes a significant contributor to the overall uncertainty, it is often 

ignored from the analysis. The authors recommended that the engineers should carefully 

rely on their judgment when it comes to the bias contribution estimation.   

 

3. Malkawi et al. (2000) 

 Malkawi et al. (2000) investigated the effect of the method used to perform the 

LEM analysis on the reliability of homogeneous and layered slopes. The methods used 

were Bishop, Ordinary Method of Slices (OMS), Janbu, and Spencer’s methods. The 

reliability was assessed using the First Order Second Moment method (FOSM) and 

Monte Carlo Simulation method (MCSM). The authors accounted for spatial variability 

in their analysis and studied the effect of uncertainty of each soil property on the 

calculated factor of safety by varying the coefficient of variation of these properties. 

The major findings of the analysis of homogenous slopes were that both OMS and 

Bishop lead to the same reliability index regardless of the reliability method used. On 
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the other hand, Janbu and Spencer’s model exhibit some differences in the resulting 

reliability index.  When Janbu’s models are combined with the FOSM, a slight 

overestimation of the reliability index is witnessed whereas the MCSM is the method 

that overestimates the reliability index in the case of Spencer’s model.  

The authors also concluded that the reliability index is sensitive to the sample size of 

soil properties and that more than 700 samples should be used to perform the needed 

analysis. Consequently, they found that FOSM requires fewer calculations and 

computing time compared to MCSM. However, with the help of computers in data 

handling and speed, MCSM proved to be a powerful and an effective method for the 

probabilistic reliability analysis of slope analyses. 

 

4. El-Ramly et al. (2002) 

 El- Ramly et al. (2002) conducted a practical probabilistic slope stability 

analysis based on Monte Carlo Simulation by developing a simple spreadsheet using the 

well-known software Microsoft Excel 97 and @Risk.  The analysis is illustrated by 

analyzing the dykes of the James Bay hydroelectric project. The authors modeled the 

geometry, soil properties, stratigraphy, and slip surface in an excel spreadsheet. The 

Bishop method is used for the determination of the deterministic factor of safety. The 

uncertainties in input parameters are modeled statistically by representative probability 

distributions. The variances of the soil parameters are evaluated using judgment. The 

spatial variability of soil parameters was characterized by an isotropic autocorrelation 

distance assuming exponential autocovarience functions. Finally, the authors 
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investigated the efficiency of the analysis by comparing the results by those obtained 

using First Order Second Moment Method (FOSM). The authors concluded that 

ignoring spatial variability of soil properties and assuming perfect correlation can 

significantly overestimate the probability of failure of slopes.  

 

5. Low (2003) 

Low (2003) implemented Spencer’s method both deterministically and 

probabilistically in a spreadsheet platform. The author accomplished the search of the 

noncircular failure surface by using Spencer’s method involving spatially correlated 

normal and lognormal variates. Then, he extended the use of the deterministic approach 

to the probabilistic analysis (FOSM) in order to calculate the reliability index without 

involving complex concepts. Both the probabilities of failures and probability density 

functions obtained showed a good agreement with those obtained by the Monte Carlo 

Simulation method. 

 

6. Babu and Mukesh (2004) 

 Babu and Mukesh (2004) investigated the effect of spatial variation of soil 

strength on slope reliability for a simple cohesive soil slope. They defined the geometry, 

stratigraphy, and soil parameters of the slope. Moreover, they assumed an isotropic 

correlation structure. The authors calculated the factor of safety using Bishop’s method. 

Next, they calculated the probability of failure of the slope by using the First Order 
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Second Moment Method. After that, they repeated the same procedure stated above but 

by assuming an anisotropic correlation structure by defining both vertical and horizontal 

correlation distances.   

The authors concluded that not only the coefficient of variation of soil parameters and 

the correlation distance can affect the probability of failure of the slope, but also the 

mean factor of safety can affect the probability of failure. Additionally, the authors 

found that there is a significant need to include an anisotropic correlation structure in 

the probabilistic slope stability analysis. Performing reliability analysis by assuming 

that the correlation distance is the same in both horizontal and vertical directions leads 

to an overestimation of probability of failure of slopes.  

 

7. Cho (2007) 

 Cho (2007) conducted a probabilistic slope stability analysis through a 

numerical procedure based on Monte Carlo Simulation (MCS) that considers the spatial 

variability of the soil properties based on local averaging. Hassan and Wolff (1999) 

concluded that the deterministic critical failure surface is not necessarily the failure 

surface with the highest probability of failure. Based on this finding, Cho (2007) 

adopted the First Order Reliability Method (FORM) to determine the critical 

probabilistic failure surface. Moreover, the author used FORM to identify the input 

parameters that have the greatest impact on the failure probability and Spencer’s method 

to calculate the reliability index. The author concluded that the location of the critical 

probabilistic surface was somewhat different than the location of the critical 
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deterministic surface. Furthermore, the probability of failure decreases with a decrease 

in the scale of fluctuation and vice versa. In addition to that, he deduced that the 

assumption of the isotropic field is conservative and the sensitivity of the unit weight is 

relatively small compared to those of cohesion and the angle of the internal friction. 

Finally, Cho (2007) found that in the case of small scale of fluctuation, a low 

probability of failure is obtained. Hence, more realizations are needed to conduct 

MCSM. 

 

8. Cho (2010) 

 All the above case studies used the traditional LEM combined with the random 

field theory to calculate the probability of failure by taking spatial variability into 

consideration. This traditional analysis considers the influence of the random field along 

the predetermined critical surface. Cho (2010) proposed his method by using the 

Karhunen – Loeve Expansion Method that is independent of the division of slices in the 

sliding mass in order to be able to calculate the shear strength at any location along the 

trial slip surface. The author considered the strength reduction method in the calculation 

of Bishop’s factor of safety. Conversely, he based his probabilistic analysis on a search 

algorithm that can find the surface with the minimum reliability index. The author 

illustrated his approach by analyzing a one layered with ø = 0. 

Cho (2010) deduced that, the critical failure surface identified by the search 

algorithm always gives smaller factors of safety compared to that obtained from fixed 

critical surface. In contrast, the probability of failure that comprises all potential failure 
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surfaces is greater than that obtained from the fixed critical surface and the relative 

difference between the two probabilities decreases when the autocorrelation distance 

increases.   

 

9.  Wang et al. (2011) 

 Wang et al. (2011) conducted a probabilistic slope stability analysis based on 

MCS by using Simulation Subset in order to improve the efficiency and resolution of 

the MCS. The analysis was implemented using a spreadsheet package that was used to 

explore the effect of spatial variability on the probability of failure of slopes. The 

methodology is illustrated through applying it to a cohesive slope and the deterministic 

factor of safety was calculated using the Ordinary Method of Slices. The results were 

validated by comparing the results with those obtained from other reliability methods. 

Wang et al. (2011) modeled the undrained shear strength by a lognormal random field 

and by an isotropic correlation structure using an exponential auto covariance function.  

The authors found that if the spatial variability is ignored, the probability of failure is 

significantly overestimated particularly when the effective correlation length is smaller 

than the slope height. Moreover, they concluded that the variance of the factor of safety 

is overestimated when the spatial variability is ignored. This variance overestimation 

results in over conservative designs for cases where FS is taken to be greater than 1.0. 

Further, they deduced that when the spatial variability is considered, the critical slip 

surface varies spatially. Thus, the critical probabilistic surface should be investigated by 

conducting a search algorithm method to get the surface with the minimum reliability. 
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C. Studies Involving Random Finite Elements Method (RFEM) 

 All of the above studies have combined the limit equilibrium method (LEM) 

with the random field theory. However, the influence of the random field is only taken 

into account along the failure line and is therefore one-dimensional. Thus, to overcome 

this limitation, some investigators pursued a more rigorous method of probabilistic 

geotechnical analysis in which nonlinear finite- element methods are combined with 

random field generation techniques. This method is called Random Finite Element 

Method (RFEM). It captures the effect of soil spatial variability well where it fully 

accounts for spatial correlation and averaging. It is also a powerful slope stability 

analysis tool that does not require priori assumptions related to the shape or location of 

the failure mechanism. The following studies presented the probabilistic slope stability 

analysis based on Random Finite Element Method. 

 

1. Griffiths and Lane (1999) 

 In this paper, the authors studied several examples of slope stability problems 

using the finite elements method to be compared against other solution methods.  The 

paper included illustrations of the failure surface which indicate that the failure surface 

occurred naturally within the soil zones where the shear strength mobilized didn’t 

sufficiently sustain the shear stresses applied. This aspect of the problem was 

investigated through the analysis of an undrained clay slope with a thin weak layer. The 

ratio of the layers’ undrained shear strengths was varied. The FE analysis encountered a 

discontinuity in the failure surface whereby both a circular and non-circular 

mechanisms were captured. Analyzing the same problem using LEM wouldn’t have 
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allowed such a response (free occurrence of the failure surface) to be modeled 

realistically. The FS in the LEM methods was always found to be greater or equal to the 

FS resulting from FE but never less. This illustrates the FE advantages over LEM. 

Finally, the authors stated that FE in conjunction with an elastic-perfectly plastic (Moh-

Coulomb) stress-strain method has been shown to be a reliable and robust method for 

assessing the FS.  

 

2. Griffiths and Fenton (2000) 

 Griffiths and Fenton (2000) conducted a Random Finite Element probabilistic 

analysis for studying the effect of the spatial correlation length on the probability of 

failure of the slope. This paper also involved a parametric study to highlight the 

influence of the scale of fluctuation and coefficient of variation of the shear strength on 

the stability of the slope. Griffiths and Fenton analyzed an undrained clay slope.  

The results showed that the probability of failure increases as the coefficient of variation 

of the undrained shear strength increases. For coefficients of variation in the range of 0< 

COV< 0.5, an increase in the probability of failure resulted as the ratio of the correlation 

length to the slope height increased.  However, at COV values that were higher than 0.5, 

the probability of failure decreased with the increase in the ratio of the correlation 

length to the slope height. The assumption of perfect correlation was shown to 

overestimates the probability of failure for low values of the coefficient of variation and 

for slopes with high factor of safety (FS > 1.4); however, it underestimates the 
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probability of failure for high values of the coefficient of variation and for slopes with 

low factors of safety (FS < 1.40). 

 

3. Griffiths and Fenton (2004) 

 In this paper, Griffiths and Fenton investigated the probability of failure of a 

cohesive slope using both the simple and more advanced probabilistic approaches under 

undrained conditions.  

