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Learning is expected to have a significant effect on the performance of construction
crews, this performance is expected to improve with experience and repetition. This
is particularly true for repetitive construction projects, where the worker repeats the
same task multiple times throughout the course of the project.This performance im-
provement is numerically portrayed mathematically by Learning Curves. Researchers
have developed numerous learning curve models that vary in complexity and purpose.
However, learning curve theory is not yet very popular among industry practitioners.
The main driver behind this shy popularity, is the lack of consensus in the literature
regarding a learning curve model that best suites the construction industry.

In an attempt to rectify the above shortcoming, this study presents a new learning
curve model. The presented model resembles the traditional Wright model by assum-
ing an exponential form; however it employs recursion in order to place more emphasis
on recent data.The research methods, used to develop this method and other aspects of
this study include, a literature survey and case study analysis for a real life construction
project and other case studies that were extracted from the literature.The developed
model and the findings of the literature survey were used to develop a learning based
automated scheduling tool.This tool displayed acceptable performance, when tested
on case studies.

The applicability of learning curve theory was extended for another dimension of
construction projects, which is quality .The results of a real life construction project
from the MENA region, have revealed a correlation between learning and productiv-
ity, however the same was not observed for learning and quality.The findings of this
paper indicate that the learning curve model to be used varies according to the project
characteristics and location. The findings also indicate that the relationship between
learning and quality is more complex than that between learning and productivity.
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Chapter 1

Introduction

Labor productivity has a significant impact on the success and the overall efficiency

of construction projects, where the labor associated costs could represent as much as

50% of the overall project cost (Kazaz et al., 2008). Labor costs also represent the costs

that entail the highest uncertainty in construction projects. Labor costs are naturally an

indicator of the worker’s productivity, which is logically expected to vary significantly

in an industry with a highly transient workforce.The construction industry is also a

main contributor to national economies worldwide.In the U.S., this industry represents

about 14% of the gross national product (Thieblot, 2002), in Qatar the industry adds

$7.7 Billion to the overall GDP. Whereas in Europe the industry is responsible for 7%

of the employment (Proverbs et al., 1998). The considerable economic importance

of the construction industry, coupled with effect of labor on the productivity of the

industry, warrants the analysis of the factors pertaining to labor productivity and the

development of methods to improve this productivity.

This study examines a specific attribute of labor productivity in the construction

industry, namely worker learning and experience. Tasks performed by workers in con-
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struction projects are typically repetitive in nature, and are thus expected to be per-

formed multiple times throughout and across construction projects. Regardless, of the

project nature a steel fixer will be tying rebars and carpenters will be working at as-

sembling formwork at some point in the project. The findings of the literature suggest,

that the performance of workers is expected to improve with repetition (Thomas et al.,

1986). Worker learning impacts the time required by the worker to get integrated into

the construction site and thus be familiar with the project, with his supervisors and the

assigned tasks.This is particularly important for an industry with a transient workforce,

where the workforce is dynamic across and projects and therefore the integration pro-

cess will be repeated throughout the project lifetime. In order to properly apply the

concepts of learning to productivity improvement and labor management they must be

quantified and transformed into measurable quantities. This is done by using mathe-

matical models called learning models, that are used to numerically measure learning

and the improvement in productivity with experience or repetition.

Since their introduction into the construction industry in 1965, learning curve con-

cepts have been applied throughout the various stages of construction projects starting

with bidding, planning, design, construction and even claims. Learning curve concepts

have also been applied to numerous construction activities such as rebar fixing (Jarkas,

2010), floating caisson construction (Panas and Pantouvakis, 2013), and prestressed

concrete piles (Hinze and Olbina, 2009).

While there is abundant literature on the relationship between learning and produc-

tivity, the relationship between learning and quality has received less attention. Yet,

other studies have focused on the effects of the learning curve on another dimension

for the success of construction projects, which is quality of the built product. The

quality of the worker’s work , is expected to improve with his/her experience. With the

significant costs associated with quality problems and bearing in mind the poor quality
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culture in the construction industry, addressing the relationship between quality and

learning in the construction industry could offer a significant contribution to this in-

dustry.

Despite the promising applications of the learning curve theory in the construction

industry, its usage by industry practitioners is still rather limited. This can be attributed

to the lack of consensus on a learning curve model. Multiple learning curve models

exist in the literature and data originating from different countries have been fitted by

different learning curve models. An agreement on a data representation format for

usage with learning models is also absent from the literature. These factors had a neg-

ative impact on the attractiveness of the learning curve for construction management

practitioners.

The learning attributes of the construction industry are to be carefully examined if

the learning theory is to be used by industry practitioners in this industry. Hence, a few

research questions arise: Is there a universal learning curve model that can be applied

to all construction activities across different geographic locations? If not, what are

the learning curve models to be used in the construction industry? Is there an actual

correlation between quality and learning in the construction industry ?

The main goal of this research is to study the applicability of the learning curve in

the construction industry, and consequently develop a scheduling tool that integrates

the learning curve concept into common scheduling and planning software used in this

industry. In particular the objectives are: (1) sketch the learning process in the con-

struction industry in order to evaluate the applicability of various learning curve mod-

els and propose a new learning curve model,(2) study the relationship between learning

and quality in the construction industry; and (3) propose an automated tool that allows

the integration of learning curve concepts into common planning and scheduling tools

used in the industry.
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Chapter 2

Learning Curves and Productivity in
the Construction Industry:A Review
and a Proposed Model

2.1 Background and Literature Review

The learning curve theory has found applications in the realms of multiple indus-

tries such as manufacturing (Argote and Epple, 1990): the automotive industry (Baloff,

1971), the chemical industry (Lieberman, 1984), photovoltaic production (Nemet,

2006), and semiconductors (Cook, 1991; Gruber, 1992, 1994, 1996, 1998; Chung,

2001). Recently, the learning curve has also found a place in the service sector, where

the effect of learning appears in filing (Sturm, 1999), banking (Chambers and John-

ston, 2000), and software installation (Saraswat and Gorgone, 1990). As observed in

the fields above, the learning curve theory can be used to support resource manage-

ment and planning.These benefits can be extended to the construction industry, where

the effects of learning can be employed to improve the productivity of construction
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sites (Rosenbaum et al., 2012).

The earliest reference to the learning curve theory in the construction industry is

the 1965 Economic Commission for Europe report titled Effect of Repetition on Build-

ing Operations and Processes on Site. This seminal report extended the learning effect

from the manufacturing industry into the construction industry, while noting that the

usefulness of the learning effect in the construction industry is due to the repetitive

nature of labor intensive tasks. After that report, the applicability of the learning curve

theory has flourished in the construction industry, where it was applied across the var-

ious organizational levels, project phases, and site activities.

This chapter brings forth from the literature a series of learning curve models and

evaluates them through the lens of the construction industry. This section examines

the learning curve literature to explain the learning process.This section also presents

an analysis of the applicability of the various learning curve models in the construc-

tion industry. We then build on the pros and cons of these models to generate a model

that provides both good fit and predictability. The last section provides an empirical

analysis of the various learning curve models to demonstrate their usefulness in the

construction in terms in terms of predictive capability and fitness. This chapter con-

cludes with a summary of the findings and recommends an agenda for future research.

2.1.1 The Learning Process

If a new worker has freshly joined a site team, s/he will require a certain time

window to perform at his/her full capacity. Learning in the construction industry is

therefore a gradual process and is not instantaneous. The learning process is divided

into two major stages: the operational learning stage and the routine acquiring stage
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(Thomas et al., 1986; Gottlieb and Haugbølle, 2010). During the operational learning

stage the worker gets introduced to his/her task and acquires the basic skills associated

with it. For example, it is during this stage that an electrician knows that s/he should tie

embedded electrical conduits to the rebars in order to fix them while pouring concrete

and it is during this phase that s/he learns that styrofoam is placed inside electrical

boxes in order to prevent concrete pouring. It is not until the second stage that the

performance of the worker is boosted and s/he discovers shortcuts for performing the

task. During this stage the electrician knows the optimal spacing of the metal ties and

discovers shortcuts for tying them (e.g. faster and safer knots, the metal wire duty that

simplifies the work etc... ). Yet these two stages are not entirely separate and they

might be interfering to a certain extent; a worker might discover certain shortcuts to

performing his task while being introducing to it.

Since the learning curve is a mathematical reflection of the learning process, it is

natural for the learning curve to also be divided into two stages as it is shown in Figure

2.1. The first is the reduction in time due to learning, and the second is the “plateau”

phase where no further improvement is observed. This is where the worker becomes

an expert at the assigned task and reaches the minimum time possible to achieve that

task. The learning curve has two points that are of particular interest: The startup point

and the standard production point. The startup point, represents the time required to

complete the first cycle. After this point the learning curve becomes steeper until it

reaches the standard production point where maximum performance has been reached

(Hinze and Olbina, 2009). It is the region located between these two points where

maximum performance improvement happens. After the standard production point is

reached, no further improvement is witnessed and performance reaches a steady state.
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Figure 2.1: Hypothetical Learning Curve based on Thomas et al. (1986)

2.1.2 Learning Curve Models

Based on this two point framework for the learning process, multiple learning curve

models were presented in the literature. Figure 2.2 highlights the main classes of

learning models and presents the mathematical differences between them; the boxes in

dark gray are the models reviewed in this study. This selection was based on our desire

to highlight models of practical use within the field of construction – both multivariate

and stochastic models, while useful, are not practical as they require significant data

and expertise to calibrate properly.
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Figure 2.2: Learning Models

The Wright Model

The oldest learning curve model is the Wright Model, y = Ax−n (Anzanello and

Fogliatto, 2011). In this model, y is the cumulative average, cost per unit, A is the cost

of the first unit, x is the repetition or repetition cycle number, and n, a value between

zero and one, is the slope of the logarithmic curve (Thomas et al., 1986). The learn-

ing rate, L, can be derived from the slope of the logarithmic form by using L = 2−n.

Therefore, the higher the slope the lower the learning rate (Thomas et al., 1986). Ac-

cordingly, when the learning rate is 100%, the parameter n which represents the slope

of the curve would be zero and no further learning could occur.

