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Title: A Study on Liquid State Machine for Pattern Recognition 

 

Spiking Neural Networks (SNNs) are a new promising approach for machine 

learning because they increase the ratio of biological realism, and thus the ability to capture 

complex data patterns. SNNs belong to the third generation of Artificial Neural Networks 

(ANNs). In contrast to the first and second generations of ANNs, SNNs deal with spatial-

temporal information effectively. Liquid State Machine (LSM), introduced by Wolfgang 

Maass in 2003, is a randomly and sparsely recurrent SNNs that answers for the firmness in 

training SNNs and Recurrent Neural Networks (RNNs). One main advantage of using LSM 

is its ability to handle data streams from input to generate high-dimensional separable 

outputs, which makes LSM a suitable approach for dynamical systems pattern recognition.  

Motivated by the compelling capabilities of LSM, this thesis explores different case 

studies in LSM. First, the work harnesses LSM for Emotion Recognition from EEG signals, 

where we use LSM as an anytime multi-purpose model for identifying Valence, Arousal 

and Liking. Second, we utilize LSM for Continuous Authentication from mobile devices 

and we show the benefits of LSM for such purposes. Third, we explore the possible 

deployments of LSM for the Feature Extraction task from raw data in comparison with 

Deep Belief Networks. Fourth, we introduce an Active Liquid States Selection method to 

effectively read from LSM and we show how this method can reduce the computational 

requirement while improving accuracy. Finally, because of the new trends in building 

hardware-based LSMs that are energy aware, we introduce an Inattentive Neurons Pruning 

method to rank and prune the uninformative neurons inside the LSM to reduce power 

consumption and computational requirements. This method have shown to be able to 

provide better accuracies in most of benchmarks, while reducing the number of neurons 

inside the LSM by up to 50%.  
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CHAPTER I 

INTRODUCTION 

 

Spiking Neural Networks [1-3] (SNNs) are a new promising approach for machine 

intelligence because they increase the ratio of biological realism, and hence the ability to 

capture complex data patterns. SNNs belong to the third generation of the Artificial Neural 

Networks (ANNs). In contrast to the previous generations of ANNs, SNNs are able to deal 

with the spatial-temporal information. In addition, SNNs differ from the second generation 

in using the spike timing in the learning phase. They have been used in many applications 

such as character recognition [4], image clustering [5], human behavior recognition [6], 

breast cancer classification [7], human localization in sensor networks [8] and a detector for 

IDSs [9]. However, SNNs are not as popular as the other methods of Machine Intelligence 

(MI). The main reason behind this is their high computational cost.   

In this work, we aim to study and utilize SNNs in pattern recognition for dynamical 

systems.  

By “dynamical systems”, we refer to systems that have an input of stream of data 

such as video streams, audio streams, audio-video streams, i.e. continuous signals.  The 

work does not rely on training SNNs to adjust the learning model, but it uses SNNs as an 

operating model to build a Reservoir Computing (RC) model. RC is a new trend in machine 
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learning domain that solves the issues of training Recurrent Neural Networks (RNNs) and 

SNNs by training only a specific part of the network, the readout function.   

Targeting RC is a reasonable choice due to many factors. First of all, for a model to 

be able to process a dynamical environment, it should have a memory. Whether it is a short 

term memory (STM) or long term memory (LTM), this memory cannot be achieved unless 

we have cyclic connections inside the model, and this lead to the Recurrent Neural 

Networks (RNNs) [10-12]. RNNs are second and third generation of ANN. The simpler 

form of RNNs, which depends on the second generation ANN, has yet to find a successful 

training approach that is robust to the vanishing and exploding gradient problems RNNs 

suffer from [13]. Moreover the gradual changes in the network parameters modify the 

dynamic of the networks drastically making the gradient information ill and reaching the 

convergence intractable. In addition, the computation of updating one parameter is 

expensive and heavily depends on mathematics [14].   

Thus, training SNNs is a challenging problem:  most of the error-functions in 

popular training algorithms, such as Backpropagation, handle time-continuous and real 

values, while SNNs propagate information as spikes [15]. In addition, the neuron model 

differs greatly from one model to other models, and available works on training SNNs are 

not general for all models. Thus, there is no general algorithm to train SNNs in order to 

build upon it a solid learning model.     

The RC [14, 16, 17] appeared as a solution that alleviates and solves the challenges 

of training SNNs and RNNs, where training occurs on the connection found between the 
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network and the output. The weights and parameters of the network are randomly chosen 

under specific constraints. The RC has two main approaches according to the generation of 

the network; the Echo State Network (ESN) [16] which belongs to the second generation of 

ANN, and the Liquid State Machine (LSM) [17] which belongs to third generation of 

ANN.   

We will focus on LSM since it incorporates the SNNs which advance its capabilities 

to handle pattern recognition in complex systems. Moreover, it includes unsupervised 

learning insides the network by using a time Hebbian rule learning, the Synaptic Time 

Dependent Plasticity (STDP) [18]. STDP allows LSM to refine the internal network, and 

thus capture the temporal patterns inside the network effectively.    

This thesis is organized as follows; in chapter II, we survey the SNNs and neuron models, 

and we shed light on the available training algorithms in SNNs. Chapter III discusses LSM 

including its principles, architecture and mathematical representation. Chapter IV provides 

an extensive literature review on LSM including its applications and variants. In chapter V, 

we introduce the first application for this thesis and provide a literature review about 

emotion recognition from EEG by using LSM. Chapter VI discusses the benefits of using 

LSM for feature extraction from raw EEG data, where we compare its capabilities with 

Deep Belief Networks for the same purpose.   In chapter VII, we provide an LSM 

implementation for emotion recognition and we draw some conclusion about human 

emotions. Chapter VIII introduces the second application for this thesis, where we use LSM 

for multi-stage continuous authentication in smartphones. Chapter IX is concerned with 

improving sampling time selection from LSM by introducing active states selection 



4 

 

method. Chapter X introduces a method to prune the LSM to reduce the computational 

overheads for hardware-based LSM implementations. Finally, chapter XI provides the 

conclusion and future work for this work.  
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CHAPTER II 

PRIMER ON SPIKING NEURAL NETWORK 

 

This chapter provides an extensive information and discussion about SNNs 

including their architecture, neuron models and learning algorithms. We also, review the 

difficulties found in training SNNs and justify our focus on Reservoir Computing (RC), 

which is considered to help in deploying SNNs for complex pattern recognition.  

 

A. SNN Architecture 

 

  Few scientists and researchers in AI aim to build intelligent systems inspired by the 

human’s brain. The best examples of these systems are ANNs. However, the earlier 

generations of ANNs namely, the first one was not biologically plausible, even though it 

captured some of the human’s neurons. The second generation of ANNs has been 

considered more biologically plausible: it uses a continuous activation function for the 

neurons but discarded the temporal dimension data during learning procedure. On the other 

hand, SNNs have been introduced to make artificial networks able to deal with complex 

pattern recognition. To understand how SNNs differ from ANNs, we first have to 

understand the actual biological human’s neuron architecture. These neurons use spikes to 
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transmit and learn the spectro and/or spatio-temporal data (SSTD). The human’s neurons 

encode SSTD using the location of synapses for the spatial data and the spiking time 

activities for the temporal data. The model of the biological neuron is shown in the figure 

below: 

 

Figure 1: Presynaptic and Postsynaptic neurons Description. 
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Figure 1: Emitting a Spike Illustration. 

 

Neuron Nj, the presynaptic neurons, receives spikes from the presynaptic neurons 

N1 and N2. These neurons generate the post-synaptic potentials (PSPs) which can be either 

excitatory PSPs (EPSPs) or Inhibitory PSPs (IPSPs). The neuron Nj generates a spike 

whenever the EPSP reaches a threshold value V. The 𝑡𝑖
𝑛 represtn the time stamp for spike 

In the next section, we will study the several neuron models that are used in the literature 

review. 

  

B. Spiking Neuron Models 

Several models of the neuron were proposed and studied. The models mentioned in 

this work are considered as the most common ones: 
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1. Hodgkin-Huxley Model 

 

This model, shown in Figure 3, is the origin of all others. Hodgkin and Huxley 

modeled the electro-chemical information of the natural neurons by studying the giant 

axon of a squid. The resulting model from their study consists of four differential 

equations. The equations describe the change in electric charge on parts of the neuron’s 

membrane capacitance as a function of the voltage and the current. 

The parameters used to describe the model are: 

C: is the capacitance of the membrane. 

gNa, gK, gL: the conductance parameters for the different ion channels (sodium Na, 

potassium L, etc.). 

ENa, EK, EL: the equilibrium potentials resulting for the different ions. 

m, n and h: variables that governed three other differential equations.  

C
du

dt
= −gNam3h(u − ENa) − gKn4(u − EK) − gL(u − EL) + I(t)  (2.1) 

τn
dn

dt
= −[n − n0(u)],     τm

dm

dt
= −[m − m0(u)],         τh

dh

dt
= −[h − h0(u)]  (2.2) 

Due to the complexity of these equations caused by the nonlinearity and the fourth 

dimensionality of the data, several simpler forms were proposed for the practical 

implementations, which are discussed in the coming subsections. 
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Figure 2: Hodgkin-Huxley neuron model equivalent electrical circuit. 

 

2. Integrate-and-fire models (I&F) 

I& F model shown in Figure 4, is derived from the original H&H model, but it 

neglects the shape of the potential actions. It assumes that all potential actions are uniform, 

but they differ in the time of occurrence. Due to this simplicity, most of the neuron models 

are based on this idea. The membrane capacitance and the postsynaptic potential (PSP) of 

this model are given by the following equations: 

 

𝐶
𝑑𝑢

𝑑𝑡
= −

1

𝑅
(𝑢(𝑡) − 𝑢𝑟𝑒𝑠𝑡) + 𝐼(𝑡)  (2.3) 

𝑢(𝑡(𝑓)) = 𝜗    𝑤𝑖𝑡ℎ  𝑢′(𝑡(𝑓)) > 0    (2.4) 

 

 

Where: 

𝑢𝑟𝑒𝑠𝑡: is the membrane potential of the neuron at the initial state. 

ϑ:  is the threshold value at which the neuron fires. 

t(f): is the spike firing time. 
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I(t): is the input current caused by the presynaptic potentials.  

 

Figure 3: IF neuron model equivalent electrical circuit. 

3. Leaky Integrate-and-fire Model (LIF) 

This model is similar to the I&F model but with a small difference, the membrane 

potential of the neuron decays with time if no potentials arrive to the neuron. The work 

mechanism of this model is the following: when the membrane potential u(t) of the neuron 

reaches a specific threshold  ϑ at time t called the spkinng time  t(f) and u(t) satisfies 

u`(t(f)) > 0 condition, then the neuron emits a spike immediately. After that, the neuron 

goes under absolute refractoriness period uabs. The refractoriness period lasts for a specific 

time dabs and the membrane potential of the neuron during this period is: 

u(t) =  −uabs, where uabs is the refractoriness potential. 

 When dabs expires, the membrane potential return to the urest case. 

The membrane potential is given by the following equation: 

τm
du

dt
= urest −  u(t) + RI(t)  (2.6) 

Where: 
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τm: is the time constant of the neuron membrane.  

t(f): is the spike firing time. 

urest: is the membrane potential of the neuron at the initial state. 

ϑ: is the threshold value at which the neuron fires. 

t(f): is the spike firing time. 

I(t): is the input current caused by the presynaptic potentials. 

4. Izhikevish Model 

This model combines between the biological plausibility and the computational 

efficiency. It uses two differential equations to represent the activities of membrane 

potential. The model’s equations are given below: 

du

dt
= 0.04 u(t)2 + 5u(t) + 140 − w(t) + I(t)  (2.7) 

dw

dt
= a(bu(t) − w(t))  (2.8) 

The after-spiking action is described by the following term: 

if u ≥  ϑ then  u ← c  and w ← w + d 

5. Thorpe’s model 

This model is a simple model of integrate-and-fire models, but it takes into the 

consideration the order of the spikes that reaches the neuron. This gives it powerful 

capability. In addition, this model uses a simple mathematical representation, which makes 
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it suitable for many applications. The mathematical model of Thorpe’s is given by the 

following equation: 

 

𝑃𝑆𝑃𝑖 = ∑ 𝑤𝑗𝑖 ∗ 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟𝑗  (2.9) 

 

Where: 

wji: is the weight or the efficiency of synapsis between neuron j and neuron i. 

mod: is a modulation factor ∈ [0,1] . 

orderj: is the firing order of the presynaptic neuron j where j  ∈ ⌈1, n − 1⌉ and n is the 

number of the presynaptic neurons that are connected to neuron i. 

The weights in this model are updated according to the following equation: 

 

∆wji = modorderj   (2.10) 

This model makes stronger connections between the connected neurons that fire and 

reach the current neuron earlier. Spiking occurs whenever PSPi reaches a threshold 

value PSPθi. After the spiking,  PSPi is immediately set to zero. 

PSPi = {
  PSPi + Pji when   PSPi <  PSPθi

0                   when   PSPi ≥  PSPθi
  (2.11) 
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6. Conductance-based Model (CbNeuron)  

This model is equivalent to Hodgkin-Huxley model, but with a slightly different 

change in equation formulation. We emphasize on its model, since the following equation 

is the one used by the simulator that the thesis uses for SNNs.   

𝐶𝑚
𝑉𝑚

𝑑𝑡
= −

𝑉𝑚−𝐸𝑚

𝑅𝑚
− ∑ 𝑔𝑐

(𝑡)(𝑉𝑚 − 𝐸𝑟𝑒𝑣
𝑐

) + ∑ 𝐼𝑠(𝑡) + ∑ 𝑔𝑠
(𝑡)  (𝑉𝑚 −𝐺𝑠

𝑠=1
𝑁𝑠
𝑠=1

𝑁𝑐
𝑐=1

𝐸𝑟𝑒𝑣
(𝑠)

) + 𝐼𝑖𝑛𝑗𝑒𝑐𝑡 (2.12) 

With  

 𝐶𝑚 :  the membrane capacity (Farad).  

 𝐸𝑚:  the reversal potential of the leak current (Volts). 

 𝑅𝑚:  the membrane resistance (Ohm). 

 𝑁𝑐:  the total number of channels (active  + synaptic). 

 𝑔𝑐
(𝑡): the current conductance of channels c (Siemens). 

 𝐸𝑟𝑒𝑣
𝑐

:  the reversal potential of channels c (volts). 

 𝑁𝑠: the total number of current supplying synapses. 

 𝐼𝑠(𝑡): the current supplied by synapses s (Ampere). 

 𝐺𝑠: the total number of the conductance based synapses.  

 𝑔𝑠
(𝑡): the conductance supplied b synapses s (Siemens). 

 𝐸𝑟𝑒𝑣
(𝑠)

: the reversal potential of synapses s (Volts). 

 𝐼𝑖𝑛𝑗𝑒𝑐𝑡: the injected current (Ampere). 
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C. Information coding 

Information coding in neuron has been a strong debate for a long time. The question 

was, is the information in the neuron encoded as a “rate coding” or as a “spike coding”? 

Recent studies have shown that information is encoded as a “spike coding” and the “rate 

coding” is poor in representing the neurons’ ability to rapidly process information. Both 

coding methods are discussed and compared.   

Spike coding uses the time between spikes to encode the information. The recent 

studies have focused on “rank order coding” of information which extends the “spike 

coding” (temporal coding) methods. The differences among “rate coding”, “temporal 

coding” and “rank order coding” are explained by the following example. In this example, 

seven neurons respond to stimuli. Each neuron can fire at most one time in the next time 

window T. Suppose that the neurons A, B, C, D, E, and G emit a spike except the neuron F. 

The binary coding for this example is ‘1111101’. If “rate coding” is used to encode the 

information, then the maximum amount of the available information is log2(8) since we 

have eight different events that can happen. The information coding capacity for this case is 

seven. If the temporal coding is used, then the amount of the available information for this 

case is 7*log2(T). The time window T specifies the precision of coding. For example, 

suppose that the precision is set to 1ms, then T is seven (the number of the spaces between 

the dotted vertical lines) and hence the amount of the available information becomes 

7*log2(7). The rank order coding uses the order of emitting of the spikes from the 

corresponding neurons (the rank column). The amount of the available information for this 

example is log2(7!) since there are 7! different combinations of neurons’ spiking orders. 



15 

 

As we can notice, rank order coding achieves a higher information capacity coding than the 

temporal coding and rate coding.  

 

Figure 4: Different method for information encoding in Spiking Neural Networks. 

As aforementioned, the rank coding is very efficient and can achieve the highest 

information coding capacity. The rank coding procedure is the following: first, it starts by 

converting the input values into a sequence of spikes using the Gaussian receptive fields. 

The Gaussian receptive fields consist of m receptive fields that are used to represent the 

input value n into spikes. Assume that n takes values from [Imin
n  , Imax

n ] range, then the 

Gaussian receptive field of neuron I is given by its center ui:   

ui = Imin
n +

2i−3

2
∗

Imax
n −Imin

n

M−2
   (2.13) 

and width σ: 

σ =
1

β
∗

Imax
n −Imin

n

M−2
 (2.14) 

β is a parameter that controls the width of the receptive field with  1 ≤ β ≤ 2. 
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The following example shows the rank order coding for n=0.75 and M=5. The value 

of β was set to 2 and the range [Imin
n  , Imax

n ] was set to[−1.5 , +1.5]. The value of n=0. 75 

is converted to a sequence of spikes using the five neurons. The neuron with ID=3 is ranked 

first (rank=0) since it is the first neuron in firing, and the neuron with ID=2 is ranked 

second (rank=1) since it is the second neuron in firing and so on.  

 

Figure 5: Gaussian Receptive Fields for spike encoding [19]. 

 

D. Synaptic Time Dependent Plasticity (STDP) 

Like the second generation of ANN, SNNs adjust their weights between the neurons 

through the learning process. However, SNNs deploy a time-dependent mechanism to do 

this. SNNs use a variant of Hebbian’s rule to emphasize the effect of the spikes timing 

unlike the common learning methods, which depend on the rate of spiking. The weights 

updating mechanism is based on the firing time between the presynaptic and the 

postsynaptic neurons; if the postsynaptic neuron fires directly just after the postsynaptic 

neuron fires, then the connection between these two neurons is strengthened. 
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if ∆t ≥ 0 then  wnew ← wold + ∆w, where  ∆t = tpost − tpre 

While if the presynaptic neuron fires just after postsynaptic neuron fires, then the 

connection between tow neurons is weakened.   

if ∆t < 0 then  wnew ← wold − ∆w, where  ∆t = tpost − tpre 

The remaining case when the firing time of the postsynaptic neuron is apart from 

the firing time of the presynaptic neuron, then no weights updating occurs. The previous 

discussion was for the excitatory connection. The inhibitory connection uses a simple 

process since it does not take into account the firing time between the presynaptic and 

postsynaptic neurons. The weights between the two neurons are updated according to 

Hebbian’s rule rather than the temporal Hebbian’s one. The previous results have biologic 

backgrounds; however, we will not go through them. 

The figure below explains the effects of  ∆t (the x-axis) on the ∆w (the y-axis). The 

difference between the cases 1, 2 and 3 is that the effect of ∆t on weight updating can be 

symmetric or asymmetric. Case 4 is for the inhibitory connection where the weights 

updating is independent from the ∆t. 

 

Figure 6: Synaptic Time Dependent Plasticity weight updating [20]. 
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E. Learning in SNN 

Before getting into the learning in SNN, we first explain the architecture of SNN 

and its main components. The SNN structure can be either feed-forward or backward 

architecture. The architecture depends on the learning method used. The architecture can be 

a multi-layer network with an output layer that contains several neurons. We assume that 

the values of input are converted into spikes using one of the available methods such as 

Gaussian receptive filed. The input layer receives the sequences of spikes corresponding to 

the values of the input. Later, the output is computed by the network and the corresponding 

output neuron(s) for the input pattern spike(s). The network should be adjusted in order to 

produce the suitable spiking times at the output. The only way to achieve this goal is by 

adjusting the weight between neurons as in all other types of the neural networks.  

 

Figure 7: Spiking Neural Network architecture [20]. 

Number of works tried to design an efficient learning algorithm. The most popular 

algorithms are SpikeProp and Theta-learning rule. SpikeProp is similar to the 

Backpropagation algorithm that was designed to adjust the weights in the second 

generation of the neural networks. Theta learning rules is another learning algorithm that 

uses Quadratic Integrate and fire (QIF) neuron model. Both of these algorithms are very 
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sensitive to the parameters of the neuron model and sometimes these algorithms suffer from 

spike-loss problem. The spike-loss occurs when the neuron does not fire for any patterns 

and hence it will not be recovered by the gradient method. The other approach for training 

SNN is using the Evolutionary Strategies which do not suffer from the tuning sensitivity. 

However, they are very exhaustive and costly.   

The figure below describes the SpikeProp algorithm steps for SNN with one input 

layer I, one hidden layer H and one output layer J. The neurons from each layer are 

represented by the lowercases i, j or h. The sets Гi and Гi are the neurons that are 

immediately preceding and succeeding the neuron i respectively. Each connection between 

two neurons in the adjacent layers consists of m subconnections. Each subconnection has 

its own delay factor dk where k ∈ {1. . m}  and its own weight wij
k. The variables ti, tj and 

th are the spiking time at each corresponding layers for the neuron i, and (t̂i, t̂j ,t̂h) are the 

actual spiking time at each corresponding layer for the neuron i. 

