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An Abstract of the Thesis of

Mohamad Alsalman for Master of Engineering
Major:Mechanical Engineering

Title: Modeling and Analysis of a Holonomic and Nonholonomic Novel Differential
Drive Wheeled Robotic System

Modeling and control of wheeled mobile robots over rough terrain has been an es-
sential task for robotic researchers for applications such as search and rescue and un-
manned exploratory missions. Modeling the locomotion of a wheeled robot on rough
terrain yields a highly constrained system of equations of motion.

This work presents the modeling and control of a variable-diameter differentially-
drive robot with a single actuator. The forward motion of this model can be dynami-
cally related to the rotation of a central disk whereas the steering motion of the model
can be related to the translation of this disk. The motion of this novel robotic platform
design is captured via a set of differential algebraic equations (DAE). In this thesis, a
stabilization technique is developed and used to reduce the DAEs of motion to a set or-
dinary differential equations. This stabilization method proved to be adequate to model
the motion of the platform, not only on flat terrain but also on rugged uneven terrain.
The developed model was used to simulate various inputs in an open-loop architecture
to analyze the systems motion and its interactions with bumps in the terrain.

A final task was to utilize the developed model to design controllers for the system
inputs to perform two tasks, trajectory following and bump or disturbance mitigation.
The stabilization of the equations of motion developed in this thesis, proved to be
helpful in linearizing the dynamics the system. Accordingly, the linear system was
used to analyze the systems controllability as well as to develop a Linear Quadratic
Regulator which was tuned to provide robust control for the system.
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Chapter 1

Introduction

Mobile robotics is the branch of engineering that deals with the modeling, design,
and control of terrain, aerial, and underwater vehicles. These vehicles are designed
knowing the restrictions forced upon them by their respective applications and envi-
ronments. Aerial and underwater vehicles are subjected to great amounts of forces
from the air and water currents they traverse, leading engineers into their domain of
study. Land vehicles on the other hand are under contact forces from their surround-
ings, which have provided a very difficult problem for researchers. Motion constraints
in robotic locomotion have been thoroughly studied for wheeled platforms moving
over flat terrain, but get much more complicated when the robot is allowed to traverse
uneven terrain, where a deep analysis and understanding of contact is required. Re-
searchers have often studied the mathematical representations of wheeled systems on
rough terrain, most notable the forces due to the wheel contact with the terrain. En-
forcing the contact between two bodies has been tackled by researchers from several
angles, many of which require a range of sensors, and remain unsatisfactory from a
purely dynamic point of view. In addition to the literature dealing with the dynamics
involved, some work has been done to design a feasible robotic vehicle that can tra-
verse uneven terrain while satisfying the required constraints. Many researchers tend
to use two wheeled differential driven robots, as compared to four or more wheeled ve-
hicles, providing a simpler system to model, with desirable mobility. When simplistic
system designs were proven to fail over rough terrain, as the required constraints would
no longer be satisfied, research focused on more flexible designs, including variable
length axles and stoked designs.

In this work, the problem of designing a feasible system that can traverse flat ter-
rain easily in addition to providing satisfactory rough terrain mobility is addressed.
The resulting design is a flexible wheeled vehicle, which was modeled in two and three
dimensions by addressing the simple components before combining them. This design
is then fully modeled using index reduction techniques to simplify the constrained
equations of motion. The path following capabilities of the system are studied, com-
paring the dynamic motion to Dubins kinematic minimum path approach. The model
is then amended to analyze its rough terrain mobility, and the mitigation of bump-like
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disturbances.
Some of these previous designs are presented in sections 1.1 and 1.2. This is fol-

lowed by a full study of dynamic system modeling and analysis in section 2.1, and
a study of the mathematical techniques involved in these formulations in section 2.2.
Chapter 3 presents the stabilization techniques developed in the literature and the novel
method utilized in this work. This method is used to aid in the linearization, decom-
position and control of nonlinear systems derived from the Lagrangian formulation.
The remainder of this work utilizes this background to model one of the designs in the
literature in a unique way. Chapter 4 looks into flexible wheel models and the effect of
rough terrain on their parameters in two and three dimensions. Chapter 5 presents the
modeling, analysis, and control of the full system model along with simulations and
results. In section 5.1, a study of the full system model over flat terrain is presented,
with path following simulations. Section 5.2 presents the model for rough terrain mo-
bility and simulation, where the model is simulated to follow a Dubins path as well as
mitigating a bump in open loop. In section 5.3, the controller design is discussed for
a simpler iteration of the model, where robust control is implemented for disturbance
rejection.

1.1 Differential Drive and Variable Diameter Wheeled
Robots

In the study of wheeled robots, the search for high mobility, simple design, and mini-
mal actuation has been one of the main concerns of robotic researchers. The literature
over the years has tackled all of those concerns, with differential drive being a fre-
quently visited design by many researchers, as seen in Fig.1.1.

O’Halloran and his colleagues [1] designed and tested a high impact survivable
robot based on differential drive designs. The use of differential drive was essential
because it allowed for a compact build thus the vehicle was able to withstand drops
from up 20 feet. Their work conveys the advantage of differential drive in the search
of compact and durable builds. Other researchers have found the versatility of differ-
ential drive to be of great use, as many novel designs with specified usage have come
up in the literature. One of the design trends for differential drive is to use variable
diameter wheels where the change in diameter effects a change in the forward velocity
of the wheels. Lee et al. [2] combine the ingenuity of the Japanese art of origami
with robotics to achieve a differential drive robot using a magic ball origami structure.
This structure can take the shape of a long cylindrical tube or a circular one, where
the variation in diameter allows the vehicle to describe the dynamics of a differential
drive. Some more complicated and highly actuated designs have been tackled as well;
Zheng [3] designed a retractable structure that is driven by a central axis, where rotat-
ing the axis expands and contracts the outer structure, thus increasing and decreasing
the wheel diameter in the process. This design combines the high stability of wheeled
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(a) O’Halloran’s compact design [1] (b) Lee’s origami de-
sign [2]

(c) Zheng’s retractable wheel struc-
ture [3]

(d) IMPASS robot [4] (e) Single Actuator Design [5]

Figure 1.1: The designs found in the literature

robots with the high mobility of legged robots over uneven terrain, as the retractable
structure has shown good performance in obstacle climbing simulations. The IMPASS
robot [4], on the other hand, consists of spoked wheels that are individually actuated,
allowing for high mobility over rough terrain, in contrast to the high degree of actua-
tion required. The stability of this design is studied as the wheel-ground contact varies
based on the desired mode of motion, varying from one contact point up to three con-
tact points. These designs have tackled the problems of compactness with versatility
and maneuverability in rough environments, however the actuation of these designs is
demanding.

A more recent design by Sfeir [5] looks into minimal actuation with high terrain
mobility. Their design consists of a two wheeled variable diameter vehicle with a
single actuator, given by a mass on the wheels’ axis, that moves along the axis and
rotates about it. As the actuator moves along the axis, the wheel diameters increase
and decrease based on a spring-damper system installed, and as the actuator rotates
about the axis, inertia effects result in a rotation of the whole vehicle, thus inducing the
forward motion. This design solves a problem in reduced actuation thus simplifying
the design.

As is the case for all two wheeled robotic systems, these designs are under con-
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straints from the environment[6, 7]. For flat terrain, these constraints are the no-
skidding constraint along the lateral direction of the vehicle, and the no-slipping con-
straints along the forward direction of each wheel. However when traversing rough
terrain, these constraints are insufficient to model the system.

1.2 Wheeled Robots on Uneven Terrain

(a) Axel 1 tethered rover [8] (b) Choi’s design for a variable length axle vehicle
[9]

(c) Jet Propulsion Laboratory’s Sample Return Rover [10]

Figure 1.2: Designs used to traverse uneven terrain

When traversing uneven terrain, wheeled mechanical systems undergo varied forces
and dynamics as compared to flat terrain. The main goal in modeling systems over
rough terrain is the maintenance of contact, assuming sufficient smoothness. In much
of the literature, point contact between the wheel and the terrain is assumed, thus an
additional constraint is required to keep that contact. This type of constraint is seen
frequently in the literature as a holonomic constraint, as Choi [9] used a position con-
straint on the contact of the wheel to satisfy a predefined terrain function, in addition
to using an altered version of Baumgarte’s nonholonomic stabilization formula [11]
to achieve a working model for simulation. Using the holonomic constraint allows
researchers to interpret the third spatial coordinate without needing to explicitly cal-
culate it. For vehicles over flat terrain, this constraint is trivial because the models are
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basically planar in x− y, and the z dimension is seen to be constant or a function of
the design. However, over uneven terrain, the vehicle moves in three dimensions, and
the wheel-ground contact angles rarely coincide with the world frame’s z axis, rather
they are tangent to the terrain at the contact point. This fact is used by Cai and Roth to
develop some theory of point contact in planar motion [12] as well as spatial motion
[13] regarding rigid bodies that remain in contact. In their work, they make use of the
geometries of the bodies involved, and utilize the fact that, considering point contacts,
the normal lines to the curves at contact should coincide, and the contact point moves
in the direction of the common tangent. This analysis brings forth the use of a non-
holonomic constraint rather than a holonomic one, which prevents the contact point
from moving in the direction normal to the terrain.

Additional work on nonholonomic constraint for traversing rough terrain was done
by Choi and Sreenivasan [9, 14]. Aiming to preserve the no-skidding and no-slipping
constraints, they define a design requirement for robotic vehicles to be able to tra-
verse uneven terrain, namely (lcz−ncx)(ω1−ω2) = 0, which requires either variable
length wheel axles or for the wheels to rotate at the same angular velocity. They show
that a vehicle that doesn’t satisfy this constraint will undergo slipping when traversing
uneven terrain. Leading researchers to the use of actively and passively articulated
systems as seen in Fig. 1.2.

Iagnemma et al. [10] use the actively articulated suspension of the Jet Propulsion
Lab’s Sample Return Rover to traverse uneven terrain. Assuming point contact, they
estimate contact angles from sensor measurements, and through the use of the active
suspension they ensure stability of the vehicle by finding the optimal configuration for
the measured angle values. The use of holonomic constraints for uneven terrain has
also been seen in the case of tethered robots where Abad-Manterola [8] and his col-
leagues develop an algorithm for tethered robot motion on steep terrain, using holo-
nomic constraints to model the tether reaction force as well as the caster arm ground
reaction force.
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Chapter 2

Background

In this chapter, the Lagrangian formulation is presented for constrained systems, re-
sulting in a set of differential algebraic equations. These equations have a high index
and additional index reduction steps are required to reduce the index of the system
resulting in ordinary differential equations that are simpler to work with and easier to
simulate.

2.1 Equations of Motion for Mechanical Systems

The study of dynamic systems and their classification began with the early theories
and methods of Newton to the relatively newer formulations of Euler, Lagrange, and
Hamilton. The work of these great minds has kept researchers busy, with their work
being a cornerstone for many academics in physics and engineering. To progress in the
study of dynamic systems, some concepts of classical mechanics are described here,
epitomized by the Lagrangian formulation, and reaching the Euler-Lagrange equations
of motion.

A mechanical system is characterized as consisting of N particles, such that a par-
ticle is defined as a point in space with a given mass. The motion of each such particle
is thus defined as a motion of a point in space, which can be fully described by its
set of coordinates q, assuming the point has no geometrical dimensions and thus no
orientation. Consequently a mechanical system with N particles is said to have Nq
generalized coordinates that fully describe the motion of the system. This characteris-
tic is to be distinguished from the system’s degrees of freedom because a system might
require Nq coordinates to be fully defined, but its motion might not be free in all these
coordinates. The number of degrees of freedom of a system can be interpreted as the
number of independent quantities that must be specified to define the system [15].

Some systems in space are not simply defined as points, but a set of points con-
nected by links. This type of system is called a rigid body. When looking into the dy-
namics of rigid bodies rather than points, spatial coordinates are insufficient to define
the system because a system with dimensions, i.e. consists of several points connected
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Figure 2.1: 2 Dimensional Pendulum

by links, has an orientation, and this orientation is required to define the motion of the
body. An example of this is seen for a rigid body in 3D space, where a point only
requires 3 coordinates (x,y,z) to be fully defined, a body requires 6 coordinates which
include the spatial coordinates in addition to the 3 rotational coordinates, commonly
referred to as roll, pitch and yaw.

Example 1 Consider a system of a pendulum in 2D space, which is basically a parti-
cle with coordinates (x,y) allowed to move while remaining at a constant distance from
another stationary point in space, the center of the pendulum. The set of coordinates
needed to define this pendulum is

q = (x,y). (2.1)

If the particle is allowed to move freely, the system is said to have 2 degrees of freedom,
but a pendulum, in fact, has 1 degree of freedom because it rotates around a fixed center
point.

Example 2 A system frequently referred to in dynamics is the rolling disk in a plane
seen in Fig.2.2. The disk is allowed to move over the plane but not in the third di-
mension, so the spatial coordinates (x,y) are required. It is also oriented in a certain
direction in the plane so the that direction θ is required. Finally, the motion of the
disk is caused by its rolling about its axis, labeled φ , and is required to fully define the
motion of the system resulting in the set

q = (x,y,θ ,φ). (2.2)
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Figure 2.2: The classical rolling disk example

Classifying dynamic systems as constrained or unconstrained, constrained systems
can then be studied thoroughly, where the unconstrained systems are a simpler set of
the more general formulations. Constrained systems are classified into holonomic and
nonholonomic systems, having holonomic and nonholonomic constraints, respectively.
Both types of constraints have been studied extensively since the beginning of the do-
main of classical dynamics. Holonomic constraints, similar to the pendulum constraint
mentioned earlier, are constraints that take the form

φ j(q1,q2, ...,qn) = 0, ( j = 1,2, ...,k) (2.3)

where k is the number of constraints, and q1, ...,qn are the generalized coordinates of
the system. The constraints in equation (2.3) are position-level constraints such as
length constraints, i.e. strictly functions of the generalized coordinates, and in general
are called integrable.

Nonholonomic constraints, also termed nonintegrable, take the form of
n

∑
i=1

a jidqi = 0, ( j = 1,2, ...,m) (2.4)

where one can see that these constraint are velocity-level constraints, and cannot be
integrated to obtain direct position-level equivalents.

