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AN ABSTRACT OF THE THESIS OF 

 

 

 
Sobhi Mohammad Takkoush       for   Master of Engineering 
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Title: The Performance of ILU (0), SPAI, and AINV as Smoothers in an Algebraic 

Multigrid Solver 

 
Incomplete LU decomposition with no fill-in ILU (0) has been used as a 

standard smoother with algebraic multigrid solvers in many applications. With recent 

developments new techniques have emerged following the sparse approximate inverse 

approach. Methods like Sparse Approximate inverse (SPAI) and AINV have been 

implemented as preconditioners but rarely as smoothers. In this work, the ILU (0), SPAI 

and AINV will be implemented as smoothers in both scalar and block versions within 

an algebraic multigrid solver. A comparative assessment of the performance of these 

techniques as smoothers in an algebraic multigrid solver will be performed in the 

context of a finite volume discretization method. The smoothers are implemented in 

uFVM, an in-house MATLAB® based CFD code, then in an open source CFD toolbox 

OpenFOAM®. The results of SPAI in uFVM show how it is computationally expensive 

and not robust, thus it was not considered in OpenFOAM®. Using OpenFOAM®, two 

turbulent fluid flow test cases with high aspect ratio are used to compare the smoothers. 

Residual convergence rates, number of iterations as well as CPU time are used to 

evaluate the performance. For segregated flow solver, AINV and ILU (0) show 

robustness having same convergence rate, number of iterations and CPU time with 

slight difference; however, ILU (0) outperforms AINV in every aspect for coupled flow 

solver.   
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CHAPTER I 

INTRODUCTION 

 

Systems of linear algebraic equations naturally occur in many fields in 

Engineering such as in dynamics, electric circuits and structural analysis. 

Advancements, improvements and innovations in computers made it possible to solve 

very large systems of algebraic equations in quick and accurate manners. This progress 

has not only allowed engineers and scientists to solve and handle complex problems, but 

has also encouraged them to use linear systems to solve problems in fields where they 

do not naturally occur as in fluid dynamics, chemical processes, heat transfer, stress-

strain function, thermodynamics and a lot more. Even nonlinear systems can be treated 

as linear systems and solved iteratively which is considered a useful technique in 

analyzing complex systems. Among others, the numerical solution of the conservation 

equations governing fluid flow and transfer phenomena problems, using the finite 

volume method, is reduced to solving large systems of algebraic equations. Indeed most 

of the computational power required to solve these problems is spent on solving the 

arising algebraic systems. Therefore the development of efficient techniques for solving 

these systems is critical to the size of problems that can be tackled and to the time 

needed for solutions to be obtained with these methods. 

Techniques for solving algebraic systems of equations are grouped under two 

categories denoted by direct and iterative methods. Direct methods are not suitable for 

very large systems that arise in CFD applications due to their prohibitive storage and 

computational power requirement and the use of iterative algebraic solvers is the norm. 
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While requiring low storage, the rate of convergence of iterative methods 

drastically deteriorates as the size of the algebraic system increases. This problem is 

more critical in highly compressible systems such as turbo machinery, supersonic flow, 

anisotropic diffusion and others where an ill-conditioned and weakly diagonally 

dominant matrix A arises which leads to large Eigen values and breakdown in 

convergence rate of the solution. This has constituted a severe limitation for iterative 

solvers. The development of multigrid methods remedied this weakness. The idea 

behind multigrid methods is to solve the system of equations on a hierarchy of grids.  

Since iterative solvers are capable of removing oscillatory errors but not the smooth 

components of the error, solving on successively coarser grid errors that are smooth on 

a fine grid will look more oscillatory on a coarser one and thus are easier to be removed 

by the iterative solver. This is why these iterative solution methods are denoted by 

smoothers in the context of multigrid methods.    

 

A. Background 

This section includes a brief overview of linear algebraic systems of equations, 

discretization process, preconditioning and solutions of algebraic equations. This 

background is important for understanding the context of this research. 

 

1. General Transport Equation 

The governing equations of interest in this work are the ones representing 

conservation of mass, momentum, energy, and related transfer phenomena. For a scalar 

variable, the general transport equation can be written as 
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             (    )                                                                              (1.1) 

where   is the density, v is the velocity vector,    is the diffusion coefficient, and    is 

the source term. The meanings of     and    are specific to the modeled   equation. 

Replacing   by a certain variable to be solved yields different differential equations 

which describe certain physical or flow property.  

The Continuity Equation:             

 
  

  
                                                                                                   (1.2) 

The Momentum Equation:               

     

  
                                                                                       (1.3) 

where              
 

 
      

The Energy Equation:     

     

  
                                                                                            (1.4) 

where h is the specific enthalpy, k the thermal conductivity and T is the temperature.  

The Species Equation:       

      

  
                                                                                               (1.5) 

where   is the density Yi is the mass of species i per mass of mixture, Γi the diffusion 

coefficient for Yi in the mixture and Ri is the rate of formation of Yi through chemical 

reactions. 

 

2. Systems of Algebraic Equations 
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A linear system of equations is a collection or set of two or more equations 

with the same set of variables. A system of n algebraic equations with n unknowns is 

expressed in a general form as 

                               

                               

                                      (1.6) 

                                                                           
                               

System of linear equations can be represented either by vector form or matrix form 

Vector form 
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Matrix form                                             

                                                                                                                             (1.7) 
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with A: n x n coefficient matrix, x: n vector of unknowns, b: n vector of constant terms 

Each system of linear equations has three properties [1]: 



5 

 

 Consistency ( A linear system is inconsistent if it has no solution, 

otherwise it is consistent). 

 The equations are independent if none of them can be derived from 

others. 

 Two linear systems are equivalent if equations in the second system can 

be derived from equations of first system. 

 

B. Solutions of Algebraic Linear Systems  

As mentioned above solution techniques to solve linear algebraic systems of 

equations [Eq. (1.7)] are generally classified as direct and iterative methods. Since for 

non-linear systems the coefficients need to be updated, direct methods are not attractive. 

Moreover iterative methods are more appropriate and suitable in terms of computational 

cost per iteration and memory requirements.  An overview of these techniques is given 

next. 

 

1. Direct Methods 

Direct methods solve the above system [Eq. (1.7)] in one step. This is done by 

inverting A to compute x  as  

                                                                                                                  (1.9)      

Some of the famous direct methods include: Gauss Elimination, LU 

decomposition, TriDiagonal Matrix Algorithm (TDMA) and PentaDiagonal Matrix 

Algorithm (PDMA). The last two are especially suitable for sparse, banded matrices. 

The resultant matrix A using the FVM is sparse with many zero entries, with its inverse 

being very expensive computationally requiring large memory. Thus the use of direct 
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methods in CFD is impractical and almost never employed because A is large and its 

elements (i.e., the coefficients) depend on the solution necessitating iterative updates. 

Moreover nowadays industrial CFD problems include hundreds of thousands to millions 

of cells/elements with more than 4 unknowns per cell; making A very large. 

 

2. Iterative Methods 

System of equations result from CFD analysis has two important and 

distinguishing characteristics: A is very sparse and the system is approximate. Direct 

methods do not take advantage of these two characteristics, that‟s why they are 

computationally expensive and require a lot of memory especially when dealing with 

non-linear system where update is required by outer iterations, thus they are not used in 

CFD applications. Even if sparse direct methods tend to work well for 2D PDE 

discretization, they scale more poorly for 3D problems [2]. On the other hand, Iterative 

methods are easily formulated to take advantage of the coefficient matrix sparsity. 

Iterative methods are widely used in CFD applications. These methods follow 

guess-and-correct methodology which gradually improves the guessed initial solution 

by forming a correction equation based on an estimate of the residual. First type of these 

methods are the Stationary iterative methods which include the Jacobi, Gauss-Seidel; 

Successive over-relaxation (SOR), and ILU which are widely used, simpler, easy to 

implement but not as effective as non-stationary iterative methods which are the other 

type. The other types are non-stationary iterative methods which involve data that 

changes at each and every iteration due to inner-products with residuals. They are based 

on the idea of orthogonalisation of vectors and subspace projections. These methods are 

known as Krylov iterative methods [3] which include Conjugate Gradient, Generalized 
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minimal residual method (GMRES), biconjugate gradient method, Orthomin and many 

others. 

