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This research proposes the simulation of three arrival processes: phase-type 

(PH) process/distribution, Markovian arrival process (MAP) and batch Markovian 

arrival process (BMAP). Two simulation models are developed and utilized to 

randomly generate inter-arrival times, i.e. the time headway between two successive 

event occurrences.  

PHDs, MAPs and BMAPs do not belong to the distributions or stochastic 

processes that are commonly used in simulation tools, but it is usually straightforward to 

integrate them into simulation software by drawing on the underlying Markov chains 

which govern the activity of these processes.  

Building stochastic simulation models based on the underlying Markov chain 

becomes extensive and error-prone for processes with higher orders, lagging in both 

time and traceability. Therefore, an alternative approach to simulating these processes is 

proposed, such that only the start and end states of an arrival epoch, rather than its 

whole transition activity, are utilized to set a cumulative distribution for the inter-arrival 

time. Since the inter-arrival time understudy is a matrix exponential, then the 

corresponding cumulative distribution function cannot be inverted and the classical 

inverse transform method cannot be applied. In this context, discretization of the 

function is an appropriate alternative whereby a database of inter-arrival times and their 

corresponding cumulative probabilities is formulated and then randomly sampled to 

generate inter-event times.  

The scope of work comprises of conducting: (1) the simulation of the 

underlying Markov chain such that arrivals and their corresponding arrival times are 

recorded and alternatively (2) the discretization of the cumulative distribution function 

indicated by the start and end states of arrival epochs and random sampling of the latter 

to produce random inter-arrival times. Approaches (1) and (2) are applied on several 

examples and compared in terms of accuracy and efficiency. 

Results suggest that the approach (2) is capable of performing as accurately and 

efficiently as its counterpart. Yet, they also show that simulating the underlying Markov 

chain is generally faster for fully populated MAPs and BMAPs. 
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CHAPTER I 

INTRODUCTION  

This research proposes the simulation of three arrival processes: phase-type 

(PH) process/distribution, Markovian arrival process (MAP) and batch Markovian 

arrival process (BMAP). Two simulation models are developed and utilized to randomly 

generate inter-event times, i.e. the time headway between two successive event 

occurrences.  

PHDs, MAPs and BMAPs do not belong to the distributions or stochastic 

processes that are commonly used in simulation [10] and are therefore not available as 

standard components in simulation tools. Yet, it is usually straightforward to integrate 

them into simulation software by drawing on the underlying Markov chain which 

governs the activity of the process. The underlying Markov chain can be translated to a 

simulation model to generate inter-event times. Nonetheless, an alternative approach is 

proposed to generate random variates for these processes such that the start and end 

states of an arrival epoch are utilized to set a cumulative distribution for the 

corresponding inter-arrival time, which is then discretized and sampled to randomly 

generate inter-arrival times. 

Two simulation approaches are applied: (1) the simulation of the underlying 

Markov chain such that arrivals and their corresponding arrival times are recorded and 

alternatively (2) the discretization of the cumulative distribution function indicated by 
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the start and end states of arrival epochs and random sampling of the latter to estimate 

inter-arrival times. Both simulation approaches are applied on the same set of examples 

and thusly compared in terms of accuracy (relative error of estimates) and efficiency 

(running time). Approach (2) is presented as a powerful, traceable and equally accurate 

simulation technique for arrival processes, yet also as a generic model which can be 

further deployed and manipulated to flexibly simulate diverse stochastic processes on 

the non-negative axis. In this context and under Approach (2), variance reduction 

becomes more attainable rather than utilizing the complete randomness of the 

transitions in the underlying Markov chains.  

The most popular real-life applications of such processes are queuing systems, 

such that they are heavily utilized in modeling arrival events and/or service 

completions. Commonly, PHDs have been used to model service times and MAPs are a 

common means to describe arrival processes in single queues and also in networks of 

queues. PHDs and MAPs are also used to describe failure and repair times or the 

duration of availability or unavailability intervals, providing flexible models that can be 

mapped onto Markov processes and analyzed numerically. In this context, building 

meaningful and realistic models necessarily requires precise representation of the time 

to failure, the required repair time of components and systems, arrival patterns, service 

mechanisms, etc. Further real-life applications of the BMAP are fewer, yet recent 

research in the telecommunications industry, has focused on studying batch arrivals; i.e. 

jobs which arrive at a server system simultaneously.   
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PHDs and MAPs have been introduced by Neuts; however, the matrix 

representation of MAPs, which is used here and in most other papers on the subject, is 

due to Lucantoni’s later work. Unlike PHDs, the theoretical foundation of MAPs is less 

advanced, which is not surprising since the future behavior of MAPs may depend on the 

whole history and not only on the time since the last event occurred as it is the case for 

PHDs, rendering such a process more complex to manipulate in modeling. Several 

extensions of MAPs exist to account for different arrival types or batches of arrival 

which are denoted as MMAPs or BMAPs respectively. Both process types are useful in 

practice but are even more complex than MAPs. Another generalization is the Rational 

Arrival Process (RAP) which results from a linear algebraic view without probabilistic 

interpretation similar to Matrix Exponential distributions. These processes are rarely 

used, since the theory is not completely developed although some newer results show 

interesting relations between MAPs and RAPs. 

In this research, we will first simulate the processes under study by mimicking 

the internal transition activity in the underlying Markov chain, such that arrivals are 

registered by their occurrence times. The simulation of the underlying Markov chain is 

based on the Stochastic Simulation Algorithm (SSA), yet tailored to adequately capture 

the specific features of the Markov chains lending their activity to each of the 

aforementioned arrival processes. We will refer to this approach as Approach (1): 

Simulation of Underlying Markov Chain.  

We further attempt at providing an alternative algorithm to simulate these 

processes. We try to articulate and model an approximate inversion method, which is 
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well documented and heavily utilized for all distributions that have a definite and 

invertible cumulative distribution functions. Yet, this is not the case for these arrival 

processes, as the cumulative distribution function is either impossible to invert or 

indefinite, and hence we claim that this second approach is approximate and utilizes a 

discretization approach to approximate the distributions under study. We will refer to 

the alternative simulation algorithm by Approach (2): Approximate Inversion Method. 

Approach (2) first dictates specifying the cumulative distribution function of the inter-

arrival time and assessing whether it is invertible or otherwise. We then further utilize 

this function in creating an inter-arrival time/cumulative probability database which can 

be later used to randomly generate inter-arrival times randomly. The setup of this 

database is computationally extensive, but the core execution program is easy and 

straightforward.  

  



 

5 

 

CHAPTER II 

GENERAL OVERVIEW OF PHDS, MAPS AND BMAPS 

The analysis of man-made systems such as computer systems, communication 

networks, manufacturing processes, logistics networks, to mention only a few, is 

commonly done through the utilization of discrete-event models [9] or simulation [10]. 

One detrimental issue in these models is the adequate modeling of the load which 

describes the occurrence of events, be it the arrival of customers in queuing networks, 

failure times in reliability models or packet sizes in simulation of computer models [1]. 

In simple terms, arrivals, service completions, and/or failure times can be represented 

by their corresponding inter-event times, which are in turn represented by random 

variables or stochastic processes generating non-negative numbers [1].  

A key and prerequisite stage of developing simulation models is input 

modeling. Under input modeling, a stochastic model is constructed to capture the key 

features of an input process from which statistical and real-time measurements are 

available. Historically, more often than not, it was assumed that inter-event times are 

independent and identically distributed and accordingly a best-fitting distribution is 

selected from a given set of distributions to stochastically model the input data in 

simulation models. However, sometimes the usual set of available distributions is not 

flexible enough to capture measured behavior and/or the assumption of independence 

and identicality of events doesn’t hold because the events are rather correlated as it is 

the case for many real-life systems. Therefore, the choice of an appropriate discrete-
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events model is sensitive to the type of the latter and its relationship with the mechanics 

of the man-made system.  

In simulation, modeling systems is heavily dependent on the input modeling 

stage [12, 10] such that the right parameters are determined and fed into the simulation 

model, guaranteeing accurate analysis and results. In input modeling, software tools are 

available to perform parameter fitting; i.e. the selection of an adequate distribution to 

describe a set of observed events [31, 13]. In cases where the assumption of 

independence and identicality is weak or unjustified, the literature advises the use of 

“empirical distributions, time series models or multivariate normal or Johnson 

distributions” [12, 10]. Nonetheless, most simulation software tools do not readily or 

directly support the aforementioned approaches, and hence such stochastic models have 

to be manually constructed and integrated into simulation software which tends to be a 

cumbersome and error-prone exercise.  

In this context, Markov processes could be utilized to model such systems, 

namely the phase-type (PH) process/distribution, the Markovian arrival process (MAP) 

and the batch Markovian arrival process (BMAP). PHDs are known to be very flexible 

and allow the approximation of a wide variety of distributions on the positive axis [18]. 

Nevertheless, the use of PHDs was in the past mainly restricted to a few of its 

subclasses, mainly Erlang or hyper-exponential distributions [20]. Given the 

aforementioned, the approximation of a general distribution by a PHD is a complex 

non-linear optimization problem, which has only recently been developed into 



 

7 

 

comprehensive computational algorithms, of which only a few are available in today’s 

popular modeling software [1].  

The modeling power of Markov processes lies in the fact that they can largely 

reflect the correlation between inter-event times, especially MAPs and their generalized 

counterpart BMAPs [21]. For instance, the analysis of single-server queues with MAP 

input or service completions is developed and based on well-known matrix analytic 

techniques primarily led by Neuts [104, 22]. Yet, parameter fitting for MAPs is more 

complex than that of PHDs [23], and hence is not richly discussed in the literature. Only 

recently have several algorithms for generating MAPs from measured data become 

available [24, 25]; however, these algorithms are not well-established and documented 

in the literature. Similar to PHDs, MAPs can be integrated in simulation models but 

again this approach is not really supported by available simulation tools because the first 

approaches describing the integration of MAPs in simulation models have been 

published only recently [11, 27, 26]. PHDs and MAPs are highly flexible and can 

capture a variety of stochastic behavior, yet this flexibility comes at a high price. This 

price is effectively the huge effort associated with finding the best fit parameters 

whereby the resulting model approximates the observed or required behavior closely 

enough [1]. This fitting complexity has somehow contributed to the scarcity of the 

literature in the applications of PHDs and MAPs in the past. Yet, this has greatly 

improved recently as there is a relatively large number of papers, mainly in queuing 

theory, discussing ways of solving models including PHDs or MAPs and many 

theoretical papers describing features of PHDs and MAPs are available [1].  
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Fitting is an important stage in developing numerical and simulative models as 

they present tools to represent input data. Usually, observations are recorded and 

measured in a real system and collected to form a trace, in an attempt to estimate (fit) 

the parameters of a distribution to accurately capture characteristics of the observed data 

[1]. The matrix representation of the phase type process is highly redundant in general, 

which makes fitting of PHDs a difficult optimization problem. Many of the existing 

fitting approaches for PHDs are tailored to specific subclasses for which canonical 

representations exist, such as the Erlang and hyper-exponential distributions [1]. 

Generally, fitting algorithms for phase-type distributions can be divided in two classes, 

depending on the information from the trace they use. The first class of techniques, 

usually categorized as Expectation Maximization (EM) algorithms, uses the complete 

trace for parameter estimation, while the second class only uses some derived measures 

like moments [1].  

The complexity inherent in the parameter fitting of MAPs is majorly attributed 

to the fact that they lack the required canonical representations as in the cases of some 

phase-type distributions and the obligation to account for longer traces of input data to 

adequately capture correlation amongst the latter [1]. Although most algorithms for 

PHDs can be generalized for MAPs, the effort of finding MAP parameters is quite 

higher and the algorithms tend to be less reliable and stable when applied to MAPs.  

The inter-arrival time in PHDs, MAPs and BMAPs is a matrix-exponential 

random variable. The generation of matrix-exponential random variables hasn’t been 

comprehensively studied in the literature. Yet, one can simply generate the latter by 
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utilizing the transition mechanism in the associated Markov chain as we propose in the 

first simulation approach. Banks investigated three particular simulation algorithms for 

continuous-time Markov chains to model the progression of Vancomycin-resistant 

enterococcus (VRE) infection in a hospital unit and the dynamics of HIV during the 

early stage of infection, in which the target cells are still at very high level while the 

infected cells are at very low level [2]. Banks utilizes the stochastic simulation 

algorithm (SSA), as well as explicit and implicit tau-leaping algorithms. The three 

algorithms were compared in light of the analysis of two stochastically modeled 

infectious diseases (VRE and HIV) in terms of computational time and degree of 

precision.  

The stochastic simulation algorithm (SSA) is common and largely used and 

documented in the literature and has been used to simulate the underlying Markov chain 

of the processes under study via Approach (1). The algorithm is rather easily modeled 

as it utilizes direct step-wise jumping among states, yet it tends to drag along in time 

and accuracy when the Markov chain has large number of states, where the tau-leaping 

algorithms become more efficient [2]. Yet, the purpose of our research is not to 

investigate the efficiency of this simulation approach; we are merely using it as a 

reference to which the second approximate approach is compared.  