This learning rate information is of particular interest to project managers and

planners, since they can be used to benchmark performance. Learning rates for var-

ious trades, that can be used as a starting point or benchmark, are listed in Hijazi

et al. (1992) and Gottlieb and Haugbølle (2010). The Wright Model remains the most

widely used learning curve model due to its simplicity (Baloff, 1971; Globerson and

Gold, 1997) and its ability to provide acceptable precision while having a simple math-

ematical structure (Vits and Gelders, 2002).
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Stanford-B Model

One of the pitfalls of the Wright model despite its popularity and applicability in

the construction industry, is that it ignores the worker’s previous experience. In order

to overcome this shortcoming the United States’ Department of Defense developed the

Stanford-B Model, y = A(x + B)−n, where B represents the number of experience

units and shift the curve downwards (Badiru, 1992; Nembhard and Osothsilp, 2002).

If B = 0, then this model reduces to the basic Wright Model (Badiru, 1992; Gottlieb

and Haugbølle, 2010).

Plateau Model

Both the Stanford and Wright model, assume that the perfect performance could

be reached and tasks could be completed instantaneously or with zero time, however

this is not realistic and violates the two point understanding of the learning process.

The Plateau Model, proposed by Baloff (1971), y = C + Ax−n solves this problem

through the use of C, representing the steady state performance of the worker; all

other terms are as introduced previously (Li and Rajagopalan, 1997; Anzanello and

Fogliatto, 2011).

DeJong Model

The main factor that leads to the asymptotic behaviour of the learning process after

a significant number of cycles, is the use of technology and mechanization.It is there-

fore essential to consider mechanization in any learning curve model. For example, the

performance of workers pulling cables manually is only limited by the speed of their

hands . Whereas, when pulling using a motor, the threshold is enforced by the speed

of the shaft of the motor. Therefore, when the operation is less mechanized and highly
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manual the time or cost is more prone to decrease with learning (Kara and Kayis,

2005). The DeJong Model, y = A [M + (1−M)x−n], developed in 1957 includes

an incompressibility factor, M , that ranges from 0 to 1 (Hijazi et al., 1992). Thus, if

the process is completely mechanized, M = 1, no improvement will arise with more

repetitions (Badiru, 1992).

S-curve Model

The S-curve model, y = A [M + (1−M)(x+B)n], developed following World

War Two combines both mechanization and experience (Badiru, 1992). In this model,

M is the incompressibility or mechanization factor and B represents the acceptable

units of previous experience. Zhang et al. (2014) developed a similar variation of the

S-Curve Model which accommodates for the effects of experience, steady state labor

productivity and mechanization. This model, termed the Improved Learning Curve

Model, is represented by y = AM + C0 + [A(1−M)− C0] (x + B)−n, where C0

is the standard time needed to complete the product under optimal conditions with

perfect labor; all other terms are as before.

Other Wright Variants

The literature features several other less cited variations of the Wright Model such

as the Levy and Knecht Models. The former model is y =
[
1/β − (1/β − xb/A)k−kx

]−1,
where β is a task defined coefficient and k is the performance of the labor in steady

state (Levy, 1965). The latter model of Knecht (1974), y = (Axb+1)/(b + 1), was

built for long production runs over which the learning rate changes. This model was

never tried in the construction industry, however the construction industry has cases

where similar items are constructed in large numbers, such as the installation of air-
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field ground lighting at airports.

Polynomial Models

Most planners and estimation engineers assume flat learning rates and calculate

costs. Of course, learning is rarely so steady. As such, the Polynomial Models –

quadratic and cubic – may exhibit better fit. Both the Quadratic Model, y = A+β0x+

β1x
2, where A is the cost of the first unit, β0 is the initial slope and β1 is the quadratic

factor (Everett and Farghal, 1994) and the Cubic Model, y = A+ β0x+ β1x
2 + β2x

3,

where β2 is the cubic factor, require one to assume or calculate the coefficients. Unlike

the learning rate and the cost of the first unit, these parameters have no direct practical

meaning and thus may be difficult to estimate or justify. Moreover, these models do not

have any limiting parameters allowing for negative estimates of the costs. Therefore,

they are unsuitable for using past data to extrapolate and predict future performance as

is necessary when preparing bids in construction.

Exponential Models

The exponential model was recommended by the Norwegian Building Research

Institute as a means to improve predictive capabilities of the model (United Nations.

Economic Commission for Europe. Committee on Housing and Planning, 1965). The

most basic Exponential Model is that proposed by Knecht (1974), y = Ax−necx, where

c is a constant. Just as the Wright model has variations, so too does the exponential

model. The Three-Parameter Exponential Model, y =
[
k(1− e−(x+p)/r)

]−1, includes

k as a maximum performance parameter expressed as the number of units per operation

time, p as the previous experience parameter expressed in units of time, and r as the

learning rate given in units of time; x in this model is the number of units of operation
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time. By taking the inverse on the right hand side, y becomes the cumulative average

time to complete a unit after the passage of x units of time. The Two-Parameter Ex-

ponential Model is identical to the three-parameter model save for the exclusion of the

term p. The value of the exponential models is their ability to estimate and forecast

data over long production runs where the bound on learning is encountered. The lim-

itation of the exponential models is that they are best applied to simple tasks such as

fixing steel, manual excavation, cable pulling, installing wiring devices and backfilling

(Mazur and Hastie, 1978).

Hyperbolic Models

A final set of models, the hyperbolic models, was originally designed to capture

the effect of learning within compound measures of performance (Wong et al., 2007).

These models have since been adopted to capture the number of units that can be pro-

duced within x units of time (Anzanello and Fogliatto, 2011). In this paper, the models

are manipulated further, by taking the inverse, to represent the cumulative average time

required to produce a unit after x units of time have already been invested. As such the

Two-Parameter Hyperbolic Model, y = [k(x/(x+ r))]−1, and the Three-Parameter

Hyperbolic Model, y = [k((x+ p)/(x+ p+ r))]−1, allow for the inclusion of a maxi-

mum performance parameter, k, a measure of previous experience, p, and the learning

rate, r. The hyperbolic model can be used for novel and complex tasks (Anzanello

and Fogliatto, 2011). Moreover, by adjusting the learning rate appropriately, one can

estimate costs after long breaks or model the performance of the workers during crash

periods when they are fatigued (Uzumeri and Nembhard, 1998).

All of the models presented here assume that learning is measured as a cumulative

average time to complete a task after a given number of repetitions or amount of time
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(as in the exponential and hyperbolic models) and that a decrease in that cumulative

average time depends on only one variable – the number of repetitions. However,

task time reduction within the construction industry likely depends on multiple site

related factors. Unlike manufacturing, the layout in the location where a specific task

is performed can easily vary from cycle to cycle despite the repetitive nature of the

task itself.

2.1.3 Learning and Forgetting

While a construction manager may successfully model learning while planning

their project, the results may be suspect if the manager forgets to include the impact

of holidays. It is quite common in the construction industry that workers’ productivity

drops after holidays. The main reason behind this is that the workers forget their skills

and need time to regain them again (Jaber and Guiffrida, 2008). Skill level depends on

practice, and thus the performance of workers will drop after interruptions or breaks.

The amount of information will keep on decaying until there is nothing more to for-

get (Anzanello and Fogliatto, 2011). Based on theories that forgetting and learning

happen in similar manners,Globerson and Gold (1997); Jaber and Guiffrida (2004);

Bailey and McIntyre (1997) used log-linear models to represent the forgetting process

and Nembhard and Osothsilp (2002) used a hyperbolic model to represent forgetting.

Combining both learning and forgetting Lam et al. (2001) integrated these op-

posing actions with the Line-of-Balance technique to develop a new forgetting model

specifically for the construction industry: F ′ = F−(F−F (K1−n−(K−1)1−n))((a∗

H + 1)e−aH . In this model, F ′ is the time for the first unit after interruption (eg. in-

stalling the first pipe after the vacation), F is the time for the first unit before inter-
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ruption, a is the forgetting coefficient, H is the interruption duration, n is the learning

rate, and K is the number of units being completed by a specific gang.

One of the important benefits of forgetting models is that they help in develop-

ing accurate schedules that model the worker’s performance after long breaks such as

Christmas and Easter holidays or Adha and Futr holidays in the Middle East and North

Africa region (Bailey and McIntyre, 1997). In fact, courts have ruled that damages

caused by interruptions are acceptable reasons for claims (Lam et al., 2001; Hinze and

Olbina, 2009). Forgetting models can also be used to determine lot sizes and decide

on inventory levels (Salameh et al., 1993; Jaber and Bonney, 1996; Jaber et al., 2009;

Alamri and Balkhi, 2007). It is also important to determine the time when complete

forgetting occurs (Jaber and Kher, 2004).

By analyzing the impact of the forgetting effect the contractor can plan his/her

activities and the delivery of the materials to site in order to minimize the undesirable

results of forgetting (Lam et al., 2001). The contractor might even resort to Just-in-

Time delivery in order to decrease the idle time caused by site congestion due to stocks

of inventory stored on site (Lam et al., 2001). Site congestion is a factor that impacts

labor productivity (Tucker, 1986 and Thomas, 1987) and thus accommodating for the

forgetting effect might also help in increasing labor productivity. Finally, it is worth

mentioning that the losses incurred due to the forgetting effect may offer an acceptable

basis for construction claims in countries such as Hong-Kong (Lam et al., 2001).

2.2 The Proposed Model

From this review of learning models, we can see that experience alone is not the

primary driver behind the decrease in task time. Several external factors such as the
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amount of mechanization and the prevalence of interruptions in the project also impact

learning. Furthermore, to be effective as a planning tool, the model should be able to

capture site conditions. One strategy to capture site-specific information in the model

is through the use of recursion. The need for a recursive model was noted by Adler

and Clark (1991) who recognized that experience or repetition alone was not enough

to fully explain gains and losses in productivity among workers. By including a term

relating the time required for the last or previous item to that of the current or next

item, we can capture intrinsic changes in the learning process.