The rate of convergence of iterative methods significantly decreases when size 

of algebraic system increases (coarse to fine mesh). Moreover, it will also decrease after 

removing initial errors (high frequency errors) leaving smooth errors on which these 

iterative methods are not very effective and the convergence rate stalls. This will require 

a large number of iterations for the solution to converge mainly because the location of 

Eigen values of the matrix is spread apart from each other [4]. Two important 

techniques are widely used to improve the performance and convergence of the iterative 

solvers which are pre-conditioning and Multigrid. The use of these techniques will 

cause the Eigen values to clump and cluster around (1, 0), thus accelerating the 

convergence rate. 

 

3. Preconditioning and Convergence of Iterative Methods 

To accelerate convergence of iterative methods, preconditioning is usually used 

whereby the original system is replaced by an equivalent system having the same 

solution but an improved condition number thus improving the condition of the matrix 

making it is easier to converge.  

Let‟s discuss preconditioning and how it affects convergence rate. The 

condition number (A) measures the sensitivity of the system with small change 𝛿 which 

is expressed mathematically as 

‖   𝛿 ‖
 
‖   𝛿 ‖

 
 ‖   𝛿 ‖

 
                                                                       (1.10) 
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A system of equations is considered to be well-conditioned if a small change in 

the coefficient matrix A or a small change in RHS vector of sources b results in a small 

change in the solution vector   [5] (i.e. system has low condition number) 

‖𝛿 ‖  ‖𝛿 ‖  ‖𝛿 ‖                                                                                       (1.11)    

A system of equations is considered to be ill-conditioned if a small change in 

the coefficient matrix A or a small change in RHS vector of sources b results in a large 

change in the solution vector  .(i.e. system has high condition number) 

‖𝛿 ‖  ‖𝛿 ‖  ‖𝛿 ‖                                                                                       (1.12) 

In Ill-conditioned system, the solution will diverge. One way to prevent 

divergence is under relaxation of solution  

    
               

             
                                                                       (1.13) 

where   is relaxation factor [0,1] 

Another complicated but effective way is based on the condition number of 

coefficient matrix (A) is preconditioning. 

Usually the coefficient matrix A has high condition number, so in order to have 

low condition number and ensure convergence, the system is transformed into a 

preconditioned one which has the same solution as original but with better condition 

number and spectral properties [6]. 

(M
-1 

A) < (A)                                                                                                              (1.14) 

where M is non-singular preconditioning matrix of A 

To solve      

Decompose A = L + D + U 
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                         = M + S 

where L,U are the lower and upper triangular sub-matrices of A, M is “large” 

accounting for most of A and S is “small”. 

Let k be the iteration number  

In iterative methods, at first iteration where k =1: 

The variable at first iteration is         

With residual          

Then for each iteration: 

                    

                 

To derive general form of preconditioned system: 

                   
                

                              

                                        

                                    

                           

                                                                                                                   (1.15) 

where                              and                                        
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Define the error/correction at step k to be  

                (                         

                

                       

                          

                             

                                                                                                                        (1.16) 

In linear Algebra, a matrix A has set of eigenvalues and eigenvectors such that 

                                                                                                                 (1.17) 

where              ,                

Eq. (22 & 23) can be written in terms of eigenvalues of preconditioning matrix 

P, since any variable   or e is a linear combination of eigenvalues of matrix P 

  ∑     
 
                                                                                                                (1.18) 

where c = constant, v= eigenvector and N = size of square matrix  

Since error is the difference between variables at iteration k and exact  

  ∑     
 
                                                                                                                (1.19) 

with           

but        ∑     
 
    

we get      ∑    
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but       

     ∑     
    

 
                                                                                                       (1.20) 

 For convergence: 

              

   
   

        
   

∑    
    

 

   

   

                        

A sufficient condition for convergence is when norm‖ ‖   . More precisely, 

convergence will occur when spectral radius                      is less than one [6]. 

 

4. Multigrid Methods 

Multigrid methods were independently introduced by Fedorenko [7] and 

Poussin [8] in the 1960s, and then it gained popularity with the work of Settari and 

Azziz [9], and later in the 1970s with the theoretical work of Brandt [10] who showed 

that iterative solvers are efficient at eliminating high frequency errors but inefficient at 

removing the low frequency or smooth component of the error. Iterative solvers are 

known as smoothers when used in multigrid algorithms due to their smoothing property. 

As can be seen in Figure 1, the error frequency varies from high frequency 

(short wave length  1) to low frequency (long wave length  5). It can be noticed how the 

high frequency error looks oscillatory over an element and can be easily detected and 

removed by the smoother, while the low frequency error is smoothed or spread over the 

entire domain and cannot be removed easily [6]. 
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Figure 1: Error Frequency modes in 1D Grid [6] 

The purpose of multigrid methods is to improve the convergence rate of 

iterative solvers by transferring the remaining low frequency errors (smooth errors) 

from a fine grid to a coarser grid where the low frequency error will appear as high 

frequency; making it easier for the smoother to detect the error and eliminate it, thus 

increasing the rate of convergence [11, 12, 13]. This is done through a hierarchy of 

coarse grids (Figure 2) where the smooth error is restricted to the coarse grid and then 

smoothed and transferred to a coarser grid and so on until the coarsest grid is reached. 

Then this correction is prolonged back to fine grids also with application of smoothers, 

until reaching the original finest grid. 
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Figure 2: A schematic grid systems hierarchy with MG approach [6] 

Multigrid methods are classified as Geometric Multigrid [7] and Algebraic 

Multigrid [8]. In geometric multigrid, cells of fine mesh are agglomerated to form a 

coarse grid. This approach is complex on unstructured grids since irregular shaped 

elements are difficult to agglomerate. In this work the Algebraic multigrid approach will 

be followed where the agglomeration process is purely algebraic based on the 

coefficients with no need for any geometric information. 

Let j be the level at which the solution is sought and GI the set of cells i at fine 

level j that agglomerate to form cell I at coarse level (j+1). 

The main steps of Multigrid (Geometric or Algebraic) are divided into two 

parts [6]. 

From fine to coarse grid: 

 Restriction: Error is transferred or restricted from fine to coarse grid 

where the residual at level (j+1) on agglomerated cell I becomes the summation of 

residuals of GI at level j that agglomerate to form the coarser one. 

  
     

 ∑   
   

    
                                                                                                     (1.21) 
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 System of equations updated for coarse level 

 Number of smoother iterations is applied 

From coarse to fine grid 

 Prolongation: Correction is transferred or prolonged from coarse to fine 

grid where the error at level (j+1) on agglomerated cell I is inherited to set  GI at level j. 

         
 

                                                                                                      (1.22) 

where     
 

 is prolongation operator or interpolation matrix 

   Solution variables are updated or corrected  

                                                                                                              (1.23) 

 Number of smoother iterations is applied 

Traditionally the Gauss-Siedel and ILU(0) [14,15] (Incomplete LU 

decomposition with no fill-in) iterative methods have been used as smoothers in the 

context of algebraic multigrid methods. The SPAI [16-22] and AINV 

[23,24,25,26,27,28] Sparse Approximate Inverse iterative methods have never been 

used for that purpose. The aim of the proposed work is to improve the performance of 

iterative solvers with preconditioning and Multigrid by implementing the ILU(0), SPAI, 

and AINV solvers as smoothers in an algebraic multigrid environment, an acceleration 

framework, in the context of the Finite Volume Method (FVM), and to evaluate and 

compare their performance in terms of CPU time by solving a number of three-

dimensional fluid flow problems using open source CFD software OpenFOAM. 
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CHAPTER II 

LITERATURE REVIEW 

 

This section gives an overview of popular smoothers with special focus on ILU 

(0), SPAI and AINV. It also includes the importance for using Sparse Approximate 

inverse methods as smoothers. 