Example 1 Revisited The pendulum mentioned earlier was said to have 1 degree of
freedom, despite the point on its end describing a trajectory in 2 dimensions (x,y). This
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constraint is a holonomic constraints portraying the rigidity of the pendulum, i.e. the
link joining the fixed center point and the moving point being at a constant distance.
This constraint is written as

x2 + y2− l2 = 0. (2.5)

Note One can see that the pendulum system can be simplified by taking one coordi-
nate θ which is sufficient to define the system. The moving point coordinates can then
be defined as (l cosθ , l sinθ) and the constraint is implicit in this definition. In this
text, the coordinates (x,y) will be used instead to portray concepts on constraints and
differential equations seen later.

Example 2 Revisited A common example of nonholonomic constraints is that of a
disk rolling without slipping on a horizontal plane, mentioned earlier in Fig.2.2. Where
the contact point is constrained to have velocity Vcontact = rφ̇ , the following constraint
equations can be identified

ẋ− r cos(θ)φ̇ = 0,

ẏ− r sin(θ)φ̇ = 0,
(2.6)

where the velocity of the wheel in the global x and y directions are constrained to be
the rotation of the wheel multiplied by its radius, then projected on the appropriate
axis. In many cases this constraint is taken in a local body frame of the disk, and in
such cases the velocity in the direction of the body y frame, usually taken to be the
lateral axis, is taken to be 0, and in the x frame to be simply rφ̇ .

When solving for the equations of motion of a classical dynamic system, two ap-
proaches are commonly used, vectorial dynamics and analytical dynamics. Vectorial
dynamics relies on a complete understanding of the forces and motions within the sys-
tem, as it applies directly on Newton’s laws. Analytical dynamics, on the other hand,
is energy based and studies a dynamic system as a whole looking into its kinetic and
potential energies. Analytical dynamics is based around the Lagrangian formulation,
and excels in more complicated constrained systems compared to vectorial dynamics
where a complete and thorough understanding of all the forces acting on the system is
required [16].

2.1.1 Lagrangian Formulation for the Equations of Motion

Consider a system of N particles described by the generalized coordinates q1,q2, ...,qs.
The principle of least action, also known as Hamilton’s principle, states that the system
is characterized by a function L(q1,q2, ...,qs, q̇1, q̇2, ..., q̇s, t) or L(q, q̇, t) such that the
motion of the system satisfies a certain condition. Considering that a certain system
occupies, at time t1 a coordinate q1 and at time t2 a coordinate q2, this condition states
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that the system moves from q1 to q2 with the integral∫ t2

t1
L(q, q̇, t)dt, (2.7)

taking the least possible value. Here we call the function L the Lagrangian of the
system. The Lagrangian here is defined only as a function of q and q̇ because a state
of a mechanical system at any time t is fully defined with its generalized positions
and velocities. It follows that to minimize the integral the following equation must be
satisfied

d
dt

∂L
∂ q̇
− ∂L

∂q
= 0. (2.8)

This set of equations is called the Euler-Lagrange set of equations of motion. The
quantity termed the Lagrangian in the above formulation must be a quantity that de-
scribes any dynamic system in addition to relating the generalized position and the
generalized velocities. This quantity turns out to be a measure of energy of the system.
To be able to fully define this quantity, we introduce the ingredients needed to define
our system.

The set of generalized coordinates of the dynamic system is first used to define the
energy in the system, with the kinetic energy T being

T =
1
2

s

∑
i=1

mi

(
n

∑
j=1

∂xi

∂q j
q̇i +

∂x j

∂ t

)2

, (2.9)

while the potential energy U can take the form of energy derived from any number of
natural forces, including gravity, electromagnetism, and spring stiffness [15]. Defining
the energy in the system, we can compute the Lagrangian

L = T −U. (2.10)

Systems containing external forces not derivable from the potential energy require an
additional term, symbol τ , to account for this force [16]

d
dt

∂L
∂ q̇i
− ∂L

∂qi
= τi. (2.11)

For constrained systems, the constraint forces are calculated and plugged into the
equations also on the right hand side. In the case of nonholonomic systems with con-
straints of the form (2.4), the constraint forces can be written in the form

ci =
m

∑
j=1

λ ja ji, (i = 1,2, ...,n) (2.12)

where λ are called Lagrange multipliers. The resulting equations of motion will thus
be [16]

d
dt

∂L
∂ q̇i
− ∂L

∂qi
= τi +

m

∑
j=1

λ ja ji. (2.13)
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In the case of holonomic constraints of the form (2.3), the constraints forces can be
introduced into the system in one of two ways. The first is similar to nonholonomic
forces. The constraints are first written as

n

∑
i=1

b jiqi = 0, ( j = 1,2, ...,k) (2.14)

and thus the constraint forces can be found to be

hi =
k

∑
j=1

λ jb ji, (i = 1,2, ...,n) (2.15)

similar to the forces for nonholonomic systems.

d
dt

∂L
∂ q̇i
− ∂L

∂qi
= τi +

m

∑
j=1

λ jb ji. (2.16)

The other way is to add the constraints straight into the Lagrangian of the system
to obtain a new Lagrangian as

L′ = L+λ jφ j(qi) = L+
k

∑
j=1

λ jb jiqi, (i = 1,2, ...,n) (2.17)

where λ j are added to the set of generalized coordinates, and the constraint forces
appear in the Euler Lagrange equations for qi 6= λ j, and the constraint equations them-
selves appear for qi = λ j.

Some dynamic systems are under forces that cannot be taken under constraint
forces nor generalized forces, they are forces due to dissipation effects, specifically
damping components in the system. These forces take the form

Qi =−
n

∑
j=1

ci j(q, t)q̇ j, (2.18)

where ci, j are known as the damping coefficients. These dissipative forces result in
energy loss of the system. To introduce them into the Euler Lagrange equations, we
define Rayleigh’s dissipation function

F =
1
2

n

∑
i=1

n

∑
j=1

ci jq̇iq̇ j, (2.19)

and the Euler Lagrange equations become

d
dt

∂L
∂ q̇i
− ∂L

∂qi
+

∂F
∂ q̇i

= 0. (2.20)
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Generalizing all the terms that can go into the Euler-Lagrange equations, we get the
following general form to be used, appended by the constraint equations

d
dt

∂L
∂ q̇i
− ∂L

∂qi
+

∂F
∂ q̇i

= τi +
m

∑
j=1

λ ja ji +
n

∑
k=1

λkbki,

n

∑
i=1

a jidqi +a jtdt = 0,

φ j(q1,q2, ...,qn, t) = 0.

(2.21)

Example 1 In the case of the pendulum, we define our set of generalized coordinates
q = (x,y) being the position of the moving point. We can define the energy on the
system as

T =
1
2

mq̇.q̇ =
1
2

m(ẋ2 + ẏ2),

U = mgy,
(2.22)

where m and g are the mass of the particle and the gravitational constant, respectively.
The constraint on the system is

x2 + y2− l2 = 0, (2.23)

where l is the length of the rod. The equations of motion are thus

mẍ = τx +2xλ ,

mÿ+mg = τy +2yλ ,

x2 + y2− l2 = 0.

(2.24)

Example 2 For the case of the nonholonomic disk, given the set of generalized co-
ordinates (x,y,θ ,φ), we can define the center of mass of the disk as the center point,
given the coordinates (x,y) with a mass m and moments of inertia Jθ and Jφ . The
energy in this system is thus

T =
1
2

m(ẋ2 + ẏ2)+
1
2

Jθ θ̇
2 +

1
2

Jφ φ̇
2, (2.25)

where the potential energy is always zero as the disk is always on the same level. The
nonholonomic constraints repeated here

ẋ− r cos(θ)φ̇ = 0,

ẏ− r sin(θ)φ̇ = 0,
(2.26)

where the matrix a from equation (2.12) is

a =

(
1 0 0 −r cosθ

0 1 0 −r sinθ

)
. (2.27)
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Finally, the equations of motion are appended by the constraint equations to get the full
set required to solve for the system variables (x,y,θ ,φ) and the Lagrange multipliers
(λ1,λ2)

mẍ = λ1

mÿ = λ2

Jθ θ̈ = 0

Jφ φ̈ =−r cosθλ1− r sinθλ2,

ẋ− r sin(θ)φ̇ = 0,

ẏ− r cos(θ)φ̇ = 0.

(2.28)

2.1.2 Rewriting the Equations of Motion in Matrix Form
The dynamic equations of motion (2.21) can be written in their standard form by real-
izing that the terms that multiply q̈ and q̇ can be collected, the resulting form is

M(q)q̈+C(q, q̇)q̇+g(q)+b(q)q̇ = τ +A1(q)T
λ1 +A2(q)T

λ2, (2.29)

where M is termed the inertia matrix which contains all mass and inertia terms that
multiply the generalized accelerations in the system, C is termed the Coriolis matrix
and is the set of Christoffel symbols of the inertia matrix m such that

Ci j =
n

∑
k=1

= Γ
k
i j(q)q̇k,

Γ
k
i j(q) =

1
2

(
∂Mi j

∂qk
+

∂Mik

∂q j
−

∂Mk j

∂qi

)
,

(2.30)

g are the gravitational forces on the system, b represents the dissipation effects, tau
is the set of generalized forces, and A1 and A2 are the constraint matrices. These
equations are appended by a set of nonholonomic and holonomic constraints defined
by

N(q, q̇) = 0,
H(q) = 0.

(2.31)

We differentiate equations (2.31) to obtain constraints on q̈

dN
dt

=
∂N
∂ q̇

dq̇
dt

+
∂N
∂q

dq
dt

+
∂N
∂ t

=
∂N
∂ q̇

q̈+
∂N
∂q

q̇+
∂N
∂ t

= 0,

dH
dt

=
∂H
∂q

dq
dt

+
∂H
∂ t

=
∂H
∂q

q̇+
∂H
∂ t

= 0,

d2H
dt2 =

∂H
∂q

dq̇
dt

+
∂ 2H
∂q2 q̇2 +

∂ 2H
∂ t2 =

∂H
∂q

q̈+
∂ 2H
∂q2 q̇2 +

∂ 2H
∂ t2 = 0,

(2.32)

where we have differentiated the holonomic constraints twice and the nonholonomic
constraint once, to get constraints on the accelerations of the system. Recognizing that
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we can solve for q̈ from (2.29), we replace their solutions in (2.32) and solve for λ1
and λ2, which we can plug back into (2.29) to get a system of equations without the
constraints. For solely nonholonomic systems, this has been used very frequently, with
the resulting general form for the equations being [17]

(I−AT (AM−1AT )−1AM−1)(Mq̈+Cq̇+g−u) = 0, (2.33)

where A is the constraint matrix in Pfaffian form such that the nonholonomic con-
straints are defined as AT q̇ = 0.

This method can sometimes be problematic as the initial constraint of the system
is not always satisfied. It can be argued that with the proper initial conditions, con-
sidering that A1q̇ = 0 and A2q = 0 at the initial state of the system, and satisfying
Ȧ1q̇+A1q̈ = 0 and Ä2q+ 2Ȧ2q̇+A2q̈ = 0 at all consecutive times would satisfy the
initial constraints. Numerical simulations on the other hand do not guarantee this, as
numerical solvers are not always error-free, and considering that a small error might
dissatisfy the differentiated constraints at some time step, then the error in the initial
constraints will increase continuously.

2.2 Differential Algebraic Equations

The constrained equations of motion are a set of differential algebraic equations (DAEs)
that seldom have an analytical solution and must be solved numerically. Computer
numerical simulation often drifts from the stable values, resulting in compounding
erroneous values. To see the effect that this drift might have, assume a holonomic con-
straint C = 0 needs to be satisfied at all times, after a certain period of time t, C drifts
to a small value δ , with Ċ also drifting to a small value ε . After some time, the error on
the constraint increases as it takes the form C = εt + δ . The difficulty that numerical
simulation poses has lead to studies on DAEs and ways to simplify such systems.

The general form of nonlinear differential equations is

F(ẏ,y, t) = 0, (2.34)

where y(t) ∈ R→ Rn and F ∈ Rn×Rn×R→ Rn. The set F of differential equations
are called implicit ODEs if the Jacobian ∂F/∂ ẏ is nonsingular, i.e. all variables y have
at least one instance of ẏ in the set of equations then the system has an index of 0. If
∂F/∂ ẏ is singular, then at least one variable y in the equations is algebraic or its time
derivative cannot be computed, and the system is labeled as a differential algebraic
system of equations.

The difficulty of working with DAEs is mainly due to the high index of the system
as defined below.

14



qi, τi, Fi (i = 1, ...,m)
L,

N j ( j = 1, ...,n)
Hk (k = 1, ...,h)

d
dt

∂L
∂ q̇i
− ∂L

∂qi
+ ∂F

∂ q̇i
=

τi + ∑
m
j=1 λ j

∂N j
∂ q̇i

N(q, q̇) = 0

d
dt

∂L
∂ q̇i
− ∂L

∂qi
+ ∂F

∂ q̇i
=

τi +∑
m
j=1 λ j

∂N j
∂ q̇i

+∑
n
k=1 λk

∂Hk
∂qi

N(q, q̇) = 0, H(q) = 0

Index 2
System

Index 3
System

Difficult to
Solve

Numerically

M(q)q̈ +C(q, q̇)q̇ + g(q) +
b(q)q̇ = τ + ∑

m
j=1 λ j

∂N j
∂ q̇i

M(q)q̈+C(q, q̇)q̇+g(q)+b(q)q̇ =

τ +∑
m
j=1 λ j

∂N j
∂ q̇i

+∑
n
k=1 λk

∂Hk
∂qi

q̈i = χi(q, q̇,λ )
(i = 1, ...,m)

Nonholonomic Mixed

Stadardize Stadardize

Figure 2.3: A look at the general equations of motion for constrained mechanical
systems

Consider a system of equations with an index i > 0

F(ẏ,y, t) = 0,
dF
dt

=
∂F
∂ ẏ

ÿ+
∂F
∂y

ẏ+
∂F
∂ t

= 0,

d2F
dt2 =

∂F
∂ ẏ

y(3)+ ...= 0,

...
dsF
dts =

∂F
∂ ẏ

y(s+1)+ ...= 0,

(2.35)

where the variables ẏ, ÿ, ...,y(s+1) can be considered independent variables and solved
for as functions of y and t. It might not be possible to solve for y(s+1), but if it is
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Method 1:
Solving for λ

q̈ = χ(q, q̇,λ )
N = f (q, q̇) = 0
H = f (q) = 0

q̈ = χ(q, q̇,λ )
Ṅ = f1(q, q̇, q̈) = 0
Ḧ = f2(q, q̇, q̈) = 0

q̈ = χ(q, q̇,λ )
g1(q, q̇,λ ) = 0
g2(q, q̇,λ ) = 0

λ = ζ (q, q̇)

q̈ = χ(q, q̇,ζ (q, q̇))

Set of m ODEs
Requires Constraint
Differentiation

Differentiate Constraints

Replace χ for q̈

Solve λ

Replace in (χ)

Figure 2.4: First method to simplify constrained mechanical systems
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possible to solve for ẏ for some value of s, then the index i is defined as the smallest
s for which all values ẏ can be solved for. One can infer from the system (2.35) that
after each differentiation, the index of the system is reduced by one, this is deceiv-
ing as the differentiated system does not always convey the same information as the
original. This is due to hidden constraints within the system, that are lost after each
differentiation.