As the name implies, the tau-leaping method proposes conducting leaps from 

one-time subinterval to another to overcome the extensiveness and impracticality of 

keeping track of every transition in a Markov chain [2]. So, leaping algorithms jump 

from one sub-interval to another by approximating how many transitions take place 
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during a given sub-interval. The value or size of the leap must be chosen such that there 

is no significant change in the value of the transition rates along the subinterval. So the 

objective is to simulate many transitions in one leap, speeding by that the computational 

time and the efficiency. There are two types of tau leaping methods considered in this 

paper: the explicit and implicit tau leaping methods. Banks’ major conclusion was that 

all three algorithms have comparable computational efficiency for the VRE model due 

to the low number of species and small number of transitions, yet tau leaping methods 

are preferred for HIV model due to the larger number of species and higher transition 

probabilities. However, in the case of PHDs, MAPs and BMAPs, traceability is 

important such that the nature of transitions among states is more important than the 

latter’s count in determining inter-event times. 

In SSA, given the one-step transition probability matrix P, a recursive 

procedure is presented to simulate the activity/transitions in a Markov chain for 

maximum number of steps or the maximum sojourn time [3]. First, the steady-

state/long-term probabilities are computed and randomly sampled using the inverse 

transform method to choose the initial state of the chain. Given the current state of the 

chain, the successive state is randomly predicted by sampling the probability row vector 

corresponding to the current state using again the inverse transform method. The nature 

of the simulation stopping criterion is sensitive to nature of the Markov chain. If the 

chain is a discrete-time Markov chain, then we only care about the number of transitions 

performed whenever the chain is activated; otherwise, if it is a continuous-time Markov 

chain (CTMC), then the time spent in the chain is more significant. Accordingly, we 

either counter the number of transitions occurring in a chain, or accumulate the time 
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spent in the chain by adding up the sojourn times in the visited states. Yet, the number-

of-transitions stopping criterion also works well for a CTMC, because eventually it has 

a discrete-time embedded Markov chain that is responsible for the instantaneous 

transitions occurring in the chain.  

In a CTMC, whenever the chain hits a state, it spends a certain amount of time, 

commonly referred to as the holding time or the sojourn time. This quantity is a positive 

random number and the holding times of states are independent of each other. The 

transitions among states; however, follows the same mechanism as in a discrete-time 

Markov chain. However, this can become extensive for higher order Markovian point 

processes with small transition probabilities.  

The Batch Markovian arrival process (BMAP) is a stochastic point process that 

generalizes the MAP by allowing for correlated arrival batches as opposed to single-unit 

arrivals, as well as dependent and correlated inter-arrival times [4]. The origins of the 

BMAP can be traced back to the development of the versatile Markovian point process 

(VMPP) by Neuts. Neuts’ primary objective was to extend the standard Poisson process 

to account for more complex customer arrival processes in queuing models. The VMPP 

is characterized by three distinct classes of batch arrivals, each of which is determined 

by the transition type of an external Markov chain with n transient states and one 

absorbing state. One type of arrival is from a Markov-modulated Poisson process, which 

occurs during the sojourn of the external Markov process in any of the n transient states. 

Another type occurs when the Markov process transitions from transient state i to 

transient state j, such that i≠j. The third type of arrival occurs when the Markov process 
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transitions from any transient state to the single absorbing state, and then restarts in state 

j. This type of transition is called an (i,j) renewal transition, and by virtue of restarting 

the Markov chain, admits the possibility of a “self-transition” from a transient state to 

itself. In this context, it is clear that Neuts founded the VMPP on the notion of the 

phase-type distribution. Neuts played a major role in the advancement of the use of the 

PHD in queuing theory, culminating ultimately in the development of the VMPP. 

Lucantoni further extended the original definition of the VMPP to define the Markovian 

arrival process (MAP) [4]. In queuing systems literature, Ramaswami was the first to 

incorporate the BMAP as an arrival process to a single-server queue with generally-

distributed service times [4].  
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CHAPTER III 

CONTINUOUS-TIME MARKOV CHAINS 

It is important to highlight some key aspects of continuous-time Markov chains 

(CTMCs) before indulging in PHDs, MAPs and BMAPs because the dynamics of these 

processes can be described and interpreted using the transitional behavior in their 

underlying continuous-time Markov chains. Continuous-time Markov chains (CTMCs) 

are a class of stochastic processes characterized by a discrete state space in which the 

time between transitions is exponential.  

Let S denote a finite and countable set of states, and { ( )}   
  a stochastic 

process with state space S. S is isomorphic to   (the set of integer numbers), and states 

are denoted by their numbers.  

The stochastic process { ( )}   
  is a continuous-time Markov chain if it can be 

described by the Markovian property given by (1): 

 ( (    )        (      )    (      )) 

 ( (    )        (      )) 

                                   

(1) 
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Property (1) indicates that the future state of a stochastic process, specifically a 

Markov chain, depends only on its current state and not the whole past activity of the 

process. A process is homogeneous if for all    , the identity given by (2) is true. 

 ( (   )     ( )   )   ( ( )     ( )   )     ( ) (2) 

Homogeneity in this context implies that the transition probabilities in a 

Markov chain only depend on the length of the time interval and not on the actual times 

of occurrence of one state or another. The values of    ( ) at any time t and for all states 

i and j define a matrix of transition probabilities  ( ) such that ∑    ( )    . 

In CTMCs, the inter-event times, or the time separating the event occurrences 

are exponentially distributed, yet not necessarily identical. Each state i is characterized 

by an exponential sojourn time denoted by   . Suppose that    is the exponential holding 

time in state i, then its distribution is defined in (3): 

 (    )     
                (3) 

The Markov process evolves as follows: at any time t, whereby  ( )   , the 

process remains in state i for an exponential amount of time with a mean    ⁄ , and then 

jumps to state j with probability          ⁄ , such that     is the transition rate from 

state i to state j and    is the total departure rate from state i. Accordingly, the transition 

dynamics in a CTMC can be described in terms of its infinitesimal generator matrix Q. 

If the state space of the chain has n states, then Q will be a     matrix as defined in 

the expression given by (4). 
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 (   )  {
          
          

          ∑   

 

   

                 
(4) 

It is worth nothing that {  }        ( ) is the embedded discrete-time 

Markov chain (DTMC) of the process { ( )}   
 . The embedded DTMC is governed by 

the transition probability matrix P given by (5). 

 (   )  {

 (   )

  (   )
       

                    

       ∑ (   )           

 

         

(5) 

 (   )  {
        
        

                   . 
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CHAPTER IV 

PHASE TYPE DISTRIBUTION 

In this chapter, a brief overview of the definition, notations and subclasses of 

the phase-type distribution are presented and explained. The phase-type distribution is 

the distribution of the lifetime of a single-absorbing state Markov chain { ( )}   
 ; i.e. 

the time to enter the absorbing state from the set of transient states. 

A. Single-Absorbing State Markov Chains and Phase-Type Distributions 

Two states i and j communicate with each other if either is reachable from the 

other. Suppose that C is a subset of the state space S, and then if all states in C 

communicate, it is called a communicating set. If there isn’t a feasible transition from 

any state in C to any external state, then C forms a closed set, in which the Markov 

process terminates, and hence the concept of absorbing states to which transitions are 

feasible, yet from which transitions are impossible arises. The counterparts of absorbing 

states are transient states, to and from which transitions are possible. 

If every state in a chain is either transient or absorbing, then the Markov chain 

is called an absorbing Markov chain. A particular example of absorbing Markov chains 

is the single-absorbing state Markov chain. These chains lend their behavioral activity 

to the underlying Markov chains of phase-type distributions.  
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Suppose we are given a finite single-absorbing state Markov chain with state 

space S defined as the union of the set of transient states ST and the set of the single 

absorbing state SA,           {       }   {   }. The infinitesimal generator 

matrix Q can be formulated as:   [
    
  

] 

Matrix    is a     non-singular and invertible matrix describing the 

transitions among the transient states, such that: 

  (   )  {
          
          

                           

In the long-term, the probability of absorption is 1 and the matrix (   )
   is 

the fundamental matrix of the absorbing CTMC, such that (   )
  (   ) is the expected 

time spent in state j before absorption given that the chain started in state i.  

Vector    is a     matrix describing the transitions from the transient states 

to the single absorbing state, such that         , where 1 and 0 are n-vectors of 

ones and zeros respectively 

  is an     zero vector describing the impossibility of transitions from the 

absorbing state to the transient states and 0 is the rate at which the chain exits the single-

absorbing state, implying the termination of the process at state (   ). 
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Given the preceding description of single-absorbing state Markov chains, 

Neuts derived the concept of the phase-type distribution (PHD). In this sense, the phase-

type distribution is the distribution of the lifetime of the single-absorbing state Markov 

chain { ( )}   
 ; i.e. the time to enter the absorbing state from the set of transient states 

ST.  For a phase-type process, the transient states are called phases and the order of the 

process is defined as the number of transient states.  

The vector   [           ] describes the state probabilities as to where the 

chain is to arbitrarily start. Whenever the single absorbing state is hit, the chain restarts 

itself according to  . In most cases, it is assumed that the probability of starting at the 

absorbing state is zero; however, in some cases it is permissible. If a random variable X 

has a phase-type distribution, then it has the representation   (    ) such that    is 

redundant and can be implicitly derived from   .  

The phase-type process can be described as follows: The chain arbitrarily starts 

in any state according to  ; if the starting state is transient, the chain progresses until 

absorption and the lifetime of the chain is the accumulation of the exponential sojourn 

times spent in all of the transient states visited prior to absorption [6].  

Given a Markov process  { ( )}   
  with an infinitesimal generator Q, then the 

probability that the phase of the chain is j at time t, given that the chain initially started 

at phase i is given by matrix  ( )      , such that     [ 
         

  
]. Therefore, 

the distribution of the time until absorption is given by: 
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 ( )   ( ( )     )  ∑ ( ( )   )

   

   

 ( ( )       ( )   ) 

 ( )  ∑  

   

   

  (   )( ) 

 

Therefore, the cumulative density function of X is as given by (6): 

 ( )           (6) 

Knowing that (   )
  (   ) is the expected time spent in state j before 

absorption given that the chain started in state i, then the k
th

 moment of the PHD is 

given by (7): 

 [  ]     (   )
    (7) 

The mean (8), variance (9) and skewness (10) can be calculated using the first, 

second and third moments respectively. 

 [ ]   (   )
    (8) 

   ( )   [  ]  ( [ ])    (   )
    ( [ ])  (9) 

    ( )  
 [  ]

√   ( )
   

 
  (   )

   

√   ( )
   

 
(10) 
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B. Subclasses of the Phase-Type Distribution 

The phase-type process is one example of renewal point processes, whereby 

only renewal events/arrival epochs of size equal to one are allowed to take place once 

the single absorbing state is hit. However, point processes are very diverse and heavily 

deployed in the literature to analytically derive tractable results and/or accurately model 

challenging qualitative and quantitative features of the arrival processes, service 

completion epochs, equipment failures and many more [1]. Such processes are usually 

dense and can be to a varying degree of accuracy used to model different processes on 

[0, ∞).  

In this research paper, we only consider PHDs in continuous time. However, it 

is can be easily implied that discrete time PHDs are based on DTMCs. Several results 

can be transferred from the continuous time to the discrete time area, but there are also 

some specific aspects that need to be considered.  

PHDs can be considered as a generalization of the exponential, hyper-

exponential, hypo-exponential and Erlang distributions, to mention only a few.  

1. Exponential Distribution 

The exponential distribution is the simplest case of a PHD, such that it is 

characterized by one parameter only which is the arrival rate  . As a PHD,       

and    , such that the underlying Markov chain is dual (Figure 1), having one 

transient state and one absorbing state. The chain can only start at the transient state and 
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can only move to the absorbing state at a rate of   after spending an exponential amount 

of time with a mean of (  ⁄ ) in the transient state.  

 

Figure 1 Markov Chain Representation of the Exponential Distribution 

2. Erlang Distribution  

The Erlang distribution is the distribution of the sum of n exponential phases 

with the same intensity  . In this context, the underlying Markov chain can be 

visualized as a set of successive transient states and one final absorbing state (Figure 2). 

The chain starts at state 1, moves on to state 2 at a rate  , then to state 3 at the same rate 

until it eventually reaches the absorbing state (   ) after spending  an exponential 

amount of time with a mean of (  ⁄ ) in each of the preceding transient states.  

   

[
 
 
 
 
      
      
     
      
      ]

 
 
 
 

    [     ] 
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Figure 2 Markov Chain Representation of the Erlang Distribution  

3. Hypo-Exponential Distribution 

The hypo-exponential distribution is a generalization of the Erlang distribution 

in the sense that it is the sum of n distinct exponential random variables, each with a 

rate                 . Accordingly, the underlying Markov chain is composed of 

successive states ordered 1 through n+1, such that the first n states are transient and the 

last state is absorbing (Figure 3). The chain starts at state 1 where it lingers for an 

exponential period with parameters   , then moves to state 2, state 3, … state i, and 

eventually moves to the last and single absorbing state where the chain is terminated 

and restarted again at state 1.   

