
i

ii

AMERICAN UNIVERSITY OF BEIRUT

A STUDY ON LIQUID STATE MACHINE FOR PATTERN

RECOGNITION

by

OBADA MOHAMMAD YASSER AL ZOUBI

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master of Engineering

to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture

at the American University of Beirut

Beirut, Lebanon

January 2016

iv

v

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my advisor Dr. Mariette

Awad for the continuous support of my master study and related research, for her patience,

motivation, and immense knowledge. Her guidance helped me in all the time of research

and writing of this thesis

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Mohamad Adnan Alaoui and Prof. Nikola Kasabov for their insightful comments and

encouragement.

I must also acknowledge my friend Nickolas Mitri for helping me in chapter VIII

with designing the experimental part and the mobile application.

Last, but not the least, a special thanks to my family. Words cannot express how

much grateful I am to my mother, and father for all of the sacrifices that you’ve made on

my behalf. Your prayer for me was what sustained me this far. I would also like to thank

my brother and sisters who supported me in writing, and incented me to strive towards my

goal. Also, I would like express appreciation to my friends who inspired me through my

study and life. I also place on record, my sense of gratitude to one and all, who directly or

indirectly, helped me to accomplish my work.

vi

AN ABSTRACT OF THE THESIS OF

Obada Mohammad Yasser Al Zoubi for Master of Engineering

 Major: Electrical and Computer Engineering

Title: A Study on Liquid State Machine for Pattern Recognition

Spiking Neural Networks (SNNs) are a new promising approach for machine

learning because they increase the ratio of biological realism, and thus the ability to capture

complex data patterns. SNNs belong to the third generation of Artificial Neural Networks

(ANNs). In contrast to the first and second generations of ANNs, SNNs deal with spatial-

temporal information effectively. Liquid State Machine (LSM), introduced by Wolfgang

Maass in 2003, is a randomly and sparsely recurrent SNNs that answers for the firmness in

training SNNs and Recurrent Neural Networks (RNNs). One main advantage of using LSM

is its ability to handle data streams from input to generate high-dimensional separable

outputs, which makes LSM a suitable approach for dynamical systems pattern recognition.

Motivated by the compelling capabilities of LSM, this thesis explores different case

studies in LSM. First, the work harnesses LSM for Emotion Recognition from EEG signals,

where we use LSM as an anytime multi-purpose model for identifying Valence, Arousal

and Liking. Second, we utilize LSM for Continuous Authentication from mobile devices

and we show the benefits of LSM for such purposes. Third, we explore the possible

deployments of LSM for the Feature Extraction task from raw data in comparison with

Deep Belief Networks. Fourth, we introduce an Active Liquid States Selection method to

effectively read from LSM and we show how this method can reduce the computational

requirement while improving accuracy. Finally, because of the new trends in building

hardware-based LSMs that are energy aware, we introduce an Inattentive Neurons Pruning

method to rank and prune the uninformative neurons inside the LSM to reduce power

consumption and computational requirements. This method have shown to be able to

provide better accuracies in most of benchmarks, while reducing the number of neurons

inside the LSM by up to 50%.

vii

CONTENTS

ACKNOWLEDGMENTS ... V

ABSTRACT ... VI

ILLUSTRATIONS ... XI

TABLES .. XIII

Chapter

I. INTRODUCTION ... 1

II. PRIMER ON SPIKING NEURAL NETWORK 5

A. SNN ARCHITECTURE ... 5
B. SPIKING NEURON MODELS ... 7

1. Hodgkin-Huxley Model .. 8
2. Integrate-and-fire models (I&F) ... 9

3. Leaky Integrate-and-fire Model (LIF) .. 10
4. Izhikevish Model ... 11
5. Thorpe’s model ... 11

6. Conductance-based Model (CbNeuron) .. 13

C. INFORMATION CODING ... 14

D. SYNAPTIC TIME DEPENDENT PLASTICITY (STDP) ... 16
E. LEARNING IN SNN ... 18

III. PRIMER ON LIQUID STATE MACHINE 23

A. INTRODUCTION .. 23

B. LSM VS. TURING MACHINE- ORIENTED ML APPROACHES 24
C. LSM VS. DEEP LEARNING .. 25

D. HANDLING TIME IN LSM ... 27
E. LSM ARCHITECTURE .. 29
F. THEORY AND MATHEMATICAL FORMULATION BEHIND LSM 30

G. INPUT INTO SPIKES ... 32
1. Input to spikes conversion .. 33
 a. Static Input .. 33
 b. Timeseries Input .. 33

IV. LITERATURE REVIEW ON LQIUD STATE MACHINE 36

A. RELATED WORK ON APPLICATIONS ... 36
1. Image Recognition .. 36

viii

2. Highly Variable Data Streams .. 36
3. Speech Recognition .. 37
4. Music Information Retrieval (MIR).. 39
5. Facial Expression Recognition ... 40
6. Robot’s Arm motion Prediction .. 42

7. Real time imitation learning.. 43
8. Movement Prediction from Videos ... 44
9. EEG Classification .. 45
10. Stochastic Behavior Modeling .. 46

B. LSM IMPROVEMENTS AND MODIFICATION ... 47

1. Readout .. 47
2. Structure and Processing Units ... 48

3. Conveying Information in the Liquid ... 51

V. LTTERATURE REVIEW ON EMOTION RECOGNITION

FROM EEG SINGALS .. 54

A. INTRODUCTION ABOUT EMOTION IN HUMANS ... 54

B. AFFECTIVE STATE DEFINITION ... 55
C. DATASET FOR EMOTION RECOGNITION .. 57

D. LITERATURE REVIEW ... 58
1. Works that relies on different datasets .. 58
2. Works used DEAP dataset .. 62

VI . CASE STUDY FOR DEPLOYING LIQUID STATE

MACHINE FOR FEATURE EXTRACTION FROM RAW DATA

 ...72

A. LSM-BASED FEATURE EXTRACTION DESCRIPTION .. 73
1. LSM Configuration for Feature Extraction... 73

2. DBN Configuration for Feature Extraction .. 76
B. RESULTS AND COMPARISON FOR FEATURE EXTRACTION USING LSM AND DBN 77

C. DISCUSSION.. 78

VII. LIQUID STATE MACHINE FOR EMOTION

RECOGNITION FROM EEG.. 80

A. EXPERIMENTAL PROCEDURE FOR LSM-BASED EMOTION RECOGNITION MODEL 80
1. Experiment 1: Direct input to the LSM .. 83
 a. Subject/ Video Independent .. 84
 b.Subject Dependent ... 86

 c.Video Dependent .. 87
 d. Isolated-Subject ... 88
2. Results Comparison with other Machine Learning Approaches 89
 a. IS scenario ... 89
 b. LOSO scenario .. 90

ix

 c. LOVO .. 90
3. Results Comparison using other Spiking Network Architecture 90
4. Results Analysis and Discussion .. 92
5. Experiment 2: Spike Encoding ... 94
 a. User/Video Independent ... 95

 b. User Dependent ... 95
 c.Video Dependent .. 96
 d.Isolated-Subject ... 97
6. Discussion and Analysis ... 97
7. Experiment 3: Emotion Recognition Using Different Number of Channels 97

 a. User/Video Independent ... 98
 b. User Dependent ... 98

 c. Video Dependent ... 99
 d.Discussion and Analysis .. 99

B. CONCLUSION .. 100

VIII. A LIQUID STATE MACHINE -BASED FRAMEWROK

FOR CONTINUOUS AUTHETICATION IN SMARTPHONES 101

A. MOBILE CONTINUOUS AUTHENTICATION .. 101

B. RELATED WORK ... 103
C. LSM-BASED CONTINUOUS AUTHENTICATION FRAMEWORK 107

1. Mobile Sensor Data... 108

2. LSM-Based Framework .. 109

D. FEATURE SELECTION ... 112
1.Keystroke features ... 112

E. EXPERIMENTAL PROCEDURE .. 112

1. Application side configuration .. 112
2. LSM side configuration .. 115

F. ANOMALY DETECTION METHODS ... 116
1. Euclidean Detector .. 117

2. Normalized Minimum Distance Classifier ... 117
3. Manhattan method ... 117
4. Filtered Manhattan .. 118
5. Scaled Manhattan .. 118
6. Outlier-counting (z-score) ... 118

7. One-Class SVM .. 118
G. LSM READOUT OPTIMIZATION FOR DISTANCE-BASED ANOMALY DETECTION

METHOD……….. ... 119
A. RESULTS OF TESTING CONTINUOUS AUTHENTICATION IN SMARTPHONES 119

1. Augmented Password Authentication ... 120
2. Long-Text Authentication ... 121
3. Gestures/strokes Authentication ... 121

B. RESULT DISCUSSION .. 122

x

IX . EFFIECNT SAMPLING TIME SLECTION FROM LIQUID

STATE MACHINE .. 123

A. INTRODUCTION .. 123
B. ACTIVE STATES DETECTION METHOD ... 124
C. TESTING ... 127

D. RESULTS AND DISCUSSION ... 130
E. THE RELATION BETWEEN SAMPLING TIMES RANKS AND THE AFFECTIVE STATES

OF THE BRAIN …………………………………………………………………..131
1. Discussion ... 132

F. CONCLUSION .. 135

X. PRUNING INATTENTVIE NEURONS IN LIQUID STATE

MACHINE .. 137

A. INATTENTIVE NEURONS PRUNING (INP) METHOD ... 138
1. Mathematical Representation.. 139

B. ILLUSTRATION EXAMPLE ... 142

C. TESTING AND RESULT .. 145
1. Experiment 1 .. 147

2. Experiment 2 ... 149
D. DISCUSSION ... 150
E. CONCLUSION ... 150

XI. CONCLUSION AND FEATURE WORK 151

A. CONCLUSION ... 151
A. FEATURE WORK ... 152

XII. BIBLIOGRAHPY……………….………………………...154

xi

ILLUSTRATIONS

Figure Page

Figure 1: Emitting a Spike Illustration. .. 7
Figure 2: Hodgkin-Huxley neuron model equivalent electrical circuit. 9
Figure 3: IF neuron model equivalent electrical circuit. ... 10
Figure 4: Different method for information encoding in Spiking Neural Networks. 15

Figure 5: Gaussian Receptive Fields for spike encoding [19]. ... 16

Figure 6: Synaptic Time Dependent Plasticity weight updating [20]. 17

Figure 7: Spiking Neural Network architecture [20]. ... 18

Figure 8: SpikeProp pseudo code [21]. ... 22

Figure 9: Restricted Boltzmann Machine. .. 26
Figure 10: LSM general architecture description. .. 30
Figure 11: BSA Algorithm pseudo code. .. 35

Figure 12: Russell's model to represent emotions. .. 56
Figure 13: LSM for feature extraction. ... 75

Figure 14: LSM for multi-purpose classification. .. 75
Figure 15: LSM for anytime feature extraction. ... 75
Figure 16: DBN for feature extraction architecture. ... 77

Figure 17: Topology for Experiment 1 for emotion recognition. ... 82
Figure 18: Main LSM architecture for continuous authentication. 110

Figure 19: LSM-Based Continuous Authentication Framework for Smartphones. 111
Figure 20: A screenshot of the application interface for Augmented Password

Authentication. .. 113
Figure 21: A screenshot of the application interface for Long-text Authentication. 114
Figure 22: A screenshot of the application interface for Strokes Authentication. 115

Figure 23: Liquid state concatenation for improving distance-based anomaly detection. . 119
Figure 24: Active State Selection Method testing on Valence using Decision Trees. 128
Figure 25: Active State Selection Method testing on Valence using Linear Regression. .. 128

Figure 26: Active State Selection Method testing on Arousal using Decision Trees. 129
Figure 27: Active State Selection Method testing on Arousal using Linear Regression. ... 129
Figure 28: Active State Selection Method testing on Liking using Decision Trees. 130
Figure 29: Active State Selection Method testing on Valence using Linear Regression. .. 130
Figure 30: Valence Sampling Times Ranking for Users 1-8. ... 132

Figure 31: Arousal Sampling Times Ranking for Users 1-8. ... 132
Figure 32: The Sampling times ranking for one second from Subject one (Valence). 134

Figure 33: The Sampling times ranking for one second from Subject one (Arousal). 135
Figure 34: A Comparison for valence and arousal Courses from Subject 1. 135
Figure 35: Isolated Islands Illustration Example. ... 143
Figure 36: Binding Probabilities to Other Neurons from Neurons n1 and n6. 144
Figure 37: Binding Probabilities from Other Neurons to Neurons n1 and n6. 145

file:///D:/DropBoxSync/Dropbox/Thesis_1_10.docx%23_Toc440863663

xii

Figure 38: INP method testing on Augmented Password authentication using the Euclidean

Detector anomaly detector. ... 147
Figure 39: INP method testing on Augmented Password authentication using the Manhattan

method anomaly detector. ... 147
Figure 40: INP method testing on Augmented Password authentication using Filtered

Manhattan anomaly detector. .. 148
Figure 41: INP method testing on Augmented Password authentication using Scaled

Manhattan anomaly detector. .. 148
Figure 42: INP method testing on Augmented Password authentication using Outlier-

Counting anomaly detector. .. 149

xiii

TABLES

Table Page

Table 1: DEAP dataset summarization. .. 58
Table 2: Related work on Emotion Recognition summary 1. ... 70
Table 3: Related work on Emotion Recognition summary 2. ... 71
Table 4: LSM configurations for feature extraction. .. 74

Table 5: Result of testing 343 extracted features using LSM and DBN. 78
Table 6: LSM configuration for emotion recognition. ... 84
Table 7: Testing results for different readouts. ... 85

Table 8: Subject/Video independent scenario results using Decision Tress. 86
Table 9: Subject/Video independent scenario results by using Linear Regression. 86
Table 10: Subject dependent scenario results by using Decision Tress. 87

Table 11: Subject dependent scenario results by using Linear Regression. 87
Table 12: Video dependent scenario results by using Decision Tress. 88

Table 13: Video dependent scenario results by using Linear Regression. 88
Table 14: Isolated-Subject scenario results by using decision trees and linear regression. .. 89
Table 15: Results Comparison with other Machine Learning Approaches for IS Scenario. 89

Table 16: Results Comparison with other Machine Learning Approaches for LOSO

Scenario. ... 90

Table 17: Results Comparison with other Machine Learning Approaches for LOVO

Scenario. ... 90

Table 18: Results of Testing NeuCube on subject 1 from DEAP dataset. 91
Table 19: Testing for non-linearity output from LSM (experiment 1). 94

Table 20: Subject/Video Independent results for experiment 2. .. 95
Table 21: LOSO results for experiment 2. .. 95
Table 22: LOVO results for experiment 2. ... 96

Table 23: Isolated-Subject scenario results by using decision trees (experiment 2). 97
Table 24: Subject/Video Independent results for experiment 4. .. 98

Table 25: LOSO results for experiment 3. .. 98
Table 26: LOVO results for experiment 3. ... 99

Table 27: Input description for LSM-based continuous authentication. 110
Table 28: LSM 1 configuration. ... 115
Table 29: LSM 2 configuration. ... 116

Table 30: Augmented Password authentication (One vs. One scenario). 120
Table 31: Augmented Password authentication (One vs. All scenario). 120
Table 32: Long-Text authentication (One vs. One scenario). ... 121
Table 33: Long-Text authentication (One vs. All scenario). .. 121

Table 34: Gestures/Strokes authentication (One vs. One scenario). 121
Table 35: Gestures/Strokes authentication (One vs. All scenario). 122
Table 36: Clustering results for the outcome of the selection method. 133
Table 37: INP testing results for experiment 2. .. 149

xiv

Table 38: Neurons reduction rate for experiment 2. ... 150

Table 1: DEAP dataset summarization. .. 58
Table 2: Related work on Emotion Recognition summary 1. ... 70
Table 3: Related work on Emotion Recognition summary 2. ... 71

Table 4: LSM configurations for feature extraction. .. 74
Table 5: Result of testing 343 extracted features using LSM and DBN. 78
Table 6: LSM configuration for emotion recognition. ... 84
Table 7: Testing results for different readouts. ... 85
Table 8: Subject/Video independent scenario results using Decision Tress. 86

Table 9: Subject/Video independent scenario results by using Linear Regression. 86
Table 10: Subject dependent scenario results by using Decision Tress. 87

Table 11: Subject dependent scenario results by using Linear Regression. 87
Table 12: Video dependent scenario results by using Decision Tress. 88
Table 13: Video dependent scenario results by using Linear Regression. 88
Table 14: Isolated-Subject scenario results by using decision trees and linear regression. .. 89

Table 15: Results Comparison with other Machine Learning Approaches for IS Scenario. 89
Table 16: Results Comparison with other Machine Learning Approaches for LOSO

Scenario. ... 90

Table 17: Results Comparison with other Machine Learning Approaches for LOVO

Scenario. ... 90

Table 18: Results of Testing NeuCube on subject 1 from DEAP dataset. 91
Table 19: Testing for non-linearity output from LSM (experiment 1). 94
Table 20: Subject/Video Independent results for experiment 2. .. 95

Table 21: LOSO results for experiment 2. .. 95

Table 22: LOVO results for experiment 2. ... 96
Table 23: Isolated-Subject scenario results by using decision trees (experiment 2). 97
Table 24: Subject/Video Independent results for experiment 4. .. 98

Table 25: LOSO results for experiment 3. .. 98
Table 26: LOVO results for experiment 3. ... 99
Table 27: Input description for LSM-based continuous authentication. 110

Table 28: LSM 1 configuration. ... 115
Table 29: LSM 2 configuration. ... 116
Table 30: Augmented Password authentication (One vs. One scenario). 120

Table 31: Augmented Password authentication (One vs. All scenario). 120
Table 32: Long-Text authentication (One vs. One scenario). ... 121

Table 33: Long-Text authentication (One vs. All scenario). .. 121
Table 34: Gestures/Strokes authentication (One vs. One scenario). 121
Table 35: Gestures/Strokes authentication (One vs. All scenario). 122
Table 36: Clustering results for the outcome of the selection method. 133
Table 37: INP testing results for experiment 2. .. 149

Table 38: Neurons reduction rate for experiment 2. ... 150

1

CHAPTER I

INTRODUCTION

Spiking Neural Networks [1-3] (SNNs) are a new promising approach for machine

intelligence because they increase the ratio of biological realism, and hence the ability to

capture complex data patterns. SNNs belong to the third generation of the Artificial Neural

Networks (ANNs). In contrast to the previous generations of ANNs, SNNs are able to deal

with the spatial-temporal information. In addition, SNNs differ from the second generation

in using the spike timing in the learning phase. They have been used in many applications

such as character recognition [4], image clustering [5], human behavior recognition [6],

breast cancer classification [7], human localization in sensor networks [8] and a detector for

IDSs [9]. However, SNNs are not as popular as the other methods of Machine Intelligence

(MI). The main reason behind this is their high computational cost.

In this work, we aim to study and utilize SNNs in pattern recognition for dynamical

systems.

By “dynamical systems”, we refer to systems that have an input of stream of data

such as video streams, audio streams, audio-video streams, i.e. continuous signals. The

work does not rely on training SNNs to adjust the learning model, but it uses SNNs as an

operating model to build a Reservoir Computing (RC) model. RC is a new trend in machine

2

learning domain that solves the issues of training Recurrent Neural Networks (RNNs) and

SNNs by training only a specific part of the network, the readout function.

Targeting RC is a reasonable choice due to many factors. First of all, for a model to

be able to process a dynamical environment, it should have a memory. Whether it is a short

term memory (STM) or long term memory (LTM), this memory cannot be achieved unless

we have cyclic connections inside the model, and this lead to the Recurrent Neural

Networks (RNNs) [10-12]. RNNs are second and third generation of ANN. The simpler

form of RNNs, which depends on the second generation ANN, has yet to find a successful

training approach that is robust to the vanishing and exploding gradient problems RNNs

suffer from [13]. Moreover the gradual changes in the network parameters modify the

dynamic of the networks drastically making the gradient information ill and reaching the

convergence intractable. In addition, the computation of updating one parameter is

expensive and heavily depends on mathematics [14].

Thus, training SNNs is a challenging problem: most of the error-functions in

popular training algorithms, such as Backpropagation, handle time-continuous and real

values, while SNNs propagate information as spikes [15]. In addition, the neuron model

differs greatly from one model to other models, and available works on training SNNs are

not general for all models. Thus, there is no general algorithm to train SNNs in order to

build upon it a solid learning model.

The RC [14, 16, 17] appeared as a solution that alleviates and solves the challenges

of training SNNs and RNNs, where training occurs on the connection found between the

3

network and the output. The weights and parameters of the network are randomly chosen

under specific constraints. The RC has two main approaches according to the generation of

the network; the Echo State Network (ESN) [16] which belongs to the second generation of

ANN, and the Liquid State Machine (LSM) [17] which belongs to third generation of

ANN.

We will focus on LSM since it incorporates the SNNs which advance its capabilities

to handle pattern recognition in complex systems. Moreover, it includes unsupervised

learning insides the network by using a time Hebbian rule learning, the Synaptic Time

Dependent Plasticity (STDP) [18]. STDP allows LSM to refine the internal network, and

thus capture the temporal patterns inside the network effectively.

This thesis is organized as follows; in chapter II, we survey the SNNs and neuron models,

and we shed light on the available training algorithms in SNNs. Chapter III discusses LSM

including its principles, architecture and mathematical representation. Chapter IV provides

an extensive literature review on LSM including its applications and variants. In chapter V,

we introduce the first application for this thesis and provide a literature review about

emotion recognition from EEG by using LSM. Chapter VI discusses the benefits of using

LSM for feature extraction from raw EEG data, where we compare its capabilities with

Deep Belief Networks for the same purpose. In chapter VII, we provide an LSM

implementation for emotion recognition and we draw some conclusion about human

emotions. Chapter VIII introduces the second application for this thesis, where we use LSM

for multi-stage continuous authentication in smartphones. Chapter IX is concerned with

improving sampling time selection from LSM by introducing active states selection

4

method. Chapter X introduces a method to prune the LSM to reduce the computational

overheads for hardware-based LSM implementations. Finally, chapter XI provides the

conclusion and future work for this work.

\

5

CHAPTER II

PRIMER ON SPIKING NEURAL NETWORK

This chapter provides an extensive information and discussion about SNNs

including their architecture, neuron models and learning algorithms. We also, review the

difficulties found in training SNNs and justify our focus on Reservoir Computing (RC),

which is considered to help in deploying SNNs for complex pattern recognition.

A. SNN Architecture

 Few scientists and researchers in AI aim to build intelligent systems inspired by the

human’s brain. The best examples of these systems are ANNs. However, the earlier

generations of ANNs namely, the first one was not biologically plausible, even though it

captured some of the human’s neurons. The second generation of ANNs has been

considered more biologically plausible: it uses a continuous activation function for the

neurons but discarded the temporal dimension data during learning procedure. On the other

hand, SNNs have been introduced to make artificial networks able to deal with complex

pattern recognition. To understand how SNNs differ from ANNs, we first have to

understand the actual biological human’s neuron architecture. These neurons use spikes to

6

transmit and learn the spectro and/or spatio-temporal data (SSTD). The human’s neurons

encode SSTD using the location of synapses for the spatial data and the spiking time

activities for the temporal data. The model of the biological neuron is shown in the figure

below:

Figure 1: Presynaptic and Postsynaptic neurons Description.

7

Figure 1: Emitting a Spike Illustration.

Neuron Nj, the presynaptic neurons, receives spikes from the presynaptic neurons

N1 and N2. These neurons generate the post-synaptic potentials (PSPs) which can be either

excitatory PSPs (EPSPs) or Inhibitory PSPs (IPSPs). The neuron Nj generates a spike

whenever the EPSP reaches a threshold value V. The 𝑡𝑖
𝑛 represtn the time stamp for spike

In the next section, we will study the several neuron models that are used in the literature

review.

B. Spiking Neuron Models

Several models of the neuron were proposed and studied. The models mentioned in

this work are considered as the most common ones:

8

1. Hodgkin-Huxley Model

This model, shown in Figure 3, is the origin of all others. Hodgkin and Huxley

modeled the electro-chemical information of the natural neurons by studying the giant

axon of a squid. The resulting model from their study consists of four differential

equations. The equations describe the change in electric charge on parts of the neuron’s

membrane capacitance as a function of the voltage and the current.

The parameters used to describe the model are:

C: is the capacitance of the membrane.

gNa, gK, gL: the conductance parameters for the different ion channels (sodium Na,

potassium L, etc.).

ENa, EK, EL: the equilibrium potentials resulting for the different ions.

m, n and h: variables that governed three other differential equations.

C
du

dt
= −gNam3h(u − ENa) − gKn4(u − EK) − gL(u − EL) + I(t) (2.1)

τn
dn

dt
= −[n − n0(u)], τm

dm

dt
= −[m − m0(u)], τh

dh

dt
= −[h − h0(u)] (2.2)

Due to the complexity of these equations caused by the nonlinearity and the fourth

dimensionality of the data, several simpler forms were proposed for the practical

implementations, which are discussed in the coming subsections.

9

Figure 2: Hodgkin-Huxley neuron model equivalent electrical circuit.

2. Integrate-and-fire models (I&F)

I& F model shown in Figure 4, is derived from the original H&H model, but it

neglects the shape of the potential actions. It assumes that all potential actions are uniform,

but they differ in the time of occurrence. Due to this simplicity, most of the neuron models

are based on this idea. The membrane capacitance and the postsynaptic potential (PSP) of

this model are given by the following equations:

𝐶
𝑑𝑢

𝑑𝑡
= −

1

𝑅
(𝑢(𝑡) − 𝑢𝑟𝑒𝑠𝑡) + 𝐼(𝑡) (2.3)

𝑢(𝑡(𝑓)) = 𝜗 𝑤𝑖𝑡ℎ 𝑢′(𝑡(𝑓)) > 0 (2.4)

Where:

𝑢𝑟𝑒𝑠𝑡: is the membrane potential of the neuron at the initial state.