2.2.1 Differential Algebraic Equation Index Reduction
The general form of a DAE shown in (2.34) can be transformed into its semi-explicit
form by replacing ẏ with v and y with u to get the system

u̇ = v,
F(v,u, t) = 0.

(2.36)

The index of (2.36) is said to be one more than the general form because an extra
differentiation is required to get v̇. This gives insight into index reduction of systems
of the form (2.36), or in other words, constrained systems

u̇− f (u,v, t) = 0,
c(u,v, t) = 0.

(2.37)

The system characterized by (2.37) can be transformed to the general form by replacing
v with ẏ, where it requires one less differentiation to reach ẏ. This index reduction using
the general form motivates the study of the minimum index equivalent of a system.

An n-dimensional system with index m > 0 can be transformed to the minimum
index equivalent if for every i∈ n where ∂ f/∂ ẏi = 0, y is replaced by ẏ. This minimum
index equivalent can be quite useful for constrained systems as the Lagrange multipli-
ers will typically satisfy ∂ f/∂ ẏi = 0. The concept of Lagrange multipliers and index
reduction are closely related [18]. Consider a system of the form (2.37), differentiating
the constraint gives

∂c
∂u

f (u,v, t)+
∂c
∂v

v̇+
∂c
∂ t

= 0, (2.38)

where the index of the system has been reduced, except the constraint is essentially
different. One can use both constraints, but the system is then overdetermined, so
additional variables can be introduced into the system to remove this overdeterminacy.

The following procedure developed by Gear [19] differentiates systems of the gen-
eral form (2.34) to achieve an index one system, for which many numerical methods
exist and provide accurate solutions.

Beginning with a DAE of index i > 0 and dimension n1, by definition the Jacobian
∂F/∂ ẏ is singular, thus has rank r1 < n1. By the implicit function theorem, one can
solve for r1 variables of the system using the set of r1 equations that are independent,
thus allowing for the change of variable y = (yT

1 ,v
T
1 )

T where y1 has r1 components,
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and v1 represent the remaining unsolved set. We can see that this change of variable
allows us to get

ẏ1− e1(y1,v1, v̇1, t) = 0, (2.39)

which can be substituted into the remaining n1− r1 equations to get a relationship
between y1, v1, and t. These equations can be interpreted as constraints of the form

c1(y1,v1, t) = 0, (2.40)

and can be subsequently differentiated to get

∂c1

∂y1
e1(y1,v1, v̇1, t)+

∂c1

∂v1
v̇1 +

∂c1

∂ t
= 0, (2.41)

where this new system has a dimension n2, where r2 is the rank of the Jacobian
(∂g1

∂y1

∂e1
∂v1

+ ∂g1
∂v1

). Repeating the above step, v1 = (yT
2 ,v

T
2 )

T where y2 has r2 elements
which we can solve for. This process is repeated until the index of the system is fully
reduced, specifically i steps, to obtain ∑

i
m=1 rm = n1. Finally, we get a set of equations

that solves for all the time derivatives of the variables

ẏ = f (y, t), (2.42)

but the system consisting of (2.42) only does not satisfy the same physical phenomena
as the original system, because the differentiation leads to a loss of information. The
constraints c1,c2, ...,ci obtained after each differentiation are thus essential to maintain.
We write this set of constraints as

c(y, t) = 0. (2.43)

Simply adding these constraints to the system would make the system overdetermined.
To preserve the system determinacy, we introduce the vector µ of the dimension of c
and write (2.42) as

ẏ− f (y, t)− (
∂c
∂y

)T
µ = 0, (2.44)

which solves the system with the constraints, for µ = 0. The system consisting of (2.43)
and (2.44) is an index 2 system because µ can be determined with one differentiation,
and µ̇ can thus be determined with 2 differentiations. To reduce the index of the sys-
tem even further, one has only to notice that µ are strictly algebraic variables, so we
can now use the minimal index equivalent of the system and replace the vector µ = ν̇

which results in an index one system[18][19]

ẏ = f (y, t)+(
∂c
∂y

)T
ν̇ ,

c(y, t) = 0.
(2.45)

The system (2.45) is an index 1 system because one differentiation of the 2nd equation
gives a solution for ν̇ . Reducing the system further to index zero is possible but then
enforcing the algebraic constraints would not be possible.
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Studying the Pendulum Equations In example 1, we were able to obtain the equa-
tions of motion for the two-dimensional pendulum, repeated below

mẍ = τx +2xλ ,

mÿ+mg = τy +2yλ ,

x2 + y2− l2 = 0.

(2.46)

These equations are not of the form (2.34), but can easily be written in that form by
a simple change of variable taking ẋ = u and ẏ = v, we obtain the following set of
equations

ẋ = u,
ẏ = v,

mu̇ = τx +2xλ ,

mv̇+mg = τy +2yλ ,

hc = x2 + y2− l2 = 0.

(2.47)

We can see that this set of equations, as with all resulting DAE systems from the Euler-
Lagrange method that have holonomic constraints, is an index three system[20]. If we
differentiate the constraint equations and replace with the appropriate variables we get

dhc
dt

= xu+ yv = 0,

d2hc
dt2 =−λ − y+u2 + v2 = 0,

d3hc
dt3 =−λ̇ −3v = 0,

(2.48)

where after differentiating three times, we are able to solve for λ̇ . We get the new set
of equations

ẋ = u,
ẏ = v,

mu̇ = τx +2xλ ,

mv̇+mg = τy +2yλ ,

−λ̇ −3v = 0.

(2.49)

But solving the system (2.49) does not represent the solution for system (2.47) because
satisfying the differentiated constraint does not ensure that the original constraint is
satisfied.

To make sure that all the constraints are satisfied, we distinguish the hidden con-
straint equations that we got from the differentiation

x2 + y2− l2 = 0,
xu+ yv = 0,

−λ − y+u2 + v2 = 0,

(2.50)
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which define our set c. Adding these constraints immediately to our system makes the
system overdetermined, so we define the matrix

∂c
∂y

=

 2x 2y 0 0 0
u v x y 0
0 −1 2u 2v −1

 . (2.51)

and introduce the vector µ , which gets rid of the overdeterminacy in the system. The
new set of equations is thus

ẋ = u+2xµ1 +uµ2,

ẏ = v+2yµ1 + vµ2−µ3,

mu̇ = τx +2xλ + xµ2 +2uµ3,

mv̇+mg = τy +2yλ + yµ2 +2vµ3,

λ̇ =−3v−µ3,

x2 + y2− l2 = 0,
xu+ yv = 0,

−λ − y+u2 + v2 = 0,

(2.52)

where we have reduced the index of (2.46) from 3 to 2. We can reduce the sys-
tem (2.52) further by distinguishing its minimum index equivalent, and introducing
the variable ν̇ = µ . Where the final system will be of index 1.

Studying the Disk Equations In the case of the nonholonomic disk, the equations
differ due to the velocity components appearing in the constraint equations, which
produce an index 2 system rather than an index 3 system. Looking into the equations
of motion seen in (2.28), after changing the variables to account for accelerations

ẋ = u,
ẏ = v,

θ̇ = ω1,

φ̇ = ω2,

mu̇ = λ1

mv̇ = λ2

Jθ ω̇1 = 0
Jφ ω̇2 =−r cosθλ1− r sinθλ2,

nhc1 = u− r sin(θ)ω2 = 0,
nhc2 = v− r cos(θ)ω2 = 0,

(2.53)

where differentiating the constraint equations seen in (2.53) twice gives the re-
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quired equations of λ̇1 and λ̇2

dnhc1

dt
=

r2 cos2(θ)(λ2 tan(θ)+λ1)

J2
+

λ1

m
+ rω1ω2 sin(θ) = 0,

dnhc2

dt
=

λ2
(
−J2−mr2 sin(θ)(sin(θ)+ cos(θ))

)
+ J2mrω1ω2 cos(θ)

J2m
= 0,

d2nhc1

dt2 =−3λ1r2ω1 sin(2θ)

J2
+

3λ2r2ω1 cos(2θ)

J2
+

r2 sin(2θ)λ̇2

J2

+
r2 cos(2θ)λ̇1

J2
− λ2r2ω1

J2
+

r2λ̇1

J2
+

2λ̇1

m
+2rω

2
1 ω2 cos(θ) = 0,

d2nhc2

dt2 =
3λ2r2ω1 sin(2θ)

J2
+

3λ1r2ω1 cos(2θ)

J2
+

2r2 sin2(θ)λ ′2
J2

+
r2 sin(2θ)λ ′1

J2
+

λ1r2ω1

J2
+

2λ ′2
m

+2rω
2
1 ω2 sin(θ) = 0.

(2.54)

The system with the twice differentiated constraints is thus

ẋ = u,
ẏ = v,

θ̇ = ω1,

φ̇ = ω2,

mu̇ = λ1

mv̇ = λ2

Jθ ω̇1 = 0
Jφ ω̇2 =−r cosθλ1− r sinθλ2,

d2nhc1

dt2 =−3λ1r2ω1 sin(2θ)

J2
+

3λ2r2ω1 cos(2θ)

J2
+

r2 sin(2θ)λ̇2

J2

+
r2 cos(2θ)λ̇1

J2
− λ2r2ω1

J2
+

r2λ̇1

J2
+

2λ̇1

m
+2rω

2
1 ω2 cos(θ) = 0,

d2nhc2

dt2 =
3λ2r2ω1 sin(2θ)

J2
+

3λ1r2ω1 cos(2θ)

J2
+

2r2 sin2(θ)λ ′2
J2

+
r2 sin(2θ)λ ′1

J2
+

λ1r2ω1

J2
+

2λ ′2
m

+2rω
2
1 ω2 sin(θ) = 0.

(2.55)
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The hidden constraints c, found to be

u− r sin(θ)ω2 = 0,
v− r cos(θ)ω2 = 0,

r2 cos2(θ)(λ2 tan(θ)+λ1)

J2
+

λ1

m
+ rω1ω2 sin(θ) = 0,

λ2
(
−J2−mr2 sin(θ)(sin(θ)+ cos(θ))

)
+ J2mrω1ω2 cos(θ)

J2m
= 0,

(2.56)

need to be accounted for by adding the set of multipliers µ and plugging them into the
equations as in the previous example.

u = x′,
v = y′,

ω1 = θ
′− λ1µ3r2 sin(2θ)

J2
+

λ2µ4r2 sin(2θ)

J2
+

λ2µ3r2 cos(2θ)

J2

+
λ1µ4r2 cos(2θ)

J2
+µ1rω2 sin(θ)+µ4rω1ω2 sin(θ)−µ2rω2 cos(θ)+µ3rω1ω2 cos(θ),

ω2 = φ
′,

λ1 = µ1 +mu′,
λ2 = µ2 +mv′,

µ3rω2 sin(θ)−µ4rω2 cos(θ) = J1ω
′
1,

J2ω
′
2 +λ2r sin(θ)+λ1r cos(θ)−µ3rω1 sin(θ)

+µ4rω1 cos(θ)+µ2r sin(θ)+µ1r cos(θ) = 0,

−6λ1r2ω1 sin(2θ)

J2
+

6λ2r2ω1 cos(2θ)

J2
+

2r2 sin(2θ)λ ′2
J2

+
2r2 cos(2θ)λ ′1

J2

−µ4r2 sin(2θ)

J2
− 2µ3r2 cos2(θ)

J2
− 2λ2r2ω1

J2

+
2r2λ ′1

J2
+

4λ ′1
m
− 2µ3

m
+4rω

2
1 ω2 cos(θ) = 0,

−λ2r2ω1 sin(2θ)

J2
− λ1r2ω1 cos(2θ)

J2
+

2r2 sin2(θ)λ ′2
J2

+
r2 sin(2θ)λ ′1

J2

−µ4r2 sin2(θ)

J2
− µ3r2 sin(θ)cos(θ)

J2

−3λ1r2ω1

J2
+

2λ ′2
m
− µ4

m
+2rω

2
1 ω2 sin(θ) = 0.

(2.57)
We can see that the index of the system remains 2, because that’s the case initially

for nonholonomic systems, and we still need 2 differentiations to get µ̇ . To reduce this
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system to index 1, we introduce ν̇ = µ , where one differentiation of the final equations
gives the solution for ν̇ .

These two examples show that index reduction is a very complicated method to
simplify higher index DAEs. In dynamic systems, especially, it is very important to
satisfy a system’s initial constraints at all times in numerical simulations. Providing
satisfactory constrained models that are solvable in simulation is a tough task, but
Bamgarte shows that it is possible through stabilization methods.

2.2.2 Control for Simulation Purposes
Some steps taken in the index reduction method have brought up the potential useful-
ness of defining velocity variables such as u = ẋ, v = ẏ and ω = φ̇ . In some system
simulations, satisfaction of the velocity is more essential than the position on the con-
trol level. This change of variable allows the application of a controller directly on the
velocity rather than the position.

