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An Abstract of the Thesis of

HAGOP KORK KARAKAZIAN for Master of Science

Major: Mathematics

Title: Local Existence and Uniqueness of the Solution to the 2D Hasegawa−Mima Equation with

Periodic Boundary Conditions

Magnetic plasma confinement is one of the most promising ways in future energy produc-

tion. To understand the phenomena related to energy production through plasma confinement,

several mathematical models can be found in literature (see [1, 2, 3], for example), of which the

simplest and powerful 2D turbulent system model is the Hasegawa-Mima equation, which de-

scribes the time evolution of drift wave. Although it was originally derived by Akira Hasegawa

and Kunioki Mima in [2], it can be extended [4, 5] and put as

(∆− I)ut + {u,∆u}+ kuy = 0 (1)

where {u, v} = uxvy − uyvx is the Poisson bracket, u(x, y, t) describes the electrostatic fluc-

tuations, k = ∂x ln
n0

ωci
, where n0 is the background particle density that depends only on the

x-direction, and ωci is the ion cyclotron frequency that depends only on the initial magnetic field

[6]. As a cultural note, equation (1) is also referred as the Charney-Hasegawa-Mima equation

in geophysical context.

In this thesis, we give a new elementary construction of periodic Sobolev spaces on an

open domain Ω = (0, L)× (0, L) on which we prove the local existence and uniqueness of the

solution to equation (1), coupled with necessary periodic boundary conditions. We do this via

perturbing it into a semilinear abstract Cauchy problem and using analytic semigroup methods

to obtain a local solution. Employing some a priori estimates, we obtain a local solution to the

original problem. We finally establish its uniqueness, and comment on the existence of a global

solution.
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Chapter 1

Introduction

1.1 The Hasegawa-Mima Equation

The Hasegawa-Mima Equation is the simplest and powerful 2D turbulent system model orig-

inally derived by Akira Hasegawa and Kunioki Mima in 1978 (see [2]). However it can be

extended [4, 5] and put as

(∆− I)ut + {u,∆u}+ kuy = 0 (1.1)

where {u, v} = uxvy − uyvx is the Poisson bracket, u(x, y, t) describes the electrostatic fluc-

tuations, k = ∂x ln
n0

ωci
, where n0 is the background particle density that depends only on the

x-direction, and ωci is the ion cyclotron frequency that depends only on the initial magnetic

field [6]. For a detailed derivation of (1.1), we refer the reader to [5].

Throughout this thesis, we consider an open bounded square domain Ω = (0, L) × (0, L)

with boundary Γ = ∂Ω, and develop necessary results to establish the local existence and

uniqueness of the solution to the two-dimensional Periodic Hasegawa-Mima problem

(HM)





(∆− I)ut + {u,∆u}+ kuy = 0 on Ω× (0, T ]

u(x, y, 0) = u0(x, y) on Ω

u satisfies some periodic boundary conditions on Γ

(1.2)

for a given initial condition u0. For example, one can impose the following periodic boundary

conditions of zeroth and first order
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(PBC)




u(0, y) = u(L, y) and ux(0, y) = ux(L, y) ∀y ∈ (0, L)

u(x, 0) = u(x, L) and uy(x, 0) = uy(x, L) ∀x ∈ (0, L)
(1.3)

In fact, we will show that for a smooth enough given initial condition u0 (in H4
P (Ω)), the

problem (HM) with (PBC) above has a unique localC∞,2 solution on (0, T ∗)×Ω where T ∗ > 0

is a temporal value depending only on u0 (see Corollary 5.14).

Our two main existence results are Theorem 5.13 and Corollary 5.14, followed by the

uniqueness result Theorem 5.16.

1.2 Known Results and Issues in Literature

There is no reliable paper regarding the existence and uniqueness of the solution to the two-

dimensional Hasegawa-Mima equation with periodic boundary conditions. However, several

papers address the topic on the whole plane R
2, from which [6] by Boling Guo and Yongqian

Han, and [7] by Lionel Paumond, played a crucial role in writing this thesis.

Both papers perturb the Hasegawa-Mima equation with a linear operator and use the theory

of analytic semigroups, but with opposing methods. [6] formulates the perturbed Hasegawa-

Mima equation as a straight Banach fixed point problem as follows.

Problem 1.1. Consider a non-linear operator G on the metric space

Y = {w ∈ C([0, T ];Hm(R2)) : tαw(t) ∈ Cα((0, T ];Hm(R2)), 0 < α < 1, w(0) = w0

‖w‖C([0,T ];Hm) + [tαw]Cα((0,T ];Hm) ≤ ρ, m ≥ 2}

where ρ > 0 is to be determined, and define G(w) = v, where v is the solution of the PDE

vt − λ∆v = −
{
(I −∆)−1w,w

}
− k(I −∆)−1wy

Show that G has a fixed point.

The issue with this formulation is the continuity of G with respect to its metric, simply

because the Poisson bracket decreases spacial regularity by 3.

On the other hand, [7] formulates it as a semilinear abstract Cauchy problem and uses

fractional powers of the perturbing operator to resolve the continuity issue found above. It

proves local existence and uniqueness for u0 ∈ H4(R2), whose global existence still remains

open. It also proves global existence of a weak solution for u0 ∈ H2(R2), whose uniqueness

still remains open.
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1.3 Outline of the Thesis

In chapter 2, we will define the two-dimensional periodic boundary conditions of arbitrary

order, give a new elementary construction of two-dimensional Periodic Sobolev space Hm
P (Ω),

and study its properties.

In chapter 3, we will consider the strongly elliptic operator Aλ = λ∆(∆ − I) on H5
P (Ω),

with real λ > 0. We will first show that the negation of Aλ + η0I is the infinitesimal generator

of a uniformly bounded analytic semigroup of operators on H1
P (Ω), where η0 > λ. And then

conclude that the negation of Aλ is the infinitesimal generator of an analytic semigroup of

operators on H1
P (Ω). We will finally conjecture that this is true for every strongly elliptic

operator on H2m+1
P (Ω).

In chapter 4, we will consider an equivalent version of the Hasegawa-Mima equation and

perturb it into a semilinear abstract Cauchy problem. Then we will follow the analytic semi-

group methods found in [7] and [8] to establish the local existence of a solution. We will also

comment on the global existence.

Finally in chapter 5, we will prove some a priori estimates and use them to obtain a local

solution to the Hasegawa-Mima equation. We will then establish the uniqueness of the local

solution.

For convenience, we give preliminarily results from functional analysis and analytic semi-

group theory in the Appendices A and B.
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Chapter 2

The Periodic Sobolev Space Hm
P (Ω)

Despite the fact that we have a rich literature on PDEs with Dirichlet and Neumann boundary

conditions (see for example [9, 10]), there is the lack of results on PDEs with periodic boundary

conditions. It could be that the way of imposing periodic boundary conditions has been done

simply through using the Sobolev space Wm,p(TN) defined on the N -dimensional torus TN =

R
N/ZN . On the other hand, [11, p.149] defines the periodic Sobolev space Hm

p (QN) of order

m as the ‖·‖m completion of the space of infinitely differentiable functions restricted to the

N -dimensional cube QN = [0, L]N which are L-periodic in each direction

u(x+ Lej) = u(x) j = 1, · · ·N

where ej a unit vector in the jth component. However it fails to indicate whether weak deriva-

tives are also L-periodic.

In this chapter, we define the two-dimensional periodic boundary conditions of arbitrary

order, give a new elementary construction of two-dimensional Periodic Sobolev space Hm
P (Ω),

and study its properties. This space turns out to be slightly different than the ones mentioned

above. For example, unlike Wm,p(T2), it doesn’t assume mth order periodic boundary con-

ditions, and possesses Poincaré inequality; and unlike Hm
p (Q2), weak derivatives satisfy peri-

odic boundary conditions of order up to m − 1. Following our construction, one can define

Hm
P ((0, L)N) and Wm,p

P ((0, L)N).

2.1 The Periodic Boundary Conditions

A fundamental reason one might want to impose periodic boundary conditions is that they

physically model the interaction of a wave (in our case, plasma drift waves) with the boundary

of its medium. We define them formally as follows.

Definition 2.1. We say that a real-valued function u satisfies the periodic boundary conditions

4



PBC0 of order 0 if and only if

(PBC0)




(PBC0

x) u(0, y) = u(L, y) ∀y ∈ (0, L)

(PBC0
y) u(x, 0) = u(x, L) ∀x ∈ (0, L)

Also, if k is a positive integer, we say that a real-valued function u satisfies the periodic bound-

ary conditions PBCk of order k if and only if

(PBCk)




(PBCk

x) ∂kxu(0, y) = ∂kxu(L, y) ∀y ∈ (0, L)

(PBCk
y) ∂kyu(x, 0) = ∂kyu(x, L) ∀x ∈ (0, L)

or equivalently, ∂kxu satisfies PBC0
x and ∂kyu satisfies PBC0

y, where ∂x and ∂y denote the differ-

ential operators
∂

∂x
and

∂

∂y
, respectively, for short.

When seeking a (classical) solution to a given PDE on an open bounded domain Ω, one

usually works in a suitable Sobolev space Wm,p(Ω) or a subspace to see whether it has a weak

solution. However when imposing boundary conditions on functions in Wm,p(Ω), one needs to

make sure that they and their corresponding derivatives are defined on the boundary Γ. Thanks

to the Trace Theorem ([10, p.258] and [9, p.315]) below, which allows us to do that.

Theorem 2.2 (Trace Theorem). Let U ⊂ R
N be a regular open set. Then there exists a bounded

linear operator Tr : W 1,p(U) −→ Lp(∂U), namely the extension by density of the function

C∞
0 (RN) −→ Lp(∂U) by u 7→ u|∂U , such that

(i) Tr(u) = u|∂U if u ∈ W 1,p(U) ∩ C(U)

(ii) ‖Tr(u)‖Lp(∂U) ≤ C ‖u‖W 1,p(U) for each u ∈ W 1,p(U), with the constant C depending

only on p and U .

Now if u ∈ Hm(Ω) = Wm,2(Ω) with integerm ≥ 1, then for every integer k = 0, 1, · · ·m−
1, we have that ∂kxu, ∂

k
yu ∈ H1(Ω) so that Tr(∂kxu),Tr(∂kyu) ∈ L2(Γ). Thus we make the fol-

lowing definition.

Definition 2.3. Let m and k be two integers such that m ≥ 1 and 0 ≤ k ≤ m − 1. We say

that u ∈ Hm(Ω) satisfies the periodic boundary conditions PBCk of order k if and only if Tr(u)

does almost everywhere.

5



2.2 The Periodic Sobolev Space Hm
P (Ω) and its Properties

Definition 2.4. Let m ≥ 1 be an integer. Define the Periodic Sobolev space of order m as

Hm
P (Ω) =

{
u ∈ Hm(Ω) :

∫

Ω

u dµ = 0 and u satisfies PBCk ∀k = 0, 1, · · ·m− 1

}

where µ is the Lebesgue measure, and

u satisfies PBCk ∀k = 0, 1, · · ·m− 1

⇐⇒ Tr(u) satisfies PBCk a.e. ∀k = 0, 1, · · ·m− 1

⇐⇒ Tr(∂kxu) satisfies PBC0
x and Tr(∂kyu) satisfies PBC0

y a.e. ∀k = 0, 1, · · ·m− 1

For convenience, we let

H0
P (Ω) =

{
u ∈ L2(Ω) :

∫

Ω

u dµ = 0

}

Remark. Hm(T2), with the zero average condition, is a proper subset of Hm
P (Ω), as demon-

strated by the example below.

Example 2.5. The function u(x, y) = sin πx − 2/π with zero average on [0, 1] × [0, 1] is in

H1
P (Ω) but not in H1(T2), because its x-derivative fails to be periodic on the boundary.

Figure 2.1: u(x, y) = sin πx− 2/π is in H1
P (Ω) but not in H1(T2)

Proposition 2.6. For every integer m ≥ 0, Hm
P (Ω) is a closed subspace of Hm(Ω), and so it is

a Hilbert space.

Proof. Let u1, u2 ∈ Hm
P (Ω), and r1, r2 ∈ R. Then r1u1 + r2u2 ∈ Hm(Ω) because Hm(Ω) is a

vectorspace. Observe that

∫

Ω

(r1u1 + r2u2) dµ = r1

∫

Ω

u1 dµ+ r2

∫

Ω

u2 dµ = 0

6



Now assume m ≥ 1, then for each k = 0, 1, · · · ,m − 1, using the linearity of Trace and

differential operators, we have

Tr(∂kx(r1u1 + r2u2)) = r1Tr(∂kxu1) + r2Tr(∂kxu2)

which satisfies PBC0
x because Tr(∂kxu1) and Tr(∂kxu2) do. Similarly Tr(∂ky (r1u1+r2u2)) satisfies

PBC0
y. Therefore, Hm

P (Ω) is a subspace of Hm(Ω).

Now let {un} be a sequence in Hm
P (Ω) such that un → u in Hm(Ω). Observe that by

Cauchy-Schwarz inequality

∣∣∣∣
∫

Ω

u dµ

∣∣∣∣ =
∣∣∣∣
∫

Ω

u dµ−
∫

Ω

un dµ

∣∣∣∣ =
∣∣∣∣
∫

Ω

(u− un) dµ

∣∣∣∣ ≤
∫

Ω

|u− un| dµ

≤ ‖u− un‖ · ‖1‖ =
√
µ(Ω) ‖u− un‖ ≤ L ‖u− un‖m → 0 as n→ ∞

so that

∫

Ω

u dµ = 0. Now for each k = 0, 1, · · · ,m− 1. By the Trace Theorem, there exists a

constant C > 0 such that

∥∥Tr(∂kxun)− Tr(∂kxu)
∥∥ =

∥∥Tr(∂kxun − ∂kxu)
∥∥

≤ C
∥∥∂kxun − ∂kxu

∥∥
1
≤ C ‖u− un‖m → 0 as n→ ∞

so that Tr(∂kxun) → Tr(∂kxu) in L2(Γ), as n → ∞. Hence there exists a subsequence {unl
} in

Hm
P (Ω) such that Tr(∂kxunl

) → Tr(∂kxu) pointwise a.e, as l → ∞, from which we immediately

conclude that Tr(∂kxu) satisfies PBC0
x a.e. Similarly, Tr(∂kyu) satisfies PBC0

y a.e. Therefore,

u ∈ Hm
P (Ω), so that Hm

P (Ω) is a closed in H1(Ω).

Now we prove some fundamental properties of Hm
P (Ω). For that purpose, we first recall the

following from [9, p.312].

Theorem 2.7 (Poincaré-Wirtinger’s Inequality). Let Ω be a connected open set of class C1 and

let 1 ≤ p ≤ ∞. Then there exists a constant C > 0 such that

‖u− ũ‖Lp ≤ C ‖∇u‖Lp ∀u ∈ W 1,p(Ω)

where ũ =
1

µ(Ω)

∫

Ω

u dµ is the average value of u on Ω with respect to measure µ.

Corollary 2.8 (Poincaré Inequality for Periodic Sobolev spaces). There exists a constantC > 0

such that

‖u‖ ≤ C ‖∇u‖ ∀u ∈ H1
P (Ω)

Let α = (a, b) be a (2-dimensional) multi-index of length |α| = a + b. We will denote by

Dα the differential operator ∂ax∂
b
y.

7



Theorem 2.9 (Hm
P (Ω) is a Banach Algebra for m ≥ 2). Let m ≥ 2 be an integer. If u, v ∈

Hm
P (Ω), then uv ∈ Hm

P (Ω).