In the simple probabilistic approaches, the authors treated the undrained shear strength 

of the cohesive slope as a simple random variable and both spatial correlation and local 

averaging are ignored.  The probability of failure in this simple methodology was 

estimated as the probability that the shear strength would fall below a critical value 

(associated with FS=1) based on a log-normal probability distribution. As expected, 

relatively larger probabilities of failure (pf) were recorded for cases involving lower 

factors of safety. The FS considered was based on the value that would have been 

obtained if the same slope was analyzed deterministically with shear strength equal to 

the mean value considered in the probabilistic approach. 

 The results of the simple approach led to high probabilities of failure with a 

mean factor of safety = 1.47 which practically contradicted the common knowledge 

about slopes with FS=1.47 which rarely fail. To overcome this problem, the authors 

proposed two factorization methods that were used to reduce the mean value of the 

undrained shear strength. Hence, an increase in the strength reduction factor reduces the 

probability of failure to an acceptable value. 
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 In the single random variable approach whereby simple probabilistic methods 

are applied, only homogeneous slopes are considered. That is, the correlation length 

assigned to the undrained shear strength is infinite. However, a more realistic model 

was analyzed in this paper in which the soil strength varies spatially within the slope in 

a correlated manner. A logical correlation length model was adopted which is the 

Markovian, an exponentially decaying correlation function:  

ρ= e
-(2τ/θ

ln C
)                    

(Eq. 2.1)
 

where  ρ=correlation coefficient 

 τ = absolute distance between two points in a random field  

 
θ
ln C = spatial correlation length 

 The correlation model assumes that soil samples that are close are more likely to 

be correlated than distant samples. Since field observations show that soil samples are 

correlated in the horizontal direction for much longer distances than that in the vertical 

direction, modeling the anisotropy in RFEM is important. The anisotropy in the soil 

properties is generally a result of the geological depositional environment that 

characterizes the structure and composition of the soil.   

 Griffiths and Fenton analyzed the same slope using the Random Finite-Element 

Method (RFEM). They combined elastoplastic finite-element analysis with random field 

theory using the local average subdivision method (Fenton and Vanmarcke 1990). The 

findings of the paper highlight the role of spatial averaging in enhancement the 

reliability of the slope. Spatial averaging was shown to reduce the mean and the 

variance of a log-normal point distribution, while preserving the median of the point 
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distribution. Also, they concluded that the variance tends to zero and the mean tends to 

the median if significant levels of local averaging are applied.  

 Griffiths and Fenton begin and end their paper with the idea of RFEM 

overcoming LEM by the free occurrence of the failure surface by shape and location. 

Besides, the failure mechanism passes inevitably through elements of different strength 

values. Moreover, the finite element method (FE) seeks the weakest path along with the 

strength averaging stresses on the natural occurrence of the failure surface. If local 

averaging is included in the traditional methods, it has to be computed over a 

predetermined failure mechanism characteristic of the analysis method. The RFEM 

results show that smaller probabilities of failure were recorded when the spatial 

correlation concept alongside local averaging was adopted.  

 

4. Chok et al. (2007) 

 In this study, the authors adopted the RFEM to conduct a parametric study on 

the reliability of a cohesive slope. The effect of spatial variability was modeled using 

the coefficient of variability (COV) and scale of fluctuation (ϴ) was the focus of this 

study. Various slope angles and depth factors were considered in the analysis which was 

conducted using Monte Carlo simulations allowing the probabilities of failure to be 

estimated for each case. The deterministic FS was also estimated based on the mean 

values of the undrained shear strength. The results indicated that the deterministic 

Factor of Safety (FS) is a poor indicator of the stability of a slope since high Pf could be 

recorded for slopes with high FS and certain COV and ϴ/H values. In addition, the 
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more correlated the field, the higher pf will be recorded which was explained by the fact 

that a more correlated field coupled with relatively high COV, lead to lower strength 

values which govern the reliability.  

 Moreover, the results show that the influence of ϴ/H on Pf is more significant for 

slopes with marginally stable slopes (FS closer to 1). Also, the probabilities of failure 

can either increase or decrease by approximately 50% as ϴ/H increases from 0.1 to 10. 

Whenever a perfectly correlated field is assumed i.e. spatial correlation is ignored, a 

slope stability analysis could overestimate or underestimate the probability of failure. 

Hence, any stability analysis shall consider spatial variability in the analysis. 

 

5. Griffiths et. al (2009a) 

 In this study, the authors investigated the advantage of Random Finite Element 

Method (RFEM) over the traditional probabilistic method (FORM or MCS). The core of 

the paper aimed at investigating the influence of the spatial correlation length, local 

averaging and coefficient of variation of the strength parameters on the probability of 

failure of the slope. The results showed that simplified probabilistic analyses in which 

spatial variability of soil properties is not properly accounted for, can lead to 

unconservative estimates of the probability of failure if the coefficient of variation of the 

shear strength parameters exceeds a critical value (υcrit). The authors also found that this 

value is influenced by slope inclination, mean factor of safety, and correlation between 

strength parameters. υcrit was found to be lower for steeper slopes associated with low 

factors of safety than less steep slopes associated with higher factors of safety. 
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6. Griffiths et.al (2009b)  

 Griffiths et al. (2009) investigated the failure probability of 2-D and 3-D slopes 

using RFEM. Although it was commonly known that 2-D analyses constitute a 

conservative estimate of the factor of safety compared to 3-D slope analyses, this study 

revealed the contrary. In the deterministic analysis, factors of safety computed from the 

2-D analyses lead to unconservative values and this was linked to the implicit 

assumption made in 2-D models about the third direction whereby infinite correlation is 

assumed to persist in this out-of plane direction. However, additional support is actually 

provided in 3-D analyses by the boundaries in the out of plane direction. 

 In the probabilistic analyses, results indicate that the 2-D analysis also ceased to 

be conservative when the out-of-plane direction was longer. The threshold length to 

slope height ratio (L/H)3>2 above which 2-D would be unconservative was investigated 

together with the effect of the boundary condition in the out-of-plane direction (3-D 

analysis).  Results indicate that rough boundaries resulted in higher (L/H)3>2 ratios 

compared to smooth boundaries. The lowest value for this ratio was observed to be 

about 3. This value may be used as a conservative upper limit for the real cross-over 

length above which 2-D results would stop being conservative and eventually reliable. 

 It was also found that in slopes that are associated with higher length to height 

ratios, a maximum value of the probability of failure was observed when a worst case 

correlation length is assumed in the analysis. Conclusively, in the absence of good 

quality site-specific data, worst case spatial correlation length should be assumed to 

avoid unconservative analyses. 
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7. Griffiths et al. (2010) 

 The authors investigate the use of the Point Estimate Method (PEM), First Order 

Second Moment Method (FOSM), First Order Reliability Method (FORM), and Monte 

Carlo Simulations in slope problems involving spatial variability. These methods are 

used in combination with Limit Equilibrium Method (LEM) for studying the reliability 

of slopes. The authors performed the study by means of analyzing a hypothetical slope 

that has already been analyzed by other authors. The authors showed that LEM 

combined with 1D random field can give lower probabilities of failure than the RFEM 

and this is due to the fact that RFEM doesn’t require a priori assumptions for the shape 

or location of the failure mechanism. Moreover, the failure mechanism can freely occur 

through the weakest path mobilized in the random soil which overcomes the LEM 

analysis, whereby the location of the failure surface is fixed before the performance of 

the random field analysis. 

 

8. Jha and Ching (2013) 

 Jha and Ching (2013) used RFEM to analyze the effect of slope geometry, mean 

and coefficient of variation of the soil parameters, and the scale of fluctuation on the 

probability of failure. The authors statistically characterized the undrained shear 

strength of the soil layers by a random variable with a mean, coefficient of variation and 

lognormal distribution. The authors included spatial variability in their analysis in both 

in the vertical and horizontal directions. The vertical scale of fluctuation was back-

calculated from a database of slope cases using the approach presented in Phoon and 
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Kulhawy (1999). As for the horizontal scale of fluctuation, it was assumed because it 

can’t be calculated and it is usually greater than the vertical one. 

 The authors suggested equations that allow the designer to compute the 

statistical parameters of the factor of safety based on the shear strength and slope 

characteristics. They concluded that the ratio of the horizontal to the vertical scales of 

fluctuation has a slight effect on the mean and the coefficient of variation of the factor 

of safety. The authors’ analysis showed that the mean factor of safety is always less than 

the deterministic one. It turned out that the difference between the mean and design FS 

is independent of the vertical and the horizontal scales of fluctuation but dependent on 

the coefficient of variation of the undrained shear strength. Whenever this COV is large, 

the reduction in the mean is more pronounced. On the other hand, the COV of the factor 

of safety was found to be always less than the coefficient of variation of the random 

field. Whenever the COV is large, the reductions in both the mean and the COV were 

more pronounced. Also, the reduction in the COV was more explicit when the ratio of 

the vertical scale of fluctuation to the length of the failure surface was small. The study 

ended up by a simplified equation to calculate the probability of failure for the 

undrained engineered slopes considering spatially variable shear strengths.   

 

9. Huang et al. (2013) 

 Huang et al. (2013) performed three different types of analyses in their paper. 

First, they conducted a deterministic analysis in order to investigate the failure zones. 

Second, they conducted probabilistic analyses using Monte Carlo Simulation to 

investigate the probability density function of the factor of safety. Finally, they used the 
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random finite element method to investigate the influence of spatial variability on the 

probability of failure of the slope. The authors analyzed a hypothetical slope analyzed 

by other investigators (Ching et al. 2009 and Low et al. 2011).  They dealt with the 

reliability aspect of the problem as a system in which all potential slip surfaces are 

considered. The results showed that the probability of failure obtained by FEM is higher 

than that obtained by LEM and the probability of failure decreases with increasing 

spatial correlation length.  
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CHAPTER 3 

RFEM SOFTWARE 

 

A. Background  

 The random finite element method (RFEM) combines random field theory with 

finite element modeling in slope stability analysis and design. Since its inception by 

Fenton and Griffiths in 1992, the RFEM has been used by many researchers as a basic 

approach to incorporate spatial variability of soil properties in different geotechnical 

engineering applications (slope stability, foundations design, seepage through soils, 

etc.). Several software packages have incorporated the RFEM. Examples include 

“mrbear2d” that covers stochastic bearing capacity analysis for shallow foundation, 

“mrpill2d” that describes stochastic pillar analysis and “mrslope2d” that covers 

stochastic slope stability analysis.  