ϑ: is the threshold value at which the neuron fires.

t(f): is the spike firing time.

10

I(t): is the input current caused by the presynaptic potentials.

Figure 3: IF neuron model equivalent electrical circuit.

3. Leaky Integrate-and-fire Model (LIF)

This model is similar to the I&F model but with a small difference, the membrane

potential of the neuron decays with time if no potentials arrive to the neuron. The work

mechanism of this model is the following: when the membrane potential u(t) of the neuron

reaches a specific threshold ϑ at time t called the spkinng time t(f) and u(t) satisfies

u`(t(f)) > 0 condition, then the neuron emits a spike immediately. After that, the neuron

goes under absolute refractoriness period uabs. The refractoriness period lasts for a specific

time dabs and the membrane potential of the neuron during this period is:

u(t) = −uabs, where uabs is the refractoriness potential.

 When dabs expires, the membrane potential return to the urest case.

The membrane potential is given by the following equation:

τm
du

dt
= urest − u(t) + RI(t) (2.6)

Where:

11

τm: is the time constant of the neuron membrane.

t(f): is the spike firing time.

urest: is the membrane potential of the neuron at the initial state.

ϑ: is the threshold value at which the neuron fires.

t(f): is the spike firing time.

I(t): is the input current caused by the presynaptic potentials.

4. Izhikevish Model

This model combines between the biological plausibility and the computational

efficiency. It uses two differential equations to represent the activities of membrane

potential. The model’s equations are given below:

du

dt
= 0.04 u(t)2 + 5u(t) + 140 − w(t) + I(t) (2.7)

dw

dt
= a(bu(t) − w(t)) (2.8)

The after-spiking action is described by the following term:

if u ≥ ϑ then u ← c and w ← w + d

5. Thorpe’s model

This model is a simple model of integrate-and-fire models, but it takes into the

consideration the order of the spikes that reaches the neuron. This gives it powerful

capability. In addition, this model uses a simple mathematical representation, which makes

12

it suitable for many applications. The mathematical model of Thorpe’s is given by the

following equation:

𝑃𝑆𝑃𝑖 = ∑ 𝑤𝑗𝑖 ∗ 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟𝑗 (2.9)

Where:

wji: is the weight or the efficiency of synapsis between neuron j and neuron i.

mod: is a modulation factor ∈ [0,1] .

orderj: is the firing order of the presynaptic neuron j where j ∈ ⌈1, n − 1⌉ and n is the

number of the presynaptic neurons that are connected to neuron i.

The weights in this model are updated according to the following equation:

∆wji = modorderj (2.10)

This model makes stronger connections between the connected neurons that fire and

reach the current neuron earlier. Spiking occurs whenever PSPi reaches a threshold

value PSPθi. After the spiking, PSPi is immediately set to zero.

PSPi = {
 PSPi + Pji when PSPi < PSPθi

0 when PSPi ≥ PSPθi
 (2.11)

13

6. Conductance-based Model (CbNeuron)

This model is equivalent to Hodgkin-Huxley model, but with a slightly different

change in equation formulation. We emphasize on its model, since the following equation

is the one used by the simulator that the thesis uses for SNNs.

𝐶𝑚
𝑉𝑚

𝑑𝑡
= −

𝑉𝑚−𝐸𝑚

𝑅𝑚
− ∑ 𝑔𝑐

(𝑡)(𝑉𝑚 − 𝐸𝑟𝑒𝑣
𝑐

) + ∑ 𝐼𝑠(𝑡) + ∑ 𝑔𝑠
(𝑡) (𝑉𝑚 −𝐺𝑠

𝑠=1
𝑁𝑠
𝑠=1

𝑁𝑐
𝑐=1

𝐸𝑟𝑒𝑣
(𝑠)

) + 𝐼𝑖𝑛𝑗𝑒𝑐𝑡 (2.12)

With

 𝐶𝑚 : the membrane capacity (Farad).

 𝐸𝑚: the reversal potential of the leak current (Volts).

 𝑅𝑚: the membrane resistance (Ohm).

 𝑁𝑐: the total number of channels (active + synaptic).

 𝑔𝑐
(𝑡): the current conductance of channels c (Siemens).

 𝐸𝑟𝑒𝑣
𝑐

: the reversal potential of channels c (volts).

 𝑁𝑠: the total number of current supplying synapses.

 𝐼𝑠(𝑡): the current supplied by synapses s (Ampere).

 𝐺𝑠: the total number of the conductance based synapses.

 𝑔𝑠
(𝑡): the conductance supplied b synapses s (Siemens).

 𝐸𝑟𝑒𝑣
(𝑠)

: the reversal potential of synapses s (Volts).

 𝐼𝑖𝑛𝑗𝑒𝑐𝑡: the injected current (Ampere).

14

C. Information coding

Information coding in neuron has been a strong debate for a long time. The question

was, is the information in the neuron encoded as a “rate coding” or as a “spike coding”?

Recent studies have shown that information is encoded as a “spike coding” and the “rate

coding” is poor in representing the neurons’ ability to rapidly process information. Both

coding methods are discussed and compared.

Spike coding uses the time between spikes to encode the information. The recent

studies have focused on “rank order coding” of information which extends the “spike

coding” (temporal coding) methods. The differences among “rate coding”, “temporal

coding” and “rank order coding” are explained by the following example. In this example,

seven neurons respond to stimuli. Each neuron can fire at most one time in the next time

window T. Suppose that the neurons A, B, C, D, E, and G emit a spike except the neuron F.

The binary coding for this example is ‘1111101’. If “rate coding” is used to encode the

information, then the maximum amount of the available information is log2(8) since we

have eight different events that can happen. The information coding capacity for this case is

seven. If the temporal coding is used, then the amount of the available information for this

case is 7*log2(T). The time window T specifies the precision of coding. For example,

suppose that the precision is set to 1ms, then T is seven (the number of the spaces between

the dotted vertical lines) and hence the amount of the available information becomes

7*log2(7). The rank order coding uses the order of emitting of the spikes from the

corresponding neurons (the rank column). The amount of the available information for this

example is log2(7!) since there are 7! different combinations of neurons’ spiking orders.

15

As we can notice, rank order coding achieves a higher information capacity coding than the

temporal coding and rate coding.

Figure 4: Different method for information encoding in Spiking Neural Networks.

As aforementioned, the rank coding is very efficient and can achieve the highest

information coding capacity. The rank coding procedure is the following: first, it starts by

converting the input values into a sequence of spikes using the Gaussian receptive fields.

The Gaussian receptive fields consist of m receptive fields that are used to represent the

input value n into spikes. Assume that n takes values from [Imin
n , Imax

n] range, then the

Gaussian receptive field of neuron I is given by its center ui:

ui = Imin
n +

2i−3

2
∗

Imax
n −Imin

n

M−2
 (2.13)

and width σ:

σ =
1

β
∗

Imax
n −Imin

n

M−2
 (2.14)

β is a parameter that controls the width of the receptive field with 1 ≤ β ≤ 2.

16

The following example shows the rank order coding for n=0.75 and M=5. The value

of β was set to 2 and the range [Imin
n , Imax

n] was set to[−1.5 , +1.5]. The value of n=0. 75

is converted to a sequence of spikes using the five neurons. The neuron with ID=3 is ranked

first (rank=0) since it is the first neuron in firing, and the neuron with ID=2 is ranked

second (rank=1) since it is the second neuron in firing and so on.

Figure 5: Gaussian Receptive Fields for spike encoding [19].

D. Synaptic Time Dependent Plasticity (STDP)

Like the second generation of ANN, SNNs adjust their weights between the neurons

through the learning process. However, SNNs deploy a time-dependent mechanism to do

this. SNNs use a variant of Hebbian’s rule to emphasize the effect of the spikes timing

unlike the common learning methods, which depend on the rate of spiking. The weights

updating mechanism is based on the firing time between the presynaptic and the

postsynaptic neurons; if the postsynaptic neuron fires directly just after the postsynaptic

neuron fires, then the connection between these two neurons is strengthened.

17

if ∆t ≥ 0 then wnew ← wold + ∆w, where ∆t = tpost − tpre

While if the presynaptic neuron fires just after postsynaptic neuron fires, then the

connection between tow neurons is weakened.

if ∆t < 0 then wnew ← wold − ∆w, where ∆t = tpost − tpre

The remaining case when the firing time of the postsynaptic neuron is apart from

the firing time of the presynaptic neuron, then no weights updating occurs. The previous

discussion was for the excitatory connection. The inhibitory connection uses a simple

process since it does not take into account the firing time between the presynaptic and

postsynaptic neurons. The weights between the two neurons are updated according to

Hebbian’s rule rather than the temporal Hebbian’s one. The previous results have biologic

backgrounds; however, we will not go through them.

The figure below explains the effects of ∆t (the x-axis) on the ∆w (the y-axis). The

difference between the cases 1, 2 and 3 is that the effect of ∆t on weight updating can be

symmetric or asymmetric. Case 4 is for the inhibitory connection where the weights

updating is independent from the ∆t.

Figure 6: Synaptic Time Dependent Plasticity weight updating [20].

18

E. Learning in SNN

Before getting into the learning in SNN, we first explain the architecture of SNN

and its main components. The SNN structure can be either feed-forward or backward

architecture. The architecture depends on the learning method used. The architecture can be

a multi-layer network with an output layer that contains several neurons. We assume that

the values of input are converted into spikes using one of the available methods such as

Gaussian receptive filed. The input layer receives the sequences of spikes corresponding to

the values of the input. Later, the output is computed by the network and the corresponding

output neuron(s) for the input pattern spike(s). The network should be adjusted in order to

produce the suitable spiking times at the output. The only way to achieve this goal is by

adjusting the weight between neurons as in all other types of the neural networks.

Figure 7: Spiking Neural Network architecture [20].

Number of works tried to design an efficient learning algorithm. The most popular

algorithms are SpikeProp and Theta-learning rule. SpikeProp is similar to the

Backpropagation algorithm that was designed to adjust the weights in the second

generation of the neural networks. Theta learning rules is another learning algorithm that

uses Quadratic Integrate and fire (QIF) neuron model. Both of these algorithms are very

19

sensitive to the parameters of the neuron model and sometimes these algorithms suffer from

spike-loss problem. The spike-loss occurs when the neuron does not fire for any patterns

and hence it will not be recovered by the gradient method. The other approach for training

SNN is using the Evolutionary Strategies which do not suffer from the tuning sensitivity.

However, they are very exhaustive and costly.

The figure below describes the SpikeProp algorithm steps for SNN with one input

layer I, one hidden layer H and one output layer J. The neurons from each layer are

represented by the lowercases i, j or h. The sets Гi and Гi are the neurons that are

immediately preceding and succeeding the neuron i respectively. Each connection between

two neurons in the adjacent layers consists of m subconnections. Each subconnection has

its own delay factor dk where k ∈ {1. . m} and its own weight wij
k. The variables ti, tj and

th are the spiking time at each corresponding layers for the neuron i, and (t̂i, t̂j ,t̂h) are the

actual spiking time at each corresponding layer for the neuron i.

The response function of the neuron i is given by the following equation:

yi
k = ε(t − ti − dk)|ti=tî

 (2.15)

Where:

ε(t) =
t

τ
e1−

t

τ (2.16)

 and τ: is the membrane constant.

20

Weights updating from the output layer to the hidden layer is given by the following

equation:

∆wij
k = −ƞ. δ. yi

k|ti=tî ,tj=tĵ (2.17)

Where:

δj =
∂E

∂tj
|

tj=tĵ

.
∂tj

∂xj
|

xj=xĵ

 (2.18)

=
Tj−tĵ

∑ ∑ wij
l ∂

∂t
(yi

l)|
ti=tî ,tj=tĵ

m
l=1i∈Гj

 (2.19)

And updating weights from the hidden layers to the input layer is given by the

following equation:

∆whj
k = −ƞ. δi. yh

k|ti=tî ,th=tĥ (2.20)

Where:

δj =
∂E

∂ti
|

ti=tî

.
∂ti

∂xi
|

xi=xî

 (2.21)

=
∑ ∑ wij

l ∂

∂t
(yi

l)|
ti=tî ,tj=tĵ

m
l=1j∈Гi

∑ ∑ whi
l ∂

∂t
(yh

l)|
ti=tî ,th=tĥ

m
l=1h∈Гi

 (2.22)

The weaknesses of the SpikeProp algorithm can be summarized by the following

points [21]:

21

 The membrane potential of neurons is calculated at fixed time-step intervals.

 There is no method for selecting the initial weights and the thresholds.

 The need for reference neuron that spikes at t=0.

 Failure to converge due to the insufficient spike response function.

 The figure below shows the SpikeProp algorithm.

22

Figure 8: SpikeProp pseudo code [21].

23

CHAPTER III

PRIMER ON LIQUID STATE MACHINE

In this chapter, we focus on the Liquid State Machine (LSM) since it provides an

easy approach to cope difficulties in training SNNs and Recurrent Neural Networks

(RNNs). RNN is an ANN with cyclic connections inside the network such that the network

is able to maintain a memory about previous input. On the other hand, SNN as explained in

chapter II is a network that is composed of spiking neurons. We also mentioned in chapter

II that adding cyclic connection to SNNs is important to allow for some type of memory

inside the network such that they are able to obtain a better understanding about the

dependencies between inputs. These connections increase the complexity of training SNNs

even more that we think. To overcome these difficulties, LSM trains only the output layer

while using network as a dynamical kernel.

A. Introduction

LSM is a randomly and sparsely connected network of spiking neurons. It was

introduced by Maass in 2002 [22, 23] to model the cortical microcircuits computations in

the human brain. Unlike Turing machine-oriented approaches such as ANNs, SVM, KNN,

etc., LSM is a dynamical system modeling approach i.e., the input to the system is a time-

varying stream and the output are a congruent high dimensional time-varying output with

the input. That is, LSM is capable to handle the arduous problems of time-varying

prediction, pattern recognition in dynamic regimes and non-linear system recognition.

24

Moreover, LSM provides an adaptive scheme to learn from a limited number of samples

and hence positions LSM as a superior ML approach as can be explained later.

LSM and Echo State Networks (ESN) [24] form a new trend in ML called

Reservoir Computing [14, 25]. ESN was introduced relatively at the same time when Maass

introduced LSM, but these two approaches were independently developed. ESN depends on

the second generation of ANN, where it uses the non-spiking neuron models. In

comparison with ESN, a model formed by LSM is able to encode larger information than a

model built on ESN concepts, since amount of information that could be encoded by SNNs

are larger than information that could be encoded by the second generation of ANN [20].

B. LSM vs. Turing machine- oriented ML approaches

Turing machine, the most common computational paradigm, is represented by a set

of finite states that have an initial state, a goal state and a well-governed regime of

transition between states. This definition of Turing machine shows how strict are the

models that are built upon the Turing machine concept; the inputs should be available and

known in ahead of time; the output is definite and the effect of the current output on the

next input is absent. In contrast, systems in real life are more complex and sophisticated

than this structure, for example, acquiring the knowledge in humans does not depend only

on the current arriving information, but more generally depends on a previous knowledge

and a previous memory including the long term memory and the short term memory.

To overcome the limitation of Turning-based models, the LSM incorporates the

information not only from previous outputs, but also from the previous short memory and

25

hence LSM tends to be a more realistic representation of learning in humans. LSM plays a

role of a dynamical kernel that maps the input into a high-dimensional separable output,

which means that we can easily identify the corresponding inputs. Moreover, since the

LSM does not impose restrictions on the input, then LSM is suitable for data stream input

applications i.e., LSM is an intrinsic pattern recognition approach for data stream

applications.

C. LSM vs. Deep Learning

Deep Learning vs. LSM

Deep Learning (DL) [26] came out as a solution for the problems that faced the

shallow models of ANN such as vanishing gradient. These problems were solved by Hinton

when he introduced a fast method to train DL using Deep Belief Networks (DBNs). Our

concern is to understand the differences between DBN and LSM in training and

functionality.

For DBN, training process is divided into two phases: first, the pre-training, which

works in hierarchy to transform the input into abstracted representation using nonlinear

transformations. DBN functionally is divided into Restricted Boltzmann Machines (RMBs).

Each RBM consists of two layers; one is called the visible layer and the other is called the

hidden layer. The idea is to represent input at the visible layer very well at the hidden layer.

The hidden layer later becomes as a visible layer for the next stacked RBM. This process is

repeated until reaching the last hidden layer in DBN, which is used as an output from DBN.

It is important to say that this process is an unsupervised learning process, which means

26

that DBN learns features from the corresponding pattern at input without knowing the label

of input. The second phase of training performs the fine-tuning for weights inside the

network, where it is performed using the backpropagation algorithm. The second phase is a

supervised process, where labels should be presented to training algorithm.

Figure 9: Restricted Boltzmann Machine.

Similarly, LSM has two learning phases to learn from input. In the first phase, LSM

learns in unsupervised manner the activation patterns that is correspond to input. This is

done using STDP algorithms (Chapter II, section D). The second phase is training the

readout function, which is done in a supervised learning process, where the label of input

should be provided to the readout function.

However, DBN and LSM differ in the way of understanding the input. In DBN, the

input is fed as a one static vector, which means that RBM in DBN does not know exactly

the spatio/spectro temporal relationship within an input, i.e., DBN works by understanding

the underlying structure layer by layer from input, and this understanding gets stronger as

we go higher in the network. For example, DBN learns first the edges in pictures and then it

begins to identify objects in upper layers. In contrast, learning in LSM using STDP

understands the spatio/spectro temporal relationship in input, since learning relies on time

and activation patterns within input.

27

In addition, LSM and DBN differ in the connectivity constraints between different

neurons/units. LSM provides a flexible schema for connecting the network, where cyclic

connections in the network are allowed. In contrast, connections in DBN are acyclic;

connections are allowed from in one direction from visible layer to hidden layer in each

RBM without any connections between units within a same layer.

Moreover, DBN has no internal memory to understand dependencies within same

patterns, i.e., the time concept is absent in training DBN. On the contrary, the memory in

LSM is achieved by the cyclic connections within the network, and time is the major

component in training LSM.

From the perspective of reading from the model, LSM and DBN have different

mechanisms for extracting the output of the model. In DBN, the far end layer is used as the

output of the model, which means that we must wait until all previous layers are trained in

order to obtain the final output of the model. Different from DBN, reading from LSM is

achieved by reading the responses from the network to input, i.e., the output is LSM is the

state of the network at different time steps.

In addition, the main purpose of LSM is to transform the input into a high

dimensional output, which is the opposite function of DBN, i.e., DBN transforms the long

input vector into a low dimensional output.

D. Handling Time in LSM

Time is a key factor in training and reading from LSM. LSM is a natural time

handling model, where the time concept is present in training model using STDP, and

28

reading from LSM. In training, STDP uses spiking time information for presynaptic

postsynaptic neurons in order to adjust weight of synapse to server information propagation

within LSM, i.e., strengthening and weakening synapses such that we obtain a resilient

regime inside the liquid. For example, LSM learns the underlying activation pattern over

time from EEG signals such that a same flow of EEG delivers the same responses in the

liquid. More importantly, a same flow of input should produce the same activation paths

inside the liquid, where these paths are read and used as fingerprints for corresponding

input.

On the other hand, time is present in reading from LSM, where the output is the

sampled liquid states from LSM. This way of handling time ensures that the output reflexes

the temporal integration of previous input flow along time. Although LSM has a memory,

but this memory is a short term memory, and depends on the complexity of cyclic

connections that live in LSM. Hence, reading from LSM must ensure that it is able to

capture the dependencies within flow of input at the right moment, i.e., when to sample

from LSM. In addition, handling time in LSM is an advanced paradigm of other

techniques’. In such techniques, a signal is divided into segments and time is handled by

sliding a window over this signal. However, windowing a signal does not sincerely capture

the dependences between previous values of the same time series. Moreover, windowing

cannot capture the dependencies from different time series, when input is composed of a

different time series inputs. For example, when a model is supposed to handle EEG, which

is composed of a number of channels. Thus, LSM provides a natural approach to handle

time, not only from a single time series input, but from different times series inputs, where

29

it provides a dynamical segmenting and windowing approach from a combination of times

series inputs.

Above all, LSM provides a relaxation method for time by projection input into high

dimensional output. That is, transforming the input flow allows LSM to relax time into

activation patterns of neurons, which are later used as an output for the readout function. In

other words, the liquid forms a dynamical kernel for the input, where different neurons are

used as different support vectors over time, in the contrary to SVM kernel concepts.

Dynamically and relaxation permit LSM to deal with time effectively.

E. LSM Architecture

The LSM, in general, consists of three parts; the input, the liquid and the readout.

The input(s) is/are data stream signal(s) that can be either continuous or discrete. The liquid

consists of a number of spiking neurons (described in CHPATER II), where they function

together as a dynamical kernel. The readout is a memoryless function that receives the

output, the liquid states, from the liquid to perform a recognition task. The Figure 10

bellow describes the general architecture of the LSM, where I(s) is the input to the liquid

and LM is the liquid represented by a complex dynamical system equations in the high-

dimensional space. y (t) is the readout output after applying some filter operations to

resolve the state of the liquid during specific periods.

30

Figure 10: LSM general architecture description.

The LSM as a model can be described by the following simplified equation:

Let I(s) be the input described until the time s with s < t, then:

the liquid states: 𝑥𝑀(𝑡) = 𝐿𝑀(𝐼(𝑠)) (3.1)

 the readout output: 𝑦(𝑡) = 𝑓𝑀(𝑥𝑀(𝑡)) (3.2)

F. Theory and Mathematical formulation behind LSM

Let M be a computation machine that can deliver an online computations by

performing a function F on some inputs, I. This function, F, is encoded as:

𝑖: ℝ → ℝ𝑛 (3.3)

We call the function F as a filter to describe its functionality since the term filter is

more general that the term function. This filter, F, has a restrict regime that it is an input

driven filter i.e., the output of the filter does not depend on any internal clock of the

machine, but the input. Such filters are called time-invariant filters and satisfy that any

31

temporal shift of the input by some amount of time 𝑡0 causes the output to shift by the same

amount 𝑡0. We write this mathematically as follows:

𝐹𝑖𝑡0(𝑡) = (𝐹𝑖)(𝑡 + 𝑡0) , for all 𝑡 where 𝑡0 ∈ ℝ (3.4)

Where

𝑖𝑡0(𝑡) ≔ 𝑖(𝑡 + 𝑡0) (3.5)

This indicates that to identify the characteristics of the filter, we need to observe the

output at time =0 while the input varies over the time. That is, the time invariant filter F is

uniquely identified by:

𝑦(0) = (𝐹𝑖)(0) (3.6)

At this level, we can replace the filter by a simpler mathematical representation or

approximation. It is important to mention that the analog computations are greatly affected

by the noise in the computation machine and we refer to this by the fading memory, which

requires that for any input function 𝑖(.), the output (𝐹𝑖)(0) can be approximated by the

outputs (𝐹𝑣)(0) for any other input functions that approximates 𝑖 on a sufficiently long

time interval [−𝑇, 0] in the past. We mathematically write the fading memory property as

follows:

 𝐹: 𝐼 → ℝ𝑁 has a fading memory, if for every 𝑖 ∈ 𝐼 and every 휀 > 0 , there exist

𝛿 > 0 and 𝑇 > 0 such that |(𝐹𝑖)(0) − (𝐹𝑣)(0)| < 휀 for all 𝑣 ∈ 𝐼 with ‖𝑖(𝑡) − 𝑣(𝑡)‖ <𝛿

for all 𝑡 ∈ [−𝑇, 0]. This means that to say a filter F has a fading memory: it is enough for

32

its current output (𝐹𝑖)(0) to depend on the most significant bits of its input 𝑖(.) in some

finite time interval [−𝑇, 0].

The universe of time-invariant fading memory filter is very large; it contains all the

filters F that are characterized by Volterra series (a finite or infinite sum of integrals). The

filter F needs to have, in addition to the fading memory property, the pointwise separation.

That is, for two inputs 𝑖(.) and 𝑣(.) with 𝑖(𝑠) ≠ 𝑣(𝑠) and for some 𝑠 ≤ 𝑡:

𝐹𝑖(𝑡) ≠ 𝐹𝑣(𝑡) (3.7)

Besides, the readout function, 𝑅, must have a universal approximation property i.e.,

any continuous function can be uniformly approximated by functions from R.

G. Input into spikes

Encoding input into spikes or into reservoir-understandable input is crucial step

since the quality of conversion affects the performance of the reservoir. More importantly,

each unique input should be able to generate unique responses in a reservoir. In addition,

relatively close inputs should have relatively same responses. The reservoir with input

encoding mechanism must not fall in or generate chaotic behaviors that are not correlated

with inputs. This can be seen from the perspective of Butterfly Effect in Chaos Theory,

where a small change in input may cause a tremendous change in output, therefor LSM

implementation and configuration must ensure not to adopt any Butterfly Effect.

Methods of encoding or converting the input rely on the class of input. More

specifically, input might be a time series such as EEG signals, voice signals, stochastic

33

prices over a period of time, etc. or a static input such as feature vector that specify iris

flower type or simply any other examples that have features– label format.

Input might be encoded as a train of spikes or might be injected directly into the

reservoir by mean of input neurons that are connected to reservoir’s spiking neurons and

influence variables of neurons’ state e.g., an input is injected as current that affects the

membrane potential in CbNeuron neuron model.

Interfacing the input with the reservoir raises conditions on the deployed methods;

the input must excite the reservoir enough to capture the corresponding responses and must

not oversaturate the reservoir such that the responses become uninformative. In the

following, we review some of the works that use different methods of input conversion.