   

[
 
 
 
 
        
       
     
            
       ]

 
 
 
 

    [     ] 

 

Figure 3 Markov Chain Representation of the Hypo-Exponential Distribution 



 

23 

 

4. Hyper-Exponential Distribution 

The hyper-exponential distribution is a convex mixture of n exponential 

distributions. Suppose S is the overall state space of the Markov process  { ( )}   
  

which lends its activity to the hyper-exponential distribution. Then S is made up of n 

transient states and one absorbing state. The chain can start in any of the transient states, 

where it spends an exponential amount of time and then moves to the absorbing state at 

which the chain terminates and starts over from any of the transient states (Figure 4).   

   

[
 
 
 
 
       
       
     
         
       ]

 
 
 
 

 

  [           ] 

 

Figure 4 Markov Chain Representation of the Hyper-Exponential Distribution 

5. Hyper-Erlang distribution 

Another example is the hyper-Erlang distribution (HErD) which is a mixture of 

m mutually independent Erlang distributions (Figure 5). 
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  [                ] 

 

Figure 5 Markov Chain Representation of the Hyper-Erlang Distribution 
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CHAPTER V 

MARKOVIAN ARRIVAL PROCESS 

As explained in Chapter IV, after a PH renewal occurs, the underlying Markov 

chain is immediately restarted based on the initial probability vector α which predicts 

the starting state of the chain succeeding an event occurrence. However, there are many 

real-life applications, especially in the telecommunications industry, in which strong 

correlation exists between subsequent inter-event intervals [7], and so it is only natural 

that the concept of dependence of subsequent intervals is introduced. Accordingly, the 

phase distribution becomes dependent on the last phase visited and upon which an event 

was triggered.  

In other words, each state in the underlying Markov chain can behave as an 

absorbing state and cause an arrival whenever hit by an observed transition. This can be 

visualized as a CTMC in which two changing variables are registered, the phase and the 

level of the system. A hidden transition changes the phase of the system as the arrival 

epoch jumps from one state to another. On the other hand, an observed transition 

changes not only the phase of the system, but also the level of the system as it causes 

the occurrence of an arrival epoch. This Markov chain describes the Markovian Arrival 

Process, shortly referred to as a MAP. This process is heavily used to describe a variety 

of arrival processes in today’s queuing models.  
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In simple terms, a MAP can be interpreted as an irreducible Markov chain in 

which transitions could be marked, and marked transitions describe events or arrivals. 

Formally, a MAP (     ) is an irreducible Markov chain with a finite state space S 

and an infinitesimal generator matrix Q which can be expressed as:  [
    
  

]  

Let n be the size of state space S or the order of the MAP. The process is 

interpreted as follows: The process randomly starts with a probability    in state i, 

resides there an exponentially distributed time with a rate    ∑   (   )    (   )   , 

and moves to state j with a hidden transition with a probability   (   )   ⁄  or an 

observed transition (associated with an arrival event) with a probability   (   )   ⁄ .  

An n-state MAP, denoted as     , can be interpreted as a two-dimensional 

Markov process { ( )  ( )} defined on the state space {(   )        }. Each state 

can be visualized as a phase and a level at the same time. If this state is hit by a hidden 

transition (governed by generator matrix D0), then it causes a change in the phase of the 

chain  ( ) only, if it is; otherwise, hit by an observed/marked transition (governed by 

generator matrix D1), it causes a change in both the phase of the chain  ( )  and the 

level of the chain  ( ).  

The aforementioned interpretation implies that         is the 

infinitesimal generator matrix of the underlying Markov process  ( ). Knowing that    

is non-singular and the transition times are finite with probability 1 and the process does 
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not terminate. The role of the states in this model is to provide the inter-event times 

distributed as a random sum of non-identical exponential random variables.  

Let     be the state of the underlying Markov process  ( ) at the time of 

the     event occurrence, and    the time between the events  (   )   and    , 

then {     }   
  is a Markov renewal process. In particular {  }   

  is a Markov chain 

whose transition probability matrix   is given by (11): 

  (   )
     (11) 

The stationary probability vector   of the Markov chain {  }   
  is obtained 

by solving (12) and (13): 

     (12) 

     (13) 

In our research, we will deploy   to initiate the Markov chain under 

Approaches (1) and (2). Under Approach (1), the Markov chain is triggered using  , 

and then progressed according to    and    up until the maximum number of arrival 

epochs is achieved. Under Approach (2),   is used to start up the process, then it is 

restarted according to the absorption status of preceding event according to   such that 

the correlation and dependence among the inter-event times is not neglected. 
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The structure of    and    distinguishes different MAP subclasses. For 

example, if    is a diagonal matrix, then the process is denoted as a Markov Modulated 

Poisson process (MMPP) because matrix    describes up to n Poisson processes for an 

MMPP with n states that are selected by a background Markov process defined by    . 

A specific case of an MMPP is an Interrupted Poisson Process (IPP) where diagonal 

elements of the diagonal matrix    are either 0 or λ, the rate of the basic Poisson 

process. On and off times of the Poisson process are given by a PHD. 

Several extensions of MAPs exist; foremost the extension to generate different 

arrival types or batches of arrival which are denoted as MMAPs or BMAPs 

respectively. Both process types are useful in practice but are even more complex than 

MAPs. Another generalization is Rational Arrival Processes (RAPs) which result from a 

linear algebraic view without probabilistic interpretation similar to Matrix Exponential 

distributions. These processes are rarely used yet, since the theory is not completely 

developed although some newer results show interesting relations between MAPs and 

RAPs. 
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CHAPTER VI 

BATCH MARKOVIAN ARRIVAL PROCESS 

In today’s computer and telecommunication networks for example, it is very 

common for multiple jobs to be spent to the server simultaneously, and hence jobs 

arrive in batches [7]. Therefore, MAPs which describe single arrivals can be further 

generalized to account for arrival batches of different sizes in the Batch Markovian 

Arrival Process, commonly referred to as the BMAP.  

MAPs generate a single type of events, and so this can be extended by allowing 

K different event types resulting in a Marked MAP (MMAP) defined 

as (          ), where (   ∑   
 
   ) represents a MAP and all matrices    are 

non-negative. If the different events are interpreted as batches of arrivals; i.e. matrix    

is associated with those arrivals of batch size k, then the MAP is extended into what is 

commonly referred to as batch Markovian Arrival process (BMAP). The 

aforementioned analysis can be further tailored to describe BMAPs and MMAPs. 

Let   { ( )    } be an irreducible, continuous-time Markov chain with 

state space   {        }, where n is a finite and positive integer. Suppose J has just 

entered state i, such that    . The process spends an exponentially distributed amount 

of time in state i with rate   . The process then transitions to state j, and the transition 

could be hidden or observed with batch size k. A hidden transition occurs with a 
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probability   (   ) where    . An observed transition of batch size k occurs with a 

probability    (   )         where i could be equal to j. Hence the identity (14) is 

valid. 

∑∑  (   ) 

 

   

 ∑   (   )             

 

       

 

   

 
(14) 

Accordingly,    is the transition probability matrix governing the hidden 

transitions in the external Markov chain, while    governs the observed transition of 

batch size k. The transition rates of the aforementioned jumps can be formulated as 

follows: 

  (   )  {
                      

    (   )        
 &   (   )      (   )                  

Therefore,    contains the transition rates of J for which no arrivals occur, 

while    for all     contains the rates of the observed transitions of batch size k.   

It is worth noting that the total transition matrix D (     ∑   
 
   ) is 

given by the following: 

 (   )  {

          

    ∑   
  

 

   

      
               ∑   
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Inter-arrival times are defined as the accumulation of the sojourn times in all of 

the states visited prior to the occurrence of the arrival epochs. Knowing that the phase 

distribution is sensitive to the state at which an arrival epoch occurs, the very initial 

state of the underlying Markov chain can be predicted using the stationary or steady-

state probabilities defined by  , such that an arbitrary arrival epoch begins in any state i 

with a probability    [6].  

The stationary probability row vector can be computed by solving equations 

(15) and (13).  

 (   )
  ∑    

 

   

 
(15) 

The m
th

 marginal moment of the inter-arrival time X can be calculated using 

(16) for both MAPs and BMAPs: 

 [  ]     (   )
           (16) 

The Lag-1 autocorrelation can be calculated as: 

   
 (   )

   (   )
     [  ]

 [  ]  ( [ ]) 
 

(17) 
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CHAPTER VII 

COMPUTATION OF MATRIX EXPONENTIAL 

Mathematical models of many physical, biological and economic processes 

involve systems of linear, constant coefficient ordinary differential equations (18). 

 ̇( )    ( ) (18) 

Here A is a given, fixed, real or complex     matrix. A solution vector  ( ) 

is sought after to satisfy initial condition such that  ( )    . In theory, A is referred to 

as the state companion matrix and  ( ) is the system response. Therefore, the solution is 

given by (19), where     can be formally defined by the convergent power series given 

by (20). 

 ( )        (19) 

         
(  ) 

  
   

(  ) 

  
   ∑

(  ) 

  

 

   

 
(20) 

Dozens of methods for computing     can be obtained from more or less 

classical results in analysis, approximation theory, and matrix theory. Some of the 

methods have been proposed as specific algorithms, while others are based on less 

constructive characterizations. Several particular classes of matrices lead to special 



 

33 

 

algorithms. For examples, if A is symmetric, then methods based on eigenvalue 

decompositions are particularly effective. However, for other classes of matrices, 

eigenvalues might become confluent leading to the loss of accuracy. On the other hand, 

algorithms which avoid using eigenvalues tend to require considerably more computer 

time for any particular problem. They may also be adversely affected by round off 

errors especially in problems where the matrix    has large elements. One potential 

shortcoming with almost all algorithms illustrates a sensitive property of    : As t 

increases, the elements of     may grow before they decay, which might eventually 

cause significant approximation errors.   

The methods used to compute the matrix exponential can be classified into the 

following categories: series methods, matrix decomposition methods, ordinary 

differential equation methods, polynomial methods and splitting methods. However, we 

will focus on series methods and matrix decomposition methods.  

A. Series Methods 

The common theme of what we call series methods is the direct application to 

matrices of standard approximation techniques for the scalar function   . In these 

methods, neither the order of the matrix nor its eigenvalues play a direct role in the 

actual computations.  
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1. Method 1 Taylor Series 

 The matrix exponential of   , defined as     can be formally defined by the 

convergent power series given by (21). Ignoring efficiency, terms of the series can be 

simply summed until adding another term does not alter the result such that the 

following is true: 

If 
(  ) 

  
              , then     ∑

(  ) 

  
 
    ∑

(  ) 

  

 
    (21) 

However, concern over where to truncate the series is important if efficiency is 

being considered, especially when the identity given by (21) becomes cumbersome to 

compute and lags such that k becomes huge. Among several papers concerning the 

truncation error of Taylor series, the paper by Liou [32] is frequently cited, whereby he 

suggests some prescribed error tolerance   (22) to control the choice of k.  

‖∑
(  ) 

  

 

   

    ‖  (
‖  ‖   

(   ) 
)(

 

  
‖  ‖
(   )

)    

(22) 

In other related papers, Everling [33] has sharpened the truncation error bound 

suggested by Liou in (22). On the other hand, Bickhart [34] has considered relative 

instead of absolute error. Unfortunately, all these approached ignore the effects of round 

off errors and so might fail in the actual computation with certain matrices. However, if 

one wants to compute     for several values of t, the exercise of determining k for every 

t becomes very extensive and slow.  
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2. Method 2 Padé Approximation 

The (   ) Padé approximation of     is given by (23). 

   (  )  [   (  )]
  
   (  ) 

(23) 

Knowing that    (  ) and    (  ) are given by (24) and (25) respectively. 

   (  )  ∑
(     )   

(   )   (   ) 
(  ) 

 

   

 
(24) 

   (  )  ∑
(     )   

(   )   (   ) 
(   ) 

 

   

 
(25) 

It is worth noting that the non-singularity of    (  ) is ensured if p and q are 

large enough and/or if the eigenvalues of    are negative. Zakian [35] and Wragg and 

Davies [36] elaborated more on the various representations of these rational 

approximations as well as the choice of p and q to obtain the prescribed accuracy. 

However, similar to the Taylor series expansion, round off errors make Padé 

approximation unreliable in some cases. For example, for large enough values of q, 

   (  ) approaches the series for      ⁄  and    (  ) approaches the series for     ⁄  

leading to a cancellation error which in turn prevents accurate determination 

of    (  ).  
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3. Method 3 Scaling and Squaring 

As mentioned earlier, the round off complexities and the computational costs 

of the Taylor series expansion and Padé approximants    (  ) and    (  ) increase 

as  ‖ ‖ increases or as the spread of the eigenvalues of    increases. However, both 

difficulties can be considerably controlled by utilizing a fundamental property unique to 

the exponential function given by (26). 

    (      )
 

 (26) 

One key issue is to choose m to be a power of two such that        can be 

reliably and efficiently computed, and then to form the matrix (      )
 

 by repeatedly 

squaring       . One common criterion used to choose m is to make it the smallest 

power of two such that ‖ ‖    ⁄ . With this restriction        can be satisfactorily 

computed by either Taylor series expansion according to Method 1 or Padé 

approximants according to Method 2.  