The response function of the neuron i is given by the following equation: 

yi
k = ε(t − ti − dk)|ti=tî

 (2.15) 

Where: 

ε(t) =
t

τ
e1−

t

τ  (2.16) 

 and τ: is the membrane constant. 
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Weights updating from the output layer to the hidden layer is given by the following 

equation: 

∆wij
k = −ƞ. δ. yi

k|ti=tî ,tj=tĵ     (2.17) 

Where: 

δj =
∂E

∂tj
|

tj=tĵ

.    
∂tj

∂xj
|

xj=xĵ

 (2.18) 

=    
Tj−tĵ

∑ ∑ wij
l ∂

∂t
(yi

l)|
ti=tî ,tj=tĵ

m
l=1i∈Гj

   (2.19) 

 

And updating weights from the hidden layers to the input layer is given by the 

following equation: 

∆whj
k = −ƞ. δi. yh

k|ti=tî ,th=tĥ      (2.20) 

Where: 

δj =
∂E

∂ti
|

ti=tî

.    
∂ti

∂xi
|

xi=xî

  (2.21) 

=    
∑ ∑ wij

l ∂

∂t
(yi

l)|
ti=tî ,tj=tĵ

m
l=1j∈Гi

∑ ∑ whi
l ∂

∂t
(yh

l )|
ti=tî ,th=tĥ

m
l=1h∈Гi

  (2.22) 

The weaknesses of the SpikeProp algorithm can be summarized by the following 

points [21]: 
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 The membrane potential of neurons is calculated at fixed time-step intervals. 

 There is no method for selecting the initial weights and the thresholds. 

 The need for reference neuron that spikes at t=0. 

 Failure to converge due to the insufficient spike response function.   

 The figure below shows the SpikeProp algorithm. 
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Figure 8: SpikeProp pseudo code [21]. 
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CHAPTER III 

 

PRIMER ON LIQUID STATE MACHINE 

In this chapter, we focus on the Liquid State Machine (LSM) since it provides an 

easy approach to cope difficulties in training SNNs and Recurrent Neural Networks 

(RNNs). RNN is an ANN with cyclic connections inside the network such that the network 

is able to maintain a memory about previous input. On the other hand, SNN as explained in 

chapter II is a network that is composed of spiking neurons. We also mentioned in chapter 

II that adding cyclic connection to SNNs is important to allow for some type of memory 

inside the network such that they are able to obtain a better understanding about the 

dependencies between inputs. These connections increase the complexity of training SNNs 

even more that we think. To overcome these difficulties, LSM trains only the output layer 

while using network as a dynamical kernel.    

A. Introduction  

LSM is a randomly and sparsely connected network of spiking neurons. It was 

introduced by Maass in 2002 [22, 23] to model the cortical microcircuits computations in 

the human brain. Unlike Turing machine-oriented approaches such as ANNs, SVM, KNN, 

etc., LSM is a dynamical system modeling approach i.e., the input to the system is a time-

varying stream and the output are a congruent high dimensional time-varying output with 

the input. That is, LSM is capable to handle the arduous problems of time-varying 

prediction, pattern recognition in dynamic regimes and non-linear system recognition. 
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Moreover, LSM provides an adaptive scheme to learn from a limited number of samples 

and hence positions LSM as a superior ML approach as can be explained later. 

LSM and Echo State Networks (ESN) [24] form a new trend in ML called 

Reservoir Computing [14, 25]. ESN was introduced relatively at the same time when Maass 

introduced LSM, but these two approaches were independently developed. ESN depends on 

the second generation of ANN, where it uses the non-spiking neuron models. In 

comparison with ESN, a model formed by LSM is able to encode larger information than a 

model built on ESN concepts, since amount of information that could be encoded by SNNs 

are larger than information that could be encoded by the second generation of ANN [20].   

B. LSM vs. Turing machine- oriented ML approaches 

Turing machine, the most common computational paradigm, is represented by a set 

of finite states that have an initial state, a goal state and a well-governed regime of 

transition between states. This definition of Turing machine shows how strict are the 

models that are built upon the Turing machine concept; the inputs should be available and 

known in ahead of time; the output is definite and the effect of the current output on the 

next input is absent. In contrast, systems in real life are more complex and sophisticated 

than this structure, for example, acquiring the knowledge in humans does not depend only 

on the current arriving information, but more generally depends on a previous knowledge 

and a previous memory including the long term memory and the short term memory.  

To overcome the limitation of Turning-based models, the LSM incorporates the 

information not only from previous outputs, but also from the previous short memory and 
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hence LSM tends to be a more realistic representation of learning in humans. LSM plays a 

role of a dynamical kernel that maps the input into a high-dimensional separable output, 

which means that we can easily identify the corresponding inputs. Moreover, since the 

LSM does not impose restrictions on the input, then LSM is suitable for data stream input 

applications i.e., LSM is an intrinsic pattern recognition approach for data stream 

applications.   

C. LSM vs. Deep Learning  

Deep Learning vs. LSM 

Deep Learning (DL) [26] came out as a solution for the problems that faced the 

shallow models of ANN such as vanishing gradient. These problems were solved by Hinton 

when he introduced a fast method to train DL using Deep Belief Networks (DBNs). Our 

concern is to understand the differences between DBN and LSM in training and 

functionality.  

For DBN, training process is divided into two phases: first, the pre-training, which 

works in hierarchy to transform the input into abstracted representation using nonlinear 

transformations. DBN functionally is divided into Restricted Boltzmann Machines (RMBs). 

Each RBM consists of two layers; one is called the visible layer and the other is called the 

hidden layer. The idea is to represent input at the visible layer very well at the hidden layer. 

The hidden layer later becomes as a visible layer for the next stacked RBM. This process is 

repeated until reaching the last hidden layer in DBN, which is used as an output from DBN. 

It is important to say that this process is an unsupervised learning process, which means 



26 

 

that DBN learns features from the corresponding pattern at input without knowing the label 

of input. The second phase of training performs the fine-tuning for weights inside the 

network, where it is performed using the backpropagation algorithm. The second phase is a 

supervised process, where labels should be presented to training algorithm.          

 
Figure 9: Restricted Boltzmann Machine. 

Similarly, LSM has two learning phases to learn from input. In the first phase, LSM 

learns in unsupervised manner the activation patterns that is correspond to input. This is 

done using STDP algorithms (Chapter II, section D). The second phase is training the 

readout function, which is done in a supervised learning process, where the label of input 

should be provided to the readout function.   

However, DBN and LSM differ in the way of understanding the input. In DBN, the 

input is fed as a one static vector, which means that RBM in DBN does not know exactly 

the spatio/spectro temporal relationship within an input, i.e., DBN works by understanding 

the underlying structure layer by layer from input, and this understanding gets stronger as 

we go higher in the network. For example, DBN learns first the edges in pictures and then it 

begins to identify objects in upper layers.  In contrast, learning in LSM using STDP 

understands the spatio/spectro temporal relationship in input, since learning relies on time 

and activation patterns within input.  
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In addition, LSM and DBN differ in the connectivity constraints between different 

neurons/units. LSM provides a flexible schema for connecting the network, where cyclic 

connections in the network are allowed. In contrast, connections in DBN are acyclic; 

connections are allowed from in one direction from visible layer to hidden layer in each 

RBM without any connections between units within a same layer.  

Moreover, DBN has no internal memory to understand dependencies within same 

patterns, i.e., the time concept is absent in training DBN. On the contrary, the memory in 

LSM is achieved by the cyclic connections within the network, and time is the major 

component in training LSM.  

From the perspective of reading from the model, LSM and DBN have different 

mechanisms for extracting the output of the model. In DBN, the far end layer is used as the 

output of the model, which means that we must wait until all previous layers are trained in 

order to obtain the final output of the model. Different from DBN, reading from LSM is 

achieved by reading the responses from the network to input, i.e., the output is LSM is the 

state of the network at different time steps.  

In addition, the main purpose of LSM is to transform the input into a high 

dimensional output, which is the opposite function of DBN, i.e., DBN transforms the long 

input vector into a low dimensional output.  

D. Handling Time in LSM  

Time is a key factor in training and reading from LSM. LSM is a natural time 

handling model, where the time concept is present in training model using STDP, and 
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reading from LSM. In training, STDP uses spiking time information for presynaptic 

postsynaptic neurons in order to adjust weight of synapse to server information propagation 

within LSM, i.e., strengthening and weakening synapses such that we obtain a resilient 

regime inside the liquid. For example, LSM learns the underlying activation pattern over 

time from EEG signals such that a same flow of EEG delivers the same responses in the 

liquid. More importantly, a same flow of input should produce the same activation paths 

inside the liquid, where these paths are read and used as fingerprints for corresponding 

input.  

On the other hand, time is present in reading from LSM, where the output is the 

sampled liquid states from LSM. This way of handling time ensures that the output reflexes 

the temporal integration of previous input flow along time. Although LSM has a memory, 

but this memory is a short term memory, and depends on the complexity of cyclic 

connections that live in LSM. Hence, reading from LSM must ensure that it is able to 

capture the dependencies within flow of input at the right moment, i.e., when to sample 

from LSM. In addition, handling time in LSM is an advanced paradigm of other 

techniques’. In such techniques, a signal is divided into segments and time is handled by 

sliding a window over this signal. However, windowing a signal does not sincerely capture 

the dependences between previous values of the same time series. Moreover, windowing 

cannot capture the dependencies from different time series, when input is composed of a 

different time series inputs. For example, when a model is supposed to handle EEG, which 

is composed of a number of channels. Thus, LSM provides a natural approach to handle 

time, not only from a single time series input, but from different times series inputs, where 
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it provides a dynamical segmenting and windowing approach from a combination of times 

series inputs.        

Above all, LSM provides a relaxation method for time by projection input into high 

dimensional output. That is, transforming the input flow allows LSM to relax time into 

activation patterns of neurons, which are later used as an output for the readout function. In 

other words, the liquid forms a dynamical kernel for the input, where different neurons are 

used as different support vectors over time, in the contrary to SVM kernel concepts. 

Dynamically and relaxation permit LSM to deal with time effectively.            

 

E. LSM Architecture  

The LSM, in general, consists of three parts; the input, the liquid and the readout. 

The input(s) is/are data stream signal(s) that can be either continuous or discrete. The liquid 

consists of a number of spiking neurons (described in CHPATER II), where they function 

together as a dynamical kernel. The readout is a memoryless function that receives the 

output, the liquid states, from the liquid to perform a recognition task.   The Figure 10 

bellow describes the general architecture of the LSM, where I(s) is the input to the liquid 

and LM is the liquid represented by a complex dynamical system equations in the high-

dimensional space. y (t) is the readout output after applying some filter operations to 

resolve the state of the liquid during specific periods.  
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Figure 10: LSM general architecture description. 

The LSM as a model can be described by the following simplified equation:  

Let I(s) be the input described until the time s with s < t, then: 

the liquid states: 𝑥𝑀(𝑡) = 𝐿𝑀(𝐼(𝑠))    (3.1) 

 the readout output: 𝑦(𝑡) = 𝑓𝑀(𝑥𝑀(𝑡))   (3.2) 

F. Theory and Mathematical formulation behind LSM 

Let M be a computation machine that can deliver an online computations by 

performing a function F on some inputs, I. This function, F, is encoded as: 

𝑖: ℝ → ℝ𝑛 (3.3) 

We call the function F as a filter to describe its functionality since the term filter is 

more general that the term function. This filter, F, has a restrict regime that it is an input 

driven filter i.e., the output of the filter does not depend on any internal clock of the 

machine, but the input. Such filters are called time-invariant filters and satisfy that any 
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temporal shift of the input by some amount of time 𝑡0 causes the output to shift by the same 

amount 𝑡0. We write this mathematically as follows:  

𝐹𝑖𝑡0(𝑡) = (𝐹𝑖)(𝑡 + 𝑡0) , for all 𝑡 where 𝑡0 ∈  ℝ   (3.4) 

Where 

𝑖𝑡0(𝑡) ≔ 𝑖(𝑡 + 𝑡0) (3.5) 

This indicates that to identify the characteristics of the filter, we need to observe the 

output at time =0 while the input varies over the time. That is, the time invariant filter F is 

uniquely identified by: 

𝑦(0) = (𝐹𝑖)(0)  (3.6) 

At this level, we can replace the filter by a simpler mathematical representation or 

approximation. It is important to mention that the analog computations are greatly affected 

by the noise in the computation machine and we refer to this by the fading memory, which 

requires that for any input function 𝑖(. ), the output  (𝐹𝑖)(0) can be approximated by the 

outputs (𝐹𝑣)(0) for any other input functions that approximates 𝑖 on a sufficiently long 

time interval [−𝑇, 0] in the past.  We mathematically write the fading memory property as 

follows: 

 𝐹: 𝐼 → ℝ𝑁 has a fading memory, if for every 𝑖 ∈ 𝐼 and every 휀 > 0 , there exist 

𝛿 > 0 and 𝑇 > 0 such that |(𝐹𝑖)(0) − (𝐹𝑣)(0)| < 휀 for all 𝑣 ∈ 𝐼 with ‖𝑖(𝑡) − 𝑣(𝑡)‖ <𝛿 

for all 𝑡 ∈ [−𝑇, 0]. This means that to say a filter F has a fading memory: it is enough for 
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its current output (𝐹𝑖)(0) to depend on the most significant bits of its input 𝑖(. ) in some 

finite time interval [−𝑇, 0]. 

The universe of time-invariant fading memory filter is very large; it contains all the 

filters F that are characterized by Volterra series (a finite or infinite sum of integrals).  The 

filter F needs to have, in addition to the fading memory property, the pointwise separation. 

That is, for two inputs 𝑖(. ) and  𝑣(. ) with 𝑖(𝑠) ≠ 𝑣(𝑠)  and for some 𝑠 ≤ 𝑡: 

𝐹𝑖(𝑡) ≠ 𝐹𝑣(𝑡)  (3.7) 

Besides, the readout function, 𝑅, must have a universal approximation property i.e., 

any continuous function can be uniformly approximated by functions from R. 

G. Input into spikes   

Encoding input into spikes or into reservoir-understandable input is crucial step 

since the quality of conversion affects the performance of the reservoir. More importantly, 

each unique input should be able to generate unique responses in a reservoir. In addition, 

relatively close inputs should have relatively same responses. The reservoir with input 

encoding mechanism must not fall in or generate chaotic behaviors that are not correlated 

with inputs. This can be seen from the perspective of Butterfly Effect in Chaos Theory, 

where a small change in input may cause a tremendous change in output, therefor LSM 

implementation and configuration must ensure not to adopt any Butterfly Effect.  

Methods of encoding or converting the input rely on the class of input. More 

specifically, input might be a time series such as EEG signals, voice signals, stochastic 



33 

 

prices over a period of time, etc. or a static input such as feature vector that specify iris 

flower type or simply any other examples that have features– label format.  

Input might be encoded as a train of spikes or might be injected directly into the 

reservoir by mean of input neurons that are connected to reservoir’s spiking neurons and 

influence variables of neurons’ state e.g., an input is injected as current that affects the 

membrane potential in CbNeuron neuron model.   

Interfacing the input with the reservoir raises conditions on the deployed methods; 

the input must excite the reservoir enough to capture the corresponding responses and must 

not oversaturate the reservoir such that the responses become uninformative. In the 

following, we review some of the works that use different methods of input conversion.  

1. Input to spikes conversion 

   There are several methods to convert input into spikes where they utilize different 

mechanism and impose conditions on input class.  

a. Static Input  

The common method in such classes of input is to use Gaussian Receptive Fields 

where each feature in the input is converted into a number of spike trains (see CHAPTER 

II, section3).  

b. Time Series Input 

Here, we can identify two algorithms: BSA and HSA. Each channel in the input is 

converted into a train of spikes and this seems suitable for the reservoir because it mimics 
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the actual representation of information in biological neurons and allows the reservoir to 

handle time series input naturally.  

 HSA: The idea behind this algorithm is to perform a reverse convolution of the 

stimulus. To mathematically explain this method, first, let us define some equations to 

explain the intuition behind HSA and BSA.  

A stimulus can be estimated as follows: 

𝑆𝑒𝑠𝑡𝑖𝑚 = (𝑥 ∗ ℎ)(𝑡) = ∫ 𝑥(𝑡 − 𝜏)ℎ(𝜏)𝑑𝜏 = ∑ ℎ(𝑡 − 𝑡𝑘)𝑁
𝑘=1

+∞

−∞
  (3.8) 

Where 𝑡𝑘 is the neuron firing times, ℎ(𝑡) is a linear filter impulse response and 𝑥(𝑡) 

is the spike train of the neuron. 𝑥(𝑡) can be represented by ∑ 𝛿(𝑡 − 𝑡𝑘)𝑁
𝑘=1 . 

The equation of 𝑆𝑒𝑠𝑡𝑖𝑚 terns into the following shape when it is filtered using a 

discrete Finite Impulse Response (FIR) filter that has M tabs.  

𝑜(𝑡) = (𝑥 ∗ ℎ)(𝑡) = ∑ 𝑥(𝑡 − 𝑘)ℎ(𝑘)𝑀
𝑘=0   (3.9) 

HSA tries to reverse the value of 𝑜(𝑡) by comparing the shifted value of ℎ(𝑡 + 𝜏) 

with the matching value 𝑠(𝑡) for every time step 𝜏, if the error from comparison is small 

then it subtracts ℎ(𝑡 + 𝜏)  from 𝑠(𝑡) and it emits a spike.  

 BSA uses the same process, but it utilizes two error metrics:  

∑ 𝑎𝑏𝑠(𝑠(𝑘 + 𝜏) − ℎ(𝑘))𝑀
𝑘=0   (3.10) 

∑ 𝑎𝑏𝑠(𝑠(𝑘 + 𝜏))𝑀
𝑘=0   (3.11) 

If the first error in (3.10) is smaller than the second error (3.11) minus a certain 

threshold then it emits a spike and subtracts the filter from the input signal. The threshold in 

BSA is an experimental value and can be found by grid search for the optimal threshold 

that increases SNR. It has been shown that BSA is better than HSA since it produces 
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smother frequency and amplitude characteristics comparing with HSA [27]. BSA has been 

used in [28] for EEG classification with promising results. The goal was to identify 

(classify) the type of stimulus from RIKEN EEG dataset. The dataset contains four types of 

stimuli collected using 64 electrodes: Class 1 – Auditory stimulus; Class 2 – Visual 

stimulus; Class 3 – Mixed auditory and visual stimuli; Class – No stimulus. After 

preprocessing the data, 80% of data was used for training and 20% for testing. The 

parameters of BSA are as the following: the FIR filter has 20 tabs and the threshold was 

chosen to be 0.955. 

The pseudo code for BSA is shown below:  

 

 

 

 

 

 

 

 

 

 

 

for i = 1 to size (input) 

error1=0 

error2=0 

for j = 1 to size (filter) 

 if i+j-1 <= size(input) 

  error1+= abs (input (i+j-1)-filter (j)) 

  error2+= abs (input (i+j-1)) 

 end if  

end for  

if error1 <= (error2-threshold) 

output (i) =1 

for j = 1 to size (filter) 

 if i+j-1 <=  size (input) 

  input (i+j-1) = input (i+j-1) – filter (j) 

 end if  

end for 

else  

output (i)=0 

end if 

end for Figure 11: BSA Algorithm pseudo code. 
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CHAPTER IV 

LITERATURE REVIEW ON LIQUID STATE MACHINE 

 

In this chapter, we survey the related work in LSM such that we cover the 

applications of LSM and the different suggested improvements on LSM. We divide this 

chapter into application and improvement levels related works. 

A. Related work on Applications  

1. Image Recognition 

LSM has been successfully used for image recognition: for example in [29], the 

LSM was used to recognize predefined nine images. The architecture of LSM in this work 

consists of 100 input neurons that are randomly connected to 25 layers, where each layer 

has 24 neurons of Hodgkin- Huxley neuron model. ANN was used as a readout function 

from the 100 output neurons which they are connected to the 25 layers. The work claimed 

that the result are promising and supports the idea of using LSM for pattern recognition 

tasks. 

2. Highly Variable Data Streams 

One of the main powerful advantages of using LSM is the ability to deal effectively 

with times series problems which was investigated in [30]. This work explores different 

enhancements on LSM by studying the performance of LSM under different setting of 

firing thresholds and the synapses properties of the LSM's neurons. These settings are:  
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static firing thresholds with static synapses (Model A); static firing thresholds with 

dynamic synapses (Model B); dynamic firing thresholds with static synapses (Model C) 

and dynamic firing thresholds with dynamic synapses (Model D).  

It was shown that Model A has the least sensitivity to weak stimuli but with highest 

spontaneous respond. Models B, C, and D showed a promising separation results for 

stimuli. 