1. Input to spikes conversion

 There are several methods to convert input into spikes where they utilize different

mechanism and impose conditions on input class.

a. Static Input

The common method in such classes of input is to use Gaussian Receptive Fields

where each feature in the input is converted into a number of spike trains (see CHAPTER

II, section3).

b. Time Series Input

Here, we can identify two algorithms: BSA and HSA. Each channel in the input is

converted into a train of spikes and this seems suitable for the reservoir because it mimics

34

the actual representation of information in biological neurons and allows the reservoir to

handle time series input naturally.

 HSA: The idea behind this algorithm is to perform a reverse convolution of the

stimulus. To mathematically explain this method, first, let us define some equations to

explain the intuition behind HSA and BSA.

A stimulus can be estimated as follows:

𝑆𝑒𝑠𝑡𝑖𝑚 = (𝑥 ∗ ℎ)(𝑡) = ∫ 𝑥(𝑡 − 𝜏)ℎ(𝜏)𝑑𝜏 = ∑ ℎ(𝑡 − 𝑡𝑘)𝑁
𝑘=1

+∞

−∞
 (3.8)

Where 𝑡𝑘 is the neuron firing times, ℎ(𝑡) is a linear filter impulse response and 𝑥(𝑡)

is the spike train of the neuron. 𝑥(𝑡) can be represented by ∑ 𝛿(𝑡 − 𝑡𝑘)𝑁
𝑘=1 .

The equation of 𝑆𝑒𝑠𝑡𝑖𝑚 terns into the following shape when it is filtered using a

discrete Finite Impulse Response (FIR) filter that has M tabs.

𝑜(𝑡) = (𝑥 ∗ ℎ)(𝑡) = ∑ 𝑥(𝑡 − 𝑘)ℎ(𝑘)𝑀
𝑘=0 (3.9)

HSA tries to reverse the value of 𝑜(𝑡) by comparing the shifted value of ℎ(𝑡 + 𝜏)

with the matching value 𝑠(𝑡) for every time step 𝜏, if the error from comparison is small

then it subtracts ℎ(𝑡 + 𝜏) from 𝑠(𝑡) and it emits a spike.

 BSA uses the same process, but it utilizes two error metrics:

∑ 𝑎𝑏𝑠(𝑠(𝑘 + 𝜏) − ℎ(𝑘))𝑀
𝑘=0 (3.10)

∑ 𝑎𝑏𝑠(𝑠(𝑘 + 𝜏))𝑀
𝑘=0 (3.11)

If the first error in (3.10) is smaller than the second error (3.11) minus a certain

threshold then it emits a spike and subtracts the filter from the input signal. The threshold in

BSA is an experimental value and can be found by grid search for the optimal threshold

that increases SNR. It has been shown that BSA is better than HSA since it produces

35

smother frequency and amplitude characteristics comparing with HSA [27]. BSA has been

used in [28] for EEG classification with promising results. The goal was to identify

(classify) the type of stimulus from RIKEN EEG dataset. The dataset contains four types of

stimuli collected using 64 electrodes: Class 1 – Auditory stimulus; Class 2 – Visual

stimulus; Class 3 – Mixed auditory and visual stimuli; Class – No stimulus. After

preprocessing the data, 80% of data was used for training and 20% for testing. The

parameters of BSA are as the following: the FIR filter has 20 tabs and the threshold was

chosen to be 0.955.

The pseudo code for BSA is shown below:

for i = 1 to size (input)

error1=0

error2=0

for j = 1 to size (filter)

 if i+j-1 <= size(input)

 error1+= abs (input (i+j-1)-filter (j))

 error2+= abs (input (i+j-1))

 end if

end for

if error1 <= (error2-threshold)

output (i) =1

for j = 1 to size (filter)

 if i+j-1 <= size (input)

 input (i+j-1) = input (i+j-1) – filter (j)

 end if

end for

else

output (i)=0

end if

end for Figure 11: BSA Algorithm pseudo code.

36

CHAPTER IV

LITERATURE REVIEW ON LIQUID STATE MACHINE

In this chapter, we survey the related work in LSM such that we cover the

applications of LSM and the different suggested improvements on LSM. We divide this

chapter into application and improvement levels related works.

A. Related work on Applications

1. Image Recognition

LSM has been successfully used for image recognition: for example in [29], the

LSM was used to recognize predefined nine images. The architecture of LSM in this work

consists of 100 input neurons that are randomly connected to 25 layers, where each layer

has 24 neurons of Hodgkin- Huxley neuron model. ANN was used as a readout function

from the 100 output neurons which they are connected to the 25 layers. The work claimed

that the result are promising and supports the idea of using LSM for pattern recognition

tasks.

2. Highly Variable Data Streams

One of the main powerful advantages of using LSM is the ability to deal effectively

with times series problems which was investigated in [30]. This work explores different

enhancements on LSM by studying the performance of LSM under different setting of

firing thresholds and the synapses properties of the LSM's neurons. These settings are:

37

static firing thresholds with static synapses (Model A); static firing thresholds with

dynamic synapses (Model B); dynamic firing thresholds with static synapses (Model C)

and dynamic firing thresholds with dynamic synapses (Model D).

It was shown that Model A has the least sensitivity to weak stimuli but with highest

spontaneous respond. Models B, C, and D showed a promising separation results for

stimuli.

3. Speech Recognition

Speech recognition is one of the direct applications of LSM since it requires a

temporal pattern recognition oriented methods. In [31], the work tested LSM on subset of

T146 dataset, which is a common dataset for speech recognition. Specifically, [31] used a

subset of 500 samples consist of ten utterances of the isolated numbers -from zero to nine,

spoken by five different speakers. The samples were divided into 300 samples for training

and 200 for testing. The reservoir in this work consists of LIF neurons varying in the

number between 200 neurons to 1400 according to different scenarios. LIF neurons are

identical with the following parameters: membrane time constant = 30 ms, firing threshold

= 15 mV, reset voltage = 13.5 mV, absolute refractoriness for excitatory neurons =3 ms,

and absolute refractoriness for inhibitory neurons =2 ms. The connections between neurons

inside the reservoir are governed by the following stochastic equation:

𝑃(𝑁𝑎, 𝑁𝑏) = 𝐶. 𝑒
−𝐷𝑖𝑠𝑡2(𝑁𝑎,𝑁𝑏)

𝜆2 (4.1)

This equation describes the probability of connecting neuron 𝑁𝑎 with 𝑁𝑏, where:

38

 Dist(𝑁𝑎,𝑁𝑏): is the Euclidean distance between 𝑁𝑎 and 𝑁𝑏.

 C: is the connection weight; it depends on the type of 𝑁𝑎 and 𝑁𝑏; whether the neuron is

excitatory or inhibitory.

 λ: is a parameter that controls the average number of connections and the average

distance between Na and Nb.

In this work, three methods of input-to-spikes encoding were tested: Hopfield-

Borody method, MFCC method and Lyon Passive Ear method. Among these three

methods, Lyon Passive Ear has shown to be the best method with average Word Error Rate

(WER) of 2 % and best achieved WER of 0.5%.

In addition, the worked tested the robustness of LSM against different types of

noise namely, the speech bubble, the white noise and the car interior noise added from

NOISEX dataset. An LSM with 1232 neurons was first trained using pure training samples

and then was tested according to three different SNR levels of 10 dB, 20 dB and 30 dB in

testing samples. The result has shown that the LSM is robust for the noise and is able to

recognize the patterns effectively even in noisy environments.

The same recognition task was tested in [32], but with different configuration for

the LSM; the number of neurons inside the reservoir was varied from 100 to 300 neurons of

LIF. The results has shown that as the number of neurons inside the reservoir increases, the

WER decreases specifically, from 0.05% for 100 neurons to about 0.025% for 300

neurons. Moreover, the work studied the effect of choosing Booij synapse model instead of

39

the exponential one and it has been shown that Booij synapse model did not improve the

WER.

4. Music Information Retrieval (MIR)

Music classification based on the content is another discipline of harnessing LSM in

real life applications. In [33], an LSM was tested for two tasks: the recognition of music

records from music and non-music records and classifying the music style into classical or

ragtime music. The architecture of the LSM in this work consists of an input layer with

12×5 LIF neurons and ten layers of 12×5 LIF neurons. The input to LSM is a set of 60

spike trains that represent the encoded piano music data. The model of LIF neurons in LSM

is given by the following parameter: the time membrane time-constant =30 ms, reset

voltage= 0 mV, input resistance = 1MΩ, I (inject) =13.5nA, I (noise) =1nA, absolute

refractoriness for excitatory neurons =3 ms, and absolute refractoriness for inhibitory

neurons =2 ms.

In the LSM, 80% of neurons were excitatory and the remaining 20% are inhibitory.

The connectivity inside the LSM follows the common equation (Small World Connection)

with 𝜆 =1.5 and C=0.3, 0.2, 0.4 and 0.2 for excitatory-excitatory connection, excitatory-

inhibitory, inhibitory-excitatory and inhibitory-inhibitory respectively. The input layer was

configured with different initialization; λ =5 and with exception that it has no inhibitory

neurons. The output form the LSM is acquired by mean of readout function; the linear

regression.

40

𝑃(𝑁𝑎, 𝑁𝑏) = 𝐶. 𝑒
−𝐷𝑖𝑠𝑡2(𝑁𝑎,𝑁𝑏)

𝜆2 (4.2)

In the first task where the LSM is devised to recognize the music form non-music

records, it showed a good capability with testing accuracy around 82%. The second task,

where LSM role is to classify music style, asserts the efficiency of the LSM with best-

achieved accuracy of 94.08%.

5. Facial Expression Recognition

Facial expression recognition is a common application in pattern recognition and

has been tested using different ML approaches such as ANN, KNN, SVM, etc.

The LSM, and due to its successes, has been devised in this context. For example, in

[34], the LSM was assessed and evaluated to recognize seven types of emotions namely,

happiness, sadness, anger, fear, surprise, disgust and neutral from JAFFE database, which

contains 213 images of female facial expression form 10 Japanese women. In this work,

two methods were used to represent images: the Gabor representation and binary

representation. Two topologies of LSM were utilized to perform the recognition phase

depending on the representation method: for the Gabor representation, the LSM consists of

an input layer of 1×17×12 excitatory neurons, 3×17×12 for the reservoir neurons and an

output layer of 1×17×2; for the binary representation, the LSM consists of an input layer of

1×45×10 excitatory neurons, 3×45×10 of reservoir neurons and an output layer of

1×45×10 neurons.

41

In both topologies, the readout function was a two-layer perceptron network with 38

neurons in the hidden layer and seven neuron at output layer that represent the seven

aforementioned facial expressions.

Under those circumstances, the Gabor and binary representations were tested and

they reported average accuracies of 57.6% and 55.7%, respectively. The work claimed that

since the binary representation is less computationally demanding than Gabor

representation, the further experiments of the work were based on only binary

representation. With this in mind, a different number of neuron models namely, integrate-

and-fire, resonate-and-fire, Morris-Lecar, Hindmarsh-Rose, FitzHugh-Nagmumo and

Izhikevitch’s models were implemented for LSM to evaluate the performance of the LSM

accordingly. The highest average recognition rate was achieved by Morris-Lecar model

(58%) and the lowest achieved by Izhikevitch’s model (44%).

Furthermore, each neuron model has been shown to outperform other model for

specific type of expressions; Morris-Lecar achieved a good rate of correct classification for

happiness and fear while integrate and fire model performed better for disgust. In view of

the variety of performances for each model according to the type of facial recognition

expression, the work tested a merged classifier where the recognition is the majority voting

from the six neuron models. It has been shown that the merged classifiers ameliorate the

average recognition rate (82.4%) compared with previously achieved average recognition

rate (57.6 %).

42

6. Robot’s Arm motion Prediction

Robotic applications are not an exception for the LSM, in fact the LSM provides a

potent mastery in action controlling and, more even, prediction in ahead of time, which is

very important distinction.

With this intention, [35] proposed an Adaptive LSM (aLSM) where it exploits

environment’s parameters to adapt the parameters of LSM.

The experimental setup for [35] consisted of two robotic arms each with two

degrees-of-freedom; one called the experimenter’s arm and other is the robot’s arm. The

experimenter’s arm has an access to a number of objects and, in the same time, the robot’s

arm has an access for some of those objects. The goal was to see if the robot’s arm is able

learn from the experimenter’s arm to access these objects.

In the foreground, the aLSM in this work is composed of 150 Izhikevitch’s neuron

model with (60%) excitatory neurons. The number of input and output neurons is equal to

the number of object in the environment.

Experiments tested two cases: first when the objects are static i.e., no changes

occurred in the position of objects; second when objects are randomly positioned after

training the robot’s arm i.e., the robot’s arm is first trained using the experimenter’s arm

information, then the robot’s arm is tested on accessing the same objects after randomly

positioning the objects in the environment.

For the static case without incorporating the adaptive learning, the average

successful rate was (75.5%) for the environment with two objects and (42.85%) for four

43

objects, while these results increased by (30%) and (2%) respectively when using adaptive

learning (aLSM). For the random position and without incorporating the adaptive learning,

the average successful rate was (69.38%) for two objects and (34.69%) for four objects,

while these results increased by (20%) and (19%) when using adaptive learning (aLSM).

7. Real time imitation learning

Some applications in real life require real time computations such controlling a

vehicle or robot. For this purpose, an LSM was deployed to perform a real time computing

in [36].The work used a small robot called Khepera, which has a programmed controller,

six infrared sensors and two motors. The controller allows the robot to avoid obstacles by

turning around them. The purpose from using the LSM is to imitate the behavior of the

controller such that it can do the same job under real time working. The work used an LSM

with 54 LIF neurons to imitate two types of controllers; one with a linear reactive and the

other with non-reactive. The training phase collected data from sensors and motors while

the robot is controlled by one of the two types of controllers. After that, the data is put as

segments, where each segment has one single occurrence of obstacles to allow the LSM to

learn from the data. Two readouts were trained to control the left and right motors

according to the recoded data from training. To that end, the LSM is now ready to perform

the real time job; controlling the motors according to sensors data. The testing phase is

done in real time, where the recorded commands from the controller are compared with the

generated output by the LSM (the two readouts output). The results has shown that the

LSM was able to imitate the job of the controller with 0.9334 and 0.9338 correlation

coefficient for the left and right motors, respectively for the linear reactive controller. In the

44

non-linear reactive controller, correlation coefficients (0.8130 and 0.8263) were reported

for the left and right motors respectively.

8. Movement Prediction from Videos

The capabilities of LSM were tested on real application for prediction purposes and

it has been shown that LSM is suitable for such tasks. For example, in [37], an LSM was

used to predict the movement of ball form a camera that is attached to a robot participated

in RoboCup middle-size robotic scenario. The goal was to predict the position of the ball in

ahead of time. The LSM in this work consists of 8×6×3 LIF neurons with the following

parameters: (Cm=30nF, Rm=1 MΩ, Vthresh=15mV, Vresting=0mV, Vreset ~ Uniform [13.8 mV

– 14.5mV], Vinit ~ Uniform[13.5mV – 14.9mV], Trefractoriness=3ms (for Excitatory neurons),

2m (for Inhibitory neuron)) and connection parameters as the following (C= 0.3 (EE) , 0.4

(EI), 0.2 (IE), 0.1 (II), λ=[0.5 – 5.7]). The readout is a linear regression function applied on

the output layer. The output layer is composed of a number of neurons that are fully

connected to LSM using static spiking synapses. The input layer is 8×6 input neurons that

receive the activation sequences form robot’s sensors. The activation represents the

percentage of covered area by the ball to a sensory area of the sensor at each time of

evaluation.

During the experiment, 674 video sequences were recorded, which have 50ms as a

time step and differ in the length. Thereafter, the video sequences were divided randomly

into 85% training and 15% validation. In the testing phase, the LSM was required to predict

the position of the ball after 2 time steps (100ms), 4 time steps (200ms) and 6 time steps

(300ms). The results were reported in terms of the mean absolute error and the correlation

45

coefficient for different values for parameter λ (0.5 – 5.7) and Ω (0.1 – 5.7). The parameter

λ controls the average of connection inside the reservoir and Ω, the scaling factor, controls

the strength of the connection between the neurons. The best achieved result for one time

step prediction is when one of the parameters λ or Ω is low, for example (λ=1 and Ω=0.5),

and this was indicated by the low value of the mean absolute error and the high values of

the correlation coefficient. The same conclusions were reached for two and four time steps

prediction with highest correlation coefficient achieved of 0.7 for two time steps and 0.5 for

four time steps prediction. The six time steps prediction has not been shown to be able to

provide good results.

9. EEG Classification

BSA with LSM have been used in [28] for EEG classification with promising

results. The goal was to identify (classify) the type of stimulus from RIKEN EEG dataset.

The dataset contains four types of stimuli collected using 64 electrodes: Class 1 – Auditory

stimulus; Class 2 – Visual stimulus; Class 3 – Mixed auditory and visual stimuli; Class –

No stimulus. After preprocessing the data, 80% of data was used for training and 20% for

testing. In this work, an LSM with 135 neurons was built and tested using four different

types of neurons models: default LIF; Noisy Reset (NR) – the rest value of LIF is drawn

from random distribution; Step-wise Noisy Threshold (ST) – the threshold value of LIF is

drawn from random distribution, but during two consecutive spikes the threshold is fixed;

Continuous Threshold (CT) - the threshold value of LIF is drawn from random distribution.

The readout was acquired using the Naïve Bayes and MLP, where they reported results

were compared with same methods but without using the reservoir. For Naïve Bayes, the

46

reservoir approach achieved 75% accuracy regardless of the neuron model compared with

66.9% without a reservoir. On the other hand, MLP achieved 75% using ST model

compared with 64.87% without a reservoir. The study has shown that the root mean

squared error (RMSE) is lowest when using ST model with Naïve Bayes although the

accuracies were the same.

10. Stochastic Behavior Modeling

The LSM was used in [38] to design a neural controller that replicates the

exploratory behaviors of cockroaches seeking for shelters. Particularly, this work used the

same data that was used to introduce the Randomized Algorithm Mimicking Biased Lone

Exploration in Roaches (RAMBLER) [39]. The LSM has to learn form information about

the walls, shelters relative to the insect along with current velocity and angular velocity to

produce probability distributions of the animal's velocity and angular velocity.

The deployed LSM in this work consists of 300 LIF neurons arranged in 5×5×12

(3D architecture) with λ= 2.1 and 80% of the neurons are excitatory. The connection

between neurons is as follows: CEE=0.8, CEI= 0.8, CIE=0.7 and CII=0.7. Synapses between

neurons implement short-term plasticity (STP).

The input data to the LSM is composed of a set of information as follows: a

modeled wall sensors data that is composed as 12 distance sensors represents LIDAR-like

sensors located on the head of the animal and five other sensors that represent the antenna-

like sensors; a modeled shelter sensors data that is composed of the distance between the

animal and the shelter and nine values that encodes the orientation of the animal relative to

47

the shelter. The readout function is a two -hidden-layer ANN with 300 sigmoidal neurons

in each layer. The input data is sampled at 20 Hz from sensors data and then fed into the

LSM. After that, the LSM estimates the probability distribution of the velocity and the

angular velocity by using reinforcement learning to force the LSM to produce the same

output.

For testing, 20 LSMs were randomly generated and trained accordingly and then the

produced output was compared with the probability distributions of the velocity and the

angular velocity. The results were reported in terms of the differences between the

centroids of the produced probability distribution and the actual ones. The reported

differences are 50 ±130 mm/sec and 5±13 rad/sec for velocity and angular velocity,

respectively. Even though the mean of differences is not zero, the produced probability

distributions have shown that the LSM tends to produce the actual values, but not to

completely converge to them. In addition, the results have shown that the LSM, when

compared with RAMBLER, is able to capture the complex behaviors of the insect without

explicitly defining them.

B. LSM improvements and modification

We divide this section according to the targeted parts or mechanisms by the related

works.

1. Readout

The readout part of LSM is a linear classifier without any memory as stated by

Maass [22]. While this became as a principle for LSM, [40] studied the effect of adding a

48

memory for the readout. More specifically, the work converted the synapses between the

LSM and the readout such that the emitted spikes have certain delays. In details, the work

used Brody-Hopfield benchmark, which includes 500 samples of spoken digits from “0” to

“9”, to identify to the correct labels of the numbers. In this work, two randomly generated

LSMs with 135 neurons were used to perform this task after converting the audio into

spikes. Here, 300 samples were used for training and the remaining samples, 200, for

testing. In the first experiment, the work tested 5 ms, 10ms, 15ms, 20ms, 30ms and 50ms

delays for 1, 2, 3, 5, 7 or 10 links of the outgoing synapses of each neuron that has a

connection with the readout. The reported results have shown that the LSM performs better

as the delay and the number of synapses increases, but the results have not shown to be

steady and this led to the second experiment. The authors in the second experiment

generated a dataset of 1500 with binary classes where 1000 samples were used for training.

The second experiment didn’t proved that the performance improves steadily as the delay

and the number of delayed synapses increase; however and generally speaking, the

performance could be improved by adding delays to synapses.

2. Structure and Processing Units

In [41], the authors proposed a method to iteratively search for the best LSM that

yields highest performance using GA. The work proposed an evaluation function that acts

as a metric for the performance of the LSM. More specifically, the metric incorporates the

liquid states means and variance in order to examine the separation of the data. The metric

is deployed in context of Fisher Discriminant Ratio (FDR) for the separation between

49

classes at the input. To that end, the evaluation function, FDR, is ready to be optimized by

GA to find the best architecture and neural model. The solution that GA needs to find is

expressed as a chromosome that encodes three types of information: 1) the parameters of

the neurons in the liquid and explicitly, the firing thresholds and the mean of Gaussian

noise added to the neurons’ output, 2) the architecture of the LSM and it has three options:

input neurons are fully connected to the liquid; input neurons are partially connected to the

liquid; and time varying input neurons are connected to different regions in the liquid

while static ones are connected to all neurons, 3) the size of liquid and the average

connections for each neuron in the liquid.

To assess the quality of the chosen metric, four different classification tasks were

used and the resulting accuracies are compared with FDR metric. In the first task, an LSM

with 125 neurons determines whether the input is over a specific rate specifically, over 5

Hz. The second task uses the LSM to classify two different types of motions by projecting

the movement on 9×9 grid of receptive field neurons that are connected to an LSM with 63

neurons. In the third task, the LSM is required to classify three objects namely, a circle, a

square and a hexagon. In the last task, the LSM has to decide whether the end point of a

moving planar robotic arm is close or not to a given target location. After conducting the

four tasks, the work reached a conclusion that FDR metric can be used to evaluate the

performance of the LSM because it directly related to the separation property of the LSM

and it does not depend on the deployed readout.

At the level of the processing units, the work [42] tested six neuron models

namely, Integrate and Fire, Resonate and Fire, FitHugh-Nagumo, Morris-Lecar,

50

Hindmarch-Rose and Izhikevish model. For the architecture in this works, they used a

mammalians visual system inspired architecture that consists of: a Retina or an input

which consists of 2×2 neurons that are organized in a square 2D grid; LGN layer consists

of 1×8×8 neurons which is connected to the input; and five layer s of 3×8×8 neurons that

are connected to each other. The connection follows the Small World Connection concept

with the same configuration as in [31] . The work used two different randomly generated

stimuli “S1” and “S2 “to the test the aforementioned models in order to test the distance

between the responses in the liquid. The reported results are as follows: for integrate and

fire model, the distance between stimuli was high when λ=9 and decreases as λ decreases

and this means that as the connection density increases the separation property decreases.

While for resonate and fire model, the separation property was not affected by the value λ.

In FitzHugh-Nagmumo model, the distance rapidly grows for specific duration

when λ= 9 and then drops to zero which means that neurons got synchronized, whereas the

distance value rapidly grows and reaches a maximum value and then fall down for λ=3.

Morris-Lecar model showed a good separation property for λ=3 and relatively high

separation property at the beginning of the simulation and then drops down later for λ= 9.

Regarding Hindmarch-Rose model, λ value has no influence on the separation

property. Moreover, Izhikevish model showed a poor separation property.

 When comparing the six models for different configuration for λ; the best

separation property achieved by Morris-Lecar for λ=3, while Hindmarch-Rose achieved

the best for λ=9.

51

Regarding information entropy, the highest achieved entropy achieved by FitHugh-

Nagumo, Hindmarsh-Rose. The other model showed unstable behavior and this indicates

that these models do not encode information optimally inside the reservoir.

As a conclusion from this work, that FitHugh-Nagumo, Hindmarsh- Rose are

suggested to be suitable choices for LSMs with respect to the discussed results.

3. Conveying Information in the Liquid

Information or the spikes transmission inside the liquid is governed by several

factors such as the neuron model, the connectivity between neurons and the weights of

synapses. The later depends on the initialization of the LSM; however, theses weights can

be updated through the unsupervised learning; the Hebbian learning. In [43] , the work

conducted two experiments to study the effects of using Hebbian learning, STDP, for

updating the weights of synapses in the liquid. More specifically, the work observed how

STDP deals with LSMs in two circumstances: when the LSM has pathological synchrony,

which means that most of the neurons in the liquid are firing continuously regardless of

the effect of the input due to the feedback loops connection; and when the LSM has over

stratification and this occurs when groups of neurons become dead and do not produce

spikes regardless of the input.

In the first experiment, a 100 iterations for a random input of 25 spikes over one

second was introduced to four setting for LSM; an LSM with pathological synchrony and

Hebbian learning, an LSM with pathological synchrony and random weights updating, an

LSM with over stratification and Hebbian learning and an LSM with over stratification

and random weights updating. The result has shown that the Hebbian learning preserves a

52

semi steady separation property for pathological synchrony and over stratification cases,

while the separation property drops steadily after 10 iterations in the random weights

updating for both cases.