The squaring and scaling method has been suggested by many authors, 

including but not limited to, Ward [37], Kammler [38], Kallstrom [39], Scraton [40] and 

Shah [41, 42].  

B. Matrix Decomposition Methods 

Methods involving factorization or decompositions of    are most efficient, but 

necessarily most accurate, for problems involving large matrices and the repeated 
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evaluation of    . They are also especially effective and accurate for symmetric and 

orthogonal matrices.  

All matrix decompositions are based on similarity transformations of the form 

given by (27), such that     can be computed using (28). 

        (27) 

            (28) 

The main idea is to find S such that     is easy to compute. The difficulty; 

however, is that S may be close to singular which means that it conditionality might be 

large.  

1. Method 4 Eigenvalue Decomposition 

Under this approach, S is set equal to the matrix whose columns are the 

eigenvectors of A, such that:   [       ] &          

The n equations can then be written as:      . Matrix D is interpreted 

as:       (       ) and hence the exponential of    can be easily evaluated 

as         (           ). Since V is non-singular, then     can be computed using 

(29). 
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            (29) 

The theoretical difficulty with this method occurs when A does not have a 

complete set of linearly independent eigenvectors and is thus considered defective, such 

that no invertible V exists and hence the algorithm fails.  

2. Method 5 Jordan Canonical Form 

In principle, the problem posed by defective Eigen systems can be solved by 

resorting to the Jordan canonical form (JCF).  

If (30) is the JCF of matrix A, then the exponential of    can be calculated 

using (31). 

   [         ] 
   (30) 

     [            ]    (31) 

The difficulty is that the JCF cannot be computed using floating point 

arithmetic. A single rounding error may cause some multiple eigenvalue to become 

distinct or vice versa altering the entire structure of J and P. For further discussion of 

the difficulties of computing the JCF, see the papers by Golub and Wilkinson [43] and 

Kågstrom and Ruhe [44]. 
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Other decomposition methods include the triangular system of eigenvectors, 

Schur decomposition and the block diagonal. However, the objective of all 

decomposition methods is to have B as close as possible to diagonal to facilitate the 

computation of its matrix exponential and make S well-conditioned such that errors are 

not magnified.  

It is worth mentioning that MATLAB, the computation tool offered by 

MathWorks to perform various matrix operations uses a combinatorial method of 

scaling and squaring and Padé approximation to compute the matrix exponential with 

special attention given to avoiding round off error. MATLAB’s demo directory contains 

three files that employ three different algorithms to compute the matrix exponential. 

One method uses the built-in function (a combination of scaling and squaring and Padé 

approximation) developed by MathWorks and recommend by the latter for its generality 

and adaptability to many matrix classes. The second method uses Taylor series 

expansion and it is advised for matrices with ‖  ‖   . Finally, the third method 

implements eigenvalue decomposition, emphasizing the accuracy and efficiency of this 

method for symmetric, orthogonal and other normal matrices. The accuracy deteriorates 

as the condition number of the eigenvector matrix increases, and the method completely 

fails when a matrix is defective.  

Despite the fact that in our proposed approach, the evaluation of     at many 

values of t is a must, we chose to compute the matrix exponential according to the 

method employed by MATLAB’s built-in function, which is a combination of scaling 

and squaring and Padé approximation. We have also tried eigenvalue decomposition, 
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and in terms of computation speed, both methods are comparable, yet eigenvalue 

decomposition tends to be less accurate for some of the subclasses of the phase-type 

distribution such as the Erlang distribution and its variations, as well as bursty MAPs 

for Markovian arrival processes.  
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CHAPTER VIII 

SIMULATION OF MARKOVIAN ARRIVAL PROCESSES 

As mentioned earlier, the BMAP is a generalization of the MAP, yet observed 

transitions are associated with arrival epochs of different sizes rather than single arrivals 

only. It is also a generalization of the PHD in which strictly independent single arrivals 

are allowed to occur only. The objective of the simulation of the BMAP, whether under 

Approach (1) or Approach (2), is to produce random inter-arrival times and their 

corresponding batch sizes.   

Let (     ) represent respectively the inter-event time and corresponding 

batch size of arrival epoch m, where           . Accordingly the output of the 

simulation would be the vector {(     ) }   
 , such that M is the maximum number of 

arrival epochs simulated.  

The BMAP parameters required for both approaches are the following: 

- Order of the BMAP n; i.e. the number of states in the underlying Markov 

chain 

- Maximum batch size K 

- Matrix   ; an     matrix holding the rates associated with hidden 

transitions 
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- Matrix                     ;     matrices that hold the rates 

associated with the observed transitions of size k 

A. Approach (1) Simulation of Underlying Markov Chain  

To simulate the activity of the underlying Markov chain, it is necessary to set a 

relevant stopping criterion because the chain never terminates. Since the main objective 

behind this approach is to record arrivals and their occurrence times, we will set a 

maximum number of arrival epochs as a stopping criterion. An alternative stopping 

criterion would be a system clock; i.e. the maximum time to be spent in the Markov 

chain; however, the maximum number of arrival epochs is more relevant in the case. 

Furthermore, we will initiate the chain according to the stationary probability vector  .  

The output of the simulation procedure is a vector of size M containing the 

arrival times of the recorded arrival epochs and their associated batch sizes. The inter-

arrival time of each epoch can then be easily computed 

The matrices used in the simulation procedure are the following: 

-    ∑   
 
   ,     matrix holding the total rates of the observed 

transitions  

- Matrix  , such that   (   )  {

  (   )

   (   )
                   

  (   )   (   )

   (   )
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- Matrix   , such that   (   )  
  (   )

   (   )
  

- Matrix   , such that   (   )  
  (   )

   (   )
                   

Denote by m the current number of arrival epochs and T the time spent in the 

Markov chain. We start with m and T set to zero.  

The simulation procedure comprises of the following steps: 

Step 1: Predict the initial state of the chain:          

1.1.Generate a uniform random number:     [   ] 

1.2.Set            such that   ∑       
 
      . 

1.3.Update T.                                  (         ) 

1.4.Update the current state of the chain.                  . 

Step 2: Simulate the Markov chain while     

2.1.Predict the subsequent state of the chain:        

- Generate a uniform random number:     [   ] 

- Set                     ∑  (              ) 
        

2.2.Predict the type of transition from          to      : hidden or observed 

- Generate a uniform random number r such that     [   ] 

- Calculate the probability that a transition from          and       is 

observed:                
         

  (              )

 (              )
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- The transition is observed if                 
         ; otherwise it is hidden 

and skip to Step 3. 

- Update  ,       

- Set   ,      

- Predict the size of the arrival epoch: 

- Generate a uniform random number r such that     [   ] 

- Sample the following probabilities:{
  (              )

  (              )
}
   

 

 

- Set batch size   :           ∑
     (              )

  (              )
 
       

Step 3: Update the current state of the chain.                

Step 4: Update T.                                  (         ).  

Step 5: Go back to Step (2) and repeat 

B. Approach (2) Approximate Inversion Method  

Under this approach, we utilize the expanded state space of the underlying 

Markov chain, such that every state is represented by     virtual states, whereby K is 

the maximum batch size associated with the arrival process. Effectively, a state can be 

both transient and absorbing; transient when hit by a hidden transition and absorbing 

when hit by an observed transition of size            . It is worth noting that 
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hidden transitions are governed by   , while observed transitions of size k are governed 

by   .   

The distribution of the inter-arrival time in the batch Markovian arrival process 

is not definite; however, it is well-established that the inter-arrival times are dependent 

and highly correlated. Hence, the joint probability of the inter-arrival time and the batch 

size of an arrival event is sensitive to the start and end states of the event.  

The objective of this approach is to set up the row vectors given by (32) and 

(33); i.e. the objective is to discretize the phase-type distribution. The vector given by 

(32) is a vector of increasing time values, such that successive pairs differ by an 

increment   (the evaluation of which will be introduced in Chapter IX). Consequently, 

(33) is the evaluation of the cumulative distribution function corresponding to the time 

values, the start and end states of the arrival epoch, as well as its size.  

  [           ] 

                         [ ]  ⁄            

(32) 

For an arrival epoch of size k and which starts at i and ends at j: 

   
 ( )  [   

 (  )     
 (  )     

 (    )] (33) 
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It is worth noting that      is set to be as high as possible to ensure that    
 ( ) 

converges to 1. Yet, the evaluation of (32) is terminated whenever    
 (  ) converges to 

1 and accordingly (33)is truncated and the maximum time value is reduced such 

that                  
 (  )     . 

The matrices used in the simulation procedure are the following: 

-   , an      matrix such that    [          ] 

-  , an      matrix such that   (   )
      such that   (    ) is the 

probability that an arrival epoch will get absorbed in state (    ) with 

batch size k given starting in state i. 

-  , an  (   )   (   ) infinitesimal matrix    [
  
 
|
  
 
|  |

  
 
] 

1. Setup Procedure 

Given the start and end states, as well as the batch size of an arrival epoch, (33) 

can be evaluated as follows: 

    [
 
 |
  ( )
 
|  | 

 ( )
 

] 

Such that:  (  ( )                ( )   )     
 ( ) 

(34) 
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It follows that (33) can be evaluated as in (35):  

   
 ( )  [

   
 (  )

  (    )
 
   
 (  )

  (    )
  
   
 (    )

  (    )
]              

(35) 

We end up with (     ) vectors of (35) corresponding to the times vector 

(32), to be utilized in the simulation procedure of Approach (2). The setup procedure is 

conducted once per example and stored to be reused regardless of the targeted number 

of variates to be generated via simulation.  

2. Simulation Procedure 

Again, we denote by m the current number of arrival epochs. We start with m 

set to zero. The simulation procedure proceeds as follows: 

Step 1: Predict the start state of the chain       ; i.e. the start state of the very first 

arrival epoch 

1.1.Generate a uniform random number r such that     [   ] 

1.2.Set the initial state of the chain:            such that   ∑       
 
       

Step 2: While    , do the following: 

2.1.Predict the absorption status of the arrival epoch  ; the end state      and 

the batch size k by sampling the vector  (        )                   . 
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State   reflects      and k:                        (
 

 
) 

2.2.Generate the inter-arrival time tm 

- Generate a uniform random number r such that     [   ] 

- Locate r in             
 ( ) using the bisection method such that:  

            
 (  )                 

 (    )  

- Linearly interpolate to estimate   : 

      
(       )

(            
 (    )              

 (  ))
 (              

 (  )) 

2.3.Update m such that:       

2.4.Update       ,             

2.5.Go back to Step 2 and repeat 

It is worth noting that the MAP is a special case of the BMAP, whereby the 

maximum batch size allowed is 1, and hence the algorithms built for Approaches (1) 

and (2) can be reduced by the elimination of some redundant parameters to fit the MAP. 

Accordingly, under Approach (1), we eliminate the steps which involves predicting the 

size of the arrival epoch. Under Approach (2), similar adjustments are conducted to 

eliminate accounting for the size of the arrival epoch, which is in the MAP a 

deterministic quantity such that K is equal to 1. 
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CHAPTER IX 

SIMULATION OF PHASE-TYPE DISTRIBUTION 

The phase-type process is a special case of the MAP, yet it is distinguished 

with an underlying Markov chain that has a single absorbing state that defines arrivals 

once hit, and a constant phase distribution such that whenever an arrival occurs, the 

Markov chain restarts according to the initial probability vector. The objective of the 

simulation of the phase-type process, whether under Approach (1) or Approach (2), is to 

produce random inter-arrival times. It is to be noted that Approach (1) for the phase-

type process was discussed in [5] by Neuts.  

Suppose X is the inter-arrival time associated with the process. Under 

Approach (1), the transition activity in the underlying Markov chain is modeledsuch 

that transitions are monitored up until absorption, and arrival times are registered.  On 

the other hand, under Approach (2), we attempt to mimic the classical inversion method 

by discretizing the cumulative distribution function of the PH inter-arrival as it is not 

invertible, and then sampling it to generate inter-arrival times. The parameters required 

for the execution of either simulation approach are the following: 

- Order of the distribution n; i.e. the number of transient states in the 

underlying Markov chain 

-   [              ] such that    is the probability of starting at state i 
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- Matrix   ; the     sub-generator matrix holding the rates associated with 

hidden transitions among the n transient states 

Note that   , the     column vector holding the rates associated with the 

observed transitions is redundant and can be derived from   . Given   , we set up    

as   ( )     (   )  ∑   (   )
 
   
   

               . 

A. Approach (1) Simulation of Underlying Markov Chain 

For each arrival epoch, we simulate the corresponding transition activity until 

hitting the absorbing state, whereby all transient states visited are recorded and the time 

until absorption or the inter-arrival time can be calculated by aggregating the holding 

times over all the transient states visited by the arrival epoch before absorption. 

First, designate by   an   (   ) matrix such that:  [     ]. Second, 

denote by    an array list to store the transient states visited by the arrival epoch m 

before absorption. This array is dynamic in the sense that it is sensitive to the transition 

behavior of the arrival epoch. We also designate by    the corresponding inter-arrival 

time and   
  the time spent in transient state i by arrival m. 