 Rslope2d is the software used in this study to assess the probability of failure of 

undrained slopes. The Software was developed by Griffiths and Fenton in 2011 and was 

subsequently updated to the latest version of 1.1.2 in 2012. The software is based on 

Monte Carlo simulations and takes into account different soil properties as input 

parameters. In each simulation, the mesh elements are assigned a property from the 

probability distribution that is selected at the input phase. After running the needed 
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number of Monte Carlo simulations, the software yields the corresponding mean of the 

probability of failure and its standard deviation. 

 

B. Input Parameters 

 The main input parameters required by the Rslope2d software are described 

below according to the definitions set by Griffiths and Fenton in their software guide. 

The corresponding assumptions made about the soil parameters and the soil geometry 

are stated and explained as follows. 

  

1. Embankment Gradient 

 The software works on dividing the soil slope into finite elements where each 

finite element mesh is associated with a slope of gradient = run/rise (horizontal run / 

vertical fall). In this paper, two slope cases are considered: one with an angle of 26.6ᵒ 

(run/rise=2:1), and the other with an angle of 45ᵒ (run/rise=1:1). 

 

2. Number of Finite Elements 

 The total number of elements in the x-directions is nx1+nx2+ny1*ngrad (ngrad 

being the horizontal projection of the slope) and the total number of elements in the y-

direction is ny1+ny2 as it is shown in Fig. 3.1. The right and left edges are free to move 
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vertically but constrained against horizontal movement, while the bottom is restrained in 

both directions. The maximum number of elements is 3620. 

 

 

Figure 3.1: Total Number of Elements of the Slope – Taken from RSlope2d Help Manual. 

 

3. Finite Element Size 

 A mesh is generated for the slope using 8-noded quadrilateral elements of equal 

size. The majority of the elements are square shaped and those adjacent to the slope are 

generated into triangles.  

 

4. Number of Realizations 

 Rslope2d analyzes slope stability problems several times using Monte Carlo 

simulations. Each realization in the Monte Carlo process involves the same 

characteristics of the soil properties; however the spatial distribution varies from one 
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realization to another. A sufficient number of realizations are required for the results to 

be accurate. The probability of failure is taken to be the number of failures/ total number 

of realizations assigned. The number of realizations N that are required for a target 

failure probability of 1% with a given degree of confidence is calculated using slope2d 

as described in Eq. (3.1): 

 

  
  

   
 (

   

 
)                (Eq. 3.1) 

 

Where z=1.96 for 95% confidence, E is the desired precision in the estimate of p which 

is the target probability, and 1-p is the target reliability. For example, the number of 

simulations required to estimate a 1% probability of failure with a 10% desired 

precision is:  
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Since the reliability analyses that were conducted in this study involved 

different magnitudes of the probability of failure, and since the probability of failure 

was not known in advance, a preliminary analysis was conducted in Rslope2d using 

1000 simulations to estimate the probability of failure. This preliminary estimate of the 

probability of failure was used as input to Equation 3.1 to estimate a more accurate 

number of simulations. Whenever the probability of failure is very low, even a first 
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guess of 10000 simulations might result in a zero probability of failure. At this stage, 

200000 simulations are assumed to guarantee a reasonable result. 

 

5. Correlation Length 

 In random fields, the correlation length generally resembles the distance 

between two points over which the soil property could be assumed to be correlated.  In 

the geotechnical literature, the lognormal distribution is typically adopted to 

characterize the uncertainty in soil properties (ex. undrained strength Su). Since the 

logarithm of the lognormal distribution yields a normal (Gaussian) distribution, it is 

commonly assumed that the spatial correlation length is defined by the correlation 

distance for lnSu and not for Su. The spatial correlation length (θlnSu) represents the 

distance where the spatially random values of Su will tend to be significantly correlated 

in the normal field. In other words, a large value of θlnSu implies smooth variation across 

the field, while a small value shows a ragged field of minimum correlations. For 

example, if the correlation length is 10 m, any two points within a distance of less than 

10 m will have correlated soil properties, while any two points distant by more than 10 

m would have statistically independent soil properties. Hence, neighboring elements are 

correlated to each other with varying degrees according to the spatial correlation lengths 

(Chok et al., 2007). 

 According to Griffiths and Fenton (2004), the magnitude of the spatial 

correlation length in the Gaussian field doesn’t differ much from that in the real space 

of Su. As a result, θln Su and θSu are interchangeable given their inherited uncertainty.  
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The random variables that constitute the finite element mesh in the RFEM software are 

produced using local averaging subdivision and are correlated with each other according 

to the Markovian correlation function which is exponentially decaying (Griffiths and 

Fenton 2004) as indicated in Eq. (3.2):  

 

Sue ln/2  


         
(Eq. 3.2) 

 

Where   is the correlation coefficient of the properties assigned between two points 

and τ is the absolute distance between two points in a random field. As mentioned by 

Griffiths and Fenton (2004), Eq. (3.2) would yield a value of 0.135 if computed between 

two points that are distant by θlnSu.   

 Fields with large correlation lengths are considered smooth, unlike fields with 

small correlation lengths which are considered to be erratic and unpredictable. The 

correlation length may differ in the two orthogonal directions (horizontal and vertical), 

but the correlation length in the horizontal direction is usually larger since soil is layered 

horizontally. This means that the soil properties will be smoother and more slowly 

varying horizontally.  

For slope stability analyses, random finite element analyses indicate that the probability 

of failure of an undrained slope is generally governed by the normalized vertical 

correlation distance Өy, which is defined as the vertical correlation distance (y) divided 

by the height of slope (H): 

   
  

 
.          (Eq. 3.3) 
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It is worth noting that in all of the analyses conducted in this thesis using the RFEM, a 

slope height (H) of 20 m was adopted. 

Fig. 4.2 shows two examples of isotropic random fields of Su that are generated by 

RSlope2d for non-failing simulations of the Monte Carlo process for (a) ӨSu = 0.25 (y 

= 5m), and (b) ӨSu=2 (y = 40 m). Light and dark regions depict strong and weak soil 

properties respectively. The case analyzed corresponds to a 2:1 slope with an FS=1.5 

(mean of Su=103.5kPa and COV=0.5). Fig. 3.2(a) shows rapidly varying light and dark 

regions which reflect the small correlation length assigned to the slope. The higher the 

correlation length, the smoother becomes the change in the strength assigned for the 

elements (Fig. 3.2b). 

 

Figure 3.2: Random Fields Generated for FS=1.5, COV=0.5 and (a) ӨSu = 0.2, and (b) ӨSu = 2  

 

(a) ӨSu = 0.25

(b) ӨSu = 2

(c) ӨSu = 50

H

H

H



48 
 

 Since soils tend to exhibit anisotropy, the spatial correlation lengths for Su will 

vary with direction, whereby longer correlation lengths are generally exhibited in the 

lateral/horizontal direction compared to the vertical direction. Anisotropy in soil 

properties is generally attributed to the depositional process and post depositional 

histories that characterize the formation of soils. To account for anisotropy in the 

RFEM, the following anisotropic autocorrelation model is generally adopted (Jha and 

Ching 2013):  

 

             ( 
 |  |

  
 

 |  |

    
)      (Eq. 3.4) 

 

 Where    and    are the horizontal and vertical correlation lengths respectively, 

and    and    are the horizontal and vertical distances between two points in space. 

Fig. 3.3 shows the same cases analyzed in Fig. 3.2 for (a) ӨSu = 0.25 (isotropic case) 

and for (b) Өy = 0.25 and δx= 40 m (anisotropic case). Clear differences are evident in 

the two random fields as a result of anisotropy. For the isotopic structure with a 

normalized correlation distance of Өy = 0.25, the weak and strong zones vary rapidly 

along the vertical and horizontal directions (Fig. 3.3 (a)). For the anisotropic case with a 

horizontal correlation distance of 40m, the random field varies smoothly in the 

horizontal direction due to the higher correlation length adopted. 
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Figure 3.3: Random Fields Generated for FS=1.5, COV=0.5 and (a) ӨSu = 0.25, (b) Өy = 2 and δx=40 m  

 

6. Deterministic Strength Reduction Factors 

 Slope2d allows for determining the traditional factor of safety of the clayey 

slope and the probability of failure of the slope. The deterministic factor of safety (FS) 

is determined by the strength reduction method (Griffiths and Lane 1999) where the 

shear strength of all the elements is divided by a single strength reduction factor.  Thus 

FS corresponds to the strength reduction factor causing the failure to occur. For the 

calculation of the probability of failure, Monte Carlo analyses are performed by 

simulating the soil properties from their associated random fields in the finite element 

mesh. Slope2d records all realizations where slope failures occur.  The probability of 

(a) ӨSu = 0.25

H

(b) δx = 40 m    
Өy = 0.25

H
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failure is then estimated through the ratio of the number of failed simulations to the total 

number of simulations. 

 The slope stability analyses use an elastic-perfectly plastic stress-strain theory 

while adopting the Tresca failure criterion which is appropriate for undrained clayey 

slopes according to Griffiths and Fenton (2004). Whenever the Tresca failure criterion 

is violated, the attempt is to redistribute excess stress to neighboring elements that still 

have some reserve of strength. This is an iterative process that is repeated continuously 

until the Tresca criterion and global equilibrium are satisfied at all points within the 

mesh (Griffiths and Fenton, 2008). Griffiths and Fenton (2004) showed that 500 

iterations are sufficient for the failure to occur for their analyzed slope. The same slope 

is adopted for the part of the analyses conducted in this study. For these cases, the same 

assumptions could be assumed to remain valid.  

 To illustrate the different failure modes that could exist in the RFEM, three 

realizations of failed slopes are presented in Fig. 3.4 assuming a FS=1.3 and 

COVSu=0.5. The failure cases correspond to different assumptions of the spatial 

correlation structure including (a) ӨSu = 5 ( = 100 m), (b) Өy = 2 and δx=100 m and (c) 

ӨSu = 0.1 ( = 2m). The failure mechanism for relatively small correlation lengths (Fig. 

3.4 (c)) lead to a preferred failure mechanism that tends to be global which means that it 

occupies wide zones of the soil field. As the spatial correlation length is increased in 

Fig. 3.4 (a), the preferred mechanism is attracted to “local pockets” of the weak soil and 

as a result occurs on a reduced width. As for Fig. 3.4 (b) that combines the horizontal 

and vertical correlation lengths from Fig.3.4 (a) and (c) respectively, it shows a complex 
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failure mechanism that does not have a common shape; however, it covers a wide area 

while still having local failure mechanisms.  

 

 

Figure 3.4: Failure Mechanisms Resulting from Rslope2d for FS=1.3, COV=0.5 for (a) ӨSu = 5,  (b) Өy = 2 and 

δx=100 m and (c) ӨSu = 0.1. 