Unlike the first experiment that uses a random input, the second one uses TIDGIT

dataset which consists of audio files of spoken digits from “0” to “9”. After running the

LSM for different permutation of training and testing samples, the authors have indicated

that Hebbian learning can improve the separation property. However, the authors attested

that the initial weights for the liquid with Hebbian learning affect the separation property

and might lead to a low separation property.

In [44], the authors proposed a new metric for evaluation the liquid. This metric is

based on Hebbian and reinforcement learning and it does not depend on the accuracies of

the results i.e., the metric does not need the readout to be trained to evaluate the liquid.

The metric is devised in an algorithm denoted by Separation Driven Synaptic Modification

(SDSM), where it searches and updates the synaptic weights to produce a high separable

liquid. SDSM takes into account two pieces of information about the status of the liquid

and it updates the liquid accordingly. First information is the differentiating between

classes and a variance within each class. In this case, SDSM tries to balance between these

two pieces of information by strengthening the strong synapses and weakening the weak

synapses even more. The second piece of information is the firing behavior of all neuron

in the liquid where SDSM aims at thresholding the liquid to have only half of its neurons

firing. This achieved by tracing all neurons firing activities and strengthening the

excitatory synapses and weakening the inhibitory ones when less than half of the neurons

fire. While if more than half of the neurons fire, SDSM reverse its work.

53

To evaluate SDSM, the authors carried out two experiments; one using artificial

problem and the other using speech recognition. In the artificial problem, four input

neurons that fire either at slow or fast rates were used. By encoding the slow rate as “0”

and the fast one as “1”, the problem then changed to classify five chosen classes according

to the state of the inputs. 50 randomly chosen liquid were run for 500 iterations and then

the results were compared with an initial LSM. The results have shown that SDSM is able

to improve the separation property for the LSM from 0.4 to about 0.55 and the accuracy

from around 35% to around 78%. The works also shed the light on the capabilities of

SDSM to reduce the number of iterations needed to find a good LSM; an LSM after 500

iterations is not able to compete with LSM and SDSM after 11 iterations.

In the speech recognition task, the author used TIMIT dataset to identify context

independent phonemes. Among the 52 phonemes in the dataset, two simpler problems

were chosen for further testing: a binary class problem to decide whether the phoneme is a

constant or a vowel; and the second problem is to identify one of four distinctly chosen

vowels. Again, the SDSM has proved that it can generate better LSMs in terms of the

separation property and the accuracy.

The authors also tested performance of using LSM with SDSM for Transferring

Learning and it has be shown that LSMs with SDSM have produced better models than the

corresponding initial LSMs used in the SDSM.

54

CHAPTER V

LTTERATURE REVIEW ON EMOTION RECOGNITION

FROM EEG SINGALS

This chapter is concerned with providing a solid introduction and literature review

about emotion recognition from EEG. The reason behind our choice is to provide a

challenging problem for the pattern recognition task, where it requires time series input

capable-handling model. LSM seems suitable for such problems because we can examine

the benefit of using LSM for processing EEG as time series signals. Moreover, we want to

deploy LSM for analyzing and studying emotions in depth by showing how we can use

LSM as an anytime classifier without significant changes in the learning model.

The chapter is organized as follows: in section A, we introduce the idea about

emotions in humans and we explain in section B the different models used to describe

emotions and the affective states of humans. Sections C is concerned with introducing the

dataset that we will use in this work. In section D, we survey the related work done in the

context of emotion recognition from EEG.

A. Introduction about Emotion in Humans

Humans are not only pure-function creatures; humans associate with most of their

actions or reactions emotions. For this reason, many researchers have studied human

55

emotions to make machines more aware of affective state of humans. However, there is still

a gap between the humans and machines due to lack of methods in understanding these

emotions. In order to achieve to the affective computing, many studies have tried to

recognize human emotions by studying speech, visual appearance, audiovisual, facial

expressions and body gestures. In addition, physical signals such as electrocardiogram

(ECG), galvanic skin response (GSR), electromyogram (EMG) and electroencephalogram

(EEG) have also been used to recognize human emotions, since they carry extra

information about human state. More importantly, EEG data may reveal the actual human

emotions since it represents brain activates, source of our actions or reactions in response to

a stimuli.

B. Affective State Definition

The affective state defines our experience of feeling or emotion as a reaction for a

stimulus or stimuli. The affective states are psycho-physiological components that can be

measured using three principle dimensions, the valence, arousal and motivational intensity.

The valence varies from negative-to-positive and measures the emotion’s consequences,

emotion eliciting circumstances or subjective feeling and attitudes. In our daily definition

for emotions, valence is correlated with sad/ negative to happy/positive.

On the other hand, arousal measures the activation of the sympathetic nervous

system; however, it does not necessarily imply an action. Arousal varies from bored

/negative to excited/positive.

56

There are different models to represent the affective states such as the six basic

emotions model [45], Dimensional scale of emotions model [46], the tree structure of

emotions model [47] and the valence-arousal scale model [48]. In this chapter we will rely

on the valence-arousal scale model since it is widely used by the related works. The

following graph shows valence-arousal scale proposed by Russell, where the emotion or the

state is described in 2D plane. The horizontal axis is the valence while the vertical one is

the arousal. This model can describe most of the variation in an emotional state. The

motivational intensity can be also included as a third axis in the model according to

Russell.

Figure 12: Russell's model to represent emotions.

The next section surveys the related work for emotion recognition from EEG, where

the section first shed a light on some works that use different EEG datasets and then we

57

focus on the works that used the DEAP dataset [49] for EEG. By focusing on DEAP

dataset, the work will be able to deliver consistent evaluation and analysis with other works

in terms of the accuracies and testing approaches.

C. Dataset for Emotion Recognition

We chose in this work the DEAP dataset, since it is recently introduced and was

used by many works. By choosing DEAP dataset, we ensure that our comparisons and

evaluation are consistent with other works.

 DEAP dataset consist of EEG data recoded from 32 subjects, while they were

watching 40 prechosen videos. The 40 videos /stimulus in DEAP dataset were chosen

among 120 initial YouTube videos, where half of the 120 were chosen manually while the

remaining were chosen semi-automatically. For these 120 videos, a one-minute highlight

part was determined and then all were presented to subjective assessments experiment to

choose 40 videos.

In DEAP dataset, the 32 subjects are 50% female and 50% male, aged from 19 to 37

years with an average of 26.9. For each subject, each video was presented to him/her and

then he/she was asked to fill a Self-assessment for his/her valence, arousal, liking and

dominance. The valence scales from unhappy or sad to happy or joyful and corresponds

directly to a number from 1-9 (1 represents sad and 9 represents happy). The arousal scales

from calm or bored to stimulated or excited and directly corresponds a number from 1-9 (1

represents calm and 9 represents excited). The liking measures whether the subject likes the

58

video or not and corresponds to a number from 1-9, where 1 means that the subject did not

like the video, while 9 means that the subject likes the video.

The EEG data were recoded according to 10-20 international system at the rate of

512 Hz. Afterwards the data was preprocessed and down-sampled to 128 Hz.

Table 1: DEAP dataset summarization.

Feature Description

Number of Subjects 32

Number of Videos /Stimulus 40

Number of Channels 32

Labels Valence, Arousal and Liking

Sampling Rate 128 Hz

D. Literature Review

This section is divided into two parts: in the first part, we survey the related work on

emotion recognition from EEG done on datasets other than DEAP dataset; and in the

second part, we survey related works done on DEAP dataset.

1. Works that relies on different datasets

In [50], five subjects were used to record the EEG data to measure four emotional

states which are: joy, relax, sad and fear using a pre-chosen elicitation clips. For each

participant, 62 types of active scalp site were recorded at a sampling rate of 1000 Hz, and

then these signals were down-sampled to 200 Hz. Two types of features were extracted

from the raw data: the time domain and the frequency domain features. In the time domain,

six features from each of the 62 signals were calculated: the mean, the standard deviation,

the mean of the absolute values of the first difference, the mean of the absolute values of

the second difference, the means of the absolute values of the first differences of the

59

normalized signals and the means of the absolute values of the second difference of the

normalized signals. For the frequency domain, five features of the log power spectrum were

extracted from the delta, theta, alpha, beta and gamma frequency bands.

In the testing part, SVM with radial basis kernel function, K-NN and a three-

hidden-layer MLP were used to classify the extracted features. The results have shown that

SVM has the best performance with 43.39 % accuracy for time domain features and

66.51% accuracy for frequency domain features. It was also shown that frequency domain

features deliver a better classification accuracy than those of the time domain. The study

also showed that the frontal and parietal EEG signals have higher discriminative

information about the emotional state than other EEG signals.

According to [51], EEG features can be divided into two domains; the time domain

and frequency domain. In the time domain, the components that reflect the corresponding

emotion are represented by the event-related potentials (ERPs). The ERP components are

represented as three types according to their durations: P1 and N1 are the components that

generated after the stimulus with a short latency, N2 and P2 are generated with a middle

latency and P3 which is generated after a long latency. Besides the P3, the slow cortical

potential (SCP) component might be taken into the account as a long latency component.

Several studies have shown that ERP components of short to middle latencies are

correlated with valence, while the ERP components of middle to long latencies are

correlated with arousal. ERP components have to be chosen carefully over several trials,

60

however a recent studies have shown that is applicable to get good ERP features from a

single trial.

For the frequency domain, spectral power of various frequency bands has been used

to infer the related emotional state. It has been shown that alpha power varies with valence

state. In addition, the gamma power has a high correlation with the happiness and sadness.

The theta power has been shown to be correlated with the transition between the emotional

states. Other characteristics of the EEG signals such as phase synchronization and

coherence have been also used to infer the emotional state, e.g., the beta oscillation has

been shown to be correlated with high arousal stimuli.

In [52], 30 pictures from the International Affective Picture System (IAPS) that

belongs to six different clusters of emotions were used as an elicitation for 20 subjects.

Each picture was presented for the subject for 5 seconds with a gap of 5-12 seconds

between each picture. To avoid the misinterpretation of the emotion, each subject was also

asked to fill a Self-Assessment Mankind (SAM), which is used to rate the subject’s valence

and arousal in a 2D scale. Thereafter, the collected EEG data was screened for the users

with low valence and arousal rate and then preprocessed to extract four types of features;

the minimum value, maximum value, mean value and standard deviation. The final dataset

is made up of 24 features from six channels plus the classes (positive or negative

valence/arousal and neutral). Five machine intelligence techniques were applied on the final

dataset namely, K-NN, Regression trees, Bayesian Network, SVM and ANN. In all

experiments, SVM achieved the highest accuracy with 56.1%.

61

The work then tested the data to check if there is a problem with the generality by

dividing it into three subsets, each has five subjects. The same machine intelligence

techniques were again applied, and the reported results for this setup showed that SVM still

outperforms the other techniques with average accuracy of 66.47% for the three subsets.

The issue of designing an automated method to detect the negative emotional states

from EEG was studied in [53]. The method consists of three parts: model creation,

threshold estimation and the detector. In model creation, the short term energy is computed

for each channel by using a sliding window of 343.75 msec with 75% overlapping between

consecutive frames. Then these short term energies are normalized to have zero mean and

unit standard deviation. To that end, the data is ready for building a classifier model using

SVM to classify samples into negative (“0”) state or others (“1”).

The second part is responsible for finding a threshold value form the independent

data (development data) by computing the short term energy and the ratio of each state in

the data.

After performing the first and the second part, the model is ready to predict the

states from training data by first computing the short term energy and then evaluating each

frame by a pattern recognition process to find the corresponding state. The final decision

from the whole frames were conducted by calculating the ratio of negative states to the

number of frames and then compare it to the threshold value. In the testing phase, the work

selected 10 users out of the 32 users in DEAP dataset. From each user 8-9 samples were

used for training data and 8-9 were used for development data. The reaming 22-24 samples

62

were used for testing. The highest achieved accuracy among all users was 73.9% while the

lowest was 54.5% with average accuracy over all users of 62%.

2. Works used DEAP dataset

In [54], the work used the Deep learning Networks (DLN) to recognize emotions

from DEAP dataset. The work used the power spectral of five frequency bands of EEG:

delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz) and gamma (14-30 Hz).

For each of the 32 channels used in DEAP dataset, the power spectra of the five frequencies

was extracted along with the differences in the power spectral between the 14 pairs of

electrodes on the right and the left of the hemisphere. 230 features extracted from the

previous dataset were fed into a stack of three auto-encoder and two softmax layers. The

first softmax layer is used to estimate the three valence states (Negative, Neutral and

Positive) and the second softmax layer is used to estimate three arousal states (Negative,

Neutral and Positive). The experimental part used four setups: (1) used 100 neurons in each

hidden layer in DLN; (2) used 50 neurons in each hidden layer; (3) used the PCA

transformation on the input features to extract the most important 50 features and then fed

the transformed data into a DLN with 50 neurons in each hidden layer; (4) used the

Covariate Shift Adaptation of Principal Components (PCA+ CSA) and then fed the

transformed data into a DLN with 50 neurons in each hidden layer. The testing used the

subject dependent scenario where the reported results are as follows: DLN with 100

neurons provided 49.52% for valence and 46.03% for arousal, while these accuracies

decreased to 47.87% and 45.50% for valence and arousal, respectively when using DLN

63

with 50 neurons. The PCA increased the accuracies by 3.01% for valence and 3.14% for

arousal when used for DLN-50, where the best achieved results was when using PCA +

CSA with DLN-50; the accuracies became 53.42% for valence and 52.03 %for arousal.

In addition to the previous experiments, the work tested the performance of an

SVM-RBF classifier on the data after the auto-encoders. In this case, the SVM was tested

according to three configurations: 230 input features, PCA transformed data and

PCA+CSA transformed data. The highest achieved accuracy by SVM was when using pure

input features without any transformation was 41.12% for valence and 39.02% for arousal.

 In [55], the work proposed a three-step method to transform a pre-segmented EEG

into feature vectors. In this work, each problem is considered as a binary classification

problem, i.e. the valence, arousal, like, and dominance are divided into either low (class

“0”) or high (class “1”). In the first step of the proposed method, the method finds the first

2K nearest neighbors in the segments that do not belong to the same response (EEG signals

in each segment) after assuming that the responses are already labeled. Thereafter, the

distances to neighbors in the two classes are computed and preserved to compute

multinomial distribution vectors. Then, these vectors are fused to form response-level

feature vectors. The work used four ways to perform the fusion: (1) NN voting histograms

in which the features represent the relative number of segments that the nearest neighbors

belong to the class “1”; (2) average segment-to-class distance which computes the average

distance to the K nearest neighbors in the class”0” and K ones in the class “1”; (3)

histograms which finds the B-bin normalized histograms for each dimension in segment-

level probability vectors over all segments in the response; (4) generating Dirichlet

64

distribution where Dirichlet distribution parameters are computed using the moment

matching approximation and then these parameters are used as features.

The final classification on the three fusion methods is carried out in three fashions:

NB-NN classifier which compares the coordinates of average distance to the K nearest

neighbors fusion; NN-voting classifier which compares the coordinates of NN voting

histograms fusion with 0.5; and SVM with RBF kernel that uses the whole four fusions

data combined in one vector to perform the classification.

In testing, the setup was to choose different window length specifically, 1s, 2s, 4s

and 8s with 1s segment shift to generate the segments. From each segment, 230 features

were extracted as in [54]. All classifications were conducted for user-dependent scenario

and the results were averaged on all the 32 users and reported as means and standard

deviations. In the first experiment, the segment level classification was tested after

performing the kernel principle component analysis (K-PCA) and 1-NN classifier. The best

results were as follows: valence: 64.4 %±5.2 when segment size S is 2s, arousal: 60.6 %±

8.1when S is 2s, dominance: 62.3% ± 10.4 when S is 2s and 64.5 % ± 12.0 for liking when

S is 4s. In the second experiment, the mean, standard deviation, min, max range, mode,

median, skewness and kurtosis were extracted for the whole segments features (230

features) =9×230. After that, K-PCA with 1-NN was applied for the 2070 features, and the

best reported results were as follows; valence: 54.9 % ± 8.2 when S is 8s, arousal: 59.5 %±

8.5 when S is 2s, dominance: 61.3% ± 15 when S=4s and 62.2 % ± 14.2 for liking when S

is 2s. The third experiment tested the performance of the proposed fusion methods. In this

case, SVM with RBF delivered the highest accuracies compared with the two other fusions

65

where the accuracies are as follows; valence: 76.9 %± 6.4 when S is1s, arousal: 69.1%±

10.5 when S is 4s, dominance: 73.9 %± 11.1 when S is 1s and liking 75.3%± 10.6 when S

is1s.

Later the work [56] introduced a robust method to transform segment-level features

to response-level features by using two-part unsupervised generative model method. The

first part is Gaussian Mixture Model (GMM) that is followed by, the second part,

Generative models constraining GMM. The segment features are extracted as in [55] for

segment size of 1s and 0.1s step size. The 230 dimensional segment-level feature vector is

downsized to 140 dimensions using K-PCA. Thereafter, the proposed method is used to

generate one 100 dimensional response-level vector. The final classification stage was

conducted using SVM with best achieved accuracies of 70.9 %(±11.4), 67.1% (±14.2),

70.9 %(±12.8) and 70.5 %(±17.1) for valence, arousal, dominance and liking,

respectively.

The matter of low number of samples and choosing the critical channels in affective

emotion was studied in [57]. The work proposed a new technique based on Deep Belief

Networks (DBN) to handle these two issues. In details, the DBN was deployed to extract a

low dimensional feature vector from input channels which include thousands of features.

Then, these channels are evaluated in order to find the most critical channels that affect

emotions. This is done by defining a zero-stimulus as an input before the DBN. Thereafter,

the output of the DBN at the very end layer is evaluated by measuring how many units are

activated in the last layer of DBN. If the ratio of the number of activated units to all units in

this layer is closed to 0.5, then the related channel is irrelevant to the learning task. On the

66

other hand, if the ratio varies from 0.5, then this channel has an effect in the learning

process. In this work, the top five critical channels were used to perform the next level that

is the classification. To evaluate the new method, “like” and “dislike” were used for the

classification task along with other five baseline methods for comparison purposes. The

methods are as follows: (1) SVM, (2) SVM with PCA for features reduction, (3) SVM

with Fisher Criterion for channel section, (4) SVM with PCA and Fisher Criterion, and (5)

DBN for feature extraction with Fisher Criterion for features reduction.

The experimental part chose randomly 20 segments for training and 20 other for

testing. The results were reported in area under the curve (AUS) form. For 28 out of 32

users in the dataset, the proposed method outperformed the other five baseline methods,

while for the reaming four users, it achieved close results. In addition, the stability of the

method for choosing critical channels is compared with Fisher Criterion and it has been

shown that the proposed method tends to have stable choices among the channels.

In [58] which is an extension for the [57], the matter of choosing the critical

channels was performed using a two-stage process. The first stage uses the unsupervised

learning to evaluate the extracted features from RBM by measuring the constructed error

from RBM. The second stage uses the supervised learning to refine the selection process of

channels which resulted from the first stage by computing the significance of each channel

to the classification task. More specifically, the second stage computes the distances

between the extracted features for each channel and the mean of features’ values for a

specific class with respect to the distances between the extracted features to the mean of

features in all classes.

67

In order to deal with low number of samples issue, the work suggested that the final

layer in DBN can be trained on a combinations of supervised information that represent the

labeled data, unsupervised information that represent the unlabeled data and produced data

(generative data) by using RBM as a generative model. The whole process was called a

semi-DLM method.

 In addition, the work suggested that the proposed method can be used for data

labeling by training the model on labeled and unlabeled samples. Afterwards, the unlabeled

samples that have highest certainty to belong to a specific label are chosen and labeled

accordingly (the method was called active-DLM).

In addition to the five baseline methods that were used in [58], the work also used

Deep Learning Model (DLM) that uses only the discriminative and generative data in the

final classification layer.

For all users in the dataset, the proposed method outperforms the other baseline

methods except for two users with a maximum AUC of 0.852 and a minimum of 0.705.

In addition to the classification task, the work tested active-DLM for labeling the

data. The work fixed 10 samples for each user for testing and 10 others out of the

remaining 30 samples for initial training. The active-DLM chose best two samples from

unlabeled data and then labeled them. This process was repeated five times. For DLM and

semi-DLM, the same 10 samples were fixed for testing and 10 out of the remaining 30

samples were chosen randomly to train the model for 10 times. The results have shown

68

with active-DLM, the average AUC was 0.808 which is better than semi-DLM and DLM

for data labeling with an average AUC of 0.767 and 0.789, respectively.

Other works took another approach to extract features from EEG. For example, in

[59], the authors tested the band power for delta, alpha, beta and gamma frequencies as

features for identifying emotions. Besides, the authors tested the power spectral density

(PSD) by wavelet transformation as another method to extract the features. The work

conducted the experiments according to two scenarios: first, when using all the 32 channels

in DEAP dataset; second: when using the channels Fp1, Fp2, F3, F4, T7, T8, P3, P4 and

O2 where these choices are according to work [60].

With the pervious setups, the work produced six datasets. D_10_1: where it uses the

10 channels and the band power of the four signals averaged over the one minute length (4

frequencies×10 channels features). D_10_5: where it uses five statistics for each

frequency; (average, max, min, range and standard deviation). Hence, the feature vector for

each sample is 4 frequencies × 10 channels × 5 statistics. D_32_1: which is the same as

D_10_1, but it uses the 32 channels. D_32_5: is same as D_10_5, but using the 32

channels. D_10_1_WT: is similar to D_10_1, but using the PSD wavelet transformation.

D_32_1_WT: is the same as D_32_1, but using the PSD wavelet transformation.

In all experiments, valence, arousal and liking were divided into binary classes that

are positive and negative classes. The classification was performed using SVM with leave-

one-trial-out (leave one video out of the 40 videos) or leave-one-subject-out (leave one

subject out of the 32 subjects).

69

The results have shown that averaging over the one minuet is better than the five

statistics for valence, arousal and liking when using the band power case. In addition, the

results have shown that using 10 channels gave better results than using 32 channels for

valence and arousal, while the liking gave a slightly better result for the 32 channels case.

Moreover, the results have indicated that there is no benefit from using the PSD of wavelet

transformation when compared with the band power method.

In addition, the results have shown that the leave-one-trial-out is better than leave-

one-subject-out for valence and arousal and slightly worse for liking.

The work [61] tested the recognition of the level of valence and arousal using the

sample entropy method with SVM classifier. In this work, the first 23 seconds and the last

20 seconds of the EEG data were removed, and then the sample entropy was calculated for

each channel in the DEAP dataset. Thereafter, the channels were screened according to the

highest resultant sample entropy for each classification task. The result showed that

channels

F3, CP5, FP2, FZ and FC2 are informative for differentiating between High Arousal

– High Valence (HAHV) and High Arousal – Low Valence (HALV), while channels FP1,

T7 and AF4 are informative to differentiate between Low Arousal – Low Valence (LHLV)

and High Arousal – High Valence.

The results of testing the quality of the extracted features were conducted in two

cases: 3-fold cross validation and leave-one-user-out (LOSO). In 3-fold cross validation,

the average accuracy was 80% for recognition between HAHV and HALV and 79% for

recognition between LALV and HALV. While for LOSO, the average accuracy was 71%

70

for recognition between HAHV and HALV and 64% for recognition between LALV and

HALV.

Table 2: Related work on Emotion Recognition summary 1.

71

Table 3: Related work on Emotion Recognition summary 2.

72

CHAPTER VI

 CASE STUDY FOR DEPLOYING LIQUID STATE

MACHINE FOR FEATURE EXTRACTION FROM RAW DATA

This chapter studies a novel deployment, for LSM, which is the feature extraction.

Feature extraction is a challenging problem in ML and AI, since the quality of features

strongly affects classification or regression tasks based on these features. In this chapter,

we study harnessing LSM for feature extraction from raw data. More specifically, this

chapter is concerned with studying automatic feature extraction from data streams of EEG.

For comparison purposes, we use one of the most successful approaches for feature

extraction that is DBN. Deep Learning (DL) is a variant for the shallow architectures of

Artificial Neural Networks (ANNs). DL consists of hierarchical many layers that transfer

information from the lower layers to upper layers through a non-linear conversion while

performing error minimization between consecutive layers. The upper layers preserve the

most abstract representation for the data, where it can be used as a feature extraction layer.

DBN [26], a DL network with fast training algorithm, has been deployed in many works for

feature extraction, where it showed powerful capabilities. For example, DBN has shown to

be able to produce high informative features than Met-Frequency Cepstral Coefficients

(MFCC) for music audio feature extraction [62]. For EEG raw data, the extracted features

by DBN in [58, 63] have produced a high classification accuracy than those extracted by

applying time and frequency domain methods.

73

A. LSM-based Feature Extraction Description

The LSM receives inputs as data streams from one or multiple inputs. We will use

direct information feeding to LSM by mean of an analog neuron to provide the LSM with

raw data. For this purpose, we will use CbNeuron neuron model to build the LSM.

CbNeuron neuron model, which was described in section 2 of CHAPTER II, can receive an

analog input from an analog input neuron. We will use CSIM simulator [64], since it

provides an easy environment to simulate SNNs.

1. LSM Configuration for Feature Extraction

 The architecture of LSM consists of 7×7×7 neurons with 32 inputs corresponding to the 32

channels of DEAP dataset channels [65]. To make EEG suitable for CSIM simulator and

Experiment 1, we first rescale EEG data for each channel in DEAP dataset into some

ranges between 0.1 and 10. Scaling ensures that EEG data are suitable for analog input

neuron and CbNeuron in CSIM simulator. In addition, scaling ensures that data are

consistent among channels from different subjects’ EEG signals.