For every m, the following iterative procedure is conducted to simulate the 

corresponding Markov chain activity until absorption. Note that M is the maximum 

number of arrivals and m is initially set to zero. 
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Step 1: Predict the initial state of the arrival  ,          

1.1.Generate a uniform random number r such that     [   ] 

1.2.Sample  :            such that   ∑       
 
        

1.3.Set                   

Step 2: Simulate the Markov chain while             , where (   ) is the 

single absorbing state  

2.1.Update   , such that       {        } 

2.2.Predict       

- Generate a uniform random number r such that     [   ] 

- Set        , such that   ∑
 (              )

  (                 ) 
 
              

         

- Update         ,                

2.3.Go back to Step (2) and repeat. 

Step 3: Compute the inter-arrival time of m,    ∑   
 

      

We end up with a vector of size M containing the inter-arrival times of all 

arrivals (       ). 
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B. Approach (2) Approximate Inversion Method 

The cumulative distribution function of the inter-arrival time associated with 

the phase-type process is given in (6). Yet, it is mathematically impossible to invert (6), 

and hence the approximate nature of Approach (2).  

The objective of this approach is to set up the row vectors given by (32) and 

(36); i.e. the objective is to discretize the phase-type distribution. The vector given by 

(32) is a vector of increasing time values, such that successive pairs differ by an 

increment  . Consequently, (36) is the evaluation of the cumulative distribution function 

corresponding to the time values in (32).  

 ( )  [ (  )   (  )   (    )] (36) 

1. Initialization and Setup Procedure 

Knowing that   ( ) represents the cumulative distribution function 

of     (    ), then   ( ) is by definition continuous and strictly increasing from 

zero to 1 for all  , such that   [   ). If we designate by   and     as non-negative 

PH random numbers on [   ), then the following is true: 

  ( )      
     &   (   )      

(   )    

  (   )    ( )   (   
    )                

   
   

  (   )    ( )

 
    
   

 (       )

 
    
   

 (        )

 
  (      ) 
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It is worth noting that  (      ) is a single-element matrix; i.e. a scalar 

quantity, proving that       
  (   )   ( )

 
 exists for all  , such that   [   ); 

therefore,   ( ) is differentiable at every  .  

Since   ( ) is differentiable over its domain of definition   [   ), then it 

can be expanded about any point a, such that   [   ) using Taylor’s theorem as 

given by (37). 

  ( )    ( )    
( )( )(   )  

  
( )( )

  
(   )        

(37) 

Using linear approximation, Error! Reference source not found. is reduced 

and the error term is designated by (38). 

 (   )  |
  
( )( )

  
| (   )  

 ( )

 
(   )  

(38) 

Accordingly, the smaller the difference between t and a, the error term given 

by (38) converges to zero, implying that linear approximation given by (39) is a good 

estimate of   ( ).  

  ( )    ( )    
( )( )(   ) (39) 
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However, under Approach (2),   ( ) is known for all time values given in (32). 

The CDF values are sampled to estimate the corresponding inter-event time. For every 

arrival epoch m,   (  )       (   ) and the corresponding inter-event time    is 

located in an interval [       ], such linear approximation or alternatively linear 

interpolation can be utilized to estimate   .  

The main issue is then to determine increment size   which ensures that the 

error term doesn’t exceed a certain maximum as will be demonstrated hereafter.  

The second derivative   
( )( ) is computed for all time values in (32), 

and    { ( )}  [       ] is utilized to determine the size of   as follows: 

  
( )( )  [   

( )(  )    
( )(  )    

( )(    )] 
(40) 

Hence,    { ( )}  [       ]     {  
( )( )}

  [       ]
 

   { (   )}  [       ]  
   { ( )}  [       ]

 
   

(41) 

We start with an initial estimate of          (greater than 1), such that          

 [ ]         ⁄ . 
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The following simple check is done to assess the accuracy of          and 

modify according to (42).  

  

{
 

 
                                     { (   )}  [       ] 

√
 

            { (   )}  [       ]
                            

 

(42) 

After determining the adequate spacing of (32) using (42), we reconfigure 

vectors (32) and (36) accordingly, setting up by that the database for the simulation 

procedure.  

It is worth noting that      is set to be as high as possible to ensure that  ( ) 

converges to 1. Yet, the evaluation of (36) is terminated whenever  (  ) converges to 1 

and accordingly (32) is truncated and the maximum time value is reduced such 

that                (  )     . 

2. Simulation Procedure 

We denote by m the current number of arrivals and start with m set to zero. For 

every arrival m, the following is the simulation procedure: 

Step 1: Generate a uniform random number r such that     [   ] 

Step 2: Sample F(t), such that  (  )      (    ) 
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Step 3: Linearly interpolate using the (    (  ))   (      (    )) such that: 

      
(       )

( (    )              
 (  ))

 (   (  )) 

The output of the simulation procedure is a vector of size M containing the 

inter-arrival times of the arrival epochs.  

It is worth noting that Approach (2) was inspired by the work done by Brown, 

Place and Liefvoort on the generation of matrix exponential random varieties [8]. 

Analogous to what has been presented later in the context of the algorithm of Approach 

(2), the authors suggest: (i) the generation of a uniform random number “r” on the 

interval [0, 1], (ii) setting a maximum decay value for which the cumulative distribution 

function can be computed with confidence, (iii) if “r” is less than the decay value, then 

the bisection method is used to locate “r” in a vector of increasing CDF values and 

consequently evaluate the corresponding time value utilizing the decay value and an 

exponential tail.  
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CHAPTER X 

APPLICATIONS, RESULTS AND DISCUSSION 

To compare Approaches (1) and (2), several cases/examples of PHDs, MAPs 

and BMAPs were run and analyzed using both approaches. This section summarizes the 

findings of these applications.  

A. Randomly Populated Examples 

To eliminate bias to either simulation approach, we first introduce the 

efficiency of Approach (2) versus Approach (1) by applying both on the same set of 

randomly populated examples. Random PHD, MAP and BMAP examples were 

generated such that the required parameters were randomly populated. 

1. Phase-Type Distribution 

Random PHD examples were generated such that the two required 

parameters   and     were randomly populated. This was mainly done to assess the 

sensitivity of either approach, yet namely Approach (2), to the order of the phase-type 

distribution under study.  

The execution procedure under Approach (1) is effectively the simulation 

process as no setup is required prior to initiating the underlying Markov chain. 
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Alternatively, the execution procedure under Approach (2) can be decomposed into two 

components: the initialization and setup stage and the simulation process. In the 

initialization and setup stage, a database of time values and their corresponding 

cumulative probabilities is created independently from and before the simulation 

process. The setup procedure can be performed and stored once per numerical example 

regardless of the targeted number of random PH numbers to be generated.  

The output is composed of the average inter-event time (estimate of the first 

moment), the corresponding 95th confidence interval, estimates of the variance and 

skewness and the duration of simulation procedure for Approaches (1) and (2), as well 

as the duration of the setup procedure for Approach (2). Randomly populated PHD 

examples of orders 1 through 10 were run and replicated ten times each for one million 

arrivals. Refer to Appendix I for the output of the simulation under Approaches (1) and 

(2). 

The simulation approaches were compared in terms of the accuracy of the 

approximation of either approach of the mean inter-event time, its variance and the 

skewness of the cumulative distribution function such that the exercise reflects the 

accuracy of the estimation of the first, second and third moments of the inter-arrival 

time respectively. The efficiency of Approach (2) is assessed in light of the duration of 

the simulation process as compared to that of Approach (1).  

Tables 1 and 2 summarize the calculation results of the error of the estimates of 

the mean inter-arrival times, its variance and the skewness of the corresponding CDF 
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relative to the true values as derived from equation (6) for orders 1 through 5 and 9 

through 10 respectively. 

Table 1 Error Analysis of Randomly Populated PHD Examples – Orders 1 to 5 

Percent Relative Error of Estimate 

Order 1 2 3 4 5 

Approach (1) 
     

Mean 0.1498% -0.1477% 0.1143% 0.1406% -0.1281% 

Variance 0.3124% -0.5639% 0.1257% 0.1924% -0.3955% 

Skewness -0.1000% -0.2417% -0.1041% 0.0000% -0.3393% 

Approach (2) 
     

Mean -0.0963% -0.1477% 0.1143% 0.0000% 0.0641% 

Variance 0.9380% -0.1738% 0.0153% -0.2270% 0.0466% 

Skewness -0.2000% -0.1933% -0.0520% -0.7890% -0.3393% 

Table 2 Error Analysis of Randomly Populated PHD Examples – Orders 6 to 10 

Percent Relative Error of Estimate 

Order 6 7 8 9 10 

Approach (1) 
     

Mean 0.0000% 0.0916% 0.0000% -0.1098% 0.0606% 

Variance -0.4201% 0.0829% -0.0786% -0.1968% 0.3115% 

Skewness -0.6623% 0.2510% -0.1515% -0.4403% 0.3428% 

Approach (2)      

Mean 0.0000% 0.0916% 0.0000% -0.1098% -0.1819% 

Variance 0.3682% -0.1095% 0.0429% -0.1509% -0.0767% 

Skewness 0.6113% 0.5522% -0.3030% -0.1468% 0.3918% 

For the mean inter-arrival time, the estimate resulting from Approach (2); i.e. 

the approximate inversion method is as accurate as that resulting from Approach (1) via 

the simulation of the underlying Markov chain. The absolute error of the average inter-

arrival time as a percentage of the mean inter-arrival time ranges from 0% to 0.15% 

under Approach (1) and to 0.18% under Approach (2). It is worth noting that the true 
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mean of the inter-arrival time always falls within the 95
th

 confidence interval of the 

estimated average inter-arrival time for both approaches.  

In terms of accurately reflecting the variability of the process, simulation of the 

underlying Markov chain under Approach (1) is slightly more accurate than the 

approximate inversion method under Approach (2), similarly Approach (1) can match 

the skewness of the cumulative distribution function of the inter-arrival time better than 

its counterpart. However, the difference between the errors of the estimates of 

Approaches (1) and (2) is slight, whereby the maximum absolute error as a percentage 

of the true value (variance or skewness) is less than 1% for both approaches.  

Figures 6 and 7 illustrate the variation of the duration of the execution 

procedure (in milliseconds) of Approaches (1) and (2) respectively. The execution 

procedure of Approach (2) is composed of a setup stage and a simulation procedure, 

while that of Approach (1) is effectively the simulation process. No prior setup is 

required to initiate the simulation under Approach (1); however unlike Approach (2) in 

which the database setup per example can be reused innumerably, the simulation under 

Approach (1) is always renewed regardless of the number of random numbers to be 

generated. 

For Approach (2), a noticeable increasing trend is registered for the setup time, 

such that the time required to prepare the simulation database or to discretize the 

distribution grows with the increase in the order of the PHD; i.e. the number of transient 

states in the underlying Markov chain. This can be attributed to the growing size of the 
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involved matrix operations. While the setup time of Approach (2) increases with the 

order of the PHD, the simulation time varies only slightly, such that no particular trend 

can be realized for the variation of the simulation time as a function of the order. 

Generally, the duration of the simulation procedure under Approach (2) fluctuates 

closely about its average and independently from the order of the PHD.  

For Approach (1), the duration of the execution procedure; i.e. the simulation 

process increases with the order of the underlying Markov chain. Generally, a potential 

arrival initiates the underlying Markov chain and undergoes one, two, or even hundreds 

of transient transitions before hitting the single absorbing state and exiting the chain, 

and then the larger the number of transient states, it is more likely that the longer it will 

take to simulate the underlying Markov chain especially for a larger targeted number of 

arrivals.  

Similarly, for Approach (2), the execution time increases with the order of the 

underlying Markov chain as the size of the sub-generator matrix grows and the required 

matrix operations become more extensive. However, given that the simulation time 

varies only slightly with the order, the increase in the execution time is mostly due to 

the increase in the setup time, such that the sensitivity to the order of the underlying 

Markov chain is shifted to the setup stage as opposed to the case of Approach (1).   

The difference in the execution times between Approach (1) and Approach (2) 

tends to increase for higher-order PHDs, whereby it might be more efficient to utilize 
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the underlying Markov chain to simulate lower-order PHDs (less than 4) and 

alternatively deploy Approach (2) for higher-order PHDs.  

 

Figure 6 Variation of Execution (Simulation) Time of Approach (1) 

 

Figure 7 Variation of Execution Time of Approach (2) 
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Figure 8 shows the variation of the simulation time for both approaches as a 

function of the order of the PHD. As aforementioned, the duration of the simulation 

process varies only slightly under Approach (2), as opposed to the increasing simulation 

time under Approach (1). The simulation process under Approach (2) is fairly 

independent from the order of the underlying Markov chain, unlike the case for 

Approach (1). 