Given these considerations, we propose a recursive model represented by yn =

yn−12
−(rn−1+ε) + b0(yn−1H)−a +M , where yn is the cumulative average cost or time

required to produce the nth unit, yn−1 is the cumulative average cost of the previous

unit or the last unit before an interruption (if applicable), rn−1 is the learning rate

associated with the n − 1th item, ε is an additive factor that updates the learning rate

between repetitions and prevents the productivity from reaching infinity, b0 is a binary

parameter that allows for the exclusion (0) or inclusion (1) of the experience gained

prior to an interruption, H is the length of the interruption, a is a forgetting factor and,

M captures the steady state performance, likely influenced by mechanization.

2.3 Empirical Evaluation of Learning Models

The majority of the existing literature focuses on analyzing the goodness of fit of

models rather than their ability to predict future performance (Farghal and Everett,

1997). The most widely accepted metric for the goodness of fit is Pearson’s coefficient

of determination, R2 (Thomas et al., 1986). However, when using the learning curve

in planning activities it is equally important to analyze a model’s capability to predict
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future performance. The works of Everett and Farghal (1997) and Farghal and Everett

(1997) are among the major contributors in this domain. The method suggested by

these works requires splitting the existing set of data exactly in the middle and then

applying the fitted equation to predict the future values in the second set of data. The

predictability of the model is then evaluated as an absolute percentage difference be-

tween the predicted and actual costs.

In order to study the capabilities of the models presented here, in terms of both fit

and predictive capability, we use benchmark data from four different projects cited

in the literature. The first project requires estimating the effect of learning in the

construction of each floor in a 40 floor building in China (Zhang et al., 2014). The

second project models learning across 19 cycles associated with the construction of

tunnel formwork (Farghal and Everett, 1997). The third project studies learning across

the cementing of 10 floors within a comparatively smaller housing project in Poland

(United Nations. Economic Commission for Europe. Committee on Housing and

Planning, 1965). The fourth project examines learning across 26 cycles associated

with installing formwork for floors in an office building (Jarkas and Horner, 2011).

These projects were selected given their representative nature in terms of size, type,

and era of construction; with older projects representing cases with potentially less

automation.

The model parameters could be obtained either by an optimization process that

minimizes the least sum of squares or by using expert opinion. In this paper, the rele-

vant parameters for all models were derived via an optimization process over the first

half of the data. The specific models resulting from the optimization of the parame-

ters are shown in Table 2.1. Only one representative model was studied from each of
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the categories: the Wright model was selected from the Wright model and variations,

the quadratic model was selected from the polynomial models, the basic Exponential

Model from the exponential models, the Two-Parameter Hyperbolic Model from the

hyperbolic models, and the proposed model as the only recursive model. The models

excluded include those requiring the estimation of experience, mechanization or per-

formance bounds as reasonable estimates for these terms were unknowable from the

data provided in the case studies.

The results of both fitting the models to the first half of the data and using the fitted

models to predict the second half of the data are summarized in Table 2.2. The fit is

stated as the R2 for which a value closer to 1 represents a better fit; the predictability

was measured using the Mean Absolute Percent Error (MAPE) for which a value closer

to 0% indicates a better result. Table 2.2 also provides the p-value for a paired t-test

between the model predicted cumulative average times per unit and the actual observed

cumulative average times. In these tests, the null hypothesis is that the difference

between the predicted and actual data is zero; a p-value greater than 0.05 supports this

null hypothesis.

The results in Table 2.2 indicate that the proposed model exhibits a level of fit com-

parable to all other models. This is to be expected as the parameters were set with the

goal of optimizing the fit across the first half of the data in all cases and for all models.

The ability of the proposed model to predict the values in the second half of the data

is superior in the first two cases, moderately worse in the third case, and comparable

in the fourth case. Overall, however, when performing a paired t-test between the ac-

tual and the predicted values, the proposed model is superior in three of the four cases

(Cases 1, 2, and 4). Case 3 presents an interesting finding as all models confirm the null

hypothesis of no difference between the observed and predicted values. Furthermore,

the significance of the results in Case 3 indicate that the Exponential model is superior

17



Table 2.1: Parameters for models derived from optimization over the first half of each
respective dataset.

Model Case 1, Pa-
rameters

Case 2, Pa-
rameters

Case 3, Pa-
rameters

Case 4, Pa-
rameters

Wright, y = Ax−n A = 10.95,
n = 0.17

A = 26.74,
n = 0.39

A = 100.31,
n = 0.14

A = 221.91,
n = 0.0074

Quadratic, y = A+ β0x+ β1x
2 A = 10.71,

β0 = −0.48,
β1 = 0.01

A = 29.25,
β0 = −4.35,
β1 = 0.26

A = 113.67,
β0 =
−14.46,
β1 = 1.62

A = 221.90,
β0 = −0.52,
β1 = 0.01

Exponential, y = Ax−n expcx A = 10.99,
n = 0.17,
c = 0.001

A = 26.63,
n = 0.43,
c = 0.013

A = 99.10,
n = 0.18,
c = 0.016

A = 221.91,
n = 0.01,
c = 0.00

2-Parameter Hyperbolic, y =
[k(x/x+ r)]

−1 k = 0.15,
r = 7.89

k = 0.16,
r = 88.81

k = 0.01,
r = 33.84

k = 0.005,
r = 3.66

Proposed, yn = yn−12
−(rn−1+ε)+

b0(yn−1H)−a +M
y0 = 10.97,
r0 = 1.55,
ε = 0.15,
b0 = 0,
M = 6.40

y0 = 27.00,
r0 = 1.05,
ε = 0.12,
b0 = 0,
M = 8.74

y0 =
100.63,
r0 = 0.83,
ε = 0.00,
b0 = 0,
M = 34.25

y0 =
221.43,
r0 = 0.12,
ε = 0.00,
b0 = 0,
M = 16.94

to the others. Not only does this confirm the findings in the article from which this

case originates, but it also highlights the models’ capabilities on small projects. Case

3 had only 10 data points – five used for fitting and five used for prediction. The real

value of the proposed model is in application to large projects where the learning rate

is likely to exhibit changes over time as in Case 1 with 40 floors.

2.4 Summary and Future Research Directions

Over the last four decades, the learning curve concept has gained popularity in the

construction industry. One reason behind this increased popularity lies an industry

trend towards cost control as a reaction to the steady increase in labor and construction

material costs. As such contractors are developing schedules, checking progress and

gathering data about site productivity on a regular basis. These data can be used to
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Table 2.2: Summary of fit and predictability of the models across the four cases.
Fit, R2 Wright Quadratic Exponential 2-

Parameter
Hyper-
bolic

Proposed

Case 1 0.998 0.954 0.998 0.898 0.999
Case 2 0.998 0.957 0.9995 0.999 0.997
Case 3 0.821 0.821 0.831 0.725 0.863
Case 4 0.578 0.651 0.578 0.323 0.652
Predictability, MAPE Wright Quadratic Exponential 2-

Parameter
Hyper-
bolic

Proposed

Case 1 4.56% 58.44% 2.98% 7.53% 0.57%
Case 2 9.59% 146.4% 2.80% 4.47% 0.55%
Case 3 2.23% 36.54% 2.08% 3.48% 2.99%
Case 4 0.54% 0.41% 0.54% 0.94% 0.51%
Paired T-Test, p-value;
H0: µx1−x2

= 0
Wright Quadratic Exponential 2-

Parameter
Hyper-
bolic

Proposed

Case 1, n = 40 0.00 0.00 0.00 0.00 0.87
Case 2, n = 19 0.00 0.01 0.00 0.00 0.88
Case 3, n = 10 0.14 0.06 0.31 0.13 0.15
Case 4, n = 26 0.12 0.13 0.12 0.00 0.97
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develop models describing cost reductions over time due to learning.

Various mathematical models have been developed for modeling learning in differ-

ent industries. This study presents a summary of the Learning Models from a mathe-

matical and practical point of view within the construction industry. This review led

to the proposal of a new model that accommodates both mechanization and forget-

ting. The proposed model is similar to the Wright model, but through recursion places

more emphasis on the time consumed by the previous unit rather than the time used

to construct the first unit. Our model demonstrates less than 1% error in predicting

cumulative average unit construction times in three out of the four cases studied.
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Chapter 3

Learning Curves and Quality in
Construction: A Case Study

3.1 Introduction and Background

The wide majority of the learning curve literature focuses on the relationship be-

tween learning and productivity. However, there are other proxies that define the suc-

cess of a product. A contractor might complete a project consisting of 10 housing units

within a short duration due to the effects of learning, yet all these houses could suffer

from significant quality problems and are not conforming to construction standards

and regulations.Thus, the productivity of the contractor is practically nil, since none of

his/her works are accepted. As such, observing the relationship between quality and

learning is important.This is particularly true for an industry where the poor quality

culture has led to devastating effects such as cost overruns, schedule delays, rework

and property loss (Larsen et al., 2015). The quality of the built product in the construc-

tion industry generally depends on two factors: quality of the used material, and the

workmanship of the labors. The first originates from suppliers and is associated with
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factory controlled environments.The latter depends on the characteristics of the labor

pool employed on the project and on the quality control and assurance policies by the

contractor.

When viewed from the perspective of the type of knowledge acquired by the em-

ployee, learning can assume one of two forms: conceptual learning and operational

learning (Lapré et al., 2000).Conceptual learning is related to the know-why of tasks.For

example, if the labor knows that if s/he is using a vibrator then the motion will cause

the concrete to spread and will eventually yield a slab with a better quality (Lapré et al.,

2000).Operational learning on the other hand is related to the know how, which is in

our case how to use the vibrator or the steel fixer’s knowledge of how to tie steel (Lapré

et al., 2000).Lapré et al. (2000) argues that both types of knowledge are necessary for

the success of construction projects.