Sparse approximate inverse methods are based on approximating the inverse 

matrix directly similar to polynomial preconditioning; however, the approximate inverse 

in polynomial preconditioning is available implicitly in the form of polynomial in the 

coefficient matrix A, while with sparse approximate inverse methods, the approximate 

inverse matrix M≈A
-1

 is explicitly computed and stored [29]. The preconditioning 

operation of these methods reduces to a matrix-vector product. These methods were first 

proposed in the early 1970s by Benson [30] and Frederickson [31], but they received 

little attention due to the lack of effective strategies for automatically determining 

nonzero pattern for the sparse approximate inverse. With new developments in these 

strategies, interest has been renewed.  

Two main reasons or motivations led to the development of these methods. 

First reason was the parallel processing. The second reason was that incomplete 

factorization techniques can fail in strongly non-symmetric and indefinite matrices due 

to instability in the factorization process itself or in the back substitution phase as shown 

by Chow & Saad [32]. This drawback has been eliminated in most approximate inverse 

methods even on serial processing. 
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A. Methods based on Frobenius Norm Minimization 

These methods were historically the first to be introduced among all categories. 

They are based on Frobenius norm minimization. Benson & Frederickson [33, 34] were 

the first to propose a sparse approximate inverse preconditioner in a static way by 

computing the norm of (AM-I) for prescribed priori chosen sparsity pattern for M. A 

common choice was that M has the same sparsity pattern as matrix A, but this has been 

proven not to be robust for general sparse problems and has high computational cost and 

storage.  

A more robust approach, for general sparse matrices is to start with a simple 

initial guess for the nonzero pattern of M (e.g. diagonal matrix) then successively 

augment or fill-in this pattern until a criterion of certain residual is reached. This 

approach was first proposed by Cosgrove et al. [16] where they suggested the initial 

structure of M to be diagonal. Same approach but with different augmentation strategies 

were also followed by Grote and Huckle [17] who introduced the SPAI preconditioner. 

A similar algorithm was reported by Gould and Scott [18] who introduced the same 

algorithm of SPAI but the optimal reduction of the residual is determined for the full 

minimization problem instead of the 1D minimization in SPAI making their algorithm 

more accurate but expensive. The serial cost of computing the preconditioner in the 

SPAI algorithm can be very high. To lower the cost, Chow and Saad [19] used an 

iterative method to reduce the residuals of each column of the approximate inverse by 

applying a dropping strategy whereby excessive fill-in in M during the augmentation 

process is removed; their algorithm is named Minimal Residual (MR). Grote and 

Bernard introduced in [20] a block version of SPAI. 
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Zhang [21] introduced an iterative form of SPAI where a thin M is derived in 

each step, making the Least Squares problems very cheap. Holland et al. [22] 

generalized this SPAI approach by allowing a sparse target matrix other than Identity 

matrix, which is useful for two-level preconditioning. Huckle and Kallishcko [35] 

generalized SPAI with the target approach which was developed into MSPAI (modified 

SPAI) [36] of an improved preconditioner by combining SPAI with the probing method 

of Chan and Mathew [37]. 

 

B. Factorized Sparse Approximate Inverses 

There are several approaches for calculating the factorized approximate 

inverse. One approach is to construct it directly from A without the need for any 

information about the triangular factors of A. This approach yields a class of methods 

like FSAI preconditioner which was introduced by Kolotilina and Yeremin [38] where 

they assumed A is SPD (Symmetric Positive Definite) matrix with sparsity pattern of 

nonzeros only in positions corresponding to nonzeros in the lower triangular matrix of 

A. Kaporin [39] followed the same method in [38] but considered the sparsity pattern of 

the lower triangular of A
k
 where k is an integer. This method is more sophisticated but 

more costly. FSAI can be made to solve nonsymmetric cases; but with no guarantee for 

the solvability of the local linear systems and the non-singularity of the approximate 

inverse. The advantage of FSAI is that it can be implemented in parallel [40, 41]. Its 

main disadvantage is the need for prescribed sparsity pattern of the approximate inverse 

in advance. 

Another method is based on incomplete bi-conjugation which was first 

proposed by Benzi [42]. This method was introduced for symmetric matrices [23] then 
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for non-symmetric ones [24] and was denoted as the AINV method. Then Block version 

of AINV was introduced [25] which proved to be more robust than scalar one. Unlike 

FSAI, this mehod (AINV) does not require the sparsity pattern to be known in advance 

and can be applied to general sparse matrices. Bridson and Tang [26] introduced the 

outer product version of AINV making it more robust. 

The third method to compute sparse approximate inverse preconditioner 

directly from coefficient matrix A is based on bordering. It was proposed by Saad [43] 

referred to as AIB. It differs from AINV in the computations for the inverse factors 

where they are tightly coupled. This method is perfectly suitable for symmetric cases, 

while it is not accurate for non-symmetric cases. Bru et al. [44, 45] proposed to compute 

the sparse approximate factors using Inverse of Sherman-Morrison (ISM). 

The main advantages of all factorized sparse approximate inverse methods is 

their lower cost and lower number of user defined parameters as compared to methods 

based on Frobenius norm minimization.  

 

C. Inverse ILU Techniques 

This class is considered among factorized sparse approximate inverse but it is 

based on two-stage process: first incomplete LU factorization (ILU) of A is computed 

using standard methods/techniques, and then ILU are approximately inverted [14, 15]. 

This class shares some advantages of the class in the previous section (factorized); 

however, it has several disadvantages like it assumes that ILU factorization has already 

been computed, and it won‟t work if the ILU factorization was unstable which is 

sometimes the case for highly non-symmetric, indefinite problems [32, 46]. For this 
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reason, it cannot be parallelized or in other words it limits the parallel efficiency of this 

class.  

 

D. Incomplete Factorization Methods 

Incomplete factorization methods were introduced in the 60‟s by Buleev [27] 

and Oliphant [28, 47]. The relation of incomplete factorization methods with matrix 

splitting was considered by Varga [48, 49] who provided a convergence analysis for M-

matrices. The first who introduced the term preconditioning was Evans [50] who also 

considered the use of sparse LU factors as preconditioner. These methods were of 

particular interest in the field of oil reservoir simulation, e.g. Stone [51] and Dupont-

Kendall-Rachford [52] who proposed approximate factorization method for elliptic 

problems. The major breakthrough was in mid 1970s by Meijerink and van der Vorst 

[53] who established, recognized and proved the existence of incomplete factorization 

for M-matirces and showed that preconditioning Conjugate Gradient, by using 

Incomplete factorizations, can result in efficient results. In their paper, they also 

introduced the ILU (0) which is the most basic form of ILU preconditioner. This article 

had a very important role in capturing the attention of researchers about the importance 

of this preconditioning technique. Moreover Kershaw [54] popularized this approach. 

There are several ILU methods that can be classified under two types [55]: a 

type that changes only the non-zero entry values in the preconditioning matrix obtained 

by ILU (0) which includes shifted ILU by Manteuffel [56] and modified ILU (MILU) 

by Gustafsson [57] based on the levels of fill-in concept for finite difference 

discretizations. The other type changes both non-zero entry structure as well as their 

value. The second type includes the work of Watts [58] who introduced ILU with k 
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extra diagonals like in [57] and generalized it using the definition of fill-in of high order 

ILU for unstructured matrices. This type also includes ILUT (Threshold) by Saad [59] 

and Crout ILU by Li, Saad and Chow [60] which allowed fill-ins only within certain 

ranges. 

Recently there has been a shift to use approximate inverse methods as 

smoothers in multigrid methods. Studies showed that they can be effective and robust 

smoothers for both algebraic and geometric multigrid. Broker et al. [61, 62] obtained a 

flexible and parallel AMG with SPAI as a smoother. Broker used finite-element 

discretization scheme in his work for convection-diffusion problems. Tang and Wang 

[63] also proved the effectiveness of SAI as a smoother in multigrid methods and 

compared results with Gauss-Seidel smoother using both finite element and finite 

difference discretization schemes. Meurant [64] extended AINV to multilevel 

preconditioner with PCG for solving SPD problems (a finite difference discretization 

scheme was used). 
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CHAPTER III 

THE FINITE VOLUME METHOD 

 

A. Introduction 

In fluid mechanics and heat transfer problems, FVM is widely used due to its 

conservative property. Finite volume method or sometimes called control volume 

method divides the geometrical domain into a finite number of discrete cells/elements or 

control volumes, over which on the integral of PDE with conservation of    will be 

applied in a discrete sense [65]. Thus FVM is considered as cell-based schemes since 

primary values are stored at each cell centroid. The volume integrals are then converted 

to surface integral by Gauss‟s divergence theorem (known as Green‟s theorem for 2D). 