 

Figure 8 Randomly Populated PHD Examples - Variation of the Simulation Time  
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2. Markovian Arrival Process 

Random MAP examples were utilized to compare Approaches (1) and (2), such 

that the MAP parameters    and   were randomly populated. The output components 

are similar to that of the randomly populated PHD examples. Refer to Appendix II for 

more information about the simulation output. Tables 3 and 4 summarize the error 

analysis of the estimated average inter-arrival time for each order under both approaches 

in terms of the percent error as compared to the true mean. 

Table 3 Error Analysis of Randomly Populated MAP Examples – Orders 2 to 6 

Percent Relative Error of Estimate 

Order 2 3 4 5 6 

Approach (1)      

Mean 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 

Variance 0.0370% -0.0708% 0.0000% 0.0000% 0.0000% 

Skewness 0.1511% 0.0000% 0.0000% -0.0499% 0.1474% 

Approach (2)      

Mean 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 

Variance -0.1110% -0.1416% 0.0000% 0.0000% 0.0000% 

Skewness -0.0504% -0.0512% -0.0505% 0.0000% -0.0491% 

Table 4 Error Analysis of Randomly Populated MAP Examples – Orders 7 to 10 

Percent Relative Error of Estimate 

Order 7 8 9 10 

Approach (1)     

Mean 0.0000% 0.0000% 0.0000% 0.0000% 

Variance 0.0000% 0.0000% 0.0000% 0.0000% 

Skewness -0.1001% 0.2011% -0.0495% 0.1493% 

Approach (2)     

Mean 0.0000% 0.0000% 0.0000% 0.0000% 

Variance 0.0000% 0.0000% 0.1429% 0.0000% 

Skewness -0.1001% -0.1006% 0.0445% 0.0498% 
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Approaches (1) and (2) are equally accurate in estimating the mean inter-arrival 

times, such that they both reach 100% accuracy for all orders. Although Approach (1) 

captures the variability of the process and the skewness of the corresponding 

distribution of the inter-arrival time more accurately than its counterpart, Approach (2) 

is much more accurate in reflecting the correlation among the generated inter-arrival 

times; however, the estimation of either approach of the correlation cannot be 

considered efficient as the absolute error is larger than 5% of the true value. It was 

noted that for examples with weak correlation, simulation by either approach tends to 

overestimate the correlation 

Figure 9 illustrates the variation of the duration of the setup time (in 

milliseconds) of Approach (2) per order. As expected, the setup time increases as the 

order of the underlying process increases.  

 

Figure 9 Randomly Populated MAP Examples-Variation of Setup Time of Approach (2) 
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Figure 10 displays the variation of the duration of the simulation time (in 

milliseconds) of both approaches per order. The sensitivity of the simulation time of 

either approach to the order of the underlying process is not clear, such that no specific 

pattern can be realized from these observations. Generally, Approach (1) performs more 

efficiently than Approach (2) 

 

Figure 10 Randomly Populated MAP Examples-Variation of Simulation Times 
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reduced, we presume that Approach (2) would be more appropriate. Instead of fully 

populating   , arrival can be restricted to and/or from a specific number of states, 

which is effectively the case in many real-life applications of MAPs. Within this 

context, we introduce four numerical examples to highlight the efficiency of Approach 

(2) relative to Approach (1).  

a. MAP (4) and Variants 

We consider the example, whose hidden transitions are represented by Figure 

11. Four variants of this example are run using Approaches (1) and (2) for ten million 

arrivals. All four variants share one   , yet differ by   . Ten replications were 

performed per variant and the best estimates are reported. 

Figure 11 illustrates the hidden transitions in the four-state Markov chain 

underlying the MAP process understudy. This transitional activity is expressed by   . 

   [

        
       
      
      

] 

 

Figure 11 Example One - Hidden Transitions in Underlying Markov Chain  
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The marked transitions in each of the four variants can be expressed 

by   
 ,    

 ,   
  and   

  respectively.  

  
  [

    
    
    
    

]   
  [

    
    
    
    

] 

   
  [

        
    
        
    

]   
  [

    
    
    
    

] 

Table 5 summarizes the performance of both approaches for all four variants in 

terms of the setup and simulation. Unlike any MAP example whose   is fully and 

randomly populated, Approach (2) is much more efficient for MAPs with restrictions on 

marked transitions, such as reducing their probabilities or rates relative to the total 

departure rate from the origin state and/or limiting marked transitions to a reduced set of 

specific states. Not only is the simulation less, but also the overall speed of the 

execution process under Approach (2) is greater.  

Table 5 MAP(4) and Variants : Performance of Approaches (1) and (2) 

 Variant 1 2 3 4 

Approach (1) 
    

Simulation Time (milliseconds) 9,256 10,304 9,169 8,407 

Approach (2) 
    

Setup Time (milliseconds) 1,767 1,569 1,756 1,818 

Simulation Time (milliseconds) 2,109 3,092 2,301 1,817 
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3. Batch Markovian Arrival Process 

Random BMAP examples were generated to compare Approaches (1) and (2), 

such that the BMAP parameters    and   , for          were randomly populated. 

The output is composed of the average inter-event time, the corresponding 95
th

 

confidence interval, and the duration of simulation procedure for Approaches (1) and 

(2), as well as the duration of the setup procedure for Approach (2). Refer to Appendix 

III for more information about the output of the simulation.  

BMAPs of orders 2 through 6 were run for one million arrival epochs using 

both approaches. For each order, batch sizes 2, 3, 4 and 5 were run. Tables 6 through 9 

summarize the error analysis of the estimated average inter-arrival time for each batch 

size under both approaches. 

For BMAPs with a maximum batch size of 2 (Table 6), transition 

matrices   ,     and    were randomly populated per example. For orders 2 and 3, the 

absolute error under Approach (2) is higher than that under Approach (1). For orders 5 

and 6, both approaches result in equal estimates of the mean inter-arrival times. The 

accuracy of Approach (2) per one batch size and relative to Approach (1) improves as 

the order of the underlying process increases.  

Table 7 displays the results of the simulation of BMAPs of maximum batch 

size 3. Generally, for lower-order BMAPs, simulation using Approach (1) is more 

accurate (orders 2, 3 and 4). However, the accuracy of the output resulting from the 

simulation under Approach (2) tends to improve as the order of the underlying process 
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increases to 5 and 6. However, given a specific order, increasing the batch size from 2 

to 3 does not have a clear impact on the error. 

Table 6 Randomly Populated BMAP Examples - Batch Size 2 

Percent Relative Error 

of Estimate 
Order 

Batch Size 2 2 3 4 5 6 

Mean 0.4765 0.2699 0.2557 0.1526 0.1392 

Approach (1) 
     

Sample Mean 0.4760 0.2699 0.2552 0.1528 0.1391 

Relative Error (%) 0.1049% 0.0000% 0.1955% -0.1311% 0.0718% 

Approach (2) 
     

Sample Mean 0.4764 0.2700 0.2553 0.1528 0.1391 

Relative Error (%) 0.0210% -0.0371% 0.1564% -0.1311% 0.0718% 

Table 7 Randomly Populated BMAP Examples - Batch Size 3 

Percent Relative Error 

of Estimate 
Order 

Batch Size 3 2 3 4 5 6 

Mean 0.5471 0.2418 0.1296 0.0987 0.0840 

Approach (1) 
     

Sample Mean 0.5481 0.2416 0.1295 0.0986 0.0840 

Relative Error (%) -0.1828% 0.0827% 0.0772% 0.1013% 0.0000% 

Approach (2) 
     

Sample Mean 0.5473 0.2422 0.1298 0.0986 0.0840 

Relative Error (%) 0.0365% 0.1652% 0.1541% -0.1014% 0.0000% 

Tables 8 and 9 display the results of the simulation of BMAPs of maximum 

batch size 4 and 5 respectively. For batch sizes 4 and 5, Approaches (1) and (2) are 

highly comparable in terms of accuracy resulting mostly in equal estimates. 

Additionally, similar to the previous examples, the mean decreases with the increase in 

the order of the underlying process per batch size, as well as with the increase in the 
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batch size per order. This can be explained by the presumption that generally the 

increase in the order of the process and/or the maximum batch size tends to inflate the 

mean sojourn time in each state, especially if the transition rates are randomly generated 

with no prior restriction. 

Table 8 Randomly Populated BMAP Examples - Batch Size 4 

Percent Relative Error 

of Estimate 
Order 

Batch Size 4 2 3 4 5 6 

Mean 0.3108 0.1363 0.0987 0.0736 0.0585 

Approach (1) 
     

Sample Mean 0.3106 0.1364 0.0988 0.0736 0.0586 

Relative Error (%) 0.0644% -0.0734% -0.1013% 0.0000% -0.1709% 

Approach (2) 
     

Sample Mean 0.3110 0.1362 0.0987 0.0735 0.0584 

Relative Error (%) -0.0644% 0.0734% 0.0000% 0.1359% 0.1709% 

Table 9 Randomly Populated BMAP Examples - Batch Size 5 

Percent Relative Error 

of Estimate 
Order 

Batch Size 5 2 3 4 5 6 

Mean 0.2982 0.1318 0.0779 0.0609 0.0459 

Approach (1) 
     

Sample Mean 0.2983 0.1317 0.0779 0.0609 0.0459 

Relative Error (%) -0.0335% 0.0759% 0.0000% 0.0000% 0.0000% 

Approach (2) 
     

Sample Mean 0.2983 0.1317 0.0780 0.0610 0.0459 

Relative Error (%) -0.0335% 0.0759% -0.1284% -0.1642% 0.0000% 

Figure 12 illustrates the variation of the duration of the setup time (in 

milliseconds) of Approach (2) per order and batch size. As expected, the setup time 

increases as the order and/or the batch size increases.  
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Figure 12 Randomly Populated BMAP Examples - Setup Time of Approach (2) 

As for the duration of the simulation time, no specific pattern is observed 

relative to the variation of the order of the underlying process and/or the maximum 

batch size associated with marked transitions for both approaches. However, the 

simulation duration of any example using Approach (1) is faster, and on average, the 

simulation time under Approach (2) is almost 3 times greater than that under Approach 

(2) primarily due to the search mechanisms heavily deployed in the algorithm. Yet, 

similar to MAPs, if the marked transitions were reduced and/or restricted to and from 

specific states, Approach (2) is most likely to become more efficient than Approach (1). 
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B. Effect of Variability 

A sought after property of any simulation approach is the flexibility to 

accurately reflect the variability of a process. We chose the balanced two-level mixture 

of Erlangs, which is a subclass of PHDs also referred to as the hyper-Erlang, to analyze 

the sensitivity of Approach (2) namely to the change in the variability of the process. 

1. Balanced Two-Level Mixture of Erlangs 

We consider the mixture of  (       ) and  (       ). An arrival epoch 

activates the underlying Markov chain at state   with a probability   or state (    ) 

with a probability (   ), and then proceeds through the corresponding successive 

series of transient states until it hits the single absorbing state.  

One important characteristic of the balanced two-level mixture of Erlangs is 

reflected in (43). 

   
   

   
 (43) 

The mean inter-event time can be expressed by the simplified form given by 

(44). 

 [ ]  
 (   )

  
 (44) 
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Suppose we propose a constant mean equal to   such that    . Transition 

rate     can then be expressed as a function of   and   as in (45), and accordingly 

transition rate     can be computed using (43). 

   
 (   )

 
 (45) 

We consider a numerical example depicted in Figure 13. 

 

Figure 13 Markov Chain Representation of Balanced Two-Level Mixture of Erlangs 

We vary the values of    from 0.1 to 0.9 at a step size of 0.1, and run 

Approaches (1) and (2) on the corresponding process for ten million arrivals with ten 

replications per case.  

Varying alpha is directly associated with varying the variance of the inter-

arrival time as displayed in Figure 14. The coefficient of variation (CV), as the ratio of 

the standard deviation to the mean, decreases from 1.568 at       to 0.474 at      , 
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then increases back to 1.568 at      . The curve depicting the change in the 

coefficient of variation is almost symmetric about      , such that generally 

equidistant values of alpha result in the same variance.  