Learning in an institution can also occur at different levels, namely the individual

level or the organizational level.When occurring at the individual level, knowledge is

acquired by a single employee and his/her performance is expected to improve accord-

ing to this knowledge.It is when an electrician learns how to use a spring in order to

pull cables,that s/he becomes faster at their assigned tasks. Organizational learning

on the other hand is when the institution as a whole acquires knowledge and uses it

to improve performance.A contracting firm specialized in infrastructure projects and

that executes such projects with superior performance due to its collective experience,

could be a good example of such knowledge. Learning is believed to start at the in-

dividual level and is then expected to be transferred to the higher collective organiza-

tional level (Love et al., 2015).Improving the quality of work, necessitates perfecting

the workmanship and materials and therefore requires initiatives at the level of the

firm or the organization. We can thus infer that the transfer of knowledge from the
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individual to the organizational level is vital for reducing quality problems such as

rework. Unfortunately,the temporary nature of the construction industry inhibits the

transfer of knowledge and the dissemination of information among the various parties

(Love et al., 2015).This is the main driver behind using indirect methods for transfer-

ring knowledge in the construction industry.

In order to avoid quality problems during the construction phase of projects, de-

signers tend to conduct constructability reviews (Jergeas and Put, 2001).These reviews

are basically a transfer of construction knowledge to design practitioners, as design-

ers employ contracting knowledge in order to assess the feasibility and practicality

of their designs.A designer with previous contracting experience could review the de-

sign of his peers for example,and recommend replacing all the openings used to link

the constructed facility by sleeves, since these are easier and cheaper to execute. An-

other indirect usage of organizational learning in the construction industry, is the early

involvement of contractors, where the knowledge acquired by the contracting firm in-

volved, is used to develop practical designs and concepts (Mosey, 2009). When a

contractor is involved at the early stages of an infrastructure project, s/he could recom-

mend unifying the sizes and sections of utility manholes, in order to simplify the site

works and foster learning. The final form of knowledge transfer mechanisms which is

used in the industry is the ”lessons learned workshops” held at the end of construction

projects. This form of knowledge transfer is the most direct form of embedding the

individual knowledge at the collective organizational level. During these workshops

organizations could compare the outcome of a specific project to previous projects,

in terms of the execution methods employed and problems that occurred (Schindler

and Eppler, 2003). During these workshops the various parties involved in the project

share their knowledge, and then these members disseminate this knowledge to other

employees when they participate in the execution of future projects. A site engineer
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could learn new and simpler construction methods that have been acquired from sub-

contractors, and then use them in future projects. When knowledge reaches the or-

ganizational level, it can be employed to avoid pitfalls and quality problems such as

rework, accidents and high waste. Love et al. (2015) have shown that, when properly

employed, organizational learning can be used to prevent rework and thus reduce qual-

ity problems.

After defining the relationship between various forms of learning and quality, it is

now necessary to provide means for quantifying quality in the construction industry.

Quality can be evaluated according to two criteria: quality of design and conformance

quality (Meirovich, 2006). Quality of design measures the alignment between the de-

sign provided by the designer or architect and the client’s intentions. Quality of confor-

mance on the other hand measures the fitness between the built product and its intended

design and specifications. Normally, during the construction phase of projects, the de-

sign would have been completed and approved by the client or their representative.As

such, the majority of the quality problems occurring during construction belong to the

conformance category.Quality of construction projects is usually quantified according

to the approval rates of inspection requests submitted to the client or their represen-

tative. These rates provide insights regarding quality problems such as rework. For

example, the work of a contractor with a 80% approval is superior in terms of quality

when compared to the work of a contractor with a 70% rejection rate.

In this chapter we focus on the quality issues pertaining to the workmanship, and

examine the relationship between quality and learning on one hand, versus that be-

tween learning and productivity on the other hand. Unfortunately, there is no univer-

sally accepted definition for defining or measuring quality in the construction industry.

The first section introduces a case study from the GCC country and examines the re-

lationships -if any- between quality, learning, and productivity in this project. This
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chapter concludes with a section that discusses the findings of the case study and pro-

vides recommendations for future research.

The main purpose of this chapter is to assess the link between learning, quality and

productivity. From an operational perspective, learning is typically reduced to task

repetition, however the unit of analysis for learning and its nature varies across the

literature.

3.2 Case Study:Learning in a Mega Project

The case study examined in this chapter involves the construction of an airport in

a GCC country that is expected to be one of the largest transportation hubs in the re-

gion.Contractors started mobilizing in early 2011, however the actual construction and

earth works did not start until 2012. Due to its complex nature, and its tight sched-

ule, an unorthodox delivery method was adopted. This project was delivered using the

construction management, where all the major project players such as the client, con-

struction manager (CM), the architect/engineer (A/E) and the Main Contractor (MC)

are involved in the delivery process. Figure 3.1 portrays the project organizational

chart and details the various contractual and communication relationships among the

multiple project parties.
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Figure 3.1: Project Organizational Chart

Due to the significant size of the project,it was divided into multiple contracts and

the scope of these contracts was divided among multiple subcontractors. The nature

of this project as an aviation project, dictated awarding all the aircraft related services,

and special systems along with their associated construction works to contractors with

previous experience in airport construction.

The preconstruction documentation for any site activity in this project is similar to

regular projects, where the contractor submits for the CM’s approval, the shop draw-

ings and material qualification documents. For example, if a contractor is laying uPVC

pipes in a certain zone A, all the shop drawings for this zone need to be approved before

the site activities start. Moreover, the contractor should also submit the qualification

of the uPVC pipe supplier before ordering the materials.Once the material is approved

and ordered, the contractor again cannot proceed before the CM’s representative in-

spects and approves the delivered material. When the site activity is completed, the

CM inspects the works to check if they are conforming to standards and specifications.

The CM’s reply to any submitted request whether it is an inspection request or a review

request can take one of the following grades:

(I) Approved: The documents submitted or the works inspected are in conformance

with the relevant standards and specifications, and are therefore approved by the
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CM.

(II) Approved As Noted: The documents submitted or the works inspected are ap-

proved with certain comments and require clarification or rectification by the

contractor. Site works may proceed as noted.

(III) Revise and Resubmit: The documents submitted or the works inspected are not

approved and significant changes are required from the contractor in order to

secure approval. Site works may not proceed.

(IV) Rejected: The works and documents are in significant violation of the relevant

specifications and standards, and are therefore rejected by the CM. These items

cannot be resubmitted for reevaluation by the CM.

For the purpose of quality assessment in this study, the first two grades are counted as

an approval, whereas the latter two are counted as a rejection.

3.2.1 PCC Installation: The Productivity Learning curve

The concrete used in casting the final layer of the Aprons and parking stands is

the portland cement concrete(PCC) type. PCC is casted in-situ in the form of panels,

however prior to installing the panels, trenches are to be excavated, sub grade material

must be laid and dowels are to be fixed. In order to ensure that the subcontractor re-

sponsible for PCC pouring is capable of producing good quality concrete, trial pours

are held before mass production. The PCC pouring trials were held in the first quarter

of 2012, where a total area of 757.19m2 was completed and handed over to the CM.

The actual site works for the PCC pouring activity did not start until July 2012 and

continued until the early months of 2013.

The largest bulk of the work was completed during the period falling between July
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and December 2012, during this period the overtime hours worked by the PCC crews

were consistent. Due to the consistency in the working hours and the crew forma-

tion, the production volume can be taken as a proxy for productivity. PCC pouring is

also a highly repetitive task and the only difference between two different PCC panels

is in their coordinates. This fact coupled, with the crew consistency makes this case

study acceptable for evaluating learning effects.During the first quarter of 2013, only

the areas that were inaccessible due to site conditions were casted. Given the effect

of these site conditions on productivity,only the period falling between July and De-

cember 2012 is evaluated in this study. The production data for this period is shown in

Figure 3.2

Figure 3.2: Cumulative Average PCC Production

As it can be seen from Figure 3.2, the productivity of the crew improved during the

course of the study period, and the benefits of learning are clearly visible. In addition,

the organization’s experience in installing PCC panels is also visible as the first month
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alone witnessed a total area of 5, 911.14m2 being handed over to the CM.This provides

an example of organizational learning as discussed in Section 3.1 above. The experi-

ence acquired by the crew in this project makes it logical for the contractor to transfer

the team members to other projects, whose scope include the installation of PCC pan-

els. Moreover,mixing the crew members with other members with less experience

would also reflect good knowledge management, as this would allow for the transfer

of experience and information among the members of the organization. These find-

ings are in conformance with learning literature as productivity followed an increasing

trend vis-a-vis learning in this product.

3.2.2 Learning and Quality: Is it That Simple ?

The majority of the Learning literature in the construction industry focuses on the

relationship between Learning and productivity. Unfortunately, and despite the preva-

lent quality problems in the construction industry, the amount of literature that looks

into the relationship between learning and quality is minimal. Quality also has a signif-

icant impact on the progress of construction projects, since failing to secure the proper

approvals, would prevent contractors from procuring materials and proceeding with

site works. This would be the case in regular projects, with healthy quality assurance

and control plans. However, this was not the case in the project under consideration as

we discussed later in this section.

The first quality indicator to be observed, pertains to preconstruction documenta-

tion. As stated above, each subcontractor has to submit the necessary prequalification

documents for the manufacturers of materials they intend to use at the project, in the

form of a document called material submittal . In order to ensure alignment with pre-

vious section and since the PCC installation task falls under the Civil works trade,
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only the material submittals related to civil works are considered. The materials un-

der this category include grout, cement blocks, adhesives, anchors, bolts, nuts among

many others.A significant portion of these materials is used in the PCC pouring activ-

ity, including the dowels, subgrade material and washed sand. The material submittal

process started immediately after finalization of mobilization works in January 2012.

Figure 3.3 below, displays the rejection rates for the civil material submittals for the

period falling between January 2012 and May 2013. These rates were extracted from

the logs, provided by the subcontractor executing the PCC panels. An interesting ob-

servation is that even after 18 months, more than half of the submittalls were being

rejected.

Figure 3.3: Cumulative Average Rejection Rates for Civil Materials

Although the literature states that quality improves with experience, the findings

from Figure 3.3, contradict this theory. This indicates that, there are other factors that

are coming into play and cancelling the positive effects of learning, which necessitates
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a closer look into the review process adopted in this project. The material submittalls

were prepared by the contractors site teams in the GCC, however they were reviewed

by the CM’s technical team located in another country. This creates a significant com-

munication problem, which inhibits the informal information exchange between the

contractor and the CM. If the two teams, were located within acceptable geographic

proximity, workshops could have been held between the members of the two organi-

zations in order to assess the reasons behind these high rejection rates. Both the CM

and the subcontractor, would have learned as one organization about the necessary

measures to be taken in order to improve the rejection rates at the projects. These or-

ganizations would then learn know ”why” the submitalls are being rejected, instead of

only knowing how to prepare and review a submittal.