In this proposal, FVM will be used, and an illustration example that will lead us to the 

set of discrete algebraic equation will be shown below. 

 

B. The Discretization Process 

The conservation equation given by Eq. (2.7) is discretized using the Finite 

Volume method. In this method the solution domain is decomposed into a set of non-

overlapping elements, as shown Figure 3a. Furthermore a cell-centered approach is 

adopted whereby variables are stored at the centroid of each cell. The governing 

equations are then integrated over each element (Figure 3b) to yield a system of 

algebraic equations that relate the value of    at the centroid of an element to its 

neighboring values, with the solution of this system of equations yielding the solution of 

the original problem.  
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Figure 3: (a) Discretized domain into non-overlapping elements [6], (b) Details of an 

element [6] 

 

The final algebraic equation is written as 

     ∑                   (3.1) 

               An equation similar to Eq. (3.1) is obtained at the centroid of every element in 

the domain. The collection of these equations forms a system, which in matrix form can 

be written as  

                                                                                                                             (3.2) 

As explained above, the method used to solve the resulting system is the main 

concern of this work. 

 

1. Domain Discretization (Geometric Discretization) 

After Domain modeling, the domain needs to be discretized. This is done by 

mesh generation (Figure 4) which divides the domain into elements or cells or control 

volumes, then associates or assigns with each elements one or more discrete value of    

[66]. 
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Figure 4: Unstructured Mesh [6] 

The components of a mesh are cells or elements. Each cell has its own cell 

centroid. Moreover each cell is surrounded by faces which meet at nodes or vertices as 

shown in figure 5 & 6. 

 

Figure 5: Mesh Terminology for 2D [6] 
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Figure 6: Mesh Terminology for 3D [6] 

All elements have the same shape to be set at meshing stage. Below figure 

shows typical element shape used. 

 

Figure 7: Typical Element Shapes [6] 

 

2. Equation Discretization 

After the physical modeling and setting up the partial differential equations 

(mathematical modeling) that describes the process, we need to convert the PDE to a set 
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of discrete algebraic equations using any of methods described below. This process is 

called Equation Discretization. Below is an illustration example that will lead us to the 

set of discrete algebraic equations.  

Consider one-dimensional diffusion with a source term: 

 

  
( 

  

  
)                                                                                                              (3.3) 

In below figure is one-dimensional mesh, with cells with centroids W,P and E. 

According to FVM method, the discrete values of   will be stored there. The cell faces 

are w and e. 

 

Figure 8: One dimensional mesh 

Integrating the above differential equation at cell P:  

∫
 

  
( 

  

  
)  

 

 
  ∫    

 

 
                                                                                      (3.4) 

Then 

( 
  

  
)
 
 ( 

  

  
)
 

  ∫    
 

 
                                                                                  (3.5) 

Assume that   varies linearly between cells (profile assumption) 

Thus 

  
        

   
 

        

   
   ̅                                                                                    (3.6) 
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Collecting terms, we got 

                                                                                                        (3.7) 

with 

     
 

   
 

     
 

   
 

    ∑           

   ̅                                                                                                                         (3.8) 

Similar can be done and derived for the rest of cells (W and E), yielding a set 

of algebraic equations. Note that the integration of the equations over each element is 

referred to as local assembly; however, the construction of overall system of algebraic 

equation from these contribution is referred to as global assembly. 

Although Finite Element Methods can be applied to fluid problems by careful 

treatment to be conservative, it is more stable than FVM approach [67]; however, it 

requires more storage memory and has slower solution times than the FVM [68]. 

Applying the discretization process (using FVM) on General Scalar Transport 

Equation: 

     

  
                                                                                                   (3.9) 

By Divergence theorem 

∬
     

  
  

 
 ∮         

  
 ∮         

  
 ∬    

 
                                       (3.10) 
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∬
     

  
  

 
 ∑ ∫         

            ∑ ∫         
            ∬    

 
       (3.11) 

Applying above equation on each control volume will lead to discrete system 

of algebraic equations: 

     ∑                                                                                                   (3.12) 

Or in Matrix form: 

                                                                                                                (3.13) 
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CHAPTER IV 

ILU (0), SPAI AND AINV ITERATIVE SOLVERS 

 

In this section, we explain and describe the algorithms of the smoothers being 

used and implemented in this thesis which are ILU(0) , SPAI and AINV. In addition the 

algorithm of the accelerator ORTHOMIN is also explained. Note that smoothers are 

implemented and tested first on uFVM MATLAB then transferred to OpenFOAM. 

 

A. Smoothers Algorithms 

1. ILU (0) (Incomplete LU Factorization) Method 

A standard LU factorization of matrix A will lead to A=LU where L is lower 

matrix and U is upper matrix, however this has very high computation and storage cost. 

A more simple approach is an incomplete factorization of coefficient matrix A which 

will yield A=LU+r where r is the residual of factorization. In this section, algorithm of 

ILU (0) [53,69,70] will be described. In ILU (0) factorization can be performed using 

Gaussian elimination but the LU factors have the same nonzero patterns as in matrix A, 

so any new non-zero element arising in the process is dropped if it appears at location 

where zero element appear in A. 

After ILU (0) factorization of A, we can solve the linear system for the error at 

each iteration k: 

 Compute Residual                 

 Solve               by forward substitution 

 Solve               by backward substitution 
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 Update solution Solve                        

 Repeat until ‖    ‖
 

    where    is tolerance 

Below flowchart describes the process of ILU (0) algorithm 

 

Figure 9: ILU (0) Factorization flowchart 
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2. SPAI (Sparse Approximate Inverse) Method 

The SPAI algorithm used in this thesis is based on the one by Grote and Huckle 

[17]. Given sparse matrix       , the main idea of SPAI is to construct a sparse 

approximate inverse matrix M≈A
-1 

which is the solution of Frobenius norm 

minimization: 

 ‖    ‖ 
       

                                                                                                               (4.1) 

The main advantage of SPAI is its inherent parallelism since the Frobenius 

norm can be split into sum of Euclidean norm:  

‖    ‖ 
  ∑ ‖        ‖ 

  
    ∑ ‖      ‖ 

  
                                           (4.2) 

where mk and ek are the k-th columns of M and I respectively. 

The solution of (4.2) separates into n independent least squares problems 

 ‖      ‖             
                                                                                      (4.3) 

The main difficulty is determining the sparsity pattern/structure of M, or else 

the iterations will become expensive. The SPAI algorithm starts with fixed initial 

sparsity pattern    , e.g., diagonal sparsity pattern, then dynamically start augmenting 

the sparsity pattern of M (the approximate inverse) in an adaptive procedure to further 

reduce the residual    ‖      ‖   . As discussed before, start with initial sparsity 

pattern                          which contains set of indices which contains 

non-zero entries in column         such that mk is reduced into  ̂               . 

Let       ∑ |   |                  be set of indices which contains non-

zero rows of  A (: , J)) ( not identically zero). I is also referred to as the shadow of J. 

Remove zero entries from A,m and e to get 
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  ̂                  

  ̂                

  ̂                

Equation (4.3) is now reduced to  

 ‖ ̂ ̂   ̂ ‖ 
           ̂  

                                                                                      (4.4) 

In the original algorithm of SPAI, problem (4) is solved by QR decomposition, 

but since the reduced submatrix are all very small, normal equations will be used to 

solve the problem. 

 ̂  ( ̂     )
 
   ̂  ̂                                                                                               (4.5) 

After computing    ̂ , compute residual  ̂   ̂ ̂   ̂  and its norm  ‖ ̂ ‖  

 ‖ ̂ ̂   ̂ ‖ 
 , then check if it is less than or equal to epsilon       which is the 

tolerance set by the user which controls level of fill in and quality of M.  