Proof. Let m ≥ 2 be an integer, and u, v ∈ Hm
P (Ω). Observe that Ω = (0, L)× (0, L) satisfies

the cone condition in Appendix A because if we let define C in the xy-plane with the polar

coordinates

C = {(r, θ) : 0 ≤ r ≤ L/4, 0 < θ < π/8} (2.1)

then clearly each point p ∈ Ω is the vertex of some finite cone Cp contained in Ω that is

congruent to C. Thus by Theorem A.8, uv ∈ Hm(Ω). Now to show that Dα(uv) satisfies PBC0

for every multi-index |α| ≤ m− 1, write

Dα(uv) =
∑

β1+β2=α

Dβ1uDβ2v

where we have used Proposition A.7 recursively, and observe that the terms Dβ1u and Dβ2v

satisfy PBC0 for |β1| ≤ m−1 and |β2| ≤ m−1, respectively. HenceDα(uv) for α ≤ m−1.

2.3 Density of C∞
P (Ω) in Hm

P (Ω)

Let U ⊂ R
N be an open domain. Denote by Cm(U), the Banach space of m-times continu-

ously differentiable functions restricted to U (note that Cm(U) ⊂ C(U)), and set C∞(U) =
⋂
m≥0C

m(U). Define

Cm
P (U) = Hm

P (U) ∩ Cm(U) and set C∞
P (U) =

⋂

m≥0

Cm
P (U) (2.2)

The aim of this section is to prove that C∞
P (Ω) is dense in Hm

P (Ω) using the double Fourier

series.

If u ∈ L2(Ω), we can write its double Fourier series as

u(x, y) =
∞∑

n,m=0

Fn,me
iπ(nx+my)/L

(2.3)

8



or equivalently,

u(x, y) =
∞∑

n=0

∞∑

m=0

An,m sin
πnx

L
sin

πmy

L
+Bn,m cos

πnx

L
sin

πmy

L

+ Cn,m sin
πnx

L
cos

πmy

L
+Dn,m cos

πnx

L
cos

πmy

L

(2.4)

where

An,m =
4

L2

∫

Ω

u(x, y) sin
πnx

L
sin

πmy

L
dµ

Bn,m =
4

L2

∫

Ω

u(x, y) cos
πnx

L
sin

πmy

L
dµ

Cn,m =
4

L2

∫

Ω

u(x, y) sin
πnx

L
cos

πmy

L
dµ

Dn,m =
4

L2

∫

Ω

u(x, y) cos
πnx

L
cos

πmy

L
dµ

(2.5)

Remark. The Fourier series of a function u ∈ Hm(Ω) converges in ‖·‖m. The only mention we

could find about this claim in literature is [12, p.558].

Lemma 2.10. If u ∈ H1
P (Ω), then both n and m in its Fourier series (2.4) are even. That is,

Fourier coefficients associated to odd n or odd m must be zero.

Proof. Since u(0, y) = u(L, y) for every y ∈ (0, L), then we have

∞∑

n=1

∞∑

m=1

[
Bn,m sin

πmy

L
+Dn,m cos

πmy

L

]

=
∞∑

n=1

∞∑

m=1

[
Bn,m(−1)n sin

πmy

L
+Dn,m(−1)n cos

πmy

L

]

so that by the orthogonality of sin πmy
L

and cos πmy
L

on (0, L), we have that (−1)n = 1. Thus n

must be even.

Similarly, imposing u(x, 0) = u(x, L) for every x ∈ (0, L), we get thatmmust be even.

Theorem 2.11. For m ≥ 1, C∞
P (Ω) is dense in Hm

P (Ω) under the topology of ‖·‖m.

Proof. Let u ∈ Hm
P (Ω), and consider its double Fourier series given by (2.4). Now since

u ∈ H1
P (Ω), then by Lemma 2.10, both n and m in (2.4) must be even, so that all partial

Fourier sums must be in C∞
P (Ω). Thus the result follows.

The following is a useful consequence.
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Theorem 2.12. Let u ∈ H1
P (Ω) be such that

∫

Ω

uf dµ = 0 ∀f ∈ C∞
P (Ω) (2.6)

Then u = 0 a.e. on Ω.

Proof. By the density of C∞
P (Ω) in H1

P (Ω), there exists a sequence {un} ⊂ C∞
P (Ω) such that

un → u in L2(Ω). Now

‖u‖2 =
∣∣∣∣
∫

Ω

uun dµ−
∫

Ω

u2 dµ

∣∣∣∣ ≤
∫

Ω

|u| · |un − u| dµ ≤ ‖u‖ · ‖un − u‖ → 0

so that u = 0 a.e. on Ω.

2.4 Spatial Consequences

Proposition 2.13. If u ∈ Cm
P (Ω) where m ≥ 1, then

Dαu satisfies PBC0 whenever |α| ≤ m− 1 (2.7)

We will refer (2.7) as the spacial consequences of PBCs.

Proof. Let u ∈ Cm
P (Ω). It suffices to show D(a,b)u, if exists, satisfies PBC0 whenever 0 ≤

a, b ≤ m− 1. First, observe that

(i) ∂axu satisfies PBC0 whenever 0 ≤ a ≤ m− 1:

By definition, ∂axu satisfies PBC0
x whenever 0 ≤ a ≤ m − 1. Moreover, u satisfies

PBC0
y, which serves as the base case of proving ∂axu(x, 0) = ∂axu(x, L) iteratively for

1 ≤ a ≤ m− 1 as follows

∂axu(x, 0) = lim
h→0

∂a−1
x u(x+ h, 0)− ∂a−1

x u(x, 0)

h

= lim
h→0

∂a−1
x u(x+ h, L)− ∂a−1

x u(x, L)

h
= ∂axu(x, L) ∀x ∈ (0, L)

Hence ∂axu satisfies PBC0
y whenever 0 ≤ a ≤ m− 1.

(ii) ∂byu satisfies PBC0 whenever 0 ≤ b ≤ m− 1:

The proof is similar to that of (i).

We proceed by nested induction as follows, where x, y ∈ (0, L).
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1. base case: b = 1

(a) base case: a = 0

Follows from (ii) above.

(b) inner inductive step: Assume that D(a,1)u satisfies PBC0 for some 0 ≤ a ≤ m− 2.

Then

D(a+1,1)u(x, 0) = lim
h→0

D(a,1)u(x+ h, 0)−D(a,1)u(x, 0)

h

asmp
= lim

h→0

D(a,1)u(x+ h, L)−D(a,1)u(x, L)

h
= D(a+1,1)u(x, L)

D(a+1,1)u(0, y) = lim
h→0

D(a+1,0)u(0, y + h)−D(a+1,0)u(0, y)

h

(i)
= lim

h→0

D(a+1,0)u(L, y + h)−D(a+1,0)u(L, y)

h
= D(a+1,1)u(L, y)

Hence D(a+1,1)u satisfies PBC0.

Therefore D(a,1)u satisfies PBC0 for all 0 ≤ a ≤ m− 1.

2. outer inductive step: Assume that D(a,b)u satisfies PBC0 for some 1 ≤ b ≤ m − 2 and

for all 0 ≤ a ≤ m− 1.

(a) base case: a = 0

Follows from (ii) above.

(b) inner inductive step: Assume thatD(a,b+1)u satisfies PBC0 for some 0 ≤ a ≤ m−2.

Then

D(a+1,b+1)u(x, 0) = lim
h→0

D(a,b+1)u(x+ h, 0)−D(a,b+1)u(x, 0)

h

inner asmp
= lim

h→0

D(a,b+1)u(x+ h, L)−D(a,b+1)u(x, L)

h
= D(a+1,b+1)u(x, L)

D(a+1,b+1)u(0, y) = lim
h→0

D(a+1,b)u(0, y + h)−D(a+1,b)u(0, y)

h

outer asmp
= lim

h→0

D(a+1,b)u(L, y + h)−D(a+1,b)u(L, y)

h
= D(a+1,b+1)u(L, y)

Hence D(a+1,b+1)u satisfies PBC0.

Therefore D(a,b+1)u satisfies PBC0 for all 0 ≤ a ≤ m− 1.

Therefore D(a,b)u satisfies PBC0 for all 0 ≤ a, b ≤ m− 1.
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Corollary 2.14. (2.7) holds for u ∈ Hm
P (Ω), where m ≥ 1.

Proof. Let u ∈ Hm
P (Ω) and consider a multi-index |α| ≤ m− 1. Then by Theorem 2.11, there

exists a sequence un in Cm
P (Ω) such that un → u in ‖·‖m. Now by the Trace Theorem there

exists a constant C > 0 so that

‖Dαun|Γ − Tr(Dαu)‖ ≤ C ‖Dαun −Dαu‖1 ≤ C ‖un − u‖m → 0 as n→ ∞

so that Dαun|Γ → Tr(Dαu) in L2(Ω). Hence there exists a subsequence {unl
} in Cm

P (Ω)

such that Dαunl
|Γ → Tr(Dαu) pointwise a.e as l → ∞, from which we immediately using

Proposition 2.13 conclude that Dαu satisfies PBC0 a.e.

Corollary 2.15. Let I ⊂ R be a temporal interval. Then (2.7) holds for every u ∈ F(I;Hm
P (Ω)),

in the sense that it holds for u(t) for all t ∈ I , where m ≥ 1.

At this point, we also mention other useful spacial consequences.

Proposition 2.16. For every u ∈ H4
P (Ω), we have ‖u‖22 = ‖u‖2 + ‖∇u‖2 + ‖∆u‖2.

Proof. It suffices to show that ‖∆u‖2 = ‖uxx‖2 + 2 ‖uxy‖2 + ‖uyy‖2

‖∆u‖2 =
∫

Ω

(u2xx + 2uxxuyy + u2yy) dµ

= ‖uxx‖2 + 2

∫

Ω

uxxuyy dµ+ ‖uyy‖2

Now by Green’s formula and periodic boundary conditions, we have

‖∆u‖2 = ‖uxx‖2 + 2
���������:0∫ L

0

[uxuyy]
L
0 dy − 2

∫

Ω

uxuyyx dµ+ ‖uyy‖2

= ‖uxx‖2 − 2
����������:0∫ L

0

[uyyxuxy]
L
0 dx+ 2

∫

Ω

u2xy dµ+ ‖uyy‖2

Proposition 2.17. If u ∈ H1
P (Ω), then both ux and uy have zero average value on Ω.

Proof. By density of C∞
P (Ω) in H1

P (Ω), consider a sequence {un} in C∞
P (Ω) such that un → u

in H1
P (Ω), unx

→ ux in L2(Ω), and uny
→ uy in L2(Ω). Now for every n ∈ N we have

∫

Ω

unx
dµ =

∫ L

0

∫ L

0

unx
dxdy =

∫ L

0 �����������:
0

[un(L, y)− un(0, y)] dy = 0

Now by Cauchy-Schwarz

∣∣∣∣
∫

Ω

ux dµ

∣∣∣∣ =
∣∣∣∣
∫

Ω

(ux − unx
) dµ

∣∣∣∣ ≤
∫

Ω

|ux − unx
| dµ ≤

√
µ(Ω) ‖ux − unx

‖ → 0
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as n→ ∞, where µ(Ω) = L2 <∞. Similarly,

∫

Ω

uy dµ = 0.

Remark. In the proof of Proposition 2.17, we didn’t use the fact that u had zero average. Same

is true in the following corollary.

Corollary 2.18. If u ∈ H2
P (Ω), then ∆u has zero average.

Proof. If u ∈ H2
P (Ω), then ux, uy ∈ H1

P (Ω), so that uxx and uyy have zero average.

2.5 Integration Over the Boundary

One of the advantages of having periodic boundary conditions is that all integrals over the

boundary vanish in the weak formulation(s). This is due to the following proposition.

Proposition 2.19. Let I ⊂ R be a temporal interval, and f, g1, g2 ∈ F(I;L2(Ω)) be such that

f(t), g1(t), and g2(t) all satisfy PBC0 for all t ∈ I . Set ~g = (g1, g2), and let ~ν be the unit

outward-pointing normal vector to Γ. Then
∫

Γ

f~g · ~ν ds = 0

Proof. Write Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where




Γ1 : [0, 1] −→ Γ given by s 7→ (sL, 0) with ~ν = (0,−1)

Γ2 : [0, 1] −→ Γ given by s 7→ (L, sL) with ~ν = (1, 0)

Γ3 : [0, 1] −→ Γ given by s 7→ (L− sL, L) with ~ν = (0, 1)

Γ4 : [0, 1] −→ Γ given by s 7→ (0, L− sL) with ~ν = (−1, 0)

Now for each t ∈ I , we have
∫

Γ

f~g · ~ν ds = −
∫

Γ1

fg2 ds+

∫

Γ2

fg1 ds+

∫

Γ3

fg2 ds−
∫

Γ4

fg1 ds

Using the parameterization of Γi, we get

∫

Γ

f~g · ~ν ds = −
∫ 1

0

(fg2)(sL, 0, t)L ds+

∫ 1

0

(fg1)(L, sL, t)L ds

+

∫ 1

0

(fg2)(L− sL, L, t)L ds−
∫ 1

0

(fg1)(0, L− sL, t)L ds

Substituting x = sL, y = sL, x = L− sL, and y = L− sL, respectively, we get

∫

Γ

f~g · ~ν ds = −
∫ L

0

(fg2)(x, 0, t) dx+

∫ L

0

(fg1)(L, y, t) dy

−
∫ 0

L

(fg2)(x, L, t) dx+

∫ 0

L

(fg1)(0, y, t) dy

13



So that, by the periodicity of the integrands over Γ, the result follows.
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Chapter 3

The Operator Aλ = λ∆(∆− I)

In the setting of Sobolev spaces whose elements are compactly supported, it has been shown

that the negation of any strongly elliptic operator of even order is the infinitesimal generator of

an analytic semigroup of operators on L2(Ω) (see Theorem 7.2.7 of [8]). In this chapter, we

conjecture a similar result in the setting of Periodic Sobolev spaces after establishing necessary

results to show that the negation of the strongly elliptic operator Aλ = λ∆(∆− I) on H5
P (Ω),

with real λ > 0, is the infinitesimal generator of an analytic semigroup of operators on H1
P (Ω).

3.1 Strong Ellipticity

We recall the following definitions from [8, p.207-209].

An n-tuple of non-negative integers α = (α1, α2, · · · , αn) is called a multi-index of length

|α| =
n∑

i=1

αi

In the context of Rn, we set

xα = xα1

1 x
α2

2 · · · xαn

n for x = (x1, x2, · · · , xn) ∈ R
n

and

Dα =
∂α1

∂xα1

1

∂α2

∂xα2

2

· · · ∂
αn

∂xαn
n

Let U ⊂ R
n be a bounded open set with smooth boundary ∂U . Consider the differential

operator

A(x,D) =
∑

|α|≤2m

aα(x)D
α

of order 2m, where the coefficients aα(x) are sufficiently smooth complex-valued functions of

x ∈ U . The principal part A′(x,D) of A(x,D) is the operator

15



A′(x,D) =
∑

|α|=2m

aα(x)D
α

Definition 3.1. The operator A(x,D) is strongly elliptic iff there exists a constant c > 0 such

that

Re [(−1)mA′(x, ξ)] ≥ c |ξ|2m

for all x ∈ U and ξ ∈ Rn.

Proposition 3.2. For every λ > 0, Aλ is strongly elliptic.

Proof. Observe that

Aλ = λ

(
∂4

∂x4
+ 2

∂4

∂x2y2
+

∂4

∂y4
− ∂2

∂x2
− ∂2

∂y2

)

is a differential operator of order 4 (i.e. m = 2), so that its principle part is

A′
λ = λ

(
∂4

∂x4
+

∂4

∂y4

)

Now let ξ = (ξ1, ξ2) ∈ R
2 and set c = λ/4 > 0, so that λ − c > c. By the inequality between

arithmetic and geometric means, we have

ξ41 + ξ42
2

≥
√
ξ41ξ

4
2 = ξ21ξ

2
2

so that

λ− c

2
(ξ41 + ξ42) ≥ cξ21ξ

2
2

Now

Re [(−1)2A′(ξ)] = λ(ξ41 + ξ42) ≥ c(ξ41 + 2ξ21ξ
2
2 + ξ42) = c |ξ|4

Therefore Aλ is strongly elliptic.