3. Speech Recognition 

Speech recognition is one of the direct applications of LSM since it requires a 

temporal pattern recognition oriented methods. In [31], the work tested LSM on subset of 

T146 dataset, which is a common dataset for speech recognition. Specifically, [31] used a 

subset of 500 samples consist of ten utterances of the isolated numbers -from zero to nine, 

spoken by five different speakers. The samples were divided into 300 samples for training 

and 200 for testing. The reservoir in this work consists of LIF neurons varying in the 

number between 200 neurons to 1400 according to different scenarios. LIF neurons are 

identical with the following parameters: membrane time constant = 30 ms, firing threshold 

= 15 mV, reset voltage = 13.5 mV, absolute refractoriness for excitatory neurons =3 ms, 

and absolute refractoriness for inhibitory neurons =2 ms.  The connections between neurons 

inside the reservoir are governed by the following stochastic equation: 

𝑃(𝑁𝑎, 𝑁𝑏) = 𝐶. 𝑒
−𝐷𝑖𝑠𝑡2(𝑁𝑎,𝑁𝑏)

𝜆2   (4.1) 

This equation describes the probability of connecting neuron 𝑁𝑎 with 𝑁𝑏, where: 
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 Dist(𝑁𝑎,𝑁𝑏): is the Euclidean distance between 𝑁𝑎 and 𝑁𝑏. 

 C: is the connection weight; it depends on the type of 𝑁𝑎 and 𝑁𝑏; whether the neuron is 

excitatory or inhibitory.  

 λ: is a parameter that controls the average number of connections and the average 

distance between Na and Nb. 

In this work, three methods of input-to-spikes encoding were tested: Hopfield-

Borody method, MFCC method and Lyon Passive Ear method. Among these three 

methods, Lyon Passive Ear has shown to be the best method with average Word Error Rate 

(WER) of 2 % and best achieved WER of 0.5%.   

In addition, the worked tested the robustness of LSM against different types of 

noise namely, the speech bubble, the white noise and the car interior noise added from 

NOISEX dataset. An LSM with 1232 neurons was first trained using pure training samples 

and then was tested according to three different SNR levels of 10 dB, 20 dB and 30 dB in 

testing samples. The result has shown that the LSM is robust for the noise and is able to 

recognize the patterns effectively even in noisy environments. 

The same recognition task was tested in [32], but with different configuration for 

the LSM; the number of neurons inside the reservoir was varied from 100 to 300 neurons of 

LIF. The results has shown that as the number of neurons inside the reservoir increases, the 

WER decreases  specifically, from 0.05% for 100 neurons to about 0.025% for 300 

neurons. Moreover, the work studied the effect of choosing Booij synapse model instead of 
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the exponential one and it has been shown that Booij synapse model did not improve the 

WER. 

4. Music Information Retrieval (MIR) 

Music classification based on the content is another discipline of harnessing LSM in 

real life applications. In [33], an LSM was tested for two tasks: the recognition of music 

records from music and non-music records and classifying the music style into classical or 

ragtime music.  The architecture of the LSM in this work consists of an input layer with 

12×5 LIF neurons and ten layers of 12×5 LIF neurons. The input to LSM is a set of 60 

spike trains that represent the encoded piano music data. The model of LIF neurons in LSM 

is given by the following parameter: the time membrane time-constant =30 ms, reset 

voltage= 0 mV, input resistance = 1MΩ, I (inject) =13.5nA, I (noise) =1nA,   absolute 

refractoriness for excitatory neurons =3 ms, and   absolute refractoriness for inhibitory 

neurons =2 ms.  

In the LSM, 80% of neurons were excitatory and the remaining 20% are inhibitory. 

The connectivity inside the LSM follows the common equation (Small World Connection) 

with 𝜆 =1.5 and C=0.3, 0.2, 0.4 and 0.2 for excitatory-excitatory connection, excitatory-

inhibitory, inhibitory-excitatory and inhibitory-inhibitory respectively. The input layer was 

configured with different initialization; λ =5 and with exception that it has no inhibitory 

neurons. The output form the LSM is acquired by mean of readout function; the linear 

regression. 
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𝑃(𝑁𝑎, 𝑁𝑏) = 𝐶. 𝑒
−𝐷𝑖𝑠𝑡2(𝑁𝑎,𝑁𝑏)

𝜆2   (4.2) 

In the first task where the LSM is devised to recognize the music form non-music 

records, it showed a good capability with testing accuracy around 82%. The second task, 

where LSM role is to classify music style, asserts the efficiency of the LSM with best-

achieved accuracy of 94.08%.  

5. Facial Expression Recognition  

Facial expression recognition is a common application in pattern recognition and 

has been tested using different ML approaches such as ANN, KNN, SVM, etc.  

The LSM, and due to its successes, has been devised in this context. For example, in 

[34], the LSM was assessed and evaluated to recognize seven types of emotions namely, 

happiness, sadness, anger, fear, surprise, disgust and neutral from JAFFE database, which 

contains 213 images of female facial expression form 10 Japanese women. In this work, 

two methods were used to represent images: the Gabor representation and binary 

representation. Two topologies of LSM were utilized to perform the recognition phase 

depending on the representation method: for the Gabor representation, the  LSM consists of 

an input layer of 1×17×12 excitatory neurons, 3×17×12 for the reservoir neurons and an 

output layer of 1×17×2; for the binary representation, the LSM consists of an input layer of 

1×45×10 excitatory neurons, 3×45×10 of reservoir neurons and an output layer of  

1×45×10  neurons.  
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In both topologies, the readout function was a two-layer perceptron network with 38 

neurons in the hidden layer and seven neuron at output layer that represent the seven 

aforementioned  facial expressions.  

Under those circumstances, the Gabor and binary representations were tested and 

they reported average accuracies of 57.6% and 55.7%, respectively. The work claimed that 

since the binary representation is less computationally demanding than Gabor 

representation, the further experiments of the work were based on only binary 

representation. With this in mind, a different number of neuron models namely, integrate-

and-fire, resonate-and-fire, Morris-Lecar, Hindmarsh-Rose, FitzHugh-Nagmumo and 

Izhikevitch’s models were implemented for LSM to evaluate the performance of the LSM 

accordingly.  The highest average recognition rate was achieved by Morris-Lecar model 

(58%) and the lowest achieved by Izhikevitch’s model (44%).  

Furthermore, each neuron model has been shown to outperform other model for 

specific type of expressions; Morris-Lecar achieved a good rate of correct classification for 

happiness and fear while integrate and fire model performed better for disgust. In view of 

the variety of performances for each model according to the type of facial recognition 

expression, the work tested a merged classifier where the recognition is the majority voting 

from the six neuron models. It has been shown that the merged classifiers ameliorate the 

average recognition rate (82.4%) compared with previously achieved average recognition 

rate (57.6 %).  
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6. Robot’s Arm motion Prediction  

Robotic applications are not an exception for the LSM, in fact the LSM provides a 

potent mastery in action controlling and, more even, prediction in ahead of time, which is 

very important distinction.  

With this intention, [35] proposed an Adaptive LSM (aLSM) where it exploits 

environment’s parameters to adapt the parameters of LSM.  

The experimental setup for [35] consisted of two robotic arms each with two 

degrees-of-freedom; one called the experimenter’s arm and other is the robot’s arm. The 

experimenter’s arm has an access to a number of objects and, in the same time, the robot’s 

arm has an access for some of those objects. The goal was to see if the robot’s arm is able 

learn from the experimenter’s arm to access these objects.  

In the foreground, the aLSM in this work is composed of 150 Izhikevitch’s neuron 

model with (60%) excitatory neurons. The number of input and output neurons is equal to 

the number of object in the environment.    

Experiments tested two cases: first when the objects are static i.e., no changes 

occurred in the position of objects; second when objects are randomly positioned after 

training the robot’s arm i.e., the robot’s arm is first trained using the experimenter’s arm 

information, then the robot’s arm is tested on accessing the same objects after randomly 

positioning the objects in the environment.  

For the static case without incorporating the adaptive learning, the average 

successful rate was (75.5%) for the environment with two objects and (42.85%) for four 
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objects, while these results increased by (30%) and (2%) respectively when using adaptive 

learning (aLSM). For the random position and without incorporating the adaptive learning, 

the average successful rate was (69.38%) for two objects and (34.69%) for four objects, 

while these results increased by (20%) and (19%) when using adaptive learning (aLSM).   

7. Real time imitation learning  

Some applications in real life require real time computations such controlling a 

vehicle or robot. For this purpose, an LSM was deployed to perform a real time computing 

in [36].The work used a small robot called Khepera, which has a programmed controller, 

six infrared sensors and two motors. The controller allows the robot to avoid obstacles by 

turning around them. The purpose from using the LSM is to imitate the behavior of the 

controller such that it can do the same job under real time working. The work used an LSM 

with 54 LIF neurons to imitate two types of controllers; one with a linear reactive and the 

other with non-reactive. The training phase collected data from sensors and motors while 

the robot is controlled by one of the two types of controllers. After that, the data is put as 

segments, where each segment has one single occurrence of obstacles to allow the LSM to 

learn from the data. Two readouts were trained to control the left and right motors 

according to the recoded data from training. To that end, the LSM is now ready to perform 

the real time job; controlling the motors according to sensors data. The testing phase is 

done in real time, where the recorded commands from the controller are compared with the 

generated output by the LSM (the two readouts output). The results has shown that the 

LSM was able to imitate the job of the controller with 0.9334 and 0.9338 correlation 

coefficient for the left and right motors, respectively for the linear reactive controller. In the 
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non-linear reactive controller, correlation coefficients (0.8130 and 0.8263) were reported 

for the left and right motors respectively. 

8. Movement Prediction from Videos 

The capabilities of LSM were tested on real application for prediction purposes and 

it has been shown that LSM is suitable for such tasks. For example, in [37], an LSM was 

used to predict the movement of ball form a camera that is attached to a robot participated 

in RoboCup middle-size robotic scenario. The goal was to predict the position of the ball in 

ahead of time. The  LSM in this work consists of 8×6×3 LIF neurons with the following 

parameters: (Cm=30nF, Rm=1 MΩ, Vthresh=15mV, Vresting=0mV, Vreset ~ Uniform [13.8 mV 

– 14.5mV ], Vinit ~ Uniform[13.5mV – 14.9mV], Trefractoriness=3ms (for Excitatory neurons), 

2m (for Inhibitory neuron)) and  connection parameters as the following (C= 0.3 (EE) , 0.4 

(EI), 0.2 (IE), 0.1 (II), λ=[0.5 – 5.7] ). The readout is a linear regression function applied on 

the output layer. The output layer is composed of a number of neurons that are fully 

connected to LSM using static spiking synapses.  The input layer is 8×6 input neurons that 

receive the activation sequences form robot’s sensors.  The activation represents the 

percentage of covered area by the ball to a sensory area of the sensor at each time of 

evaluation. 

During the experiment, 674 video sequences were recorded, which have 50ms as a 

time step and differ in the length. Thereafter, the video sequences were divided randomly 

into 85% training and 15% validation. In the testing phase, the LSM was required to predict 

the position of the ball after 2 time steps (100ms), 4 time steps (200ms) and 6 time steps 

(300ms). The results were reported in terms of the mean absolute error and the correlation 



45 

 

coefficient for different values for parameter λ (0.5 – 5.7) and Ω (0.1 – 5.7). The parameter 

λ controls the average of connection inside the reservoir and Ω, the scaling factor, controls 

the strength of the connection between the neurons. The best achieved result for one time 

step prediction is when one of the parameters λ or Ω is low, for example (λ=1 and Ω=0.5), 

and this was indicated by the low value of the mean absolute error and the high values of 

the correlation coefficient. The same conclusions were reached for two and four time steps 

prediction with highest correlation coefficient achieved of 0.7 for two time steps and 0.5 for 

four time steps prediction. The six time steps prediction has not been shown to be able to 

provide good results. 

9. EEG Classification 

BSA with LSM have been used in [28] for EEG classification with promising 

results. The goal was to identify (classify) the type of stimulus from RIKEN EEG dataset. 

The dataset contains four types of stimuli collected using 64 electrodes: Class 1 – Auditory 

stimulus; Class 2 – Visual stimulus; Class 3 – Mixed auditory and visual stimuli; Class – 

No stimulus. After preprocessing the data, 80% of data was used for training and 20% for 

testing. In this work, an LSM with 135 neurons was built and tested using four different 

types of neurons models: default LIF; Noisy Reset (NR) – the rest value of LIF is drawn 

from random distribution; Step-wise Noisy Threshold (ST) – the threshold value of LIF is 

drawn from random distribution, but during two consecutive spikes the threshold is fixed; 

Continuous Threshold (CT) - the threshold value of LIF is drawn from random distribution. 

The readout was acquired using the Naïve Bayes and MLP, where they reported results 

were compared with same methods but without using the reservoir.  For Naïve Bayes, the 
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reservoir approach achieved 75% accuracy regardless of the neuron model compared with 

66.9% without a reservoir. On the other hand, MLP achieved 75% using ST model 

compared with 64.87% without a reservoir. The study has shown that the root mean 

squared error (RMSE) is lowest when using ST model with Naïve Bayes although the 

accuracies were the same.     

10. Stochastic Behavior Modeling  

The LSM was used in [38] to design a neural controller that replicates the 

exploratory behaviors of cockroaches seeking for shelters. Particularly, this work used the 

same data that was used to introduce the Randomized Algorithm Mimicking Biased Lone 

Exploration in Roaches (RAMBLER) [39]. The LSM has to learn form information about 

the walls, shelters relative to the insect along with current velocity and angular velocity to 

produce probability distributions of the animal's velocity and angular velocity.  

The deployed LSM in this work consists of 300 LIF neurons arranged in 5×5×12 

(3D architecture) with λ= 2.1 and 80% of the neurons are excitatory. The connection 

between neurons is as follows: CEE=0.8, CEI= 0.8, CIE=0.7 and CII=0.7. Synapses between 

neurons implement short-term plasticity (STP). 

The input data to the LSM is composed of   a set of information as follows: a 

modeled wall sensors data that is composed as 12 distance sensors represents LIDAR-like 

sensors located on the head of the animal and five other sensors that represent the antenna-

like sensors; a modeled shelter sensors data that is composed of the distance between the 

animal and the shelter and nine values that encodes the orientation of the animal relative to 
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the shelter. The readout function is a two -hidden-layer ANN with 300 sigmoidal neurons 

in each layer.  The input data is sampled at 20 Hz from sensors data and then fed into the 

LSM. After that, the LSM estimates the probability distribution of the velocity and the 

angular velocity by using reinforcement learning to force the LSM to produce the same 

output.  

For testing, 20 LSMs were randomly generated and trained accordingly and then the 

produced output was compared with the probability distributions of the velocity and the 

angular velocity. The results were reported in terms of the differences between the 

centroids of the produced probability distribution and the actual ones.  The reported 

differences are 50 ±130 mm/sec and 5±13 rad/sec for velocity and angular velocity, 

respectively. Even though the mean of differences is not zero, the produced probability 

distributions have shown that the LSM tends to produce the actual values, but not to 

completely converge to them. In addition, the results have shown that the LSM, when 

compared with RAMBLER, is able to capture the complex behaviors of the insect without 

explicitly defining them.   

B. LSM improvements and modification  

We divide this section according to the targeted parts or mechanisms by the related 

works.   

1. Readout 

The readout part of LSM is a linear classifier without any memory as stated by 

Maass [22]. While this became as a principle for LSM, [40] studied the effect of adding a 
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memory for the readout. More specifically, the work converted the synapses between the 

LSM and the readout such that the emitted spikes have certain delays. In details, the work 

used Brody-Hopfield benchmark, which includes 500 samples of spoken digits from “0” to 

“9”, to identify to the correct labels of the numbers. In this work, two randomly generated 

LSMs with 135 neurons were used to perform this task after converting the audio into 

spikes. Here, 300 samples were used for training and the remaining samples, 200, for 

testing. In the first experiment, the work tested 5 ms, 10ms, 15ms, 20ms, 30ms and 50ms 

delays for 1, 2, 3, 5, 7 or 10 links of the outgoing synapses of each neuron that has a 

connection with the readout. The reported results have shown that the LSM performs better 

as the delay and the number of synapses increases, but the results have not shown to be 

steady and this led to the second experiment. The authors in the second experiment 

generated a dataset of 1500 with binary classes where 1000 samples were used for training. 

The second experiment didn’t proved that the performance improves steadily as the delay 

and the number of delayed synapses increase; however and generally speaking, the 

performance could be improved by adding delays to synapses.  

 

2. Structure and Processing Units  

In [41], the authors proposed a method to iteratively search for the best LSM that 

yields highest performance using GA.  The work proposed an evaluation function that acts 

as a metric for the performance of the LSM. More specifically, the metric incorporates the 

liquid states means and variance in order to examine the separation of the data. The metric 

is deployed in context of Fisher Discriminant Ratio (FDR) for the separation between 
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classes at the input. To that end, the evaluation function, FDR, is ready to be optimized by 

GA to find the best architecture and neural model. The solution that GA needs to find is 

expressed as a chromosome that encodes three types of information: 1) the parameters of 

the neurons in the liquid and explicitly, the firing thresholds and the mean of Gaussian 

noise added to the neurons’ output, 2) the architecture of the LSM and it has three options: 

input neurons are fully connected to the liquid; input neurons are partially connected to the 

liquid; and time varying input neurons are connected to different regions in the liquid 

while static ones are connected to all neurons, 3) the size of liquid and the average 

connections for each neuron in the liquid.  

To assess the quality of the chosen metric, four different classification tasks were 

used and the resulting accuracies are compared with FDR metric. In the first task, an LSM 

with 125 neurons determines whether the input is over a specific rate specifically, over 5 

Hz. The second task uses the LSM to classify two different types of motions by projecting 

the movement on 9×9 grid of receptive field neurons that are connected to an LSM with 63 

neurons. In the third task, the LSM is required to classify three objects namely, a circle, a 

square and a hexagon. In the last task, the LSM has to decide whether the end point of a 

moving planar robotic arm is close or not to a given target location. After conducting the 

four tasks, the work reached a conclusion that FDR metric can be used to evaluate the 

performance of the LSM because it directly related to the separation property of the LSM 

and it does not depend on the deployed readout.  

 

At the level of the processing units, the work [42] tested six neuron models 

namely, Integrate and Fire, Resonate and Fire, FitHugh-Nagumo, Morris-Lecar, 
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Hindmarch-Rose and Izhikevish model. For the architecture in this works, they used a 

mammalians visual system inspired architecture that consists of:  a Retina or an input 

which consists of 2×2 neurons that are organized in a square 2D grid; LGN layer consists 

of 1×8×8 neurons which is connected to the input; and five layer s of 3×8×8 neurons that 

are connected to each other. The connection follows the Small World Connection concept 

with the same configuration as in [31] . The work used two different randomly generated 

stimuli “S1” and “S2 “to the test the aforementioned models in order to test the distance 

between the responses in the liquid. The reported results are as follows:  for integrate and 

fire model, the distance between stimuli was high when λ=9 and decreases as λ decreases 

and this means that as the connection density increases the separation property decreases. 

While for resonate and fire model, the separation property was not affected by the value λ. 

In FitzHugh-Nagmumo model, the distance rapidly grows for specific duration 

when λ= 9 and then drops to zero which means that neurons got synchronized, whereas the 

distance value rapidly grows and reaches a maximum value and then fall down for λ=3. 

Morris-Lecar model showed a good separation property for λ=3 and relatively high 

separation property at the beginning of the simulation and then drops down later for λ= 9. 

Regarding Hindmarch-Rose model, λ value has no influence on the separation 

property. Moreover, Izhikevish model showed a poor separation property.  

 When comparing the six models for different configuration for λ; the best 

separation property achieved by Morris-Lecar for λ=3, while Hindmarch-Rose achieved 

the best for λ=9. 
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Regarding information entropy, the highest achieved entropy achieved by FitHugh-

Nagumo, Hindmarsh-Rose. The other model showed unstable behavior and this indicates 

that these models do not encode information optimally inside the reservoir. 

As a conclusion from this work, that FitHugh-Nagumo, Hindmarsh- Rose are 

suggested to be suitable choices for LSMs with respect to the discussed results.   

3. Conveying Information in the Liquid   

Information or the spikes transmission inside the liquid is governed by several 

factors such as the neuron model, the connectivity between neurons and the weights of 

synapses. The later depends on the initialization of the LSM; however, theses weights can 

be updated through the unsupervised learning; the Hebbian learning. In [43] , the work 

conducted two experiments to study the effects of using Hebbian learning, STDP, for 

updating the weights of synapses in the liquid. More specifically, the work observed how 

STDP deals with LSMs in two circumstances: when the LSM has pathological synchrony, 

which means that most of the neurons in the liquid are firing continuously regardless of 

the effect of the input due to the feedback loops connection; and when the LSM has over 

stratification and this occurs when groups of neurons become dead and do not produce 

spikes regardless of the input.  

In the first experiment, a 100 iterations for a random input of 25 spikes over one 

second was introduced to four setting for LSM; an LSM with pathological synchrony and 

Hebbian learning, an LSM with pathological synchrony and random weights updating, an 

LSM with over stratification and Hebbian learning and an LSM with over stratification 

and random weights updating. The result has shown that the Hebbian learning preserves a 
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semi steady separation property for pathological synchrony and over stratification cases, 

while the separation property drops steadily after 10 iterations in the random weights 

updating for both cases.  

Unlike the first experiment that uses a random input, the second one uses TIDGIT 

dataset which consists of audio files of spoken digits from “0” to “9”. After running the 

LSM for different permutation of training and testing samples, the authors have indicated 

that Hebbian learning can improve the separation property. However, the authors attested 

that the initial weights for the liquid with Hebbian learning affect the separation property 

and might lead to a low separation property.  