Analog input neurons, implemented in CSIM simulator, interfaces EEG signal with

CbNeuron neurons in LSM, where we configured it to update its internal state at 128 Hz.

This implies that LSM updates its state at the same rate. Analog input neurons in

experiment 1 are connected to the LSM with a probability of 𝑤𝑖𝑛𝑝𝑢𝑡 = 0.15 and connection

scaling of 𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔=0.2, i.e., the probability that an analog input neuron is connected to a

neuron in LSM is 0.15 with scaling of this connection with 0.2.

74

Neurons in LSM are connected with “average distance” synaptic connections 𝜆 = 2. 80%

of neurons inside the LSM are excitatory neuron and the remaining 20% are inhabitation

ones. Reading from LSM is achieved by sampling the liquid states, and more specifically

reading the spiking activities from LSM. For this purpose, CSIM simulator records the

spiking time activates from each neuron in the LSM along the simulation time, which was

configured to 59s. To obtain the liquid states from LSM, we read the recorded spiking

activities by CSIM using an exponential filter with time constant 𝜏 = 0.5. Sampling from

LSM is performed every 0.4s starting from 0.5s until the end of simulation time at 59s. All

neurons in LSM are used for reading, which produces a feature vector of 7×7×7=343 values

from each sample.

Having obtained the liquid states from LSM, these liquid states are then

preprocessed to normalize data in each column to get zero mean and unit variance. Next,

different readouts are used to identify valence, arousal. The table describes the

configuration and architecture of the LSM.

Table 4: LSM configurations for feature extraction.

Neuron Configuration LSM Connectivity and
Architecture

Readout

Model: CbNeuron

Vthresh = -0.045 (V)

Vreset = 0 (V)

Trefract = 0.003 (sec)

Cm = 3e-08 (F)

Rm = 1e+06 (Ohm)

Em : 1.0395e-314 (V)

Vresting = -0.06 (V)

Vinit = -0.06 (V)

Vm : 1.0395e-314 (V)

Architecture = 7×7×7

neurons

𝜆= 2

𝑤𝑖𝑛𝑝𝑢𝑡= 0.15

𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔=0.2

Sampling =[0.5:0.4:59]

(147 samples per each

input)

Filter = exponential

filter with 𝜏 = 0.5

75

Figure 13: LSM for feature extraction.

Figure 14: LSM for multi-purpose classification.

Figure 15: LSM for anytime feature extraction.

76

2. DBN Configuration for Feature Extraction

As mentioned previously, we will use DBN for feature extraction from EEG, and

we will follow the same methods used in the literature review. The first method uses

augmented channels information as an input to DBN. The second method uses each

channel as independent input to the DBN, where the information in channels is used to train

the DBN to generate features at the far end layer.

For the first method, we configure the network to have three layers stacked in a

hierarchical structure as follows: the first layer has 768 neurons which they are connected

directly to the 32×128×60 augmented channels values; 512 neurons in the second layer; and

343 neurons in the third layer. We read from the third layer the information to use them

later for classification. The number 343 neurons is the same number of neurons that was

used in LSM such that we compare the results fairly. All the experiments are conducted

using 10-fold cross validation for valence and arousal recognition tasks. We use Decision

Trees and Linear Regression classifiers for the outputs from the LSM and the DBN.

For the second method, we use information from each channel as an independent

sample of the input. Here, we have different configuration for the network: the first layer

has 7680; second layer has 768; third layer 512 and the last layer (the feature layer) has 343

neurons.

We refer to the first configuration by augmented channels DBN and for the second

configuration by independent channels.

77

Figure 16: DBN for feature extraction architecture.

B. Results and Comparison for Feature Extraction Using LSM and DBN

In testing, we compare the accuracy of testing the resultant feature vector from LSM

in comparison with DBN. In addition, we compare the generalization capability of DBN,

since LSM requires one model for valence and arousal; LSM is first trained using

unsupervised learning, STDP, on EEG signals, and then we train different readout functions

to recognize the valence and arousal. We test DBN extracted features for valence to test

recognition the arousal and vice versa. All the experiments are done in 10-fold cross

validation.

78

Table 5: Result of testing 343 extracted features using LSM and DBN.

 Execution
time

Valence Arousal

Decision

Trees

(%)

Linear

Regression

(%)

Decision

Trees

(%)

Linear

Regression

(%)

DBN (Augmented

channels)

690712 sec 52.58 57.34

DBN (Independent

channels)

432000 Sec 64.76 70.88 64.87 72.43

LSM 50200 Sec 94.12 64.64 95.15 59.63

C. Discussion

As can be seen from section 6.B, LSM provides better accuracies than DBN with

DT classification tasks and worst when using the linear regression readout. In addition to

the good performance, the LSM learns to generate features from EEG as an accumulative

information learning produced from all channels, i.e., LSM samples the states of the liquid,

which are induced by the current and previous streams of EEG channels values. That is,

LSM learns the model as one structure rather than independent inputs. For the

generalization, we need to train one LSM in order to extract different information from a

common domain. That is, we train LSM on EEG data to identify valence and arousal in

contrast to DBN, which needs different networks for each independent task, even though

the domain is common for these tasks. Moreover, the LSM is able to provide anytime

feature extraction without waiting until all inputs to be provided. In other word, through

sampling at a desired time, we can extract the features from LSM, in contrast to the DBN,

which needs all inputs to be present ahead of time (static input) to perform the process. This

is important when some inputs are missing or cannot be provided, e.g., some channels of

79

EEG cannot be accessed. In addition to all previously mentioned benefits from using LSM,

the LSM is less computational demanding than DBN; to train the DBN on the DEAP

dataset, it took 6 days of heavy simulation on a powerful PC, while LSM required 80% less

time to achieve extract features from data. In conclusion, LSM produced more informative

features with less costs in comparison with DBN.

80

CHAPTER VII

LIQUID STATE MACHINE FOR EMOTION

RECOGNITION FROM EEG

In chapter V, we surveyed the related work on emotion recognition from EEG, and

in chapter VI, we examined the capabilities of using LSM for feature extraction from EEG.

In addition, we explained in chapter VI how we can use LSM for anytime multi-purpose

learning model from EEG signals. To that end, we built a robust assumption for how to

build a universal LSM-based emotion recognition model from EEG. In this chapter, we use

LSM, extensively, for emotion recognition and then test the model using different scenarios

and configurations. Moreover, we draw some conclusions about emotion in humans by

building upon the results.

This chapter is organized as follows: In section A, we describe the experimental

procedure that we will follow in all experiments in this section. This section includes three

tests for different aspect of emotion recognition. Section B concludes all experiment done

in this chapter.

A. Experimental Procedure for LSM-Based Emotion Recognition Model

We will use LSM to recognize valence, arousal and liking from DEAP dataset.

More specifically and following the literature review, we divide the task of recognizing

81

valence, arousal and liking into binary classification problems, i.e., High /Low Valence,

High/low arousal and like/do not like.

This chapter uses four different scenarios for testing emotion recognition that was

used in the literature review:

 Subject/ Video Independent.

 Leave-one-subject-out (LOSO).

 Leave-one-video-out (LOVO).

 Isolated-User Classification (IS).

The results are reported in each experiment as follows: For Subject/ Video

Independent and IS, we report the results as an average of 10-fold cross validation testing

accuracies. In LOSO, we report the results as an average of testing accuracies of the 32

subjects from DEAP dataset. For LOVO, we report the results as an average of testing

accuracies of the 40 videos from DEAP dataset.

For each scenario, we test the classification task at different intervals (by taking

advantage of anytime feature extraction described in chapter VI); i.e., at the first 10s, 20s,

30s, 40s, 50s and on the entire length of the signal.

 In addition, we test two methods to feed EEG into the LSM; using Bens Spike

Algorithm (BSA) [27] and direct input using analog neurons used in chapter VI.

82

Figure 17: Topology for Experiment 1 for emotion recognition.

83

1. Experiment 1: Direct input to the LSM

This experiment tests the performance of emotion recognition by directly feeding

the LSM with EEG signals by mean of input analog neurons. Input neurons receive signals

from EEG channels, where they propagate voltages to the connected neurons inside the

liquid. The LSM learns and generates the corresponding responses. The liquid in this

experiment is made up of “CbNeuron” neuron model described in section 2, chapter II.

To make EEG suitable for CSIM simulator and Experiment 1, we first rescale EEG data for

each channel in DEAP dataset to range between 0.1 to 10. Scaling ensures that EEG data

are suitable for analog input neuron and CbNeuron in CSIM simulator. In addition, scaling

ensures that data are consistent among channels from different subjects’ EEG signals.

Analog input neurons, implemented in CSIM simulator, interfaces EEG signal with

CbNeuron neurons in LSM, where we configured it to update its internal state at 128 Hz.

This implies that LSM updates its state at the same rate. Analog input neurons in

experiment 1 are connected to the LSM with a probability of 𝑤𝑖𝑛𝑝𝑢𝑡 = 0.15 and connection

scaling of 𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔=0.2, i.e., the probability that an analog input neuron is connected to a

neuron in LSM is 0.15 with scaling of this connection with 0.2.

Neurons in LSM are connected with “average distance” synaptic connections 𝜆 = 2. 80%

of neurons inside the LSM are excitatory neuron and the remaining 20% are inhabitation

ones. Reading from LSM is achieved by sampling the liquid states, and more specifically

reading the spiking activities from LSM. For this purpose, CSIM simulator records the

spiking time activates from each neuron in the LSM along the simulation time, which was

84

configured to 59s. To obtain the liquid states from LSM, we read the recorded spiking

activities by CSIM using an exponential filter with time constant 𝜏 = 0.5. Sampling from

LSM is performed every 0.4s starting from 0.5s until the end desired time. Different

configuration of the desired time were tested namely, 10s, 20s, 30s, 40s, 50s, and 59s. All

neurons in LSM are used for reading, which produces a feature vector of 7×7×7=343 values

from each sample.

Having obtained the liquid states from LSM, these liquid states are then preprocessed to

normalize data in each column to get zero mean and unit variance. Next, different readouts

are used to identify valence, arousal and liking.

Table 6: LSM configuration for emotion recognition.

a. Subject/ Video Independent

This method tests the performance of classification task using 10-fold classification,

where the model is trained randomly by choosing 90% of samples for training, and then is

tested on the remaining 10% of samples. The final accuracy is the average over the 10

testing accuracies from the 10 folds. First, we want to choose a suitable classifier for the

Neuron Configuration LSM Connectivity and

Architecture

Reading from LSM

Model: CbNeuron

Vthresh = -0.045 (V)

Vreset = 0 (V)

Trefract = 0.003 (sec)

Cm = 3e-08 (F)

Rm = 1e+06 (Ohm)

Em : 1.0395e-314 (V)

Vresting = -0.06 (V)

Vinit = -0.06 (V)

Vm : 1.0395e-314 (V)

Architecture : 7×7×7

neurons

𝜆= 2

𝑤𝑖𝑛𝑝𝑢𝑡 = 0.15

𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔 = 0.2

Sampling: [0.5:0.4:59]

(147 samples per each

input)

Filter : exponential

filter with 𝜏 = 0.5

85

model. In the table below, we show testing results of different readouts on entire length of

EEG signals (59s).

Table 7: Testing results for different readouts.

Classifier Valence Arousal Liking

ANN 57.82% 60.96% 67.11%

SVM 74.74% 75.13% 77.13%

K-NN 66.25% 68.22% 70.20%

Random Forests 94.03% 94.58% 94.87%

Linear Regression 64.64% 59.63% 59.57%

Decision Trees 94.12% 95.15% 95.25%

Among different types of readouts, we choose Decision Tress and Linear

Regression for our further analyses. Decision Trees achieves very good results with

minimum efforts of time and resources in comparison with other types of readouts. For

example, SVM requires about 540 minutes for 10-fold cross validation in comparison with

about 5 minutes for Decision Trees and Linear Regression. Moreover, ANN requires much

memory than Decision Trees and Linear Regression without improving the accuracies. We

keep using Linear Regression in all tests even though it does not improve the accuracies.

This is because we want to test the produced data from LSM against linearity, i.e., we use

Decision Trees as a nonlinear readout, while using Linear Regression as a linear readout.

86

Table 8: Subject/Video independent scenario results using Decision Tress.

Table 9: Subject/Video independent scenario results by using Linear Regression.

b. Subject Dependent

This method trains the model on the data from 31 subject and tests on the remaining

subject; Leave-One-Subject-Out (LOSO). The reported results in the figure below are the

average of resultant accuracies from the 32 subjects using Decision Trees and Linear

Regression Classifiers.

10s 20s 30s 40s 50s 59s

Valence 91.27 94.03 94.14 93.83 94.08 94.12

Arousal 93.28 95.09 94.69 94.87 94.69 95.15

Liking 91.24 93.83 94.28 94.96 95.24 95.25

89.00
90.00
91.00
92.00
93.00
94.00
95.00
96.00

A
vg

. A
cc

u
ra

cy
 (

%
)

User/Video indepndent
Decision Trees readout

10s 20s 30s 40s 50s 59s

Valence 75.65 71.48 69.28 67.95 65.93 64.64

Arousal 69.88 66.23 63.78 62.47 61.27 59.63

Liking 82.78 77.76 74.65 72.46 70.84 69.57

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

A
vg

. A
cc

u
rc

y
(%

)

User/Video indepndent
Linear Regression readout

87

Table 10: Subject dependent scenario results by using Decision Tress.

Table 11: Subject dependent scenario results by using Linear Regression.

c. Video Dependent

This method trains the model on the data from 39 videos and tests on the remaining

videos; Leave-One-Video-Out (LOVO). We report the result by using Decision Trees and

Linear Regression Classifier as we did in LOSO.

10s 20s 30s 40s 50s 59s

Valence 53.18 53.38 52.01 52.35 52.76 50.73

Arousal 57.25 48.49 50.41 51.09 51.53 50.41

Liking 63.18 59.58 58.55 59.78 59.56 54.23

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

A
vg

. A
cc

u
ra

cy
(%

)

User Dependent
Decsion Trees readout

10s 20s 30s 40s 50s 59s

Valence 51.82 51.90 53.14 52.10 50.64 54.17

Arousal 53.26 52.91 52.33 53.10 53.48 47.71

Liking 69.47 65.65 65.83 65.48 65.06 59.10

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

A
vg

. a
cc

u
rc

y
(%

)

User Dependent
Linear Rgression readout

88

Table 12: Video dependent scenario results by using Decision Tress.

Table 13: Video dependent scenario results by using Linear Regression.

d. Isolated-Subject

This method performs 10-fold cross validation on the each subject data alone.

10s 20s 30s 40s 50s 59s

Valence 84.63 81.43 73.46 69.69 66.77 51.33

Arousal 88.54 83.49 75.07 71.83 68.79 53.24

Liking 87.03 82.73 77.70 77.61 74.87 56.49

0.00

20.00

40.00

60.00

80.00

100.00
A

vg
. A

cc
u

ra
cy

(%
)

Video Depensent
Decsion Trees readout

10s 20s 30s 40s 50s 59s

Valence 69.28 63.26 61.47 59.00 57.25 54.15

Arousal 70.21 63.04 60.32 58.74 57.79 50.09

Liking 85.53 79.23 75.00 72.48 70.95 60.31

0.00

20.00

40.00

60.00

80.00

100.00

A
vg

. A
cc

u
ra

cy
(%

)

Video Dependent
Linear Regression readout

89

Table 14: Isolated-Subject scenario results by using decision trees and linear regression.

2. Results Comparison with other Machine Learning Approaches

This section is concerned without evaluate the obtained model from experiment 1

with other machine learning approaches. More specifically, we will compare our results

with best reported results in literature review. We divide the comparison according to the

deployed scenario in the literature review. Moreover, we provide information about type of

features and classifiers used in literature review.

a. IS scenario

Table 15: Results Comparison with other Machine Learning Approaches for IS Scenario.

Valence Arousal Liking

Decsion Trees 99.54 99.59 99.55

Linear Regression 98.28 98.30 98.18

97.00

97.50

98.00

98.50

99.00

99.50

100.00
A

cc
u

ra
cy

 (
%

)

Isolated User

Decsion Trees Linear Regression

Work Features Classifier Valence Arousal Liking

[65] Spectral Power from EEG Naive Bayes 57.6% 62.0% 55.4%

[55] Spectral Power from EEG RBF-SVM 76.9% 68.4% 75.3%

[56] Spectral Power from EEG RBF-SVM 70.9% 67.1% 70.5%

Spectral Power from EEG Naive Bayes 65.1% 56.3% 63.0%

Experiment1 Spiking activities from

neurons in LSM

Decision Trees 99.54% 99.59% 99.55%

90

b. LOSO scenario

Table 16: Results Comparison with other Machine Learning Approaches for LOSO Scenario.

c. LOVO

Table 17: Results Comparison with other Machine Learning Approaches for LOVO Scenario.

3. Results Comparison using other Spiking Network Architecture

This section provides a comparison with other SNN architecture. We chose to

compare results with NeuCube [66-71]. The NeuCube is a framework for learning

Spatio/Spectro – Temporal Data (STBD) such as EEG and fMRI. The NeuCube model

consists of input data encoding module; a 3D (cube) network of LIF; an eSNN classifier;

and an optimization module. The framework uses STDP to learn STDB from input.

Work Features Classifier Valence Arousal Liking

[59] Spectral Power from

EEG(from 10

channels)

SVM 51.1% 52.9% 67.0%

[54] Spectral Power from

EEG

DL 53.42% 52.03% -

Experiment 1 Spiking activities

from neurons in LSM

Decision Trees 53.38% 57.25% 63.18%

Work Features Classifier Valence Arousal Liking

[59] Spectral Power from 10

channels of EEG

SVM 64.9% 64.9% 66.8%

Experiment 1 Spiking activities from

neurons in LSM

Decision Trees 84.63% 88.54% 87.03%

91

Besides, NeuCube provides a very rich environment to visualize learning progress inside

the 3D network. In addition, it provides a semi-brain simulation environment, where

locations of EEG channels when recoding from a brain can be mapped spatially to same

locations in the 3D network.

Due to license constraints, we were only able to run NeuCube on one subject data

namely, subject 1 from DEAP dataset, which is was not enough to train the NeuCube for

reasonably acceptable results. Here, we provide testing results of NeuCube on subject 1 (3-

fold cross validation).

Table 18: Results of Testing NeuCube on subject 1 from DEAP dataset.

 Valence Arousal Liking

Decision Trees 99.52% 99.76% 99.88%

Linear Regression 99.93% 99.95% 99.97%

NeuCube (BSA: threshold=0.995; number

of neurons =343)

60% 51.25% 95%

NeuCube(BSA: threshold=0.5; ; number of

neurons =343)

55% 52% 95%

Neucube (Thresholding Representation:

threshold =0.5; number of neurons =343)

42.25% 66.25% 95%

NeuCube (BSA: threshold=0.995; number

of neurons =1000)

65.25% 48.57% 95%

The low accuracies achieved by NeuCube are due to lack samples to train the model.

However, NeuCube provides a unique opportunity to understand information propagation

inside the 3D network of NeuCube, and more importantly the relation between different

channels with respect to emotions. A more realistic approach to study emotion could be

performed using NeuCube by mapping channels of DEAP dataset into the relative locations

in the 3D network of NeuCube, where we can identify the interactions between different

92

channels for the affective state of humans. In addition, we can use NeuCube to study Spike

communications and information routes for the affective state of humans.

4. Results Analysis and Discussion

For 10-fold cross validation: experiment 1 shows that valence and arousal can be

determined effectively after the first 20 seconds of a continuous stimulus where the

accuracies of determining the affective state are around 94% and 95% for valence and

arousal, respectively. Regardless of the duration of the stimulus, the accuracies remain

slightly around these values when the duration of a stimulus is more than 20 seconds. The

accuracies of the first 10 seconds were about 91% for valence and 93%, and this indicates

again that to accurately determining the affective states when need at least more than 10

seconds of a stimulus. On the other hand, the accuracies of determining “liking” are

improved as the duration of a stimulus increases (from 91.24% for 10 seconds to 95.25%

for 59 seconds).

The reported results for Subject/Video independent scenario show that decision tree

outperforms linear regression classifier in all cases. This is a strong indication that valence

and arousal recognition are a nonlinear problem. More specifically, valence, arousal and

liking accuracies drop steadily as the duration of the stimulus increases. In details, the

valence accuracy drops from 75.65% for 10 seconds to 64.64% for 59 seconds; the arousal

drops from to 68.88% for 10 seconds to 59.63% for 59 seconds; the liking drops from

82.78% for 10 seconds to 69.57% for 10 seconds.

93

In addition, the valence tends to have a more non-linear relation with a stimulus

than arousal. Also, liking has the strongest linear relation with a stimulus.

For valence, arousal and liking, the relation between stimulus and the affective

states becomes more non-linear as the duration increases.

To test for the non-linearity in the data, we used an Extreme Learning Machine

(ELM) [72] Classifier and ANN as additional methods for readout. ELM produces

nonlinear decision boundaries to separate the different classes. Hence, ELM can be used to

judge whether the data are non-linear or the decision trees classifier happened to work well

for emotion recognition. In addition, we configured ANN to have two hidden layers each

with 10 neurons such that it allows the decision function to have non-linear boundaries.

Due to the heavy computational requirements of ELM and ANN, we conducted the

classification task for the first 10 seconds of the EEG signal. The following graph shows

10-fold cross validation for user/video dependent scenario for the four readouts; decision

trees, linear regression, ANN and ELM. The testing shows that ELM and ANN work better

than linear regression which is a strong indication that the data (the data produced from the

LSM) are non-linear. Moreover, ELM works better than ANN because the number of

hidden neurons is relatively small which does not allow for high non-linear relationship in

the decision boundaries. The table below shows the results of testing the four ML

approaches. Linear Regression delivered 75.65%, 69.88% and 82.78 for valence, arousal

and liking, respectively, which are below the scored accuracies reported by ELM, ANN and

Decision Trees.

94

Table 19: Testing for non-linearity output from LSM (experiment 1).

5. Experiment 2: Spike Encoding

In this experiment, we use the BSA algorithm to encode EEG signals into a train of

spikes. The purpose is to test whether BSA is able to provide LSM with better information

about EEG than using direct feeding of information into the liquid as used in Experiment 1.

Here, we replace the analog input neurons and CbNeuron neurons used in Experiment 1

with spiking input neurons and LIF neurons, respectively. Spiking input neurons accept

only spike timing from input, which means that we have to encode input/EEG as spikes.

For this purpose, we use BSA algorithm with two configurations: Configuration A produces

about half spiking activity in comparison with Configuration B, i.e., number of spikes that

are produced by Configuration A for each input/EEG channel are approximately half of

those that were produced by Configuration B. Parameters of BSA for the two

configurations are as follows:

90.14 89.98 91.93

91.27 93.28 91.24

75.65
69.88

82.7884.13 83.49 86.64

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Valence Arousal Liking

10s

Avg. Accuracy form ELM (%) Avg. Accuracy from Decision Tree (%)

Avg. Accuracy from Linear Regression (%) Avg. Accuracy from ANN (%)

95

 Configuration A: Filter Tabs = 32, Threshold = 0.995.

 Configuration B: Filter Tabs = 64, Threshold =0.955.

a. User/Video Independent

Table 20: Subject/Video Independent results for experiment 2.

 Duration Configuration

A (%)

Configuration

B (%)

Valence 10s 55.89 58.87

20s 65.14 66.97

30s 73.52 72.60

40s 77.08 73.20

50s 78.45 72.15

59s 79.55 72.26

Arousal 10s 58.71 58.38

20s 63.17 61.69

30s 74.62 67.04

40s 75.09 62.49

50s 79.26 63.33

59s 71.86 62.82

Liking 10s 63.17 61.19

20s 70.68 66.52

30s 76.33 69.47

40s 81.22 71.87

50s 80.94 71.02

59s 80.76 68.65

b. User Dependent

Table 21: LOSO results for experiment 2.

 Configuration A (%) Configuration B (%)

Valence 10s 50.95 51.17

20s 50.41 51.15

30s 50.84 50.78

40s 50.44 50.79

50s 50.45 51.12

96

59s 50.32 50.63

Arousal 10s 51.60 51.67

20s 51.18 51.25

30s 51.29 51.33

40s 51.24 51.66

50s 51.41 51.49

59s 51.57 51.36

Liking 10s 50.03 55.20

20s 51.32 55.66

30s 52.69 55.29

40s 52.11 54.83

50s 51.57 55.57

59s 51.30 55.18

c. Video Dependent

Table 22: LOVO results for experiment 2.

 Configuration A (%) Configuration B (%)

Valence 10s 50.08 50.02

20s 49.89 49.87

30s 50.23 50.19

40s 50.19 50.82

50s 50.76 50.54

59s 50.42 50.24

Arousal 10s 51.20 51.58

20s 51.73 51.28

30s 51.30 51.41

40s 51.52 51.52

50s 51.93 51.90

59s 51.73 51.25

Liking 10s 55.48 55.47

20s 55.05 55.43

30s 55.71 54.86

40s 55.56 54.86

50s 55.42 54.90

59s 55.13 54.87

97

d. Isolated-Subject

Table 23: Isolated-Subject scenario results by using decision trees (experiment 2).

 Configuration A (%) Configuration B (%)

Valence 59s 84.81 87.81

Arousal 59s 86.43 88.14

Liking 59s 86.16 88.69

6. Discussion and Analysis

The results show that BSA algorithm does not provide an effective method to

encode EEG into spikes. In all tested scenarios, the reported results for this experiment are

below of those results scored by the direct feeding in experiment 1. For example, the best

reported accuracies for 10-fold cross validation were 79.55%, 71.86% and 80.76% for

valence, arousal and liking, respectively in comparison with 94.12%, 95.14% and 95.25%

for the same scenario in experiment 1. This could happen due to two reasons:

 Parameters are not well selected, since there is no definite way to choose parameters

values.