Inspired from [8, p.209], we conjecture the following.

Conjecture 3.3 (Gårding’s Inequality for Periodic Sobolev spaces). If A(x,D) is a strongly

elliptic operator of order 2m, then there exist constants c0 > 0 and η0 ≥ 0 such that for every

u ∈ H2m
P (Ω) we have

Re 〈Au, u〉 ≥ c0 ‖u‖2m − η0 ‖u‖2

Proposition 3.4. Gårding’s Inequality holds for Aλ.
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Proof.

〈Aλu, u〉 = λ 〈∆(∆u− u), u〉

= λ

∫

Ω

u∆2u dµ− λ

∫

Ω

u∆u dµ
(3.1)

Now by Green’s formula, we have

〈Aλu, u〉 = λ

∫

Γ

u∇(∆u) · ~ν ds− λ

∫

Ω

∇u · ∇(∆u) dµ− λ

∫

Γ

u∇u · ~ν ds+ λ

∫

Ω

(∇u)2 dµ

(3.2)

where boundary terms vanish due to spacial consequences of PBCs. Now again applying

Green’s formula, we have

〈Aλu, u〉 = λ ‖∆u‖2 − λ

∫

Γ

∆u∇u · ~ν ds+ λ ‖∇u‖2 (3.3)

where boundary term vanishes due to spacial consequences of PBCs, so that by Proposition

2.16 we have

〈Aλu, u〉 = λ ‖∆u‖2 + λ ‖∇u‖2 = λ ‖u‖22 − λ ‖u‖2 (3.4)

Setting c0 = λ and η0 > λ completes the proof.

3.2 Invertibility

The goal of this section is to show that Aλ : Hm
P (Ω) −→ Hm−4

P (Ω) is invertible for every

integer m ≥ 5. For this purpose, we first recall two theorems.

Theorem 3.5. [9, p.140][Lax-Milgram] Let B(·, ·) be a bicontinuous coercive bilinear form

on a Hilbert space H . Then for every bounded linear functional F on H , there exists a unique

u ∈ H such that

B(u, v) = F (v) ∀v ∈ H

Proposition 3.6. The operator ∆− I : H3
P (Ω) −→ H1

P (Ω) is invertible and

‖u‖3 ≤ C ‖(∆− I)u‖1 ∀u ∈ H3
P (Ω) (3.5)
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Proof. Equivalently, we show that I − ∆ : H3
P (Ω) −→ H1

P (Ω) is invertible. Clearly, if u ∈
H3
P (Ω), then (I − ∆)u ∈ H1

P (Ω), where we have used Corollary 2.18. Now let f ∈ H1
P (Ω),

and consider the following PDE

(P1)




u−∆u = f

u satisfies PBC0 and PBC1

We aim to show that there exists a unique u ∈ H3
P (Ω) such that (I − ∆)u = f . Multiplying

this last equation with v ∈ H1
P (Ω) and integrating over Ω, we get

∫

Ω

uv dµ−
∫

Ω

∆uv dµ =

∫

Ω

fv dµ

which by Green’s formula, becomes

∫

Ω

uv dµ−
∫

Γ

v∇u · ~ν ds+
∫

Ω

∇u · ∇v dµ =

∫

Ω

fv dµ

where imposing PBC1 for u and using Proposition 2.19, the boundary term vanishes, so that

we get the weak formulation of (P1)

B(u, v) = 〈f, v〉 ∀v ∈ H1
P (Ω) (3.6)

where

B(u, v) :=

∫

Ω

uv dµ+

∫

Ω

∇u · ∇v dµ (3.7)

Now observe that

(a) B(·, ·) is a bicontinuous bilinear form on H1
P (Ω). To see this,

|B(u, w)| ≤ |〈u, w〉|+ |〈∇u,∇w〉|
≤ ‖u‖ · ‖w‖+ ‖∇u‖ · ‖∇w‖
≤ ‖u‖1 · ‖w‖1 + ‖u‖1 · ‖w‖1
≤ 2 ‖u‖1 · ‖w‖1

(b) B(·, ·) is a coercive on H1
P (Ω). To see this,

B(u, u) = 〈u, u〉+ 〈∇u,∇u〉 = ‖u‖2 + ‖∇u‖2 = ‖u‖21

Now recall from Proposition 2.6 that H1
P (Ω) is a Hilbert space. Now by the Lax-Milgram

Theorem, there exists a unique u ∈ H1
P (Ω) satisfying the weak formulation (3.6). With a
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usual elliptic regularity argument (see section 9.6 of [9], for example), it can be shown that

u ∈ H3(Ω) and ‖u‖3 ≤ C ‖f‖1.
Now observe that since C∞

P (Ω) ⊂ H1
P (Ω), we have

∫

Ω

(u−∆u− f)v = 0 ∀v ∈ C∞
P (Ω)

so that by Theorem 2.12, u − ∆u = f a.e. on Ω, and so u − ∆u = f in H1
P (Ω). To see u ∈

H3
P (Ω), first observe that u being in H1

P (Ω),
∫
Ω
u dµ = 0. Now since ∆u = u − f ∈ H1

P (Ω),

then ∆u satisfies PBC0, namely (in the Trace Operator sense)



uxx(0, y) + uyy(0, y) = uxx(L, y) + uyy(L, y) ∀y ∈ (0, L)

uxx(x, 0) + uyy(x, 0) = uxx(x, L) + uyy(x, L) ∀x ∈ (0, L)

But recall from (i) and (ii) in the proof of Proposition 2.13, that



uyy(0, y) = uyy(L, y) ∀y ∈ (0, L)

uxx(x, 0) = uxx(x, L) ∀x ∈ (0, L)

so that 


uxx(0, y) = uxx(L, y) ∀y ∈ (0, L)

uyy(x, 0) = uyy(x, L) ∀x ∈ (0, L)

and so both uxx and uyy satisfy PBC0. Now recall from above that
∫

Γ

v∇u · ~ν ds = 0 ∀v ∈ H1
P (Ω)

so by a reverse argument as in Proposition 2.19, we must have that u satisfies PBC1. Therefore,

u ∈ H3
P (Ω).

Proposition 3.7. Let m ≥ 3 be an integer. Then the operator ∆ − I : Hm
P (Ω) −→ Hm−2

P (Ω)

is invertible and

‖u‖m ≤ C ‖(∆− I)u‖m−2 ∀u ∈ Hm
P (Ω) (3.8)

Proof. Equivalently, we show that the operator I −∆ : Hm
P (Ω) −→ Hm−2

P (Ω) is invertible for

every integer m ≥ 3. We prove this using induction on m, where the base case is established

by Proposition 3.6. Assume now that the proposition holds for some m ≥ 3. Then, clearly,

if u ∈ Hm+1
P (Ω), then (I − ∆)u ∈ Hm−1

P (Ω), where we have used Corollary 2.18. Now let

f ∈ Hm−1
P (Ω), then f ∈ Hm−2

P (Ω) so that by the inductive assumption, there exists a unique

u ∈ Hm
P (Ω) satisfying the weak formulation (3.6). With a usual elliptic regularity argument

(see section 9.6 of [9], for example), it can be shown that u ∈ Hm+1(Ω) and ‖u‖m+1 ≤
C ‖f‖m−1. Now as in the proof of Proposition 3.6, u−∆u = f a.e. on Ω, and so ∆u = u− f
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a.e. on Ω. But u ∈ Hm−1
P (Ω), so that ∆u ∈ Hm−1

P (Ω), and so in particular ∆u satisfies

PBCm−2, namely (in the Trace Operator sense)



∂m−2
x uxx(0, y) + ∂m−2

x uyy(0, y) = ∂m−2
x uxx(L, y) + ∂m−2

x uyy(L, y) ∀y ∈ (0, L)

∂m−2
y uxx(x, 0) + ∂m−2

y uyy(x, 0) = ∂m−2
y uxx(x, L) + ∂m−2

y uyy(x, L) ∀x ∈ (0, L)

But by the spacial consequences (equation (2.7)) of the PBCs on u ∈ Hm
P (Ω), we have

∂m−2
x uyy(0, y) = lim

h→0

∂m−3
x uxy(0, y + h)− ∂m−3

x uxy(0, y)

h

= lim
h→0

∂m−3
x uxy(L, y + h)− ∂m−3

x uxy(L, y)

h

= ∂m−2
x uyy(L, y) ∀y ∈ (0, L)

where we have used the density of Cm
P (Ω) in Hm

P (Ω) (Theorem 2.11). Similarly,

∂m−2
y uxx(x, 0) = lim

h→0

∂m−3
y uxy(x+ h, 0)− ∂m−3

y uxy(x, 0)

h

= lim
h→0

∂m−3
y uxy(x+ h, L)− ∂m−3

y uxy(y, L)

h

= ∂m−2
y uxx(x, L) ∀x ∈ (0, L)

so that 


∂m−2
x uxx(0, y) = ∂m−2

x uxx(L, y) ∀y ∈ (0, L)

∂m−2
y uyy(x, 0) = ∂m−2

y uyy(x, L) ∀x ∈ (0, L)

or equivalently, u satisfies PBCm. But since u ∈ Hm
P (Ω), which implies that u satisfies PBCk

for 0 ≤ k ≤ m− 1. Thus, u ∈ Hm+1
P (Ω).

Proposition 3.8. The operator λ∆ : H3
P (Ω) −→ H1

P (Ω) is invertible and

‖u‖3 ≤ C ‖λ∆u‖1 ∀u ∈ H3
P (Ω) (3.9)

Proof. Similar to that of Proposition 3.6. Note that Poincaré inequality is essential for bilinear

operator obtained from the weak formulation to be coercive.

Proposition 3.9. Let m ≥ 3 be an integer. Then the operator λ∆ : Hm
P (Ω) −→ Hm−2

P (Ω) is

invertible and

‖u‖m ≤ C ‖λ∆u‖m−2 ∀u ∈ Hm
P (Ω) (3.10)

Proof. Similar to that of Proposition 3.7.
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Theorem 3.10. Letm ≥ 5 be an integer. Then the operator λ∆(∆−I) : Hm
P (Ω) −→ Hm−4

P (Ω)

is invertible and

‖u‖m ≤ C ‖λ∆(∆− I)u‖m−4 ∀u ∈ Hm
P (Ω) (3.11)

Proof. Compose λ∆ with ∆− I and use Propositions 3.7 and 3.9.

Inspired from [8, p.210], we conjecture the following.

Conjecture 3.11. Let A(x,D) be a strongly elliptic operator of order 2m. For every η sat-

isfying Re η ≥ η0 (as in Gårding’s Inequality) and every f ∈ H1
P (Ω), there exists a unique

u ∈ H2m+1
P (Ω) satisfying the equation

A(x,D)u+ ηu = f

i.e., A(x,D) + ηI : H2m+1
P (Ω) −→ H1

P (Ω) is invertible.

Theorem 3.12. Conjecture 3.11 holds for Aλ for real η. Moreover

‖u‖5 ≤ C ‖(Aλ + ηI)u‖1 ∀u ∈ H5
P (Ω) (3.12)

Proof. Taking the L2-innerproduct of the equation Aλu+ ηu = f with v ∈ H2
P (Ω), we get the

weak formulation

〈Aλu+ ηu, v〉 = 〈f, v〉 ∀v ∈ H2
P (Ω) (3.13)

Now B(u, v) := 〈Aλu+ ηu, v〉 is a bicontinuous bilinear operator, which by Gårding’s In-

equality (Proposition 3.4) is coercive on H2
P (Ω) because

B(u, u) = 〈Aλu+ ηu, u〉 = 〈Aλu, u〉+ η ‖u‖2

= Re 〈Aλu, u〉+ η ‖u‖2

≥ c0 ‖u‖22 + (η − η0) ‖u‖2 ≥ c0 ‖u‖22

Hence by the Lax-Milgram theorem, there exists a unique u ∈ H2
P (Ω) which satisfies the weak

formulation. Now since C∞
P (Ω) ⊂ H2

P (Ω), then

〈Aλu+ ηu− f, v〉 = 0 ∀v ∈ C∞
P (Ω)

so that by Theorem 2.12, we haveAλu+ηu = f a.e. in Ω. Hence nowAλu = f−ηu ∈ H1
P (Ω),

so that by the invertibility of Aλ (Theorem 3.10), we get that u ∈ H5
P (Ω) and

‖u‖5 ≤ C ‖f − ηu‖1 ≤ C ‖f‖1 + η ‖u‖1
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But taking the H1-innerproduct of Aλu+ ηu = f with u, it is easy to see that ‖u‖1 ≤ 1
η
‖f‖1.

And so

‖u‖5 ≤ (C + 1) ‖f‖1 = (C + 1) ‖Aλu+ ηu‖1

Corollary 3.13. Let η ≥ η0 be real, and k ≥ 1 be an integer. Then Aλ + ηI : H2m+k
P (Ω) −→

Hk
P (Ω) is invertible and

‖u‖2m+k ≤ C ‖(Aλ + ηI)u‖k ∀u ∈ H2m+k
P (Ω) (3.14)

Proof. We prove this by induction on k. The base case k = 1 is exactly Theorem 3.12. Now

assume the result is true for some k ≥ 1, and let f ∈ Hk+1
P (Ω). Then using f ∈ Hk

P (Ω)

with the induction hypothesis, there exists u ∈ H2m+k
P (Ω) such that Aλu + ηu = f . Now

Aλu = f − ηu ∈ Hk+1
P (Ω). So that by invertibility of Aλ, we get that u ∈ H2m+k+1

P (Ω) and

‖u‖2m+k+1 ≤ C ‖f − ηu‖k+1 ≤ C ‖f‖k+1 + η ‖u‖k+1

But taking the Hk+1-innerproduct of Aλu + ηu = f with u, it is easy to see that ‖u‖k+1 ≤
1
η
‖f‖k+1. And so

‖u‖2m+k+1 ≤ (C + 1) ‖f‖k+1 = (C + 1) ‖Aλu+ ηu‖k+1

3.3 As a Generator of an Analytic Semigroup

Consider the operator Aη0 = Aλ + η0I , where η0 > λ > 0 is the constant from Gårding’s

Inequality (Proposition 3.4), with the domain D(Aη0) = D(Aλ) = H5
P (Ω). By Corollary 3.13,

Aη0 : H
5
P (Ω) −→ H1

P (Ω) is invertible. Moreover, we have the following corollary.

Remark. Since in the proof of Gårding’s Inequality, we picked any η0 > λ, then all the subse-

quent results hold for any η0 > λ.

Corollary 3.14. There exists a constant C > 0 such that

‖u‖1 ≤ C ‖Aη0u‖1 ∀u ∈ H5
P (Ω) (3.15)
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Proof. Let u ∈ H5
P (Ω), and set f = Aη0u = Aλu+ η0u. Then taking its H1-innerproduct with

u and using Cauchy-Schwatz Inequality, we get

〈Aλu, u〉1 + η0 ‖u‖1 = 〈Aη0u, u〉1 = 〈f, u〉1 ≤ ‖f‖1 · ‖u‖1

where, by the proof of Proposition 3.4 (noting that u ∈ H5
P (Ω) and η0 > λ),

〈Aλu, u〉1 = 〈Aλu, u〉+ 〈Aλux, ux〉+ 〈Aλuy, uy〉
= λ ‖u‖22 − λ ‖u‖2 + λ ‖ux‖22 − λ ‖ux‖2 + λ ‖uy‖22 − λ ‖uy‖2

= λ(‖u‖22 + ‖ux‖22 + ‖uy‖22)− λ ‖u‖21

(3.16)

and so

λ(‖u‖22 + ‖ux‖22 + ‖uy‖22) + (η0 − λ) ‖u‖21 ≤ ‖f‖1 · ‖u‖1

where η0 − λ > 0, so that

‖u‖1 ≤
1

η0 − λ
‖f‖1 =

1

η0 − λ
‖Aη0u‖1

Now we aim to show that −Aη0 generates an analytic semigroup of contractions over

H1
P (Ω), and conclude that −Aλ generates a uniformly bounded analytic semigroup.