In [44], the authors proposed a new metric for evaluation the liquid. This metric is 

based on Hebbian and reinforcement learning and it does not depend on the accuracies of 

the results i.e., the metric does not need the readout to be trained to evaluate the liquid. 

The metric is devised in an algorithm denoted by Separation Driven Synaptic Modification 

(SDSM), where it searches and updates the synaptic weights to produce a high separable 

liquid.  SDSM takes into account two pieces of information about the status of the liquid 

and it updates the liquid accordingly. First information is the differentiating between 

classes and a variance within each class. In this case, SDSM tries to balance between these 

two pieces of information by strengthening the strong synapses and weakening the weak 

synapses even more. The second piece of information is the firing behavior of all neuron 

in the liquid where SDSM aims at thresholding the liquid to have only half of its neurons 

firing. This achieved by tracing all neurons firing activities and strengthening the 

excitatory synapses and weakening the inhibitory ones when less than half of the neurons 

fire. While if more than half of the neurons fire, SDSM reverse its work.  
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To evaluate SDSM, the authors carried out two experiments; one using artificial 

problem and the other using speech recognition. In the artificial problem, four input 

neurons that fire either at slow or fast rates were used. By encoding the slow rate as “0” 

and the fast one as “1”, the problem then changed to classify five chosen classes according 

to the state of the inputs. 50 randomly chosen liquid were run for 500 iterations and then 

the results were compared with an initial LSM. The results have shown that SDSM is able 

to improve the separation property for the LSM from 0.4 to about 0.55 and the accuracy 

from around 35% to around 78%. The works also shed the light on the capabilities of 

SDSM to reduce the number of iterations needed to find a good LSM; an LSM after 500 

iterations is not able to compete with LSM and SDSM after 11 iterations.     

In the speech recognition task, the author used TIMIT dataset to identify context 

independent phonemes. Among the 52 phonemes in the dataset, two simpler problems 

were chosen for further testing: a binary class problem to decide whether the phoneme is a 

constant or a vowel; and the second problem is to identify one of four distinctly chosen 

vowels. Again, the SDSM has proved that it can generate better LSMs in terms of the 

separation property and the accuracy.  

The authors also tested performance of using LSM with SDSM for Transferring 

Learning and it has be shown that LSMs with SDSM have produced better models than the 

corresponding initial LSMs used in the SDSM.       
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CHAPTER V 

LTTERATURE REVIEW ON EMOTION RECOGNITION 

FROM EEG SINGALS 

This chapter is concerned with providing a solid introduction and literature review 

about emotion recognition from EEG. The reason behind our choice is to provide a 

challenging problem for the pattern recognition task, where it requires time series input 

capable-handling model. LSM seems suitable for such problems because we can examine 

the benefit of using LSM for processing EEG as time series signals.  Moreover, we want to 

deploy LSM for analyzing and studying emotions in depth by showing how we can use 

LSM as an anytime classifier without significant changes in the learning model.    

The chapter is organized as follows: in section A, we introduce the idea about 

emotions in humans and we explain in section B the different models used to describe 

emotions and the affective states of humans. Sections C is concerned with introducing the 

dataset that we will use in this work. In section D, we survey the related work done in the 

context of emotion recognition from EEG.  

A. Introduction about Emotion in Humans  

Humans are not only pure-function creatures; humans associate with most of their 

actions or reactions emotions. For this reason, many researchers have studied human 
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emotions to make machines more aware of affective state of humans. However, there is still 

a gap between the humans and machines due to lack of methods in understanding these 

emotions. In order to achieve to the affective computing, many studies have tried to 

recognize human emotions by studying speech, visual appearance, audiovisual, facial 

expressions and body gestures. In addition, physical signals such as electrocardiogram 

(ECG), galvanic skin response (GSR), electromyogram (EMG) and electroencephalogram 

(EEG) have also been used to recognize human emotions, since they carry extra 

information about human state. More importantly, EEG data may reveal the actual human 

emotions since it represents brain activates, source of our actions or reactions in response to 

a stimuli.  

B. Affective State Definition   

The affective state defines our experience of feeling or emotion as a reaction for a 

stimulus or stimuli. The affective states are psycho-physiological components that can be 

measured using three principle dimensions, the valence, arousal and motivational intensity.  

The valence varies from negative-to-positive and measures the emotion’s consequences, 

emotion eliciting circumstances or subjective feeling and attitudes. In our daily definition 

for emotions, valence is correlated with sad/ negative to happy/positive.   

On the other hand, arousal measures the activation of the sympathetic nervous 

system; however, it does not necessarily imply an action. Arousal varies from bored 

/negative to excited/positive.  
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There are different models to represent the affective states such as the six basic 

emotions model [45], Dimensional scale of emotions model [46], the tree structure of 

emotions model [47] and the valence-arousal scale model [48]. In this chapter we will rely 

on the valence-arousal scale model since it is widely used by the related works.  The 

following graph shows valence-arousal scale proposed by Russell, where the emotion or the 

state is described in 2D plane. The horizontal axis is the valence while the vertical one is 

the arousal. This model can describe most of the variation in an emotional state. The 

motivational intensity can be also included as a third axis in the model according to 

Russell.  

 

Figure 12:  Russell's model to represent emotions. 

The next section surveys the related work for emotion recognition from EEG, where 

the section first shed a light on some works that use different EEG datasets and then we 
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focus on the works that used the DEAP dataset  [49] for EEG. By focusing on DEAP 

dataset, the work will be able to deliver consistent evaluation and analysis with other works 

in terms of the accuracies and testing approaches. 

C. Dataset for Emotion Recognition 

We chose in this work the DEAP dataset, since it is recently introduced and was 

used by many works. By choosing DEAP dataset, we ensure that our comparisons and 

evaluation are consistent with other works. 

 DEAP dataset consist of EEG data recoded from 32 subjects, while they were 

watching 40 prechosen videos. The 40 videos /stimulus in DEAP dataset were chosen 

among 120 initial YouTube videos, where half of the 120 were chosen manually while the 

remaining were chosen semi-automatically. For these 120 videos, a one-minute highlight 

part was determined and then all were presented to subjective assessments experiment to 

choose 40 videos.  

In DEAP dataset, the 32 subjects are 50% female and 50% male, aged from 19 to 37 

years with an average of 26.9.  For each subject, each video was presented to him/her and 

then he/she was asked to fill a Self-assessment for his/her valence, arousal, liking and 

dominance.  The valence scales from unhappy or sad to happy or joyful and corresponds 

directly to a number from 1-9 (1 represents sad and 9 represents happy). The arousal scales 

from calm or bored to stimulated or excited and directly corresponds a number from 1-9 (1 

represents calm and 9 represents excited). The liking measures whether the subject likes the 
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video or not and corresponds to a number from 1-9, where 1 means that the subject did not 

like the video, while 9 means that the subject likes the video.  

The EEG data were recoded according to 10-20 international system at the rate of 

512 Hz. Afterwards the data was preprocessed and down-sampled to 128 Hz. 

Table 1: DEAP dataset summarization. 

Feature  Description  

Number of Subjects  32 

Number of Videos /Stimulus 40 

Number of Channels 32 

Labels  Valence, Arousal and Liking  

Sampling Rate  128 Hz 

D. Literature Review  

This section is divided into two parts: in the first part, we survey the related work on 

emotion recognition from EEG done on datasets other than DEAP dataset; and in the 

second part, we survey related works done on DEAP dataset. 

1. Works that relies on different datasets  

In [50], five subjects were used to record the EEG data to measure four emotional 

states which are: joy, relax, sad and fear using a pre-chosen elicitation clips. For each 

participant, 62 types of active scalp site were recorded at a sampling rate of 1000 Hz, and 

then these signals were down-sampled to 200 Hz.  Two types of features were extracted 

from the raw data: the time domain and the frequency domain features. In the time domain, 

six features from each of the 62 signals were calculated: the mean, the standard deviation, 

the mean of the absolute values of the first difference, the mean of the absolute values of 

the second difference, the means of the absolute values of the first differences of the 
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normalized signals and the means of the absolute values of the second difference of the 

normalized signals. For the frequency domain, five features of the log power spectrum were 

extracted from the delta, theta, alpha, beta and gamma frequency bands.  

In the testing part, SVM with radial basis kernel function, K-NN and a three-

hidden-layer MLP were used to classify the extracted features. The results have shown that 

SVM has the best performance with 43.39 % accuracy for time domain features and 

66.51% accuracy for frequency domain features. It was also shown that frequency domain 

features deliver a better classification accuracy than those of the time domain. The study 

also showed that the frontal and parietal EEG signals have higher discriminative 

information about the emotional state than other EEG signals.  

According to [51], EEG features can be divided into two domains; the time domain 

and frequency domain. In the time domain, the components that reflect the corresponding 

emotion are represented by the event-related potentials (ERPs). The ERP components are 

represented as three types according to their durations: P1 and N1 are the components that 

generated after the stimulus with a short latency, N2 and P2 are generated with a middle 

latency and P3 which is generated after a long latency. Besides the P3, the slow cortical 

potential (SCP) component might be taken into the account as a long latency component. 

Several studies have shown that ERP components of short to middle latencies are 

correlated with valence, while the ERP components of middle to long latencies are 

correlated with arousal.   ERP components have to be chosen carefully over several trials, 
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however a recent studies have shown that is applicable to get good ERP features from a 

single trial.   

For the frequency domain, spectral power of various frequency bands has been used 

to infer the related emotional state. It has been shown that alpha power varies with valence 

state. In addition, the gamma power has a high correlation with the happiness and sadness. 

The theta power has been shown to be correlated with the transition between the emotional 

states. Other characteristics of the EEG signals such as phase synchronization and 

coherence have been also used to infer the emotional state, e.g., the beta oscillation has 

been shown to be correlated with high arousal stimuli. 

 

In [52], 30 pictures from the International Affective Picture System (IAPS) that 

belongs to six different clusters of emotions were used as an elicitation for 20 subjects.  

Each picture was presented for the subject for 5 seconds with a gap of 5-12 seconds 

between each picture. To avoid the misinterpretation of the emotion, each subject was also 

asked to fill a Self-Assessment Mankind (SAM), which is used to rate the subject’s valence 

and arousal in a 2D scale. Thereafter, the collected EEG data was screened for the users 

with low valence and arousal rate and then preprocessed to extract four types of features; 

the minimum value, maximum value, mean value and standard deviation.  The final dataset  

is made up of 24 features from six channels plus the classes (positive or negative 

valence/arousal and neutral). Five machine intelligence techniques were applied on the final 

dataset namely, K-NN, Regression trees, Bayesian Network, SVM and ANN. In all 

experiments, SVM achieved the highest accuracy with 56.1%.  
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The work then tested the data to check if there is a problem with the generality by 

dividing it into three subsets, each has five subjects.  The same machine intelligence 

techniques were again applied, and the reported results for this setup showed that SVM still 

outperforms the other techniques with average accuracy of 66.47% for the three subsets. 

The issue of designing an automated method to detect the negative emotional states 

from EEG was studied in [53]. The method consists of three parts: model creation, 

threshold estimation and the detector. In model creation, the short term energy is computed 

for each channel by using a sliding window of 343.75 msec with 75% overlapping between 

consecutive frames. Then these short term energies are normalized to have zero mean and 

unit standard deviation. To that end, the data is ready for building a classifier model using 

SVM to classify samples into negative (“0”) state or others (“1”).  

The second part is responsible for finding a threshold value form the independent 

data (development data) by computing the short term energy and the ratio of each state in 

the data.  

After performing the first and the second part, the model is ready to predict the 

states from training data by first computing the short term energy and then evaluating each 

frame by a pattern recognition process to find the corresponding state. The final decision 

from the whole frames were conducted by calculating the ratio of negative states to the 

number of frames and then compare it to the threshold value.  In the testing phase, the work 

selected 10 users out of the 32 users in DEAP dataset. From each user 8-9 samples were 

used for training data and 8-9 were used for development data. The reaming 22-24 samples 
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were used for testing. The highest achieved accuracy among all users was 73.9% while the 

lowest was 54.5% with average accuracy over all users of 62%.  

 

2. Works used DEAP dataset  

In [54], the work used the Deep learning Networks (DLN) to recognize emotions 

from DEAP dataset. The work used the power spectral of five frequency bands of EEG: 

delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz) and gamma (14-30 Hz).  

For each of the 32 channels used in DEAP dataset, the power spectra of the five frequencies 

was extracted along with the differences in the power spectral between the 14 pairs of 

electrodes on the right and the left of the hemisphere. 230 features extracted from the 

previous dataset were fed into a stack of three auto-encoder and two softmax layers. The 

first softmax layer is used to estimate the three valence states (Negative, Neutral and 

Positive) and the second softmax layer is used to estimate three arousal states (Negative, 

Neutral and Positive). The experimental part used four setups: (1) used 100 neurons in each 

hidden layer in DLN; (2) used 50 neurons in each hidden layer; (3) used the PCA 

transformation on the input features to extract the most important 50 features and then fed 

the transformed data into  a DLN with 50 neurons in each hidden layer; (4) used the 

Covariate Shift Adaptation of Principal Components (PCA+ CSA) and then fed the 

transformed data into a DLN with 50  neurons in each hidden layer. The testing used the 

subject dependent scenario where the reported results are as follows: DLN with 100 

neurons provided 49.52% for valence and 46.03% for arousal, while these accuracies 

decreased to 47.87% and 45.50% for valence and arousal, respectively when using DLN 



63 

 

with 50 neurons. The PCA increased the accuracies by 3.01% for valence and 3.14% for 

arousal when used for DLN-50, where the best achieved results was when using PCA + 

CSA with DLN-50; the accuracies became 53.42% for valence and 52.03 %for arousal. 

In addition to the previous experiments, the work tested the performance of an 

SVM-RBF classifier on the data after the auto-encoders. In this case, the SVM was tested 

according to three configurations: 230 input features, PCA transformed data and 

PCA+CSA transformed data. The highest achieved accuracy by SVM was when using pure 

input features without any transformation was 41.12% for valence and 39.02% for arousal.     

 In [55], the work proposed a three-step method to transform a pre-segmented EEG 

into feature vectors. In this work, each problem is considered as a binary classification 

problem, i.e. the valence, arousal, like, and dominance are divided into either low (class 

“0”) or high (class “1”). In the first step of the proposed method, the method finds the first 

2K nearest neighbors in the segments that do not belong to the same response (EEG signals 

in each segment) after assuming that the responses are already labeled. Thereafter, the 

distances to neighbors in the two classes are computed and preserved to compute 

multinomial distribution vectors. Then, these vectors are fused to form response-level 

feature vectors. The work used four ways to perform the fusion: (1) NN voting histograms 

in which the features represent the relative number of segments that the nearest neighbors 

belong to the class “1”; (2) average segment-to-class distance which computes the average 

distance to the K nearest neighbors in the class”0” and K ones in the class “1”; (3) 

histograms which finds the B-bin normalized histograms for each dimension in segment-

level probability vectors over all segments in the response; (4) generating Dirichlet 
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distribution where Dirichlet distribution parameters are computed using the moment 

matching approximation and then these parameters are used as features.  

The final classification on the three fusion methods is carried out in three fashions: 

NB-NN classifier which compares the coordinates of average distance to the K nearest 

neighbors fusion; NN-voting classifier which compares the coordinates of NN voting 

histograms fusion with 0.5; and SVM with RBF kernel that uses the whole four fusions 

data combined in one vector to perform the classification.  

In testing, the setup was to choose different window length specifically, 1s, 2s, 4s 

and 8s with 1s segment shift to generate the segments. From each segment, 230 features 

were extracted as in [54]. All classifications were conducted for user-dependent scenario 

and the results were averaged on all the 32 users and reported as means and standard 

deviations.  In the first experiment, the segment level classification was tested after 

performing the kernel principle component analysis (K-PCA) and 1-NN classifier. The best 

results were as follows: valence: 64.4 %±5.2 when segment size S is 2s, arousal: 60.6 %± 

8.1when S is 2s, dominance: 62.3% ± 10.4 when S is 2s and 64.5 % ± 12.0 for liking when 

S is 4s. In the second experiment,  the mean, standard deviation, min, max range, mode, 

median, skewness and kurtosis were extracted for the whole  segments features ( 230 

features) =9×230. After that, K-PCA with 1-NN was applied for the 2070 features, and the 

best reported results were as follows; valence: 54.9 % ± 8.2 when S is 8s, arousal: 59.5 %± 

8.5 when S is 2s, dominance: 61.3% ± 15 when S=4s and 62.2 % ± 14.2 for liking when S 

is 2s. The third experiment tested the performance of the proposed fusion methods.   In this 

case, SVM with RBF delivered the highest accuracies compared with the two other fusions 
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where the accuracies are as follows; valence: 76.9 %± 6.4 when S is1s, arousal: 69.1%± 

10.5 when S is 4s, dominance: 73.9 %± 11.1 when S is 1s and liking 75.3%± 10.6 when S 

is1s. 

Later the work [56] introduced a robust method to transform segment-level features 

to response-level features by using two-part unsupervised generative model method. The 

first part is Gaussian Mixture Model (GMM) that is followed by, the second part, 

Generative models constraining GMM. The segment features are extracted as in [55] for 

segment size of 1s and 0.1s step size. The 230 dimensional segment-level feature vector is 

downsized to 140 dimensions using K-PCA. Thereafter, the proposed method is used to 

generate one 100 dimensional response-level vector. The final classification stage was 

conducted using SVM with best achieved accuracies of 70.9 %( ±11.4), 67.1% (±14.2), 

70.9 %( ±12.8) and 70.5 %( ±17.1) for valence, arousal, dominance and liking, 

respectively.      

The matter of low number of samples and choosing the critical channels in affective 

emotion was studied in [57]. The work proposed a new technique based on Deep Belief 

Networks (DBN) to handle these two issues. In details, the DBN was deployed to extract a 

low dimensional feature vector from input channels which include thousands of features. 

Then, these channels are evaluated in order to find the most critical channels that affect 

emotions. This is done by defining a zero-stimulus as an input before the DBN. Thereafter, 

the output of the DBN at the very end layer is evaluated by measuring how many units are 

activated in the last layer of DBN. If the ratio of the number of activated units to all units in 

this layer is closed to 0.5, then the related channel is irrelevant to the learning task. On the 
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other hand, if the ratio varies from 0.5, then this channel has an effect in the learning 

process. In this work, the top five critical channels were used to perform the next level that 

is the classification. To evaluate the new method, “like” and “dislike” were used for the 

classification task along with other five baseline methods for comparison purposes. The 

methods are as follows:  (1) SVM, (2) SVM with PCA for features reduction, (3) SVM 

with Fisher Criterion for channel section, (4) SVM with PCA and Fisher Criterion, and (5) 

DBN for feature extraction with Fisher Criterion for features reduction.   

The experimental part chose randomly 20 segments for training and 20 other for 

testing. The results were reported in area under the curve (AUS) form.  For 28 out of 32 

users in the dataset, the proposed method outperformed the other five baseline methods, 

while for the reaming four users, it achieved close results.   In addition, the stability of the 

method for choosing critical channels is compared with Fisher Criterion and it has been 

shown that the proposed method tends to have stable choices among the channels.  

In [58] which is an extension for the [57], the matter of choosing the critical 

channels was performed using a two-stage process. The first stage uses the unsupervised 

learning to evaluate the extracted features from RBM by measuring the constructed error 

from RBM. The second stage uses the supervised learning to refine the selection process of 

channels which resulted from the first stage by computing the significance of each channel 

to the classification task. More specifically, the second stage computes the distances 

between the extracted features for each channel and the mean of features’ values for a 

specific class with respect to the distances between the extracted features to the mean of 

features in all classes.   
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In order to deal with low number of samples issue, the work suggested that the final 

layer in DBN can be trained on a combinations of supervised information that represent the 

labeled data, unsupervised information that represent the unlabeled data and produced data 

(generative data) by using RBM as a generative model. The whole process was called a 

semi-DLM method.  

 In addition, the work suggested that the proposed method can be used for data 

labeling by training the model on labeled and unlabeled samples. Afterwards, the unlabeled 

samples that have highest certainty to belong to a specific label are chosen and labeled 

accordingly (the method was called active-DLM).  

In addition to the five baseline methods that were used in [58], the work also used 

Deep Learning Model (DLM) that uses only the discriminative and generative data in the 

final classification layer.  

For all users in the dataset, the proposed method outperforms the other baseline 

methods except for two users with a maximum AUC of 0.852 and a minimum of 0.705.  

In addition to the classification task, the work tested active-DLM for labeling the 

data. The work fixed 10 samples for each user for testing and 10 others out of the 

remaining 30 samples for initial training. The active-DLM chose best two samples from 

unlabeled data and then labeled them. This process was repeated five times. For DLM and 

semi-DLM, the same 10 samples were fixed for testing and 10 out of the remaining 30 

samples were chosen randomly to train the model for 10 times.  The results have shown 
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with active-DLM, the average AUC was 0.808 which is better than semi-DLM and DLM 

for data labeling with an average AUC of 0.767 and 0.789, respectively. 

Other works took another approach to extract features from EEG. For example, in 

[59], the authors tested the band power for delta, alpha, beta and gamma frequencies as 

features for identifying emotions. Besides, the authors tested the power spectral density 

(PSD) by wavelet transformation as another method to extract the features.  The work 

conducted the experiments according to two scenarios: first, when using all the 32 channels 

in DEAP dataset; second: when using the channels Fp1,   Fp2, F3, F4, T7, T8, P3, P4 and 

O2 where these choices are according to work [60]. 