 



52 
 

The failure mode associated with the RFEM realization for Өy = 2 and δx=100 m is 

presented in Fig. 3.5 with a depiction of strain concentrations across two major planes. 

The same slope was analyzed in a Limit Equilibrium slope stability software (Talren) 

for the deterministic case. The resulting deterministic failure surface is presented in Fig. 

3.6 and is shown to be close to one of the failure surfaces that were identified in the 

failure realization shown in Fig. 3.5. 

 

 

Figure 3.5: Failure Mechanisms Resulting from Rslope2d for FS=1.3, COV=0.5,  δx=100 m and Өy = 2. 

 

 

Figure 3.6: Failure Mechanisms Resulting from Rslope2d for FS=1.3 using LEM in Talren Software. 

Global Failure Mode 
Local Failure Mode 
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7. Stochastic Models for Su 

 RSlope2D incorporate four probability distributions that could be used to model 

the uncertainty in the undrained shear strength Su. These include (a) the deterministic 

case where one parameter (basically the mean of Su) is required as input, (b) the normal 

distribution which requires two parameters (the mean and the standard deviation of Su) 

as input, (c) the lognormal distribution which also requires two parameters to be defined 

and (d) the 4-pramater bounded distribution which is defined by the lower bound a, the 

upper bound b, the location m, and the scale parameters. The distributions will be 

further described in section C. 

 

8. Friction Angle 

 Since our study analyses undrained clayey slopes, a zero friction angle was 

assigned for the analysis conducted in this thesis.  

 

9. Elastic Modulus and Poisson’s Ratio 

In this study, the elastic modulus which is the ratio of stress over strain is chosen 

to be deterministic with a value of 40,000 kPa. The Poisson ratio is taken as 

deterministic with a magnitude of 0.45.  
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C. Probabilistic Distribution of Shear Strength 

 

1. Lognormal Distribution 

 In this study, all soil parameters are taken to be deterministic, except for the 

undrained shear strength which is assumed as the main source of uncertainty.  

For the conventional case where the lower-bound shear strength is assumed to be zero, 

the undrained shear strength is defined as following a lognormal distribution with a 

mean and a standard deviation in accordance with the model described by Griffiths and 

Fenton (2004), and it is utilized in the RFEM to describe the random field. The 

probability density function (PDF) of the lognormal distribution is described by 

equation 3.5: 
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In equations 3.6 and 3.7, the standard deviation and mean of the equivalent normal 

distribution are defined as follows: 
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The mean and the standard deviation are related by the dimensionless coefficient of 

variation COV, as represented by equation (Eq. 3.8): 

    
uS

  
                  (Eq. 3.8) 

 

The median of a log–normal distribution is given by Eq. 3.9 as follows:  

 

           (     )               (Eq. 3.9) 

 

2. Bounded Distribution 

 For cases where the undrained shear strength was assumed to be bounded at by a 

lower-bound value, a truncated lognormal distribution is generally adopted to 

incorporate the lower-bound strength. For that purpose, the left-hand tail of the 

undrained shear strength probability distribution is truncated at the value of the lower 

bound. This concept aims at reducing the likelihood of obtaining unrealistically small 

undrained shear strength values in the random finite element analysis. The lower bound 

undrained shear strength was represented by the remolded undrained strength and 

assumed to be equal to the mean of the undrained shear strength (undisturbed clay) 

divided by the sensitivity of the clay, taken in this study to be mainly between 1.5 and 

4.0 (typical for natural clays). Conventional and truncated lognormal distributions for 

the case with a mean Su of 100 kPa, a COV of 0.5, and a sensitivity of 2.0 (remolded Su 

= 50 kPa) is presented in Fig. 3.7. 
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Figure 3.7: Conventional and Truncated Lognormal Probability Distributions for Su.   

 

 Given that a truncated lognormal distribution is not presented as an option for 

modeling the uncertainty in Rslope2D, the 4-parameter bounded distribution was used 

to model the truncated lognormal distribution. The bounded distribution can be 

established as shown in Equation 3.9 through a transformation between a standard 

normal variate G having a mean of 0 and a standard deviation of 1.0 to any random 

variable X that is bounded by [a b] interval: 
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Where m, s, a and b are the location, scale, lower bound and upper bound parameters, 

respectively.  The probability density function of the bounded distribution of X is: 
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 To match the PDF of the truncated lognormal distribution for any given case to 

that of an equivalent bounded distribution, the 4 parameters that describe the equivalent 

bounded distribution were determined through the Excel Solver. The solver seeks the 

parameters that would minimize the root-mean-square error between the cumulative 

distribution function (CDF) of the truncated lognormal distribution and the CDF of the 

equivalent bounded distribution.  

As an example, Fig. 3.8 shows a comparison between the truncated lognormal CDF and 

the CDF of the equivalent 4-parameter bounded distribution.  The example pertains to a 

case where the mean Su is 90 kN/m
2
, the COV of Su is 0.3, and the clay has a sensitivity 

of 3 (lower bound is equal to 30 kPa). The comparison indicates that accurate and 

realistic representations of the truncated lognormal distribution could be obtained using 

the 4-parameter bounded distribution in Rslope2d. 

 

Figure 3.8: Truncated Lognormal and Bounded Tanh Cumulative Probability Distributions for Su.   
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3. Local Averaging 

 In the RFEM, all input parameters are defined at the point level. Although it is 

nearly impossible to quantify these statistics practically, they represent a fundamental 

baseline of the inherent soil variability. According to Griffiths and Fenton, this can be 

corrected by the use of local averaging and consideration of the sample size (Griffiths 

and Fenton, 2004). In each Monte Carlo simulation, each element possesses a property 

that remains constant during the single simulation based on the RFEM approach. The 

size of each finite element represents the “sample” which is used to discretize or 

transform continuous distributions into discrete parameters.  

In the case where the point distribution is a normal distribution, local averaging 

could be shown to reduce the variance of the property but doesn’t affect its mean. For 

lognormal cases, local averaging reduces both the standard deviation and the mean. 

Griffiths and Fenton find this to be logically explained by the dependence of the mean 

of the lognormal distribution on the mean and variance of its normal distribution. The 

effect of local averaging (reduced mean and standard deviation) is more pronounced 

with larger elements and with simpler discretization of the slope problem. 

 The variance reduction factor due to local averaging γ, is defined as (Griffiths 

and Fenton, 2004): 

 

              ⁄                    (Eq. 3.11) 
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Where lnSuA is the standard deviation of the average soil property. For a square finite 

element of side k=α*     , it could be shown from (Vanmarcke, 1984) that the variance 

reduction factor for an anisotropic field is given by:  

 

  
 

  
∫ ∫     
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)                         (Eq. 3.12) 

  

 Numerical integrations of Eq. 3.12 assuming square finite elements of side=2 m 

and for the various correlation lengths adopted throughout this study, would lead to the 

variance values shown in Table 4.1. The results show that as the correlation length 

approaches the element size, the variance reduction becomes more significant. 

The statistics of the underlying log field including local averaging are given by:  

            √                (Eq. 3.13) 

                          (Eq. 3.14) 

 

Hence, the statistics of the lognormal field, averaged at the level of the element and 

mapped to the generated field are: 

                 
 

 
      

            (Eq. 3.15) 
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Table 4.1: Variance Reduction Factor Computed for Square Finite Element of Side = 2m for the Various Correlation 

Lengths Considered throughout this study. 

 

  

  

Horizontal 

Correlation Length              

δx (m)

Vertical 

Correlation Length                

δy (m)

Variance      

ϒ

40 1 0.365

40 2 0.549

40 3 0.650

40 5 0.754

40 10 0.850

40 20 0.906

10 2 0.499

20 2 0.532

30 2 0.543

40 2 0.549

60 2 0.555

100 2 0.560
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CHAPTER 4 

RELIABILITY OF HOMOGENEOUS AND SPATIALLY 

VARIABLE CLAYEY SLOPES 

 

A. Introduction  

 In a pioneering research study, Griffiths and Fenton (2004) incorporated the 

random finite element generation techniques along with local averaging theories to 

investigate the impact of spatial variability of clay properties on the reliability of 

spatially random slopes. The slope geometry that was adopted in their study is shown in 

Fig. 4.1 and entails a slope with a 2:1 slope angle and a 20-m slope height (H). The 

slope was assumed to be underlain by a 20-m thick clay layer with the same properties 

as the slope (unit weight of 20 kN/m
3
). The clay layer is assumed to be underlain by a 

hard layer of infinite shear strength and stiffness. The slope investigated by Griffiths 

and Fenton (2004) was adopted in several other studies and was considered as the base 

case for the analyses conducted in the current research study.  

 

Figure 4.1: Geometry of the slope analyzed by Griffiths and Fenton (2004). 
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B. Reliability of Homogeneous Slope – Simplified Analytical Solution  

 To illustrate the impact of spatial variability on the reliability of the considered 

slope, Griffiths and Fenton (2004) analyzed the slope initially with the assumption that 

it is a homogeneous slope with uncertain undrained shear strength (Su). In other words, 

they assumed that Su in the different clay elements is constant in any given realization 

of Su. In this case, the probability of failure of the slope could be easily computed 

without the need for any sophisticated finite element analysis or random field theory. 

The probability of failure could be computed by determining the probability that the 

undrained shear strength (Su) will fall below a predetermined critical value of Su that 

would cause failure of the slope from a deterministic perspective. This critical value is 

the minimum value of Su that will result in a FS of 1, with the factor of safety being 

predicted using simplified analytical slope stability methods. Quantitatively, the 

probability of failure is equal to the area of the probability density function of the 

lognormal distribution characterizing Sucritical and is given by:  

 

                     {
                    

     
}             (Eq. 4.1) 

 

Where Φ=cumulative standard normal distribution function. 

 For the case of a homogeneous slope, Fig. 4.2 shows the different probabilities 

of failure that were computed for a range of factors of safety and COVs considered in 

the analysis (Griffiths and Fenton, 2004). The reported factors of safety correspond to 

the factors of safety that would have been obtained in a deterministic analysis where the 
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undrained shear strength is taken as the mean of Su. The undrained shear strength COV 

values that were adopted by Griffiths and Fenton (2004) ranged from 0 to 8. It should be 

noted that the realistic upper bound of COV for practical field applications involving the 

undrained strength of clays is around 0.5. 

 

Figure 4.2: Griffiths and Fenton (2004) results – pf versus FS for various COVs. 