If the residual norm is not less than or equal to epsilon, then we need to further 

decrease the approximate inverse residual by augmenting the sparsity pattern with new 

entries. This reduction in the residual is based on two steps: 

 Identification set of new candidates that are not in the current sparsity 

pattern 

 Selection of most profitable entries that will cause largest reduction in 

the residual 

To do this, set Lk which contains set of indices for which         . In all 

cases      ⋃     For each     , find an index Set Nl  which contains indices j of 
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non-zero elements of row A(, that are not in Jk yet. The potential new candidates to 

be added in sparsity pattern J are grouped into  

  ̅                                                                                                                            (4.6) 

From    ̅ , we should select most profitable indices that will cause largest 

reduction in the residual norm. This selection is done by considering the univariate 

minimization problem:  

 ‖ (        )    ‖ 
     

      ‖         ‖ 
     

                                                (4.7) 

With       , the solution of (4.7) is by derivate of (4.7) with respect to mjk 

 

    
‖        ‖ 

 
    

        ‖  ‖ 

 
   

This will give  

     
  

   

‖  ‖ 

                                                                                                                (4.8) 

The second derivative of  
  

   
  

‖         ‖ 

 
  ‖  ‖ 

 
  which is strictly positive, 

thus     will minimize the new residual norm. 

The norm    of the new residual obtained by adding new entry j in the sparsity 

pattern Jk becomes: 

  
  ‖        ‖ 

 
    

          
       

   
    

                                     ‖  ‖ 
   

   
    

 

‖  ‖ 

  +
   

    
 

‖  ‖ 

 ‖  ‖ 
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                                    ‖  ‖ 
  

   
    

 

‖  ‖ 

                                                        (4.9) 

For each     ̅, calculate the norm    of the new residual. After calculating al 

residual norms, calculate their averages then delete from   ̅ all but most profitable 

indices based on     ̅  where  ̅  is the mean of norms. To prevent dense inverse, 

from the reduced   ̅, keep only   number of indices which gives the largest reduction in 

residual.  

Next we update    with new indices in   ̅   such that        ⋃   ̅ , then 

calculate  ̂  again along with its residual until reaching required tolerance epsilon or 

maximum number of update iterations   is reached. Note that        ̅    . 

After applying SPAI algorithm and getting each column of approximate 

inverse M independently, apply smoothing step  

                                                                                                        (4.10) 

Note that above algorithm of SPAI yields right preconditioner. To get left 

preconditioner we shall use row version of SPAI where (1) becomes 

 ‖    ‖ 
       

                                                                                                             (4.11) 

In this thesis, row version of SPAI is implemented, and the resulted     is the 

k
th

 row of approximate inverse M instead of column. 

The above algorithm of SPAI is called         ; however, Broker et al.[61,62] 

introduced two simplified forms of SPAI with fixed sparsity patterns in their paper 

:which are SPAI-0 and SPAI-1: 

 SPAI-0: M=diag (mkk) is diagonal with     
   

‖  ‖ 
                  

 SPAI-1: The sparsity pattern J (M) = J (A) 
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Note that no pattern update is needed for SPAI-0 and SPAI-1; thus their 

implementation is simpler than         ; however, they can be used as initial guess 

for          

Below are the steps for SPAI algorithm (for every column    of M): 

 Input user defined parameters such as initial sparsity pattern Jk (It‟s more 

efficient to start with diagonal sparsity pattern), tolerance       , , and   .  

 Determine row indices Ik that correspond to non-zero rows in submatrix 

A( :, Jk) 

 Construct submatrix  ̂            ,  ̂           and  ̂           

such that Least squares problem is reduced to   ‖ ̂ ̂   ̂ ‖ 
           ̂  

    

 Calculate  ̂  by normal equations   ̂  ( ̂     )
 
   ̂  ̂      

 Compute residual  ̂   ̂ ̂   ̂  and its norm  ‖ ̂ ‖   ‖ ̂ ̂   ̂ ‖ 
 

 If   ‖ ̂ ‖        then break, else for iteration 1 to   : 

 Set Lk which contains set of indices for which          (   

  ⋃    ) 

 For each     : find an index Set Nl  which contains indices j of non-

zero elements of A(,:) that are not in Jk yet.  

 Set    ̅      

 For each     ̅, calculate the norm    of the new residual : 

     ‖ ̂ ‖ 
  

  ̂ 
         

‖      ‖
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 Delete from   ̅ all but most profitable indices based on     ̅  where  ̅  

is the mean of norms  

 From the reduced   ̅, keep only   number of indices which gives the 

largest reduction in residual.  

 Update    with new indices in   ̅     (      ⋃   ̅ ) 

 Go back to step 2 and repeat until either max number of iterations   is 

reached or  ‖ ̂ ‖        

 Assemble column          ̂  

 Apply smoothing step                              

Where        is the tolerance set by the user which controls level of fill in and quality of 

M (between 0 & 1),      maximum number of pattern update iterations to limit the 

fill-in per column, and      maximum number of indices j to be added to J. 

Note that we have implemented all versions of SPAI ( SPAI-0, SPAI-1 

and          in uFVM MATLAB and run many test cases to find out it is really 

demanding and requires high computational cost. This is mainly due to the search of 

new candidates then the computation of reduction in the residual that each candidate 

will cause. Moreover SPAI algorithm needs to solve highly dense least square problems 

which make these two steps very expensive and require a lot of iterations to search and 

select, so we did not consider SPAI in OpenFOAM.  
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Figure 10: SPAI algorithm flowchart 
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3. AINV (Approximate Inverse) Method 

First let us discuss the original basic inner-product version of AINV method 

developed by Benzi and Tuma [24]. Given sparse matrix        , this method is 

based on incomplete inverse factorizations which mean incomplete factorizations of A
-1

. 

If the factorization of A=LDU where L is unit lower triangular matrix, D is diagonal 

matrix, and U is unit upper triangular matrix, then                      
 

where       and        are unit upper triangular matrices. 

The approach of Benzi and Tuma does not require any information of 

triangular factors of A (no factorization of A) and the AINV is constructed directly from 

A and no need for sparsity pattern to be known in advance. 

The inverse factors Z & W will be dense, so in order to preserve sparsity 

pattern of A, factorized sparse approximate inverse M≈A
-1 

will be constructed instead. 

If    ̅ ≈        ̅ ≈   the resulting factorized approximate inverse M would be 

   ̅ ̅   ̅̅̅ ≈     . 

AINV preconditioner is based on an algorithm which computes two sets of 

vectors       
 ,        

 , which are A-biconjugate such that   
       iff i ≠ j. 

If    Z= [z1, z2….zn] is matrix whose ith column zi  and  W= [w1, w2….wn] is 

matrix whose ith column wi  then 

W
T
AZ = D =  [

     
 
 

  

 

 
 

 
 

     

]                                                                             (4.12) 

Where  

     
                                                                                                               (4.13) 
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This gives 

 ≈             ∑
    

 

  

 
                                                                              (4.14) 

The approximate inverse of A can be known if two incomplete sets of A-

biconjugate vectors are known, but there are infinitely many such sets. Matrices W and 

Z will be explicitly computed by bi-conjugation process applied to columns of two non-

singular matrices W
(0)

 and Z
(0)

.So a computationally convenient choice is to let W
(0)

= 

Z
(0

=I. 

To avoid dense inverse and preserve the sparsity of A, incomplete bi-

conjugation process will be applied based on drop tolerance where new fill-in entries 

are dropped if their absolute magnitude in less than prescribed tolerance Tol (0<Tol<1) 

or approximate inverse will have pre-specified sparsity pattern. 

The inner product version of AINV algorithm is as below: 

 Set W & Z as Identity matrix I  

 For i=1,2,…n : 

 For j= i, i+1…n: 

 Compute      
                 

     where 

  
         

                             

 End for  

 If i = n go to step 10 

 Orthogonalize z & w by subtracting  multiple columns of z from ith 

column of z ( same for w)         
  

  
            ;                  

  

  
    

 Apply dropping to preserve sparsity pattern 

 End for 
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 Set Z= [z1, z2….zn] and W= [w1, w2….wn]  that are calculated in above 

steps 

 Compute     ≈                 ∑  
  

  

  

 
       

Since the coefficient matrix is sparse (contains too many zeros), the inner 

product at step 4 of the above algorithm can be computationally expensive. These inner 

products are often zero. To avoid this, we shift to outer-product form developed by 

Bridson and Tang [26]. Their algorithm has same concept as that of Benzi but with 

switching the order of the loops. Let consider the vectors l and u the j‟th column of row 

LD and DU respectively. Thus the algorithm of outer product form of AINV would 

become as below. 