Moreover, as the project progressed, the number of material submittalls increased

and the production volume spiked.This intensified the problem caused by the slow

communication between the two parties located in two different countries. This would

be a natural outcome, as the number of queries and clarifications requested by the CM

to submittals is expected to grow with the number of these submittalls. As such, in-

creasing the production volume had a deterring effect on quality in this particular case.

This indicates that, it is very important to take measures that correct or rectify quality

problems that arise during the early stages of the project. Otherwise the negative ef-

fects of these problems are expected to grow with the increase in production volume.It

is therefore necessary, to involve the contractors in the preparation of the quality plan

fo projects, so that they can understand the measures necessary to correct quality prob-

lems.

In order to ensure that the problem lies in the quality assurance and control mea-

sures adopted in the project and are not related the activity, we decided to observe

other activities. The simple site activity of excavating a trench was selected. The main
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Table 3.1: Rejected Trench Excavation Inspections

Month Total
Submitted Rejected Reasons for Rejection

Incomplete Shop
Drawings

Incomplete Site
Works

Work Not Conforming
to Quality Standars

Feb 1 1 1
Mar 3 3 1 2
April 2 2 2
May 3 3 1 2
June 4 4 2 1 1
July 4 4 3 1
Aug 1 1 1
Sept 1 1 1
Nov 13 13 12 1
Dec 28 27 26 1

driver behind selecting this activity is its simplicity, which eliminates the effects of

complexity on the quality of work. The activity inspected is related to the location and

the leveling of the trench. Astonishingly, and among the 60 requests submitted during

2012 only one request was approved, and this did not occur until December. These

rates were extracted from the subcontractor’s logs and are summarized in Table 3.1

and Figure 3.4 below. The significantly high rejection rates, requires to take a closer

look at the causes of these rejections.
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Figure 3.4: Rejection Causes for Trench Excavations

As it is shown in Figure 3.4, the major cause behind the rejections is the incomplete

shop drawings. These shop drawings should have been approved during the precon-

struction stages, however due to the poor implementation of quality measures, where

site activities were allowed to proceed, before securing the necessary approvals. This

also indicates that the reviewers of the CM were operating in silos since the whole

CM’s organization , did not observe the significant rejection rates and did take not

any measures to reduce these high rejection rates. The second cause for rejection was

the premature submission of inspection documents, where the contractor submits an

inspection request before the site is ready or when it is not clean or tidy enough.This

reflects a poor knowledge of the quality measures and of know how information on the

contractor’s side. Figure 3.4, also shows that only 7% of the rejections were actually

caused by poor workmanship. This indicates that the rejection rates, are not reflective

in any way of Learning as any possible benefits of learning were masked by the poor

quality culture and measures at the project.
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3.3 Conclusions and Discussion

As it is clear from the results of the case study above, experience has played a role

in improving productivity, yet it was not enough to have an impact on quality. On the

contrary, we have seen that increasing the production volume could have a negative ef-

fect on quality, if it was coupled with poor communication and a poor quality culture.

As such, we can notice that more than one factor comes into play when analyzing the

relationship between quality and learning. Therefore any model, that attempts to rep-

resent quality variations during a construction project should be therefore multivariate

in order to accommodate for the multiple factors affecting quality.

Poor communication and flawed quality procedures, could lead to significant prob-

lems throughout the project and could even hinder the benefits of learning or ben-

efiting from using lean delivery methods such as the Construction Management de-

livery method. In addition, sharing knowledge among the various project parties is

also necessary for rectifying quality problems and preventing them from propagating

throughout the project life time. The common practice in the construction industry

in the MENA region does not encourage such communications and therefore, it pre-

vents having proper organizational learning. Studying the relationship between infor-

mal communication and organizational learning could be interesting topic for future

research. The project was also divided into multiple scopes, awarded to different sub-

contractors, this also intensified the communication problems and produced fluctuating

quality patterns across the various project scopes. Weekly meetings should have been

held or a lessons learned data base should have been established, in order to ensure

proper transfer of information.

The quality of the site works was also assessed according to the findings of the

resident engineer working at the CM organization. These findings do not represent a
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real indication of the quality of work, since the inspector might reject the works due

to subjective reasons or due to procedural complexities that are beyond the control of

the site team. Accordingly, future research should focus on developing more objective

methods for evaluating the quality of workmanship.

It is worth mentioning that this case study is under no circumstances representative

of the construction industry in the MENA region. However, one of the most interest-

ing findings of this case study is that learning is not always associated with quality

improvements and in some cases where there is a poor quality culture,increasing the

production volume could actually lead to more severe quality problems. Therefore,

the major contribution of this work is that it portrays the complex relationship be-

tween quality and learning which necessitates developing a multivariate model that

links quality to learning.

It is logical for future research to focus on the interplay between quality, learning

and productivity. Specifically, it should focus on the type of learning that is typi-

cally associated with quality improvements. The methods for fostering such learning

should also be questioned. Does it only require management intervention and train-

ing programs, or are certain policy changes required in terms of the quality programs

applied ?
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Chapter 4

The Integration of Learning and
Construction Scheduling Tools

4.1 Introduction and Background

The success of any construction project relies heavily on three pillars: Time, Cost

and Quality. Properly allocating resources and preparing accurate project schedules

has a significant impact on these three pillars. Meeting the contractual schedule and

quality requirements, entails using finances to acquire certain resources with specific

productivity and a certain skill set. You can allocate ten skilled labors with experi-

ence to accomplish a certain task within two days but at double the cost of hiring

ten unskilled labors who would need 15 days to complete the task with reduced qual-

ity.Preparing accurate schedules is therefore a complex task that requires meeting mul-

tiple objectives since it affects all the dimensions of project success. In addition, the

tasks scheduled in the construction industry are related by complex interdependencies

due to the fragmented nature of the industry. The multi objective nature of construc-

tion scheduling coupled with the complex interdependencies, might render traditional
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scheduling tools such as CPM and LOB insufficient for preparing accurate schedules.

The significant leaps in the fields of computation and optimization, has allowed au-

tomation to infiltrate the field of construction scheduling. The usage of a higher and

more complex set of optimization models, such as Evolutionary Models, Artificial

Neural Networks became more popular for scheduling and performance prediction

purposes. For example, Georgy (2008), used genetic algorithm to allocate resources

for repetitive construction projects. Long and Ohsato (2009), and Senouci and Al-

Derham (2008) also used evolutionary algorithms to optimise schedules, while meet-

ing time requirements and minimizing cost. Georgy et al. (2005) on the other hand,

used artificial neural network for performance prediction in construction projects.

Although the studies referenced above had major contributions in improving the

accuracy of construction schedules, their underlying computational methods require

extensive calculations and significant mathematical knowledge. In a way these meth-

ods, represent a ”black box” for industry practitioners, contractors and construction

managers, who cannot analyze the implications of the output of these models. These

models are also intended for use at the planning phase of the project. These models

do not capture the actual performance data during the project.Construction schedules

however, are highly dynamic documents that should be updated throughout the vari-

ous project phases. Failing to do so, could jeopardize the success of the construction

project.

Among the data that could be fed in into such tools , is the actual labor productivity

which is expected to vary significantly throughout the project lifetime. It is therefore,

natural to observe the main drivers behind this variability. The construction industry

is known to be a labor intensive industry, where labor costs could amount to 50% of

the total project cost (Kazaz et al., 2008), which indicates that the success of construc-

tion projects relies heavily on the characteristics of the labor pool used. Unfortunately,
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labor is a resource that involves significant amount of uncertainty. This uncertainty

could propagate and create a risk that affects the productivity of the project as a whole,

which could could have an impact on the management’s capability of generating accu-

rate schedules.

When planning repetitive projects, planners assume constant labor productivity,

and that the rate of output produced by the workers will be uniform through the project

lifetime (Al Sarraj, 1990). This assumption is not in line with the learning curve lit-

erature which states that labor productivity is expected to improve with repetition and

experience.If we are using the traditional LOB method for the scheduling of trench ex-

cavation, and on the first month of work we noticed that 1, 000m3 were excavated , then

we will assume that this rate will continue throughout the project lifetime. Therefore

the scope that includes the excavation of 10, 000m3, would be estimated to require

ten working months. However, learning curve theory could tell us that it might re-

quire 8 months only.If the estimates were being used for bidding the company with

the 8 months estimate would win the contract, given all the other bid items are simi-

lar.However, it is important to examine what models are the planners using to provide

these estimates ?

The first attempt to integrate Learning Curve models, into performance prediction

in the construction industry was the work of Everett and Farghal (1994). In their work,

Everett and Farghal (1994) developed a methodology for using learning curves for the

purpose of performance prediction, and they concluded that linear models were found

to be the best predictors of future performance after examining a suite of learning

curve models. The work of Everett and Farghal (1994) however, did not integrate this

methodology with any common scheduling technique and it did not involve any au-

tomation. After this seminal work, many studies focused on integrating learning curve

concepts into scheduling techniques. Arditi et al. (2001), integrated the log-linear
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model with the Line-of-Balance techniques in order to determine the optimum crew

sizes, and the start and finish times of activities. Ammar and Abdel-Maged (2012),

used a similar philosophy, however, they assumed that work is continuous and target

dates are met. Lutz et al. (1994) used the log-linear model for another purpose which

is the simulation of learning development in construction projects. This work requires

the user to have significant programming knowledge in order.

Although the studies mentioned above were all successful at integrating Learning

curve concepts into construction scheduling, they were all based on a single learning

curve model which is the log-linear model. The log-linear model is the most pop-

ular learning model due to its simplicity, and ease of applicability. Yet, this model

might lead to erroneous forecasts under certain conditions (Hurley, 1996). The errors

are caused by the tendency of the log-linear model to converge to zero as the number

of repetitions is increased.In order to overcome this shortcoming, Zhang et al. (2014)

proposed an alternative model, that was integrated in the Line-Of-Balance scheduling

technique for the purpose of reducing crew sizes.