With the pervious setups, the work produced six datasets. D_10_1: where it uses the 

10 channels and the band power of the four signals averaged over the one minute length (4 

frequencies×10 channels features).  D_10_5: where it uses five statistics for each 

frequency; (average, max, min, range and standard deviation). Hence, the feature vector for 

each sample is 4 frequencies × 10 channels × 5 statistics. D_32_1: which is the same as 

D_10_1, but it uses the 32 channels. D_32_5: is same as D_10_5, but using the 32 

channels. D_10_1_WT: is similar to D_10_1, but using the PSD wavelet transformation. 

D_32_1_WT: is the same as D_32_1, but using the PSD wavelet transformation. 

In all experiments, valence, arousal and liking were divided into binary classes that 

are positive and negative classes. The classification was performed using SVM with leave-

one-trial-out (leave one video out of the 40 videos) or leave-one-subject-out (leave one 

subject out of the 32 subjects).  
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The results have shown that averaging over the one minuet is better than the five 

statistics for valence, arousal and liking when using the band power case. In addition, the 

results have shown that using 10 channels gave better results than using 32 channels for 

valence and arousal, while the liking gave a slightly better result for the 32 channels case.  

Moreover, the results have indicated that there is no benefit from using the PSD of wavelet 

transformation when compared with the band power method.  

In addition, the results have shown that the leave-one-trial-out is better than leave-

one-subject-out for valence and arousal and slightly worse for liking.  

The work [61] tested the recognition of the level of valence and arousal using the 

sample entropy method with SVM classifier. In this work, the first 23 seconds and the last 

20 seconds of the EEG data were removed, and then the sample entropy was calculated for 

each channel in the DEAP dataset. Thereafter, the channels were screened according to the 

highest resultant sample entropy for each classification task. The result showed that 

channels  

F3, CP5, FP2, FZ and FC2 are informative for differentiating between High Arousal 

– High Valence (HAHV) and High Arousal – Low Valence (HALV), while channels FP1, 

T7 and AF4 are informative to differentiate between Low Arousal – Low Valence (LHLV) 

and High Arousal – High Valence.  

The results of testing the quality of the extracted features were conducted in two 

cases: 3-fold cross validation and leave-one-user-out (LOSO). In 3-fold cross validation, 

the average accuracy was 80% for recognition between HAHV and HALV and 79% for 

recognition between LALV and HALV. While for LOSO, the average accuracy was 71% 
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for recognition between HAHV and HALV and 64% for recognition between LALV and 

HALV. 

 

Table 2: Related work on Emotion Recognition summary 1. 
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Table 3: Related work on Emotion Recognition summary 2. 
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CHAPTER VI 

 CASE STUDY FOR DEPLOYING LIQUID STATE 

MACHINE FOR FEATURE EXTRACTION FROM RAW DATA 

 

This chapter studies a novel deployment, for LSM, which is the feature extraction. 

Feature extraction is a challenging problem in ML and AI, since the quality of features 

strongly affects classification or regression tasks based on these features.  In this chapter, 

we study harnessing LSM for feature extraction from raw data. More specifically, this 

chapter is concerned with studying automatic feature extraction from data streams of EEG. 

For comparison purposes, we use one of the most successful approaches for feature 

extraction that is DBN.  Deep Learning (DL) is a variant for the shallow architectures of 

Artificial Neural Networks (ANNs). DL consists of hierarchical many layers that transfer 

information from the lower layers to upper layers through a non-linear conversion while 

performing error minimization between consecutive layers. The upper layers preserve the 

most abstract representation for the data, where it can be used as a feature extraction layer. 

DBN [26], a DL network with fast training algorithm, has been deployed in many works for 

feature extraction, where it showed powerful capabilities. For example, DBN has shown to 

be able to produce high informative features than Met-Frequency Cepstral Coefficients 

(MFCC) for music audio feature extraction [62]. For EEG raw data, the extracted features 

by DBN in [58, 63] have produced a high classification accuracy than those extracted by 

applying time and frequency domain methods. 
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A. LSM-based Feature Extraction Description 

The LSM receives inputs as data streams from one or multiple inputs. We will use 

direct information feeding to LSM by mean of an analog neuron to provide the LSM with 

raw data. For this purpose, we will use CbNeuron neuron model to build the LSM. 

CbNeuron neuron model, which was described in section 2 of CHAPTER II, can receive an 

analog input from an analog input neuron. We will use CSIM simulator [64], since it 

provides an easy environment to simulate SNNs.  

1. LSM Configuration for Feature Extraction   

 The architecture of LSM consists of 7×7×7 neurons with 32 inputs corresponding to the 32 

channels of DEAP dataset channels [65]. To make EEG suitable for CSIM simulator and 

Experiment 1, we first rescale EEG data for each channel in DEAP dataset into some 

ranges between 0.1 and 10. Scaling ensures that EEG data are suitable for analog input 

neuron and CbNeuron in CSIM simulator. In addition, scaling ensures that data are 

consistent among channels from different subjects’ EEG signals.  

Analog input neurons, implemented in CSIM simulator, interfaces EEG signal with 

CbNeuron neurons in LSM, where we configured it to update its internal state at 128 Hz. 

This implies that LSM updates its state at the same rate. Analog input neurons in 

experiment 1 are connected to the LSM with a probability of 𝑤𝑖𝑛𝑝𝑢𝑡 = 0.15 and connection 

scaling of 𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔=0.2, i.e., the probability that an analog input neuron is connected to a 

neuron in LSM is 0.15 with scaling of this connection with 0.2.  
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Neurons in LSM are connected with “average distance” synaptic connections 𝜆 = 2. 80% 

of neurons inside the LSM are excitatory neuron and the remaining 20% are inhabitation 

ones.  Reading from LSM is achieved by sampling the liquid states, and more specifically 

reading the spiking activities from LSM. For this purpose, CSIM simulator records the 

spiking time activates from each neuron in the LSM along the simulation time, which was 

configured to 59s. To obtain the liquid states from LSM, we read the recorded spiking 

activities by CSIM using an exponential filter with time constant  𝜏 = 0.5. Sampling from 

LSM is performed every 0.4s starting from 0.5s until the end of simulation time at 59s. All 

neurons in LSM are used for reading, which produces a feature vector of 7×7×7=343 values 

from each sample.  

Having obtained the liquid states from LSM, these liquid states are then 

preprocessed to normalize data in each column to get zero mean and unit variance. Next, 

different readouts are used to identify valence, arousal. The table describes the 

configuration and architecture of the LSM. 

Table 4: LSM configurations for feature extraction. 

Neuron Configuration  LSM Connectivity and 
Architecture  

Readout 

Model: CbNeuron  

Vthresh = -0.045 (V) 

Vreset = 0 (V) 

Trefract = 0.003 (sec) 

Cm = 3e-08 (F) 

Rm = 1e+06 (Ohm) 

Em : 1.0395e-314 (V) 

Vresting = -0.06 (V) 

Vinit = -0.06 (V) 

Vm : 1.0395e-314 (V) 

 

Architecture = 7×7×7 

neurons  

𝜆= 2 

𝑤𝑖𝑛𝑝𝑢𝑡= 0.15 

𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔=0.2 

Sampling =[0.5:0.4:59] 

(147 samples per each 

input) 

Filter =  exponential 

filter with 𝜏 = 0.5 
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Figure 13: LSM for feature extraction. 

 

Figure 14: LSM for multi-purpose classification. 

 

Figure 15: LSM for anytime feature extraction. 
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2. DBN Configuration for Feature Extraction   

As mentioned previously, we will use DBN for feature extraction from EEG, and 

we will follow the same methods used in the literature review.  The first method uses 

augmented channels information as an input to DBN. The second method uses each 

channel as independent input to the DBN, where the information in channels is used to train 

the DBN to generate features at the far end layer.  

For the first method, we configure the network to have three layers stacked in a 

hierarchical structure as follows: the first layer has 768 neurons which they are connected 

directly to the 32×128×60 augmented channels values; 512 neurons in the second layer; and 

343 neurons in the third layer.  We read from the third layer the information to use them 

later for classification. The number 343 neurons is the same number of neurons that was 

used in LSM such that we compare the results fairly. All the experiments are conducted 

using 10-fold cross validation for valence and arousal recognition tasks. We use Decision 

Trees and Linear Regression classifiers for the outputs from the LSM and the DBN. 

For the second method, we use information from each channel as an independent 

sample of the input. Here, we have different configuration for the network: the first layer 

has 7680; second layer has 768; third layer 512 and the last layer (the feature layer) has 343 

neurons.   

We refer to the first configuration by augmented channels DBN and for the second 

configuration by independent channels.   



77 

 

 

Figure 16: DBN for feature extraction architecture. 

B. Results and Comparison for Feature Extraction Using LSM and DBN 

In testing, we compare the accuracy of testing the resultant feature vector from LSM 

in comparison with DBN. In addition, we compare the generalization capability of DBN, 

since LSM requires one model for valence and arousal; LSM is first trained using 

unsupervised learning, STDP, on EEG signals, and then we train different readout functions 

to recognize the valence and arousal.  We test DBN extracted features for valence to test 

recognition the arousal and vice versa. All the experiments are done in 10-fold cross 

validation. 
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Table 5: Result of testing 343 extracted features using LSM and DBN. 

 Execution 
time 

Valence Arousal  

Decision 

Trees 

(%) 

Linear 

Regression 

(%) 

Decision 

Trees 

(%) 

Linear 

Regression 

(%) 

DBN (Augmented 

channels) 

690712 sec   52.58 57.34 

DBN (Independent 

channels) 

432000 Sec 64.76 70.88 64.87 72.43 

LSM 50200 Sec 94.12 64.64 95.15 59.63 

 

C. Discussion  

As can be seen from section 6.B, LSM provides better accuracies than DBN with 

DT classification tasks and worst when using the linear regression readout. In addition to 

the good performance, the LSM learns to generate features from EEG as an accumulative 

information learning produced from all channels, i.e., LSM samples the states of the liquid, 

which are induced by the current and previous streams of EEG channels values. That is, 

LSM learns the model as one structure rather than independent inputs. For the 

generalization, we need to train one LSM in order to extract different information from a 

common domain. That is, we train LSM on EEG data to identify valence and arousal in 

contrast to DBN, which needs different networks for each independent task, even though 

the domain is common for these tasks. Moreover, the LSM is able to provide anytime 

feature extraction without waiting until all inputs to be provided. In other word, through 

sampling at a desired time, we can extract the features from LSM, in contrast to the DBN, 

which needs all inputs to be present ahead of time (static input) to perform the process. This 

is important when some inputs are missing or cannot be provided, e.g., some channels of 
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EEG cannot be accessed.  In addition to all previously mentioned benefits from using LSM, 

the LSM is less computational demanding than DBN; to train the DBN on the DEAP 

dataset, it took 6 days of heavy simulation on a powerful PC, while LSM required 80% less 

time to achieve extract features from data. In conclusion, LSM produced more informative 

features with less costs in comparison with DBN.   
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CHAPTER VII 

 

LIQUID STATE MACHINE FOR EMOTION 

RECOGNITION FROM EEG 

 

In chapter V, we surveyed the related work on emotion recognition from EEG, and 

in chapter VI, we examined the capabilities of using LSM for feature extraction from EEG. 

In addition, we explained in chapter VI how we can use LSM for anytime multi-purpose 

learning model from EEG signals. To that end, we built a robust assumption for how to 

build a universal LSM-based emotion recognition model from EEG. In this chapter, we use 

LSM, extensively, for emotion recognition and then test the model using different scenarios 

and configurations.  Moreover, we draw some conclusions about emotion in humans by 

building upon the results.   

This chapter is organized as follows: In section A, we describe the experimental 

procedure that we will follow in all experiments in this section. This section includes three 

tests for different aspect of emotion recognition. Section B concludes all experiment done 

in this chapter. 

A. Experimental Procedure for LSM-Based Emotion Recognition Model 

We will use LSM to recognize valence, arousal and liking from DEAP dataset. 

More specifically and following the literature review, we divide the task of recognizing 
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valence, arousal and liking into binary classification problems, i.e., High /Low Valence, 

High/low arousal and like/do not like.  

This chapter uses four different scenarios for testing emotion recognition that was 

used in the literature review: 

 Subject/ Video Independent. 

 Leave-one-subject-out (LOSO). 

 Leave-one-video-out (LOVO). 

 Isolated-User Classification (IS).  

The results are reported in each experiment as follows: For Subject/ Video 

Independent and IS, we report the results as an average of 10-fold cross validation testing 

accuracies. In LOSO, we report the results as an average of testing accuracies of the 32 

subjects from DEAP dataset. For LOVO, we report the results as an average of testing 

accuracies of the 40 videos from DEAP dataset.  

For each scenario, we test the classification task at different intervals (by taking 

advantage of anytime feature extraction described in chapter VI); i.e., at the first 10s, 20s, 

30s, 40s, 50s and on the entire length of the signal.  

 In addition, we test two methods to feed EEG into the LSM; using Bens Spike 

Algorithm (BSA) [27] and direct input using analog neurons used in chapter VI.  
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Figure 17: Topology for Experiment 1 for emotion recognition. 
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1. Experiment 1: Direct input to the LSM  

This experiment tests the performance of emotion recognition by directly feeding 

the LSM with EEG signals by mean of input analog neurons. Input neurons receive signals 

from EEG channels, where they propagate voltages to the connected neurons inside the 

liquid. The LSM learns and generates the corresponding responses.  The liquid in this 

experiment is made up of “CbNeuron” neuron model described in section 2, chapter II.   

To make EEG suitable for CSIM simulator and Experiment 1, we first rescale EEG data for 

each channel in DEAP dataset to range between 0.1 to 10. Scaling ensures that EEG data 

are suitable for analog input neuron and CbNeuron in CSIM simulator. In addition, scaling 

ensures that data are consistent among channels from different subjects’ EEG signals.  

Analog input neurons, implemented in CSIM simulator, interfaces EEG signal with 

CbNeuron neurons in LSM, where we configured it to update its internal state at 128 Hz. 

This implies that LSM updates its state at the same rate. Analog input neurons in 

experiment 1 are connected to the LSM with a probability of 𝑤𝑖𝑛𝑝𝑢𝑡 = 0.15 and connection 

scaling of 𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔=0.2, i.e., the probability that an analog input neuron is connected to a 

neuron in LSM is 0.15 with scaling of this connection with 0.2.  

Neurons in LSM are connected with “average distance” synaptic connections 𝜆 = 2. 80% 

of neurons inside the LSM are excitatory neuron and the remaining 20% are inhabitation 

ones.  Reading from LSM is achieved by sampling the liquid states, and more specifically 

reading the spiking activities from LSM. For this purpose, CSIM simulator records the 

spiking time activates from each neuron in the LSM along the simulation time, which was 
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configured to 59s. To obtain the liquid states from LSM, we read the recorded spiking 

activities by CSIM using an exponential filter with time constant  𝜏 = 0.5. Sampling from 

LSM is performed every 0.4s starting from 0.5s until the end desired time. Different 

configuration of the desired time were tested namely, 10s, 20s, 30s, 40s, 50s, and 59s. All 

neurons in LSM are used for reading, which produces a feature vector of 7×7×7=343 values 

from each sample.  

Having obtained the liquid states from LSM, these liquid states are then preprocessed to 

normalize data in each column to get zero mean and unit variance. Next, different readouts 

are used to identify valence, arousal and liking. 

Table 6: LSM configuration for emotion recognition. 

 

 

 

 

a. Subject/ Video Independent  

This method tests the performance of classification task using 10-fold classification, 

where the model is trained randomly by choosing 90% of samples for training, and then is 

tested on the remaining 10% of samples. The final accuracy is the average over the 10 

testing accuracies from the 10 folds.  First, we want to choose a suitable classifier for the 

Neuron Configuration  LSM Connectivity and 

Architecture  

Reading from LSM 

Model: CbNeuron  

Vthresh = -0.045 (V) 

Vreset = 0 (V) 

Trefract = 0.003 (sec) 

Cm = 3e-08 (F) 

Rm = 1e+06 (Ohm) 

Em : 1.0395e-314 (V) 

Vresting = -0.06 (V) 

Vinit = -0.06 (V) 

Vm : 1.0395e-314 (V) 

 

Architecture : 7×7×7 

neurons  

𝜆= 2 

𝑤𝑖𝑛𝑝𝑢𝑡 = 0.15 

𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔 = 0.2 

 

Sampling: [0.5:0.4:59] 

(147 samples per each 

input) 

Filter :  exponential 

filter with 𝜏 = 0.5 
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model. In the table below, we show testing results of different readouts on entire length of 

EEG signals (59s). 

Table 7: Testing results for different readouts. 

Classifier  Valence  Arousal  Liking 

ANN 57.82% 60.96% 67.11% 

SVM 74.74% 75.13% 77.13% 

K-NN 66.25% 68.22% 70.20% 

Random Forests 94.03% 94.58% 94.87% 

Linear Regression  64.64% 59.63% 59.57% 

Decision Trees 94.12% 95.15% 95.25% 

  

Among different types of readouts, we choose Decision Tress and Linear 

Regression for our further analyses. Decision Trees achieves very good results with 

minimum efforts of time and resources in comparison with other types of readouts. For 

example, SVM requires about 540 minutes for 10-fold cross validation in comparison with 

about 5 minutes for Decision Trees and Linear Regression. Moreover, ANN requires much 

memory than Decision Trees and Linear Regression without improving the accuracies.  We 

keep using Linear Regression in all tests even though it does not improve the accuracies. 

This is because we want to test the produced data from LSM against linearity, i.e., we use 

Decision Trees as a nonlinear readout, while using Linear Regression as a linear readout.  
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Table 8: Subject/Video independent scenario results using Decision Tress. 

 

Table 9: Subject/Video independent scenario results by using Linear Regression. 

 

b. Subject Dependent  

This method trains the model on the data from 31 subject and tests on the remaining 

subject; Leave-One-Subject-Out (LOSO). The reported results in the figure below are the 

average of resultant accuracies from the 32 subjects using Decision Trees and Linear 

Regression Classifiers.  

10s 20s 30s 40s 50s 59s

Valence 91.27 94.03 94.14 93.83 94.08 94.12

Arousal 93.28 95.09 94.69 94.87 94.69 95.15

Liking 91.24 93.83 94.28 94.96 95.24 95.25
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Table 10: Subject dependent scenario results by using Decision Tress. 

 

Table 11:  Subject dependent scenario results by using Linear Regression. 

 

c. Video Dependent 

This method trains the model on the data from 39 videos and tests on the remaining 

videos; Leave-One-Video-Out (LOVO). We report the result by using Decision Trees and 

Linear Regression Classifier as we did in LOSO.  

10s 20s 30s 40s 50s 59s

Valence 53.18 53.38 52.01 52.35 52.76 50.73

Arousal 57.25 48.49 50.41 51.09 51.53 50.41

Liking 63.18 59.58 58.55 59.78 59.56 54.23
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Table 12: Video dependent scenario results by using Decision Tress. 

 
Table 13: Video dependent scenario results by using Linear Regression. 

 

d. Isolated-Subject 

This method performs 10-fold cross validation on the each subject data alone.  

10s 20s 30s 40s 50s 59s

Valence 84.63 81.43 73.46 69.69 66.77 51.33

Arousal 88.54 83.49 75.07 71.83 68.79 53.24

Liking 87.03 82.73 77.70 77.61 74.87 56.49
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Table 14: Isolated-Subject scenario results by using decision trees and linear regression. 

 

2. Results Comparison with other Machine Learning Approaches 

This section is concerned without evaluate the obtained model from experiment 1 

with other machine learning approaches. More specifically, we will compare our results 

with best reported results in literature review.  We divide the comparison according to the 

deployed scenario in the literature review. Moreover, we provide information about type of 

features and classifiers used in literature review.   

a. IS scenario  

Table 15: Results Comparison with other Machine Learning Approaches for IS Scenario. 

Valence Arousal Liking

Decsion Trees 99.54 99.59 99.55

Linear Regression 98.28 98.30 98.18
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Work  Features  Classifier  Valence  Arousal  Liking 

[65] Spectral Power from EEG  Naive Bayes  57.6% 62.0% 55.4% 

[55] Spectral Power from EEG RBF-SVM 76.9% 68.4% 75.3% 

[56]  Spectral Power from EEG RBF-SVM 70.9% 67.1% 70.5% 

Spectral Power from EEG Naive Bayes 65.1% 56.3% 63.0% 

Experiment1 Spiking activities from 

neurons in LSM  

Decision Trees  99.54% 99.59% 99.55% 
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b. LOSO scenario 

Table 16: Results Comparison with other Machine Learning Approaches for LOSO Scenario. 

 

 

c.  LOVO  

Table 17: Results Comparison with other Machine Learning Approaches for LOVO Scenario. 

 

3. Results Comparison using other Spiking Network Architecture  

This section provides a comparison with other SNN architecture. We chose to 

compare results with NeuCube [66-71]. The NeuCube is a framework for learning 

Spatio/Spectro – Temporal Data (STBD) such as EEG and fMRI. The NeuCube model 

consists of input data encoding module; a 3D (cube) network of LIF; an eSNN classifier; 

and an optimization module. The framework uses STDP to learn STDB from input. 