Proposition 3.15. The operator −Aη0 is the infinitesimal generator of a C0-semigroup of con-

tractions over H1
P (Ω).

Proof. The result follows immediately from the Hille-Yosida Theorem (Theorem B.11) after

we prove its hypothesis as follows:

(i) Since C∞
P (Ω) is dense in H1

P (Ω) and C∞
P (Ω) ⊂ D(−Aη0) ⊂ H1

P (Ω), it follows that

D(−Aη0) = H1
P (Ω), so that −Aη0 is densely defined. Let u, v ∈ D(−Aη0). Then using

Green’s formula and proposition 2.19, we have

〈−Aη0u, v〉 = −〈Aη0u, v〉 = −
〈
λ∆2u− λ∆u+ η0u, v

〉

= −λ
〈
∆2u, v

〉
− λ 〈∆u, v〉+ η0 〈u, v〉

= −λ
〈
u,∆2v

〉
− λ 〈u,∆v〉+ η0 〈u, v〉

= −
〈
u, λ∆2v − λ∆v + η0v

〉

= −〈u,Aη0v〉 = 〈u,−Aη0v〉
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so that −Aη0 is self-adjoint on D(−Aη0). Thus −Aη0 is closed by Proposition 2.19 of

[13].

(ii) Let η be a positive real number. Then ηI+Aη0 = (η+η0)I+Aλ is invertible onD(−Aη0)
by Corollary 3.13. Finally,

∥∥(ηI + Aη0)
−1
∥∥
L(H1

P
(Ω))

= sup
f∈H1

P
(Ω),‖f‖

1
=1

∥∥(ηI + Aη0)
−1f

∥∥
1

= sup
f∈H1

P
(Ω),‖f‖

1
=1

‖u‖1

where u ∈ D(−Aη0) is the unique solution to (ηI + Aη0)u = f . Now taking the H1-

innerproduct of the last equation with u, we get

(η + η0) ‖u‖21 + 〈Aλu, u〉1 = 〈f, u〉1

where, by using equation (3.16), we get

η ‖u‖21 + (η0 − λ) ‖u‖21 + λ(‖u‖22 + ‖ux‖22 + ‖uy‖22) = 〈f, u〉1

where η0 − λ > 0, and so by Cauchy-Schwarz Inequality,

η ‖u‖21 <�
�
�*
1

‖f‖1 ‖u‖1 = ‖u‖1

and hence

‖u‖1 <
1

η

Therefore

∥∥(ηI + Aη0)
−1
∥∥
L(H1

P
(Ω))

<
1

η

Theorem 3.16. The operator −Aη0 is the infinitesimal generator of a uniformly bounded ana-

lytic semigroup over H1
P (Ω).

Proof. Observe that by Corollary 3.13 and Proposition 3.15, −Aη0 is a uniformly bounded C0

semigroup with 0 ∈ ρ(−Aη0), so that −Aη0 satisfies the hypothesis of Theorem B.18, by which

it suffices to show that −Aη0 satisfies Theorem B.18(c), which states: There exists 0 < δ < π/2
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and M > 0 such that

ρ(−Aη0) ⊃ Σ =
{
η : |arg η| < π

2
+ δ

}
∪ {0} (3.17)

and

‖R(η : −Aη0)‖L(H1

P
(Ω)) ≤

M

|η| ∀η ∈ Σ, η 6= 0 (3.18)

Claim 1: The numerical range ν(−Aη0) of −Aη0 is contained in the negative real axis.

Proof of Claim 1: Recall from Definition B.13 that

ν(−Aη0) =
{
〈−Aη0u, u〉1 : u ∈ D(−Aη0), ‖u‖1 = 1

}
(3.19)

Now let u ∈ D(−Aη0) be such that ‖u‖1 = 1. Then by equation (3.16)

〈−Aη0u, u〉1 = −〈Aλu, u〉1 − η0 ‖u‖21
= −λ(‖u‖22 + ‖ux‖22 + ‖uy‖22) + λ ‖u‖21 − η0 ‖u‖21

(3.20)

where η0 ≥ λ as above, so that

〈−Aη0u, u〉1 ≤ −λ(‖u‖22 + ‖ux‖22 + ‖uy‖22)
≤ −λ(‖u‖2 + ‖ux‖2 + ‖uy‖2)

= −λ
�
�
�*
1

‖u‖1 = −λ < 0

(3.21)

Let Λ = sup ν(−Aη0) ≤ −λ < 0, θ ∈ (π/2, π), and define Σθ = {η ∈ C : |arg η| < θ}.

Claim 2: There exists Cθ > 0 such that d(η : ν(−Aη0)) ≥ Cθ |η| ∀η ∈ Σθ

Proof of Claim 2: Let η ∈ Σθ, then:

(i) If Re η ≥ 0, then d(η : ν(−Aη0)) ≥ d(η : 0) = |η| ≥ |Im η|
(ii) If Re η ≤ Λ, then d(η : ν(−Aη0)) ≥ |Im η|

(iii) If Λ < Re η < 0, then d(η : ν(−Aη0)) ≥ d(η : Λ) ≥ |Im η|

We aim to show that |Im η| ≥ Cθ |η|. Since η ∈ Σθ, then there exists η̃ ∈ ∂Σθ =

{x± ix tan θ : x ≤ 0} such that

Re η̃ = Re η and |Im η̃| ≤ |Im η| (3.22)
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namely, η̃ = Re η + iRe η |tan θ|. Now we have

|Im η| ≥ |Im η̃| = |Re η| · |tan θ| ⇐⇒ |Im η|2
tan2 θ

≥ |Re η|2

⇐⇒ |Im η|2
tan2 θ

+ |Im η|2 ≥ |η|2

⇐⇒ |Im η| ≥
(

1

tan2 θ
+ 1

)−1/2

|η|

(3.23)

Hence setting Cθ =
(

1
tan2 θ

+ 1
)−1/2

> 0 completes the proof.

Now let Σ be the complement of ν(A) in C, then clearly Σθ ⊂ Σ. Observe that, by Corollary

3.13, η ∈ ρ(−Aη0) ∀η ≥ η0, so that Σθ intersects ρ(−Aη0). Thus by Theorem (B.14),

Σθ ⊂ ρ(−Aη0) and along with Claim 2,

‖R(η : −Aη0)‖L(H1

P
(Ω)) ≤ d(η : ν(−Aη0))−1 ≤ 1/Cθ

|η| ∀η ∈ Σθ, η 6= 0 (3.24)

Finally, setting δ = θ − π/2 ∈ (0, π/2) and M = 1/Cθ > 0, the proof is complete.

Corollary 3.17. For every λ > 0, the operator −Aλ is the infinitesimal generator of an analytic

semigroup over H1
P (Ω).

Proof. Since η0I is a bounded linear operator, the result follows immediately from Proposition

B.20. Or one can observe that if −Aη0 is the infinitesimal generator of the analytic semigroup

T (t), then −Aλ will be the infinitesimal generator of the analytic semigroup S(t) = etη0T (t).

To see this, we compute

S(t) = e−tAλ = etη0I−tAη0 = etη0Ie−tAη0 = etη0T (t)

where we have used the fact

etη0I =
∞∑

n=0

(tη0I)
n

n!
=

∞∑

n=0

(tη0)
n

n!
I = etη0I

Now clearly by definition, S(t) is an analytic semigroup.

Inspired from the result above, we conjecture the following.

Conjecture 3.18. If A(x,D) is a strongly elliptic operator of order 2m, then the operator

−A(x,D) with the domain H2m+1
P (Ω) is the infinitesimal generator of an analytic semigroup

of operators on H1
P (Ω).
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Chapter 4

The Perturbed Hasegawa-Mima Equation

In this chapter, we consider an equivalent version of the Hasegawa-Mima equation and perturb

it into a semilinear abstract Cauchy problem. We follow the analytic semigroup methods found

in [7] and [8] to establish the local existence of a solution. We also comment on the global

existence.

4.1 As a Semilinear Abstract Cauchy Problem

Recall from Proposition 3.7 that linear operator (∆ − I) is invertible, then equation (1.1) is

equivalent to

ut = −(∆− I)−1 {u,∆u} − k(∆− I)−1uy (4.1)

which we will refer to as the equivalent Hasegawa-Mima equation.

Now let 0 < λ < 1, and consider the operator

Bλ = Aλ + 2λI = λ∆(∆− I) + 2λI

Recall from Corollary 3.13 and Proposition 3.16 that Bλ : H5
P (Ω) −→ H1

P (Ω) is invertible

with

‖u‖5 ≤ C ‖Bλu‖1 ∀u ∈ H5
P (Ω) (4.2)

and generates a uniformly bounded analytic semigroup over H1
P (Ω).

Now perturbing the equivalent Hasegawa-Mima equation with the linear operator Bλ, we
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get the semilinear equation

ut +Bλu = f(u) (4.3)

where f(u) = −(∆− I)−1 {u,∆u} − k(∆− I)−1uy, a non-linearity.

Given u0 ∈ H4
P (Ω) and 0 < T < ∞, consider the perturbed Hasegawa-Mima problem as

the semilinear abstract Cauchy problem

(pHM)




u′(t) + Bλu(t) = f(u(t)) t ∈ (0, T ]

u(0) = u0
(4.4)

Remark. Since the non-linearity f decreases spacial regularity by one, it cannot map Hm
P (Ω)

intoHm
P (Ω) for any integerm. This means that we cannot apply nice (local) existence theorems

for semilinear abstract Cauchy problems. And so we are obliged to use a version (Theorem

B.30) of the only (local) existence theorem found in literature (for example, see [8]) that fits

well with the non-linearity f ; and this one deals with fractional powers of operators generating

analytic semigroups.

4.2 Existence of a Local Solution

We begin with a lemma which gives new useful formulations of the Poisson bracket.

Lemma 4.1 (Lemma 2.1 of [7]). We have

{u,∆u} = Q(u2x − u2y)− P (uxuy) ∀u ∈ H3(Ω) (4.5)

and

{u,∆u} = P [Q(u)u]−Q[P (u)u] ∀u ∈ H4(Ω) (4.6)

where P and Q are the differential operators ∂2x − ∂2y and ∂xy, respectively.
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Proof. We simply compute

Q(u2x − u2y)− P (uxuy) = ∂xy[u
2
x − u2y]− (∂2x − ∂2y)[uxuy]

= ∂x[2uxuxy − 2uyuyy]− ∂x[uxxuy + uxuxy] + ∂y[uxyuy + uxuyy]

= 2uxxuxy + 2uxuxxy − 2uxyuyy − 2uyuxyy − uxxxuy − uxxuxy

− uxxuxy − uxuxxy + uxyyuy + uxyuyy + uxyuyy + uxuyyy

= uxuxxy − uyuxyy − uxxxuy + uxuyyy

= ux∆uy − uy∆ux

= {u,∆u}

and

P [Q(u)u]−Q[P (u)u] = P [uxyu]−Q[uxxu− uyyu]

= ∂2x[uxyu]− ∂2y [uxyu]− ∂xy[uxxu− uyyu]

= ∂x[uxxyu+ uxyux]− ∂y[uxyyu+ uxyuy]

− ∂x[uxxyu+ uxxuy − uyyyu− uyyuy]

= ∂x[uxyux − uxxuy + uyyyu+ uyyuy]− ∂y[uxyyu+ uxyuy]

= uxxyux + uxyuxx − uxxxuy − uxxuxy + uxyyyu+ uyyyux

+ uxyyuy + uyyuxy − uxyyyu− uxyyuy − uxyyuy − uxyuyy

= uxxyux − uxxxuy + uyyyux − uxyyuy

= {u,∆u}

Now recall from Appendix B.2.2 that for every α ∈ (0, 1), D(Bα
λ ) endowed with the norm

‖|·|‖α := ‖Bα
λ ·‖1 (4.7)

is a Banach space. For our purpose, we will use α = 3/4.

Lemma 4.2. We have

(i) D(B
3/4
λ ) = H4

P (Ω)

(ii) B
3/4
λ : H4

P (Ω) −→ H1
P (Ω) is invertible

(iii) ‖u‖4 ≤ C ‖|u|‖3/4 ∀u ∈ H4
P (Ω)
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Proof. (i) By Proposition B.22(a), for every α, β ≥ 0, B
−(α+β)
λ = B−α

λ · B−β
λ . Hence

(B
−1/2
λ )2 = B−1

λ : Hm
P (Ω) −→ Hm+4

P (Ω) ∀m ≥ 1

so that

B
−1/2
λ : Hm

P (Ω) −→ Hm+2
P (Ω) ∀m ≥ 1

Now

(B
−1/4
λ )2 = B

−1/2
λ : Hm

P (Ω) −→ Hm+2
P (Ω) ∀m ≥ 1

so that

B
−1/4
λ : Hm

P (Ω) −→ Hm+1
P (Ω) ∀m ≥ 1

Therefore

B
−3/4
λ = B

−1/2
λ B

−1/4
λ = Hm

P (Ω) −→ Hm+3
P (Ω) ∀m ≥ 1

and so

D(B
3/4
λ ) = Range(B

−3/4
λ ) = H4

P (Ω)

(ii) By definition and part (i).

(iii) It suffices to show thatB
3/4
λ is bounded onH4

P (Ω) . That is, there exists a constant C > 0

such that

∥∥∥B3/4
λ u

∥∥∥
1
≤ C ‖u‖4 ∀u ∈ H4

P (Ω) (4.8)

because then by the Bounded Inverse Theorem,B
−3/4
λ will be bounded onH1

P (Ω). Hence

if u ∈ H4
P (Ω), then letting f = B

3/4
λ u ∈ H1

P (Ω), we have

‖u‖4 =
∥∥∥B−3/4

λ f
∥∥∥
4
≤ C ‖f‖1 = C

∥∥∥B3/4
λ u

∥∥∥
1
= C ‖|u|‖3/4 (4.9)

for some constant C > 0.