Despite the fact that Zhang et al. (2014) developed an improved learning curve

model, the line of balance model they developed only integrated a single learning

curve model.For a learning based scheduling technique to generate accurate schedules

for a universal set of construction projects, a suite of learning curve models is to be

considered, as different learning curve models are used for different project types.

In an effort to tackle these gaps in the literature, this paper utilizes non-linear

optimization for the purpose of integrating learning curve concepts in construction

scheduling. In this chapter we will present an optimization based scheduling tool that

incorporates learning curve concepts. An array of learning curve models are embed-

ded in the developed tool so that it can be used on multiple construction projects. This

tool was developed using Macros in MS Excel, and it can therefore be used on per-
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sonal computers which are normally available for site crews. This tool also allows the

planner to generate construction schedules at various stages of the project. The first

section provides an illustration of the tool’s operation and the second section presents

the test results for the various tests performed on the developed tool. The final section

of the chapter provides conclusions and recommendations for future research.

4.2 System Implementation

In order to automate the integration of learning curves into construction schedul-

ing, a software tool was developed using Visual Basic Macro programming under MS

Excel release 2007. The developed tool includes a graphical user interface, in order to

facilitate its use by industry practitioners. The user can use the graphical user interface

to import a schedule file, and select the number of cycles to be planned. The user can

also allow the tool to select the best learning curve model, or select a preferred learning

curve model. The system the operates through four functional blocks embedded in the

tool as shown in Figure 4.1 :(1) Input Data Processing block, (2) LC Calculation and

Optimization block, (3) Evaluation and Model Selection block, and (4) Scheduling and

Output Display block.
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Figure 4.1: The Architecture of the Developed System

4.2.1 Input Processing Block

This functional block is responsible for importing the historical data from the

schedule file specified by the user. The functional block accesses the schedule file and

acquires the task names, their start dates, completion dates, durations and precedence

relationships. The user can then either store the data in the acquired format or change

it to the cumulative average format. Learning curve data is typically represented in one

of two formats: (1) Cumulative Average Data, and (2) Unit Data. Using cumulative
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average data works as a filter for the data by clearing the noise and emphasizing on

the long term trends.The cumulative average is the mean completion time of all cycles

up to and including the current one. Such data format,is recommended for preparing

master schedules and thus, for planning over extended time horizons. Unit data on the

other hand displays actual site progress and therefore emphasizes on short term site

progress. Due to its emphasis on short term trends, this data representation format is

recommended for day-to-day planning and for use by last planners. If the user decides

to use the tool while the data is being represented in the unit format, then no further

processing is required. However, if the cumulative average format is selected, then the

cumulative average completion time for each cycle is calculated, after the actual com-

pletion times are exported. The input window used by the user to select the schedule

file, and the window used for specifying the number of cycles to be planned are shown

below in Figure 4.2.
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(a)

(b)

Figure 4.2: Input Windows for the Tool

4.2.2 Learning Curve Calculations and Optimization

Learning Curve Calculations

As stated previously in Chapter 2, multiple learning curves exist in the literature

and these models vary in their nature and complexity. The model could be univariate

or multivariate, and it could be deterministic or stochastic. The purpose of the models

could even vary, as some models link productivity and learning, while others model

the correlation between learning and productivity. The models included within this

tool are: The Wright Model, The Exponential Model, The Hyperbolic Model and The

Recursive Model.

The aforementioned models were selected according to their performance in the

testing performed in Chapter 2 above, in addition to their applicability and suitability
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for the construction industry. Although other models such as the multivariate models

and stochastic models, have displayed superior fitness capabilities, yet they require

significant computing power and the addition of certain add-ons,which might not be

available for construction managers and planning engineers.

Once the learning models were selected, subroutines were developed to perform

the necessary calculations.These subroutines start with initializing the parameters of

each LC model, and calculating the associated completions times and fitness errors.

Parameter initialization was done from within the code or was hard coded, since the

optimization algorithm requires a starting or an initial solution.However, the parame-

ters cannot be initialized to random values. If the initial solution is significantly distant

from the optimal solution, the optimization algorithm might converge to a local opti-

mum solution instead of the global optimum solution. As such, the parameters were

initialized according to values that are recommended in the literature or according to

a calibration process performed by the developers through running the optimization

multiple times. In order to illustrate the parameter initialization process, let us con-

sider that the parameters of the Wright Model(y = Ax−n), are being initialized. The

initial cost parameter A, would be initialized to the completion time of the first cycle,

which is inline with the definition of the parameter. The n parameter is initialized to

0.15 according the findings of a report by the United Nations (United Nations. Eco-

nomic Commission for Europe. Committee on Housing and Planning, 1965). This

report suggests that the learning rate for construction activities is equal to 90%, since

n = log2(LearningRate), initializing n to 0.15 would be reasonable.Once the learn-

ing curve estimates are obtained, point errors are then calculated and used to calculate

the sum of squares for every model.

44



Optimization

The obtained estimates for the model parameters are then optimized using a non-

linear algorithm built in with MS Excel solver. The main driver behind selecting this

solver is its commercial availability with MS Excel which would allow its usage by

industry practitioners without any extensions or hardware upgrades.Like any other op-

timization tool, this one requires an objective function.

Naturally, the main goal of the developed tool is to forecast future completion times

with minimal errors. This goal cannot be achieved directly, since future data is not

yet available. Accordingly, the forecasting error will be minimized indirectly through

adopting the methodology developed by Everett and Farghal (1994). The methodol-

ogy is based on the assumption that the tool that provides the best fit will be the model

providing the best forecasts. As such, the objective function becomes to minimize

the difference between the estimates generated by the various learning curve models

and the actual historical data. When represented in a mathematical form the objective

function becomes:

minimize
n∑

i=1

(Estimatei,j − Actuali)
2

Where Estimatei,j is the estimate for historical cycle i using Learning Curve

Model j and that is calculated according to the mathematical equation of the model.

A historical cycle is a previously completed construction cycle, e.g. floor, formwork

installation and removal. Actuali is the actual completion time for cycle i. As it is seen

in the equation above, the tool aims at minimizing the Sum of Squares of the Errors

and therefore improves the fitness of the various learning curve models.

45



4.2.3 Evaluation and Model Selection

Once the optimized learning curve estimates are obtained, the model with the least

sum of square error, or the model that best fits historical data is selected. This process

is the final step towards achieving the goal of the system, which is generating accurate

learning based schedules.

4.2.4 Scheduling and Output Display

After selecting the best fitting learning curve model, it is used to generate comple-

tion times, finish and start dates of the future cycles. The number of future cycles to be

planned is defined by the user within the input processing functional block. The user

also feeds in the starting date of the planning horizon, which is considered to be the

start date of the first cycle to be planned. While developing this functional block, we

have assumed that there is no lag between two successive activities. For example, if

two activities A and B are two successive activities then the completion date of activ-

ity A is considered to be the start date of activity B. Once only the necessary planning

dates and completion time estimates are obtained, an MS Project File is created and the

completion times are exported to it. The output window displayed by the tool, when

planning is completed is shown in Figure 4.3.
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Figure 4.3: Tool Output Window

4.3 System Verification and Validation

In order to verify that the developed tool is meeting its intended functions, it was

tested on five case studies. Table 4.1 provides a summary of the case studies used

to test the tool. The number of points shown in the Table referes to the number of

historical points or cycles already completed which is used to forecast the second set

of the data(the future completion times).The scope of the first project includes the in-

stallation of 19 cycles of tunnel fromwork in France. The second project involves the

construction of eight identical housing units in Finland. The third and fourth projects

evaluate learning for the construction of the first six stories of multistory buildings

in Portugal. The final project involves the construction of 20 stories in a high rise

Buildings in Hong Kong. As it is clear from Table 4.1 these projects originate from

different geographic regios and are of different types, where some projects involve the

constructs of highrise buildings while others are for tunneling works. These projects,

are therefore representative of the construction industry in terms of both location and

nature, and this is particularly important since previous research suggests that the best

fitting learning curve model varies according to the project location and nature (Srour
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Table 4.1: Summary of the Project Characteristics
Case & Type Source Total Num-

ber of Cy-
cles

Quarter Half of the
Data

Three
quarters

Case 1 ,(Infrastructure) (United Nations. Economic Commission for Europe. Com-
mittee on Housing and Planning, 1965) 19 5 10 14

Case 2, (Housing) (United Nations. Economic Commission for Europe. Com-
mittee on Housing and Planning, 1965) 8 2 4 6

Case 3, (Residential) (Couto and Teixeira, 2005) 6 2 3 4
Case 4, (Residential) (Couto and Teixeira, 2005) 6 2 3 4
Case 5, (HighRise) (Wong et al., 2007) 20 5 10 15

et al., 2015). For example, the exponential model was found to be the best fit for data

originating from Norway (United Nations. Economic Commission for Europe. Com-

mittee on Housing and Planning, 1965), while the recursive model was found to be the

best fit for high rise projects (Srour et al., 2015).

The first test performed to evaluate the performance of the tool is adopted from the

two-step procedure developed Everett and Farghal (1997). In order to start this proce-

dure, the data is split into two smaller data subsets: the historical data, and future data.

Historical data refers to the data subset that is used for extrapolation purposes and is

therefore fed in as input for the tool. Future completion dates are the actual comple-

tion times of the rest of the data set and are compared to the estimates generated by the

tool in order to evaluate its performance.Everett and Farghal (1997), split the data at

its midpoint and used the first half as historical data. Such a process would only allow

testing the tool at the middle of the project.In order to ensure that the tool can be used

at different project stages, we decided to split the data at three points: the quarter data

point, and in such a case the earlier 25% of the data is used to forecast the other 75%,

the second boundary point was set at the midpoint of the data, and the final boundary

point was set at the point representing three quarters of the data.