The outer product version of AINV algorithm is as below: 

 Take as input the Coefficient Matrix A and drop Tolerance 𝛿 

 Set W & Z as Identity matrix I  

 For i=1,2,…n : 

 Compute         

 Compute       
   

 Compute          or        
   

 For j > i 

 Orthogonalize z & w by subtracting  multiple columns of z from ith 

column of z ( same for w)               
  

   
      ;              

  

   
       

 Apply dropping to preserve sparsity pattern with magnitude below 𝛿 are 

dropped. 

 End for 
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 End for 

 Set Z= [z1, z2….zn] and W= [w1, w2….wn]  that are calculated in above 

steps. 

 Compute     ≈                

 

Figure 11: The outer-product form of AINV algorithm flowchart 
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In this work, we didn‟t apply the dropping techniques strategy; however, we 

computed the approximate inverse with sparsity pattern same as that of coefficient 

matrix A. In this case, while comparing performance of ILU0 and AINV, both 

smoothers would have same sparsity pattern to that of A. 

 

B. ORTHOMIN Method 

In this work, we are going to adopt ORTHOMIN algorithm developed by 

Vinsome [71] to accelerate the convergence of the smoothers.  Two important 

techniques are used, within this method, which are minimization and orthogonalisation. 

ILU and AINV use fixed point iteration where a solution is improved by calculating the 

correction using previous iteration results. However the correction vector is calculated 

in certain directions and not in others. So in order to accelerate the convergence after 

applying the smoother, an orthogolnization technique embedded in ORTHOMIN is 

needed to eliminate or subtract the spaces of the correction vectors which has already 

been computed and increasing the chance of producing correction vectors in directions 

that these smoothers cannot produce. Orthomin will use “k” previous orthogonal vectors 

p to construct new vector such that Ap is orthogonal to all previous k Ap vectors. 

ORTHOMIN(k) algorithm steps are shown below: 

 Compute residual            

 Set             (where M is preconditioned matrix of A) 

 For i=1,2,…n : 

 Compute minimization parameter     
          

         
 

 Compute                   

 Compute                    
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 Compute orthogonality coefficients       
                

         
   , for 

             where k is number of previous vectors 

 Compute                    ∑      
 
        

 End for 

 

C. Block Methods 

In 3D fluid flow problems, the variables need to be solved are mainly the 

velocity fields in x,y and z directions as well as the pressure field by discretizing and 

solving the momentum and continuity equations. The solution procedure can be divided 

into segregated and coupled. In segregated solver, the continuity and momentum 

equations are decoupled and solved sequentially [72]. The individual momentum 

equations are solved for each velocity component then continuity equation is solved for 

pressure. Although segregated solvers require less memory, they have low convergence 

rate and need more iterations. In contrast, the coupled or block algorithms have high 

rate of convergence on the expense of high memory since all velocity components and 

pressure fields are solved at the same time or simultaneously where all discretized 

equations are solved in one system [73] .As shown in below equations where the system 

of algebraic equation at centroid of one cell between segregated and coupled are 

compared. 

     ∑                                                                                                       (4.15) 

where    is the variable to be solved (u,v,w or p) 

While for coupled system [74], the system of algebraic equations at centroid of one cell 

would be: 
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       (4.16) 

As can be seen from Eq. (4.16) the coefficient matrix coefficients ac and aNB 

are now tensors in coupled system instead of scalars as in segregated systems. As such 

we will present how ILU(0) and AINV block (coupled) version would become. 

 

1. Block ILU (0) (Incomplete LU Factorization) Method 

The block version is the same as segregated; however, the main differences are 

that scalars become tensors and division would be replaced by inverse as shown below: 

 For k=1,2,…n: 

 Compute Residual                 

 For i=k+1,…n: 

 Compute  values       
   

 Solve               by forward substitution 

 For j=k+1,…n: 

 Compute u values                 

 Solve               by backward substitution 

 Update solution Solve                        

 Repeat until ‖    ‖
 

    where    is tolerance 

 

 

 



44 

 

2. Block AINV Method  

For block version of AINV, tensors L and U the j‟th block column of row LD 

and DU respectively. The algorithm would become as:  

 Take as input the Coefficient Matrix A and drop Tolerance 𝛿 

 Set W & Z as Identity matrix I  

 For i=1,2,…n : 

 Compute block         

 Compute block       
   

 Compute block          or        
   

 For j > i 

 Orthogonalize Z & W by subtracting  multiple block columns of z from 

ith column of z ( same for w)               
      ;                 

        

 Apply dropping to preserve sparsity pattern with norm of    or    below 

𝛿 are dropped 

 End for 

 End for 

 Set Z= [z1, z2….zn] and W= [w1, w2….wn]  that are calculated in above 

steps 

 Compute     ≈                
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CHAPTER V 

TEST CASES AND RESULTS 

 

In this section, we will present and describe the test cases used to evaluate and 

compare the performance of each smoother. The test cases setup and run were 

conducted on OpenFOAM using segregated and coupled fluid flow solver. We run the 

two test cases on OpenFOAM using segregated solver for first test case and coupled one 

for the second. For each test case, we compare the efficiency and robustness of each 

smoother by showing the residual convergence rate for each smoothers and calculating 

how much the residual is decreased at each time step, the number of iterations needed 

by each smoother to achieve this decrease. In addition we will present the CPU 

convergence time needed to achieve convergence. We focus on the pressure equation 

since it is of an elliptic type and is critical for the solution and convergence of whole 

system. 

 

A. Flow over a Stator Blade (Compressible-Segregated) 

The first test case is based on the experimental setup of Hylton et al. [75]. In 

their study, they investigated two aero-thermodynamic linear cascades. The NASA-C3X 

cascade experiment, made up of three linear cascade vanes, was chosen as 

representative of the first stator stage of a gas turbine. 

The shape of the blade of C3X in the original setup is prismatic which allow us 

to use periodic and symmetry boundary conditions. Furthermore, a reduction is applied 
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to quasi 3D of the domain, shown in Figure 12, in which the 2D section is discretized 

with only one cell in the span direction of the blade.  

 

Figure 12: Computational domain and boundary conditions [76] 

Table 1 summarizes the reference boundary conditions which are based on a 

particular operating point reported by Hylton et al. (code n
o
 4422, run n

o
 112), with an 

isentropic exit Mach number of 0.9. 

Table 1: Stator Vane Data [76] 

Inlet Total Pressure P0 321800 Pa 

Inlet Total Temperature T0 783 K 

Dissipation Length Ld 0.001 m 

Turbulence intensity Tu 4% [-] 

Outlet Static Pressure Pout 192500 Pa 

 

As shown in Figure 13, the computational grid is made of multi-blocks O-type 

grid, resulting in a mesh with size of 14,500 hexahedral elements. In addition, Figure 13 

also shows that the grid fully resolves the boundary layer close to the walls of the blade 

and the wake. This test case, despite of its moderate mesh size, is still very demanding 

due to the very high anisotropic mesh used which yields elements of aspect ratios 

reaching a maximum of 30,000, and resulting in a very stiff system of equations [76]. 
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Figure 13: Computational grid for the flow over a blade problem [76] 

Segregated compressible flow solver was used to solve this problem. The 

conservation equations discretized in this test case are the continuity [Eq. (1.2)], 

momentum [Eq. (1.3)] and energy [Eq. (1.3)] equations. In addition, the turbulence 

model used is modified k-ω Shear Stress Transport (SST) [77] model with automatic 

wall treatment. 

Figure 14 shows the convergence rate residual with each smoother versus time. 

It can be noticed the high agreement between ILU (0) and AINV in the convergence 

rate and time/iterations needed. In the next graphs, the Residual of pressure before and 

after applying each smoother is presented. In Figure 15, it can be seen how the residual 

is consistently decreasing with time. After applying the ILU (0) smoother, the residual 

is locally decreasing with an average of 27 times the initial residual with standard 

deviation of 5. This shows how ILU (0) is stable. By comparing this residual decrease to 

that of AINV in Figure 16, the pressure residual is decreasing with a mean value of 25 
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times with standard deviation of 4. This shows how AINV is quite effective as ILU (0) 

in reaching convergence over time with nearly same robustness and stability. 