 

Figure 14 Variation of CV of Balanced Two-Level Mixture of Erlangs with Alpha 

Tables 10 and 11 summarizes the error analysis of the estimates of the mean 

inter-arrival time, its variance and the skewness of the corresponding cumulative 

distribution function as measures of the accuracy of either approach in estimating the 

first, second and third moments respectively.  
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Table 10 Balanced Two-Level Mixture of Erlangs – Alpha [0.1,0.5] 

Percent Relative Error of Estimate 

Alpha 0.1 0.2 0.3 0.4 0.5 

CV 1.568 0.968 0.686 0.530 0.474 

Approach (1) 
     

Mean -0.0617% -0.0200% -0.0100% 0.0033% 0.0117% 

Variance -0.0136% -0.1600% -0.0506% -0.0889% 0.0000% 

Skewness 0.1258% -0.1911% -0.1037% 0.0729% -0.1042% 

Approach (2) 
     

Mean 0.1150% 0.0467% 0.0367% 0.0033% -0.0100% 

Variance 0.2712% 0.1493% 0.1620% -0.0889% 0.0000% 

Skewness -0.0503% -0.1147% 0.0000% -0.1459% -0.1042% 

Table 11 Balanced Two-Level Mixture of Erlangs – Alpha [0.6,0.9] 

Percent Relative Error of Estimate 

Alpha 0.6 0.7 0.8 0.9 

CV 0.520 0.668 0.944 1.532 

Approach (1) 
    

Mean -0.0083% -0.0083% 0.0167% 0.0150% 

Variance 0.0615% -0.0960% 0.0421% 0.0757% 

Skewness -0.0933% -0.0631% 0.0000% -0.0814% 

Approach (2) 
    

Mean 0.0117% -0.0100% -0.0250% -0.0633% 

Variance 0.0615% 0.1280% -0.0702% -0.1373% 

Skewness -0.2799% 0.1263% 0.1297% 0.1086% 

For all three quantities, mean inter-arrival time, variance and skewness, 

Approach (1) generally results in more accurate estimates than Approach (2); however, 

slightly so. Under Approach (1), the impact of changing the variability of the process on 

the error of the estimated mean inter-arrival time is not clear. Yet under Approach (2), a 

relatively clearer pattern can be observed, such that the absolute error decreases as the 

variance decreases when alpha increases from 0.1 to 0.5, then generally increases back 

for values of alpha ranging from 0.6 to 0.9. This means that the reduction in the 
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variability of the process generally resulted in estimates closer to the true value of the 

mean inter-arrival time under Approach (2), and the opposite is true as well. This is not 

the case for the variance and skewness, such that under both approaches, no particular 

trend can be realized for the variation of the absolute error. The impact of variability can 

be traced by the length of the 95
th

 confidence interval of the estimate of the mean inter-

arrival time. The lower the variability of the PHD under study, the smaller is the interval 

(Figure 15).  

 

Figure 15 Variation of the Length of 95
th

 Confidence Interval as a Function of Alpha 

Another important aspect is the impact of variability on the duration of the 

execution of the simulation approach. As aforementioned, the execution of Approach 

(2) can be decomposed into the setup procedure and the simulation process, as opposed 

to the execution of Approach (1) which is effectively the simulation process itself.  
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Figure 16 shows the variation of the setup time as a function of alpha under 

Approach (2). The striking feature of the curve depicting the trend of the variation of the 

setup time of Approach (2) is its similarity to that depicting the change in CV 

(coefficient of variation) as a function of alpha. The setup time decreases with the 

decrease in the variability of the process under study, and vice versa, which can be 

attributed to the increase in the complexity of the matrix operations associated with 

processes with higher variability.  

 

Figure 16 Variation of Setup Time of Approach (2) as a Function of Alpha 
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Approach (2), which is exactly the case in this example. Similarly, no specific trend can 

be traced for the variation of the simulation time under Approach (1), indicating that the 

variability of the underlying process has little impact on the simulation process, unlike 

the order of the underlying Markov chain. It is also noticeable that simulation process 

under Approach (2) is faster and the overall execution procedure, inclusive of the setup 

is also faster than the simulation/execution procedure under Approach (1). 

 

Figure 17 Variation of Simulation Time as a Function of Alpha 

2. M/PH/1 Queue Model 

We consider an M/PH/1 queue model; such the distribution of inter-arrival 
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discipline is FIFO (first-in-first-out) and the capacity of the system is assumed infinite. 

We are interested in analyzing the accuracy of either approach in estimating the 

performance measure or the steady-state quantities of the queue model under study 

while at the same time analyzing the impact of changing the variability of the service 

time on the estimation of the latter quantities. The performance measures consist of: the 

average number of units in the system  , the average number of units waiting in queue 

  , the average waiting time or the time spent in the system   and the average delay 

time or the time spent waiting in the queue before being served   . 

The exact values of the steady-state quantities were computed according to 

closed-form equations of the M/G/1 queue model. Given that   is the arrival rate and   

is the average service rate, then   is the capacity utilization ratio. The expected number 

of units waiting in queue is computed using (46) such that   
  is the variance of the 

service time. Using Little’s law, the expected delay time can be calculated 

straightforwardly using (47). The expected waiting time is then the expected delay time 

plus the expected service time   ⁄  as given by (49). The expected number of units in 

the system can be derived using Little’s law or as the summation of the expected 

number of units in the queue and the capacity utilization ratio. 

   
    

    

 (   )
         

 

 
 (46) 

   
  

 
 (47) 

     
 

 
 (48) 
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          (49) 

The average service rate is kept constant at 1; such that the service time is on 

average 1 unit of time. The variability of the distribution of the service time is varied for 

values of alpha ranging from 0.1 to 0.9. It is worth noting that the curves which depict 

the variation of the steady-state quantities as a function of alpha (Figure 18) are similar 

to that of the CV symmetric about α=0.5, such that the decrease in variability decreases 

all four performance measures and the opposite is true. 

We constructed a simulation model for each case, such that the inter-arrival 

times for ten million units were first generated as random exponential random variables 

with an arrival rate of 0.5 units per time unit. The service times for the ten million units 

admitted into the system were generated first according to Approach (1) by simulating 

the underlying Markov chain and second according to Approach (2) by applying the 

proposed approximate inversion method. The same vector of inter-arrival times was 

used for both scenarios: (1) service times generated using Approach (1) and (2) service 

times generated using Approach (2).   
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Figure 18 M/PH/1 – Variation of Steady-State Quantities as Function of Alpha 
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the service time and the departure time of a unit m, where      
     , then the 

performance measures can be calculated using the following equations.  

   
∑ (  

      
      )

 
   

  
    (50) 

   
∑ (  

      
      )

 
   

 
 (51) 

  
∑ (  

      
   ) 

   

 
 (52) 

  
∑ (  

      
   ) 

   

  
    (53) 

An error analysis was performed on the simulation estimates of the 

performance measures and the results are illustrated in Figures 19 and 20. A common 

variation trend is observed for all four quantities, which is expected since they are 

dependent. By generating inter-arrival times via the approximate inversion method 

under Approach (2), more accurate estimates are achieved as compared to the 

simulation of the Markov chain under Approach (1) when the variability of the 

underlying process is high (at extreme values of alpha), and the opposite is true. The 

decrease in the variability of the process generally decreases the absolute error of the 

estimates given by Approach (1), while increases that of the estimates given by 

Approach (2). However, generally, Approach (1) yielded better results, although the 

maximum absolute error under Approach (2) is approximately 0.3%, which is slightly 

greater than the 0.2% of Approach (1). 



 

84 

 

 

 

Figure 19 Variation of the Absolute Error of the Estimates of L and Lq 
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Figure 20 Variation of the Absolute Error of the Estimates of W and Wq 
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C. Effect of Correlation: MAP (4) Example 

To assess the impact of correlation among the inter-arrival times in a MAP, we 

consider the case whose underlying Markov chain is illustrated in Figure 21. Hidden 

transitions are represented by solid arrows, while marked transitions associated with 

arrivals are represented by dashed arrows. Hidden transitions are fixed such that    is 

kept constant, while   is varied with u. Increasing u is bound to increase the correlation 

among the inter-arrival times.  

   [

       
       
      
     

]  

  ( )  [

    
    
       (   )

 (   )     

] 
 

Figure 21 Underlying Markov Chain of MAP (4) Example 

This example is formulated such that the mean inter-arrival time and its 

corresponding variance are kept constant, such that the impact of correlation can be 

more closely assessed. As the value of   increases from 0.1 to 0.9 (at a step size of 0.1), 

the correlation, represented in this case with the Lag-1 autocorrelation measure among 

the inter-event times of the process understudy increases linearly as shown in Figure 22. 
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Figure 22 MAP (4) Example-Variation of Correlation 

Tables 12 and 13 summarize the relative errors of the estimates of the mean, 

variance, skewness and correlation. Each variant is simulated for ten million arrivals, 

such that a stream of ten million inter-arrival times is generated. 
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Approach (2) results in a slightly more accurate estimate than the simulation of the 
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simulation via the approximate inversion method results in a better approximation of the 

skewness of the corresponding distribution, whereby it more accurately reflects the 

shape of the variation of the cumulative distribution function. Similar to the estimate of 

the mean inter-arrival times, the absolute error of the estimates of the variance, 

skewness and correlation is independent of the degree of correlation in the underlying 

process, whereby increasing the correlation among the events does not affect the 

capability of either simulation approach in accurately approximating the quantities 

understudy. 

Table 12 MAP (4) Example-Error Analysis u [0.1,0.5] 

Relative Percent Error of Estimate 

u 0.1 0.2 0.3 0.4 0.5 

Lag-1 Autocorrelation -0.117 -0.088 -0.058 -0.029 0.000 

Approach (1) 
     

Mean -0.0095% -0.0476% 0.0286% -0.0476% 0.0286% 

Variance -2.5641% 0.0000% 0.0000% 0.0000% 0.0000% 

Skewness -0.1352% 0.1014% 0.1014% -0.1352% 0.1014% 

Lag-1 Autocorrelation 0.0000% 0.0000% 1.7241% 0.0000% 0.0000% 

Approach (2)      

Mean 0.0571% -0.0286% 0.0667% 0.0095% 0.0381% 

Variance 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 

Skewness -0.0338% 0.0000% 0.0338% 0.1014% 0.0676% 

Lag-1 Autocorrelation 0.0000% 0.0000% 1.7241% 0.0000% 0.0000% 
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Table 13 MAP (4) Example-Error Analysis u [0.6,0.9] 

Relative Percent Error of Estimate 

u 0.6 0.7 0.8 0.9 

Lag-1 Autocorrelation 0.029 0.058 0.088 0.117 

Approach (1)     

Mean -0.0190% 0.0190% 0.1048% 0.0857% 

Variance 0.0000% 0.0000% 0.0000% 0.0000% 

Skewness 0.1014% 0.0676% -0.0676% -0.1352% 

Lag-1 Autocorrelation 0.0000% 1.7241% 0.0000% 0.0000% 

Approach (2)     

Mean 0.0476% 0.0190% 0.0190% -0.0286% 

Variance 0.0000% 0.0000% 0.0000% 0.0000% 

Skewness 0.2028% 0.0000% -0.1352% 0.2028% 

Lag-1 Autocorrelation 0.0000% 0.0000% 0.0000% -0.8547% 

As for the performance of Approach (2), the setup time mostly follows a 

decreasing trend, albeit a very slightly gradual one, which can be attributed to the 

presumption that increasing the correlation in the underlying process resulted in less 

extensive matrix operations. However, unlike the setup time, the simulation time does 

not seem to maintain a specific trend which can be attributed to varying the correlation. 

Figure 23 illustrates the variation of the duration of the execution of Approach (2), 

distinguishing between the durations of the setup and simulation procedures.  

On the other hand, Figure 24 illustrates the variation of the execution time of 

Approach (1) which is effectively the simulation time. Similar to Approach (2), the 

simulation times generally fluctuates closely about its average such that the impact of 

increasing the correlation among arrival events is irrelevant to the performance of 

Approach (1). Nonetheless, despite the almost equal accuracy of the estimates 
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approximated by both approaches, simulation of the underlying Markov chain via 

Approach (1) remains almost three times faster than its counterpart.  

 

Figure 23 MAP (4) Example-Variation of Execution Time of Approach (2) 

 

Figure 24 MAP (4) Example-Variation of Simulation Time of Approach (1)  

0 2,000 4,000 6,000 8,000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (milliseconds) 

u
 

Approximate Inversion Method 

Approach (2) - Setup Time

Approach (2) - Simulation Time

0 500 1,000 1,500 2,000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (milliseconds) 

u
 

Simulation of Underlying Markov Chain 



 

91 

 

CHAPTER XI 

CONCLUSION 

In this research, we proposed the simulation of three point processes, the 

Phase-Type Distribution (PHD), the Markovian Arrival Process (MAP) and the Batch 

Markovian Arrival Process (BMAP) such that inter-arrival times are randomly 

generated via an approximate inversion method, referred to as Approach (2). We used 

the simulation of the underlying Markov chain as a reference approach (Approach 1) to 

which our proposal can be compared and thusly assessed. The power of Approach (2) 

lies in its generality, such that given the parameters of any distribution; a database of 

time-values vs. CDF-values can be compiled and used to perform simulation of 

corresponding distributions and/or stochastic processes. The approximate nature of the 

algorithm doesn’t render it inaccurate; the relative errors of the estimates of the mean 

inter-arrival time, its variance and skewness of its distribution are generally acceptable. 

However, neither approach was capable of producing an accurate degree of correlation 

among events in the case of MAPs and BMAPs, specifically when simulating randomly 

and fully populated MAPs and BMAPs.  

For PHDs, the cumulative distribution function of the inter-arrival time is 

invertible, so we suggested discretizing it by formulating a time-CDF value database, 

whereby we create an equally-spaced time-values vector and a corresponding CDF-

values vector. The spacing of the time-values vector was derived based on Taylor series 

expansion and linear approximation utilizing the fact that the cumulative distribution 
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function is differentiable about the non-negative axis. It is worth noting that the time-

values vector is truncated whenever the CDF converges to 1.0. For every arrival epoch, 

a uniform random number ranging from 0 to 1 inclusively is generated and located in 

the CDF-values vector via the binary search technique or the bisection method, and 

accordingly the binding values are used to linearly interpolate an estimate of the 

corresponding value of the inter-arrival time. We also developed a PHD-sensitive 

Stochastic Simulation Algorithm (SSA) to model the transitional behavior in the 

underlying Markov chains as a reference approach to which Approach (2) can be 

compared. The simulation process follows the transition dynamics of an arrival epoch 

until it hits the absorbing state.  