 

 Results on Fig. 4.2 indicate that the probability of failure of the homogeneous 

clayey slope is highly dependent on the coefficient of variation of Su and on the 

assumed factor of safety. For factors of safety that are relatively small (FS ~ 1.25), the 

probability of failure ranges from 5% to 45% for a realistic range of COVSu of 0.125 to 

0.50. For a higher and more representative FS of 1.5, these probabilities of failure 



64 
 

reduce to almost zero for the COV of 0.125 and 28% for the case with the higher COV 

of 0.5.   

 

C. Reliability of Homogeneous Slopes – RSlope2d Solution 

 In an initial attempt to utilize the Rslope2D Software in this research study, the 

same slope that was analyzed by Griffiths and Fenton (2004) (Fig. 4.1) was adopted and 

an effort was made to compute the probability of failure of the slope assuming a 

homogeneous random field. In the analysis, Su was assumed to follow a conventional 

lognormal distribution with a mean value that would produce a target deterministic 

factor of safety and a COV (designated by V in Figs. 4.2 and 4.3) that varies between 0 

and 0.5. The condition of a homogeneous random field of Su was enforced by adopting 

horizontal and vertical correlation distances that were very large (assumed to be 1000 m 

in this illustrative example). In each simulation level, the Su in any given element would 

randomly be selected from the lognormal distribution assuming a correlation of 1000m 

in the random field. The output of each particular case (a given FS and COV) is 

quantified by a probability of failure that was calculated by the software as the number 

of failed slopes divided by the total number of Monte Carlo simulations assigned at the 

input level. The calculated probabilities of failure are presented in Fig. 4.3. As expected 

the results were almost identical to the results presented in Fig. 4.2 for the homogeneous 

case analyzed by Griffiths and Fenton (2004) using the simplified analytical approach. 

These results indicate the validity of the random finite element model that was adopted 

in this study and provide confidence in applying this model for more realistic cases that 
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involve random fields that do not necessarily have to be homogenous. Such analyses 

will be conducted in the following section.  

 

Figure 4.3: Replicated results – pf versus FS resulting from RSlope2d.  

 

D. Reliability of Homogeneous Slopes - Effect of Lower-Bound Shear Strength 

 In the previous section, the Su was characterized by a lognormal distribution 

having specific mean and COV. In this section, the impact of including a lower-bound 

estimate of the undrained shear strength within the formulation of the reliability 

problem will be investigated in the context of a homogeneous slope.   
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 Gilbert et al. (2005) and Najjar and Gilbert (2009) adopted a lognormal 

distribution that is truncated at a lower-bound value to model the uncertainties in the 

factor of safety of a drained clayey slope and in the capacity of deep foundations in 

sands and clays, respectively. In these studies, a truncated lognormal distribution is 

convenient because the parameters describing the distribution are the same as those of 

the non-truncated distribution with the addition of one extra parameter, the lower-bound 

value. Chapter 3 explains the inability of the user to characterize Su by a truncated 

lognormal in RSlope2d. Also it explains how a bounded distribution could be matched 

to represent the uncertainty of a truncated lognormal distribution. 

 The major objective of this section is to investigate the effectiveness of 

introducing a lower bound in the probabilistic model describing the uncertainty in the 

undrained shear strength of clay in slope stability analyses. The lower bound is 

represented by the remolded undrained shear strength of the clay, which is a well-

known property that could be determined using information about the sensitivity of the 

clay as follows:   

 

   
   

                
                (Eq. 4.2) 

 

Where,     represents the undisturbed undrained shear strength of the clay. 

 The random finite element method is utilized to quantify the probability of 

failure of homogeneous undrained slopes that are designed with different deterministic 

factors of safety with and without a lower-bound undrained shear strength.  The RFEM 
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is conducted for the case of a “homogeneous” slope (1000 m correlation length). For 

each case, the analysis is repeated for a coefficient of variation (COV) of 0.3 and 0.5 in 

the undrained shear strength and deterministic factors of safety ranging from 1.15 to 2.0. 

Clay sensitivity was considered between 1.5 and 3.5. Fig. 4.4 shows the results of this 

analysis 

 

Figure 4.4: Probabilities of Failure Computed at Various Sensitivies for Different FS and COVs -   

Homogeneous Case 

 

 An analysis of the results on Fig. 4.4 indicates that (1) for the conventional case 

where no lower-bound shear strength is included in the analysis (shown as sensitivity = 

inf), as the factor of safety increases from 1.15 to 2.0, the probability of failure of the 

slope decreases (as expected) from 38.2% to 1.4% for COV = 0.3 and from 59.4% to 

10% for COV = 0.5, (2) for the cases were lower-bound shear strengths that are a 

function of the sensitivity of the clay are incorporated in the analysis, the probability of 
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failure decreases as the sensitivity of the soil decreases, and (3) the effect of 

incorporating the lower-bound Su on the probability of failure becomes more significant 

as the factor of safety increases and as the COV of Su increases.  

 A more detailed analysis of the reliability analysis conducted for the 

homogenous slopes shows that for the relatively smaller safety factors (less than 1.5), 

no effect of the lower-bound shear strength was evident except for cases with 

sensitivities that are less than 2.0. For the cases with higher factors of safety (greater 

than 1.5), the lower-bound shear strength started to have an impact on the probability of 

failure at sensitivities as high as 3.0. As an example, consider the case where the factor 

of safety is equal to 1.75 and the COV = 0.3. The curves on Fig. 4.4a indicate that the 

probability of failure decreases from 4.2% (no lower bound) to 2% for the case with a 

lower bound defined by a sensitivity of 2.5. The probability of failure decreases further 

to 0.74% for the case with a sensitivity of 2. Similar reductions are observed for the case 

of a COV of 0.5 whereby the probability of failure decreases from 17.4% for the case 

with no lower bound to 12.4% and 4.0% for cases with sensitivities of 2.5 and 2.0, 

respectively. These results indicate that the effect of the lower bound increases for 

higher COVs and for higher factors of safety. 

 

E. Reliability of Spatially Random Slopes 

 The assumption that the spatial variability model of the undrained shear strength 

can be expressed by a homogeneous field is not realistic. Phoon (1995) report that the 
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undrained shear strength of clays can be described by spatially random fields that are 

characterized by vertical and horizontal correlation distances that range between δy of 

0.8m to 6.1m (mean ~ 2.5m) and δx of 20m to 70m (mean ~ 45m). As a result, the 

probability of failures that were calculated in Section 4.3 assuming a homogeneous 

isotropic field with very large correlation lengths may not be realistic. In this section, 

the reliability of the example clayey slope will be assessed using the RFEM assuming a 

realistic random field for Su.  

 

1. Reliability of Spatially Random Slope – No Lower-Bound Shear Strength 

 To investigate the impact of a realistic random field of Su on the reliability, the 

same slope (Fig. 4.1) was analyzed in RSlope2D for the same conditions that were 

adopted in the homogeneous case except for assigning realistic spatial correlation 

lengths to the Su field. For this purpose, an anisotropic random field was adopted with a 

horizontal correlation length (δx) and a vertical correlation length (δy) that are equal to 

40 m and 2 m, respectively. These values are in line with the average correlation lengths 

that were reported in Phoon (1995). The reliability calculations were made assuming 

different design factors of safety for Su COVs of 0.3 and 0.5. The resulting probabilities 

of failure are presented in Fig. 4.5 together with the results obtained for the 

homogeneous case that was assumed in Section 4.3. 

 Results of Fig 4.5 show that for both the homogeneous and spatially variable 

(SV) cases, the probability of failure decreases with the increase of FS which is a 

behavior that was already explained in section 4.1. However, results show a major 
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difference in the magnitude of this decrease whereby the probability of failure in the 

case of spatially variable slopes decreases dramatically with small increases in the factor 

of safety. As an example, the probability of failure for a COV of 0.3 decreases from 

15.9% to 0.2% as the factor of safety increases slightly from 1.15 to 1.30. A similar 

significant reduction in the probability of failure (from 70% to 3.7%) is witnessed for 

the case of a COV = 0.5 as the factor of safety increases from 1.15 to 1.45.  

 

Figure 4.5: Probabilities of Failure Computed with No LB Su for Different FS and COVs - Homogeneous and 

Spatially Variable Cases. 
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significant reductions in the probability of failure for the case of a spatially random field 

with relatively small correlation distances is attributed to variance reduction that occurs 

due to spatial averaging along the failure plane and which is not present in the case of a 

“homogenous” slope. This variance reduction reduces the uncertainty in the undrained 

shear strength resulting in significant reductions in the number of failure cases in the 

Monte Carlo simulations, especially for cases with larger FS. This indicates that the 

inclusion of spatial correlation and local averaging lead to smaller probabilities of 

failure. Thus, simplified probabilistic analyses that assume fully correlated random 

fields of Su might lead to conservative estimates of the probability of failure. The effect 

is more pronounced at lower factors of safety or at higher COVs. 

 From a reliability-based design perspective, the results on Figure 4.5 could be 

used to back-calculate the design factor of safety that is required to achieve a given 

target level of reliability for the slope design. For example, consider the case where a 

probability of failure of 5% is targeted. Based on the results of Fig. 4.5, the required 

factor of safety would have to be equal to 1.72 (COV = 0.3) and 2.4 (COV = 0.5) for the 

homogeneous slope assumption. For the more realistic anisotropic random field option, 

the required factors of safety are reduced to 1.2 and 1.42, respectively. These results are 

important since they point to the importance of modeling the random field of Su in the 

design of undrained clayey slopes. 

  The probabilities of failure that were calculated in this study for the anisotropic 

random field of Su with δx = 40 m and δy = 2 m were compared on Fig. 4.5 with 

published results from Griffiths and Fenton (2004) for isotropic random fields of 

various correlation lengths (δx = δy = 10m, 20 m, and 80m). For all factors of safety 
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considered, results indicate that the considered anisotropic random field yields 

probabilities of failure that are smaller than the isotropic fields. The smaller 

probabilities of failure for the anisotropic field are a result of the small vertical 

correlation length of 2.0m that was adopted in the anisotropic field. It is well known that 

the vertical correlation length plays a significant role in the process of variance 

reduction due to averaging. Since vertical correlation lengths are more likely to be 

between 1.0m and 6.0m, the probabilities of failure that are associated with the 

anisotropic random field adopted in this thesis are expected to be more realistic than the 

conservative probabilies of failure calculated in the isotopic fields analyzed by Griffiths 

and Fenton (2004).  

 

Figure 4.6: Probabilities of Failure Computed with No LB Su for Different FS and correlation length; COV = 0.5. 
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2. Reliability of Spatially Random Slope – With Lower-Bound Shear Strength 

 In this section, the effect of incorporating a lower-bound undrained shear 

strength in the stochastic model of the random field of Su is investigated. For this 

purpose, the anisotropic random field adopted in the previous section was used with the 

addition of a lower-bound shear strength that is dictated by sensitivities ranging from 

1.5 to 4.0 as indicated in Fig. 4.7. 