We proceed by showing that B
3/4
λ is bounded on H4

P (Ω). We let u ∈ H4
P (Ω) and by
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(B.30) we have

∥∥∥B3/4
λ u

∥∥∥
1
=

√
2

2π

∥∥∥∥
∫ ∞

0

t−1/4Bλ(tI +Bλ)
−1u dt

∥∥∥∥
1

(4.10)

Let w = (tI + Bλ)
−1u, then Bλw = u − tw and so by equation (4.2) there exists a

constant C1 > 0 such that

‖w‖1 ≤ ‖w‖5 ≤ C1 ‖u− tw‖1 ≤ C1 ‖u‖1 + tC1 ‖w‖1

so that

‖w‖1 ≤
C1

1− tC1

‖u‖1

Now

∥∥Bλ(tI +Bλ)
−1u

∥∥
1
= ‖Bλw‖1 ≤ ‖u‖1 + t ‖w‖1 ≤

(
1 +

tC1

1− tC1

)
‖u‖1

so that Bλ(tI + Bλ)
−1 is bounded near t = 0. Thus there exist ǫ > 0, such that Bλ(tI +

Bλ)
−1 is bounded on (0, ǫ). Hence we have

∥∥∥B3/4
λ u

∥∥∥
1
≤

√
2

2π

[∫ ǫ

0

t−1/4
∥∥Bλ(tI +Bλ)

−1u
∥∥
1
dt+

∫ ∞

ǫ

t−1/4
∥∥Bλ(tI +Bλ)

−1u
∥∥
1
dt

]

(4.11)

By the argument above, there exists a constant C2 > 0 such that the left term is bounded

∫ ǫ

0

t−1/4
∥∥Bλ(tI +Bλ)

−1u
∥∥
1
dt ≤ C2

∫ ǫ

0

t−1/4 dt ‖u‖1 ≤
4C2ǫ

3/4

3
‖u‖1

Now to bound the right term, recall from Corollary B.12 that for every t > 0,

(tI − Bλ)
−1 =

∫ ∞

0

e−tsS(s) ds

where S(s) is the C0 semigroup generated by Bλ. Now we have

∫ ∞

ǫ

t−1/4
∥∥Bλ(tI +Bλ)

−1u
∥∥
1
dt =

∫ ∞

ǫ

t−1/4

∥∥∥∥Bλ

∫ ∞

0

e−tsS(s) ds

∥∥∥∥
1

dt

But since Bλ is closed and the inner integral converges, we can put it inside the inner
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integral, and get

∫ ∞

ǫ

t−1/4
∥∥Bλ(tI +Bλ)

−1u
∥∥
1
dt ≤

∫ ∞

ǫ

t−1/4

∫ ∞

0

e−ts ‖BλS(s)‖1 ds dt

Now by Theorem B.18(d), there exists a constant C3 > 0 such that

‖BλS(s)‖L(H1

P
(Ω)) ≤

C3

t
∀t > 0

then

∫ ∞

ǫ

t−1/4
∥∥Bλ(tI +Bλ)

−1u
∥∥
1
dt ≤ C3

∫ ∞

ǫ

t−5/4

∫ ∞

0

e−ts ds dt ‖u‖1

= C3

∫ ∞

ǫ

t−9/4 dt ‖u‖1 ≤ C4 ‖u‖1

Therefore, there exists a constant C5 > 0 such that

∥∥∥B3/4
λ u

∥∥∥
1
≤ C5 ‖u‖1 ≤ C5 ‖u‖4

The following lemma shows that the nonlinearity f can be locally controlled by ‖|·|‖3/4.

Lemma 4.3. There exists a constant C > 0 depending only on Ω and k such that for every

u, v ∈ H4
P (Ω) we have

‖f(u)− f(v)‖1 ≤ C ‖|u− v|‖3/4 (1 + ‖|u|‖3/4 + ‖|v|‖3/4) (4.12)

Proof.

‖f(u)− f(v)‖1 =
∥∥k(∆− I)−1(v − u)y + (∆− I)−1[{v,∆v} − {u,∆u}]

∥∥
1

≤ k
∥∥(∆− I)−1(v − u)y

∥∥
1
+
∥∥(∆− I)−1Q(v2x − v2y − u2x + u2y)

∥∥
1

+
∥∥(∆− I)−1P (uxuy − vxvy)

∥∥
1

But for every f ∈ H1
P (Ω), (I −∆)u = f implies ‖u‖21 ≤ ‖f‖ · ‖u‖ ≤ ‖f‖1 · ‖u‖1, so that

∥∥(I −∆)−1f
∥∥
1
= ‖u‖1 ≤ ‖f‖1

Now

‖f(u)− f(v)‖1 ≤ k ‖(v − u)y‖1 +
∥∥Q(v2x − v2y − u2x + u2y)

∥∥
1
+ ‖P (uxuy − vxvy)‖1
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But since P and Q are differential operators of order 2, then

‖f(u)− f(v)‖1 ≤ k ‖u− v‖4 +
∥∥v2x − v2y − u2x + u2y

∥∥
3
+ ‖uxuy − vxvy‖3

≤ k ‖u− v‖4 +
∥∥v2x − u2x

∥∥
3
+
∥∥u2y − v2y

∥∥
3
+ ‖uxuy − uxvy‖3 + ‖uxvy − vxvy‖3

Now employing Theorem 2.9 which shows that H3
P (Ω) is a Banach Algebra, we have

‖f(u)− f(v)‖1 ≤ k ‖u− v‖4 + C1 ‖(u− v)x‖3 · ‖(u+ v)x‖3 + C1 ‖(u− v)y‖3 · ‖(u+ v)y‖3
+ C1 ‖(u− v)y‖3 · ‖ux‖3 + C1 ‖(u− v)x‖3 · ‖vy‖3

where C1 > 0 is a constant depending only on m = 3, p = 2 and the cone determining the

cone condition for Ω. Now

‖f(u)− f(v)‖1 ≤ k ‖u− v‖4 + C1 ‖u− v‖4 · ‖u+ v‖4 + C1 ‖u− v‖4 · ‖u+ v‖4
+ C1 ‖u− v‖4 · ‖u‖4 + C1 ‖u− v‖4 · ‖v‖4

= ‖u− v‖4 [k + 2C1 ‖u+ v‖4 + C1 ‖u‖4 + C1 ‖v‖4]
≤ ‖u− v‖4 [k + 3C1 ‖u‖4 + 3C1 ‖v‖4]
≤ C ‖u− v‖4 (1 + ‖u‖4 + ‖v‖4)

where C depends essentially only on Ω and k. Now by Lemma 4.2 the conclusion follows.

At this point we can show that the nonlinearity f satisfies Assumption (F) found in the

appendix B.2.3, where α = 3/4, X = H1
P (Ω), and f(x, t) = f(x) are used.

Lemma 4.4. Let U be an open subset of (0,∞)×D(B
3/4
λ ). Then for every (t, x) ∈ U , there is

a neighborhood V ⊂ U and constants L ≥ 0, 0 < θ ≤ 1 such that

‖f(t1, x1)− f(t2, x2)‖1 ≤ L(|t1 − t2|θ + ‖|x1 − x2|‖3/4) ∀(ti, xi) ∈ V (4.13)

Proof. Let U = I ×W ⊂ (0,∞) ×D(B
3/4
λ ) be open, and let (t, x) ∈ U . Then t ∈ I , so that

by I being open, there exists δ > 0 such that I ′ = (t − δ, t + δ) ⊂ I . Also x ∈ W which is

open, we define

W ′ =
{
y ∈ W : ‖|x− y|‖3/4 < ‖|x|‖3/4

}

so that W ′ = W ∩ B(x, ‖|x|‖3/4) is an open neighborhood of x in W . Now set V = I ′ ×W ′,

33



then V ⊂ U is an open neighborhood of (x, t) for which for every (xi, ti) ∈ V , with i = 1, 2,

‖f(t1, x1)− f(t2, x2)‖1 = ‖f(x1)− f(x2)‖1
≤ C ‖|x1 − x2|‖3/4 (1 + ‖|x1|‖3/4 + ‖|x2|‖3/4)
≤ C ‖|x1 − x2|‖3/4 (1 + 2 ‖|x|‖3/4)

where we have used the independence of f on the temporal variable and Lemma 4.3. Setting

L = C(1 + 2 ‖|x|‖3/4) and θ = 1, the conclusion follows.

We finally prove that a unique local solution to the perturbed Hasegawa-Mima equation

formulated as a semilinear abstract Cauchy problem exists. For this purpose, consider the

Banach space Sn,mT ∗ given by

Sn,mT ∗ = C([0, T ∗) : Hn
P (Ω)) ∩ C1((0, T ∗) : Hm

P (Ω)) (4.14)

Theorem 4.5. For every λ > 0 and initial value u0 ∈ H4
P (Ω), (pHM) has a unique local

solution u ∈ S4,∞
T ∗ , given by

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s, u(s)) ds 0 ≤ t < T ∗ (4.15)

where T ∗ > 0 is a constant depending only on u0, and S(t) is the analytic semigroup generated

by −Bλ.

Proof. Let λ > 0. By Corollary 3.13 and Proposition 3.16, −Bλ is the infinitesimal generator

of a uniformly bounded analytic semigroup over H1
P (Ω) and 0 ∈ ρ(−Bλ). Also by Lemma

4.4, f satisfies the Assumption (F). Therefore, by Theorem B.30 there exists a local solution

u ∈ S4,5
T ∗ .

Now to show that u(t) ∈ H∞
P (Ω) for 0 < t < T ∗, we use a classical bootstrapping argu-

ment. For this purpose, we write the seminlinear equation as

Bλu(t) = −ut(t)− (∆− I)−1 {u(t),∆u(t)} − k(∆− I)−1uy(t)

where the RHS is in H4
P (Ω) by invertibilty of (∆ − I) (see Proposition 3.7) and the Banach

algebra (see Theorem 2.9) over Hm
P (Ω) for m ≥ 2. Now writing

u(t) = B−1
λ (−ut(t)− (∆− I)−1 {u(t),∆u(t)} − k(∆− I)−1uy(t))

we see that u(t) must be in H8
P (Ω) for 0 < t < T ∗. Continuing in this fashion, we get that

u(t) ∈ H∞
P (Ω) for 0 < t < T ∗. Hence u ∈ S4,∞

T ∗ .
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4.3 Comments on the Existence of a Global Solution

One usually extends the local solution u on (0, T ∗) into a global one by considering the same

problem but with a new initial condition u(τ0) where τ0 ∈ (0, T ∗). Here, the uniqueness of

the local solution plays an important role to make sure that we are really extending the local

solution and not getting a different one. However, there are two big issues.

The first issue is that one needs to make sure that the newly picked initial condition is in the

correct space required by the local existence theorem. In our case, we need to make sure that

u(t) stays in D(B3/4), that is,
∥∥∥B3/4

λ u(t)
∥∥∥
1

stays bounded on 0 ≤ t ≤ T ∗. Thanks to the proof

of Lemma 4.2(iii) by which we have

∥∥∥B3/4
λ u(t)

∥∥∥
1
≤ C1 ‖u(t)‖1 ∀t

Also thanks to Corollary 5.10 (proven in the next section) that

sup
t∈[0,T ∗)

‖u(t)‖2 ≤ C2 ‖u0‖2

where C2 is independent of λ and T ∗. So that

∥∥∥B3/4
λ u(t)

∥∥∥
1
≤ C ‖u0‖2 ∀t ∈ (0, T ∗)

Hence the first issue is resolved.

Now if we pick τ0 ∈ (0, T ∗) and treat u(τ0) as the new initial condition, we will get another

local solution on (τ0, τ1) for some τ1 > τ0. And this τ1 depends on u(τ0), and not on the very

initial condition u0. So here comes the second issue that one needs to make sure that the new

time steps accumulate and reach the desired time T or ∞. A way to resolve this, if possible, is

to establish a lower bound on the length of the new time intervals. This could be a fixed positive

real number or the terms of a divergent series with positive terms, for which the solution will

extend to temporal infinity.

In our case, we couldn’t find a lower bound on the length of the new time intervals yet, and

so we leave this problem open for future investigation.
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Chapter 5

The Hasegawa-Mima Equation

In this chapter, we begin with a series of lemmas for the purpose of proving some a priori

estimates, which we will use to let λ → 0 and obtain a local solution to the Hasegawa-Mima

equation. We then establish the uniqueness of the local solution.

5.1 A Series of Lemmas

Lemma 5.1. For every u, v ∈ H2
P (Ω), we have

∫

Ω

[(∆− I)u]v dµ =

∫

Ω

u[(∆− I)v] dµ (5.1)

Proof. Using Green’s formula and Proposition 2.19, we have

∫

Ω

[(∆− I)u]v dµ =

∫

Ω

∆uv dµ−
∫

Ω

uv dµ

=
�
�
�
�

�
�
��*

0∫

Γ

v∇u · ~ν ds−
∫

Ω

∇u · ∇v dµ−
∫

Ω

uv dµ

= −
�
�

�
�
�

�
��*

0∫

Γ

u∇v · ~ν ds+
∫

Ω

u∆v dµ−
∫

Ω

uv dµ

=

∫

Ω

u[(∆− I)v] dµ

Lemma 5.2. For every u ∈ H1
P (Ω), we have

∫

Ω

uxu dµ =

∫

Ω

uyu dµ = 0 (5.2)
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Proof. Integrating by parts, we have

∫

Ω

uxu dµ =

∫ L

0

∫ L

0

uxu dxdy

=
�

�
�
�

�
��*

0∫ L

0

[u2]L0 dy −
∫

Ω

uxu dµ

so that

∫

Ω

uxu dµ = 0

Similarly, the other equality in uy holds.

Lemma 5.3. For every u ∈ H2
P (Ω), we have

∫

Ω

ux∆u dµ =

∫

Ω

uy∆u dµ = 0 (5.3)

Proof. By Green’s theorem and Proposition 2.19, we have

∫

Ω

ux∆u dµ =

∫

Ω

∇ux · ∇u dµ

=

∫

Ω

(ux)x(ux) + (uy)x(uy) dµ

which is equal to 0 by Lemma 5.2 because both ux and uy are in H1
P (Ω).

Similarly, the other equality in uy∆y holds.

Lemma 5.4. For every u ∈ H4
P (Ω), we have

∫

Ω

{u,∆u}u dµ = 0 (5.4)

Proof.

∫

Ω

{u,∆u}u dµ =

∫

Ω

ux∆uyu dµ−
∫

Ω

uy∆uxu dµ

where by integrating by parts,

∫

Ω

ux∆uyu dµ =

∫ L

0

[∆uyu
2]L0 dy −

∫

Ω

∆uyxu
2 dµ−

∫

Ω

∆uyuxu dµ
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so that

∫

Ω

ux∆uyu dµ =
1

2

∫ L

0

[∆uyu
2]L0 dy −

1

2

∫

Ω

∆uyxu
2 dµ

But since u satisfies PBCs up to the third order, then

1

2

∫ L

0

[∆uyu
2]L0 dy = 0

so that

∫

Ω

ux∆uyu dµ = −1

2

∫

Ω

∆uyxu
2 dµ

Similarly, it can be shown that

∫

Ω

uy∆uxu dµ = −1

2

∫

Ω

∆uxyu
2 dµ

and so the result follows.

Lemma 5.5. For every v, w ∈ H4
P (Ω), we have

∫

Ω

{w,∆v}w dµ = 0 (5.5)

Proof. Same as the proof of (5.4).

Lemma 5.6. For every v, w ∈ H3
P (Ω), we have

∫

Ω

{v,∆w}w dµ =

∫

Ω

{w, v}∆w dµ (5.6)

Proof.

∫

Ω

{v,∆w}w dµ =

∫

Ω

vx∆wyw dµ−
∫

Ω

vy∆wxw dµ

where with integration by parts,

∫

Ω

vx∆wyw dµ =
����������:0∫ L

0

[vxw∆w]
L
0 dx−

∫

Ω

vxyw∆w dµ−
∫

Ω

vxwy∆w dµ

and

∫

Ω

vy∆wxw dµ =
����������:0∫ L

0

[vyw∆w]
L
0 dy −

∫

Ω

vyxw∆w dµ−
∫

Ω

vywx∆w dµ
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where the boundary terms vanish because v, w satisfy PBCs up to the second order. Now

∫

Ω

{v,∆w}w dµ = −
∫

Ω

vxwy∆w dµ+

∫

Ω

vywx∆w dµ =

∫

Ω

{w, v}∆w dµ

Lemma 5.7. For every u ∈ H3
P (Ω), we have

∫

Ω

{u,∆u}∆u dµ = 0 (5.7)

Proof.