Work  Features  Classifier  Valence  Arousal  Liking 

[59] Spectral Power from 

EEG(from 10 

channels) 

SVM 51.1% 52.9% 67.0% 

[54] Spectral Power from 

EEG 

DL 53.42% 52.03% - 

Experiment 1 Spiking activities 

from neurons in LSM 

Decision Trees 53.38% 57.25% 63.18% 

Work  Features  Classifier  Valence  Arousal  Liking 

[59] Spectral Power  from 10 

channels of EEG 

SVM 64.9% 64.9% 66.8% 

Experiment 1 Spiking activities from 

neurons in LSM 

Decision Trees  84.63% 88.54% 87.03% 
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Besides, NeuCube provides a very rich environment to visualize learning progress inside 

the 3D network. In addition, it provides a semi-brain simulation environment, where 

locations of EEG channels when recoding from a brain can be mapped spatially to same 

locations in the 3D network.  

Due to license constraints, we were only able to run NeuCube on one subject data 

namely, subject 1 from DEAP dataset, which is was not enough to train the NeuCube for 

reasonably acceptable results. Here, we provide testing results of NeuCube on subject 1 (3-

fold cross validation).  

Table 18: Results of Testing NeuCube on subject 1 from DEAP dataset. 

 Valence  Arousal  Liking 

Decision Trees 99.52% 99.76% 99.88% 

Linear Regression 99.93% 99.95% 99.97% 

NeuCube (BSA: threshold=0.995; number 

of neurons =343) 

60% 51.25% 95% 

NeuCube(BSA: threshold=0.5; ; number of 

neurons =343) 

55% 52% 95% 

Neucube (Thresholding Representation: 

threshold =0.5; number of neurons =343) 

42.25% 66.25% 95% 

NeuCube (BSA: threshold=0.995; number 

of neurons =1000) 

65.25% 48.57% 95% 

 

The low accuracies achieved by NeuCube are due to lack samples to train the model. 

However, NeuCube provides a unique opportunity to understand information propagation 

inside the 3D network of NeuCube, and more importantly the relation between different 

channels with respect to emotions.   A more realistic approach to study emotion could be 

performed using NeuCube by mapping channels of DEAP dataset into the relative locations 

in the 3D network of NeuCube, where we can identify the interactions between different 
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channels for the affective state of humans. In addition, we can use NeuCube to study Spike 

communications and information routes for the affective state of humans.   

4. Results Analysis and Discussion  

For 10-fold cross validation: experiment 1 shows that valence and arousal can be 

determined effectively after the first 20 seconds of a continuous stimulus where the 

accuracies of determining the affective state are around  94% and  95%  for valence and 

arousal,  respectively.  Regardless of the duration of the stimulus, the accuracies remain 

slightly around these values when the duration of a stimulus is more than 20 seconds.    The 

accuracies of the first 10 seconds were about 91% for valence and 93%, and this indicates 

again that to accurately determining the affective states when need at least more than 10 

seconds of a stimulus.  On the other hand, the accuracies of determining “liking” are 

improved as the duration of a stimulus increases (from 91.24% for 10 seconds to 95.25% 

for 59 seconds).  

The reported results for Subject/Video independent scenario show that decision tree 

outperforms linear regression classifier in all cases. This is a strong indication that valence 

and arousal recognition are a nonlinear problem. More specifically, valence, arousal and 

liking accuracies drop steadily as the duration of the stimulus increases.  In details, the 

valence accuracy drops from 75.65% for 10 seconds to 64.64% for 59 seconds; the arousal 

drops from to 68.88%  for 10 seconds to 59.63% for 59 seconds; the liking drops from 

82.78% for 10 seconds to 69.57% for 10 seconds.  
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In addition, the valence tends to have a more non-linear relation with a stimulus 

than arousal. Also, liking has the strongest linear relation with a stimulus.  

For valence, arousal and liking, the relation between stimulus and the affective 

states becomes more non-linear as the duration increases. 

To test for the non-linearity in the data, we used an Extreme Learning Machine 

(ELM) [72] Classifier and ANN as additional methods for readout. ELM produces 

nonlinear decision boundaries to separate the different classes. Hence, ELM can be used to 

judge whether the data are non-linear or the decision trees classifier happened to work well 

for emotion recognition. In addition, we configured ANN to have two hidden layers each 

with 10 neurons such that it allows the decision function to have non-linear boundaries.      

Due to the heavy computational requirements of ELM and ANN, we conducted the 

classification task for the first 10 seconds of the EEG signal.  The following graph shows 

10-fold cross validation for user/video dependent scenario for the four readouts; decision 

trees, linear regression, ANN and ELM.  The testing shows that ELM and ANN work better 

than linear regression which is a strong indication that the data (the data produced from the 

LSM) are non-linear. Moreover, ELM works better than ANN because the number of 

hidden neurons is relatively small which does not allow for high non-linear relationship in 

the decision boundaries. The table below shows the results of testing the four ML 

approaches. Linear Regression delivered 75.65%, 69.88% and 82.78 for valence, arousal 

and liking, respectively, which are below the scored accuracies reported by ELM, ANN and 

Decision Trees.  
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Table 19: Testing for non-linearity output from LSM (experiment 1). 

 
 

5. Experiment 2: Spike Encoding  

In this experiment, we use the BSA algorithm to encode EEG signals into a train of 

spikes. The purpose is to test whether BSA is able to provide LSM with better information 

about EEG than using direct feeding of information into the liquid as used in Experiment 1. 

Here, we replace the analog input neurons and CbNeuron neurons used in Experiment 1 

with spiking input neurons and LIF neurons, respectively. Spiking input neurons accept 

only spike timing from input, which means that we have to encode input/EEG as spikes. 

For this purpose, we use BSA algorithm with two configurations: Configuration A produces 

about half spiking activity in comparison with Configuration B, i.e., number of spikes that 

are produced by Configuration A for each input/EEG channel are approximately half of 

those that were produced by Configuration B. Parameters of BSA for the two 

configurations are as follows:  
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 Configuration A:  Filter Tabs = 32, Threshold = 0.995. 

 Configuration B: Filter Tabs = 64, Threshold =0.955. 

a. User/Video Independent  

 

Table 20: Subject/Video Independent results for experiment 2. 

 Duration Configuration 

A (%) 

Configuration 

B (%) 

Valence 10s 55.89 58.87 

20s 65.14 66.97 

30s 73.52 72.60 

40s 77.08 73.20 

50s 78.45 72.15 

59s 79.55 72.26 

Arousal  10s 58.71 58.38 

20s 63.17 61.69 

30s 74.62 67.04 

40s 75.09 62.49 

50s 79.26 63.33 

59s 71.86 62.82 

Liking  10s 63.17 61.19 

20s 70.68 66.52 

30s 76.33 69.47 

40s 81.22 71.87 

50s 80.94 71.02 

59s 80.76 68.65 

 

b. User Dependent  

Table 21: LOSO results for experiment 2. 

  Configuration A (%) Configuration B (%) 

Valence 10s 50.95 51.17 

20s 50.41 51.15 

30s 50.84 50.78 

40s 50.44 50.79 

50s 50.45 51.12 
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59s 50.32 50.63 

Arousal  10s 51.60 51.67 

20s 51.18 51.25 

30s 51.29 51.33 

40s 51.24 51.66 

50s 51.41 51.49 

59s 51.57 51.36 

Liking  10s 50.03 55.20 

20s 51.32 55.66 

30s 52.69 55.29 

40s 52.11 54.83 

50s 51.57 55.57 

59s 51.30 55.18 

 

c. Video Dependent  

Table 22: LOVO results for experiment 2. 

  Configuration A (%) Configuration B (%) 

Valence 10s 50.08 50.02 

20s 49.89 49.87 

30s 50.23 50.19 

40s 50.19 50.82 

50s 50.76 50.54 

59s 50.42 50.24 

Arousal  10s 51.20 51.58 

20s 51.73 51.28 

30s 51.30 51.41 

40s 51.52 51.52 

50s 51.93 51.90 

59s 51.73 51.25 

Liking  10s 55.48 55.47 

20s 55.05 55.43 

30s 55.71 54.86 

40s 55.56 54.86 

50s 55.42 54.90 

59s 55.13 54.87 
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d. Isolated-Subject 

Table 23: Isolated-Subject scenario results by using decision trees (experiment 2). 

  Configuration A (%) Configuration B (%) 

Valence 59s 84.81 87.81 

Arousal 59s 86.43 88.14 

Liking  59s 86.16 88.69 

 

6. Discussion and Analysis 

The results show that BSA algorithm does not provide an effective method to 

encode EEG into spikes. In all tested scenarios, the reported results for this experiment are 

below of those results scored by the direct feeding in experiment 1. For example, the best 

reported accuracies for 10-fold cross validation were 79.55%, 71.86% and 80.76% for 

valence, arousal and liking, respectively in comparison with 94.12%, 95.14% and 95.25% 

for the same scenario in experiment 1. This could happen due to two reasons:  

 Parameters are not well selected, since there is no definite way to choose parameters 

values.  

 The method by itself is not efficient and this opens the door for a future research.  

7. Experiment 3: Emotion Recognition Using Different Number of Channels  

In this experiment, we use the same configuration that was used in experiment1, but 

using 10 specific channels. These channels are: Fp1, Fp2, F3, F4, T7, T8, P3, P4, and O2, 

which are chosen according to work [60]. The work claimed that these specific channels 

deliver a better performance than using the 32 channels.  
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a. User/Video Independent  

Table 24: Subject/Video Independent results for experiment 4. 

 Duration  Accuracies (%)  

Valence 10s 77.29688 

20s 70.87969 

30s 67.96771 

40s 66.16016 

50s 63.71563 

59s 62.20823 

Arousal  10s 87.17813 

20s 89.81094 

30s 90.97917 

40s 91.25156 

50s 92.1525 

59s 92.02434 

Liking  10s 86.87813 

20s 90.275 

30s 90.91354 

40s 92.09453 

50s 91.72688 

59s 91.7905 

b. User Dependent  

Table 25: LOSO results for experiment 3. 

 Duration  Configuration A 

Valence 10s 49.66875 

20s 49.47656 

30s 49.70521 

40s 50.15781 

50s 50.04063 

59s 50.60055 

Arousal  10s 51.60938 

20s 51.62813 

30s 52.33958 

40s 50.88594 

50s 51.1525 

59s 51.50563 

Liking  10s 55.13125 

20s 55.06563 

30s 55.15833 
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40s 55.03594 

50s 55.19 

59s 55.40179 

 

 

 

c. Video Dependent   

Table 26: LOVO results for experiment 3. 

 Duration  Configuration A (%) 

Valence 10s 77.29688 

20s 70.87969 

30s 67.96771 

40s 66.16016 

50s 63.71563 

59s 62.20823 

Arousal  10s 87.17813 

20s 89.81094 

30s 90.97917 

40s 91.25156 

50s 92.1525 

59s 92.02434 

Liking  10s 86.87813 

20s 90.275 

30s 90.91354 

40s 92.09453 

50s 91.72688 

59s 91.7905 

 

d. Discussion and Analysis 

The results indicate that using specific channels does not improve the accuracy of a 

classification task. LSM requires the entire 32 channels in order to deliver good accuracies. 

However, the experiment demonstrates that LSM works with acceptable performance when 
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some of the features are missing (in terms of EEG, the LSM can deliver the classification 

under lack of input information). The best reported results are 62.21%, 92.02% and 91.79 

for valence, arousal and liking, respectively when testing 10-fold cross validation. In 

LOSO, the reported results are between 49.67% and 55.4%. The accuracies improve when 

using LOVO to 77.3%, 92.15% and 92.09% for valence, arousal and liking, respectively. 

B. Conclusion   

This chapter provided an extensive study for different task in emotion recognition 

from EEG. In the first experiment, we showed how LSM can deliver a good accuracy in 

identifying the affective state. Moreover, we showed how we can deploy LSM as a multi-

purpose classifier, where we tried to identify the affective state, including valence, arousal 

and liking from one single trained LSM. In addition, we suggested that LSM can be used 

for anytime classification for online learning purposes. In experiment 2, we tested spike 

encoding algorithm, BSA, for identifying the affective state where we showed that this 

method of encoding needs more study in order to make it suitable for spike encoding for 

LSM’s input. Experiment3, tested the affective state recognition in the lack of information, 

where we used 10 channels out the 32 channels for affective state recognition. The 

experiment did not improve the performance. However, it showed that one LSM can work 

and deliver the classification task when some features are missing.    
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CHAPTER VIII 

 

A LIQUID STATE MACHINE -BASED FRAMEWROK 

FOR CONTINUOUS AUTHETICATION IN SMARTPHONES 

This chapter introduces an LSM-Based Continuous Authentication Framework for 

smartphones. The motivation behind this chapter is to use the flexibility of LSM in 

handling input and anytime classification to design a framework for continuous 

authentication in smartphones. This is because, such a framework requires a learning model 

with exact capabilities that LSM provides, which are anytime pattern recognition, working 

in lack of information and time series handling.   

 This chapter is organized as follows: section 1 describes the motivation behind 

continuous authentication in smartphones. Section 2 surveys the related work in this 

context.  In section 3, we introduced how we harnessed LSM for this purpose, and we 

describe the methodology and the suggested framework. Section 4 tests the framework for 

augmented password authentication, long-text authentication and gestures/strokes 

authentication.    

A. Mobile Continuous Authentication  

Smartphones have become ubiquitous devices that offer increasingly high 

computing power in small affordable packages. Market analysis predicts that in 2015 there 

will be 1.5 billion smartphones and 640 million tablets in use worldwide [73].  Their 

increased popularity and growing capabilities have transformed them from simple 
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communication devices into powerful information hubs that process and store a tremendous 

amount of private and personal data. Consequently, with their small size and high mobility, 

smartphones are under constant threat of unauthorized access. The need for robust 

authentication methods is therefore at an all-time high.  

Authentication utilities offered with current smartphones are typically static. Users 

are prompted to provide proof of identity at login through means of patterns (numerical or 

graphical) or physiological prints (iris, fingerprints, facial recognition, voice ID, etc.). The 

first class is vulnerable to spoofing and hacks while the second, while more secure, 

demands too much user attention. With both means of static authentication, only login 

credentials are checked, and no session-wide security is provided, making the device and 

the sensitive information it holds susceptible to all kinds of post login exploits. For these 

reasons, there is growing demand for a robust continuous authentication system (CAS), 

which aims to authenticate the user from the initial stages of login till logout; thus checking 

the identity of the user throughout a session.  

Of special interest are Continuous Behavioral Biometric Authentication systems 

(CBBAS) that have garnered a great deal of recent attention as an emerging research area. 

Instead of employing physiological methods that explicitly prompt a user for re-

authentication on a periodic basis, a CBBAS transparently monitors the activity of the user 

throughout the session in order to continuously confirm their identity. Only on the occasion 

that the user’s activity is construed as atypical or anomalous, the system demands re-

authentication.  
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Several behavioral biometrics have been proposed in recent years and evaluated for 

their performance and usability. In what follows, we shed some light on a few stand out 

efforts before proposing a transparent continuous authentication framework.  

B. Related Work 

Continuous authentication research on mobile devices is a novel field with a 

relatively limited number of studies. Relevant literature reveals two popular continuous 

behavioral authentication techniques: typing dynamics and touch/gesture analysis. 

Additionally, miscellaneous behavioral metrics, both bio-centric and otherwise, like gait 

analysis, communication monitoring, location tracking, and others have been proposed to 

authenticate or supplement more robust authentication metrics. We provide a brief account 

of these works in what follows with special focus on touch.  

Starting with keystroke dynamics, continuous seamless authentication based on the 

user’s typing characteristics was proposed in [74]. Two typical handset interactions are 

tackled, dialing telephone numbers and typing text messages. In comparison with a kernel-

based (RBF) neural network (13.6%) and a generalized regression neural network (GRNN) 

(13.3%), a feed forward multi-layered perceptron (FF-MLP) achieved an equal error rate 

(EER) of 12.8% proving the robustness of the implemented system. However, Clarke et al. 

note the extra computational power required for such a network and the subsequent 

restrictiveness on its implementation on current mobile handsets. In [73], Feng et al. 

studied Typing Authentication and Protection (TAP) for two stages, login and post-login. 

Three user studies, which compare authentication performance under different virtual key 

typing settings, were evaluated: character input time data (including pressing and flight 
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time), time and pressure data without haptic feedback; and time and pressure data with 

haptic feedback. Decision trees, Random Forest, and Bayes net classifiers were used.  

Leveraging a large number of features, TAP achieved best performance of 1.0% False 

Acceptance Rate (FAR) and 1.0% False Rejection Rate (FRR) at 40 character long inputs 

using Random Forest algorithm. 

As for touch analysis, the increasing popularity of smartphones coupled with touch 

being the primary form of interaction has led to recent Continuous Biometric 

Authentication systems (CBAS) research investigating the discriminative qualities of 

gestures/strokes and their applicability to continuous authentication. Frank et al. [75] 

designed a CAS using up to 30 features extracted from users’ strokes. Features included 

are: start and end point coordinates, gesture direction, area covered by finger, etc. Two 

classifiers, SVM and KNN, were employed to distinguish the client after initial login. The 

number of strokes was noted to affect the EER recorded where 13% EER was achieved 

with single strokes versus an EER between 2% and 3% for intersession authentication and 

between 0% and 4% for inter-week authentication when 11 or 12 strokes were aggregated. 

The work also concluded that SVM achieved lower EER in comparison with k-NN for all 

scenarios. Using the public database made available by [75], Govindarajan et al. [76] 

proposed a novel framework for outsourcing the continuous authentication (CA) of 

smartphones using secure privacy-preserving protocols. Touch events from 41 users were 

used to create user profiles on an Android platform. 90% of the data was used for training 

while the remainder was used for testing. Biometric verification was performed by 

matching user templates with test templates using scaled Euclidean and scaled Manhattan 

verifiers. A feature selection phase and an outlier filtering phase were performed to find the 
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optimally performing feature subset and discard atypical samples respectively. Equal error 

rates (EER) were computed for both verifiers and while the Manhattan verifier was found 

to deliver best performance, the EER recorded at 20+% was significantly worse than that 

reported in [75]. Leveraging touch events similarly while incorporating multi-touch 

gestures, Zhao et al. [77] proposed Graphic Touch Gesture Feature (GTGF) to extract the 

identity traits from the touch traces. Six commonly used touch gestures were taken into 

consideration (flick up/down, flick right/left, zoom in/out). Features extracted consisted of 

the time duration, the length of touch traces, the directions and speeds of finger movements, 

and the tactile pressures. Extracted traces were further filtered into one of the six predefined 

gestures. The proposed method was evaluated for multiple scenarios and achieved best 

performance with 2.62% and 4.31% EER for combined gestures and single tip gestures 

respectively, thus joining the above reviewed work in making a solid argument for touch 

based continuous authentication. Lastly, providing a counterpoint to these approaches, 

Serwadda et al. [78] aimed to show that a simple Lego robotic arm driven by input gathered 

from general population swiping statistics can generate forgeries that achieve alarmingly 

high penetration rates against touch-based authentication systems. The performance 

evaluation used in the user studies they conducted revolved around a zero-effort threat 

model in which the adversary is assumed to be unable to pull off a sophisticated forgery. 28 

features related to touch positions, touch area, pressure, and others were extracted and fed 

to a Support Vector Machine (SVM) and a k-Nearest Neighbors (k-NN) classifier. The 

EER calculated based on classifier output was shown to increase by as much 1009% when 

user data was tested against robotic arm generated forgeries. 
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Apart from single module CAS, significant work has been done on multimodal 

systems. Multi-modal systems have the benefit of recruiting multiple sensors and data 

sources making them tolerant to hardware failures. Additionally, aggregated features 

incorporating multiple sources can increase confidence in user identity by resolving 

ambiguity. The information coming for individual modules can be integrated at four levels: 

sensor level, feature extraction level, matching score level, and decision level. With data 

typically hidden at sensor and feature levels, most approaches resort to simple rules (max, 

sum, and product) that combine matching scores and produce a compound trust or 

confidence metric. In [79], a DARPA sponsored CAS on a desktop computer was tested 

with behavior-metrics collected from 99 users over the course of 10 weeks. The metrics 

included keystroke dynamics, mouse movements, CPU and RAM usage, and processes and 

applications used. Deutshmann et al. proposed a novel trust metric that controls changes in 

trust levels based on user scores. These scores are based on user profiles created using 

fuzzy sets that are later used by a Bayesian network to compare again test data. 

Experiments on mouse and keyboard data, both individual and combined, were conducted 

leading the authors to conclude that keyboard dynamics performed best by never falsely 

rejecting correct users and recognizing imposters in as little as 38 interactions. Azzini et al. 

[80] followed the fuzzy route as well with a multimodal CAS leveraging face recognition 

with asynchronous finger print recognition. A fuzzy controller with custom rules was 

implemented to fuse metrics at the decision level using the match scores of the biometric 

sub-systems as inputs. Experiments were conducted by monitoring the activity of 100 users 

during an hour-long session. Multiple membership functions were evaluated with the best 

choice demanding an average of 8.68 fingerprint scans per hour.  Finally, Crawford et al. in 
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[81] provided a framework for transparent user authentication using a combination of 

Keystroke Dynamics (KD) and Voice Verification (SV) to calculate the confidence in user 

identity according to which the client is allowed to take control of the device at three level 

of confidence. For example, changing the PIN of the device requires a higher confidence 

level than taking a photo. The authors conducted tests on different devices (IPhone 1,2,3,4 

& IPod 1,2,3,4) using Naïve Bayes, Decision Trees, and 5-NN as classifiers and concluded 

that 5-NN achieved the best EER median with 19.5% for KD and 28.54% for SV. Crawford 

also showed the results of testing multimodal system using either Naïve Method or 

Posterior Probability Method (PPM) to combine KD and SV reporting that PPM is the best 

method with 32.84% EER median, but the single biometric system using KD is still 

competing multi-biometric and single SV with 29.52 EER median for overall classifiers. 