 With the incorporation of a lower-bound shear strength in the spatially random 

field, results on Fig. 4.7 indicate that the probability of failure is highly sensitive to the 

presence of the lower bound. This is reflected in the sharp reductions that are observed 

in the probability of failure for all factors of safety even at high values of sensitivity. 

For illustration, consider the case with a factor of safety of 1.3. Results on Fig. 4.7a with 

a COV of 0.3 reflect a 4.5 fold reduction in the probability of failure for clay with a 

sensitivity of 2.25 and two orders of magnitude reduction in the probability of failure 

for the case with a lower-bound shear strength that is given by a sensitivity of 1.75. 

Similar observations are made in Fig 4.7b for a COV of 0.5 in the undrained shear 

strength whereby the probability of failure for the case with an FS of 1.3 exhibits a 5 

fold reduction in the probability of failure (from 24.6% for the case with no lower 

bound to 4.6%) for clay with a sensitivity of 2.25, and more than two orders of 

magnitude reduction in the probability of failure (from 24.6% to 0.04%) for the case 

with a lower-bound shear strength that is given by a sensitivity of 1.75.    

 The results are important since they indicate that the incorporation of a physical 

lower-bound shear strength that is based on the remolded undrained shear strength of a 

clay could have a significant impact on the reliability of a slope, particularly for 
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spatially variable slopes with realistic correlation lengths in the lateral and vertical 

directions (see Fig. 4.7). 

 

Figure 4.7: Probabilities of failure resulting at various sensitivies for different FS and COVs – Spatially Variable case 

 

 The truncation of the probability distribution of the undrained shear strength by 

the lower-bound strength reduces the uncertainty in the Monte Carlo simulations by 

eliminating unrealistically low shear strength values that are theoretically lower than the 

lower-bound shear strength. This reduces the number of cases that fail in the Monte 

Carlo simulations thus reducing the probability of failure of the slope. It could thus be 

concluded that incorporating a lower-bound shear strength in the reliability analysis of 

an undrained slope by truncating the distribution of Su at the lower tail is analogous (in 

its effect) to reducing the total uncertainty in the undrained shear strength via spatial 

averaging.  
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CHAPTER 5 

SENSITIVITY OF THE SLOPE RELIABILITY TO THE 

RANDOM FIELD OF THE UNDRAINED STRENGTH 

 

A. Introduction 

 Results in Chapter 4 indicated that the correlation lengths that describe the 

random field of Su could have a significant impact on the reliability of clayey slopes. In 

this chapter, the sensitivity of the probability of failure to the vertical and horizontal 

correlation lengths will be investigated. In the sensitivity analysis, the normalized 

vertical correlation distance Өy was varied from 0.1 to 1.0, while the horizontal 

correlation distance δx was varied from 20m to 100m. These ranges are expected to be 

indicative of the variation of practical correlation distances for the undrained shear 

strength of clays in geotechnical practice (Phoon 1995, Phoon and Kulhawy 1999, and 

Jha and Ching 2013). It should be noted that for the example clay slope that was 

adopted in this study (slope height = 20m), the range of normalized vertical correlation 

length correspond to actual correlation distances of 2m to 20m.  

Since the main objective of this research study is to investigate the impact of 

incorporating a lower bound shear strength on the reliability, a set of reliability analyses 

were conducted whereby lower bounds that are associated with different clay 

sensitivities were included as part of the random field. These analyses were aimed at 
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investigating whether the impact of the lower bound on the reliability is sensitive to the 

assumed correlation lengths. 

Finally, the analyses that are conducted in this chapter are repeated for the case 

of a slope with a 1:1 angle of inclination rather than a 2:1 angle. The objective of this 

set of analyses is to quantify any impact that the slope angle could have on the 

reliability of the slope for the same design factor of safety and random field properties. 

It is expected that the slope angle could have an impact on the reliability since it may 

affect the location of the potential failure surfaces which define the level of variance 

reduction exhibited in different random fields. 

 

B. Sensitivity of the Reliability of 2:1 Clayey Slopes to the Random Field of Su 

 As mentioned earlier in the previous section, various FS and COVs of Su were 

analyzed for different clay sensitivities. The first case investigated in this section 

represents that of a 2:1 run/rise slope or equivalently a 26.7ᵒ slope angle. 

 

1.  Effect of the Correlation Length – Case of No Lower-Bound 

 The 2:1 slope presented in Fig. 4.1 is further analyzed in order to illustrate the 

sensitivity of the reliability of the slope to the spatial variability of Su for the 

conventional case that does not include a lower-bound shear strength in the formulation 

of the random field of Su. In a first attempt to show this effect, the horizontal correlation 

length is fixed at δx = 40 m while the vertical correlation length is varied from 2 to 20 
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m. The sensitivity of the probability of failure to the assumed vertical correlation 

distance is presented in Fig. 5.1 for the case involving a COV Su 0f 0.5 and for different 

assumed factors of safety.  

 

Fig 5.1: Probabilities of Failure versus Sensitivity of Clay for Different Vertical Correlation Length; FS and COV 

Held Constant 

 

 Results on Fig. 5.1 indicate that the assumed vertical correlation distance could 

have a significant impact on the probability of failure of the slope, particularly for larger 

factors of safety. For example, the probabilities of failure that is associated with a 

typical design factor of safety of 1.5 decreases from 20% for the case with a large Өy of 

1.0 to a value as low as 2% for the case with a Өy of 0.1. This order of magnitude 

decrease in the probability of failure as Өy decreases from 1.0 to 0.1 is a direct result of 

variance reduction in the undrained shear strength due to averaging along the failure 
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surfaces. It should be noted that for the particular case of the slope analyzed in this 

study (H = 20 m), the normalized vertical correlation distance Өy is more likely to be 

between 0.1 and 0.3 (marked in red in Fig. 5.1), since the likely range of correlation 

distances for Su is between 2m and 6m (Phoon 1995).  

 

2.  Effect of the Correlation Length – with Lower-Bound Shear Strength 

 To investigate the impact of incorporating a lower-bound shear strength in the 

different Su random fields, the probability of failure of the 2:1 slope was calculated for 

two design factors of safety (FS = 1.3 and FS = 1.5) assuming clay with sensitivities 

ranging from 1.5 to 4.0. A clay with a sensitivity as large as 4.0 is expected to have a 

relatively small remolded strength, yielding lower-bound values that are too small to 

have an impact on the reliability of the slope. On the other hand, the left hand tails of 

the probability distribution of Su for clays with sensitivities that are close to 1.5 will be 

significantly truncated due to the presence of the lower-bound undrained shear strength 

leading to increased reliability levels (smaller probabilities of failure) for the slopes 

under consideration.  

The calculated probabilities of failure are presented in Fig. 5.2 as a function of 

the sensitivity of the clay. As expected, results indicate that the probability of failure of 

the slope decreases as the sensitivity of the clay decreases.  Irrespective of the factor of 

safety, as the vertical correlation length is decreased, the effect of the lower bound 

seems to become more pronounced. Consider the example of FS =1.3. At a sensitivity 

equal to 3, the case of θy=1 (δy=20 m) resulted in a probability of failure of 34.8% 
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compared to 23.9% for the case of θy= 0.15 (δy=3 m). If the sensitivity is decreased 

further to a value of 1.75, pf decrease slightly to a value of 7.4% at θy=1 compared to a 

very significant decrease to 0.19% at θy=0.15.  Finally, a comparison between Figs. 5.2a 

(FS = 1.3) and 5.2b (FS = 1.5) indicates that the positive effect of the lower-bound shear 

strength on the reliability is exhibited at larger sensitivities for the case of FS = 1.5, 

irrespective of the correlation length adopted.    

 

Fig 5.2: Probabilities of failure Versus Sensitivity of Clay for Different Vertical Correlation Lengths for (a) FS = 1.3 

and (b) FS = 1.5. 

  

 The effect of the horizontal correlation length x is investigated in Fig 5.3 for the 

2:1 slope assuming a constant θy=0.1 while varying x from 20m to 100m. Results are 

shown for the case of a COV Su of 0.5 and for factors of safety of 1.3 and 1.5. Results 

on Fig. 5.3a for FS = 1.3 indicate that the probability of failure is significantly affected 
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by the presence of the lower-bound irrespective of the assumed horizontal correlation 

distance. In fact, results show that the relationship between the probability of failure and 

the sensitivity of the clay is not significantly affected by the adopted horizontal 

correlation length. For the case of FS = 1.5 (Fig. 5.3b), the relationship between pf and 

clay sensitivity seems to be more affected by variations in x, where higher probabilities 

of failure were observed for higher horizontal correlation distances. However, a 

comparison between Figs. 5.2 and 5.3 indicates with certainty that the vertical 

correlation length governs the probability of failure.  

 

Fig 5.3: Probabilities of Failure versus Sensitivity of Clay for Different Vertical Correlation Lengths (a) FS  =1.3 and 

(b) FS = 1.5 

 

Griffiths et al. (2009) attribute the smaller probabilities of failure that were 

observed for cases with smaller correlation lengths to the fact that relatively smaller 
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correlation lengths of Su lead to weak and strong zones of soil that vary rapidly over 

short distances of the slope. In these cases, the preferred failure mechanism tends to be 

global and occupies wider zones of the soil field, leading to significant variance 

reduction along the failure zones due to averaging. On the other hand, as the correlation 

lengths increase, the failure mechanism is attracted to “local pockets” of weak soil and 

occurs on a reduced width. If the failure mechanism occurs locally, it has more 

opportunities to fail at different locations along the slope length which naturally leads to 

higher pf. Figs. 5.4 and 5.5 show failure mechanisms associated with two cases of 

smaller (δx= 40 m, δy=2m) and larger (δx=100 m, δy=2m) correlation lengths of Su. The 

failure surface traverses a wider zone of the soil slope for the case of lower correlation 

distances (Fig 5.4) and a much shorter and localized failure surface for the case of high 

correlation lengths (Fig. 5.5). 