∫

Ω

{u,∆u}∆u dµ =

∫

Ω

ux∆uy∆u dµ−
∫

Ω

uy∆ux∆u dµ

where by integrating by parts,

∫

Ω

ux∆uy∆u dµ =

∫ L

0

[ux(∆u)
2]L0 dx−

∫

Ω

uxy(∆u)
2 dµ−

∫

Ω

ux∆uy∆u dµ

so that

∫

Ω

ux∆uy∆u dµ =
1

2

∫ L

0

[ux(∆u)
2]L0 dx−

1

2

∫

Ω

uxy(∆u)
2 dµ

But since u satisfies PBCs up to the second order, then

1

2

∫ L

0

[ux(∆u)
2]L0 dx = 0

so that

∫

Ω

ux∆uy∆u dµ = −1

2

∫

Ω

uxy(∆u)
2 dµ

Similarly, it can be shown that

∫

Ω

uy∆ux∆u dµ = −1

2

∫

Ω

uyx(∆u)
2 dµ

and so the result follows.

Lemma 5.8. Let α be a two-dimensional multi-index. Then for every u ∈ H
3+|α|
P (Ω), we have

∫

Ω

{u,Dα∆u}∆Dαu dµ = 0 (5.8)
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Proof.

∫

Ω

{u,Dα∆u}∆Dαu dµ =

∫

Ω

uxD
α∆uy∆D

αu dµ−
∫

Ω

uyD
α∆ux∆D

αu dµ

where integrating the first term by parts, we get

∫

Ω

uxD
α∆uy∆D

αu dµ =
������������:0∫ L

0

[ux(D
α∆u)2]L0 dx−

∫

Ω

uxy(D
α∆u)2 dµ−

∫

Ω

uxD
α∆uy∆D

αu dµ

so that

∫

Ω

uxD
α∆uy∆D

αu dµ = −1

2

∫

Ω

uxy(D
α∆u)2 dµ

Similarly,

∫

Ω

uyD
α∆ux∆D

αu dµ = −1

2

∫

Ω

uxy(D
α∆u)2 dµ

from which the result follows.

5.2 A Priori Estimates

Lemma 5.9. Suppose u ∈ S4,4
T ∗ is a solution to the perturbed Hasegawa-Mima problem (pHM)

with initial data u0 ∈ H2
P (Ω), then

‖u(t)‖22 + λ

∫ t

0

‖u(τ)‖24 dτ ≤ C ‖u0‖22 ∀t ∈ [0, T ∗) (5.9)

where C is independent of λ and T ∗.

Proof. Let t ∈ [0, T ]. Taking the L2-innerproduct of the perturbed Hasegawa-Mima equation

(4.3) with the function −2(∆− I)u and using equations (5.1), (5.2) and (5.4), we get

−
∫

Ω

2ut(∆u− u) dµ− 2λ

∫

Ω

∆(∆− I)u(∆− I)u dµ− 4λ

∫

Ω

u(∆− I)u dµ

= 2
���������:

0∫

Ω

{u,∆u}u dµ+ 2k
�
�
�

�
��*

0∫

Ω

uyu dµ

which, by Green’s formula and Proposition 2.19, is equivalent to

∫

Ω

2uut dµ+

∫

Ω

2∇u · ∇ut dµ+ 2λ

∫

Ω

|∇(∆− I)u|2 dµ+ 4λ

∫

Ω

|∇u|2 dµ+ 4λ

∫

Ω

u2 dµ = 0
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which, in turn, is equivalent to

d

dt
‖u(t)‖21 + 2λ ‖∇(∆− I)u(t)‖2 + 4λ ‖u(t)‖1 = 0

Now integrating over the temporal interval [0, t], we get

‖u(t)‖21 + 2λ

∫ t

0

‖∇(∆− I)u(τ)‖2 dτ + 4λ

∫ t

0

‖u(τ)‖1 dτ = ‖u0‖21 (5.10)

On the other hand, taking the L2-innerproduct of (4.3) with the function 2∆(∆ − I)u and

using equations (5.1), (5.3) and (5.7), we get

∫

Ω

2ut∆(∆u− u) dµ+ 2λ ‖∆(∆− I)u(t)‖2 + 4λ

∫

Ω

u∆(∆− I)u dµ

= −2
����������:

0∫

Ω

{u,∆u}∆u dµ− 2k
�
�
�
�
�
��*

0∫

Ω

uy∆u dµ

which, by Green’s formula and Proposition 2.19, is equivalent to

∫

Ω

2∆u∆ut dµ+

∫

Ω

2∇u · ∇ut dµ+ 2λ ‖∆(∆− I)u(t)‖2 + 4λ(‖∆u‖2 + ‖∇u‖2) = 0

which, in turn, is equivalent to

d

dt
(‖∆u‖2 + ‖∇u‖2) + 2λ ‖∆(∆− I)u(t)‖2 + 4λ(‖∆u‖2 + ‖∇u‖2) = 0

Now integrating over the temporal interval [0, t], we get

‖∆u(t)‖2 + ‖∇u(t)‖2 + 2λ

∫ t

0

‖∆(∆− I)u(τ)‖2 dτ + 4λ

∫ t

0

(‖∆u(τ)‖2 + ‖∇u(τ)‖2) dτ

= ‖∆u0‖2 + ‖∇u0‖2

(5.11)

Now adding equations (5.10) and (5.11), we get

‖u(t)‖2 + 2 ‖∇u(t)‖2 + ‖∆u(t)‖2 + 2λ

∫ t

0

(
‖∇(∆− I)u(τ)‖2 + ‖∆(∆− I)u(τ)‖2

)
dτ

+ 4λ

∫ t

0

(‖u(τ)‖2 + 2 ‖∇u(τ)‖2 + ‖∆u(τ)‖2) dτ

= ‖u0‖2 + 2 ‖∇u0‖2 + ‖∆u0‖2
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which implies

‖u(t)‖22 + λ

∫ t

0

(
‖∇(∆− I)u(τ)‖2 + ‖∆(∆− I)u(τ)‖2 + ‖u(τ)‖2

)
dτ ≤ 2 ‖u0‖22 (5.12)

where the integrand is much larger than ‖u(τ)‖24. And therefore, the result follows.

Corollary 5.10. Suppose u ∈ S4,4
T ∗ is a solution to the perturbed Hasegawa-Mima problem

(pHM) with initial data u0 ∈ H2
P (Ω), then

sup
t∈[0,T ∗)

‖u(t)‖2 ≤ C ‖u0‖2 (5.13)

where C is independent of λ and T ∗.

For higher regularities of the solution, we need the following estimates.

Lemma 5.11. Let m ≥ 2 be an integer. Suppose u ∈ S4,m+2
T ∗ is a solution to the perturbed

Hasegawa-Mima problem (pHM) with initial data u0 ∈ Hm
P (Ω), then

‖u(t)‖2m + 2λ

∫ t

0

‖u(τ)‖2m+2 dτ ≤ C ‖u0‖m ∀t ∈ [0, T ∗) (5.14)

where C is independent of λ and T ∗.

Proof. We prove this by strong induction on m. Lemma 5.9 establishes the base case m = 2.

Now assume that (5.14) holds for every k = 2, . . .m for some m ≥ 2. We consider a two-

dimensional multi-index |α| = m− 1 and apply the operator Dα to equation (4.3) and get

Dαut + λ∆(∆− I)Dαu+ 2λDαu = −(∆− I)−1Dα {u,∆u} − k(∆− I)−1Dαuy

= −(∆− I)−1
∑

β1+β2=α

{
Dβ1u,Dβ2∆u

}
− k(∆− I)−1Dαuy

Now taking its L2-innerproduct with the function 2∆(∆ − I)Dαu and employing equation

(5.1), we get

2

∫

Ω

Dαut∆(∆− I)Dαu dµ+ 2λ ‖∆(∆− I)Dαu‖2 + 4λ

∫

Ω

Dαu∆(∆− I)Dαu dµ

= −2
∑

β1+β2=α

∫

Ω

{
Dβ1u,Dβ2∆u

}
∆Dαu dµ− 2k

∫

Ω

Dαuy∆D
αu dµ

(5.15)
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where by using Proposition 2.19, we have

2

∫

Ω

Dαut∆(∆− I)Dαu dµ = 2

∫

Ω

∆Dαut(∆− I)Dαu dµ

= 2

∫

Ω

∆Dαut∆D
αu dµ− 2

∫

Ω

∆DαutD
αu dµ

=
d

dt

(
‖∆Dαu‖2 + ‖∇Dαu‖2

)

∫

Ω

Dαu∆(∆− I)Dαu dµ =

∫

Ω

∆Dαu(∆− I)Dαu dµ

= ‖∆Dαu‖2 + ‖∇Dαu‖2

∫

Ω

Dαuy∆D
αu dµ =

∫

Ω

∇Dαuy · ∇Dαu dµ

=

∫

Ω

(Dαux)y(D
αux) dµ+

∫

Ω

(Dαuy)y(D
αuy) dµ

= 0 by Lemma 5.2

∑

β1+β2=α

∫

Ω

{
Dβ1u,Dβ2∆u

}
∆Dαu dµ

=
∑

β1+β2=α
1≤|β1|≤m−2

∫

Ω

{
Dβ1u,Dβ2∆u

}
∆Dαu dµ

+
�������������:0∫

Ω

{u,Dα∆u}∆Dαu dµ+

∫

Ω

{Dαu,∆u}∆Dαu dµ

where we have used equation (5.8), and

∫

Ω

{Dαu,∆u}∆Dαu dµ =

∫

Ω

Dαux∆uy∆D
αu dµ−

∫

Ω

Dαuy∆ux∆D
αu dµ
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Thus, putting all together, we get

d

dt

(
‖∆Dαu‖2 + ‖∇Dαu‖2

)
+ 2λ ‖∆(∆− I)Dαu‖2 + 4λ(‖∆Dαu‖2 + ‖∇Dαu‖2)

= −2
∑

β1+β2=α
1≤|β1|≤m−2

(∫

Ω

Dβ1uxD
β2∆uy∆D

αu dµ−
∫

Ω

Dβ1uyD
β2∆ux∆D

αu dµ

)

− 2

∫

Ω

Dαux∆uy∆D
αu dµ+ 2

∫

Ω

Dαuy∆ux∆D
αu dµ

≤ 2
∑

β1+β2=α
1≤|β1|≤m−2

(∥∥Dβ1ux
∥∥
∞

∥∥Dβ2∆uy
∥∥ ‖∆Dαu‖+

∥∥Dβ1uy
∥∥
∞

∥∥Dβ2∆ux
∥∥ ‖∆Dαu‖

)

+ 2 ‖Dαux‖L4 ‖∆uy‖L4 ‖∆Dαu‖+ 2 ‖Dαuy‖L4 ‖∆ux‖L4 ‖∆Dαu‖
(5.16)

But when u ∈ H
|β1|+3
P (Ω), the continuous embedding of H2(Ω) into L∞(Ω) (see Corollary

A.3) implies

∥∥Dβ1ux
∥∥
∞

≤ C1

∥∥Dβ1ux
∥∥
2

and
∥∥Dβ1uy

∥∥
∞

≤ C2

∥∥Dβ1uy
∥∥
2

and so

∥∥Dβ1ux
∥∥
∞

≤ C1

∥∥Dβ1u
∥∥
3
≤ C1 ‖u‖|β1|+3 and

∥∥Dβ1uy
∥∥
∞

≤ C2

∥∥Dβ1u
∥∥
3
≤ C2 ‖u‖|β1|+3

Also when u ∈ H
|α|+2
P , a particular case of Gagliardo-Nirenberg’s inequality (see Theorem

A.5) implies

‖Dαux‖L4 ≤ C3 ‖Dαux‖1/2 ‖Dαux‖1/21 and ‖Dαuy‖L4 ≤ C4 ‖Dαuy‖1/2 ‖Dαuy‖1/21

and so

‖Dαux‖L4 ≤ C3 ‖Dαu‖2 ≤ C3 ‖u‖|α|+2 and ‖Dαuy‖L4 ≤ C4 ‖Dαu‖2 ≤ C4 ‖u‖|α|+2

and when u ∈ H4
P ,

‖∆ux‖L4 ≤ C5 ‖∆ux‖1/2 ‖∆ux‖1/21 and ‖∆uy‖L4 ≤ C6 ‖∆uy‖1/2 ‖∆uy‖1/21

and so

‖∆ux‖L4 ≤ C5 ‖∆u‖2 ≤ C5 ‖u‖4 and ‖∆uy‖L4 ≤ C6 ‖∆u‖2 ≤ C6 ‖u‖4

44



Now inequality (5.16) becomes

d

dt

(
‖∆Dαu‖2 + ‖∇Dαu‖2

)
+ 2λ ‖∆(∆− I)Dαu‖2 + 4λ(‖∆Dαu‖2 + ‖∇Dαu‖2)

≤ 4C7

∑

β1+β2=α
1≤|β1|≤m−2

‖u‖|β1|+3 ‖u‖|β2|+3 ‖u‖|α|+2 + 4C8 ‖u‖2|α|+2 ‖u‖4

≤ C9 ‖u‖3m+1

(5.17)

Now integrating this over the temporal interval [0, t], we get

‖∆Dαu(t)‖2 + ‖∇Dαu(t)‖2 + 2λ

∫ t

0

‖∆(∆− I)Dαu(τ)‖2 dτ + 4λ

∫ t

0

‖∆Dαu(τ)‖2 dτ

+ 4λ

∫ t

0

‖∇Dαu(τ)‖2 dτ ≤ C9

∫ t

0

‖u(τ)‖3m+1 dτ + ‖∆Dαu0‖2 + ‖∇Dαu0‖2

(5.18)

Recall that the strong induction hypothesis implies equation (5.14) for k = 2, . . . ,m. And

so

∫ t

0

‖u(τ)‖3m+1 dτ ≤
∫ t

0

‖u(τ)‖3m+2 dτ ≤ C10 ‖u0‖2m (5.19)

Now adding equations (5.14) for k = 2, . . . ,m to (5.18) and using (5.19), the result follows for

m+ 1.

Corollary 5.12. Let m ≥ 2 be an integer. Suppose u ∈ S4,m+2
T ∗ is a solution to the perturbed

Hasegawa-Mima problem (pHM) with initial data u0 ∈ Hm
P (Ω)

sup
t∈[0,T ∗)

‖u(t)‖m ≤ C ‖u0‖m (5.20)

where C is independent of λ and T ∗.

5.3 Existence of a Local Solution

We finally prove the main results of this thesis.

Theorem 5.13. Given u0 ∈ Hm
P (Ω) with integerm ≥ 4, the two-dimensional Periodic Hasegawa-
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Mima problem

(HM)




(∆− I)ut + {u,∆u}+ kuy = 0 on Ω× (0, T ]

u(x, y, 0) = u0(x, y) on Ω
(5.21)

has a local solution u ∈ Sm,mT ∗ , where T ∗ > 0 depends only on the initial condition u0.

Proof. By Theorem 4.5, for each n ∈ N, there exists a local solution un ∈ S4,∞
T ∗ of the perturbed

Hasegawa-Mima equation (4.4) with λ = 1/n. But since un(t) ∈ Hm
P (Ω) for every 0 ≤ t < T ∗,

then un ∈ Sm,∞T ∗ . Now observe that by Corollary 5.12 with u0 ∈ Hm
P (Ω), the sequence {un}

is uniformly bounded in Sm,mT ∗ . Hence it must have a convergent subsequence {unk
}, say with

limit u ∈ Sm,mT ∗ . We now proceed to show that u is a local solution to (HM). On the temporal

interval (0, T ∗), we have

∥∥un,t + (∆− I)−1 {un,∆un}+ k(∆− I)−1un,y
∥∥
1

=
∥∥B1/nun

∥∥
1

=
1

n
‖∆(∆− I)un + 2un‖1

≤ C1

n
‖un‖4 for some constant C1 > 0

≤ C1C2

n
‖u0‖4 for some constant C2 > 0 which exists by Lemma 5.11

(5.22)

so that as n→ ∞, un,t + (∆− I)−1 {un,∆un}+ k(∆− I)−1un,y → 0 in ‖·‖1. Thus

ut + (∆− I)−1 {u,∆u}+ k(∆− I)−1uy = 0 a.e. on Ω, ∀t ∈ (0, T ∗)

or equivalently,

(∆− I)ut + {u,∆u}+ kuy = 0 a.e. on Ω, ∀t ∈ (0, T ∗)

Therefore u ∈ Sm,mT ∗ is a local solution to (HM).