In typical dynamic systems, the generalized forces τi are the controlling forces
and they are made functions of the generalized coordinates so as to satisfy a certain
criterion. A frequently used controller in such systems is a P-D controller defined by
the equation [21]

τi = q̈desired +Kd(q̇desired− q̇)+Kp(qdesired−q), (2.58)

where a precise choice of Kd and Kp is required to satisfy our desired q.
A slight variation of this controller is made possible by the introduced variables

replacing q̇, where a more robust PID controller can be placed on q̇. Taking ρ = q̇, the
control law is defined by

τi = Kd(ρ̇desired−ρ)+Kp(ρdesired−ρ)+Ki(qdesired−q). (2.59)

For the purposes of studying the effects of the generalized velocities, this controller
has proven to be more robust in the simulations, on the other hand, for position level
precision, it doesn’t provide the same accuracy.
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Method 2:
Index Reduction

q̈ = χ(q, q̇,λ )
N = f (q, q̇) = 0
H = f (q) = 0

q̈ = χ(q, q̇,λ )
N̈ = f1(q, q̇, q̈,

...q ) = 0...
H = f2(q, q̇, q̈,

...q ) = 0

q̈ = χ(q, q̇,λ )
g1(q, q̇,λ , λ̇ ) = 0
g2(q, q̇,λ , λ̇ ) = 0

C =
(

N Ṅ H Ḣ Ḧ
)T

Additional 2n+ 3h equations

q̈ = χ(q, q̇,λ ) +∑
2n+3h
i=1

∂Ci
∂q µi

g1(q, q̇,λ , λ̇ ) = ∑
2n+3h
i=1

∂Ci
∂λ1

µi

g2(q, q̇,λ , λ̇ ) = ∑
2n+3h
i=1

∂Ci
∂λ2

µi
C = 0

q̈ = χ(q, q̇,λ ) +∑
2n+3h
i=1

∂Ci
∂q ν̇i

g1(q, q̇,λ , λ̇ ) = ∑
2n+3h
i=1

∂Ci
∂λ1

ν̇i

g2(q, q̇,λ , λ̇ ) = ∑
2n+3h
i=1

∂Ci
∂λ2

ν̇i
C = 0

Index 1 System
Requires Long Process
m+3n+4h set of equa-
tions

Replace χ for q̈

Introduce µ

Introduce ν̇

Figure 2.5: Second method to simplify constrained mechanical systems
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Chapter 3

Stabilization, Linearization and
Control

In this chapter, the stabilization method found in the literature is introduced and im-
proved on using the notion of the minimum index equivalent of the system. This
improved stabilization technique was later used for the linearization and control of
dynamic equations of motion.

3.1 Stabilization Methods for Constrained Systems

It has been established that differentiation can reduce the index of the system and re-
sults in more accurate simulation results. The method of index reduction mentioned
earlier is quite complicated and rigorous and requires additional equations and vari-
ables; for this reason, Baumgarte [11] suggests a stabilization law for different types
of constraints. In this method, the added multipliers µ used in index reduction become
obsolete, and the method simplifies differential equations of constrained dynamic sys-
tems greatly. The DAE systems obtained from this method have proven to be stable
and robust to disturbances, numerical or otherwise.

A system of n particles is described by the equations of motion

miẍi−Fi = 0. (i = 1,2, ...,n) (3.1)

Assume the system is subject to a constraint linear in ẍ

f (x, ẋ, ẍ; t) =
n

∑
i=1

gi(x, ẋ; t)ẍ+G(x, ẋ; t) = 0. (3.2)

The equations of motion thus become

miẍi−Fi = λigi(x, ẋ; t), (i = 1,2, ...,n) (3.3)
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where λi are the Lagrange multipliers. Solving for ẍ in (3.3) and plugging into (3.2)

λ =−
∑

giFi
mi

+G

∑
g2

i
mi

, (3.4)

which can be used to solve (3.3) to finally get

miẍi−Fi =−
∑

gkFk
mk

+G

∑
g2

k
mk

gi. (3.5)

Equations (3.1-3.5) show that if a constraint is linear in acceleration, it could be elimi-
nated by solving for the Lagrange multipliers analytically and the system would satisfy
the same dynamics.

In the case of holonomic and nonholonomic constraints, holonomic constraints are
a set of constraints defined by

Nh(x; t) = 0, (3.6)

differentiating (3.6) twice results in a constraint linear in ẍ

Ṅh = ∑
∂Nh

∂xi
ẋ+

∂Nh

∂ t
= 0, (3.7)

N̈h = ∑
∂Nh

∂xi
ẍ+G(x, ẋ; t) = 0, (3.8)

where gi =
∂Nh
∂xi

and f = N̈h.
For the case of nonholonomic constraints, the equations are

Nnh(x, ẋ; t) = 0, (3.9)

where differentiating once gives

Ṅnh = ∑
∂Nnh

∂ ẋi
ẍ+G(x, ẋ; t) = 0, (3.10)

with gi =
∂Nnh
∂ ẋi

and f = N̈nh.
The differential equations obtained from the constraint differentiation (3.8) and (3.10)

can be unstable and lead to large inaccuracies for small drift as seen in the previous
section. Looking into the equations of the holonomic constraints more thoroughly, and
knowing that the system defined in (3.5) ensures f = N̈h = 0, then taking initial condi-
tions on the constraint Nh(0) = 0, Ṅh(0) = 0, results in Nh = 0 ∀t. The nonholonomic
case gives the same results for a similar method. Inaccuracies arise when numerical
errors occur in the integration and lead to larger system errors due to the unstable fash-
ion of the constraints. To solve for this problem, Baumgarte suggests stabilizing the
constraint f by using

f = N̈h +2αṄh +β
2Nh = 0, (3.11)
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in the holonomic case, and
f = Ṅnh + γNnh = 0, (3.12)

in the nonholonomic case. In equations (3.11) and (3.12), α,β , and γ are positive
constants, ensuring asymptotic stability for the constraints. For holonomic constrained
systems of the form

ÿ− f (ẏ,y,λ , t) = 0,
c(y, t) = 0,

(3.13)

this new constraint, assuming it isn’t explicitly dependent on time, takes the form

f =
∂ 2c
∂y2 ẏ2 +

∂c
∂y

ÿ+2α
∂c
∂y

ẏ+β
2c = 0. (3.14)

Nonholonomic constrained systems take the form

ÿ− f (ẏ,y,λ , t) = 0,
c(ẏ, t) = 0,

(3.15)

the stabilized form for the constraint is

f =
∂c
∂y

ẏ+ γc = 0. (3.16)

Comparing these equations with those obtained from the index reduction method above,
this stabilization method gives easier systems to solve. After obtaining the stable con-
straint equation, one can solve for the Lagrange multipliers λ and plug them into the
equations of motion, to obtain implicit ODEs. One issue with this method is the choice
of α , β and γ as they are decay factors, and need to be chosen based on the require-
ments of the system.

In regards to unifying holonomic and nonholonomic constraints, Yun and Sarkar
[22] are motivated by Baumgarte’s stable constraint formulation to produce velocity
level constraints from both holonomic and nonholonomic constraints. By applying
equation (3.12) on holonomic constraints, they obtain stable constraints linear in ẋ
which they then add into the equations of motion to obtain a robust constrained system.
The general Euler-Lagrange equations reached are the same obtained in (2.21), but
with the holonomic constraint C(q) taken instead to be Ċ(q) + σC(q) = 0, similar
to (3.12). An analysis of this equation by Yun shows its stability, as solving for C(q)
results in

C(q) =C0 exp−σt, (3.17)

which converges to C0 for σ > 0. The method demonstrated by Yun, though, is not as
stable as that of Baumgarte, nor is it reduced in terms of its index.
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Pendulum Constraint based on Baugmarte The constraint equation of the pendu-
lum and its derivatives seen in (2.52) can be plugged into Baugmarte’s stabilization
equation to give

2y(−gm+ τy +2λy)
m

+β
2 (−l2 + x2 + y2)+ 2x(τx +2λx)

m
+2u2 +4α(ux+ vy)+2v2 = 0,

(3.18)
which give a solution for λ

λ =
1
4

(
−2y(−gm+2αmv+ τy)+β 2l2m−2m

(
u2 +2αux+ v2

)
−2τxx

x2 + y2 −β
2m

)
, (3.19)

allowing the replacement in the original equations of motion

ẋ = u,

ẏ = v,

mu̇ =
1
2

x

(
−2y(−gm+2αmv+ τy)+β 2l2m−2m

(
u2 +2αux+ v2

)
−2xτx

x2 + y2 −β
2m

)
+ τx,

m(g+ v̇) =
1
2

y

(
−2y(−gm+2αmv+ τy)+β 2l2m−2m

(
u2 +2αux+ v2

)
−2xτx

x2 + y2 −β
2m

)
+ τy.

(3.20)

Nonholonomic Constraint Stabilization For the case of the nonholonomic disk in
the plane, the constraints seen in equation (2.26), repeated here

ẋ− r sin(θ)φ̇ = 0,

ẏ− r cos(θ)φ̇ = 0,
(3.21)

the constraints are stabilized using equation (3.12) to give

r2 cos2(θ)(λ2 tan(θ)+λ1)

J2
+

λ1

m
+ rθ̇ sin(θ)φ̇ + γ

(
ẋ− r cos(θ)φ̇

)
= 0,

J2λ2 +m
(
r
(
r sin(θ)(λ2 sin(θ)+λ1 cos(θ))− J2φ̇

(
γ sin(θ)+ θ̇ cos(θ)

))
+ γJ2ẏ

)
J2m

= 0,

(3.22)
where solving for λ1 and λ2 gives

λ1 =
γm2r2ucos(2θ)

2(J2 +mr2)
− γm2r2u

2(J2 +mr2)
+

γm2r2vsin(2θ)

2(J2 +mr2)
− m2r3ω1ω2 sin(θ)

J2 +mr2

+
γJ2mrω2 cos(θ)

J2 +mr2 − J2mrω1ω2 sin(θ)
J2 +mr2 − γJ2mu

J2 +mr2 ,

λ2 =
γm2r2usin(2θ)

2(J2 +mr2)
− γm2r2vcos2(θ)

J2 +mr2 +
m2r3ω1ω2 cos(θ)

J2 +mr2

+
γJ2mrω2 sin(θ)

J2 +mr2 +
J2mrω1ω2 cos(θ)

J2 +mr2 − γJ2mv
J2 +mr2 .

(3.23)
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Finally plugging λ1 and λ2 back into the equations of motion gives a system of implicit
ODEs.

Method 3: Baum-
garte Stabilization

q̈ = χ(q, q̇,λ )
N = f (q, q̇) = 0
H = f (q) = 0

q̈ = χ(q, q̇,λ )
Ṅ + σN = f1(q, q̇, q̈) = 0

Ḧ + 2αḢ +β 2H = f2(q, q̇, q̈) = 0

q̈ = χ(q, q̇,λ )
g1(q, q̇,λ ) = 0
g2(q, q̇,λ ) = 0

λ = ζ (q, q̇)

q̈ = χ(q, q̇,ζ (q, q̇))
Choose α , β , σ

ODEs
Complicated Equations
Choosing α , β , γ

Differentiate Constraints

Replace χ for q̈

Solve λ

Replace in (χ)

Figure 3.1: Third method to simplify constrained mechanical systems
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3.1.1 Simulation-Friendly Method to Simplify DAEs
In section 2.2, it was shown that the high index of a system makes it difficult to solve
differential algebraic equations that result for the Lagrangian formulation. An index re-
duction method was introduced where some essential notions on differential algebraic
equations were presented. One of the notions of DAEs that were useful in studying
dynamic systems is that of the minimum index equivalent. The equations of motion of
a mechanical system have a high index solely due to the Lagrange multipliers because
the mass matrix, as established earlier, is always non-singular, and the accelerations
can be solved for. The minimum index equivalent can be applied to systems which
have purely algebraic variables, such as mechanical systems with λ s. Introducing λ̇

instead of just λ into constrained mechanical systems reduces their index by 1, so
purely nonholonomic systems are reduced to index 1, while holonomic systems are
reduced to index 2. For nonholonomic systems of the form

M(q)q̈+C(q, q̇)q̇+g(q)+b(q)q̇ = τ +A(q)T
λ ,

N(q, q̇) = 0,
(3.24)

this greatly helps in simulation, as reducing the index of the system to 1 allows the use
of available solvers without requiring any additional index reduction techniques. For
holonomic systems or mixed systems of the form

M(q)q̈+C(q, q̇)q̇+g(q)+b(q)q̇ = τ +A1(q)T
λ1 +A2(q)T

λ2,

N(q, q̇) = 0,
H(q) = 0,

(3.25)

this reduces the index to 2, thus requiring less work to reduce the index further.
In section 3.1, Baumgarte suggested a method that solves for the whole set of

Lagrange multipliers and replaces in the original equations of motion to obtain implicit
ODEs, i.e. index 0. The obtained equations can sometimes be problematic to deal
with, as the system can get more and more complicated, the equations also get more
and more complicated. Solving for the generalized acceleration followed by solving
for λ s and replacing can be time demanding and does not guarantee an easier time in
simulation. An alternative is also to use the minimum index equivalent of the system,
and instead of solving for λ s, leaving the stabilized constrained equations as part of
the set, where the new set with λ̇ instead of λ results in simpler ODEs. In this case,
general systems of the form (3.25) result in

M(q)q̈+C(q, q̇)q̇+g(q)+b(q)q̇ = τ +A(q)T
λ̇ ,

Ṅ(q, q̇)+ γN(q, q̇) = 0,

Ḧ(q)+2αḢ(q)+β
2H(q) = 0,

(3.26)

where solving for q̈ and replacing in the bottom equations results in ordinary differen-
tial equations.