The accuracy of predicting future completion times is evaluated by observing the

Mean Absolute Percent Error(MAPE), which is defined as the average of the abso-

lute values of the differences between the forecasts and the actual completion times,
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Table 4.2: Summary of Forecast Testing Results

Case Cumulative Average-Error(%) Unit-Error(%)
25% 50% 75% 25% 50% 75%

1 5.76 2.8 0.79 11.77 4.57 0.4
2 2.59 4.76 0.95 43.86 7.59 8.54
3 5.74 3.82 2.21 26.43 5.63 17.65
4 33.91 4.81 1.29 43.67 14.9 1.21
5 42.4 2.11 5.59 50.68 9.11 1.12

divided by the actual completion time. Although the sum of squares was used to eval-

uate the fitness of the models, the process developed by Everett and Farghal (1997),

upon which the tool was developed, uses the MAPE for evaluating the accuracy of

predictions. With this methodology, an error that is closer to 0%, indicates a better

quality of predictions. The results of this testing procedure are shown in Table 4.2.

As it is shown in Table 4.2, the tool displays a better performance when data

is represented in the cumulative average format, as it displayed superior performance

with the cumulative average format for 12 out of the 15 tests. For example, when us-

ing the first half of the data as the historical data set for case 3, the MAPE when using

the cumulative average format was 4.8%, while it amounted to 14.9% for the same

case when representing data in the unit format. These results are expected since the

cumulative average representation tends to smooth out the data, which places a higher

emphasis on long term trends, and therefore trends that have existed in the historical

data set are expected to continue in the future data set.

The results have also shown that the tool is more sensitive to the size of the data set

when it is being used in the unit data format.For all of the five cases the error associ-

ated with using 25% of the data as a historical data and in the unit format,has exceeded

10%.This is also logical since, using unit data masks trends and introduces noise to

the data. Accordingly, and in order to avoid misleading the users of the tool, we found

that it would be appropriate to alert the user, if s/he is using a limited amount of data

points represented in the unit data format. This alert is done via message box that is
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prompted to the user, when the number of historical data points is less than 2. The

Message box is shown in Figure 4.4 below:

Figure 4.4: Message Box when a small data set is introduced)

In addition to being sensitive to the size of the data set, the size of the error gen-

erated could also vary according to the characteristics of the data itself. For example,

when examining the results obtained for cases 4 and 5, the resulting errors were high

when 25% of the data was used even when the data was represented in the cumula-

tive average format. When observing the data itself in Figure 4.5, we can see that the

trends existing in the first part quarter of the data does not persist in later parts of the

data. Therefore, the tool is not recommended for use in projects where the construc-

tion methods or management methods are expected to change through the course of

the project.
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(a)

(b)

Figure 4.5: Case Study Data Represented in Cumulative Average (a) and Unit Data
Formats (b)

It is also important to observe the learning to observe the learning curve models

selected by the tool for the various cases and for the various dataset sizes. This is

particularly important since it helps us ensure that the tool is not converging to a sin-

gle learning curve model. Table 4.3 summarizes the various learning curve models

selected by the tool for the various runs.As we can see in the table, each learning curve

was selected at least once. We can also observe that the exponential model was the

most widely selected model when the data is represented in the cumulative average

format,when the unit data format is used, the recursive model was the most widely

selected model. This is again a logical outcome, since the recursive model is expected
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to be capable of handling noisy data.
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Table 4.3: Summary of Selected Learning Curve Models
Cumulative Average Data Representation Unit Data Representation

Case Wright Model Hyperbolic Model Exponential Model Recursive Model Wright Model Hyperbolic Model Exponential Model Recursive Model
Case 1
Using 25% of the Data x x
Using 50 % of the Data x x
Using 75% of the Data x x
Case 2
Using 25% of the Data x x
Using 50 % of the Data x x
Using 75% of the Data x x
Case 3
Using 25% of the Data x x
Using 50 % of the Data x x
Using 75% of the Data x x
Case 4
Using 25% of the Data x x
Using 50 % of the Data x x
Using 75% of the Data x x
Case 5
Using 25% of the Data x x
Using 50 % of the Data x x
Using 75% of the Data x x
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4.3.1 Model Robustness

Noisy and scattered data are very common in the construction industry, and there-

fore there is a possibility that the historical data fed in as input into the tool could con-

tain multiple anomalies or outliers. These outliers could be caused by faulty reporting,

or by the significant uncertainty existing in the construction industry. Uncertainty is

considered to be a fact of life in the construction industry and is expected to be more

prevalent at the early stages of the project, when managers and site engineers and not

yet very familiar with the project and the contract. Rejections and rework are expected

to be more common during this stage of the project, due to improper documentation or

site access problems. Therefore, it is necessary to ensure that the tool can handle these

anomalies and verify its robustness when provided with noisy input data. Since out-

liers are common at the early stages of the project, we decided to introduce anomalies

to the data at the first 3 data points. With these anomalies introduced we can perturb

the data of the five case studies, and thus simulate a real case of faulty data reporting.

In order to be consistent with the testing procedure and introduce anomalies in a uni-

form fashion, the outliers were introduced as multiples of the standard deviation of the

data. Multiples of the standard deviation ranging between −5 and +5 were added to

perturb the data for the purpose of robustness testing.

Case Study 1

When anomalies were introduced to the first, second and third data points of the

first case study, a correlation could be observed between the size of the anomaly and the

resulting error in the cumulative average case. This is expected, since larger anomalies

are expected to introduce higher perturbations to the data which would increase the
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size of the error. The tool also displayed higher robustness when the error was only

introduced to the first data point, instead of the first, second and third data points.This

is also logical since fewer anomalies are expected to cause fewer errors. When rep-

resenting the data in the unit format, there was no significant correlation between the

size of the error and the size of the anomaly except when an anomaly was introduced

to the first three data points at the same time. This was caused by the original pro-

file of the data itself, as the first data point was already significantly distant from the

mean by more than three standard deviations and thus represented an anomaly in itself.

In this particular case, and surprisingly the tool performed better when the data was

represented in unit format,as the original data itself contained a significant amount of

noise and introducing errors did not have a significant effect on the original profile of

the data. The results of the robustness testing are summarized in Figure 4.6.

(a)

(b)

Figure 4.6: Errors Resulting from Introducing Anomalies to the Data of Unit 1
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Case Study 2

Similarly, to the first case study a correlation was observed between the size of the

anomaly and the size of the resulting error when the cumulative average format was

used, but no visible correlation existed when using the unit data format. However,

unlike the first case the tool performed better when data was represented in the cumu-

lative average format. This can be explained by observing the size of the data set, as

the data set contained only 8 data points and was not very scattered and introducing an

anomaly would therefore alter the original data profile and introduce significant noise.

The robustness test result for this case study are shown in Figure 4.7.

Figure 4.7: Errors Resulting From Introducing An Anomaly to the Data of Case Study
2

Cases 3 and 4

Again the tool displayed superior robustness, when the cumulative average format

was used and this could be attributed to the fact that cumulative cleans out the data

and thus eliminates the effect of anomalies. For these two particular cases, the tool’s

performance was also superior when negative multiples of the standard deviation were

introduced to the data, as compared to positive multiples. Adding, a positive multiple
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to the early points of the data would create a false trend which would not persist in

the later stages of the data, and would therefore lead to forecasting errors. Figure 4.8

summarizes the robustness testing results for these two case studies.

Figure 4.8: Errors Resulting From Introducing An Anomaly to the Data of Case Stud-
ies 3 and 4

Case 5

Unlike the previous case studies, the performance of the tool was comparable when

data is represented in the cumulative average and unit data formats. This result can be

attributed to the size of the data set which is larger than the other cases and that is also

less less scattered than the other cases.The size of the data and its scatter can also be

used to explain the correlation between the size of the error and the size of the anomaly

for both the cumulative average and unit data formats. Figure 4.9 illustrates the robust-

ness testing results for this case study.
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(a)

(b)

Figure 4.9: Errors Resulting from Introducing Anomalies to the Data of Unit 5

The testing results above indicate that the tool had an acceptable performance in

terms of robustness, and on average the tool was more robust when the cumulative

average format is used. We would recommend that the user, uses his/her expert judge-

ment in order to decide on eliminating outlier data points, so that the accuracy of the

predictions is improved.
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4.4 Conclusions and Future Research Directions

In conclusion, the developed LC based scheduling tool was able to generate con-

struction schedules with acceptable forecasting errors. This tool extends previous re-

search by integrating learning curve concepts into automated construction schedul-

ing.The tool includes a suite of learning curve models, which increases its applicability

to a wide umbrella of construction projects, as different projects are fitted by different

learning curve models. The tool was also built on the assumption that the learning

curve model that best fits historical data, will be the learning curve model that gener-

ates the best forecasts. The tool can also be used at both the micro and macro project

levels, since it allows the user to select one of data representation formats: cumula-

tive average format and unit data format. These first format can be used at the macro

level and thus used to generate master schedules, while the latter is recommended for

weekly or daily schedules.

The tool was also developed with a graphical user interface, and is therefore prac-

tical and can be used by site engineers and construction managers. The inputs files

required by the tool and the tool’s executable version are also compatible with com-

mon off the shelf softwares, which helps in facilitating its usage by industry practi-

tioners. When tested on project data extracted from the literature, and originating from

different geographic areas, the tool was able to generate fairly accurate forecasts, even

when the size of the historical data set was small. The tool’s robustness was tested by

introducing anomalies into the data and the tool displayed poor robustness for small

construction projects and acceptable robustness for the larger ones.