Corollary 5.14. Given u0 ∈ Hm
P (Ω) with integer m ≥ 4, the two-dimensional Periodic

Hasegawa-Mima problem

(HM)




(∆− I)ut + {u,∆u}+ kuy = 0 on Ω× (0, T ]

u(x, y, 0) = u0(x, y) on Ω
(5.23)

has a local classical solution u ∈ C([0, T ∗), Cm−2
P (Ω))∩C1((0, T ∗), Cm−2

P (Ω)), where T ∗ > 0

depends only on the initial condition u0. In fact, u ∈ C([0, T ∗), Cm−2
P (Ω))∩C∞((0, T ∗), Cm−2

P (Ω)).
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Proof. By Theorem 5.13, it suffices to check that u(t) ∈ Hm
P (Ω) is in Cm−2

P (Ω) for t ∈ (0, T ∗).

So let u(t) ∈ Hm
P (Ω), then

Dαu(t) ∈ H1
P (Ω) ∀ |α| ≤ m− 1

whereH1(Ω) is continuously embedded in L4(Ω) by a particular case of Gagliardo-Nirenberg’s

inequality (see Theorem A.5). Hence

Dαu(t) ∈ L4(Ω) ∀ |α| ≤ m− 1

so that u ∈ Wm−1,4(Ω), which by Sobolev Embedding Theorems (see Theorem A.1)), is

continuously embedded in Cm−2(Ω). Thus u ∈ Cm−2(Ω), and so u ∈ Cm−2
P (Ω). Now

with a usual bootstrapping argument with respect to the temporal variable, we easily get that

u ∈ C([0, T ∗), Cm−2
P (Ω)) ∩ C∞((0, T ∗), Cm−2

P (Ω)).

5.4 Uniqueness of the Local Solution

We first recall Gronwall’s Inequality from [14, p.146].

Theorem 5.15 (Gronwall’s Inequality). Let α, φ and ψ be nonnegative continuous real-valued

functions defined on the interval [a, b]. Moreover, suppose that α is differentiable on (a, b) with

nonnegative continuous derivative. If for every t ∈ [a, b],

φ(t) ≤ α(t) +

∫ t

a

ψ(s)φ(s) ds (5.24)

then

φ(t) ≤ α(t)e
∫ t

a
ψ(s) ds ∀t ∈ [a, b] (5.25)

Now we establish uniqueness.

Theorem 5.16. The local (classical) solution of the two-dimensional Periodic Hasegawa-Mima

problem obtained in Theorem 5.13 and Corollary 5.14 is unique.

Proof. Assume that u, v ∈ S4,4
T ∗ are solutions to (HM). Then

ut + (∆− I)−1 {u,∆u}+ k(∆− I)−1uy = 0 (5.26)
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and

vt + (∆− I)−1 {v,∆v}+ k(∆− I)−1vy = 0 (5.27)

Write w = u− v, then subtracting equations (5.26) and (5.27), we get

wt + (∆− I)−1[{u,∆u} − {v,∆v}] + k(∆− I)−1wy = 0 (5.28)

Now taking the L2-innerproduct of equation (5.28) with (∆− I)w, we obtain

∫

Ω

wt(∆− I)w dµ+

∫

Ω

(∆− I)−1[{u,∆u} − {v,∆v}](∆− I)w dµ

+ k

∫

Ω

(∆− I)−1wy(∆− I)w dµ = 0

which by Lemma 5.1, is equivalent to

∫

Ω

wt(∆− I)w dµ+

∫

Ω

[{u,∆u} − {v,∆v}]w dµ+ k

∫

Ω

wyw dµ = 0

where the last term vanishes by Lemma 5.2, leaving us with

∫

Ω

wt(∆− I)w dµ+

∫

Ω

[{u,∆u} − {v,∆v}]w dµ = 0 (5.29)

where by Green’s formula and Proposition 2.19,

∫

Ω

wt(∆− I)w dµ =

∫

Ω

wt∆w dµ−
∫

Ω

wtw dµ

=
���������:0∫

Γ

wt∇w · ~ν ds−
∫

Ω

∇wt · ∇w dµ−
∫

Ω

wtw dµ

= −1

2

d

dt

[∫

Ω

|∇w|2 dµ−
∫

Ω

w2 dµ

]

= −1

2

d

dt
‖w‖21

and

∫

Ω

[{u,∆u} − {v,∆v}]w dµ =

∫

Ω

[{w + v,∆w +∆v} − {v,∆v}]w dµ

=

∫

Ω

[{w,∆w}+ {w,∆v}+ {v,∆w}]w dµ

=
����������:0∫

Ω

{w,∆w}w dµ+
����������:0∫

Ω

{w,∆v}w dµ+

∫

Ω

{v,∆w}w dµ
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where vanishing is due to Lemmas 5.4 and 5.5. Now by Lemma 5.6, we have

∫

Ω

[{u,∆u} − {v,∆v}]w dµ =

∫

Ω

{w, v}∆w dµ

=

∫

Ω

vx

[
−1

2
(w2

x − w2
y)y + (wxwy)x

]
dµ

−
∫

Ω

vy

[
1

2
(w2

x − w2
y)x + (wxwy)y

]
dµ

= −1

2

∫

Ω

vx(w
2
x − w2

y)y dµ+

∫

Ω

vx(wxwy)x dµ

− 1

2

∫

Ω

vy(w
2
x − w2

y)x dµ−
∫

Ω

vy(wxwy)y dµ

which integrating by parts, and using the fact that v and w satisfy PBCs upto the second order,

we get

∫

Ω

[{u,∆u} − {v,∆v}]w dµ =
1

2

∫

Ω

vxy(w
2
x − w2

y) dµ−
∫

Ω

vxxwxwy dµ

+
1

2

∫

Ω

vyx(w
2
x − w2

y) dµ+

∫

Ω

vyywxwy dµ

=

∫

Ω

vxy(w
2
x − w2

y) dµ−
∫

Ω

(vxx − vyy)wxwy

Now equation (5.29) becomes

1

2

d

dt
‖w‖21 =

∫

Ω

vxy(w
2
x − w2

y) dµ−
∫

Ω

(vxx − vyy)wxwy

which by Cauchy-Schwarz Inequality becomes

1

2

d

dt
‖w‖21 ≤ ‖vxy‖∞ · ‖wx‖2 + ‖vxy‖∞ · ‖wy‖2 + ‖vxx − vyy‖∞ · ‖wx‖ · ‖wy‖

≤ (2 ‖vxy‖∞ + ‖vxx − vyy‖∞) · ‖w‖21

But since for every t ∈ (0, T ∗), v(t) ∈ H4
P (Ω) so that vxx(t), vxy(t), vyy(t) ∈ H2

P (Ω) ⊂ L∞(Ω)

by Corollary A.3, then 2 ‖vxy‖∞ + ‖vxx − vyy‖∞ < ∞. Hence, there exists a constant C > 0

such that

d

dt
‖w‖21 ≤ C ‖w‖21 (5.30)

and so

‖w(t)‖21 ≤ C

∫ t

0

‖w(s)‖21 ds+ C�����:
0‖w(0)‖21 ∀t ∈ (0, T ∗) (5.31)
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Thus by Gronwall’s Inequality,

‖w(t)‖21 ≤ 0 ∀t ∈ (0, T ∗) (5.32)

so that

‖w(t)‖1 = 0 ∀t ∈ (0, T ∗) (5.33)

and therefore u(t) = v(t) (a.e. on Ω) for every t ∈ (0, T ∗).
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Appendix A

Preliminary Results from Functional

Analysis

A.1 Special Sobolev Embeddings

Theorem A.1. [9, Cor 9.13 & 9.15] Let U ⊆ R
N be open, m ≥ 1 be an integer, and 1 ≤ p <

∞. Then we have

Wm,p(U) ⊂ Lq(Ω), where 1
q
= 1

p
− m

N
if 1

p
− m

N
> 0

Wm,p(U) ⊂ Lq(Ω) ∀q ∈ [p,∞) if 1
p
− m

N
= 0

Wm,p(U) ⊂ L∞(Ω) if 1
p
− m

N
< 0

where all these injections are continuous. Moreover, if m−N/p > 0 is not an integer, let k be

the integral part of m−N/p, then

Wm,p(Ω) ⊂ Ck(Ω)

where Ck(Ω) =
{
u ∈ Ck(Ω) : Dαu has a continuous extension on Ω for all |α| ≤ k

}
.

Theorem A.2. Let U = R
N or be an open set of class C1 with bounded boundary or else that

U = R
N
+ . Also let p ∈ [1,∞), and m > N/p be an integer. Then for every integer r such that

N/p < r ≤ m, Wm,p(U) ⊂ Wm−r,∞(U) with continuous injection, i.e. there exists a constant

C > 0 depending only on N and p such that ‖·‖m−r,∞ ≤ C ‖·‖m,p.

Proof. m > N/p ⇐⇒ N − pm < 0 ⇐⇒ (N − pm)/pN < 0 ⇐⇒ 1/p − m/N < 0

so that by Theorem A.1, Wm,p(U) ⊂ L∞(U) with ‖·‖∞ ≤ C1 ‖·‖m,p, where C1 > 0 depends

only on N and p. Similarly since r > N/p, W r,p(U) ⊂ L∞(U) with ‖·‖∞ ≤ C2 ‖·‖r,p, where

C2 > 0 depends only on N and p.

51



Now let f ∈ Wm,p(U) ⊂ L∞(U), then for every multi-index |α| ≤ m − r, Dαf ∈
W r,p(U) ⊂ L∞(U). Thus, f ∈ Wm−r,∞(U). To see that Wm,p(U) ⊂ Wm−r,∞(U) is a

continuous injection, we consider f ∈ Wm,p(U), then

‖f‖2m−r,∞ = ‖f‖2∞ +
∑

|α|≤m−r

‖Dαf‖2∞

≤ C2
1 ‖f‖2m,p + C2

2

∑

|α|≤m−r

‖Dαf‖2r,p

≤ C2
1 ‖f‖2m,p + C2

2

∑

|α|≤m−r

‖f‖2m,p

= C ‖f‖2m,p

Hence, ‖f‖m−r,∞ ≤ C ‖f‖m,p, where C > 0 is a constant depending only on N and p.

Corollary A.3. In the context of this thesis, U = Ω ⊂ R
2 is open, bounded and of class (at

least) C1. Also, N = p = 2. Therefore, for every integer m ≥ 2, Hm(Ω) ⊂ Wm−2,∞ with

continuous injection.

Corollary A.4. For every integer m ≥ 2, the norms ‖·‖m and ‖·‖m,∞ are equivalent.

Proof. Let u ∈ Hm
P (Ω). Then by Corollary A.3, there exists C1 > 0 such that

‖u‖m,∞ ≤ C1 ‖u‖m

Observe that ‖u‖m,∞ <∞, so that for every multi-index |α| ≤ m,

‖Dαu‖∞ <∞

Hence

‖u‖2m =
∑

|α|≤m

‖Dαu‖2 =
∑

|α|≤m

∫

Ω

|Dαu|2 dµ ≤ µ(Ω)
∑

|α|≤m

‖Dαu‖2∞ ≤ µ(Ω) ‖u‖2m,∞

Setting C2 = µ(Ω)−
1

2 = 1/L, we have

C2 ‖u‖m ≤ ‖u‖m,∞ ≤ C1 ‖u‖m

We now give a particular case of the Gagliardo-Nirenberg’s inequality.
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Theorem A.5. [9, p.314] Let U ⊂ R
2 be a regular bounded open set, then

‖u‖L4(U) ≤ C ‖u‖1/2L2(U) ‖u‖
1/2

H1(U) ∀u ∈ H1(U) (A.1)

and so H1(U) is continuously embedded in L4(U).

A.2 Wm,p(U) as a Banach Algebra

Let U ⊂ R
N be an open domain, and u, v in Wm,p(U). In general, one cannot expect that the

pointwise product uv belongs to Wm,p(U). According to the following propositions, this is the

case most of the time.

In the case when m = 0, we require one of the functions to be essentially bounded on U .

Proposition A.6. Let 1 ≤ p ≤ ∞. If u ∈ Lp(U) and v ∈ L∞(U), then uv ∈ Lp(U) and

‖uv‖Lp ≤ ‖u‖Lp ‖v‖∞ (A.2)

Proof. If p = ∞, then |u| ≤ ‖u‖∞ <∞ and |v| ≤ ‖v‖∞ <∞ both a.e. on U . Hence

|uv| = |u| |v| ≤ ‖u‖∞ ‖v‖∞ <∞ a.e. on U

so that ‖uv‖∞ ≤ ‖u‖∞ ‖v‖∞, and so uv ∈ L∞(U). If p <∞, then

‖uv‖pLp =

∫

U

|uv|p dµ ≤ ‖v‖p∞
∫

U

|u|p dµ = ‖v‖p∞ ‖u‖pLp <∞

so that ‖uv‖Lp ≤ ‖u‖Lp ‖v‖∞, and so uv ∈ Lp(U).

In the case when m = 1, we require both functions to be essentially bounded on U .

Proposition A.7 (differentiation of a product, Prop 9.4 of [9]). Let 1 ≤ p ≤ ∞. If u, v ∈
W 1,p(U) ∩ L∞(U), then uv ∈ W 1,p(U) ∩ L∞(U) and

∂

∂xi
(uv) =

∂u

∂xi
v + u

∂v

∂xi
∀i = 1, 2, · · ·N (A.3)

In the case when mp > N or p = 1 with m ≥ N , we have the following due to the Sobolev

embedding theorem.

Theorem A.8 (Thm 4.39 of [15]). Let U ⊂ R
N be an open domain satisfying the cone con-

dition below, and mp > N or p = 1 with m ≥ N . If u, v ∈ Wm,p(U), then uv ∈ Wm,p(U)
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and

‖uv‖m,p ≤ C ‖u‖m,p ‖v‖m,p (A.4)

where C > 0 is a constant depending on N,m, p, and the cone determining the cone condition

for U .

The Cone Condition. U ⊂ R
N satisfies the cone condition if there exists a finite cone C such

that each point p ∈ U is the vertex of some finite cone Cp contained in U that is congruent to C.
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Appendix B

A Brief Overview of Semigroups and

Their Applications

In this chapter, we give a brief overview of strongly continuous and analytic semigroups from

a classical book on the topic [8] by A. Pazy, titled “Semigroups of Linear Operators and Appli-

cations to Partial Differential Equations”.

Throughout this chapter, X will be a Banach space.

B.1 Strongly Continuous or C0 Semigroups

B.1.1 Definitions

Definition B.1. [8, Def 1.2.1] A one parameter family S(t), with 0 ≤ t < ∞, of bounded

linear operators from X to X is called strongly continuous or C0 semigroup if

(i) S(0) = I , where I is the identity operator on X .

(ii) S(t+ s) = S(t)S(s) for every t, s ≥ 0.

(iii) lim
t→0

S(t)x = x for every x ∈ X .

Axiom (ii) is referred as the semigroup property.

Definition B.2. [8, Def 1.1.1] Let S(t) be a C0 semigroup (of bounded linear operators), then

the linear operator A defined on

D(A) =

{
x ∈ X : lim

t→0

S(t)x− x

t
exists

}
(B.1)

55



by

Ax = lim
t→0

S(t)x− x

t
(B.2)

is called the infinitesimal generator of S(t), and D(A) is called the domain of A.