 

Fig 5.4: Failure Mechanism for the case of δx=40 m, δy=2m – FS=1.3 and COV=0.5 
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Fig. 5.5: Failure Mechanism for the case of δx=100 m, δy=2m – FS=1.3 and COV=0.5 

 

3. Effect of the COV of Su on the Reliability of the Slope  

 The effect of the COV of Su on the reliability of spatially random slopes is 

illustrated in Fig. 5.6 for cases involving a 2:1 slope with a representative horizontal 

correlation distance δx = 40 m and a variable normalized vertical correlation length θy 

that varies from 0.1 to 1.0. For the two cases where the COV was varied from 0.3 to 0.5, 

results on Fig. 5.6 indicate the probability of failure of the slope for the case where no 

lower bounds are included in the analysis is highly sensitive to the COV of Su, with 

significantly lower probabilities of failure exhibited in the case of COV = 0.3. The 

difference in the probability of failure for the two COV cases increases for cases with 

larger design factors of safety and smaller vertical correlation distances.  
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Fig 5.6 Probabilities of Failure versus Sensitivity of Clay for COV Su = 0.3 and 0.5. 

  

 When a lower-bound shear strength is included in the analysis, a comparison 

between the cases where the COV = 0.3 and 0.5 (Fig. 5.7) indicates that that for clays 

with high sensitivities (lower bound does not affect the reliability), the probabilities of 

failure for the cases involving a COV of 0.3 are relatively small compared to the case 

with a COV of 0.5. However, in the case where the COV of Su is taken as 0.5, the effect 

of the lower-bound shear strength is exhibited early on at higher values of clay 

sensitivity. More importantly, the lower bound in the case of a COV of 0.5 is more 

effective at reducing the probability of failure for any vertical correlation distance and 

any clay sensitivity.  These results are important since they indicate that the 

incorporation of the lower-bound capacity in the reliability of spatially random slopes 
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increases the reliability of the slope, particularly for cases studies that exhibit large 

variabilities in the undrained shear strength Su. 

 

Fig 5.7 Effect of Lower-Bound Shear Strength on the Probability of Failure for (a) COV = 0.3 and (b) COV = 0.5. 

 

C. Effect of the Inclination Angle of the Slope on the Reliability 

 In the previous analyses that were conducted in this study, a  slope with an angle 

of inclination of 2:1 was used as a basis for studying the impact of the lower-bound 

shear strength and the correlation distances on the reliability of spatially variable 

undrained slopes. In all the analyses, the factor of safety was varied by varying the 

mean of the undrained shear strength of the slope while keeping the geometric 

characteristics of the slope fixed (H = 20m, slope angle is 2:1). From a deterministic 
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design perspective, the factor of safety of an undrained slope is dependent on the 

undrained shear strength and unit weight of the clay, in addition to the angle and height 

of the slope. As a result, the same factor of safety could be obtained for two different 

slope angles by changing the value of the undrained shear strength, despite the fact that 

the two critical failure surfaces for the two slopes will be different.  

 From a reliability-based design perspective, it is hypothesized that the 

probability of failure of two slopes that are designed with different angles of inclination 

but have the same factor of safety could be different. The hypothesis is based on the fact 

that although the two slopes have similar factors of safety, they may have failure 

surfaces of different lengths and orientations. As a result, it is expected that if the two 

slopes are analyzed in the context of the RFEM, even of identical correlation distances 

are assigned to the two slopes, the resulting probability of failure could be different due 

to the different magnitudes of variance reduction along the different failure surfaces. As 

a result, the findings of the previous sections which were based on a slope angle of 2:1 

might not be generalized to any other slope orientation even if the slopes are designed to 

the same factor of safety. 

 To test the above hypothesis, the reliability analyses that were conducted in the 

previous section were repeated for the case of a slope angle of 1:1 (i.e. 45 degrees 

instead of 26 degrees). Fig. 5.8 shows the geometry of the 45 degree slope. The height 

of the slope is maintained at 20 m and the unit weight is maintained at 20 kN/m
3
. 



86 
 

 

Figure 5.8: Geometry of the slope analyzed for a 1:1 Slope Angle. 

 

 The mean undrained shear strength was computed for every factor of safety 

considered in the first set of analyses. As mentioned above, the main objective behind 

conducting the same analyses on another slope angle was to investigate the likelihood of 

obtaining the same probabilities of failure when considering the same factors of safety. 

 

1. Effect of the Slope Angle – Case of No Lower-Bound 

 The variations of the probability of failure of the slope with the design factor of 

safety is presented on Fig. 5.9 for the 1:1 slope and the 2:1 slope for comparison. 

Results are presented for the case of a COV of Su of 0.5, a typical horizontal correlation 

distance of 40m, and a variable normalized vertical correlation distance θy without 

incorporating the lower-bound shear strength in the analysis. 
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Figure 5.9: Probabilities of Failure versus FS of Clay for Different FS and Vertical Correlation Lengths for Slope 

Angles of 26.7ᵒ versus 45ᵒ. 

 

 As expected, results on Fig. 5.9 confirm the hypothesis that the probability of 

failure of a spatially random clayey slope is affected by the angle of inclination of the 

slope even for the same factor of safety. The steeper slope angle resulted in higher 

probabilities of failure for the same factor of safety. For instance, at an FS=1.5 and 

θy=0.1, the 2:1 slope yields a failure probability 1.7 % while the 1:1 slope yields a 

slightly higher probability of failure of 4.3%. As the factor of safety increases, the 

difference in the probabilities recorded for the different slope angles increases. For the 

same example of θy=0.1, as FS increases to 1.7, the pf values become 0.05 % and 0.227 

% for the 26.7ᵒ and 45ᵒ slopes, respectively. It should be noted that as the vertical 
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correlation distance increases, the calculated probabilities failure become less sensitive 

to the angle of the slope provided that the factor of safety is held constant.  

The sensitivity of the probability of failure to the angle of inclination of the 

slope could be attributed to the averaging effect that occurs along the critical slip 

surface and the associated variance reduction that governs the probability of failure. 

Vanmarcke (1983) proposed a practical approximation for the variance reduction factor 

that accompanies the averaging process as follows:  

 

             ⁄   for                   (Eq.5.1) 

 

Where,    is the vertical scale of fluctuation (estimated as the correlation distance) and 

   is the length of the averaging interval which designates the failure surface length in 

the case of a soil slope. Although this equation considers only variance reduction due to 

the vertical correlation component of the random field, it could explain the small 

increases that were observed in the probabilities of failure between the two slope angles. 

For the shallower 2:1 slope, the length of the failure surface for the deterministic case 

could be estimated to be around 122 m, while the length of the failure surface in the 1:1 

slope was around 104 m.  The 2:1 slope angle is hypothesized to have resulted in lower 

probabilities of failure due to the higher variance reduction due to averaging along its 

relatively longer failure surfaces.   
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2. Effect of the Slope Angle – with a Lower-Bound Shear Strength 

 The analysis conducted in Section 5.3.1 is repeated for the cases where the 

lower-bound capacity is included in the random field of Su. The analysis is conducted 

for the case of the 1:1 slope angle and the resulting probabilities of failure assuming 

clay sensitivities ranging from 1.5 to 4 and design factors of safety of 1.3, 1.4 and 1.5 

are presented with the results obtained from the shallower 2:1 slope in Fig. 5.10.  The 

results on Fig. 5.10 pertain to the a COV=0.5 for Su and correlation lengths of (a) 

δx=40m and y =0.1, (b) δx =40m and y =0.15m, (c) δx =100m and y = 0.1 and (d) δx 

=40 m and y =1.0.  

The results on Fig. 5.10 indicate that for all the correlation cases adopted, the 1:1 

slope (45ᵒ angle) show higher probabilities of failure compared to the 2:1 slope (26.7ᵒ 

angle) for any fixed factor of safety. The difference in the probabilities of failure is 

found to be the highest for cases with the less correlated Su structure (δx=40m and y 

=0.1) and the largest design factor of safety of 1.5. On the other hand, the smallest 

differences are for highly correlated Su structures (δx=40m and y =1.0) and the lowest 

factors of safety. More importantly, the difference in the calculated probabilities of 

failure for the two slopes tends to become significant as the clay sensitivity decreases.  

For example, for the case of (δx=40m and y =0.1) and the largest design factor of safety 

of 1.5, the probabilities of failure for the case of a sensitivity of 4.0 increases slightly 

from 1.0% to 2.5% when the slope angle is increased from 2:1 to 1:1. On the other 

hand, the probability of failure increases by almost an order of magnitude (0.01% to 

0.1%) for the case of a clay sensitivity of 2.25. For the more correlated Su structures 
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(δx=40m and y =1.0). The difference between the pf calculated in the 2:1 slope and 1:1 

slope still increases with smaller sensitivities at a smaller scale. 

 

Figure 5.10: Probabilities of failure versus sensitivities for 1:1 and 2:1 slope angles and FS=1.3, 1.4 and 1.5 (a) 

δx=40m and δy =2m, (b) δx =40m and δy =3m, (c) δx  =100m and δy.= 2m and (d) δx =40 m and δy  =20 m. 
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CHAPTER 6 

DESIGN RECOMMENDATIONS 

 

 The results presented in Chapter 5 indicate that the probability of failure of an 

undrained clayey slope is expected to be affected by the design factor of safety, the 

properties of the random field of Su (COV, θy, and x), the sensitivity of the clay, and 

the geometry of the slope. It is thus anticipated that different factors of safety will be 

required to yield a target level of reliability in the design of the slope.  

 In this chapter, an attempt is made to recommend factors of safety that would 

result in target probabilities of failure for spatially random clayey slopes for the case 

where the COV of Su is equal to 0.5. Required factors of safety are recommended for a 

practical target probability of failure of 1%. The sensitivity of the resulting factors of 

safety to the assumed target probability of failure, vertical and horizontal correlation 

distances and inclination of the slope is investigated. The required factors of safety were 

calculated by utilizing the results of the reliability analyses conducted in Chapter 5 in 

addition to several additional analyses which were required to supplement the existing 

data to be able to produce the recommended design curves.  

D. Required Factors of Safety for 2:1 Slope and Target pf of 1% 

 The factors of safety that are required to achieve a target probability of failure of 

1% for the 2:1 slope for cases where the random field of Su is defined by an average 
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horizontal correlation distance of 40m were calculated and plotted in Fig. 6.1 for 

different normalized vertical correlation lengths. The results were plotted in the form of 

curves that relate the required factor of safety to the clay sensitivity for a fixed vertical 

correlation length.  These curves allow the user to the select the design factor of safety 

needed to achieve slope designs with a probability of failure of 1% given information 

regarding the vertical correlation length and the sensitivity of the clay. 