Since this tool is used for generating schedules, we believe that the output can

be utilized for resource allocating purposes. Despite the fact that no resource alloca-

tion functionalities, however planning engineers can use expert judgement and basic
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heuristics for allocating resources for smaller projects. Yet, we still recommend that

future research looks into the integration of resource allocation with LC based schedul-

ing software. Moreover, the tool was based the assumption that the model best fitting

historical data will be the model yielding the best forecasts. This assumption is built

on the premise that the worker’s performance depends solely on experience and rep-

etition. Yet, recent research have shown that social connections and the management

style have serious impact on the performance of employees. Therefore, we also rec-

ommend future research observes the possibility of developing a multivariate learning

curve model, in order to account for these numerous factors and try and integrate it

into the developed tool.
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Chapter 5

Conclusions

This study investigated, using exhaustive literature surveys and case study research,

the Learning Curve theory and its applicability in the construction industry. The rele-

vance of the learning curve was evaluated for various success dimensions of construc-

tion projects such as quality and productivity. The r-squared coefficient was used to

verify the applicability and fitness of various learning curve models to construction

data for four case studies extracted from the literature and originating from various

countries. The Mean Absolute Percent error on the other hand was used to evaluate

the capability of various models to accurately predict completion times. The learning

process in the construction industry was found to be divided into two stages, and is

expected to reach a plateau. According to the literature survey conducted, the shape

of the learning process was also found to be significantly affected by the worker’s pre-

vious experience and by the amount of mechanization involved. No consensus also

seemed to exist in the literature regarding the best learning curve model and as such,

a recursive learning model was proposed, in an attempt to provide a learning curve

model with superior performance.
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Most importantly, the results of case study analysis, indicate that the learning curve

profile varies according to the project location and characteristics. Therefore, the learn-

ing curve model that best fits data originating from Europe will not necessarily be the

Learning curve model best describing productivity data for workers in East Asia. The

learning curve model best describing housing projects is also not necessarily the learn-

ing curve model that provides the best sketch of the productivity profile for linear

projects such as pipeline and infrastructure projects. Therefore, and despite the fact

the paired t-test results indicated that the recursive model provides better predictive

capability in 3 out of 4 case studies, we cannot say that a single learning curve model

is the most universally superior model in terms of fitness and predictive capability.

However, we can comfortably state that, the results of the case studies indicate that

a certain suite of learning curve models such as the Wright Model, the Exponential

Model, the Hyperbolic Model and the Recursive Model tend to provide better results

when compared to other learning curve models. The findings also indicated that using

an inappropriate learning curve model, could lead to significant forecasting errors as

such models tend to provide negative completion estimates when the number of repe-

titions is significantly increased.

After establishing the relationship between learning and productivity in the con-

struction industry, the connection between learning and quality was to be observed,

especially with the endemic quality problems in the construction industry. A case

study from the GCC countries was evaluated, and the findings reestablished the pos-

itive correlation between learning and productivity. However and in contrast to the

relevant literature, no relationship existed between quality and learning for this par-

ticular case. This indicated that quality is a more complex project success dimension,

and others factors such as the management style, project type, and employee skill are

to be observed when studying the relationship between quality and learning.
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The verified connection between learning and productivity was then used to de-

velop a learning based scheduling software, that allows construction planners to gen-

erate construction schedules while taking into consideration the learning effects. The

tool contains a suite of learning curve models, and can be used in multiple options

and at multiple project stages. The findings of a comprehensive testing procedure con-

ducted on the tool, indicated that it can provide estimates with acceptable accuracy,

even when minimal data about the project is available. The tool was also found to be

robust as it was able to handle data containing outliers.

The major contribution of this study, is that it eliminated the notion of a superior

learning curve model, as the best learning curve model could vary according to mul-

tiple factors. Therefore, any study examining the learning curve in the construction

industry should focus on an array of relevant learning curves and not on a single learn-

ing curve model. The study also concluded that both the cumulative and unit data

representation format are fairly acceptable for the construction industry, however the

selection of the format should vary according to the purpose of the use of the learning

theory. The study has also contributed to the literature a new recursive learning curve

model that is capable of handling outliers and noisy data. The main advantage of this

model is that it accommodates for mechanization, interruption and places more em-

phasis on recent data points. The benefit of this model is that it provides the planner

with an acceptable flexibility, as s/he can decided to include or exclude certain fac-

tors such as mechanization depending on the project characteristics. Consequently, the

model is malleable and can be modified according to the project requirements.

Other benefits of this study include its findings on the complex nature between

learning and quality. This complex relationship, cannot be reduced to a simple log-

linear or univariate learning curve model. The findings also indicate that certain con-

ditions such as poor communication and quality culture, could even mask the benefits
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of learning.Therefore, management should take proper care when developing quality

procedures for projects. Another outcome of this study, was a software that integrated

LC into planning and thus, allows planners to utilize learning curve concepts without

having any deep or significant learning curve model.

Nevertheless, there are several limitations in this study. The study only focused

on deterministic learning curve models and no effort was done to evaluate stochastic

learning curve models.The study also did not properly examine the status of the ap-

plication of the learning curve concepts in the actual industry. Industry practitioners

could have had insights that would have benefited the research team or even affected

the course of the research. The research team also did not examine the various types

of learning such as individual learning, organizational learning, autonomous learning,

stochastic learning and the effects of each on productivity.

Future research should therefore observe if different types of learning are modeled

by a different set of mathematical classes. In addition this research should also ac-

commodate for randomness and and include stochastic models in the developed tool,

in order to factor in uncertainty which is a fact of life in the construction industry. The

validity of this research could also be enhanced by using the LC concepts for the pur-

pose of resource allocation and generating optimum crew mixes that would maximize

the flow of knowledge throughout the organization.
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Lapré, M. A., Mukherjee, A. S., and Van Wassenhove, L. N. (2000). Behind the

learning curve: Linking learning activities to waste reduction. Management Science,

46(5):597–611.

Larsen, J. K., Shen, G. Q., Lindhard, S. M., and Brunoe, T. D. (2015). Factors affect-

ing schedule delay, cost overrun, and quality level in public construction projects.

Journal of Management in Engineering, 32(1):04015032.

69



Levy, F. K. (1965). Adaptation in the production process. Management Science,

11(6):B–136.

Li, G. and Rajagopalan, S. (1997). The impact of quality on learning. Journal of

Operations Management, 15(3):181–191.

Lieberman, M. B. (1984). The learning curve and pricing in the chemical processing

industries. The RAND Journal of Economics, 15:213–228.

Long, L. D. and Ohsato, A. (2009). A genetic algorithm-based method for scheduling

repetitive construction projects. Automation in Construction, 18(4):499–511.

Love, P. E., Ackermann, F., Teo, P., and Morrison, J. (2015). From individual to col-

lective learning: A conceptual learning framework for enacting rework prevention.

Journal of Construction Engineering and Management, 141(11):05015009.

Lutz, J. D., Halpin, D. W., and Wilson, J. R. (1994). Simulation of learning develop-

ment in repetitive construction. Journal of Construction Engineering and Manage-

ment, 120(4):753–773.

Mazur, J. E. and Hastie, R. (1978). Learning as accumulation: A reexamination of the

learning curve. Psychological Bulletin, 85(6):1256.

Meirovich, G. (2006). Quality of design and quality of conformance: Contingency

and synergistic approaches. Total Quality Management & Business Excellence,

17(2):205–219.

Mosey, D. (2009). Early contractor involvement in building procurement: contracts,

partnering and project management. John Wiley & Sons.

70



Nembhard, D. A. and Osothsilp, N. (2002). Task complexity effects on between-

individual learning/forgetting variability. International Journal of Industrial Er-

gonomics, 29(5):297–306.

Nemet, G. F. (2006). Beyond the learning curve: factors influencing cost reductions in

photovoltaics. Energy policy, 34:3218–3232.

Panas, A. and Pantouvakis, J. P. (2013). Simulation-based and statistical analysis of the

learning effect in floating caisson construction operations. Journal of Construction

Engineering and Management, 140(1).

Proverbs, D., Holt, G. D., and Olomolaiye, P. (1998). Factors impacting construction

project duration: a comparison between france, germany and the uk. Building and

environment, 34(2):197–204.

Rosenbaum, S., Toledo, M., and Gonzalez, V. (2012). Green-lean approach for as-

sessing environmental and production waste in construction. In Proceedings for the

20th Annual Conference of the IGLC, San Diego, USA.

Salameh, M. K., Abdul-Malak, M.-A. U., and Jaber, M. Y. (1993). Mathematical

modelling of the effect of human learning in the finite production inventory model.

Applied mathematical modelling, 17(11):613–615.

Saraswat, S. P. and Gorgone, J. T. (1990). Organizational learning curve in software

installation: an empirical investigation. Information & management, 19:53–59.

Schindler, M. and Eppler, M. J. (2003). Harvesting project knowledge: a review of

project learning methods and success factors. International journal of project man-

agement, 21(3):219–228.

71



in performance prediction. Journal of construction engineering and management,

133(6):474–482.

Zhang, L., Zou, X., and Kan, Z. (2014). Improved strategy for resource allocation in

repetitive projects considering the learning effect. Journal of Construction Engi-

neering and Management, 140(11).

73



Senouci, A. and Al-Derham, H. R. (2008). Genetic algorithm-based multi-objective

model for scheduling of linear construction projects. Advances in Engineering Soft-

ware, 39(12):1023–1028.

Srour, J. F., Kiomjian, D., and Srour, I. M. (2015). Learning curves in construction: A

critical review and new model. Journal of Construction Engineering and Manage-

ment, page 06015004.

Sturm, R. (1999). Cost and quality trends under managed care: is there a learning curve

in behavioral health carve-out plans? Journal of Health Economics, 18:593–604.

Thieblot, A. J. (2002). Technology and labor relations in the construction industry.

Journal of Labor Research, 23(4):559–573.

Thomas, H. R., Mathews, C. T., and Ward, J. G. (1986). Learning curve models of

construction productivity. Journal of Construction Engineering and Management,

112:245–258.

United Nations. Economic Commission for Europe. Committee on Housing, B. and

Planning (1965). Effect of Repetition on Building Operations and Processes on

Site: Report of an Enquiry. Number 438 in Document (United Nations). UN.

Uzumeri, M. and Nembhard, D. (1998). A population of learners: A new way to

measure organizational learning. Journal of Operations Management, 16(5):515–

528.

Vits, J. and Gelders, L. (2002). Performance improvement theory. International jour-

nal of production economics, 77(3):285–298.

Wong, P. S., On Cheung, S., and Hardcastle, C. (2007). Embodying learning effect

72


	Thesis-Template-Latex-New.pdf
	SKMBT_C45216050214070
	SKMBT_C45216050214100