Two drawbacks to this method are the initialization of the system as we have in-
creased its order requiring more initial conditions, and the choice of α , β , and γ .
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Method 4: Minimum
System Equivalent

q̈ = χ(q, q̇, λ̇ )
N = f (q, q̇) = 0
H = f (q) = 0

q̈ = χ(q, q̇, λ̇ )
Ṅ + σN = f1(q, q̇, q̈) = 0

Ḧ + 2αḢ +β 2H = f2(q, q̇, q̈) = 0

q̈ = χ(q, q̇, λ̇ )
g1(q, q̇,λ ) = 0
g2(q, q̇,λ ) = 0

ODEs
High Order System
Choosing α , β , γ

Introduce λ̇

Differentiate Constraints

Replace χ for q̈

Figure 3.2: Fourth method to simplify constrained mechanical systems

3.2 Linearization and Control

This section looks to study the application of linear control on nonlinear dynamic
systems acquired from the Lagrangian formulation and the stabilization method in-
troduced earlier. The linearization process is first introduced, followed by a study of
controllability. The Riccati equation is then introduced in order to find the controller
gains for robust trajectory tracking.

3.2.1 Linearization

Consider a nonlinear system

ẋ(t) = f (x(t),u(t)),
y(t) = g(x(t),u(t)),

(3.27)
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with state vector x, input vector u, and output vector y. It is often useful to define
a linear equivalent to systems of the form (3.27) to allow for the implementation of
simpler analysis and linear control techniques. This process, termed linearization,
provides a linear approximation of the system within a certain neighborhood of an
equilibrium point (x̄, ū) or an equilibrium trajectory (x̄(t), ū(t)).

Consider the more general case of the equilibrium trajectory (x̄(t), ū(t)). A Taylor
series expansion of f and g result in the approximation

f (x(t),u(t))≈ f (x̄(t), ū(t))+A(x(t)− x̄(t))+B(u(t)− ū(t)),
g(x(t),u(t))≈ g(x̄(t), ū(t))+C(x(t)− x̄(t))+D(u(t)− ū(t)),

(3.28)

where

A(t)=
∂ f
∂x

∣∣∣
x=x̄,u=ū

, B(t)=
∂ f
∂u

∣∣∣
x=x̄,u=ū

, C(t)=
∂g
∂x

∣∣∣
x=x̄,u=ū

, D(t)=
∂g
∂u

∣∣∣
x=x̄,u=ū

.

(3.29)
By defining deviations from the equilibrium trajectory

x̃(t) = x(t)− x̄(t), ũ(t) = u(t)− ū(t), ỹ(t) = y(t)−g(x̄(t), ū(t)),

and noting that
˙̄x(t) = f (x̄(t), ū(t)), (3.30)

the linearized system in standard state space form is computed

˙̃x(t) = A(t)x̃(t)+B(t)ũ(t),
ỹ(t) =C(t)x̃(t)+D(t)ũ(t),

(3.31)

where the nonlinear system can be studied under the scope of time-varying linear
systems[23].

In the case of nonlinear dynamic systems void of constraints, the second order
differential equations derived from the Euler-Lagrange formulation are

M(q)q̈+C(q, q̇)q̇+g(q)+b(q)q̇ = τ, (3.32)

assuming the mass matrix M is invertible, the generalized accelerations can be com-
puted

q̈ = M−1(τ−C(q, q̇)q̇−g(q)−b(q)q̇). (3.33)

A set of n new variables and equations to account for the generalized velocities are
introduced to reduce the system to a first order set of equations

p = q̇,

ṗ = M(q)−1(τ−C(q, p)p−g(q)−b(q)p),
(3.34)

where the nonlinear function f is defined as the right hand side of (3.34), the states are
(q, p)T and the output can be defined based on the requirements of the system.
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Holonomic and nonholonomic constraints in dynamic systems add a degree of dif-
ficulty to the linearization process. This difficulty is a direct result of algebraic La-
grange multipliers that need to be computed alongside the generalized coordinates and
velocities of the system. The algebraic nature of the multipliers presents a dilemma
when choosing the states of the system, and computing their time derivatives. It is
clear that λ s are to be introduced into the state vector, and the stabilization method
with differentiated λ s provides the ideal framework for this linearization process.

Using the equations (3.26), one can repeat the previous process to obtain the set of
first order equations

p = q̇,

ṗ = M(q)−1(τ +A(q)T
λ̇ −C(q, p)p−g(q)−b(q)p),

Ṅ(q, p)+ γN(q, p) = 0,

Ḧ(q)+2αḢ(q)+β
2H(q) = 0.

(3.35)

It is then possible to compute λ̇ as a function of q and p using the constraint equations
to obtain the desired set of nonlinear equations, tailored for linearization.

Defining the set X = (q, p,λ )T as the states of the system and U = τ as the inputs,
the dynamic equations take the form

Ẋ = F(X ,U). (3.36)

The linearization process provides the required matrices A and B to proceed with
controller design.

3.2.2 Controllability and Decomposition of Uncontrollable Systems
Many system models start facing problems when their controller design is tackled
and a controller cannot be simply implemented. This is often due to stability and
controllability issues in the system. A fully state controllable system is always sought
after, but when controllability is lacking, the system can be decomposed and controlled
based on its controllable subsystem.

The controllability of a system of the form Ẋ = AX + BU is studied using the
controllability matrix of the system defined by the state and input matrices A and B as

C =
[
B,AB, ...,An−1B

]
, (3.37)

where A is nxn and B is nxm. The system is fully state controllable if dim(C ) = n,
but this is often not the case and a subsystem can be defined based on the controllable
states.

To define this subsystem, a transformation P is defined

P = [X Y ] , (3.38)
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where X is an nxc matrix whose columns are linearly independent columns of C and
c is the dimension of C . Y is an nx(n−c) matrix chosen so that P is nonsingular [24].

P−1 can then be partitioned as

P−1 =

[
M
N

]
, (3.39)

where M is cxn and N is (n− c)xn, giving the transformed A and B matrices

Ā = P−1AP =

[
M
N

]
A [X Y ] =

[
MAX MAY
NAX NAY

]
,

B̄ = P−1A =

[
M
N

]
B [X Y ] =

[
MB
NB

]
.

(3.40)

Finally the controllable subsystem is defined by the top left section of Ā to be Ã=MAX
and the top section of B̄ to be B̃ = MB, giving the new system

ż = Ãz+ B̃u. (3.41)

A controller is then designed based on (3.41) to give the vector of c gains K̃. These
gains are appended by (n− c) zeros and transformed to represent gains in the original
system by

K = K̃P−1. (3.42)

Finally, the input is given by
U =−KX (3.43)

3.2.3 The Linear Quadratic Regulator
After achieving a fully controllable system of the form

ẋ = Ax+Bu, (3.44)

a quadratic regulator cost function [25] for state tracking can be defined as

J(x, t) =
∫

∞

t
(xT Qx+uT Ru)dt, (3.45)

where Q = QT > 0 and R = RT > 0. Matrices Q and R are generally taken to be
diagonal matrices where the diagonal elements are considered as weights on tracking
the states and inputs.

It can be shown that the optimal cost function is given by

J∗ = xT Sx, (3.46)

where S = ST > 0. The solution for the matrix S is given by the Riccati equation

−Ṡ = Q−SBR−1BT S+SA+AT S, (3.47)
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with a positive definite boundary condition for S.
Finally the control gains are computed using

K = R−1BT S, (3.48)

and the optimal feedback is
u∗ =−Kx. (3.49)

Differential Drive Constrained System Consider a differential drive robot with
generalized coordinates

q = (x1,y1,x2,y2,θ ,φ1,φ2), (3.50)

where (x1,y1,x2,y2) are the coordinates of the two contact points, θ is the orientation
in the x−y plane, and (φ1,φ2) are the rotation of each wheel. The choice of coordinates
of the contact points is in order to introduce holonomic constraints into the system and
study their effect along with nonholonomic constraints on the linearization and control
process.

The energy in this system is solely kinetic

KE =
1
2
(
ẋ2

1 + ẋ2
2 + ẏ2

1 + ẏ2
2
)
+

4
12

θ̇
2 +

1
4

φ̇
2
1 +

1
4

φ̇
2
2 , (3.51)

where the radii, axis length, and total mass are all taken equal to 1.
The system satisfies 3 nonholonomic constraints

NC1 =
1
2
(ẋ1 + ẋ2)sin(θ)+

1
2
(ẏ1 + ẏ2)cos(θ) = 0,

NC2 = ẋ1 cos(θ)+ ẏ1 sin(θ)− φ̇1 = 0,

NC3 = ẋ2 cos(θ)+ ẏ2 sin(θ)− φ̇2 = 0,

(3.52)

where the first equation enforces the no-skidding constraint in the lateral direction,
and the other two enforce the no-slipping constraints in the forward direction for each
wheel. Another two holonomic constraints are added to the system to ensure its rigidity

HC1 = x1− x2− sin(θ) = 0,
HC2 = y1− y2 + cos(θ) = 0.

(3.53)

After introducing the differentiated Lagrange multipliers and stabilizing the constraints,
a set of equations of the form (3.26) can be derived from the Lagrangian formula-
tion. These equations are transformed to first order by introducing an additional set of
velocity states (u1,v1,u2,v2,ε,ω1,ω2) corresponding to (ẋ1, ẏ1, ẋ2, ẏ2, θ̇ , φ̇1, φ̇2). This
first order set of equations can now be linearized around an equilibrium trajectory.

The trajectory chosen is a Dubins’ path shown in Fig.3.3, where P1 is the starting
point, P2 and P3 are the transition points between the arcs and the line, P4 is the end
point of the second arc, and P5 is the end point of the trajectory.
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Figure 3.3: Desired equilibrium trajectory

Given the coordinates (x,y) of this trajectory, the equilibrium states can be com-
puted using the equations of the system. The orientation is computed as the inverse
tangent of y

x

θ = arctan(
y
x
). (3.54)

The coordinates of the contact points are computed using the two holonomic con-
straints (3.53) and the fact that the coordinates of the path is the average of the coordi-
nates of the contact points

x1− x2− sin(θ) = 0,
y1− y2 + cos(θ) = 0,

x1 + x2

2
= xtra j,

y1 + y2

2
= ytra j.

(3.55)

After that, the rotational velocities of are computed from the no-slipping nonholo-
nomic constraints, NC2 and NC3. The equilibrium inputs and the Lagrange multipliers
can be found using the Euler-Lagrange equations after substituting all the computed
equilibrium states.

After finding the equilibrium for all the states and inputs, the linearization process
can be used to get the matrices A and B of the linearized system from (3.29). The
matrices are then used to solve the Riccati equations (3.47) and finally compute the
controller gains.

The resulting controller proves to be successful on the linear and nonlinear system,
after choosing the proper weights. Noting that the purpose of this controller is trajec-
tory tracking, the weights on the position of the robot are chosen much larger than the
rest of the weights, with some emphasis on the orientation and rotational velocities of
the wheels.

The simulations show how the input torques attempt to achieve the large accelera-
tion required for instantaneous velocity changes, seen for both the linear and nonlinear
system in Fig. 3.4a and 3.4b.
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Figure 3.4: The torque inputs and resulting rotational velocities for the simulated linear
and nonlinear systems

The rotational velocities required to follow the Dubins’ path are seen in Fig. 3.4c
and 3.4d, where one wheel rotates faster than another for the circle sections, as com-
pared to equal velocity for the line section.

As a result of this controller, the vehicle is seen following the desired path in both
simulations, as seen if Fig. 3.5a and 3.5b.

37



1 2 3 4 5 6
x

-2

2

4

6

8

10
y

Linear System

Right Wheel

Left Wheel

Center

Desired Trajectory

(a) The motion of the linear system in the x− y
plane

1 2 3 4 5 6
x

-2

2

4

6

8

10
y

Nonlinear System

Right Wheel

Left Wheel

Center

Desired Trajectory

(b) The motion of the nonlinear system in the x−y
plane

Figure 3.5: Parametric plots of the x− y position of the vehicle simulated using the
linear and nonlinear model
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Chapter 4

Modeling Flexible Wheels

In this section, the effects of springs and dampers on wheel models will be studied.
In addition, the choice of proper stiffness and damping coefficients will be made so
that the system requirements are satisfied. The system that will be under study is the
rolling disk in two and three dimensions.

4.1 Modeling and Analysis of a Two-Dimensional Flex-
ible Wheel on Flat and Uneven Terrain

In this section, a 2 dimensional model of a wheel moving in the x−y plane over rough
terrain will be modeled with a variable diameter instead of a rigid one. The chosen
coordinates are (x,θ ,r), where x is the position of the contact point of the wheel, θ

is the rolling of the disk, and r is the varying radius. To model this system, 6 points
where chosen along the circumference of the wheel that are symmetric with respect to
the center point and the system consisting of these points was modeled. The terrain
function is termed f (x), giving the wheel-terrain contact angle to be defined as

ε(x) = arctan( f ′(x)). (4.1)

The contact point and center point coordinates are defined as

Pcontact = (x, f (x)), (4.2)

Pcenter = Pcontact + r
(

cos(ε(x)+
π

2
),sin(ε(x)+

π

2
)
)
. (4.3)

The points on the circumference of the disk are defined by

Pi+1 = Pcenter + r
(

cos(θ + i
π

3
),−sin(θ + i

π

3
)
)
, (i = 0,1, ...,5) (4.4)

These 6 points hold the mass of the disk equally, such that each has a mass of m
6 .

Springs are present between the center point and all 6 peripheral points,an overall
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Figure 4.1: The model for the variable diameter disk

stiffness was considered to account for all the springs. The center of mass of the whole
system, because of the symmetry as designed, is the center point, with mass m. The
energy in the system is thus defined as

T =
1
2

m
6

6

∑
i=1

vi.vi,

U =
1
2

ktot(r− r0)
2 +mgycen.