 The method by itself is not efficient and this opens the door for a future research.

7. Experiment 3: Emotion Recognition Using Different Number of Channels

In this experiment, we use the same configuration that was used in experiment1, but

using 10 specific channels. These channels are: Fp1, Fp2, F3, F4, T7, T8, P3, P4, and O2,

which are chosen according to work [60]. The work claimed that these specific channels

deliver a better performance than using the 32 channels.

98

a. User/Video Independent

Table 24: Subject/Video Independent results for experiment 4.

 Duration Accuracies (%)

Valence 10s 77.29688

20s 70.87969

30s 67.96771

40s 66.16016

50s 63.71563

59s 62.20823

Arousal 10s 87.17813

20s 89.81094

30s 90.97917

40s 91.25156

50s 92.1525

59s 92.02434

Liking 10s 86.87813

20s 90.275

30s 90.91354

40s 92.09453

50s 91.72688

59s 91.7905

b. User Dependent

Table 25: LOSO results for experiment 3.

 Duration Configuration A

Valence 10s 49.66875

20s 49.47656

30s 49.70521

40s 50.15781

50s 50.04063

59s 50.60055

Arousal 10s 51.60938

20s 51.62813

30s 52.33958

40s 50.88594

50s 51.1525

59s 51.50563

Liking 10s 55.13125

20s 55.06563

30s 55.15833

99

40s 55.03594

50s 55.19

59s 55.40179

c. Video Dependent

Table 26: LOVO results for experiment 3.

 Duration Configuration A (%)

Valence 10s 77.29688

20s 70.87969

30s 67.96771

40s 66.16016

50s 63.71563

59s 62.20823

Arousal 10s 87.17813

20s 89.81094

30s 90.97917

40s 91.25156

50s 92.1525

59s 92.02434

Liking 10s 86.87813

20s 90.275

30s 90.91354

40s 92.09453

50s 91.72688

59s 91.7905

d. Discussion and Analysis

The results indicate that using specific channels does not improve the accuracy of a

classification task. LSM requires the entire 32 channels in order to deliver good accuracies.

However, the experiment demonstrates that LSM works with acceptable performance when

100

some of the features are missing (in terms of EEG, the LSM can deliver the classification

under lack of input information). The best reported results are 62.21%, 92.02% and 91.79

for valence, arousal and liking, respectively when testing 10-fold cross validation. In

LOSO, the reported results are between 49.67% and 55.4%. The accuracies improve when

using LOVO to 77.3%, 92.15% and 92.09% for valence, arousal and liking, respectively.

B. Conclusion

This chapter provided an extensive study for different task in emotion recognition

from EEG. In the first experiment, we showed how LSM can deliver a good accuracy in

identifying the affective state. Moreover, we showed how we can deploy LSM as a multi-

purpose classifier, where we tried to identify the affective state, including valence, arousal

and liking from one single trained LSM. In addition, we suggested that LSM can be used

for anytime classification for online learning purposes. In experiment 2, we tested spike

encoding algorithm, BSA, for identifying the affective state where we showed that this

method of encoding needs more study in order to make it suitable for spike encoding for

LSM’s input. Experiment3, tested the affective state recognition in the lack of information,

where we used 10 channels out the 32 channels for affective state recognition. The

experiment did not improve the performance. However, it showed that one LSM can work

and deliver the classification task when some features are missing.

101

CHAPTER VIII

A LIQUID STATE MACHINE -BASED FRAMEWROK

FOR CONTINUOUS AUTHETICATION IN SMARTPHONES

This chapter introduces an LSM-Based Continuous Authentication Framework for

smartphones. The motivation behind this chapter is to use the flexibility of LSM in

handling input and anytime classification to design a framework for continuous

authentication in smartphones. This is because, such a framework requires a learning model

with exact capabilities that LSM provides, which are anytime pattern recognition, working

in lack of information and time series handling.

 This chapter is organized as follows: section 1 describes the motivation behind

continuous authentication in smartphones. Section 2 surveys the related work in this

context. In section 3, we introduced how we harnessed LSM for this purpose, and we

describe the methodology and the suggested framework. Section 4 tests the framework for

augmented password authentication, long-text authentication and gestures/strokes

authentication.

A. Mobile Continuous Authentication

Smartphones have become ubiquitous devices that offer increasingly high

computing power in small affordable packages. Market analysis predicts that in 2015 there

will be 1.5 billion smartphones and 640 million tablets in use worldwide [73]. Their

increased popularity and growing capabilities have transformed them from simple

102

communication devices into powerful information hubs that process and store a tremendous

amount of private and personal data. Consequently, with their small size and high mobility,

smartphones are under constant threat of unauthorized access. The need for robust

authentication methods is therefore at an all-time high.

Authentication utilities offered with current smartphones are typically static. Users

are prompted to provide proof of identity at login through means of patterns (numerical or

graphical) or physiological prints (iris, fingerprints, facial recognition, voice ID, etc.). The

first class is vulnerable to spoofing and hacks while the second, while more secure,

demands too much user attention. With both means of static authentication, only login

credentials are checked, and no session-wide security is provided, making the device and

the sensitive information it holds susceptible to all kinds of post login exploits. For these

reasons, there is growing demand for a robust continuous authentication system (CAS),

which aims to authenticate the user from the initial stages of login till logout; thus checking

the identity of the user throughout a session.

Of special interest are Continuous Behavioral Biometric Authentication systems

(CBBAS) that have garnered a great deal of recent attention as an emerging research area.

Instead of employing physiological methods that explicitly prompt a user for re-

authentication on a periodic basis, a CBBAS transparently monitors the activity of the user

throughout the session in order to continuously confirm their identity. Only on the occasion

that the user’s activity is construed as atypical or anomalous, the system demands re-

authentication.

103

Several behavioral biometrics have been proposed in recent years and evaluated for

their performance and usability. In what follows, we shed some light on a few stand out

efforts before proposing a transparent continuous authentication framework.

B. Related Work

Continuous authentication research on mobile devices is a novel field with a

relatively limited number of studies. Relevant literature reveals two popular continuous

behavioral authentication techniques: typing dynamics and touch/gesture analysis.

Additionally, miscellaneous behavioral metrics, both bio-centric and otherwise, like gait

analysis, communication monitoring, location tracking, and others have been proposed to

authenticate or supplement more robust authentication metrics. We provide a brief account

of these works in what follows with special focus on touch.

Starting with keystroke dynamics, continuous seamless authentication based on the

user’s typing characteristics was proposed in [74]. Two typical handset interactions are

tackled, dialing telephone numbers and typing text messages. In comparison with a kernel-

based (RBF) neural network (13.6%) and a generalized regression neural network (GRNN)

(13.3%), a feed forward multi-layered perceptron (FF-MLP) achieved an equal error rate

(EER) of 12.8% proving the robustness of the implemented system. However, Clarke et al.

note the extra computational power required for such a network and the subsequent

restrictiveness on its implementation on current mobile handsets. In [73], Feng et al.

studied Typing Authentication and Protection (TAP) for two stages, login and post-login.

Three user studies, which compare authentication performance under different virtual key

typing settings, were evaluated: character input time data (including pressing and flight

104

time), time and pressure data without haptic feedback; and time and pressure data with

haptic feedback. Decision trees, Random Forest, and Bayes net classifiers were used.

Leveraging a large number of features, TAP achieved best performance of 1.0% False

Acceptance Rate (FAR) and 1.0% False Rejection Rate (FRR) at 40 character long inputs

using Random Forest algorithm.

As for touch analysis, the increasing popularity of smartphones coupled with touch

being the primary form of interaction has led to recent Continuous Biometric

Authentication systems (CBAS) research investigating the discriminative qualities of

gestures/strokes and their applicability to continuous authentication. Frank et al. [75]

designed a CAS using up to 30 features extracted from users’ strokes. Features included

are: start and end point coordinates, gesture direction, area covered by finger, etc. Two

classifiers, SVM and KNN, were employed to distinguish the client after initial login. The

number of strokes was noted to affect the EER recorded where 13% EER was achieved

with single strokes versus an EER between 2% and 3% for intersession authentication and

between 0% and 4% for inter-week authentication when 11 or 12 strokes were aggregated.

The work also concluded that SVM achieved lower EER in comparison with k-NN for all

scenarios. Using the public database made available by [75], Govindarajan et al. [76]

proposed a novel framework for outsourcing the continuous authentication (CA) of

smartphones using secure privacy-preserving protocols. Touch events from 41 users were

used to create user profiles on an Android platform. 90% of the data was used for training

while the remainder was used for testing. Biometric verification was performed by

matching user templates with test templates using scaled Euclidean and scaled Manhattan

verifiers. A feature selection phase and an outlier filtering phase were performed to find the

105

optimally performing feature subset and discard atypical samples respectively. Equal error

rates (EER) were computed for both verifiers and while the Manhattan verifier was found

to deliver best performance, the EER recorded at 20+% was significantly worse than that

reported in [75]. Leveraging touch events similarly while incorporating multi-touch

gestures, Zhao et al. [77] proposed Graphic Touch Gesture Feature (GTGF) to extract the

identity traits from the touch traces. Six commonly used touch gestures were taken into

consideration (flick up/down, flick right/left, zoom in/out). Features extracted consisted of

the time duration, the length of touch traces, the directions and speeds of finger movements,

and the tactile pressures. Extracted traces were further filtered into one of the six predefined

gestures. The proposed method was evaluated for multiple scenarios and achieved best

performance with 2.62% and 4.31% EER for combined gestures and single tip gestures

respectively, thus joining the above reviewed work in making a solid argument for touch

based continuous authentication. Lastly, providing a counterpoint to these approaches,

Serwadda et al. [78] aimed to show that a simple Lego robotic arm driven by input gathered

from general population swiping statistics can generate forgeries that achieve alarmingly

high penetration rates against touch-based authentication systems. The performance

evaluation used in the user studies they conducted revolved around a zero-effort threat

model in which the adversary is assumed to be unable to pull off a sophisticated forgery. 28

features related to touch positions, touch area, pressure, and others were extracted and fed

to a Support Vector Machine (SVM) and a k-Nearest Neighbors (k-NN) classifier. The

EER calculated based on classifier output was shown to increase by as much 1009% when

user data was tested against robotic arm generated forgeries.

106

Apart from single module CAS, significant work has been done on multimodal

systems. Multi-modal systems have the benefit of recruiting multiple sensors and data

sources making them tolerant to hardware failures. Additionally, aggregated features

incorporating multiple sources can increase confidence in user identity by resolving

ambiguity. The information coming for individual modules can be integrated at four levels:

sensor level, feature extraction level, matching score level, and decision level. With data

typically hidden at sensor and feature levels, most approaches resort to simple rules (max,

sum, and product) that combine matching scores and produce a compound trust or

confidence metric. In [79], a DARPA sponsored CAS on a desktop computer was tested

with behavior-metrics collected from 99 users over the course of 10 weeks. The metrics

included keystroke dynamics, mouse movements, CPU and RAM usage, and processes and

applications used. Deutshmann et al. proposed a novel trust metric that controls changes in

trust levels based on user scores. These scores are based on user profiles created using

fuzzy sets that are later used by a Bayesian network to compare again test data.

Experiments on mouse and keyboard data, both individual and combined, were conducted

leading the authors to conclude that keyboard dynamics performed best by never falsely

rejecting correct users and recognizing imposters in as little as 38 interactions. Azzini et al.

[80] followed the fuzzy route as well with a multimodal CAS leveraging face recognition

with asynchronous finger print recognition. A fuzzy controller with custom rules was

implemented to fuse metrics at the decision level using the match scores of the biometric

sub-systems as inputs. Experiments were conducted by monitoring the activity of 100 users

during an hour-long session. Multiple membership functions were evaluated with the best

choice demanding an average of 8.68 fingerprint scans per hour. Finally, Crawford et al. in

107

[81] provided a framework for transparent user authentication using a combination of

Keystroke Dynamics (KD) and Voice Verification (SV) to calculate the confidence in user

identity according to which the client is allowed to take control of the device at three level

of confidence. For example, changing the PIN of the device requires a higher confidence

level than taking a photo. The authors conducted tests on different devices (IPhone 1,2,3,4

& IPod 1,2,3,4) using Naïve Bayes, Decision Trees, and 5-NN as classifiers and concluded

that 5-NN achieved the best EER median with 19.5% for KD and 28.54% for SV. Crawford

also showed the results of testing multimodal system using either Naïve Method or

Posterior Probability Method (PPM) to combine KD and SV reporting that PPM is the best

method with 32.84% EER median, but the single biometric system using KD is still

competing multi-biometric and single SV with 29.52 EER median for overall classifiers.

C. LSM-based Continuous Authentication Framework

In chapter VI, we showed how we can use LSM for feature extraction and online

feature extraction from EEG raw data For continuous authentication for smartphones, the

environment is similar for two reasons; first, LSM can be used for feature extraction

directly from the sensors’ output; second features will be available automatically as long as

there is data collected from the sensors. We try in this framework to reduce the

preprocessing of data from sensors such that we obtain a real anytime authentication

framework. In the next section, we describe the type of information that we can obtain from

mobile sensors for keystrokes and gestures/strokes. In our design, the framework provides

authentication for three components in smartphone; first, augmented password

authentication when a user enters his/her password; second, when a user enters a long text

108

such as SMS, email, MMS, etc.; finally; strokes/gestures authentication when a user swipes

his/her finger(s) on touchscreen. The first and second components share the same features,

but differ in the length, while the third component has different features.

1. Mobile Sensor Data

We target Android based devices for our framework and built our own application

to collect user’s data interactions and logs. For keystroke, we collect the following

information for each user:

 The amount of pressure on the touch screen when pressing each character.

 The area of the finger when pressing each character.

 The time of pressing each character.

 The time of releasing each character.

While for strokes/gestures component, we collect the following features:

 Time stamps for stroke/gesture (multiple recordings per one continuous swiping).

 X-coordinates stroke/gesture (multiple recordings per one continuous swiping).

 Y-coordinates stroke/gesture (multiple recordings per one continuous swiping).

 Velocity on X-coordinates (multiple recordings per one continuous swiping).

 Velocity on Y-coordinates (multiple recordings per one continuous swiping).

 The amount of pressure on the touchscreen when swiping (multiple recordings per

one continuous swiping).

 The area of the finger when swiping on touchscreen (multiple recordings per one

continuous swiping).

109

2. LSM-Based Framework

In this section, we introduce our framework base on the previous discussion. As

previously mentioned, we want to reduce the amount of preprocessing information before

the LSM. It can be noticed that the timing of pressing and releasing characters for

keystroke can be fed directly as a spike into the LSM as spikes. On the other hand, we can

feed other information such as the pressure and size of a finger on the touchscreen using

direct feeding as we have done in experiment 1, chapter VII. However, due to some

constraints on the simulator that we will use, csim, we have to build two LSM and connect

them with each other (CbNeuron model accepts direct input, while LIF accepts spike

input). The first LSM, LSM 1, consists of LIF neurons, which accepts spike encoding. The

second LSM, LSM2, consists of CbNeuron model neurons and accepts direct information

feeding by mean of an analog input neuron. We connect the two LSMs with each other and

read from LSM 1. That is, we use LSM 1 as an output for the framework, where this

output holds an accumulative information from input 1 to input 7.The information flow is

depicted in Figure 17.

Since the keystroke does not include information about velocity and coordinates, we

need to have before the main LSM, i.e., the LSM that includes LSM 1 and LSM 2, an input

interfacing component such that we map the input for the corresponding point inside the

main LSM. The main LSM has 7 inputs as follows:

110

Table 27: Input description for LSM-based continuous authentication.

Input Function Type Connected

to

Used by

Input #1 Deliver pressing time as

spikes.

Spiking LSM 1 Keystrokes

and

gestures

Input #2 Deliver releasing time as

spikes.

Spiking LSM 1 Keystrokes

and

gestures

Input #3 Deliver average pressure on

the touchscreen.

Analog LSM 2 Keystrokes

and

gestures

Input #4 Deliver average finger size

on the touchscreen.

Analog LSM 2 Keystrokes

and

gestures

Input #5 Deliver Y-coordinates of

gestures/strokes on the

touchscreen

Analog LSM 2 Gestures

only

Input #6 Deliver Y-coordinates of

gestures/strokes on the

touchscreen

Analog LSM 2 Gestures

only

Input #7 Deliver velocity of

gestures/strokes on the

touchscreen

Analog LSM 2 Gestures

only

Figure 18: Main LSM architecture for continuous authentication.

111

Figure 19: LSM-Based Continuous Authentication Framework for Smartphones.

112

D. Feature Selection

Having reviewed the related work in continuous mobile authentication, we choose

from the related work the best reported feature vector for keystroke and gestures/strokes.

More specifically, we will use the same feature vector information in related

work for comparison purposes with the features extracted by the suggested

architecture using LSM.

1. Keystroke features

According to the works [82, 83], a heterogeneous vector of the following

components would deliver the highest performance: pi, the average pressure of character i

on touchscreen; si, the average size of finger on touchscreen for character i; hi, the hold

time for character i; fi, the flight time, which is the difference between pressing character

i + 1 and releasing character i + 1; pri, the relative pressing time for character i; and ri, the

releasing time for character i. The feature vector is represented as follows:

v =

{p1, p2, … pN, s1, s2, … sN, h1, h2, … hN, f1, f2, … fN, pr1, pr2, … prN, r1, r2, … rN} (8.1)

E. Experimental Procedure

1. Application side configuration

To evaluate the quality of features from LSM, we decided to collect our own dataset

to ensure the accessibility to data from mobile logs. To do this, first we designed an

Android Application that collects and logs user interactions with a smartphone. The

113

application was installed on Samsung GT-i9100 smartphone and we asked 22 users to

participate in data collection. All users are students between 20 to 28 years with 40% of

them are males. Each user was asked to perform a three-step data collection.

In the first step, the user was asked to enter a fixed password for 15 times. We chose

“.tie5Roanl” as a password to compare our results with the available works on augmented

passwords [84].

Figure 20: A screenshot of the application interface for Augmented Password Authentication.

In the second step, the user was asked to enter the following text using the

smartphone keyboard.

“”

114

Figure 21: A screenshot of the application interface for Long-text Authentication.

The third step includes data collection for strokes/gestures, where the user was

asked to swipe anywhere on the screen in specific direction according to a label that

appears on the smartphone touchscreen. In total, we have 120 gestures/strokes with

different direction; up, down, left and right.

115

Figure 22: A screenshot of the application interface for Strokes Authentication.

2. LSM side configuration

The following tables show the configuration for LSM 1 and LSM 2.

Table 28: LSM 1 configuration.

Neuron Configuration LSM Connectivity and

Architecture

Readout

Model: LIF

Vthresh = 0.015 (V)

Vreset = 0.01447 (V)

Trefract = 0.002 (sec)

Cm = 3e-08 (F)

Vresting = 0 (V)

Vinit = .0146533 (V)

Vm : 0 (V)

Architecture : 6×6×6

𝝀= 2

𝒘𝒊𝒏𝒑𝒖𝒕=0.15

𝑪𝒔𝒄𝒂𝒍𝒊𝒏𝒈=1

Sampling: [0.01:0.025:T]

With T=2 sec for Augmented

password authentication, 200

seconds for long-text

authentication and 0.5 second

for Gestures/strokes

authentication.

Filter : exponential filter

with 𝜏 = 0.03

116

Table 29: LSM 2 configuration.

F. Anomaly Detection methods

The most intuitive way to evaluate continuous authentication in smartphones is to

use anomaly detection approach. Differently from the published works that deploy

classification to evaluate continuous authentication, anomaly detection is a more natural

approach to address this problem because it is not reasonable to build a database for all

possible non authorized users in a supervised environment. That is, classification requires

the security system to specify the genuine user’s data and other data from non-genuine

users and hence the classification model will be limited and not generalized for other yet to

be see data from non-genuine users. This is an anomaly detection problem.

In this section, we review the available methods to perform anomaly detection.

Most of the methods were taken from [84].

Let us first assume the following variables to ease the explanation. Let m be the

mean of the training data (the genuine user data), xi is a sample from training data, yi is a

sample from testing data and sd is the standard deviation of the training data.

Neuron Configuration LSM Connectivity

and Architecture

Readout

Model: CbNeuron

Vthresh = -0.045 (V)

Vreset = 0 (V)

Trefract = 0.003 (sec)

Cm = 3e-08 (F)

Rm = 1e+06 (Ohm)

Em : 1.0395e-314 (V)

Vresting = -0.06 (V)

Vinit = -0.06 (V)

Vm : 1.0395e-314 (V)

Architecture : 5×5×5

neurons

𝜆=2

𝒘𝒊𝒏𝒑𝒖𝒕=0.4

𝑪𝒔𝒄𝒂𝒍𝒊𝒏𝒈=1

No readout applied

117

1. Euclidean Detector

The idea here is simple and it relies on the Euclidean distance. Specifically, this

method calculates the mean of training data m and then calculates the scores of the testing

data by finding the Euclidean distance di between the mean and each sample in the testing

data.

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑑𝑖 (8.2)

2. Normalized Minimum Distance Classifier

This method is similar to the Euclidean one, however it differs in the way of

calculating the testing score. The score of each test sample is calculated by normalizing the

Euclidean distance between testing sample yi and the mean m by the norm of the mean m

and yi.

𝑠𝑐𝑜𝑟𝑒𝑖 =
𝑑𝑖

‖𝑚‖∗‖𝑦𝑖‖
 (8.3)

3. Manhattan method

This method is also similar to the Euclidean method; however, it uses the

Manhattan distance instead to calculate the distances between the mean of training data m

and samples of testing data.

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑑𝑖 (8.4)

With 𝑑𝑖 is the Manhattan distance between 𝑦𝑖 and𝑚.

118

4. Filtered Manhattan

Here, the method is similar to the Manhattan method, but it tries to repair the

training data by ignoring the samples that are three or more standard deviations from the

mean. After finding those samples in the training data, the method then drops them and

recalculates the new mean. The scores of testing samples are calculated according to the

new mean using Manhattan distance.

5. Scaled Manhattan

This method uses the same methodology as in Manhattan method, but it scales each

feature in the testing sample by the mean absolute deviation of each feature sp , where sp is

calculated in the training phase by finding the mean of the differences between each feature

in training samples and the mean m.

6. Outlier-counting (z-score)

This method calculates the mean and the standard deviation of each feature in the

training phase. In the testing phase, the method calculates the z-score for each feature in the

testing sample. After that, the score of testing sample is calculated by finding how many

features exceeded a predefined threshold. The threshold here is experimental value and can

be tuned by trial.

7. One-Class SVM

This method aims at finding a decision boundary around the training data. One-

Class SVM uses the same concept of the kernel method where it maps the data into high

119

dimensional data. The scores here are computed by finding the distance between the

decision boundary and testing samples.

G. LSM Readout Optimization for Distance-based Anomaly Detection Method

Since anomaly detection methods depend on evaluating the sampling according to

their distances to the mean of training data in general, then improving distances such that

the samples from the same user become closer and samples from different users become

farther.

The suggested solution is to concatenate resultant states after LSM in one vector.

That is, we merge states horizontally after LSM to form a long vector. Even though this

idea seems simple; however, it showed great improvements in accuracy for anomaly

detection methods.

Figure 23: Liquid state concatenation for improving distance-based anomaly detection.

A. Results of testing continuous authentication in smartphones

In this section, we test the proposed framework for continuous authentication in

smartphones. We test each component in the framework independently, i.e., we report the

result of testing augmented password authentication, long-text authentication and

gestures/strokes authentication. For augmented password authentication, we report the

results of testing anomaly detection on best reported feature vector form literature review

120

(see section D), using LSM feature vector and using a concatenated liquid state feature

vector described in section G. All results are reported for one vs. one scenario and one vs.

all scenarios for each type of feature vector.

For long-text and gestures/strokes authentication, we report the results for liquid

states feature vector and a concatenated liquid states feature vector, since they need further

works that are out of the scoop of this thesis.

In all tests, the results are reported in Equal Error Rate (EER) form after averaging

over all 22 users participated in the data collection. The values of EER are in %, i.e., 50 is

50%.

1. Augmented Password Authentication

Table 30: Augmented Password authentication error rate (One vs. One scenario).

 Literature review

feature vector

LSM feature

vector

Concatenated

feature vector

Euclidean Detector 1.71055 46.50597 3.05931

Normalized Minimum Distance 1.417414 49.65097 4.015016

Manhattan method 1.586273 45.12553 2.668668

Filtered Manhattan 1.673142 41.55802 0.058583

Scaled Manhattan 0 15.9788 0

Outlier-counting (z-score) 5.625655 35.08592 0.03243

Table 31: Augmented Password authentication error rate (One vs. All scenarios).

 Literature review

feature vector

LSM feature

vector

Concatenated

feature vector

Euclidean Detector 13.36383 49.50233 12.78469

Normalized Minimum Distance 13.92221 49.82517 16.20212

Manhattan method 13.68596 48.76225 5.519532

Filtered Manhattan 13.26725 44.59739 0

Scaled Manhattan 0 17.07342 0

Outlier-counting (z-score) 14.7841 34.68849 0

121

2. Long-Text Authentication

Table 32: Long-Text authentication error rate (One vs. One scenarios).

 LSM feature

vector

Concatenated

feature vector

Euclidean Detector 47.70873 0.585811

Normalized Minimum Distance 50 0.855847

Manhattan method 47.2924 0.752246

Filtered Manhattan 45.24488 0.00086

Scaled Manhattan 36.03566 0.329986

Outlier-counting (z-score) 45.55512 0.52056

Table 33: Long-Text authentication error rate (One vs. All scenarios).