C. LSM-based Continuous Authentication Framework  

In chapter VI, we showed how we can use LSM for feature extraction and online 

feature extraction from EEG raw data For continuous authentication for smartphones, the 

environment is similar for two reasons; first, LSM can be used for feature extraction 

directly from the sensors’ output; second features will be available automatically as long as 

there is data collected from the sensors. We try in this framework to reduce the 

preprocessing of data from sensors such that we obtain a real anytime authentication 

framework. In the next section, we describe the type of information that we can obtain from 

mobile sensors for keystrokes and gestures/strokes. In our design, the framework provides 

authentication for three components in smartphone; first, augmented password 

authentication when a user enters his/her password; second, when a user enters a long text 
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such as SMS, email, MMS, etc.; finally; strokes/gestures authentication when a user swipes 

his/her finger(s) on touchscreen. The first and second components share the same features, 

but differ in the length, while the third component has different features.  

1. Mobile Sensor Data  

We target Android based devices for our framework and built our own application 

to collect user’s data interactions and logs. For keystroke, we collect the following 

information for each user:  

 The amount of pressure on the touch screen when pressing each character.  

 The area of the finger when pressing each character.  

 The time of pressing each character.  

 The time of releasing each character.  

While for strokes/gestures component, we collect the following features:  

 Time stamps for stroke/gesture (multiple recordings per one continuous swiping). 

 X-coordinates stroke/gesture (multiple recordings per one continuous swiping). 

 Y-coordinates stroke/gesture (multiple recordings per one continuous swiping). 

 Velocity on X-coordinates (multiple recordings per one continuous swiping). 

 Velocity on Y-coordinates (multiple recordings per one continuous swiping). 

 The amount of pressure on the touchscreen when swiping (multiple recordings per 

one continuous swiping). 

 The area of the finger when swiping on touchscreen (multiple recordings per one 

continuous swiping). 
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2. LSM-Based Framework 

In this section, we introduce our framework base on the previous discussion. As 

previously mentioned, we want to reduce the amount of preprocessing information before 

the LSM. It can be noticed that the timing of pressing and releasing characters for 

keystroke can be fed directly as a spike into the LSM as spikes. On the other hand, we can 

feed other information such as the pressure and size of a finger on the touchscreen using 

direct feeding as we have done in experiment 1, chapter VII. However, due to some 

constraints on the simulator that we will use, csim, we have to build two LSM and connect 

them with each other (CbNeuron model accepts direct input, while LIF accepts spike 

input). The first LSM, LSM 1, consists of LIF neurons, which accepts spike encoding. The 

second LSM, LSM2, consists of CbNeuron model neurons and accepts direct information 

feeding by mean of an analog input neuron. We connect the two LSMs with each other and 

read from LSM 1.  That is, we use LSM 1 as an output for the framework, where this 

output holds an accumulative information from input 1 to input 7.The information flow is 

depicted in Figure 17.   

Since the keystroke does not include information about velocity and coordinates, we 

need to have before the main LSM, i.e., the LSM that includes LSM 1 and LSM 2, an input 

interfacing component such that we map the input for the corresponding point inside the 

main LSM. The main LSM has 7 inputs as follows: 
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Table 27: Input description for LSM-based continuous authentication. 

Input Function  Type  Connected 

to 

Used by 

Input #1 Deliver pressing time as 

spikes. 

Spiking LSM 1 Keystrokes 

and 

gestures 

Input #2 Deliver releasing time as 

spikes. 

Spiking LSM 1 Keystrokes 

and 

gestures 

Input #3 Deliver average pressure on 

the touchscreen. 

Analog LSM 2 Keystrokes 

and 

gestures 

Input #4 Deliver average finger size 

on the touchscreen. 

Analog LSM 2 Keystrokes 

and 

gestures 

Input #5 Deliver Y-coordinates of 

gestures/strokes on the 

touchscreen 

Analog LSM 2 Gestures 

only 

Input #6 Deliver Y-coordinates of 

gestures/strokes on the 

touchscreen 

Analog LSM 2 Gestures 

only 

Input #7 Deliver velocity of 

gestures/strokes on the 

touchscreen 

Analog LSM 2 Gestures 

only 

 

 

 

Figure 18: Main LSM architecture for continuous authentication. 



111 

 

    

Figure 19: LSM-Based Continuous Authentication Framework for Smartphones. 
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D. Feature Selection 

Having reviewed the related work in continuous mobile authentication, we choose 

from the related work the best reported feature vector for keystroke and gestures/strokes. 

More specifically, we will use the same feature vector information in related 

work for comparison purposes with the features extracted by the suggested 

architecture using LSM.  

1. Keystroke features 

According to the works [82, 83], a heterogeneous vector of the following 

components would deliver the highest performance: pi, the average pressure of character i 

on touchscreen; si, the average size of finger  on touchscreen for character i; hi, the hold 

time for character i; fi, the flight time, which is the difference between pressing character 

i + 1 and releasing character i + 1; pri, the relative pressing time for character i; and  ri, the 

releasing time for character i. The feature vector is represented as follows:  

v =

{p1, p2, … pN, s1, s2, … sN, h1, h2, … hN, f1, f2, … fN, pr1, pr2, … prN, r1, r2, … rN} (8.1) 

E.   Experimental Procedure 

1. Application side configuration  

To evaluate the quality of features from LSM, we decided to collect our own dataset 

to ensure the accessibility to data from mobile logs. To do this, first we designed an 

Android Application that collects and logs user interactions with a smartphone. The 
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application was installed on Samsung GT-i9100 smartphone and we asked 22 users to 

participate in data collection. All users are students between 20 to 28 years with 40% of 

them are males.  Each user was asked to perform a three-step data collection.  

In the first step, the user was asked to enter a fixed password for 15 times. We chose 

“.tie5Roanl” as a password to compare our results with the available works on augmented 

passwords [84].  

 

Figure 20: A screenshot of the application interface for Augmented Password Authentication. 

In the second step, the user was asked to enter the following text using the 

smartphone keyboard.  

“” 
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Figure 21: A screenshot of the application interface for Long-text Authentication. 

The third step includes data collection for strokes/gestures, where the user was 

asked to swipe anywhere on the screen in specific direction according to a label that 

appears on the smartphone touchscreen. In total, we have 120 gestures/strokes with 

different direction; up, down, left and right.  
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Figure 22: A screenshot of the application interface for Strokes Authentication. 

2. LSM side configuration  

The following tables show the configuration for LSM 1 and LSM 2. 

Table 28: LSM 1 configuration. 

 

 

Neuron Configuration  LSM Connectivity and 

Architecture  

Readout 

Model: LIF 

Vthresh = 0.015 (V) 

Vreset = 0.01447 (V) 

Trefract = 0.002 (sec) 

Cm = 3e-08 (F) 

Vresting = 0 (V) 

Vinit = .0146533 (V) 

Vm : 0 (V) 

 

Architecture : 6×6×6  

𝝀= 2 

𝒘𝒊𝒏𝒑𝒖𝒕=0.15 

𝑪𝒔𝒄𝒂𝒍𝒊𝒏𝒈=1 

 

Sampling: [0.01:0.025:T]  

With T=2 sec for Augmented 

password authentication, 200 

seconds for long-text 

authentication and 0.5 second 

for Gestures/strokes 

authentication. 

Filter :  exponential filter 

with 𝜏 = 0.03 
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Table 29: LSM 2 configuration. 

 

F. Anomaly Detection methods 

The most intuitive way to evaluate continuous authentication in smartphones is to 

use anomaly detection approach. Differently from the published works that deploy 

classification to evaluate continuous authentication, anomaly detection is a more natural 

approach to address this problem because it is not reasonable to build a database for all 

possible non authorized users in a supervised environment. That is, classification requires 

the security system to specify the genuine user’s data and other data from non-genuine 

users and hence the classification model will be limited and not generalized for other yet to 

be see data from non-genuine users. This is an anomaly detection problem. 

In this section, we review the available methods to perform anomaly detection. 

Most of the methods were taken from [84].  

Let us first assume the following variables to ease the explanation. Let m be the 

mean of the training data (the genuine user data), xi is a sample from training data, yi is a 

sample from testing data and sd is the standard deviation of the training data.  

Neuron Configuration  LSM Connectivity 

and Architecture  

Readout 

Model: CbNeuron  

Vthresh = -0.045 (V) 

Vreset = 0 (V) 

Trefract = 0.003 (sec) 

Cm = 3e-08 (F) 

Rm = 1e+06 (Ohm) 

Em : 1.0395e-314 (V) 

Vresting = -0.06 (V) 

Vinit = -0.06 (V) 

Vm : 1.0395e-314 (V) 

 

Architecture : 5×5×5 

neurons  

𝜆=2 

𝒘𝒊𝒏𝒑𝒖𝒕=0.4 

𝑪𝒔𝒄𝒂𝒍𝒊𝒏𝒈=1 

 

No readout applied  
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1. Euclidean Detector 

The idea here is simple and it relies on the Euclidean distance. Specifically, this 

method calculates the mean of training data m and then calculates the scores of the testing 

data by finding the Euclidean distance di between the mean and each sample in the testing 

data.  

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑑𝑖  (8.2) 

2. Normalized Minimum Distance Classifier 

This method is similar to the Euclidean one, however it differs in the way of 

calculating the testing score. The score of each test sample is calculated by normalizing the 

Euclidean distance  between testing sample yi and the mean m by the norm of the mean m 

and yi. 

𝑠𝑐𝑜𝑟𝑒𝑖 =
𝑑𝑖

‖𝑚‖∗‖𝑦𝑖‖
   (8.3) 

3. Manhattan method  

This method is also similar to the Euclidean method; however, it uses the 

Manhattan distance instead to calculate the distances between the mean of training data m 

and samples of testing data.  

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑑𝑖   (8.4) 

With 𝑑𝑖 is the Manhattan distance between 𝑦𝑖 and𝑚. 
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4. Filtered Manhattan 

Here, the method is similar to the Manhattan method, but it tries to repair the 

training data by ignoring the samples that are three or more standard deviations from the 

mean. After finding those samples in the training data, the method then drops them and 

recalculates the new mean. The scores of testing samples are calculated according to the 

new mean using Manhattan distance. 

5. Scaled Manhattan 

This method uses the same methodology as in Manhattan method, but it scales each 

feature in the testing sample by the mean absolute deviation of each feature sp , where sp  is 

calculated in the training phase by finding the mean of the differences between each feature 

in training samples and the mean m.  

6. Outlier-counting (z-score) 

This method calculates the mean and the standard deviation of each feature in the 

training phase. In the testing phase, the method calculates the z-score for each feature in the 

testing sample. After that, the score of testing sample is calculated by finding how many 

features exceeded a predefined threshold. The threshold here is experimental value and can 

be tuned by trial.  

7. One-Class SVM  

This method aims at finding a decision boundary around the training data. One-

Class SVM uses the same concept of the kernel method where it maps the data into high 
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dimensional data. The scores here are computed by finding the distance between the 

decision boundary and testing samples.  

G. LSM Readout Optimization for Distance-based Anomaly Detection Method 

Since anomaly detection methods depend on evaluating the sampling according to 

their distances to the mean of training data in general, then improving distances such that 

the samples from the same user become closer and samples from different users become 

farther.  

The suggested solution is to concatenate resultant states after LSM in one vector. 

That is, we merge states horizontally after LSM to form a long vector. Even though this 

idea seems simple; however, it showed great improvements in accuracy for anomaly 

detection methods.   

 

Figure 23: Liquid state concatenation for improving distance-based anomaly detection. 

A. Results of testing continuous authentication in smartphones  

In this section, we test the proposed framework for continuous authentication in 

smartphones. We test each component in the framework independently, i.e., we report the 

result of testing augmented password authentication, long-text authentication and 

gestures/strokes authentication. For augmented password authentication, we report the 

results of testing anomaly detection on best reported feature vector form literature review 
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(see section D), using LSM feature vector and using a concatenated liquid state feature 

vector described in section G. All results are reported for one vs. one scenario and one vs. 

all scenarios for each type of feature vector.  

For long-text and gestures/strokes authentication, we report the results for liquid 

states feature vector and a concatenated liquid states feature vector, since they need further 

works that are out of the scoop of this thesis.  

In all tests, the results are reported in Equal Error Rate (EER) form after averaging 

over all 22 users participated in the data collection. The values of EER are in %, i.e., 50 is 

50%.        

1. Augmented Password Authentication  

Table 30: Augmented Password authentication error rate (One vs. One scenario). 

 Literature review 

feature vector 

LSM feature 

vector 

Concatenated 

feature vector 

Euclidean Detector 1.71055 46.50597 3.05931 

Normalized Minimum Distance  1.417414 49.65097 4.015016 

Manhattan method 1.586273 45.12553 2.668668 

Filtered Manhattan 1.673142 41.55802 0.058583 

Scaled Manhattan 0 15.9788 0 

Outlier-counting (z-score) 5.625655 35.08592 0.03243 

 

Table 31: Augmented Password authentication error rate (One vs. All scenarios). 

 Literature review 

feature vector 

LSM feature 

vector 

Concatenated 

feature vector 

Euclidean Detector 13.36383 49.50233 12.78469 

Normalized Minimum Distance  13.92221 49.82517 16.20212 

Manhattan method 13.68596 48.76225 5.519532 

Filtered Manhattan 13.26725 44.59739 0 

Scaled Manhattan 0 17.07342 0 

Outlier-counting (z-score) 14.7841 34.68849 0 
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2. Long-Text Authentication  

 

Table 32: Long-Text authentication error rate (One vs. One scenarios). 

 LSM feature 

vector 

Concatenated 

feature vector 

Euclidean Detector 47.70873 0.585811 

Normalized Minimum Distance  50 0.855847 

Manhattan method 47.2924 0.752246 

Filtered Manhattan 45.24488 0.00086 

Scaled Manhattan 36.03566 0.329986 

Outlier-counting (z-score) 45.55512 0.52056 

 

Table 33: Long-Text authentication error rate (One vs. All scenarios). 

 LSM feature 

vector 

Concatenated 

feature vector 

Euclidean Detector 50.53207 1.59801 

Normalized Minimum Distance  50 2.021999 

Manhattan method 49.97733 2.08626 

Filtered Manhattan 47.90583 0.0168 

Scaled Manhattan 37.43904 1.214364 

Outlier-counting (z-score) 45.34701 0.6828 

 

3. Gestures/strokes Authentication   

Table 34: Gestures/Strokes authentication error rate (One vs. One scenario). 

 LSM feature 

vector 

Concatenated 

feature vector 

Euclidean Detector 40.64681 2.75268 

Normalized Minimum Distance  50 2.862201 

Manhattan method 40.32027 2.265007 

Filtered Manhattan 33.84939 0.741661 

Scaled Manhattan 9.409299 0.006753 

Outlier-counting (z-score) 31.38148 0.528848 
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Table 35: Gestures/Strokes authentication error rate (One vs. All scenarios). 

 LSM feature 

vector 

Concatenated 

feature vector 

Euclidean Detector 49.28858 8.127847 

Normalized Minimum Distance  50 8.319069 

Manhattan method 46.08879 6.674691 

Filtered Manhattan 38.27089 2.543448 

Scaled Manhattan 11.25073 0.058676 

Outlier-counting (z-score) 34.24807 8.127847 

 

B. Results Discussion 

The results show that LSM provides a better discriminative feature vector than the 

best reported feature vector in the literature review except for some methods. For Filtered 

Manhattan, Scaled Manhattan and Outlier-counting (z-score), a concatenated states feature 

vector always performs better than literature review feature vector (for augmented 

password authentication). For long-text and stroke authentication, the concatenated feature 

vector produces a very low EER. 

  In addition, LSM provides an online method and natural environment to handle 

continuous authentication via continuous feature extraction. Moreover, we showed that 

LSM can be considered as a universal-model to handle signals from different sources of 

signals, keystrokes and gestures. If we are to build the same model using techniques other 

than LSM, then we have to build a different model for each different component in the 

framework. 
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CHAPTER IX 

EFFIECNT SAMPLING TIME SLECTION FROM LIQUID 

STATE MACHINE 

A. Introduction  

LSM works by sampling states of a liquid during the course of its work. These 

states are used later by different readout functions to identify the corresponding patterns, 

i.e., the extracted states from the same input pattern are assigned to the same label or class 

accordingly. These states hold information about the liquid state at each sampling time. 

However, LSM at some periods or at specific sampling times may hold more or less 

information about input. That is, some states are more informative than other with the 

respect to when it is sampled. In this chapter, we introduce a method to choose the most 

informative sampling times to improve the classification task. This chapter also uses the 

DEAP dataset for testing purposes and specifically it will use the Subject/Video 

independent scenario. In addition, this chapter uses the proposed method to study how our 

brain acts with respect to the valence and arousal. 

This chapter is organized as follows: in section B, we introduce the proposed 

method mathematically. Section C provides testing and results for applying this method. In 

section D, we devise the method to study the course of valence and arousal in humans, 

where we show he benefit from using this method not only for states selection, but also in 

evaluating states for further analyses.  
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B. Active States Detection Method  

In this section, we will use some statistics to evaluate states after the liquid to rank 

them accordingly. Then, we will choose the top ranked states to see how they will improve 

the classification task.   

Let 𝑠 = {𝑠1, 𝑠2, 𝑠3 … 𝑠𝑛} be liquid states values, where 𝑛 is number of sampling 

times and 𝑡 = {𝑡1, 𝑡2, 𝑡3 … 𝑡𝑛} are moments of sampling states. Among 𝑡, we want to 

choose the 𝑘 highest sampling periods such that we maintain from 𝑠 the k top informative 

liquid states.  To achieve this goal, we will use t-test method as an approach to perform this 

goal. This idea is inspired from work [85] which detects some unique markers molecules 

that are found in the sera of the ovarian cancer patients to use them in nearest neighbor 

classifier (Adapting the method for LSM is a novel idea and has not been used for LSM 

before). This is a challenging problem since molecules differ significantly from a person to 

another; however, the method presents a statistical way to choose the k-best discriminative 

markers molecules to differentiate between patient and healthy persons.  The method has 

been shown to be very effective for this problem with 100% discrimination.    

Choosing the effective sampling time can be seen from the same perspective, where 

each sampling time can be considered as a marker molecule. In the next section, we 

reformulate the method such that can be applied on sampling time selection. The problem 

formulation follows the same mathematical derivation in [86].   

The goal of this method is to test for the zero differences between (𝑢1 − 𝑢2) where 

𝑢1 is the mean of the values of the liquid state at  𝑡𝑗 , 𝑗 = 1,2, . . , 𝑁, for the class 𝜔1 and 𝑢2 
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is the mean for the same feature when it is taking for the class  𝜔2. Let us now assume 𝑥𝑖, 

 𝑖=1, 2, …, N , be the state values of the period 𝑡𝑗 in class 𝜔1 with mean 𝑢1. Similarly, let  

𝑦𝑖, 𝑖=1,2, … , N , be the state values of the same period, 𝑡𝑗 , in class 𝜔2 with mean  𝑢2.   

For the variance, we assume that the variance for 𝑥𝑖 = 𝜎1
2 and the variance for  𝑦𝑖 = 𝜎2

2 are 

equal;    𝜎1
2 = 𝜎2

2 = 𝜎2.  

Let us build the hypothesis that test the closeness between the two mean as follows:  

𝐻1: ∆𝑢 = 𝑢1 − 𝑢2 ≠ 0   (9.1) 

𝐻0: ∆𝑢 = 𝑢1 − 𝑢2 = 0   (9.2) 

Now, let us assume that 𝑧 = 𝑥 − 𝑦 

Where 𝑥, 𝑦 denote the random variable corresponding to the values of the liquid 

states in the two classes 𝜔1 and 𝜔2, respectively.  

Under the assumption of the statistical independence between 𝑥 and 𝑦, we can 

write: 

𝐸[𝑧] = 𝑢1 − 𝑢2 with 𝜎𝑧
2 = 2𝜎2  (9.3) 

Then the estimation of the mean of the random variable 𝑧 is: 

�̃� =
1

𝑁
∑ (𝑥𝑖 − 𝑦𝑖) 𝑁

𝑖=1 =  �̃� − �̃�  (9.4) 
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Here, we assume that the variance and means are known and that: �̃�~𝑁(𝑢1 −

𝑢2,
2𝜎2

𝑁
. However, if the variance is not known (the mean should not be a problem because  

�̃� is consistent and unbiased estimator), then the test statistics is required as follows:  

𝑞 =
(�̃�−�̃�)−(𝑢1−𝑢2)

𝑠𝑧√
2

𝑁

  (9.5) 

Where  

𝑠𝑧
2 =

1

2𝑁−2
(∑ (𝑥𝑖 − �̃�)2𝑁

𝑖=1 +  ∑ (𝑦𝑖 − �̃�)2𝑁
𝑖=1 )  (9.6) 

It can be shown that 
𝑠𝑧

2(2𝑁−2)

𝜎2  follows a Chi-square distribution with 2𝑁 − 2 degree 

of freedom.  