 Results on Fig. 6.1 indicate that design factors of safety in the range of 1.5 (θy = 

0.1) to 1.9 (θy = 0.5) are required to achieve the desired reliability level for cases 

involving clays of relatively high sensitivity, where the impact of the lower-bound shear 

strength on the reliability is expected to be minimal. More importantly, results indicate 

that the required factor of safety decreases as the sensitivity of the clay decreases. For 

example, for a typical normalized vertical correlation distance of θy = 0.1, the required 

factor of safety decreases from about 1.5 for the case where the sensitivity of the clay is 

high (~ 5.0) to a value of 1.3 for the case with a typical clay sensitivity of 2.0. For more 

correlated random fields of Su (example θy = 0.5), a more significant reduction in the 

required FS is observed with FS values decreasing from 1.9 to 1.5 as the clay sensitivity 

is decreased from around 5.0 to 2.0.  

 The results point to the importance of including a lower-bound shear strength 

that is based on the clay sensitivity in the slope stability design problem. Information 

about the sensitivity of a clay can be obtained using simple and inexpensive field or 

laboratory tests (ex. field vane, torvane, minvane, and triaxial tests) or even from 

correlations with other index properties (ex. the liquidity index). By including the 

remolded undrained shear strength of the clay as a lower-bound for the uncertainty in 
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Su, reduced factors of safety could be adopted in the design of a slope without 

sacrificing any additional risk. In other words, for a given slope design, slopes with 

steeper angle or larger heights could be adopted while maintaining the target reliability 

level for the slope design.  

 

Figure 6.1: Required Factors of Safety versus Sensitivity for 2:1 Slope with δx = 40 m and COV=0.5 (design charts 

for target Probability of Failure of 1 %). 

 

 The analysis presented in Fig. 6.1 was repeated for the cases where the vertical 

correlation distance was fixed at θy = 0.1 while varying the horizontal correlation 

y = 30m to 100m. The resulting design factors of safety that would yield 

the target probability of failure of 1% are presented in Fig. 6.2. 
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 Figure 6.2: Required Factors of Safety versus sensitivity for 2:1 Slope with ϴy = 0.1 and COV=0.5 (design 

charts for target Probability of Failure of 1 %). 

 

 Compared to the results of Fig. 6.1 where the vertical correlation length was 

varied, it could be observed that the required factor of safety on Fig. 6.1 is not sensitive 

to horizontal correlation distance as much as it was for the vertical correlation distance. 

For example, for the case of clays with relatively high sensitivities (minimal lower-

bound effect), the required FS is shown to vary in the narrow range of 1.5 to 1.55 as the 

horizontal correlation distance is varied from 30m to 100m. This range of FS is much 

smaller than the range of 1.5 to 1.9 which was observed for the case where the vertical 

correlation distance was varied between 2m and 10m.  

 As was the case in Fig. 6.1, results in Fig. 6.2 also point to the important role 

that the lower-bound could play in decreasing the required factor of safety. In fact, it 
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could be concluded from the data on Fig. 6.2 that factors of safety as small as 1.3 could 

be used to achieve the desired reliability level if the clay has a sensitivity in the order of 

2.0. This observation is unaffected by the value of the horizontal correlation distance 

adopted in the design (see Fig. 6.2).   

 

E. Effect of Target Reliability Level on the Required Factors of Safety 

 To illustrate the impact of the target reliability level on the required factors of 

safety, cases where a probability of failure of 5% is targeted were analyzed for the 2:1 

slope for the realistic case of y = 40m. The required factors of safety for cases 

involving normalized vertical correlation distances of 0.15 and 0.50 were determined 

and plotted on Fig. 6.3 together with associated results pertaining to the cases where the 

lower probability of failure of 1% was targeted.   

 As expected, results on Fig. 6.3 indicate that lower factors of safety are needed 

to ensure slope designs with probabilities of failure of 5%. For the case of clays with 

high sensitivity (minimal lower bound effect), the required factors of safety decrease 

from 1.9 to 1.7 (for θy = 0.15) and from 1.6 to 1.5 (for θy = 0.5) as the target probability 

of failure is increased from 1% to 5%. For cases with relatively lower clay sensitivities 

(ex. sensitivity = 2.0), the reduction in the magnitude of the required factor of safety for 

higher probabilities of failure (pf = 5%) becomes less. It is worth noting that even for a 

relatively high target probability of failure of 5%, the required factor of safety is 

observed to be very sensitive to the assumed value of the clay sensitivity, with 
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significant possible reductions in the required factor of safety due to the incorporation 

of a relatively high lower-bound shear strength (low sensitivity) in the reliability 

problem.  

 

Figure 6.3: Required Factors of Safety versus sensitivity for 2:1 Slope with x = 40m and COV=0.5 (design charts for 

target Probabilities of Failure of 1% and 5%). 

 

F. Effect of Slope Angle on the Required Factors of Safety 

 Since the probability of failure of a slope was shown in Chapter 5 to be slightly 

sensitive to the adopted slope angle, required factors of safety were determined and 

compared for the 2:1 slope and the 1:1 slope in Figs. 6.4 and 6.5. In Fig. 6.4, required 

factors of safety are shown for a fixed x of 40m, for the two cases with a vertical 

normalized correlation distance θy of 0.1 and 0.25. In Fig. 6.5, similar results are 
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presented for the case with a fixed θy = 0.1 and x of 40m and 100m. All results are 

shown for the case where the COV of Su = 0.5. 

 Results on Figs. 6.4 and 6.5 indicate that the slope angle has an slight effect on 

the required factor of safety, particularly for cases involving clays of high sensitivity 

(greater than 3.0) where the required factor of safety is found to increase by an 

increment of 0.1 (1.5 to 1.6 for θy = 0.1 and 1.7 to 1.8 for θy = 0.25) for the steeper 1:1 

slope. The differences in the required factors of safety become less as the clay 

sensitivity decreases to about 2 where the difference between the required factors of 

safety in the two slopes becomes small, particularly for the higher θy of 0.25.  Similar 

results are observed in Fig. 6.5 where the horizontal correlation distance is increased 

from 40m to 100m, with relatively small differences being observed in the required 

factors of safety, particularly for high sensitivity levels. 

 

Figure 6.4: Required Factors of Safety versus sensitivity for 1:1 and 2:1 Slopes with x = 40m and COV=0.5 (design 

charts for target Probabilities of Failure of 1%). 
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Figure 6.5: Required Factors of Safety versus sensitivity for 1:1 and 2:1 Slopes with θy = 0.1 and COV=0.5 (design 

charts for target Probabilities of Failure of 1%). 
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CHAPTER 7 

CONCLUSIONS 

 

 The RFEM was utilized in this study to investigate the effectiveness of 

incorporating a physical lower-bound shear strength in the probability model describing 

the uncertainty in the undrained shear strength of a clayey slope. The basis for the 

existence of the lower bound shear strength is the fact that the remolded undrained shear 

strength of a clay constitutes the minimum possible value of strength for that particular 

clay. The remolded strength is reflected in the sensitivity of the clay which generally 

varies from 1.5 to 4 in clays of low to average sensitivity. 

In addition, RFEM was performed to investigate the sensitivity of the reliability of the 

slope to the random field characterizing the spatial variability of Su. Typical ranges of 

the correlation length were considered while mapping anisotropic fields to the generated 

mesh. The anisotropy was represented by horizontal correlation lengths ranging from 20 

to 100 m and vertical correlation lengths ranging from 2 to 20 m.  Results of the 

reliability analysis in which the mean, COV and correlation lengths of the undrained 

shear strength in addition to the sensitivity of the clay were varied lead to the following 

major conclusions: 

1. For the example undrained slope problem that was utilized in this paper,  

slopes that are spatially variable have a smaller probability of failure 

compared to slopes that are homogeneous, assuming a given design factor of 
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safety. As the correlation distances decrease, the probabilities of failure of the 

slope were also found to decrease. This result is expected given the spatial 

averaging and variance reduction that are expected to occur in the spatially 

variable slope. 

2. The incorporation of a lower-bound shear strength in the reliability analysis 

could have a significant effect on the risk of failure of the slope. The effect is 

confined to reducing the probability of failure and is more significant in cases 

involving spatially random soils with relatively higher factors of safety and 

higher COVs of Su. The reduction in the probability of failure increases as the 

sensitivity of the clay decreases and could reach orders of magnitude for 

sensitivities in the order of 1.5. This reduction in the probability of failure in 

the presence of a lower-bound shear strength is attributed to eliminating 

unrealistically low shear strength values that are theoretically lower than the 

lower-bound shear strength. This reduces the number of cases that fail in the 

Monte Carlo simulations thus reducing the probability of failure of the slope.  

3. The effect of the lower-bound Su is more pronounced whenever spatial 

variability is increased and that is due to the rapidly changing weak and 

strong zones of soil over short distances of the slope field for which the 

preferred failure mechanism tends to be global (occupies wide zones of the 

soil field). As the correlation length is increased, the preferred mechanism is 

attracted to “local pockets” of the weak soil and as a result occurs on a 

reduced width. If the failure mechanism occurs locally, it has more 

opportunities to fail at different locations along the slope length direction 

which naturally leads to higher pf. 
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4. The geometry effect was analyzed by changing the slope angle. It could be 

said that the increase in the slope angle leads to slightly higher probabilities 

of failure and this can be attributed to the averaging effect that occurs along 

the critical slip surface. Smaller lengths of the failure surface were obtained 

for the steeper slope angle, leading to smaller variance reduction in the COV 

characterizing the average undrained shear strength.  

5. Finally, it could be concluded based on the reliability analyses conducted in 

this paper that for a given target reliability level, the required factor of safety 

of a slope could be decreased as the lower-bound shear strength is increased 

in the reliability analysis and as the slope angle and correlation lengths are 

decreased.  

  

 It should be noted that in all the analyses conducted in this research study, the 

only source of uncertainty that was incorporated in the analysis was the uncertainty in 

the undrained shear strength su. In addition, no effort was made to incorporate the effect 

of the model uncertainty in the reliability analysis. The model uncertainty is always 

present in geotechnical engineering problems and is expected to add to the total 

uncertainty in the slope stability predictions. Combining model uncertainty and 

uncertainty due to spatial variability in soil properties is the subject of another research 

study that is currently being implemented at the American University of Beirut. 
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Appendix A – Results of Reliability Analysis for 1:1 Slope 

 

Fig A-1 Probabilities of Failure versus FS of Clay for Different Vertical Correlation Lengths; FS =1.3 and COV = 0.3 

and 0.5. 

 
Figure A-2: Probabilities of Failure versus Sensitivity of Clay for COV=0.5, δx=40 m, 

 δy varied between 2 and 20m; FS = (a) 1.3 and (b) 1.5.  
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Figure A-3: Probabilities of Failure versus Sensitivity of Clay for COV=0.5, δy= 2 m,  

δx varied between 20 and 100 m; FS = (a) 1.3 and (b) 1.5.  
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