 

Figure 14: Final Residual vs Time for Smoothers 

 

Figure 15: Initial & Final Residual using ILU (0) 
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Figure 16: Initial & Final Residual using AINV 

In addition to how much the residual is decreasing with time, it is also 

important to monitor the number of iterations needed by each smoother to reach the 

final residual. As shown in Figures 17 and 18, ILU (0) and AINV start with high 

number of iterations in each time step then decrease to almost reach a steady number of 

iterations. ILU (0) requires minimum 4 iterations and maximum of 10 with a mean 

value of 5 iterations in each time step to lower the residual by order of 27 as mentioned 

earlier, while the AINV smoother requires a little more to reach minimum of 5 and 

maximum of 14 iterations with mean value of 6 iterations. This clearly shows how 

robust these two smoothers are with performance of AINV almost reaching that of ILU 

(0). 
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Figure 17: Number of Iterations vs Time of ILU (0) 

 

 

Figure 18: Number of Iterations vs Time of AINV 

 

Table 2 summarizes the residual decrease after applying each smoother, 

number of iterations needed as well as CPU time. It is clearly shown how the 
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performance of the two smoothers in this test case, which has high aspect ratio and 

causes an ill-conditioned matrix, is nearly identical with slight difference. 

Table 2: Smoothers Comparison 

Smoother 

Avg. of 

Res. 

Decrease  

Standard  

Dev. Of Res 

Decrease 

Avg. # 

of 

iterations 

CPU Convergence 

Time (sec) 

ILU (0) 27 5 5 216.96 

AINV 25 4 6 238.03 

Error (%) 7.4 - - 9.71 

 

 

B. 90°Pipe Bend (Incompressible-Coupled) 

The second test case is based on an interesting field, which is turbulent fluid 

flow through curved pipes and channels, has been investigated theoretically and 

experimentally for decades [78, 79]. In addition, with high computing power, numerical 

investigations have been developed recently to include unsteady techniques [80]. 

Turbulent flow through 90° pipe bend is of great importance since it tackles 

important features in turbulence modeling. Some of these features are geometry induced 

pressure gradients, longitudinal streamline curvatures and many others [81]. 

The test case in interest is a 90° pipe bend with circular cross section as shown 

in Figure 19. The boundary conditions are of one water inlet and one outlet with no slip 

condition on the walls and symmetry on the bottom wall for computational efficiency.  
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Figure 19: Computational domain and boundary conditions 

Table 3 summarizes the initial and boundary conditions of this test case. 

Table 3: Initial and Boundary Conditions 

Inlet Pressure Pinlet 
Zero 

Gradient 
Pa 

Inlet Velocity Vinlet 1.67 m/sec 

Outlet Pressure Poutlet 10000 Pa 

Outlet Velocity Voutlet 

Zero 

Gradient 
m/sec 

  

As shown in Figure 20, the computational grid is made of a mesh with size of 

1.5 million hexahedral elements. This test case is also of high importance due to high 

anisotropic mesh which results in elements of very high aspect ratio reaching maximum 

of 478174 which is considered very large and will definitely yields a stiff system of 

equations with an ill-conditioned matrix. 
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Figure 20: Top View of Mesh on the Pipe Symmetry Plane 

Coupled incompressible flow solver was used to solve this problem. The 

conservation equations discretized in this test case are the continuity [Eq. (1.2)], 

momentum [Eq. (1.3)] and energy [Eq. (1.3)] equations. In addition, the turbulence 

model used is k-ω . 

Since Coupled Solver will solve the variables of momentum and continuity 

equations which are velocity components and pressure simultaneously, we present the 

residual convergence rate of each variable versus time step for both smoothers. Figure 

21 shows the residual convergence rate of pressure versus time step for both smoothers. 

It can be noticed how Block ILU (0) is consistently converging and decreasing the 

residual without any fluctuations in a stable manner; whereas, Block AINV causes the 

residual to decrease at first at a higher rate than Block ILU (0) with some fluctuation 

then after some time steps the residual increases causing the solution to diverge. Figure 

22 clearly shows how Block ILU (0) is steadily decreasing the Velocity residuals for 

convergence while Block AINV is decreasing the velocity residuals slowly with a lot of 

time and iterations and result in divergence.  
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Figure 21: Pressure Residual vs Time for Block Smoothers 

 

 

Figure 22: Velocity Residual vs Time for Block Smoothers 

By calculating the number of iterations each smoother required at each time 

step do decrease the residual by a certain tolerance, Figure 23 shows how the Block ILU 

(0) almost keep the same number of iterations in each time step with minimum of 3 and 

maximum of 5 iterations with mean value of 4 iterations, while Block AINV in Figure 

24 requires a lot more in each time step with minimum of 3 and maximum of 17 
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iterations with mean value of 7 iterations and with a lot of fluctuations. This clearly 

reflects the divergence that occurred with Block AINV Smoother. 

 

Figure 23: Number of Iterations vs Time Step of Block ILU (0) 

 

 

Figure 24: Number of Iterations vs Time Step of Block AINV 

Table 4 summarizes the number of iterations needed by each smoother as well 

as CPU time. It is clearly shown how the Block ILU(0) smoother in this test case 
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outperforms Block AINV requiring less iterations and CPU time and being more robust, 

while Block AINV diverges requiring more iterations and almost twice the CPU time. 

Table 4: Block Smoothers Comparison 

Smoother 
Avg. # of 

iterations 

CPU Convergence 

Time (sec) 

ILU (0) 4 2530 

AINV 7 4500 

Error (%) - 77.86 
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CHAPTER VI 

CONCLUSION 

 

Two algebraic Multigrid smoothers were presented and compared. AINV in 

scalar and block version was implemented in OpenFOAM and compared to already 

existing ILU (0) smoother. The two smoothers were tested for two demanding test cases 

with turbulent flow having anisotropic mesh resulting in elements with very high aspect 

ratio and yielding a stiff system of equations. 

Results clearly show that AINV has same performance as ILU (0) in 

segregated solver, whereas it does not perform well compared to Block ILU (0) in 

coupled solver as shown by Bridson and Tang [26] where they used Block AINV as 

preconditioner and failed to converge in many cases. This may due to many inverse 

operations required by Block AINV. In addition no drop tolerance was used. The 

implementation of drop tolerance might result in a better smoother. 

Improvements adopted for future work include drop tolerance implementation 

for Scalar and Block AINV thus increasing its robustness. 
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APPENDIX 

 

A. Software Description 

Algorithms were first developed and tested on a MATLAB based program 

developed at the American University of Beirut denoted by “uFVM”, then coded into an 

open source code called OpenFOAM. Both will be described in following subsections. 

  

1. uFVM (MATLAB) 

uFVM is a computational fluid dynamics code implemented in MATLAB that 

uses finite volume method over unstructured as well as structured grids [6].  It is written 

in a way that allows the user to easily develop and add their own algorithms and 

functions to the already coded ones. 

Regarding the Geometry and Mesh, uFVM reads the test case from an 

OpenFOAM test case directory. The OpenFOAM test case contains at least three basic 

folders as shown in figure 25.  
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Figure 25: OpenFOAM  Case 

The “0” directory contains initial and boundary conditions of each field, 

property and variable used in the test case at time zero. The “constant” directory 

contains information about physical properties, and “polyMesh” subdirectory which 

contains description about the test case geometry as well as its mesh. The “system” 

directory contains at least three files that define case setup: controlDict defines general 

control parameters of the test case; fvSchemes defines the discretization schemes used 
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and fvSolution contains information about the solution methods and relaxation used 

[82].   