 LSM feature

vector

Concatenated

feature vector

Euclidean Detector 50.53207 1.59801

Normalized Minimum Distance 50 2.021999

Manhattan method 49.97733 2.08626

Filtered Manhattan 47.90583 0.0168

Scaled Manhattan 37.43904 1.214364

Outlier-counting (z-score) 45.34701 0.6828

3. Gestures/strokes Authentication

Table 34: Gestures/Strokes authentication error rate (One vs. One scenario).

 LSM feature

vector

Concatenated

feature vector

Euclidean Detector 40.64681 2.75268

Normalized Minimum Distance 50 2.862201

Manhattan method 40.32027 2.265007

Filtered Manhattan 33.84939 0.741661

Scaled Manhattan 9.409299 0.006753

Outlier-counting (z-score) 31.38148 0.528848

122

Table 35: Gestures/Strokes authentication error rate (One vs. All scenarios).

 LSM feature

vector

Concatenated

feature vector

Euclidean Detector 49.28858 8.127847

Normalized Minimum Distance 50 8.319069

Manhattan method 46.08879 6.674691

Filtered Manhattan 38.27089 2.543448

Scaled Manhattan 11.25073 0.058676

Outlier-counting (z-score) 34.24807 8.127847

B. Results Discussion

The results show that LSM provides a better discriminative feature vector than the

best reported feature vector in the literature review except for some methods. For Filtered

Manhattan, Scaled Manhattan and Outlier-counting (z-score), a concatenated states feature

vector always performs better than literature review feature vector (for augmented

password authentication). For long-text and stroke authentication, the concatenated feature

vector produces a very low EER.

 In addition, LSM provides an online method and natural environment to handle

continuous authentication via continuous feature extraction. Moreover, we showed that

LSM can be considered as a universal-model to handle signals from different sources of

signals, keystrokes and gestures. If we are to build the same model using techniques other

than LSM, then we have to build a different model for each different component in the

framework.

123

CHAPTER IX

EFFIECNT SAMPLING TIME SLECTION FROM LIQUID

STATE MACHINE

A. Introduction

LSM works by sampling states of a liquid during the course of its work. These

states are used later by different readout functions to identify the corresponding patterns,

i.e., the extracted states from the same input pattern are assigned to the same label or class

accordingly. These states hold information about the liquid state at each sampling time.

However, LSM at some periods or at specific sampling times may hold more or less

information about input. That is, some states are more informative than other with the

respect to when it is sampled. In this chapter, we introduce a method to choose the most

informative sampling times to improve the classification task. This chapter also uses the

DEAP dataset for testing purposes and specifically it will use the Subject/Video

independent scenario. In addition, this chapter uses the proposed method to study how our

brain acts with respect to the valence and arousal.

This chapter is organized as follows: in section B, we introduce the proposed

method mathematically. Section C provides testing and results for applying this method. In

section D, we devise the method to study the course of valence and arousal in humans,

where we show he benefit from using this method not only for states selection, but also in

evaluating states for further analyses.

124

B. Active States Detection Method

In this section, we will use some statistics to evaluate states after the liquid to rank

them accordingly. Then, we will choose the top ranked states to see how they will improve

the classification task.

Let 𝑠 = {𝑠1, 𝑠2, 𝑠3 … 𝑠𝑛} be liquid states values, where 𝑛 is number of sampling

times and 𝑡 = {𝑡1, 𝑡2, 𝑡3 … 𝑡𝑛} are moments of sampling states. Among 𝑡, we want to

choose the 𝑘 highest sampling periods such that we maintain from 𝑠 the k top informative

liquid states. To achieve this goal, we will use t-test method as an approach to perform this

goal. This idea is inspired from work [85] which detects some unique markers molecules

that are found in the sera of the ovarian cancer patients to use them in nearest neighbor

classifier (Adapting the method for LSM is a novel idea and has not been used for LSM

before). This is a challenging problem since molecules differ significantly from a person to

another; however, the method presents a statistical way to choose the k-best discriminative

markers molecules to differentiate between patient and healthy persons. The method has

been shown to be very effective for this problem with 100% discrimination.

Choosing the effective sampling time can be seen from the same perspective, where

each sampling time can be considered as a marker molecule. In the next section, we

reformulate the method such that can be applied on sampling time selection. The problem

formulation follows the same mathematical derivation in [86].

The goal of this method is to test for the zero differences between (𝑢1 − 𝑢2) where

𝑢1 is the mean of the values of the liquid state at 𝑡𝑗 , 𝑗 = 1,2, . . , 𝑁, for the class 𝜔1 and 𝑢2

125

is the mean for the same feature when it is taking for the class 𝜔2. Let us now assume 𝑥𝑖,

 𝑖=1, 2, …, N , be the state values of the period 𝑡𝑗 in class 𝜔1 with mean 𝑢1. Similarly, let

𝑦𝑖, 𝑖=1,2, … , N , be the state values of the same period, 𝑡𝑗 , in class 𝜔2 with mean 𝑢2.

For the variance, we assume that the variance for 𝑥𝑖 = 𝜎1
2 and the variance for 𝑦𝑖 = 𝜎2

2 are

equal; 𝜎1
2 = 𝜎2

2 = 𝜎2.

Let us build the hypothesis that test the closeness between the two mean as follows:

𝐻1: ∆𝑢 = 𝑢1 − 𝑢2 ≠ 0 (9.1)

𝐻0: ∆𝑢 = 𝑢1 − 𝑢2 = 0 (9.2)

Now, let us assume that 𝑧 = 𝑥 − 𝑦

Where 𝑥, 𝑦 denote the random variable corresponding to the values of the liquid

states in the two classes 𝜔1 and 𝜔2, respectively.

Under the assumption of the statistical independence between 𝑥 and 𝑦, we can

write:

𝐸[𝑧] = 𝑢1 − 𝑢2 with 𝜎𝑧
2 = 2𝜎2 (9.3)

Then the estimation of the mean of the random variable 𝑧 is:

�̃� =
1

𝑁
∑ (𝑥𝑖 − 𝑦𝑖) 𝑁

𝑖=1 = �̃� − �̃� (9.4)

126

Here, we assume that the variance and means are known and that: �̃�~𝑁(𝑢1 −

𝑢2,
2𝜎2

𝑁
. However, if the variance is not known (the mean should not be a problem because

�̃� is consistent and unbiased estimator), then the test statistics is required as follows:

𝑞 =
(�̃�−�̃�)−(𝑢1−𝑢2)

𝑠𝑧√
2

𝑁

 (9.5)

Where

𝑠𝑧
2 =

1

2𝑁−2
(∑ (𝑥𝑖 − �̃�)2𝑁

𝑖=1 + ∑ (𝑦𝑖 − �̃�)2𝑁
𝑖=1) (9.6)

It can be shown that
𝑠𝑧

2(2𝑁−2)

𝜎2 follows a Chi-square distribution with 2𝑁 − 2 degree

of freedom.

For the time being, we assume the availability of the variance and mean in the

further steps. The test statistic value for the most important periods or sampling times will

be formulated as follows:

𝑟𝑖 =
(𝑥𝑖−𝑦𝑖)

√
𝜎𝑥𝑖

2

𝑁𝑥𝑖
−

𝜎𝑦𝑖
2

𝑁𝑦𝑖

 (9.7)

Where 𝑟𝑖 is the ranking for sampling period 𝑡𝑖, 𝑖=1,2, … , N, and 𝑁𝑥𝑖
 is the number

of values from liquid state 𝑠𝑖 and belongs to class 𝜔1. 𝑁𝑦𝑖
 is the number of values from

liquid state 𝑠𝑖 and belongs to class 𝜔2. 𝑥𝑖, 𝑦𝑖 and 𝜎𝑥𝑖

2 , 𝜎𝑦𝑖

2 are the means and variances for

liquid state 𝑠𝑖 values that correspond to class 𝜔1 and 𝜔2 , respectively.

127

We will use this metric to rank the sampling periods 𝑠 and then choose the top 𝑘

sampling periods.

C. Testing

As aforementioned, the experiment will use Subject/Video independent scenario to

assess the method. Moreover, the method later will be used to study the valence and arousal

courses of human brain.

For the configuration, the same sampling time that was used in Emotion

Recognition in Chapter VI is used in this experiment; [0.5: 0.4:59], which means that our

sampling starts after the 0.5 second and we sample every 0.5 seconds until the moment the

59 seconds. The total number of the produced states for each input pattern (the EEG for

each different video) is 𝑁 = 147 states.

In testing, we compare the results in two cases for different configurations of 𝑘.

The first case uses the selection method to choose top ranked 𝑘 states. The second case uses

a random selection for 𝑘 states. To increase the reliability of the second case, we repeat the

random selection for 20 times, and then we average the results accordingly. We choose 𝑘 =

[5 10 20 40 60 80 100 120]. The readout functions are Decision Trees and Linear

Regression. All experiments are done in 10-fold cross validation form.

128

Figure 24: Active State Selection Method testing on Valence using Decision Trees.

Figure 25: Active State Selection Method testing on Valence using Linear Regression.

50

55

60

65

70

75

80

85

90

95

100

5 10 20 40 60 80 100 120

Valence using Decision Trees

Selection Method

Random Selection
(average of 20 runs)

k states

A
cc

u
ra

cy
 (

%
)

50

55

60

65

70

75

80

85

5 10 20 40 60 80 100 120

Valence using Linear Regression

Selection Method

Random Selection
(average of 20
runs)

k states

A
cc

u
ra

cy
 (

%
)

129

Figure 26: Active State Selection Method testing on Arousal using Decision Trees.

Figure 27: Active State Selection Method testing on Arousal using Linear Regression.

50

60

70

80

90

100

110

5 10 20 40 60 80 100 120

Arousal using Decision Trees

Selection Method

Random Selection
(average of 20 runs)

k states

A
cc

u
ra

cy
 (

%
)

50

55

60

65

70

75

80

85

90

5 10 20 40 60 80 100 120

Arousal using Linear Regression

Selection Method

Random Selection
(average of 20 runs)

k states

A
cc

u
ra

cy
 (

%
)

130

Figure 28: Active State Selection Method testing on Liking using Decision Trees.

Figure 29: Active State Selection Method testing on Valence using Linear Regression.

D. Results and Discussion

The results show that the selection performs better than any random selection for

the states except for liking classification case with Linear Regression readout, where it

generated relatively lower accuracies than random selection for some configurations for k.

91

92

93

94

95

96

97

98

99

5 10 20 40 60 80 100 120

Liking using Decision Trees

Selection Method

Random Selection
(average of 20 runs)

k states

A
cc

u
ra

cy
 (

%
)

50

60

70

80

90

100

5 10 20 40 60 80 100 120

Liking using Linear Regression

Selection Method

Random Selection
(average of 20
runs)

k states

A
cc

u
ra

cy
 (

%
)

131

In addition, the method reduces the computational cost of processing extra and useless

liquid states from LSM. For example, For example, with about 10% of the whole extracted

liquid states from LSM, we were able to deliver the better accuracy for valence and arousal

than using the entire liquid states in readout.

E. The Relation between Sampling Times Ranks and the Affective States of the Brain

This section examines the proposed method to study the valence and arousal

courses during a stimulus by studying the ranks of each sampling time. That is, we want to

see how the valence and arousal vary during one stimulus with respect to the targeted

classification task. In the following figures, we show the ranks of the sampling times for the

valence from the users 1-8 of DEAP dataset. The Figures for the remaining users (9-32) are

in the Appendix of this chapter.

132

Figure 30: Valence Sampling Times Ranking for Users 1-8.

Figure 31: Arousal Sampling Times Ranking for Users 1-8.

1. Discussion

In this section we discuss the outcome of the selection method in order to draw

some conclusions about the valence and arousal courses during a stimulus.

At first glance, we can notice some specific patterns of valence for some users. For

example, user 4, user 22 and user 30 have the same valence course, where the high ranking

states for valence are concentrated before the first 33 seconds. Those users, in fact, are

female subjects in DEAP dataset, according to DEAP dataset manual.

Secondly, we cluster the ranking information from each user into two subsets using

k-means algorithm. The clustering information shows that valence course between female

133

differ from those of males; out of the 32 users, 22 users were categorized correctly into

either male or female. The following table shows the clustering result of the 32 users.

Table 36: Clustering results for the outcome of the selection method.

Testing arousal did not show interesting result with respect to the gender.

 Predicted Actual

User 1 Male Male

User 2 Female Female

User 3 Male Female

User 4 Female Female

User 5 Male Male

User 6 Male Male

User 7 Male Male

User 8 Female Female

User 9 Female Female

User 10 Female Female

User 11 Female Female

User 12 Male Male

User 13 Female Female

User 14 Female Female

User 15 Male Female

User 16 Male Male

User 17 Female Male

User 18 Female Male

User 19 Male Male

User 20 Female Male

User 21 Female Male

User 22 Male Female

User 23 Male Male

User 24 Male Female

User 25 Female Female

User 26 Male Male

User 27 Male Male

User 28 Female Male

User 29 Male Male

User 30 Male Male

User 31 Female Female

User 32 Male Female

134

It can be seen from plotting of the sampling times ranking for valence and arousal

(Figure 30 and 31) that valence and arousal are not steady nor have flat responses; actually

they fluctuate over time. That is, the consecutive periods of time include high/ low

activeness of valence and arousal courses. To examine this fact, we conducted an

independent experiment, where we increased the sampling times to the sampling time of

the EEG signals in the DEAP dataset, 128 Hz. This produced 7552 sampling periods. We

were able to perform this experiment for only Subject one, since it includes high

computational efforts.

It can be seen from the Figure 32 that active valence periods (the dark blue vertical

lines) happen as bursts. Figure 33 shows that arousal course within the same period (one

second) for Subject one. It can be noticed that the active periods of valence and arousal

courses happen at different sampling times except for some periods as depicted in Figure

34.

Figure 32: The Sampling times ranking for one second from Subject one (Valence).

135

Figure 33: The Sampling times ranking for one second from Subject one (Arousal).

Figure 34: A Comparison for valence and arousal Courses from Subject 1.

F. Conclusion

In this chapter, we introduced a method to rank the sampling times in a way to

maintain the top informative sampling times. We showed in the experimental part how this

method can improve the performance of a classification task. This is important not only for

136

the performance of a classifier, but also for reducing the power consumption for a

hardware-based implementation of LSM. The power saving is a result of reducing the

number of extracted liquid states/ samples from LSM.

In addition, we used the proposed method to study the valence and arousal courses

in brain, where we drew some conclusions about their working course. Other analyses

could be done based on the outcome of the selection method, where we open this for future

work.

137

CHAPTER X

PRUNING INATTENTVIE NEURONS IN LIQUID STATE

MACHINE

This chapter is concerned to look into an energy aware computing LSM

architecture. LSM consists of 3D architecture of randomly connected neurons that follows

the small world connectivity described in chapter III. During information propagation

inside LSM some neurons become lazy, while others become more informative with

respect to the targeted task. This chapter presents a method to evaluate neurons during

information propagation by studying the probability of binding information between them.

Some neurons in LSM fires in harmony with irrespective to an input, because they form

isolated islands inside the liquid. We refer to this phenomenon as “isolated islands” and the

neurons that participate in this phenomenon as an “inattentive neurons”. The isolated

islands could happen because of pathological paths or stratification phenomenon in LSM.

Pruning such inattentive neurons increases the performance in both classification and

anomaly detection tasks, since each neuron represents a feature in terms of pattern

recognition. Moreover, removing such neurons is important to reduce the power

consumption, since the recent trends in RC target building some hardware-based LSMs

[87-89].

This chapter is organized as follows: in section A, we introduce a mathematical

formulation for pruning inattentive neurons. Section B tests the suggested method on

138

continuous authentication in smartphone data and on five datasets from UCI. In section C,

we provide our discussion and analysis of the results. Finally, we deliver a conclusion of

this chapter in section D.

A. Inattentive Neurons Pruning (INP) Method

This section introduces the INP method. First, we put the requirements and goals

form such a method. The INP method should meet the following requirements:

 The method should be able to capture the similarity in functioning between the neurons.

 The method should be able to understand the connectivity between neurons and finds a

way to define the isolated neurons (inactive neurons).

 The method should be able to provide a consistent ranking for the inattentiveness of

each neuron, such that any later evaluation for the LSM will be based on a systemic

procedure.

Based on the previous requirements, we suggest a method to evaluate the

inattentiveness of the neurons inside the LSM based on Stochastic Outlier Selection

Algorithm [90]. Even though this method has been used mainly for outliner selection, we

slightly modify this method to rank neurons according their behavior in propagating the

information.

139

1. Mathematical Representation

Let 𝑅 = [𝑟1, 𝑟2, 𝑟3, … 𝑟𝑛] be the responses from neurons in LSM along simulation

time, where 𝑛 the number of neurons inside the liquid. Let 𝐷 be the dissimilarity

between 𝑅, where the dissimilarity between response 𝑟𝑖 and 𝑟𝑗 is computed as follows:

𝑑𝑖𝑗 = √∑ (𝑟𝑗𝑘 − 𝑟𝑖𝑘)2𝑚
𝑘=1 (10.1)

With 𝑟𝑖𝑘 is the kth liquid state value of the ith response.

After computing the dissimilarity between neurons responses, we compute the

affinity between a neuron’s responses to another neuron’s response. The affinity that

neuron 𝑖 response has with neuron 𝑗 response given 𝑑𝑖𝑗 is:

𝑎𝑖𝑗= { 𝑒
(−

𝑑𝑖𝑗

2𝜎𝑖
2)

 𝑖𝑓 𝑖 ≠ 𝑗
0 𝑖𝑓 𝑖 = 𝑗

 (10.2)

 Where 𝜎𝑖
2 is the variance associated with 𝑟𝑖.

To that end, we computed the affinity between neurons responses. Now we define

the perplexity parameter, h, which defines the number of the affected neurons when

considering the current neuron. The perplexity parameter is similar to the parameter k in k-

nearest neighbor algorithm; however, it plays a smoothing role since the affinity is a

relative relationship. That is, the affinity has an exponential relationship with respect to the

dissimilarity and variance and hence “being a neighbor” is a relative relationship.

140

After determining h, we want each neuron to have the same number of affected

neurons around it. This can be done by controlling the variance of neuron’s response such

that the variance yields the same number of affected neurons. The variance for each

neuron is found by the binary search.

Now, we use graph theory to define the Stochastic Neighbor Graph based on the

affinity measure, where the vertices are the responses of neurons. Generating a direct

relation between vertices depends on the binding probability concept. The later, depends on

the functional relationship between neurons. The binding probability, 𝑏𝑖𝑗, between two

vertices 𝑣𝑖 and 𝑣𝑗 is a proportional to the affinity between 𝑟𝑗 and 𝑟𝑗.

𝑏𝑖𝑗 = 𝑝(𝑖 → 𝑗) ∝ 𝑎𝑖𝑗 (10.3)

 and can be written as

𝑏𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑘
𝑛
𝑘=1

 (10.4)

The binding probabilities for vertex 𝑣𝑖 form the binding distribution 𝑏𝑖.

𝑏𝑖 = [𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3, … , 𝑏𝑖𝑛]

We denote the matrix of binding distributions from different neurons by 𝐵.

Now, we define a stochastic process as follows: let a stochastic Neighbor Graph

(SNG) be 𝐺 = (𝑉, 휀𝑔) where 𝑉 is a set of vertices and 휀𝑔 is a set of directed edges. Let 𝑖 →

𝑗 denote the direct edge from vertex 𝑣𝑖 to vertex𝑣𝑗 . If the vertex 𝑣𝑖 binds to vertex 𝑣𝑗 , then

141

we add the directed edge 𝑖 → 𝑗 to 휀𝑔. As a consequent result, we say that that neuron that

has the response 𝑟𝑖 is a “virtually functional neighbor” to a neuron that has a response 𝑟𝑗.

Then we define that the neuron 𝑛𝑖 is an inattentive with respective to other neurons

or in other words the neuron 𝑛𝑖 belongs to isolated islands 𝑁0 if and only if it is

corresponding vertex 𝑣𝑖 has no inbound connection (has zero edges).

𝑁0|𝐺 = {𝑟𝑖 ∈ 𝑅| deg(𝑣𝑖) ≫ 0} (10.5)

 The previous discussion was for one generated SNG, 𝐺. However, 𝐺 is been

generated stochastically, and hence the neurons are selected randomly. For this reason, we

generate (𝑛 − 1)𝑛 SNGs such that we cover all the possible connections between vertices

in neurons responses. Since some of binding probabilities are not uniformly distributed

among all responses, some edges between vertices are more probable to be generated than

others. To put the previous discussion in a mathematical way, let us assume that 𝜍 is the all

possible sampled SNGs.

𝑝(𝐺) = ∏ 𝑏𝑖𝑗𝑖→𝑗𝜖𝛿𝐺
 (10.5)

This means that generating a SNG depends only on the binding probabilities. We

denote 𝐺~ 𝑃(𝜍) as sampling the SNG 𝐺 from the probability distribution 𝑃(𝜍). The

probability that a neuron is an inattentive neuron is computed by sampling the SNG as

follows:

𝑝(𝑟𝑖 ∈ 𝑁0) = 1 − (lim
𝑠→∞

1

𝑆
∑ ℵ(𝑟𝑖 ∈ 𝑁0|𝐺𝑠))𝑆

𝑠=1 (10.6)

142

With ℵ takes 1 if 𝑟𝑖 belongs to 𝑁0 and 0 if not. 𝐺𝑠~ 𝑃(𝜍)

 We notice that we can compute the exact probability that a neuron is an inattentive

neuron by marginalizing out the stochastic graph 𝐺, because one SNG is more probable

than others.

However, we can compute that a neuron belongs to inattentive neurons without

generating any SNG directly from the binding probabilities of neurons [90].

 That is, a neuron belongs to inattentive neurons “Isolated islands” if its responses

from strong Neighborhood relationships with other responses from other neurons. This can

be computed as:

𝑟𝑎𝑛𝑘𝑖 = 1 − ∏ (1 − 𝑝𝑗𝑖)𝑖≠𝑗 (10.7)

We will use equation (10.7) as a ranking for neurons in the liquid, and we say that a

neuron belongs to inattentive neurons its ranking exceeded a specific threshold:

𝑖𝑓 𝑟𝑎𝑛𝑘𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑡ℎ𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑖 ∈ 𝑖𝑛𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 (10.8)

B. Illustration Example

In this section, we provide an illustration example for using the pruning method,

where we use it to rank and identify some neurons in artificial example. Let us assume in

the figure below a part of a network inside a LSM. In this example, neurons labeled with n1

to n5 form a semi-isolated network within the liquid network. This could happen due to the

stochastic process that connects neurons inside the LSM. Another reason for this problem

143

could happen because of the unsupervised learning in LSM using STDP, where some

connections might be weakening or strengthening unsuitably. To overcome such problems,

we use the proposed ranking method to evaluate neurons. First, we need to find responses

associated with each neuron in LSM. Let us denote r1 to r6 as the responses from n1 to n6,

respectively. The response could be the spiking activities or the internal state of voltage for

a neuron. We use in our evaluation and experiments the spiking activities from a neuron as

a response. We obtain responses from neuron for different input patterns such that we cover

different activation forms inside the liquid. This is important because some input patterns

may form such isolated islands for only specific cases, which is not a global case. Pruning

algorithm is concerned with semi-isolated islands that allow inattentiveness with

irrespective to the input.

Figure 35: Isolated Islands Illustration Example.

Having we find responses from neurons, we are ready to find binding probabilities

using equations 10.1, 10.2 and 10.3. In the artificial example below, neuron n1 associated

with response r1 binds information to n2 to n6. However, information propagation among

neurons n1 to n5 is much stronger than any other information propagation with other

144

neurons inside the liquid. For example, n6 forms a weak connection with n2 to n6. Binding

probabilities from n1 to n2, n3, n4, n5 and n6 are shown in the figure below. n1 binding

probability to n6 is the lowest in comparison with binding probabilities to n2, n3,n4,n5 and

n6. This is because the responses from n2 to n5 are closer “more similar” for n1 than the

response from n6, i.e., when n1 fires, other n2, n3, n4 and n5 most probably will fire. From

the perspective of n6, binding probabilities to n2, n3,n4 and n5 are somehow equal, since

responses from those neurons lay at equal distances from it, i.e., when n6 fires, there are no

strong connections that allow any of neurons in n2, n3, n4,n5 to fire.

Figure 36: Binding Probabilities to Other Neurons from Neurons n1 and n6.

To find the ranking for a neuron, we find the joint probabilities that other neurons

do not bind to it, and then we substitute ranking from 1 (see equation 10.8). The figure

below shows binding probabilities that other neurons bind to neuron n1 and n6. We can

notice that other n1, n2, n3, n4 and n5 binds to n6 with very low probability values. On the

other hand n2, n3, n4 and n5 bind with high probabilities. This indicates that n1, n2, n3, n4

145

and n5 form a semi-isolated island. This applies for n2, n3, n4 and n5 when computing that

other neurons bind to them. Compute ranking values for n1 and n6 is shown below:

𝑟𝑎𝑛𝑘1 = 1 − [(1 − 0.24) × (1 − 0.22) × (1 − 0.23) × (1 − 0.18) × (1 − 0.1)] = 0.663

𝑟𝑎𝑛𝑘6 = 1 − [(1 − 0.04) × (1 − 0.05) × (1 − 0.04) × (1 − 0.05) × (1 − 0.04) = 0.201

 As can be noticed, 𝑟𝑎𝑛𝑘1 > 𝑟𝑎𝑛𝑘6. And when choosing a proper threshold, we

can identify neurons that form isolated islands.

Figure 37: Binding Probabilities from Other Neurons to Neurons n1 and n6.

C. Testing and Result

The output of the method generates for each neuron in the liquid the probabilities of

being an inattentive neuron. We test INP method for anomaly detection tasks as well as for

classification tasks as follows:

Experiment 1: an anomaly detection for augmented password authentication task

(One vs. One scenario) described in chapter VIII.