(4.5)

This system is constrained by a nonholonomic constraint that ensures no slipping
in the forward direction. This constraint is written as

ẋ− rθ̇ cos(ε(x)) = 0. (4.6)

The constraint is defined using the vector A such that AT q̇ = 0, where

A = (1,−r cos(ε(x)),0) . (4.7)

A method for index reduction is used to get the minimum index of the system by
introducing the differentiated Lagrange multiplier λ̇ instead of λ , the constraint forces
are

fc =
(

λ̇ ,−r cos(ε(x))λ̇ ,0
)
. (4.8)
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A Rayleigh dissipation function defines the damping in the system as

Q =
1
2

µ ṙ2. (4.9)

The equations of motion of the system, for f (x) = 0 are thus defined as

mẍ = λ̇ , (4.10)

mr2
θ̈ +2mrṙθ̇ + r cos(ε(x))λ̇ = τθ , (4.11)

2mr̈+mg+ kr = mrθ̇
2 +µ ṙ+ kr0, (4.12)

ẋ− rθ̇ cos(ε(x)) = 0. (4.13)

This is followed by using the stabilization method for the constraint in the system, so
using Baumgarte’s method to stabilize the constraints, the new constraint is obtained

θ̇ ṙ+ r
(

γθ̇ + ˙̇
θ

)
= γ ẋ+ ẍ. (4.14)

The final set of equations of motion for the system is

mẍ = λ̇ ,

mr2
θ̈ +2mrṙθ̇ + r cos(ε(x))λ̇ = τθ ,

2mr̈+mg+ kr = mrθ̇
2 +µ ṙ+ kr0,

θ̇ ṙ+ r
(

γθ̇ + ˙̇
θ

)
= γ ẋ+ ẍ.

(4.15)

The parameters used for the system are m = 1, l0 = 1, ktot = 100, g = 9.81, µ =
−10, and γ = 1, where the stiffness and damping coefficients are chosen such that
the radius at the chosen constant rotational velocity is less than 10% from the natural
spring length, and so that the value reaches this point smoothly and without significant
overshoot. The controller used is a PID controller defined as

τθ = θ̈d + kp(θd−θ)+ kd(θ̇d− θ̇), (4.16)

where the controller gains are kp = 100 and kd = 10.
The effect of the variable radius on the disk moving over flat terrain is first studied,

specifically looking at how the radius will change with acceleration. Taking the desired
position values to be

θdesired = 0.5t, (4.17)

The controller, as seen in Fig. 4.2a, is effective as the rotational velocity reaches
the desire value in 0.2s with no overshoot. The radius of the disk also increases, as
expected (Fig. 4.2b), based on the acceleration of the disk. This effect provides insight
into simulating a vehicle with flexible wheels. Some care should be taken when the
results depend highly on the velocity of the system under study, in addition to choosing
proper damping and stiffness coefficients.
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Figure 4.2: Studying the 2D disk over flat terrain for constant velocity

More importantly simulations were performed to study the effect of uneven terrain
on the varying radius. The first studies the effect of a single smooth bump defined by

f (x) = exp
(
−(x−10)2

2

)
, (4.18)

seen in Fig. 4.3. The control used is the same as before giving the same effect.

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

Figure 4.3: Single smooth bump used in 2D simulations

The resulting plot Fig. 4.4 shows the radius increasing on the slopes of the bump.
The radius increases as the disk starts climbing the bump to reach a maximum at the
inflection point then decrease again as it reaches the top. The process is repeated on
the way back down, until it hits flat ground and goes back to its stable value.

Due to this radius change, a velocity change is observed, where the total velocity
of the disk is plotted, namely V = θ̇r, versus time. As the disk goes over the bump,
an additional velocity term attributed to velocity in the y direction is found. The total
velocity of the disk increases over the bump, which may provide some insight for
2-wheeled vehicles traversing rough terrain.
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Figure 4.4: Studying the 2D disk over a bump, plotting the radius

4.2 Modeling a Three-Dimensional Wheel over Rough
Terrain

Modeling the vehicle over rough terrain has proven to be a much more difficult task
than over flat terrain. The main changes when transitioning from flat to rough ground
are the fact that the vehicle will no longer be on the same level vertically, and the
velocity vectors will be inclined based on the wheel-ground contact angles. To be able
to study the full vehicle model, a simpler approach is taken at first, modeling a variable
radius disk in 3D going over bumps and studying the simulations.

Any 3D body requires 6 coordinates to be modeled, namely the three spatial coor-
dinates (x,y,z) and three rotational coordinates (θ ,β ,φ) seen in Fig.4.5. Considering
the problem at hand, it was more convenient to take instead of the z coordinate, the
radius r of the wheel. (x,y) coordinates are assigned to the contact point of the disk
with the ground, where its z coordinate is defined by a known terrain function f (x,y).
For the purposes of the single disk simulation, consider the inclination angle around
the forward direction of the disk β = 0 at all times. We can thus define the full set of
generalized coordinates in our system as

q = (x,y,θ ,φ ,r). (4.19)

Another orientation, which is the wheel-ground contact angle is defined as

ε(x,y,θ) = arctan(∇ f (x,y).(cosθ ,sinθ)). (4.20)

The disk’s center point is found using the contact point position and the rotations as

Pcontact = (x,y, f (x,y)), (4.21)
Pcenter = Pcontact +Rθ ,z.R−ε−π/2,y.(r,0,0), (4.22)
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Figure 4.5: 3D disk model and coordinates

where Ri, j is a rotation matrix of angle i about axis j. Considering that the center of
the disk is the center of mass in the system, the 6 points on the circumference of the
disk are defined as

Pi = Pcenter +Rθ ,z.Rφ+ iπ
3 ,y.(r,0,0), (i = 0,1, ..5) (4.23)

the energy and the Lagrangian in the system are

T =
1
2

m
6

6

∑
i=1

vi.vi,

U = mgzcenter +
1
2

k(r− ri)
2,

L = T −U.

(4.24)

The constraints in the system are the no forward slipping and no lateral skidding con-
straints on the velocity

NHC1 = ẋ− rφ̇ cosθ cos(ε(x,y,θ)), (4.25)

NHC2 = ẏ− rφ̇ sinθ cos(ε(x,y,θ)), (4.26)
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where the velocity of the contact point was constrained in the x and y directions. In
Pfaffian form AT q̇ = 0, these constraints give

AT =


1 0
0 1
0 0

−r cosθ cos(ε(x,y,θ)) −r sinθ cos(ε(x,y,θ))
0 0

 , (4.27)

giving the forces

fc =


λ1
λ2
0

−rλ1 cosθ cos(ε(x,y,θ))− rλ2 sinθ cos(ε(x,y,θ))
0

 (4.28)

The system is also subject to damping, in addition to the spring stiffness, the Rayleigh
dissipation function to describe this effect is

D =
1
2

µ ṙ2. (4.29)

Finally, the equations of motion for the system are

d
dt

∂L
∂ q̇i
− ∂L

∂qi
− ∂D

∂ q̇i
= τi− fc,i. ∀(i = 1, ...,5) (4.30)

Using Baumgarte stabilization, the constraints are redefined by

dNHC1

dt
+ γNHC1 = 0, (4.31)

dNHC2

dt
+ γNHC2 = 0, (4.32)

where γ is a positive constant. The constraints derived using Baugmarte, along with
the equations of motion define our full dynamic system.

The disk is first simulated traversing a Gaussian bump, similar to the 2D case,
defined by

f (x,y) = exp(−1
2
(x−10)2− 1

2
y2). (4.33)

where the bump is seen in Fig.4.6. The parameters used in the simulations are m =
1,ri = 1, k = 100N/m, µ = −10Ns/m, and γ = 1. The initial conditions chosen are
such that all variables and their derivatives are 0 except for the radius where r(0) =
ri− mg

k .
The results show a slight decrease in x velocity as the disk hits the bump followed

by a sharp increase as the disk goes over the bump, then another drop as it hits flat
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Figure 4.6: Gaussian bump model
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Figure 4.7: Results for the 1st bump model

ground again. The velocity in the z-direction is complementary to the disk going over
the bump, seen in Fig. 4.7a.

Looking into these results more thoroughly, the velocity changes are entirely due
to the radius changing as the disk goes over the bump with the rotational velocity φ̇

kept constant. The radius of the disk increases as it begins to go up to reach a maxi-
mum radius then decreases near the top of the bump, then it increases to the maximum
again and starts going back to the constant radius on flat terrain as is seen in Fig. 4.7b.
It can be noted that these results are identical to the 2 dimensional case, as the system
is effectively the same, only projected to the disk plane.

To study the effect that the bump is having on the velocities, the disk is simulated
going over a bump that takes it from 0 height to a constant 0.5 as seen in Fig. 4.8.

The resulting simulation shows a similar effect as before, Fig.4.9a shows that the
velocity in x first decreases before increasing to a maximum and then going back to
constant as the ground flattens. The velocity in z increases then goes back to 0 soon

46



Figure 4.8: 2nd bump model going from 0 to 0.5
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Figure 4.9: Results for 2nd bump model

after. The decrease in x velocity is due to the vehicle’s forward direction changing from
strictly in the direction of x to being at an angle with the horizontal, thus some of the
energy that propelled the disk in the x direction was transferred to the velocity in the z
direction. The latter increase is due to the increased radius, thus increased net velocity
of the disk. The radius decreases slightly as soon as the disk hits the bump then it
increases to reach a maximum before going back to its initial value on flat terrain, as
seen in Fig. 4.9b.

4.3 Bump Analysis

To explain the phenomenon of the the radius increasing over the bump, consider the
static analysis of a disk on a bump.

In Fig. 4.10, the gravitational pull on the disk is not fully affecting the radius of the
disk as it has another component in the direction of motion, in contrast to flat terrain
where the direction of motion is orthogonal to the direction of gravity. The resulting
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Figure 4.10: A static figure showing the disk on a bump

equations using vectorial analysis are

mgsinε = ma, (4.34)
mgcosε + k(r− r0) = 0, (4.35)

where the radius is affected by gravity with a coefficient being cosε which is only
maximal when on flat ground. This results in a slightly lower acceleration due to the
added effect of gravity on acceleration, but a slightly larger radius which counteracts
the other deficit, resulting in a total increase in acceleration and consequently velocity.
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Chapter 5

Modeling, Analysis, and Control

In this chapter, the novel single-actuator design is modeled for mobility over flat and
rugged terrain. The model is simulated and analyzed using an open-loop architecture.
Based on this analysis, a simpler model is introduced for controller design, where
linearization provides the system required for the application of a Linear Quadratic
Regulator. The trajectory tracking capabilities of the controlled systems are then stud-
ied.

5.1 Initial Vehicle Three-Dimensional Modeling, Anal-
ysis, and Simulation over Flat Terrain

The vehicle model, introduced by Sfeir [5], consists of a single actuating disk at the
center of a flexible structure. The structure is two variable diameter wheels modeled
as spring-dampers, and an axis connecting them, along which the disk moves. The
model presented by Sfeir was a simplified 2D model where some of the dynamics were
overlooked and simplified. In this section, the full 3D model of this vehicle is studied
as it traverses flat and uneven terrain, displaying some path following capabilities.

5.1.1 Vehicle over Flat Terrain

The set of generalized coordinates for the model consists of

q = (x,y,θ ,β ,r,φ ,d,α), (5.1)

where (x,y,θ) represent the position and orientation of the vehicle in the x− y plane,
β represents the vehicle inclination, which is a direct result of the change in wheel
radii, r is a nominal wheel radius, which is the average of the two wheel radii, φ is
the rolling of the body frame of the vehicle, while d is the distance of the disk from
the center of mass of the body along the axis, and finally α is the rotation of the disk.
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Figure 5.1: Sfeir’s Design

β and r were chosen as generalized coordinates instead of the individual wheel radii
because this results in a more simplified system, such that β and r are defined as

tanβ =
rr− rl

2L
,

r =
rr + rl

2
,

(5.2)

where L is half the axis length.
The centers of mass of the system are separated to be the center of mass of the

body and that of the disk. Their coordinates are defined by

Pb =

 x
y

r cosβ

 , Pd =

 x−d cosβ sinθ

y+d cosβ cosθ

r cosβ −d sinβ

 , (5.3)

with their velocities being

Vb =

 ẋ
ẏ

ṙ cos(β )− β̇ r sin(β )

 ,

Vd =


−cos(β )ḋ sin(θ)+d

(
β̇ sin(β )sin(θ)− cos(β )θ̇ cos(θ)

)
+ ẋ

cos(β )ḋ cos(θ)−d
(

β̇ sin(β )cos(θ)+ cos(β )θ̇ sin(θ)
)
+ ẏ

cos(β )
(

ṙ−dβ̇

)
− sin(β )

(
ḋ + rβ ′

)
 ,

(5.4)

The energy in the system can thus be found to be

KEb =
1
2

mbVb.Vb +
1
2

Jb,1θ̇
2 +

1
2

Jb,1β̇
2 +

1
2

Jb,2φ̇
2, (5.5)
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Figure 5.2: The full vehicle model over flat terrain

KEd =
1
2

mdVd.Vd +
1
2

Jd,1θ̇
2 +

1
2

Jd,1β̇
2 +

1
2

Jd,2(φ̇
2 + α̇

2), (5.6)

PE = mbgzb +mdgzd +
1
2

k(rr− ri)
2 +

1
2

k(rl− ri)
2, (5.7)

where mb is the mass of the body, md is the mass of the disk, Jb,1 is the body inertia in
θ and β , Jb,2 is the body inertia in φ , Jd,1 is the disk inertia in θ and β , Jd,2 is the disk
inertia in α and φ , ri is the initial wheel radius, rr and rl are the right and left wheel
radii, respectively, zb and zd are the heights if the vehicle and disk centers of mass,
respectively, and k is the spring stiffness.

The constraints on the system are defined as the no forward slipping constraints on
each wheel and an averaged no lateral skidding constraint. The equations that describe
these 3 constraints are

C1 =Vw,r.d f − rrφ̇ , (5.8)

C2 =Vw,l.d f − rl φ̇ , (5.9)

C3 =
Vw,r +Vw,l

2
.dl, (5.10)
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Figure 5.3: Front and top views of the vehicle

where Vw,r and Vw,l are the velocities of the right and left wheels’ center points, respec-
tively, and d f and dl are the forward and lateral directions defined as

d f =

 cosθ

sinθ

0

 ,

dl =

 cosθ + π

2
sinθ + π

2
0

 .