As can be noticed from figure 25, the ployMesh folder contains several files 

that describe the mesh. To make things more clear, we describe some of the files 

mentioned. The “points” file contains a list of vectors that describe cell vertices sorted 

from vertex 0, 1 etc. with its corresponding x, y, and z coordinates. The “faces” file 

contains list of faces, each of which is list of indices to vertices in points file. Each face 

has an owner and a neighbor. The “owner” file contains list of owner cell labels such 

that each entry relates to the index of the owned face. For example the first entry is the 

owner label for face 0 then the second entry is the owner of face 1 and so on. It is 

important to note that the number of owners is equal to the sum of interior faces plus 

boundary faces. The “neighbour” file contains list of neighbor cell labels same as owner 

but for neighbors. “Boundary” file contains list of patches that include dictionary for 

each patch with its corresponding patch name [82]. 

As mentioned earlier, uFVM reads and converts all geometrical data from 

OpenFOAM test case folders using certain function that will read all the files in 

polyMesh folder and convert them into MATLAB structure arrays as shown in figure 

26. As noticed, the “points” file is stored into structure array called nodes array, “faces” 

to faces array that list each face with its corresponding nodes that form it, surface area, 

owner and neighbor of each face, while the elements structure array contains all 

elements in the mesh with its corresponding neighbors, faces owned, nodes that form 

each element, volume of the elements as well its centroid. 
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Figure 26: uFVM Domain 
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Regarding the Storage of Coefficients, we will focus now on how matrix 

coefficients are stored in uFVM. After setting up the test case geometry as well as the 

governing equations, initializing the variable fields, it is time to discretize and solve the 

equations over the elements. Discretization of the equations involves the computation of 

the coefficients for the resulting system of algebraic equations. In uFVM the 

coefficients are stored in coefficients structure array which contains ac, anb,bc and other 

arrays such as cconn that consists of neighboring elements and csize which contains the 

number of neighbors for each element as shown in below figure 27. 

 

Figure 27: uFVM Coefficients Storage Arrays 
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2. OpenFOAM 

OpenFOAM or Open Field Operation and Manipulation, is an open source C++ 

library that uses finite volume method in continuum mechanics to develop a variety of 

applications like solvers and utilities [82]. Solvers are designed  to solve complex 

problems in many fields like chemical reactions, laminar and turbulent flows, energy 

and heat transfers, dynamic, solid dynamics, fluid-structure interface and many others. 

In addition to built-in solvers, OpenFOAM allow users with coding background to 

develop and add new solvers and utilities. It works on a number of operating systems 

and supports parallel interface. It was developed at Imperial College in 1989, and then 

in 1996 first commercial version was launched. First it was sold by Nabla company then 

was released as open source in 2004 [82]. OpenFOAM supports, besides its meshing 

and solving ability, pre and post processing tools as shown in figure 28. 

 

Figure 28: Overview of OpenFOAM Structure [82] 

The matrix coefficients in OpenFOAM are stored using column, diagonal and 

row storage or what is known as an arrow storage format. The matrix is known as LDU 

Matrix which is a square matrix with sparse addressing. The coefficients are stored into 

3 main scalar field arrays: the diagonal which contains the main diagonal coefficients, 

and two for off-diagonal coefficients which are the upper and lower triangle arrays [83]. 
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These arrays contain all non-zero entries in the coefficient matrix. The addressing for 

these arrays is stored in addressing array that is called lduAddressing array. The 

diagonal array or list is indexed by cell index, while the off-diagonal upper and lower 

triangles are indexed or referenced by face index where only adjacent cells influence 

one another [82]. So for each internal face, there will be two coefficients, one for upper 

triangle and other for lower triangle. They are referenced by two additional arrays called 

upperAddr and lowerAddr [84]. 

Consider the below matrix that is resulted from fvm discretization of below 

square domain which consists of 9 elements. The following storage arrays along with 

referenced arrays are shown. 

 

[
 
 
 
 
 
 
 
 
          
         
         
         
          
          
          
          
          ]

 
 
 
 
 
 
 
 

 

 

diagonal = [10, 7, 4, 9, 12, 11, 15, 18, 14] 

upper = [2, 3, 3, 2, 1, 2, 4, 1, 3, 3, 1, 5] 

lower = [1, 1, 2, 2, 3, 5, 5, 1, 2, 6, 2, 2] 

upperAddr= [1, 3, 2, 4, 5, 4, 6, 5, 7, 8, 7, 8] 

lowerAddr= [0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 7] 
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Note that for upper array, the lowerAddr acts as row coordinates and 

upperAddr as column coordinates, while for lower array, the upperAddr acts as row 

coordinates and lowerAddr as column coordinates. The size of diagonal array is equal to 

the number of elements, while the sized of upper, lower, upperAddr and lowerAddr 

arrays are equal to the number of internal faces. The upper array contains entries which 

belong to owners of the face shared while the lower contains the entries which belongs 

to the neighbor cell of same face [84]. 

Storage format and addressing are important especially for many operations 

used in discretization and solving procedure. One of which is sparse matrix-vector 

product which plays a major role in almost all cfd code. We will show and compare 

how this product is done in uFVM versus OpenFOAM as below. 

Below are algorithms for matrix-vector product for uFVM and OpeFOAM 

respectively, thus A.x=b would be as follow:  

 

 

 

 

 

 

 

 

 

 

 

 

for (register label iElem=0; iElem<nCells; iELem++) 

{ 

       cconn = cconn [iElem]; 

      nLocalNeighbours = length(cconn); 

                for (register label iNB=0; iNB<nLocalNeighbours;iNB++) 

                        { 

                                 ilocalnb = cconn[iElem][iNB]; 

                                  b[iElem]+=A[iElem][iNB]*x[ilocalnb]; 

                        } 

} 

                 

Figure 29: Matrix-Vector Multiplication in uFVM 
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As shown in the above algorithms, the matrix-vector product in uFVM is row 

wise where it passes over each row to calculate the corresponding product, while in 

OpenFOAM it is face wise where it passes over each face and calculate the product of 

corresponding owner and neighbor coefficients of each face with corresponding variable 

x. Moreover the loops in uFVM are nested while in OpenFOAM are not. This difference 

plays major role in speed, robustness and parallelism. 

In the coming smoothers, a lot of row-column products is needed, so to 

accelerate calculations more, we are going to introduce additional three more arrays that 

belongs to lduAddressing which are “ownerStartAddr”, “losortStartAddr” and 

“losortAddr”. 

 For the same matrix above, below are the following arrays: 

for (register label iElem=0; iElem<nCells; iELem++) 

{ 

      b[iElem] = Diagonal[iElem]*x[iElem]; 

} 

for (register label iFace=0; iElem<nFaces; iFace++) 

{ 

    iOwner = owner [iFace]; 

   iNeigh = neighbor[iFace]; 

   b[iOwner]+= upper[iFace]*x[iNeigh]; 

   b[iNeigh]+= lower[iFace]*x[iOwner]; 

} 

Figure 30: Matrix-Vector Multiplication in OpenFOAM 
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ownerStartAddr = [0, 2, 4, 5, 7, 9, 10, 11, 12, 12] 

losortStartAddr = [0, 0, 1, 2, 3, 5, 7, 8, 10, 12] 

losortAddr = [0, 2, 1, 3, 5, 4 ,7 ,6, 8, 10, 9, 11] 

Using these addressing the Matrix-Vector multiplication becomes as follow: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice how ownerStartAddr’ are upper cell faces offset, and losortStartAddr 

are lower cell faces offset while losortAddr are lower faces assembled row wise instead 

of typical column wise. In this way we combined the robustness of loops used in 

OpenFOAM with the row-column multiplication using vectorization which can lead to 

parallelized algorithms with high speed for future use [85]. 

for (register label iElem=0; iElem<nCells; iELem++) 

{ 

      b[iElem] = Diagonal[iElem]*x[iElem]; 

} 

for (register label iElem=0; iElem<nCells; iELem++) 

{ 

   for (register label j = ownerStartAddr[iElem]; j < ownerStartAddr[iElem+1]; j++) 

      { 

          b[iElem]+= upper [j]*x[upperAddr [j]]; 

       } 

   for(register label j = losortStartAddr[iElem]; j < losortStartAddr[iElem+1]; j++) 

      { 

          b[iElem]+= lower [losortAddr[j]]*x[lowerAddr [losortAddr[j]]; 

       } 

}               

Figure 31: Modified Matrix-Vector Multiplication in OpenFOAM 
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