146

Experiment 2: a classification for five datasets downloaded from UCI namely,

Fisher Iris, Pima, Sonar, Parkinson’s and Ecoli.

For anomaly detection task, we use the five distance-based anomaly detectors

described in chapter VIII namely, Euclidean, Euclidean (normed), Manhattan, Manhattan

(filtered), Manhattan (scaled) and Z-Score. We compare results between three cases in this

experiment: 1) when using all neurons for readout function, 2) after using INP method, 3)

we repeat the second case for 50 times (average of 50 runs) using the same number neurons

resulted from case 2, but we choose neurons randomly. For distance-based anomaly

detectors, we report the performance in terms of Equal Error Rate (EER) as in chapter VIII.

We vary the threshold from 0.05 to 0.75.

For classification task, we use Decision Trees classifier on the five datasets

mentioned previously, where we set the threshold to be 0.3.

In all experiments, the perplexity parameter of INP was chosen to be 4.5 so that it is

inline with the available literature.

147

1. Experiment 1: (Anomaly Detection on Augmented Password Authentication)

Figure 38: INP method testing on Augmented Password authentication using the Euclidean Detector anomaly detector.

Figure 39: INP method testing on Augmented Password authentication using the Manhattan method anomaly detector.

42

43

44

45

46

47

48

49

50

51

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

EE
R

(%
)

THRESHOLD

Euclidean Detector

INP method

Radom Selection -
Avg. of 20 runs

42

43

44

45

46

47

48

49

50

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

EE
R

(%
)

THRESHOLD

Manhattan Method

INP method

148

Figure 40: INP method testing on Augmented Password authentication using Filtered Manhattan anomaly detector.

Figure 41: INP method testing on Augmented Password authentication using Scaled Manhattan anomaly detector.

37

38

39

40

41

42

43

44

45

46

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

EE
R

(%
)

THRESHOLD

Filtered Manhattan

INP method

Radom Selection -
Avg. of 20 runs

14.5

15

15.5

16

16.5

17

17.5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

EE
R

(%
)

THRESHOLD

Scaled Manhattan

INP method

Radom Selection -
Avg. of 20 runs

149

Figure 42: INP method testing on Augmented Password authentication using Outlier-Counting anomaly detector.

2. Experiment 2: (Classification of UCI datasets)

In this experiment, we used 10-fold cross validation. The random selection results

are an average of 50 runs with the same number of neurons resulted after INP method (with

threshold=0.3).

Table 37: INP accuracy results for experiment 2.

Decision Tree

 Without
LSM

With
LSM

LSM with
INP

Random
Selection

Fisher Iris 95.01 95.73 96.14 93.41

Pima 70.49 75.35 77.59 70.63

Sonar 71.72 69.17 68.82 67.42

Parkinson’s 86.33 92.30 93.00 90.19

Ecoli 81.32 83.77 84.08 81.04

Linear Regression

Fisher Iris 97.33 91.72 87.26 79.85

Pima 74.10 72.74 74.29 66.43

Sonar 75.81 83.44 84.41 77.47

Parkinson’s 88.76 87.16 90.72 85.45

Ecoli 62.02 70.08 72.13 69.27

31

32

33

34

35

36

37

38

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

EE
R

(%
)

THRESHOLD

Outlier-Counting
INP method

Radom Selection -
Avg. of 20 runs

150

Table 38: Neurons reduction rate for experiment 2.

 Number of Pruned Neurons
out of 216 neurons

Fisher Iris 84

Pima 88

Sonar 145

Parkinson’s 137

Ecoli 91

D. Discussion

As can be seen from experiment 1, the INP method maintains the performance

while reducing the number of neurons inside the liquid. In experiment 1, the INP method

always generates lower EER and always better than any randomly selected neurons (when

using the same number of neurons that were generated after INP). For experiment 2, INP

improved the accuracy in four out of the five datasets for Decision Trees as well as for

Linear Regression. The reduction rates of the number of neurons are 53.33%, 55.32%,

32.87%, 36.28 and 53.57% for Fisher Iris, Pima, Sonar, Parkinson’s and Ecoli,

respectively.

E. Conclusion

We introduced in this chapter a method to prune the LSM in such a way that we

maintained the informative neurons, and hence ensured that the readout is robust and less

subject to overfitting. The method depends on graph theory and information binding

probabilities, which makes it more suitable for LSM architecture.

151

CHAPTER XI

CONCLUSION AND FUTURE WORK

A. Conclusion

In this work, we introduced LSM as a universal machine learning approach to

handle pattern recognition in complex systems. By using two different applications, we

showed that LSM is suitable for such environments. In the first application, emotion

recognition from EEG, we presented LSM as an anytime multi-purpose model to handle

152

inputs from a stream of signals and used LSM to analyze and study emotions in humans. In

the second application, continuous authentication in smartphones, we showed how LSM

can be used in real life applications. Applying LSM for real life applications is important,

since most of the research on LSM were as experimental approaches.

The work also introduced two methods to improve on LSM. In the first method,

active states selection, we introduced a mechanism to sample an LSM at informative states

such that we reduce the overhead of oversampling, unnecessary information and thus power

consumption.

In the second method, which is applying Inattentive neurons pruning, we introduced

a graph theory based approach to prune uninformative neurons inside LSM. This method

provides a systematic methodology to rank neurons inside LSM for later analysis and

pruning.

A. Future work

The work includes enormous opportunities for future work, since it covered

important aspects and topics in LSM. We can summarize the future work as follows:

 In chapter VI, we used LSM for feature extraction from EEG raw data. The

results were good. However, the CbNeuron neuron model used in this experiment needs

more study in order to build a universal model for feature extraction.

 Chapter VII provided an extensive study for deploying LSM for emotion

recognition. Among the tested scenarios, LOSO didn’t perform well. Which suggest

that LSM need to be fine-tuned in order to make it suitable for such scenarios.

153

 Spike encoding in this work, BSA algorithm, didn’t achieve good results,

where the accuracies of testing BSA with LSM are worse than those resulted from

direct input feeding. This suggests that a further analysis and improvement for spike

encoding is needed to improve the performance of such methods.

 Chapter VIII introduced a framework for continuous authentication in

smartphones. The results have shown to be promising. However, more data collection is

needed, since we were able to collect for 22 users. In addition, the procedure of data

collection was an offline procedure, i.e., the data are first collected from smartphone

and then transferred and processed on PCs. The suggestion is to use interfacing between

mobile device and PC such that the process is done online. Moreover, a friendly

implementation of LSM for smartphones is recommended in order to test the

framework in a real scenario.

 In chapter IX, we introduced the active states selection method for choosing

the most informative sampling times for LSM. In this method, each state is ranked

independently from other states. The suggestion is to change the method such that it

takes into consideration the dependencies between states. Moreover, the number of

sampling times is choosing arbitrarily and this needs a further study to find the effective

number of sampling times for an LSM.

 In chapter X, we introduced a method to prune LSM. This method works by

ranking neurons in LSM. Firstly, the threshold at which the method prunes LSM is

chosen arbitrarily. This suggests that we need a procedure to choose the threshold for

this method. Secondly, the ranking of neurons can be used to build a more robust LSM

154

by using the method to select the architecture of LSM. Thirdly, the method uses the

binding information between neurons. However, this binding information is computed

virtually, i.e., the algorithm does not take into account the actual connectivity inside the

liquid. A more robust version of this method would take into consideration the

connectivity inside the liquid such that the method will generate a subjective ranking

for neurons inside the liquid, functionally and architecturally.

BIBLIOGRAHPY

[1] C. Christodoulou, G. Bugmann and T. G. Clarkson, "A spiking neuron model:

applications and learning," Neural Networks, vol. 15, pp. 891-908, 2002.

[2] J. Vreeken, "Spiking neural networks, an introduction," Institute for Information and

Computing Sciences, Utrecht University Technical Report UU-CS-2003-008, 2002.

[3] H. Paugam-Moisy and S. Bohte, "Computing with spiking neuron networks," in

Handbook of Natural Computing Anonymous Springer, 2012, pp. 335-376.

[4] A. Gupta and L. N. Long, "Character recognition using spiking neural networks," in

Neural Networks, 2007. IJCNN 2007. International Joint Conference On, 2007, pp. 53-58.

[5] B. Meftah, A. Benyettou, O. Lezoray and W. Q. Xiang, "Image clustering with spiking

neuron network," in Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on

Computational Intelligence). IEEE International Joint Conference On, 2008, pp. 681-685.

[6] Y. Meng, Y. Jin and J. Yin, "Modeling activity-dependent plasticity in BCM spiking

neural networks with application to human behavior recognition," Neural Networks, IEEE

Transactions On, vol. 22, pp. 1952-1966, 2011.

155

[7] M. O'Halloran, B. McGinley, R. C. Conceicao, F. Morgan, E. Jones and M. Glavin,

"Spiking neural networks for breast cancer classification in a dielectrically heterogeneous

breast," Progress in Electromagnetics Research, vol. 113, pp. 413-428, 2011.

[8] T. Obo, N. Kubota, K. Taniguchi and T. Sawayama, "Human localization based on

spiking neural network in intelligent sensor networks," in Robotic Intelligence in

Informationally Structured Space (RiiSS), 2011 IEEE Workshop On, 2011, pp. 125-130.

[9] G. Budjade, Intrusion Detection using Spiking Neural Networks, 2014.

[10] P. J. Werbos, "Generalization of backpropagation with application to a recurrent gas

market model," Neural Networks, vol. 1, pp. 339-356, 1988.

[11] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning representations by back-

propagating errors," Cognitive Modeling, vol. 5, pp. 3, 1988.

[12] J. L. Elman, "Finding structure in time," Cognitive Science, vol. 14, pp. 179-211, 1990.

[13] R. Pascanu, T. Mikolov and Y. Bengio, "On the difficulty of training recurrent neural

networks," arXiv Preprint arXiv:1211.5063, 2012.

[14] M. LukošEvičIus and H. Jaeger, "Reservoir computing approaches to recurrent neural

network training," Computer Science Review, vol. 3, pp. 127-149, 2009.

[15] A. Grüning and S. M. Bohte, "Spiking Neural Networks: Principles and Challenges,"

2014.

[16] H. Jaeger, "Echo state network," Scholarpedia, vol. 2, pp. 2330, 2007.

[17] W. Maass, "Liquid state machines: motivation, theory, and applications," In

Computability in Context: Computation and Logic in the Real World, pp. 275-296, 2010.

[18] L. F. Abbott and S. B. Nelson, "Synaptic plasticity: taming the beast," Nat. Neurosci.,

vol. 3, pp. 1178-1183, 2000.

[19] S. Schliebs and N. Kasabov, "Evolving spiking neural network—a survey," Evolving

Systems, vol. 4, pp. 87-98, 2013.

[20] H. Paugam-Moisy and S. Bohte, "Computing with spiking neuron networks," in

Handbook of Natural Computing Anonymous Springer, 2012, pp. 335-376.

[21] V. Thiruvarudchelvan, J. W. Crane and T. Bossomaier, "Analysis of spikeprop

convergence with alternative spike response functions," in Foundations of Computational

Intelligence (FOCI), 2013 IEEE Symposium On, 2013, pp. 98-105.

156

[22] W. Maass, T. Natschläger and H. Markram, "Real-time computing without stable

states: A new framework for neural computation based on perturbations," Neural Comput.,

vol. 14, pp. 2531-2560, 2002.

[23] Löwe, S Barry Cooper Benedikt and A. Sorbi, "Computation and Logic in the Real

World," .

[24] H. Jaeger, "Echo state network," Scholarpedia, vol. 2, pp. 2330, 2007.

[25] B. Schrauwen, D. Verstraeten and J. Van Campenhout, "An overview of reservoir

computing: Theory, applications and implementations," in Proceedings of the 15th

European Symposium on Artificial Neural Networks, 2007, .

[26] G. E. Hinton, S. Osindero and Y. Teh, "A fast learning algorithm for deep belief nets,"

Neural Comput., vol. 18, pp. 1527-1554, 2006.

[27] B. Schrauwen and J. Van Campenhout, "BSA, a fast and accurate spike train encoding

scheme," in Proceedings of the International Joint Conference on Neural Networks, 2003,

pp. 2825-2830.

[28] N. Nuntalid, K. Dhoble and N. Kasabov, "EEG classification with BSA spike

encoding algorithm and evolving probabilistic spiking neural network," in Neural

Information Processing, 2011, pp. 451-460.

[29] W. A. Kamiński and G. M. Wójcik, "Liquid state machine built of Hodgkin-Huxley

neurons-pattern recognition and informational entropy," Annales UMCS Sectio AI

Informatica, vol. 1, pp. 1-7, 2015.

[30] S. Schliebs, M. Fiasché and N. Kasabov, "Constructing robust liquid state machines to

process highly variable data streams," in Artificial Neural Networks and Machine

Learning–ICANN 2012Anonymous Springer, 2012, pp. 604-611.

[31] D. Verstraeten, B. Schrauwen, D. Stroobandt and J. Van Campenhout, "Isolated word

recognition with the liquid state machine: a case study," Information Processing Letters,

vol. 95, pp. 521-528, 2005.

[32] D. Verstraeten, B. Schrauwen, M. d’Haene and D. Stroobandt, "An experimental

unification of reservoir computing methods," Neural Networks, vol. 20, pp. 391-403, 2007.

[33] H. Ju, J. Xu and A. M. VanDongen, "Classification of musical styles using liquid state

machines," in Neural Networks (IJCNN), the 2010 International Joint Conference On,

2010, pp. 1-7.

157

[34] B. J. Grzyb, E. Chinellato, G. M. Wojcik and W. Kaminski, "Facial expression

recognition based on liquid state machines built of alternative neuron models," in Neural

Networks, 2009. IJCNN 2009. International Joint Conference On, 2009, pp. 1011-1017.

[35] J. Baraglia, Y. Nagai and M. Asada, "Action understanding using an adaptive liquid

state machine based on environmental ambiguity," in Development and Learning and

Epigenetic Robotics (ICDL), 2013 IEEE Third Joint International Conference On, 2013,

pp. 1-6.

[36] H. Burgsteiner, "Imitation learning with spiking neural networks and real-world

devices," Eng Appl Artif Intell, vol. 19, pp. 741-752, 2006.

[37] H. Burgsteiner, M. Kröll, A. Leopold and G. Steinbauer, "Movement prediction from

real-world images using a liquid state machine," Appl. Intell., vol. 26, pp. 99-109, 2007.

[38] A. Lonsberry, K. Daltorio and R. D. Quinn, "Capturing stochastic insect movements

with liquid state machines," in Biomimetic and Biohybrid Systems Anonymous Springer,

2014, pp. 190-201.

[39] K. Daltorio, B. R. Tietz, J. A. Bender, V. Webster, N. S. Szczecinski, M. S. Branicky,

R. E. Ritzmann and R. D. Quinn, "A stochastic algorithm for explorative goal seeking

extracted from cockroach walking data," in Robotics and Automation (ICRA), 2012 IEEE

International Conference On, 2012, pp. 2261-2268.

[40] P. Jakimovski and H. R. Schmidtke, "Delayed synapses: An LSM model for studying

aspects of temporal context in memory," in Modeling and using Context Anonymous

Springer, 2011, pp. 138-144.

[41] E. Hourdakis and P. Trahanias, "Improving the classification performance of liquid

state machines based on the separation property," in Engineering Applications of Neural

Networks Anonymous Springer, 2011, pp. 52-62.

[42] B. J. Grzyb, E. Chinellato, G. M. Wojcik and W. Kaminski, "Which model to use for

the liquid state machine?" in Neural Networks, 2009. IJCNN 2009. International Joint

Conference On, 2009, pp. 1018-1024.

[43] D. Norton and D. A. Ventura, "Preparing more effective liquid state machines using

hebbian learning," 2006.

[44] D. Norton and D. Ventura, "Improving liquid state machines through iterative

refinement of the reservoir," Neurocomputing, vol. 73, pp. 2893-2904, 2010.

[45] P. Ekman, W. V. Friesen, M. O'Sullivan, A. Chan, I. Diacoyanni-Tarlatzis, K. Heider,

R. Krause, W. A. LeCompte, T. Pitcairn and P. E. Ricci-Bitti, "Universals and cultural

158

differences in the judgments of facial expressions of emotion." J. Pers. Soc. Psychol., vol.

53, pp. 712, 1987.

[46] A. Ben-Zeev, "The nature of emotions," Philosophical Studies, vol. 52, pp. 393-409,

1987.

[47] W. G. Parrott, Emotions in Social Psychology: Essential Readings. Psychology Press,

2001.

[48] J. A. Russell, "A circumplex model of affect." J. Pers. Soc. Psychol., vol. 39, pp. 1161,

1980.

[49] S. Koelstra, C. Mühl, M. Soleymani, J. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A.

Nijholt and I. Patras, "Deap: A database for emotion analysis; using physiological signals,"

Affective Computing, IEEE Transactions On, vol. 3, pp. 18-31, 2012.

[50] X. Wang, D. Nie and B. Lu, "EEG-based emotion recognition using frequency domain

features and support vector machines," in Neural Information Processing, 2011, pp. 734-

743.

[51] M. K. Kim, M. Kim, E. Oh and S. P. Kim, "A review on the computational methods

for emotional state estimation from the human EEG," Comput. Math. Methods Med., vol.

2013, pp. 573734, 2013.

[52] A. T. Sohaib, S. Qureshi, J. Hagelbäck, O. Hilborn and P. Jerčić, "Evaluating

classifiers for emotion recognition using EEG," in Foundations of Augmented Cognition

Anonymous Springer, 2013, pp. 492-501.

[53] F. N. Feradov and T. D. Ganchev, "Detection of Negative Emotional States from

Electroencephalographic (EEG) Signals," .

[54] S. Jirayucharoensak, S. Pan-Ngum and P. Israsena, "EEG-based emotion recognition

using deep learning network with principal component based covariate shift adaptation,"

The Scientific World Journal, vol. 2014, 2014.

[55] V. Rozgic, S. N. Vitaladevuni and R. Prasad, "Robust EEG emotion classification

using segment level decision fusion," in Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE International Conference On, 2013, pp. 1286-1290.

[56] X. Zhuang, V. Rozgic and M. Crystal, "Compact unsupervised EEG response

representation for emotion recognition," in Biomedical and Health Informatics (BHI), 2014

IEEE-EMBS International Conference On, 2014, pp. 736-739.

159

[57] K. Li, X. Li, Y. Zhang and A. Zhang, "Affective state recognition from EEG with deep

belief networks," in Bioinformatics and Biomedicine (BIBM), 2013 IEEE International

Conference On, 2013, pp. 305-310.

[58] X. Jia, K. Li, X. Li and A. Zhang, "A novel semi-supervised deep learning framework

for affective state recognition on EEG signals," in Bioinformatics and Bioengineering

(BIBE), 2014 IEEE International Conference On, 2014, pp. 30-37.

[59] I. Wichakam and P. Vateekul, "An evaluation of feature extraction in EEG-based

emotion prediction with support vector machines," in Computer Science and Software

Engineering (JCSSE), 2014 11th International Joint Conference On, 2014, pp. 106-110.

[60] R. Cabredo, R. S. Legaspi, P. S. Inventado and M. Numao, "Discovering Emotion-

Inducing Music Features Using EEG Signals." Jaciii, vol. 17, pp. 362-370, 2013.

[61] X. Jie, R. Cao and L. Li, "Emotion recognition based on the sample entropy of EEG,"

Biomed. Mater. Eng., vol. 24, pp. 1185-1192, 2014.

[62] P. Hamel and D. Eck, "Learning features from music audio with deep belief

networks." in Ismir, 2010, pp. 339-344.

[63] M. Längkvist, L. Karlsson and A. Loutfi, "Sleep stage classification using

unsupervised feature learning," Advances in Artificial Neural Systems, vol. 2012, pp. 5,

2012.

[64] T. Natschläger and W. Maass, "CSIM: a neural Circuit SIMulator," User

Manual.Institute for Theoretical Computer Science, Graz University of Technology.

Available in Http://Www.Lsm.Tugraz.at/Csim/Index.Html, 2006.

[65] S. Koelstra, C. Muhl, M. Soleymani, J. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A.

Nijholt and I. Patras, "Deap: A database for emotion analysis; using physiological signals,"

Affective Computing, IEEE Transactions On, vol. 3, pp. 18-31, 2012.

[66] E. Capecci, N. Kasabov and G. Y. Wang, "Analysis of connectivity in NeuCube

spiking neural network models trained on EEG data for the understanding of functional

changes in the brain: A case study on opiate dependence treatment," Neural Networks, vol.

68, pp. 62-77, 2015.

[67] N.Kasabov and et al, "Design methodology and selected applications of evolving

spatio- temporal data machines in the NeuCube neuromorphic framework, Neural

Networks," 2016.

160

[68] M. Doborjeh, G. Wang and N. Kasabov, "A Neucube Spiking Neural Network Model

for the Study of Dynamic Brain Activities during a GO/NO_GO Task: A Case Study on

Using EEG Data of Healthy Vs Addiction vs Treated Subjects," 2015.

[69] N. Kasabov and E. Capecci, "Spiking neural network methodology for modelling,

classification and understanding of EEG spatio-temporal data measuring cognitive

processes," Inf. Sci., vol. 294, pp. 565-575, 2015.

[70] N. K. Kasabov, "NeuCube: A spiking neural network architecture for mapping,

learning and understanding of spatio-temporal brain data," Neural Networks, vol. 52, pp.

62-76, 2014.

[71] N. Kasabov, V. Feigin, Z. Hou, Y. Chen, L. Liang, R. Krishnamurthi, M. Othman and

P. Parmar, "Evolving spiking neural networks for personalized modelling, classification

and prediction of spatio-temporal patterns with a case study on stroke," Neurocomputing,

vol. 134, pp. 269-279, 2014.

[72] G. Huang, Q. Zhu and C. Siew, "Extreme learning machine: theory and applications,"

Neurocomputing, vol. 70, pp. 489-501, 2006.

[73] T. Feng, X. Zhao, B. Carbunar and W. Shi, "Continuous mobile authentication using

virtual key typing biometrics," in Trust, Security and Privacy in Computing and

Communications (TrustCom), 2013 12th IEEE International Conference On, 2013, pp.

1547-1552.

[74] N. L. Clarke and S. Furnell, "Authenticating mobile phone users using keystroke

analysis," International Journal of Information Security, vol. 6, pp. 1-14, 2007.

[75] M. Frank, R. Biedert, E. Ma, I. Martinovic and D. Song, "Touchalytics: On the

applicability of touchscreen input as a behavioral biometric for continuous authentication,"

Information Forensics and Security, IEEE Transactions On, vol. 8, pp. 136-148, 2013.

[76] S. Govindarajan, P. Gasti and K. S. Balagani, "Secure privacy-preserving protocols for

outsourcing continuous authentication of smartphone users with touch data," in Biometrics:

Theory, Applications and Systems (BTAS), 2013 IEEE Sixth International Conference On,

2013, pp. 1-8.

[77] X. Zhao, T. Feng and W. Shi, "Continuous mobile authentication using a novel graphic

touch gesture feature," in Biometrics: Theory, Applications and Systems (BTAS), 2013

IEEE Sixth International Conference On, 2013, pp. 1-6.

[78] A. Serwadda and V. V. Phoha, "When kids' toys breach mobile phone security," in

Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security, 2013, pp. 599-610.

161

[79] I. Deutschmann, P. Nordstrom and L. Nilsson, "Continuous authentication using

behavioral biometrics," IT Professional, vol. 15, pp. 12-15, 2013.

[80] A. Azzini, S. Marrara, R. Sassi and F. Scotti, "A fuzzy approach to multimodal

biometric continuous authentication," Fuzzy Optimization and Decision Making, vol. 7, pp.

243-256, 2008.

[81] H. Crawford, K. Renaud and T. Storer, "A framework for continuous, transparent

mobile device authentication," Comput. Secur., vol. 39, pp. 127-136, 2013.

[82] Anonymous "An augmented computer user login authentication using classifying

regions of keystroke density neural network." PST-15418/36, 2005.

[83] K. S. Balagani, V. V. Phoha, A. Ray and S. Phoha, "On the discriminability of

keystroke feature vectors used in fixed text keystroke authentication," Pattern Recog. Lett.,

vol. 32, pp. 1070-1080, 2011.

[84] K. S. Killourhy and R. Maxion, "Comparing anomaly-detection algorithms for

keystroke dynamics," in Dependable Systems & Networks, 2009. DSN'09. IEEE/IFIP

International Conference On, 2009, pp. 125-134.

[85] W. Zhu, X. Wang, Y. Ma, M. Rao, J. Glimm and J. S. Kovach, "Detection of cancer-

specific markers amid massive mass spectral data," Proc. Natl. Acad. Sci. U. S. A., vol. 100,

pp. 14666-14671, Dec 9, 2003.

[86] S. Theodoridis and K. Koutroumbas, Pattern Recognition. ELSEVIER, October 2008.

[87] K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman and

J. Van Campenhout, "Toward optical signal processing using photonic reservoir

computing," Optics Express, vol. 16, pp. 11182-11192, 2008.

[88] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez, L. Pesquera, C. R.

Mirasso and I. Fischer, "Photonic information processing beyond Turing: an optoelectronic

implementation of reservoir computing," Optics Express, vol. 20, pp. 3241-3249, 2012.

[89] Y. Zhang, P. Li, Y. Jin and Y. Choe, "A Digital Liquid State Machine With

Biologically Inspired Learning and Its Application to Speech Recognition," 2015.

[90] J. Janssens, F. Huszár, E. Postma and H. van den Herik, "Stochastic outlier selection,"

Stochastic Outlier Selection, 2012.