It can be shown (see Theorem 1.1.2 of [8]) that if the infinitesimal generator of a C0 semi-

group S(t) is a bound linear operator, then

lim
t→0

‖S(t)− I‖L(X) = 0 (B.3)

and consequently we have the following result. As a cultural note, a semigroup of bounded

linear operators satisfying (B.3) is called uniformly continuous.

Theorem B.3. If the infinitesimal generator A of a C0 semigroup S(t) is a bounded linear

operator, then

S(t) = etA :=
∞∑

n=0

(tA)n

n!
(B.4)

Proof. Theorem 1.1.2, Theorem 1.1.3, and Corollary 1.1.4 of [8].

An important question is whether the infinitesimal generator of a C0 semigroup generates a

unique semigroup. It turns out that it can, if it is bounded.

Theorem B.4. Let T (t) and S(t) be C0 semigroups generated by the bounded linear operator.

Then T (t) = S(t) for all t ≥ 0.

Proof. Observe that T (t) and S(t) are uniformly continuous semigroups generated by the same

bounded linear operator. Hence by Theorem 1.1.3 of [8], the result follows.

B.1.2 Properties and Terminology

An essencial property of C0 semigroups is that it is exponentially bounded.

Theorem B.5. [8, Thm 1.2.2] Let S(t) be a C0 semigroup. Then there exist constants ω ≥ 0

and M ≥ 1 such that

‖S(t)‖L(X) ≤Meωt ∀t ≥ 0 (B.5)

From this we can deduce the following properties.
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Corollary B.6. [8, Cor 1.2.3] If S(t) is a C0 semigroup, then for every x ∈ X , the map

t 7→ S(t)x is continuous from [0,∞) −→ X .

Theorem B.7. [8, Thm 1.2.4] Let S(t) be a C0 semigroup, and let A be its infinitesimal gener-

ator. Then

a) For x ∈ X

lim
h→0

1

h

∫ t+h

t

S(τ)x dτ = S(t)x (B.6)

b) For x ∈ X ,
∫ t
0
S(τ)x dτ ∈ D(A) and

A

(∫ t

0

S(τ)x dτ

)
= S(t)x− x (B.7)

c) For x ∈ D(A), S(t)x ∈ D(A) and

d

dt
S(t)x = AS(t)x = S(t)Ax (B.8)

d) For x ∈ D(A),

S(t)x− S(s)x =

∫ t

s

S(τ)Ax dτ =

∫ t

s

AS(τ)x dτ (B.9)

Definition B.8. [8, p.8] In the context of Theorem B.5, if ω = 0, we say that S(t) is uniformly

bounded. Moreover if M = 1, we say it is a C0 semigroup of contractions.

Definition B.9. [8, p.8] For any linear operatorA on a Banach spaceX , we define the resolvent

set ρ(A) ofA as the set of all complex numbers η for which ηI−A : D(A) −→ X is invertible.

The family R(η : A) := (ηI − A)−1, with η ∈ ρ(A), of bounded linear operators is called the

resolvent of A.

B.1.3 Hill-Yosida Characterizations of C0 Semigroups

We now give a complete characterizations ofC0 semigroups andC0 semigroups of contractions.

Theorem B.10 (Hille-Yosida for a C0 semigroups). [8, Thm 1.5.3] Let X be a Banach space.

A (unbounded) linear operator A : D(A) ⊆ X −→ X is the infinitesimal generator of a C0

semigroup S(t) satisfying ‖S(t)‖L(X) ≤Meωt if and only if

(i) A is closed and D(A) is dense in X .
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(ii) The resolvent set ρ(A) of A contains the ray (ω,∞), and

‖R(η : A)n‖L(X) ≤
M

(η − ω)n
∀η > ω and ∀n = 1, 2, · · · (B.10)

Theorem B.11 (Hille-Yosida for a C0 semigroup of contractions). [8, Thm 1.3.1] Let X be

a Banach space. A (unbounded) linear operator A : D(A) ⊆ X −→ X is the infinitesimal

generator of a C0 semigroup of contractions if and only if

(i) A is closed and D(A) is dense in X .

(ii) The resolvent set ρ(A) of A contains the ray (0,∞), and

‖R(η : A)‖L(X) ≤
1

η
(B.11)

From the proof of the Hille-Yosida theorems, we have the following corollary.

Corollary B.12. If A is the infinitesimal generator of a C0 semigroup S(t), then

R(η : A) = (ηI − A)−1 =

∫ ∞

0

e−ηtS(t) dt ∀η > 0 (B.12)

Finally, we give a useful result for bounding the resolvent of a densely defined closed oper-

ator on a Hilbert space.

Definition B.13. [16, p.345] For an arbitrary linear operator A on a Hilbert space H (possibly

over C), we define the numerical range ν(A) of A by

ν(A) = {〈Ax, x〉H : x ∈ D(A), ‖x‖H = 1} ⊂ C (B.13)

Theorem B.14. [8, Thm 1.3.9] Let A be a closed linear operator with dense domain D(A)

in a Hilbert space H . Also let Σ be the complement of ν(A) in C. If η ∈ Σ, then ηI − A is

one-to-one and has a closed range. Moreover, if Σ0 is a component of Σ that intersects ρ(A),

then Σ0 ⊂ ρ(A), and

‖R(η : A)‖L(H) ≤ d(η : ν(A))−1 (B.14)

where d(η : ν(A)) is the distance from η to ν(A).

B.1.4 Applications to Some Abstract Cauchy Problems

The following are some basic results about initial value problems known as abstract Cauchy

problems.
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Theorem B.15. [8, Thm 4.1.3] Let X be a Banach space, and A : D(A) ⊂ X −→ X be a

densly defined linear operator with a nonempty resolvent set ρ(A). Then for every initial value

x ∈ D(A), the homogeneous abstract Cauchy Problem





du(t)
dt

= Au(t) t > 0

u(0) = x
(B.15)

has a unique solution u(t), which is continuously differentiable on [0,∞), if and only if A is

the inifinitesimal generator of a C0 semigroup.

Theorem B.16. [8, Cor 4.2.11] LetX be a reflexive Banach space, andA : D(A) ⊂ X −→ X

be the inifinitesimal generator of a C0 semigroup S(t) on X . If f : [0, T ] −→ X is Lipschitz

continuous, then for every initial value x ∈ D(A), the inhomogeneous abstract Cauchy Prob-

lem





du(t)
dt

= Au(t) + f(t) t > 0

u(0) = x
(B.16)

has a unique solution u(t), which is continuously differentiable on [0, T ], given by

u(t) = S(t)x+

∫ t

0

S(t− s)f(s) ds (B.17)

B.2 Analytic Semigroups

C0 and other types of semigroups discussed above had the non-negative real-axis as their do-

mains. In this section, we define a special type of semigroups called analytic semigroups,

whose domains are sectors in the complex plane which contain the non-negative real axis.

B.2.1 Definition and Characterizations

Definition B.17. [8, Def 2.5.1] Let R = {z ∈ C : a < arg z < b, with a < 0 < b} be sector

in C. A family S(z), with z ∈ R, of bounded linear operators from a Banach space X to X is

called an analytic semigroup if

(i) S(z1 + z2) = S(z1)S(z2) for every z1, z2 ∈ R.

(ii) S(0) = I , and lim
z→0
z∈R

S(z)x = x for every x ∈ X .

(iii) z 7→ T (z) is analytic on R
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A semigroup S(t) will be called analytic if it is analytic in some sector R containing the non-

negative real axis.

Clearly, the restriction of an analytic group to the real axis is a C0 semigroup. Conversely,

the following two theorems give essential ways of extending or characterizing C0 semigroups

into analytic semigroups.

Theorem B.18. [8, Thm 2.5.2] Let S(t) be a uniformly bounded C0 semigroup, and A be its

infinitesimal generator with 0 ∈ ρ(A). Then the following are equivalent:

(a) S(t) can be extended to an analytic semigroup in a sector Rδ = {z ∈ C : |arg z| < δ}
and ‖S(z)‖L(X) is uniformly bounded in every closed subsector R′

δ, with δ′ < δ, of Rδ.

(b) There exists a constant C > 0 such that for every σ > 0 and τ 6= 0,

‖R(σ + iτ : A)‖L(X) ≤
C

|τ | (B.18)

(c) There exists 0 < δ < π/2 and M > 0 such that

ρ(A) ⊃ Σ =
{
η : |arg η| < π

2
+ δ

}
∪ {0} (B.19)

and

‖R(η : A)‖L(X) ≤
M

|η| ∀η ∈ Σ, η 6= 0 (B.20)

(d) S(t) is differentiable for t > 0 and there exists a constant C > 0 such that

‖AS(t)‖L(X) ≤
C

t
∀t > 0 (B.21)

Theorem B.19. [8, Thm 2.5.5] Let A be the infinitesimal generator of a C0 semigroup S(t)

satisfying ‖S(t)‖L(X) ≤ Meωt. Then S(t) is analytic if and only if there exist constants C > 0

and Λ ≥ 0 such that

∥∥AR(η : A)n+1
∥∥
L(X)

≤ C

nηn
∀η > nΛ, n = 1, 2, · · · (B.22)

Sometimes it is easier to show that a perturbation of an operator is the infinitesimal gener-

ator of an analytic semigroup, than working directly. In this case, the following proposition is

very useful.
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Proposition B.20. [8, Cor 3.2.2] LetA be the infinitesimal generator of an analytic semigroup.

If B is a bounded linear operator, then A + B is the infinitesimal generator of an analytic

semigroup.

B.2.2 Fractional Powers of Infinitesimal Generators of Analytic Semi-

groups

Throughout this subsection, suppose that −A is the infinitesimal generator of the analytic semi-

group S(t).

Definition B.21. [8, p.70] For every real α > 0, we define

A−α =
1

Γ(α)

∫ ∞

0

tα−1S(t) dt (B.23)

and

A−0 = I (B.24)

Proposition B.22. [8, p.70-72]

(a) For every α, β ≥ 0,

A−(α+β) = A−α · A−β (B.25)

(b) There exists a constant C > 0 such that for every 0 ≤ α ≤ 1

∥∥A−α
∥∥
L(X)

≤ C (B.26)

(c) For every x ∈ X , we have

lim
α→0

A−αx = x (B.27)

Corollary B.23. For every 0 ≤ α ≤ 1, A−α is a uniformly bounded C0 semigroup.

Proposition B.24. [8, Lem 2.6.6] A−α is one-to-one (note that A−α is densely defined on X).

This leads us to define Aα as follows.

Definition B.25. [8, Def 2.6.7] For every real α > 0, we define

Aα = (A−α)−1 (B.28)
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on the domain D(Aα) = Range of A−α. We also set A0 = I .

Proposition B.26. [8, Thm 2.6.8]

(a) Aα is closed.

(b) α ≥ β > 0 implies D(Aα) ⊂ D(Aβ).

(c) D(Aα) = X for every α ≥ 0.

(d) If α, β are real, then

Aα+βx = Aα · Aβx ∀x ∈ D(Aγ) (B.29)

where γ = max {α, β, α + β}.

An explicit formula for Aα is given by the following theorem.

Theorem B.27. [8, Thm 2.6.9] Let 0 < α < 1, γ > α and x ∈ D(Aγ), then

Aαx =
sin πα

π

∫ ∞

0

tα−1A(tI + A)−1x dt (B.30)

Now let α > 0, then the closedness ofAα implies thatD(Aα) endowed with the graph norm

of Aα, namely ‖·‖X + ‖Aα·‖X , is a Banach space. But since Aα is invertible, then the graph

norm is equivalent to the norm ‖Aα·‖X , so that we have the following definition [8, p.135].

Definition B.28. Let α > 0. Then D(Aα) endowed with the norm

‖|·|‖α := ‖Aα·‖X (B.31)

is a Banach space, which we will denote as Xα .

We finally relate Aα to the analytic semigroup S(t) generated by −A.

Theorem B.29. [8, Thm 2.6.13] If 0 ∈ ρ(A), then

(a) S(t) : X −→ D(Aα) for every t > 0 and α ≥ 0.

(b) For every x ∈ D(Aα), we have S(t)Aαx = AαS(t)x.

(c) For every t > 0, the operator AαS(t) is bounded and

‖AαS(t)‖L(X) ≤Mαt
−αe−δt (B.32)

for some constants Mα > 0 (depending on α) and δ > 0.
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(d) If 0 < α ≤ 1 and x ∈ D(Aα), then

‖S(t)x− x‖L(X) ≤ Cαt
α ‖|x|‖α (B.33)

for some constant Cα > 0 (depending on α).

B.2.3 Applications to a Semilinear Abstract Cauchy Problem

Analytic semigroups have vast applications in the theory of evolutionary PDEs, however in this

subsection we only recall a result from [8, p.196] we will rely on.

Consider the semilinear Abstract Cauchy Problem





du(t)
dt

+ Au(t) = f(t, u(t)) t > t0

u(t0) = x0
(B.34)

where −A is the infinitesimal generator of a uniformly bounded analytic semigroup of bounded

linear operators on a Banach space X . For the purpose of solving (B.34), we first introduce

some assumptions on the function f as follows.

Assumption (F). Let U be an open subset of (0,∞) × Xα, where 0 < α < 1. The function

f : U −→ X satisfies the assumption (F) if for every (t, x) ∈ U , there is a neighborhood

V ⊂ U and constants L ≥ 0, 0 < θ ≤ 1 such that

‖f(t1, x1)− f(t2, x2)‖X ≤ L(|t1 − t2|θ + ‖|x1 − x2|‖α) ∀(ti, xi) ∈ V (B.35)

Theorem B.30. [8, Thm 6.3.1] Let −A be the infinitesimal generator of an analytic semigroup

S(t) satisfying ‖S(t)‖L(X) ≤ M , and assume further that 0 ∈ ρ(−A). If f satisfies the

assumption (F), then for every initial data (t0, x0) ∈ U the initial value problem (B.34) has a

unique local solution u ∈ C([t0, t1) : Xα) ∩ C1((t0, t1) : D(A)), given by

u(t) = S(t− t0)x0 +

∫ t

t0

S(t− s)f(s, u(s)) ds t0 ≤ t < t1 (B.36)

where t1 > t0 is a constant depending only on (t0, x0).
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Appendix C

Abbreviations and Notation

C0 Strongly Continuous

Cm(Ω) Space of up to m-times continuously differentiable functions on Ω

C∞(Ω) Space of infinitely continuously differentiable functions on Ω

C∞
0 (Ω) Space of infinitely continuously differentiable functions on Ω with compact support

Dα (Weak) Differential operator with respect to spacial multi-index α

F(A;B) Space of functions from space A to space B

Wm,p(Ω) Sobolev space

Hm(Ω) Sobolev space Wm,2(Ω)

Hm
∞(Ω) Sobolev space Wm,∞(Ω)

Hm
P (Ω) Periodic Sobolev space

Cm
P (Ω) Cm(Ω) ∩Hm

P (Ω)

Sn,mT ∗ Banach space C([0, T ∗) : Hn
P (Ω)) ∩ C1((0, T ∗) : Hm

P (Ω))

‖·‖ L2(Ω) norm

‖·‖m Hm(Ω) norm

‖·‖m,p Wm,p(Ω) norm

〈·, ·〉 L2(Ω) innerproduct

〈·, ·〉m Hm(Ω) innerproduct

‖A‖L(X) Operator norm of the linear operator A : X → X

D(A) Domain of the linear operator A

Aα Linear operator A raised to the fractional power α

‖|·|‖α Fractional norm ‖Aα·‖X
ρ(A) Resolvent set of the linear operator A

R(η : A) Resolvent of A, equals to (ηI − A)−1

S(t) One-parameter semigroup of bounded linear operators
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