(5.11)

The constraints are altered to define the motion of the system in a more intuitive way,
resulting in the new set

C =

 C1+C2
2

C3
C1−C2

2L cosβ

=

 ẋcosθ + ẏsinθ − rφ̇

−ẋsinθ + ẏcosθ

θ̇ cos2 β + φ̇ sinβ

 . (5.12)

These constraints are defined in their Pfaffian form to get the matrix AT q̇ = 0, where

AT =



cosθ −sinθ 0
sinθ cosθ 0

0 0 −cos2 β

−r 0 sinβ

0 0 0
0 0 0
0 0 0
0 0 0


, (5.13)
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and thus the constraint forces are

Fc = AT .λ =



λ1 cosθ −λ2 sinθ

λ1 sinθ +λ2 cosθ

−λ3 cos2 β

−rλ1 +λ3 sinβ

0
0
0
0


, (5.14)

where (λ1,λ2,λ3) are the set of Lagrange multipliers. The damper is accounted for by
using a Rayleigh dissipation function on the right and left wheel radii

D =
1
2

µ
(
ṙ2

r + ṙ2
l
)

=
1
2

µ

(
(ṙ−Lβ̇ sec2

β )2 +(ṙ+Lβ̇
2 sec2

β )2
)
.

(5.15)

Finally, the controlled torques in the system are

τ =



0
0
0
0
0
0
τd
τα


. (5.16)

The final equations of motion for the system are obtained from

d
dt
(

∂L
∂ q̇i

)− ∂L
∂qi
− ∂D

∂ q̇i
= τi−Fc,i. (5.17)

To simulate the system, the control laws chosen were a PD (proportional and deriva-
tive) controlled on α and a proportional controller on d. The torques are defined as

τα = α̈d + kp,α(αd−α)+ kd,α(α̇d− α̇),

τd = kp,d(dd−d),
(5.18)

and the system parameters and control gains are seen in table 5.3.

5.1.2 Path Planning over Flat Terrain
To study the model further, the capabilities of this system to follow a Dubins path were
looked into, gaining insight into the realistic feasibility of Dubins path. The system
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Table 5.1: The proposed system parameter and controller gains.

mb 1 kg kp,α 5
md 16 kg kd,α 1
ri 0.25 m kp,d 10000

Disk Radius 0.1 m
k 1000 N/m
µ -12 Ns/m
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(a) Controller performance for α , actual versus de-
sired inputs.
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(b) Controller performance for d, actual versus de-
sired inputs.

Figure 5.4: Controller Performance

was simulated following a Dubins path over t = 250sec. The controls are for constant
rotational velocity of the wheels, i.e. φ̇ = cst, and the vehicle follows a Dubins path
by oscillating d using the controls as seen in Fig.5.4

The sequence of movements the disk takes according to the controls is

1. Stay in the center of the axis for t = 50 seconds

2. Move to the left for t = Tc,1 seconds

3. Move to the center for t = Tl seconds

4. Move to the right for t = Tc,2 seconds

5. Move to the center for the remainder of the simulation

The first simulation was done by predicting the vehicle’s constant velocity based
on the controlled α and choosing the time steps for each turn in the Dubins path ac-
cordingly. The resulting choices were Tc,1 = Tc,2 = 30.4607s and Tl = 120.1513s. The
resulting simulations show that our prediction method was lacking as the vehicle’s ve-
locity was in fact varying with d, not just α as seen in Fig. 5.5. When d is moved away
from the center, in either direction, the rotational velocity of the system φ̇ increased.
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Figure 5.5: Effects of controlled coordinates on driving coordinate φ̇

Fig 5.5 shows that as the vehicle underwent the circle turns along Dubins path, the ro-
tational velocity would increase, effectively disregarding the constant proportionality
previously assumed between φ̇ and α̇ .

Seeing the effect of d on φ̇ , some corrections to the control had to be made to follow
the path. One way to do this is to vary α̇ to counteract the effect of d on the turns of
Dubins. A better way which we decided on was to lower the time the vehicle took over
the turns accounting for the increased velocity of the vehicle. The new choice of of
Tc,1 and Tc,2 was taken to be Tc,1 = Tc,2 = 22.1323s. The resulting vehicle velocities,
in contrast to constant velocity and the uncorrected simulation are seen in Fig. 5.6.
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0.10
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Velocity of Corrected Path

Velocity of Dubins' Path

Effective Radius

Figure 5.6: The vehicle velocity for the different simulations

Table 5.2: Path errors

Path Uncorrected Path Corrected Path
Final pose (x,y,θ) (7.86,13.04,0.012) (10.06,9.84,0.011)
Position error (m) 3.72 0.168

Orientation error (rad) 0.012 0.011

After correcting for this oversight, the vehicle follows a Dubins path closely but
not without some error as seen in Fig.5.7. This is because of the kinematic nature of
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Figure 5.7: Comparison of ideal Dubins path, uncorrected implement path, and cor-
rected implement path.

Dubins model with instantaneous turning rate changes. The system, and any realistic
system for that matter, will not be able to follow Dubins exactly. The time correction
made a difference of over 3m error, making a claim as to how significant the effect of
d on the vehicle’s velocity is.

5.2 Initial Vehicle Three-Dimensional Modeling, Anal-
ysis and Simulation over Rough Terrain

In this chapter, the model for rough terrain simulation is developed, first deriving a
model for a single wheel with an added degree of freedom as compared to the model
derived in section 4.2, specifically being the inclination angle. The single wheel model
is then utilized to develop a full vehicle model. The full model is tested in an attempt
to follow a Dubins’ path and mitigate the effects of a bump with open loop control.

5.2.1 Single Inclined Wheel over Rough Terrain
A closer inspection of a single wheel over rough terrain, seen in Fig. 5.8, provides a
definition for the coordinate frames used to describe the system.

The x− y− z frame is the fixed inertial frame and u1− v1−w1 is the body frame
such that plane P1 is defined to be the plane of the wheel with the frame origin at
the contact point. The frame u2 − v2 −w2 is defined from the body frame with a
rotation about w1 by the contact angle. Plane P2 is defined as the plane normal to ~u2
passing through the contact point. Using these frames, the full set of coordinates can
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Figure 5.8: Single wheel on rough terrain

be defined. The set of generalized coordinates for a single wheel is

q = (x,y,z,r,θ ,β ,φ), (5.19)

where the coordinates (x,y,z) are those of the contact point in the fixed frame, r is the
radius of the wheel, θ is the orientation, defined as the angle between ~x and ~u1, β is
the inclination, defined as the angle between~z and~v1.

Pcon

Pcen

-3 -2 -1 1 2 3 u

-2

-1

1

2

v

Figure 5.9: Two dimensional projection of terrain surface function onto wheel plane

To simplify the system, the terrain is assumed to be known, i.e. z is given as a
function of x and y, reducing q to (x,y,r,θ ,β ,φ). This information also allows for the
definition of the contact angle, δ , as a function of (x,y,θ ,β ) using the projection of the
3-d surface onto the u1−v1 plane, resulting in a 2-d curve with the contact point at the
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origin, as seen in Fig. 5.9. The wheel-terrain contact angle can thus be found to be the
inverse tangent of the derivative of this intersection at the origin. This wheel-terrain
contact angle is essential to define the forward direction along which the wheel moves,
as well as the angle of ascent when defining the center of the wheel.

5.2.2 Full System over Rough Terrain
The two wheeled system with the central disk can be generalized from the single wheel
system by taking the generalized coordinates

q = (x1,y1,x2,y2,δ1,δ2,θ ,β ,φ ,r1,r2,d,α), (5.20)

where the subscripts 1 and 2 refer to the wheels, and d and α are the actuated motion of
the inertial disk. The contact angles δi are added to the set of generalized coordinates to
ease the computation process during simulations, they are constrained holonomically
by equating them to their respective values functions of (xi,yi,θ ,β ). Additionally,
lateral contact angles, termed ηi are computed in a similar manner but they were not
required in the set of generalized coordinates.

Figure 5.10: Two wheeled system on rough terrain

Given the function z = f (x,y) to define the uneven surface, the positions of the
contact points can be defined as

Pcon,i = (xi,yi, f (xi,yi)). (5.21)
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The positions of the center points of the wheels are found to be

Pcen,i = Pcon,i +Rθ ,z.R−β ,x.R−δi,y.(0,0,ri), (5.22)

where Ra,b is the rotation matrix with an angle a around axis b.
Since the center of mass of the system can be defined using either of the contact

points, and the system is modeled as two separate wheels connected by a rigid axis,
the rigidity must be enforced through a constraint. The center of the system is used to
enforce this constraint. Define, for the time being, the center of the system to be

Pc,1 = Pcen,1 +Rθ ,z.R−β ,x.(0,
l
2
,0), (5.23)

where l is the axis length. The center of the disk can be defined as a distance d
away from the center of the system along the axis

Pd = Pc,1−Rθ ,z.R−β ,x.(0,d,0). (5.24)

To account for the diameter changes in the system, a wheel model was developed
where an even number of symmetric points are taken along the circumference of the
wheel rather than its center. This model captures the dynamics resulting from the
diameter variation as well as the rotations and translations in the system. The wheels
and disk can thus be described by

Pi, j = Pcen,i +Rθ ,z.R−β ,x.Rφ+ j π

3 ,y
.(ri,0,0),

i = 1,2, j = 1,2, ...,6,
(5.25)

Pd,i = Pd +Rθ ,z.R−β ,x.Rφ+α+ j π

3 ,y
.(rd,0,0),

i = 1,2, ...,6,
(5.26)

where Pi, j describes the jth point of the ith wheel, and Pd,i describes the ith point of
the disk. Taking the time derivatives of equations (5.25) and (5.26) provides all the
requirements to define the energy in the system as

T =
1
2

2

∑
i=1

mi

6

6

∑
j=1

Vi, j.Vi, j +
1
2

md

6

6

∑
i=1

Vd,i, (5.27)

U =
2

∑
i=1

migzcen,i +mdgzd +
1
2

k
2

∑
i=1

(ri− rini)
2, (5.28)

L = T −U, (5.29)

where mi and md are the respective masses of the wheels and the disk, g is the gravita-
tional acceleration, k is the chosen stiffness, and rini is the initial radius of the wheels.
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System Constraints

For a typical two wheeled vehicle, the constraints are defined as the no-slipping and
no-skidding constraints on each wheel. The no slipping constraints are such that the
velocity of each contact point in the forward direction is exactly the velocity resulting
from the rotation of the wheel

Ni =Vcon,i.Rθ ,z.R−β ,x.R−δi,y.(1,0,0)− riφ̇ = 0 i = 1,2. (5.30)

For motion on flat terrain, the no-skidding constraints reduce to one because the
lateral direction is the same for both wheels, and the constraint is captured with a single
equation. For rough terrain motion, Waldron [26] has shown that one or both of the
wheels will undergo wheel skid to maintain feasible motion. A friction model is thus
introduced into the system where the two skidding constraints are relaxed relative to
the motion of the inertial disk. The nonholonomic constraint on the lateral motion of
the contact points is defined as

N3 =
1−d

2
Vcon,1.Rθ ,z.R π

2 ,x
.Rδ1,z.R− π

2
.R−η1,z.(1,0,0)

+
1+d

2
Vcon,2.Rθ ,z.R π

2 ,x
.Rδ2,z.R− π

2
.R−η2,z.(1,0,0),

(5.31)

where ηi are the lateral angles obtained from the projection. This choice of the multi-
plying factors accounts for the effect of the mass over the traction in the wheels, where
the wheel having a higher mass concentration has more traction and thus less skid.

The system also consists of holonomic constraints, first to account for the rigidity
of the system since the model was initialized using two separate wheels. The two pos-
sible definitions of the center of the system are utilized. The center of the system, was
earlier defined by Pc,1 and Pc,2; equating these coordinates results in three holonomic
constraints on the system that ensure rigidity

Hi = Pc,1(i)−Pc,2(i) = 0, i = 1,2,3. (5.32)

The addition of the contact angles δi results in two additional holonomic constraints

Hi+3 = δi−g(xi,yi,θ ,β ) = 0, i = 1,2, (5.33)

where g(xi,yi,θ ,β ) is the derived function from the surface projection on the wheel
plane.

The obtained constraints are stabilized to give

Ni,s = Ṅi + γ1Ni, i = 1,2,3, (5.34)

H j,s = Ḧ j +2γ2Ḣ j + γ
2
3 H j, j = 1, ..,5, (5.35)

as in equations (3.12) and (3.11).
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The constraint forces in the equations of motion are the same for the stabilized
constraints as the normal ones. Using the stabilized constraints, the matrices for the
nonholonomic and holonomic constraints are

Nmat(i, j) =
dNi,s

dq̈ j
, Hmat(i, j) =

dHi,s

dq̈ j
. (5.36)

These matrices are joined and multiplied by the set of differentiated Lagrange multi-
pliers

Fc =

(
Nmat
Hmat

)T

λ̇ , (5.37)

where
λ̇ =

(
λ̇1 λ̇2 λ̇3 λ̇4 λ̇5 λ̇6 λ̇7 λ̇8

)T
(5.38)

A Rayleigh dissipation function is used to capture the damping in the wheels

D =
1
2

µ(ṙ2
1 + ṙ2

2), (5.39)

where µ is the damping coefficient.
The generalized forces are those on d and α , giving

τ =
(

0 0 0 0 0 0 0 0 0 0 0 τd τα

)
. (5.40)

Finally the Euler Lagrange equations of motion are

d
dt

∂L
∂ q̇i
− ∂L

∂qi
− dD

dq̇i
= τi−Fc,i, i = 1, ...,13, (5.41)

which are appended by the stabilized constraint equations

5.2.3 Simulation and Discussion
In this section, the model is verified over flat terrain and the effect of rough terrain is
analyzed. An initial simulations studies the system dynamics as it traverses a circle-
line-circle Dubins path on flat terrain. This simulation verifies the system dynamics by
looking into the forward motion as well as the steering. A second simulation studies
the effects of a bump on the system, specifically the trajectory change caused by the
rough terrain. This analysis allows for open-loop bump rejection where the system is
able to follow the desired path by mitigating the effects of the bump on the steering of
the vehicle.