To assess the efficiency of Approach (2) in light of the performance of 

Approach (1), we ran both algorithms on the same set of examples. First, we generated 

randomly-populated PHD examples and ran them for 1 million arrivals. Approach (2) 

tends to be faster than its counterpart, namely the simulation speed under Approach (2) 

is higher than that under Approach (1) especially as the order of the underlying Markov 

chain increases. The sensitivity of either approach to the order of the PHD is reflected 

by the increase in the duration of the setup procedure of Approach (2) and the increase 

in the duration of the simulation process of Approach (1). This implies that under 

Approach (2), the effect of the order of the PHD or the underlying Markov chain is 

shifted from the simulation procedure as in Approach (1), to the setup procedure. The 

setup procedure of Approach (2) can be conducted once per example and used to 

generate random inter-event times innumerably, as opposed to Approach (1), which has 

can be reiterated every time a set of inter-event times is to be generated. Additionally, 
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we applied both approaches to simulate a specific case of a balanced two-level mixture 

of Erlangs of order 9. The mean is held constant at 1 minute, yet the variance was 

changed over 9 variants of the same example, and the resulting variation of the CV 

(coefficient of variation) was recorded. It was deduced that decreasing the variability of 

the underlying process decreases the duration of the setup procedure of Approach (2) 

and improves the accuracy of the estimates under both approaches. It was also noted 

that the curves depicting the variation of the CV, length of the 95
th

 confidence interval 

for both approaches and the setup time of Approach (2) have similar variation trends. 

Additionally, an M/PH/1 queuing model was also simulated using both approaches and 

the estimates of the performance measures or the steady-state queue quantities by 

Approaches (1) and (2) are comparable with minimal deviation from their true values.  

Unlike PHDs, Approach (1) proved to be faster than Approach (2), yet equally 

accurate, for fully populated MAPs and BMAPs; however, the difference in the 

durations of the execution procedures of both approaches differs only slightly, and is 

only strengthened when more than 10 million arrivals are simulated at one time. In 

general, the probability of arrivals in a MAP or a MAP is high because any state can act 

as an absorbing state. Therefore, imposing some restrictions on marked transitions 

matrix by restricting marked transitions to/from specific states or decreasing the 

probability of those transitions, renders Approach (2) much more efficient as a 

simulation method as compared to Approach (1). Additionally, we tested the impact of 

the variation of the degree of correlation among inter-arrival times on the efficiency of 

simulation, and generally no one pattern or trend can be realized, implying the 

insensitivity of either approach to the increase in the correlation. 
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APPENDIX I 

RESULTS OF THE SIMULATION OF RANDOMLY 

POPULATED PHD EXAMPLES 
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Table 14 Simulation Results of Random PHD Examples – Approach (1) 

Number of Arrivals: 1,000,000 Approach (1) Simulation of Markov Chain 

Order 
Mean 

(seconds) 

Variance 

(10
-3

) 
Skewness CV 

Average Inter-arrival 

Time (seconds) 

95
th

 Confidence 

Interval 

Sample 

Variance (10
-3

) 

Sample 

Skewness 

1 18.695 97.087 2.000 1.000 18.723 [18.687,18.760] 97.391 1.998 

2 0.677 0.140 2.069 1.050 0.676 [0.674,0.677] 0.140 2.064 

3 0.875 0.214 1.922 1.004 0.876 [0.874,0.878] 0.214 1.920 

4 0.711 0.143 2.028 1.011 0.712 [0.711,0.714] 0.144 2.028 

5 1.561 0.798 2.063 1.085 1.559 [1.556,1.563] 0.794 2.056 

6 1.072 0.293 1.963 0.959 1.072 [1.070,1.074] 0.292 1.950 

7 1.092 0.329 1.992 0.996 1.093 [1.090,1.095] 0.329 1.997 

8 1.305 0.439 1.980 0.964 1.305 [1.303,1.308] 0.438 1.977 

9 0.911 0.246 2.044 1.034 0.910 [0.909,0.912] 0.246 2.035 

10 1.649 0.873 2.042 1.075 1.65 [1.647,1.654] 0.875 2.049 

Table 15 Simulation Results of Random PHD Examples – Approach (2) 

Number of Arrivals: 1,000,000 Approach (2) Approximate Inversion Method 

Order 
Mean 

(seconds) 

Varianc

e (10
-3

) 
Skewness CV 

Average Inter-arrival 

Time (seconds) 

95
th

 Confidence 

Interval 

Sample 

Variance (10
-3

) 

Sample 

Skewness 

1 18.695 97.087 2.000 1.000 18.723 [18.687,18.760] 97.391 1.998 

2 0.677 0.140 2.069 1.050 0.676 [0.674,0.677] 0.140 2.064 

3 0.875 0.214 1.922 1.004 0.876 [0.874,0.878] 0.214 1.920 

4 0.711 0.143 2.028 1.011 0.712 [0.711,0.714] 0.144 2.028 

5 1.561 0.798 2.063 1.085 1.559 [1.556,1.563] 0.794 2.056 

6 1.072 0.293 1.963 0.959 1.072 [1.070,1.074] 0.292 1.950 

7 1.092 0.329 1.992 0.996 1.093 [1.090,1.095] 0.329 1.997 

8 1.305 0.439 1.980 0.964 1.305 [1.303,1.308] 0.438 1.977 

9 0.911 0.246 2.044 1.034 0.910 [0.909,0.912] 0.246 2.035 

10 1.649 0.873 2.042 1.075 1.65 [1.647,1.654] 0.875 2.049 
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APPENDIX II 

RESULTS OF THE SIMULATION OF RANDOMLY 

POPULATED MAP EXAMPLES 

Table 16 Randomly Populated MAP Examples-True Values of the Mean, Variance, and 

Skewness 

Order Mean (seconds) Variance (10
-4

) Skewness 

2 0.992 2.703 1.986 

3 0.725 1.412 1.954 

4 0.385 0.410 1.981 

5 0.329 0.305 2.004 

6 0.235 0.158 2.035 

7 0.195 0.105 1.999 

8 0.179 0.088 1.989 

9 0.157 0.070 2.022 

10 0.132 0.049 2.009 

Table 17 Randomly Populated MAP Examples – Simulation Results of Approach (1) 

Approach (1) Simulation of Markov Chain 

Order 
Average Inter-arrival 

Time (seconds) 

95
th

 Confidence 

Interval 

Sample Variance 

(10
-4

) 

Sample 

Skewness 

2 0.992 [0.992,0.993] 2.704 1.989 

3 0.725 [0.725,0.726] 1.411 1.954 

4 0.385 [0.385,0.385] 0.410 1.981 

5 0.329 [0.328,0.329] 0.305 2.003 

6 0.235 [0.235,0.235] 0.158 2.038 

7 0.195 [0.195,0.195] 0.105 1.997 

8 0.179 [0.179,0.179] 0.088 1.993 

9 0.157 [0.157,0.158] 0.070 2.021 

10 0.132 [0.132,0.132] 0.049 2.012 



 

97 

 

Table 18 Randomly Populated MAP Examples – Simulation Results of Approach (2) 

Approach (2) Approximate Inversion Method 

Order 
Average Inter-arrival 

Time (seconds) 

95
th

 Confidence 

Interval 

Sample Variance 

(10
-4

) 

Sample 

Skewness 

2 0.992 [0.992,0.993] 2.700 1.985 

3 0.725 [0.725,0.726] 1.410 1.953 

4 0.385 [0.385,0.385] 0.410 1.980 

5 0.329 [0.329,0.330] 0.305 2.004 

6 0.235 [0.235,0.235] 0.158 2.034 

7 0.195 [0.194,0.195] 0.105 1.997 

8 0.179 [0.179,0.179] 0.088 1.987 

9 0.157 [0.157,0.158] 0.070 2.023 

10 0.132 [0.132,0.132] 0.049 2.010 
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APPENDIX III 

RESULTS OF THE SIMULATION OF RANDOMLY 

POPULATED BMAP EXAMPLES 

Table 19 Randomly Populated BMAP Examples – Simulation Results of Approach (1) 

Number of Arrival Epochs: 1,000,000 
Approach (1) Simulation of Markov 

Chain 

Order Batch Size 
Mean 

(seconds) 
CV 

Average Inter-arrival 

Time (seconds) 

95th Confidence 

Interval 

2 

2 0.4765 1.0071 0.4760 [0.4751,0.4770] 

3 0.5471 1.0451 0.5481 [0.5470,0.5492] 

4 0.3108 0.9969 0.3106 [0.3100,0.3112] 

5 0.2982 1.0124 0.2983 [0.2977,0.2989] 

3 

2 0.2699 1.0115 0.2699 [0.2693,0.2704] 

3 0.2418 0.9975 0.2416 [0.2411,0.2421] 

4 0.1363 1.0361 0.1364 [0.1362,0.1367] 

5 0.1318 1.0032 0.1317 [0.1315,0.1320] 

4 

2 0.2557 0.9987 0.2552 [0.2547,0.2557] 

3 0.1296 1.0098 0.1295 [0.1293,0.1298] 

4 0.0987 0.9975 0.0988 [0.0986,0.0989] 

5 0.0779 1.0149 0.0779 [0.0776,0.0781] 

5 

2 0.1526 1.0073 0.1528 [0.1525,0.1531] 

3 0.0987 1.0023 0.0986 [0.0985,0.0988] 

4 0.0736 1.0036 0.0736 [0.0735,0.0738] 

5 0.0609 1.0223 0.0609 [0.0607,0.0610] 

6 

2 0.1392 1.0124 0.1391 [0.1389,0.1394] 

3 0.0840 1.0035 0.0840 [0.0838,0.0842] 

4 0.0585 1.0039 0.0586 [0.0585,0.0587] 

5 0.0459 1.0044 0.0459 [0.0458,0.0460] 

7 

2 0.1039 1.0155 0.1039 [0.1037,0.1042] 

3 0.0633 1.0138 0.0633 [0.0632,0.0634] 

4 0.0487 1.0112 0.0488 [0.0487,0.0488] 

5 0.0400 1.0045 0.0400 [0.0399,0.0401] 

8 

2 0.0854 1.0070 0.0854 [0.0853,0.0856] 

3 0.0532 1.0006 0.0531 [0.0530,0.0532] 

4 0.0437 1.0019 0.0437 [0.0436,0.0438] 

5 0.0331 1.0090 0.0331 [0.0331,0.0332] 
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Table 20 Randomly Populated BMAP Examples – Simulation Results of Approach (2) 

Number of Arrival Epochs: 1,000,000 
Approach (2) Approximate Inversion 

Method 

Order Batch Size 
Mean 

(seconds) 
CV 

Average Inter-arrival 

Time (seconds) 

95th Confidence 

Interval 

2 

2 0.4765 1.0071 0.4764 [0.4755,0.4774] 

3 0.5471 1.0451 0.5473 [0.5462,0.5485] 

4 0.3108 0.9969 0.3110 [0.3104,0.3116] 

5 0.2982 1.0124 0.2983 [0.2977,0.2988] 

3 

2 0.2699 1.0115 0.2700 [0.2694,0.2705] 

3 0.2418 0.9975 0.2422 [0.2417,0.2427] 

4 0.1363 1.0361 0.1362 [0.1359,0.1365] 

5 0.1318 1.0032 0.1317 [0.1315,0.1320] 

4 

2 0.2557 0.9987 0.2553 [0.2548,0.2558] 

3 0.1296 1.0098 0.1298 [0.1295,0.1300] 

4 0.0987 0.9975 0.0987 [0.0985,0.0989] 

5 0.0779 1.0149 0.0780 [0.0778,0.0782] 

5 

2 0.1526 1.0073 0.1528 [0.1525,0.1531] 

3 0.0987 1.0023 0.0986 [0.0984,0.0988] 

4 0.0736 1.0036 0.0735 [0.0734,0.0737] 

5 0.0609 1.0223 0.0610 [0.0608,0.0611] 

6 

2 0.1392 1.0124 0.1391 [0.1389,0.1394] 

3 0.0840 1.0035 0.0840 [0.0839,0.0842] 

4 0.0585 1.0039 0.0584 [0.0583,0.0586] 

5 0.0459 1.0044 0.0459 [0.0458,0.0460] 

7 

2 0.1039 1.0155 0.1039 [0.1037,0.1041] 

3 0.0633 1.0138 0.0633 [0.0632,0.0634] 

4 0.0487 1.0112 0.0487 [0.0486,0.0488] 

5 0.0400 1.0045 0.0400 [0.0399,0.0401] 

8 

2 0.0854 1.0070 0.0854 [0.0852,0.0856] 

3 0.0532 1.0006 0.0532 [0.0531,0.0533] 

4 0.0437 1.0019 0.0437 [0.0436,0.0438] 

5 0.0331 1.0090 0.0331 [0.0330,0.0332] 
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