To determine the torques in the system, PD controllers are used to ensure the main-
tenance of the desired inputs dd and αd

τd = d̈d + kd,d(ḋd− ḋ)+ kp,d(dd−d), (5.42)
τα = α̈d + kd,α(α̇d− α̇)+ kp,α(αd−α). (5.43)

The parameters and controller gains used throughout the simulations are seen in table
5.3.
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Table 5.3: The proposed system parameters and controller gains.

md 4 kg
m1,m2 0.5 kg kp,α 100

ri 0.75 m kd,α 10
Disk Radius 0.4 m kd,d 100

k 25 N/m kp,d 10000
µ −12 Ns/m

γ1, γ2, γ3 12

Flat Terrain Simulation

The first simulation is given a constant rotational velocity for the disk, and a lateral
motion at predetermined time step to account for the steering based on the circular
sections of the Dubins path. The disk mass is moved as seen in Fig. 5.11 based
on a Dubins path going from (0,0) with zero orientation to (30,30) with with zero
orientation. The simulation begins with zero steering as the system reaches a stable
velocity, then the disk is moved to one side, back to the center and to the other side to
produce a circle-line-circle trajectory.

d (m)

α

(rad/s)

ϕ

(rad/s)

0 50 100 150 200
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Figure 5.11: The variation of d, α̇ , and φ̇

The system observed follows the desired path, reaching the final point with high
accuracy, as seen in Fig. 5.12.

The final position of the system (29.3948,29.3167) shows an error due to the dy-
namics of the system, as compared to the purely kinematic Dubins model. This error is
a result of the impossibility to achieve infinite acceleration as the system transitions be-
tween the circle and line sections of the trajectory. In addition a slight velocity changes
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Figure 5.12: The x-y trajectory traversed by the vehicle compared to the actual Dubins
path

at the turns can be observed in Fig.5.11 where the rotational velocity increases during
the circular sections due to the diameter changes in the system.

Rough Terrain Simulation

To analyze the effects of rough terrain on the vehicle, simulations were done over a
period of 50 seconds to study the system’s natural response to rough terrain, followed
by an attempt to mitigate these effects in open-loop simulations. The aim of this sim-
ulation is to attempt bump rejection through the movement of the disk, thus rotational
velocity of the disk is kept constant.

The terrain under study consists of a single bump centered at (15,0) with an am-
plitude of 0.8. This bump is chosen such that one wheel traverses over the center of
the bump, while the other wheel is maintained on even terrain.

The effect of this bump on the system is first studied, and the open loop controller
is tested to allow the vehicle to traverse rough terrain with minimal effect on its trajec-
tory.Fig. 5.13a shows that the disturbance resulting from the bump is most prominent
in the orientation of the system. As the vehicle passes over the bump, the orientation
of the system varies resulting in a motion in the direction of the wheel moving over the
bump.

To offset this change, the disk is moved towards the wheel that is maintained on
even terrain and effectively steers towards it. The deduced change in the disk motion
required for bump rejection can be seen in Fig. 5.13b. As a result, the choice of d
proves effective in minimizing the net orientation change as seen in Fig. 5.13a. The
orientation change is not rejected completely while traversing the bump, due to some
oscillation in the disk motion and orientation, but more importantly the trajectory as
the system passes the bump is the desired trajectory, observed in Fig. 5.13c.
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Figure 5.13: Simulation results over rough terrain

The effects of a bump on a system such as this one are on several fronts. A bump
is a depiction of added terrain, i.e. an added distance for one wheel to traverse. Intu-
itively, this added distance allows for the wheel on flat terrain to cover more effective
ground than the wheel on the bump. Additionally, due to the spring-damper systems
modeled in the wheels, the wheel traversing the bump undergoes a diameter increase,
as analyzed in previous sections due to a the reduced effect of the ground normal force
over the incline, thus the wheel on the bump moves faster than that on flat terrain. A
third effect from the bump is the deceleration of the inclined wheel going up the bump
as gravitational effects pull it back down, followed by its acceleration as it goes back
down the other side of the bump.

As can be seen from Fig. 5.13c, the most dominating effect in this system is due to
the added terrain, causing the system to steer towards the bump, and the basic require-
ment for bump rejection is to offset this net added terrain.
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5.3 Simplified Three-Dimensional Model and Control

5.3.1 System Model
In order to implement a controller on the system at hand, a simpler model was devel-
oped. Previous simulations have shown the effects of the actuated disk on the system,
where the movement of the disk along the wheel axis directly affects its inclination
angle, and its rotation about it directly affects the rolling angle of the vehicle. These
observations allow for the first simplification being to disregard the disk in order to
reduce the set of generalized coordinates by two. A second simplification is a result of
basing the model derivation on the center of mass of the system rather than the contact
points, such that the position of the center of mass alone is required. Finally, knowing
the relationship between the inclination angle and the wheel radii, it is possible to re-
duce the set of generalized coordinates further by taking the z-coordinate of the center
mass and disregarding the radii. These simplifications result in the set of generalized
coordinates

q = (x,y,z,θ ,β ,φ), (5.44)

where θ is the orientation of the system in the x− y plane, β is the inclination about
the forward direction, and φ is the rolling. The center of mass of the system is defined
as

P = (x,y,z). (5.45)

The centers of the wheels can then be defined as

Pw,1 = P+Rθ ,z.R−β ,x.(l,0,0),

Pw,2 = P−Rθ ,z.R−β ,x.(l,0,0),
(5.46)

where l is half the axis lenght. The contact points are thus

Pc,1 = Pw,1−Rθ ,z.R−β ,x.(0,0,r1),

Pc,2 = Pw,2−Rθ ,z.R−β ,x.(0,0,r2),
(5.47)

where

r1 =
z− l sinβ

cosβ
,

r2 =
z+ l sinβ

cosβ
.

(5.48)

The energy in this system is defined as

KE =
1
2

M
dP
dt

.
dP
dt

+
1
2

m
(

dP1

dt
.
dP1

dt
+

dP2

dt
.
dP2

dt

)
+

1
2

m(r2
1 + r2

2)φ̇
2,

PE =
1
2

k(r1− ri)
2 +

1
2

k(r2− ri)
2 +Mgz+mg(zw,1 + zw,2),

(5.49)
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where M is the mass concentration at the center of the vehicle, m is mass concentration
at the wheels, g is the gravitational constant, k is the spring stiffness, and ri is the initial
radius of the wheels. The Lagrangian is found to be

L = KE−PE. (5.50)

The constraints on this system are three nonholonomic constraints, two no-slipping
constraints on each wheel and a combined no-skidding constraint, such that

N1 =
dPc,1

dt
.(cosθ ,sinθ ,0)− r1φ̇ ,

N2 =
dPc,2

dt
.(cosθ ,sinθ ,0)− r2φ̇ ,

N3 =
dPc,1

dt
.(−sinθ ,cosθ ,0)+

dPc,2

dt
.(−sinθ ,cosθ ,0).

(5.51)

These constraints are stabilized to give

Ni,s = Ṅi + γ1Ni, i = 1,2,3. (5.52)

The constraint matrix is found to be

Nmat(i, j) =
dNi,s

dq̈ j
. (5.53)

such that the constraint forces take the form

Fc = NT
mat .λ̇ , (5.54)

where λ = (λ1,λ2,λ3) is introduced in a differentiated form for index reduction.
A Rayleigh dissipation function is introduced into the system taking the form

D =
1
2

µ(ṙ2
1 + ṙ2

2), (5.55)

where µ is the damping coefficient. In this system the generalized torques are the ones
on β and φ such that τ = (0,0,0,0,τβ ,τφ ). Finally the equations of motion are derived

d
dt

∂L
∂ q̇i
− ∂L

∂qi
− dD

dq̇i
= τi−Fc,i, i = 1, ...,6, (5.56)

and are appended by the stabilized constraint equations.
Following the process introduced in Chapter 3.2, the equations (5.56) are trans-

formed to take the form of (3.35)

p = q̇,

ṗ = M(q)−1(τ +A(q)T
λ̇ −C(q, p)p−g(q)−b(q)p),

Ṅ(q, p)+ γN(q, p) = 0,

(5.57)
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where the full state vector consists of (x,y,z,θ ,β ,φ ,u,v,w,Θ,B,Φ,λ1,λ2,λ3). Finally
the equations ripe for linearization can be derived from (5.57) providing a system of
the form

Ẋ = AX +BU. (5.58)

Defining an equilibrium trajectory in (x,y), it is a simple matter of computing the
equilibrium orientation θ = arctan( ẏ

ẋ). The equilibrium of the states (z,β ,φ) can be
computed using the nonholonomic constraints N1, N2, and N3. Finally allowing the
computation of λ and the equilibrium inputs using the dynamic equations.

5.3.2 Control and Simulations
Two trajectories are chosen to study the effectiveness of the controller. The first tra-
jectory is a straight line with disturbances providing bump-like dynamics for the sim-
ulation. The second is a circular trajectory with the reasoning that if the system can
follow both these trajectory, then an optimal Dubins’ path is simply a combination of
the two.

The system obtained after linearization is not fully state controllable, but in fact
only four states are controllable thus requiring a decomposition as seen in Chapter 3.2.
Noting that the system is time-varying with equilibrium trajectories(not equilibrium
points), this decomposition is performed at every time steps for the total time of the
simulation, where the LQR gains are also computed for each time step and introduced
into the simulation as time-varying gains.

The parameters chosen for the following simulations are M = 2, m = 1, l = 1
2 ,

g = 10, k = 350, c = 5, and ri =
1
3 . It is worth noting the significant stiffness value as

to counteract the effect of the weight and maintain a positive z.

Line Following under the Effect of Bump-like Disturbance

For the first set of simulations, the vehicle is made to move along the x− axis with a
constant rotational velocity. The initial trial is followed up by adding disturbances on
the inclination angle and the height of the system, which is an effect similar to a bump
on the road.

The initial trial with no disturbance shows that the controller successfully takes the
system to the equilibrium trajectory after the solution converges.

The rotational velocity and inclination angle reach their respective equilibrium val-
ues with slight initial deviations as seen in Fig.5.14b and 5.14a, while the motion in
the plane shows small error in the y value, in Fig. 5.14c, as the system steers to equi-
librium.

For the second simulation, disturbance rejection is studied by adding an impulse
on the inclination angle β of magnitude 0.4rad at t = 15sec. The simulations show
the effect of the controller as the disturbance on β is removed, seen in Fig. 5.15b.
An important observation is the relationship between the inclination angle and the z
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wing a line trajectory

Figure 5.14: Initial simulation result for the controlled system following a line trajec-
tory
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Figure 5.15: The relationship between z and β with a disturbance on β

coordinate of the system, as the disturbance causes a stir in the z coordinate before it
settles back to its equilibrium as seen in Fig. 5.15a. The motion of the system in the
x−y plane is unperturbed as it remains on its path following the equilibrium trajectory,
seen in Fig. 5.16.

For the third simulation, a disturbance on z of magnitude 0.1 is added at t = 5sec.
The controller also succeeds on maintaining the system’s trajectory by counteracting
the disturbance on z as well as that on β as evident from Fig. 5.17a and 5.17b. Noting
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Figure 5.16: The motion of the controlled system in the x-y plane follwing a line
trajectory with a disturbance on β

again that a bump is effectively a combination of increased height and an inclination
on the vehicle, these disturbances provide an effect similar to that of a bump on the
system. Observing the trajectory tracking in Fig. 5.18 with both disturbances provides
a high degree of confidence that this controller has the capabilities to mitigate bumps.
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Figure 5.17: The relationship between z and β with disturbances on z and β
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Figure 5.18: The motion of the controlled system in the x-y plane follwing a line
trajectory with disturbances on z and β

Circular Path Following and Robustness

For the second set of simulations, the system is made to follow a circular trajectory
with a constant rotational velocity. The initial trial is again followed up by adding
a disturbance on the inclination angle of the system, as a study of robustness of the
controller.
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The initial trial with no disturbance shows that the controller is capable of tracking
the circular trajectory within a reasonable error margin. The system undergoes some
oscillations to settle into the equilibrium trajectory as evidenced by Fig. 5.19a and
5.19b. These oscillations are a result of several factors, most prominent of which is
the presence of a spring-damper in the system. Despite these oscillations, the (x,y)
position of the system tracks the original path closely as seen in Fig. 5.19c, which is
the main purpose of this controller, and this is a direct result of the choice of the LQR
weights.
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Figure 5.19: Initial simulation result for the controlled system following a circular
trajectory

For the second simulation, the robustness of this controller is studied by adding an
impulse on the inclination angle β of magnitude 0.2rad at t = 5sec. This disturbance
is again removed by the controller and the system persists in tracking the circular tra-
jectory within a reasonable error margin, observed in Fig. 5.20c. The slight deviation
from the trajectory tracking is mainly a repercussion of the nonlinearities in the sys-
tem and the time steps chosen to solve for the LQR gains. Additionally, this type of
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trajectory requires more time for the system to stabilize, as evident in the variation of
the z coordinate seen in Fig. 5.20a, where some oscillation occurs before the system
reaches its equilibrium z. This is also brought up by the oscillations in β in Fig. 5.20b,
where the inclination angle oscillates towards its equilibrium, all a direct effect of the
flexible wheels modeled in this thesis.
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(a) The variation in the height of the controlled
system follwing a circular trajectory with a distur-
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Figure 5.20: Simulation result for the controlled system following a circular trajectory
with a disturbance on the inclination angle
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Chapter 6

Conclusion

This work presented a study on holonomic and nonholonomic robotic systems. As part
of this study, a model for a variable diameter differential drive robot was developed
and simulated following a Dubins path on flat terrain. Generalizing this model to
account for rough terrain mobility proved to be problematic in regards to simulation
and modeling.

A novel index reduction technique was then developed based on a constraint stabi-
lization method and the minimum index equivalent of differential algebraic equations.
This technique provided an ideal framework to ease the simulation, linearization, and
control of high index nonlinear dynamic systems, thus allowing for the expansion of
the robotic model to account for rough terrain mobility. Upon studying the effects of
rough terrain on a variable diameter wheel, the developed model was used for open
loop bump mitigation, where the system was able to follow a desired trajectory under
the effects of a bump.

A simplified model was then developed for control purposes, where the devel-
oped framework provided the ideal set of equations for linearization and use of linear
control. This allowed for the implementation of a linear quadratic regulator on a con-
trollable subsystem of the linearized model. The implemented controller provided a
satisfactory response for path following, and a robust response against bump-like dis-
turbances.
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