For the time being, we assume the availability of the variance and mean in the 

further steps. The test statistic value for the most important periods or sampling times will 

be formulated as follows: 

𝑟𝑖 =
(𝑥𝑖−𝑦𝑖) 

√
𝜎𝑥𝑖

2

𝑁𝑥𝑖
−

𝜎𝑦𝑖
2

𝑁𝑦𝑖

  (9.7) 

Where 𝑟𝑖 is the ranking for sampling period 𝑡𝑖, 𝑖=1,2, … , N, and 𝑁𝑥𝑖
 is the number 

of values from liquid state 𝑠𝑖 and belongs to class 𝜔1. 𝑁𝑦𝑖
 is the number of values from 

liquid state 𝑠𝑖 and belongs to class 𝜔2. 𝑥𝑖, 𝑦𝑖 and 𝜎𝑥𝑖

2 , 𝜎𝑦𝑖

2  are the means and variances for 

liquid state 𝑠𝑖  values that correspond to class 𝜔1 and 𝜔2 , respectively. 
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We will use this metric to rank the sampling periods 𝑠 and then choose the top 𝑘 

sampling periods.  

C. Testing  

As aforementioned, the experiment will use Subject/Video independent scenario to 

assess the method. Moreover, the method later will be used to study the valence and arousal 

courses of human brain.  

For the configuration, the same sampling time that was used in Emotion 

Recognition in Chapter VI is used in this experiment; [0.5: 0.4:59], which means that our 

sampling starts after the 0.5 second and we sample every 0.5 seconds until the moment the 

59 seconds. The total number of the produced states for each input pattern (the EEG for 

each different video) is 𝑁 = 147 states. 

In testing, we compare the results in two cases for different configurations of  𝑘. 

The first case uses the selection method to choose top ranked 𝑘 states. The second case uses 

a random selection for 𝑘 states. To increase the reliability of the second case, we repeat the 

random selection for 20 times, and then we average the results accordingly. We choose 𝑘 =

[5 10 20 40 60 80 100 120]. The readout functions are Decision Trees and Linear 

Regression. All experiments are done in 10-fold cross validation form.   
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Figure 24:  Active State Selection Method testing on Valence using Decision Trees. 

 

Figure 25: Active State Selection Method testing on Valence using Linear Regression. 
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Figure 26: Active State Selection Method testing on Arousal using Decision Trees. 

 

Figure 27: Active State Selection Method testing on Arousal using Linear Regression. 
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Figure 28: Active State Selection Method testing on Liking using Decision Trees. 

 

Figure 29: Active State Selection Method testing on Valence using Linear Regression. 

D. Results and Discussion  

The results show that the selection performs better than any random selection for 

the states except for liking classification case with Linear Regression readout, where it 

generated relatively lower accuracies than random selection for some configurations for k. 
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In addition, the method reduces the computational cost of processing extra and useless 

liquid states from LSM. For example, For example, with about 10% of the whole extracted 

liquid states from LSM, we were able to deliver the better accuracy for valence and arousal 

than using the entire liquid states in readout.   

E. The Relation between Sampling Times Ranks and the Affective States of the Brain  

This section examines the proposed method to study the valence and arousal 

courses during a stimulus by studying the ranks of each sampling time. That is, we want to 

see how the valence and arousal vary during one stimulus with respect to the targeted 

classification task. In the following figures, we show the ranks of the sampling times for the 

valence from the users 1-8 of DEAP dataset. The Figures for the remaining users (9-32) are 

in the Appendix of this chapter.   
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Figure 30: Valence Sampling Times Ranking for Users 1-8. 

 

Figure 31: Arousal Sampling Times Ranking for Users 1-8. 

1. Discussion 

In this section we discuss the outcome of the selection method in order to draw 

some conclusions about the valence and arousal courses during a stimulus.  

At first glance, we can notice some specific patterns of valence for some users. For 

example, user 4, user 22 and user 30 have the same valence course, where the high ranking 

states for valence are concentrated before the first 33 seconds.  Those users, in fact, are 

female subjects in DEAP dataset, according to DEAP dataset manual. 

Secondly, we cluster the ranking information from each user into two subsets using 

k-means algorithm. The clustering information shows that valence course between female 
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differ from those of males; out of the 32 users, 22 users were categorized correctly into 

either male or female. The following table shows the clustering result of the 32 users. 

Table 36: Clustering results for the outcome of the selection method. 

 

  

 

 

 

 

Testing arousal did not show interesting result with respect to the gender.    

 Predicted Actual  

User 1 Male Male 

User 2 Female Female 

User 3 Male Female 

User 4 Female Female 

User 5 Male Male 

User 6 Male Male 

User 7 Male Male 

User 8 Female Female 

User 9 Female Female 

User 10 Female Female 

User 11 Female Female 

User 12 Male Male 

User 13 Female Female 

User 14 Female Female 

User 15 Male Female 

User 16 Male Male 

User 17 Female Male 

User 18 Female Male 

User 19 Male Male 

User 20 Female Male 

User 21 Female Male 

User 22 Male Female 

User 23 Male Male 

User 24 Male Female 

User 25 Female Female 

User 26 Male Male 

User 27 Male Male 

User 28 Female Male 

User 29 Male Male 

User 30 Male Male 

User 31 Female Female 

User 32 Male Female 



134 

 

It can be seen from plotting of the sampling times ranking for valence and arousal 

(Figure 30 and 31) that valence and arousal are not steady nor have flat responses; actually 

they fluctuate over time. That is, the consecutive periods of time include high/ low 

activeness of valence and arousal courses. To examine this fact, we conducted an 

independent experiment, where we increased the sampling times to the sampling time of 

the EEG signals in the DEAP dataset, 128 Hz. This produced 7552 sampling periods. We 

were able to perform this experiment for only Subject one, since it includes high 

computational efforts.  

It can be seen from the Figure 32 that active valence periods (the dark blue vertical 

lines) happen as bursts. Figure 33 shows that arousal course within the same period (one 

second) for Subject one. It can be noticed that the active periods of valence and arousal 

courses happen at different sampling times except for some periods as depicted in Figure 

34.  

 

Figure 32: The Sampling times ranking for one second from Subject one (Valence).   
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Figure 33: The Sampling times ranking for one second from Subject one (Arousal). 

 

Figure 34: A Comparison for valence and arousal Courses from Subject 1. 

F. Conclusion  

In this chapter, we introduced a method to rank the sampling times in a way to 

maintain the top informative sampling times. We showed in the experimental part how this 

method can improve the performance of a classification task. This is important not only for 
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the performance of a classifier, but also for reducing the power consumption for a 

hardware-based implementation of LSM. The power saving is a result of reducing the 

number of extracted liquid states/ samples from LSM.   

In addition, we used the proposed method to study the valence and arousal courses 

in brain, where we drew some conclusions about their working course. Other analyses 

could be done based on the outcome of the selection method, where we open this for future 

work.  
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CHAPTER X 

 

PRUNING INATTENTVIE NEURONS IN LIQUID STATE 

MACHINE  

 

This chapter is concerned to look into an energy aware computing LSM 

architecture.   LSM consists of 3D architecture of randomly connected neurons that follows 

the small world connectivity described in chapter III. During information propagation 

inside LSM some neurons become lazy, while others become more informative with 

respect to the targeted task. This chapter presents a method to evaluate neurons during 

information propagation by studying the probability of binding information between them. 

Some neurons in LSM fires in harmony with irrespective to an input, because they form 

isolated islands inside the liquid.  We refer to this phenomenon as “isolated islands” and the 

neurons that participate in this phenomenon as an “inattentive neurons”. The isolated 

islands could happen because of pathological paths or stratification phenomenon in LSM.  

Pruning such inattentive neurons increases the performance in both classification and 

anomaly detection tasks, since each neuron represents a feature in terms of pattern 

recognition. Moreover, removing such neurons is important to reduce the power 

consumption, since the recent trends in RC target building some hardware-based LSMs 

[87-89].  

This chapter is organized as follows: in section A, we introduce a mathematical 

formulation for pruning inattentive neurons. Section B tests the suggested method on 
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continuous authentication in smartphone data and on five datasets from UCI. In section C, 

we provide our discussion and analysis of the results. Finally, we deliver a conclusion of 

this chapter in section D.  

A. Inattentive Neurons Pruning (INP) Method  

This section introduces the INP method. First, we put the requirements and goals 

form such a method. The INP method should meet the following requirements: 

 The method should be able to capture the similarity in functioning between the neurons.  

 The method should be able to understand the connectivity between neurons and finds a 

way to define the isolated neurons (inactive neurons).  

 The method should be able to provide a consistent ranking for the inattentiveness of 

each neuron, such that any later evaluation for the LSM will be based on a systemic 

procedure.  

Based on the previous requirements, we suggest a method to evaluate the 

inattentiveness of the neurons inside the LSM based on Stochastic Outlier Selection 

Algorithm [90]. Even though this method has been used mainly for outliner selection, we 

slightly modify this method to rank neurons according their behavior in propagating the 

information. 
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1. Mathematical Representation  

Let 𝑅 = [𝑟1, 𝑟2, 𝑟3, … 𝑟𝑛] be the responses from neurons in LSM along simulation 

time, where 𝑛 the number of neurons inside the liquid. Let 𝐷 be the dissimilarity 

between  𝑅, where the dissimilarity between response 𝑟𝑖 and 𝑟𝑗 is computed as follows:  

𝑑𝑖𝑗 = √∑ (𝑟𝑗𝑘 − 𝑟𝑖𝑘)2𝑚
𝑘=1   (10.1) 

With 𝑟𝑖𝑘  is the kth liquid state value of the ith response.  

After computing the dissimilarity between neurons responses, we compute the 

affinity between a neuron’s responses to another neuron’s response.  The affinity that 

neuron 𝑖 response has with neuron 𝑗 response given 𝑑𝑖𝑗 is: 

𝑎𝑖𝑗= { 𝑒
(−

𝑑𝑖𝑗

2𝜎𝑖
2) 

        𝑖𝑓 𝑖 ≠ 𝑗 
0                      𝑖𝑓 𝑖 = 𝑗

  (10.2) 

 Where  𝜎𝑖
2 is the variance associated with 𝑟𝑖. 

To that end, we computed the affinity between neurons responses. Now we define 

the perplexity parameter, h, which defines the number of the affected neurons when 

considering the current neuron. The perplexity parameter is similar to the parameter k in k-

nearest neighbor algorithm; however, it plays a smoothing role since the affinity is a 

relative relationship. That is, the affinity has an exponential relationship with respect to the 

dissimilarity and variance and hence “being a neighbor” is a relative relationship.  
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After determining h, we want each neuron to have the same number of affected 

neurons around it. This can be done by controlling the variance of neuron’s response such 

that the variance yields the same number of affected neurons.   The variance for each 

neuron is found by the binary search.  

Now, we use graph theory to define the Stochastic Neighbor Graph based on the 

affinity measure, where the vertices are the responses of neurons. Generating a direct 

relation between vertices depends on the binding probability concept. The later, depends on 

the functional relationship between neurons.  The binding probability, 𝑏𝑖𝑗, between two 

vertices 𝑣𝑖 and 𝑣𝑗  is a proportional to the affinity between 𝑟𝑗 and 𝑟𝑗. 

𝑏𝑖𝑗 = 𝑝(𝑖 → 𝑗) ∝ 𝑎𝑖𝑗  (10.3) 

  and can be written as  

𝑏𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑘
𝑛
𝑘=1

  (10.4) 

The binding probabilities for vertex 𝑣𝑖 form the binding distribution 𝑏𝑖. 

𝑏𝑖 = [𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3, … , 𝑏𝑖𝑛] 

We denote the matrix of binding distributions from different neurons by 𝐵. 

Now, we define a stochastic process as follows: let a stochastic Neighbor Graph 

(SNG) be 𝐺 = (𝑉, 휀𝑔) where 𝑉 is a set of vertices and 휀𝑔 is a set of directed edges. Let 𝑖 →

𝑗 denote the direct edge from vertex 𝑣𝑖 to vertex𝑣𝑗  . If the vertex 𝑣𝑖 binds to vertex 𝑣𝑗  , then 
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we add the directed edge 𝑖 → 𝑗 to 휀𝑔. As a consequent result, we say that that neuron that 

has the response  𝑟𝑖 is a “virtually functional neighbor” to a neuron that has a response 𝑟𝑗. 

Then we define that the neuron 𝑛𝑖 is an inattentive with respective to other neurons 

or in other words the neuron 𝑛𝑖  belongs to isolated islands 𝑁0 if and only if it is 

corresponding vertex  𝑣𝑖 has no inbound connection (has zero edges). 

𝑁0|𝐺 = {𝑟𝑖 ∈ 𝑅| deg(𝑣𝑖 ) ≫ 0}  (10.5) 

 The previous discussion was for one generated SNG, 𝐺. However, 𝐺 is been 

generated stochastically, and hence the neurons are selected randomly. For this reason, we 

generate (𝑛 − 1)𝑛 SNGs such that we cover all the possible connections between vertices 

in neurons responses.  Since some of binding probabilities are not uniformly distributed 

among all responses, some edges between vertices are more probable to be generated than 

others. To put the previous discussion in a mathematical way, let us assume that 𝜍 is the all 

possible sampled SNGs.  

𝑝(𝐺) = ∏ 𝑏𝑖𝑗𝑖→𝑗𝜖𝛿𝐺
  (10.5) 

This means that generating a SNG   depends only on the binding probabilities.  We 

denote 𝐺~ 𝑃( 𝜍)  as sampling the SNG 𝐺 from the probability distribution 𝑃( 𝜍). The 

probability that a neuron is an inattentive neuron is computed by sampling the SNG as 

follows: 

𝑝(𝑟𝑖  ∈ 𝑁0) = 1 − ( lim
𝑠→∞

1

𝑆
∑ ℵ(𝑟𝑖 ∈ 𝑁0|𝐺𝑠))𝑆

𝑠=1    (10.6) 
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With ℵ takes 1 if 𝑟𝑖 belongs to 𝑁0 and 0 if not. 𝐺𝑠~ 𝑃( 𝜍) 

 We notice that we can compute the exact probability that a neuron is an inattentive 

neuron by marginalizing out the stochastic graph 𝐺, because one SNG is more probable 

than others. 

However, we can compute that a neuron belongs to inattentive neurons without 

generating any SNG directly from the binding probabilities of neurons [90].  

 That is, a neuron belongs to inattentive neurons “Isolated islands” if its responses 

from strong Neighborhood relationships with other responses from other neurons. This can 

be computed as:  

𝑟𝑎𝑛𝑘𝑖 = 1 − ∏ (1 − 𝑝𝑗𝑖)𝑖≠𝑗   (10.7) 

We will use equation (10.7) as a ranking for neurons in the liquid, and we say that a 

neuron belongs to inattentive neurons its ranking exceeded a specific threshold: 

𝑖𝑓  𝑟𝑎𝑛𝑘𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑡ℎ𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑖 ∈ 𝑖𝑛𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒 𝑛𝑒𝑢𝑟𝑜𝑛𝑠  (10.8) 

B. Illustration Example  

In this section, we provide an illustration example for using the pruning method, 

where we use it to rank and identify some neurons in artificial example. Let us assume in 

the figure below a part of a network inside a LSM. In this example, neurons labeled with n1 

to n5 form a semi-isolated network within the liquid network. This could happen due to the 

stochastic process that connects neurons inside the LSM. Another reason for this problem 
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could happen because of the unsupervised learning in LSM using STDP, where some 

connections might be weakening or strengthening unsuitably. To overcome such problems, 

we use the proposed ranking method to evaluate neurons.  First, we need to find responses 

associated with each neuron in LSM. Let us denote r1 to r6 as the responses from n1 to n6, 

respectively. The response could be the spiking activities or the internal state of voltage for 

a neuron.  We use in our evaluation and experiments the spiking activities from a neuron as 

a response. We obtain responses from neuron for different input patterns such that we cover 

different activation forms inside the liquid. This is important because some input patterns 

may form such isolated islands for only specific cases, which is not a global case. Pruning 

algorithm is concerned with semi-isolated islands that allow inattentiveness with 

irrespective to the input.  

 

Figure 35: Isolated Islands Illustration Example. 

Having we find responses from neurons, we are ready to find binding probabilities 

using equations 10.1, 10.2 and 10.3. In the artificial example below, neuron n1 associated 

with response r1 binds information to n2 to n6. However, information propagation among 

neurons n1 to n5 is much stronger than any other information propagation with other 
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neurons inside the liquid. For example, n6 forms a weak connection with n2 to n6. Binding 

probabilities from n1 to n2, n3, n4, n5 and n6 are shown in the figure below. n1 binding 

probability to n6 is the lowest in comparison with binding probabilities to n2, n3,n4,n5 and 

n6. This is because the responses from n2 to n5 are closer “more similar” for n1 than the 

response from n6, i.e., when n1 fires, other n2, n3, n4 and n5 most probably will fire. From 

the perspective of n6, binding probabilities to n2, n3,n4 and n5 are somehow equal, since 

responses from those neurons lay at equal distances from it, i.e., when n6 fires, there are no 

strong connections that allow any of neurons in n2, n3, n4,n5 to fire.     

 

Figure 36: Binding Probabilities to Other Neurons from Neurons n1 and n6. 

To find the ranking for a neuron, we find the joint probabilities that other neurons 

do not bind to it, and then we substitute ranking from 1 (see equation 10.8). The figure 

below shows binding probabilities that other neurons bind to neuron n1 and n6. We can 

notice that other n1, n2, n3, n4 and n5 binds to n6 with very low probability values. On the 

other hand n2, n3, n4 and n5 bind with high probabilities. This indicates that n1, n2, n3, n4 
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and n5 form a semi-isolated island. This applies for n2, n3, n4 and n5 when computing that 

other neurons bind to them.  Compute ranking values for n1 and n6 is shown below: 

𝑟𝑎𝑛𝑘1 = 1 − [(1 − 0.24) × (1 − 0.22) × (1 − 0.23) × (1 − 0.18) × (1 − 0.1)] = 0.663 

𝑟𝑎𝑛𝑘6 = 1 − [(1 − 0.04) × (1 − 0.05) × (1 − 0.04) × (1 − 0.05) × (1 − 0.04) = 0.201 

 

 As can be noticed, 𝑟𝑎𝑛𝑘1 >  𝑟𝑎𝑛𝑘6. And when choosing a proper threshold, we 

can identify neurons that form isolated islands.  

 

Figure 37: Binding Probabilities from Other Neurons to Neurons n1 and n6. 

 

C. Testing and Result 

The output of the method generates for each neuron in the liquid the probabilities of 

being an inattentive neuron.  We test INP method for anomaly detection tasks as well as for 

classification tasks as follows: 

Experiment 1: an anomaly detection for augmented password authentication task 

(One vs. One scenario) described in chapter VIII.  
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Experiment 2:  a classification for five datasets downloaded from UCI namely, 

Fisher Iris, Pima, Sonar, Parkinson’s and Ecoli.  

For anomaly detection task, we use the five distance-based anomaly detectors 

described in chapter VIII namely, Euclidean, Euclidean (normed), Manhattan, Manhattan 

(filtered), Manhattan (scaled) and Z-Score. We compare results between three cases in this 

experiment: 1) when using all neurons for readout function, 2) after using INP method, 3) 

we repeat the second case for 50 times (average of 50 runs) using the same number neurons 

resulted from case 2, but we choose neurons randomly. For distance-based anomaly 

detectors, we report the performance in terms of Equal Error Rate (EER) as in chapter VIII. 

We vary the threshold from 0.05 to 0.75.    

For classification task, we use Decision Trees classifier on the five datasets 

mentioned previously, where we set the threshold to be 0.3.  

In all experiments, the perplexity parameter of INP was chosen to be 4.5 so that it is 

inline with the available literature.  
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1. Experiment 1: (Anomaly Detection on Augmented Password Authentication)  

 

 

Figure 38: INP method testing on Augmented Password authentication using the Euclidean Detector anomaly detector. 

 

Figure 39: INP method testing on Augmented Password authentication using the Manhattan method anomaly detector. 
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Figure 40:  INP method testing on Augmented Password authentication using Filtered Manhattan anomaly detector. 

 

Figure 41:  INP method testing on Augmented Password authentication using Scaled Manhattan anomaly detector. 
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Figure 42:  INP method testing on Augmented Password authentication using Outlier-Counting anomaly detector. 

2. Experiment 2: (Classification of UCI datasets) 

In this experiment, we used 10-fold cross validation. The random selection results 

are an average of 50 runs with the same number of neurons resulted after INP method (with 

threshold=0.3). 

Table 37: INP accuracy results for experiment 2. 

Decision Tree  

 Without 
LSM 

With 
LSM 

LSM with 
INP 

Random 
Selection 

Fisher Iris 95.01 95.73 96.14 93.41 

Pima 70.49 75.35 77.59 70.63 

Sonar 71.72 69.17 68.82 67.42 

Parkinson’s 86.33 92.30 93.00 90.19 

Ecoli 81.32 83.77 84.08 81.04 

Linear Regression  

Fisher Iris 97.33 91.72 87.26 79.85 

Pima 74.10 72.74 74.29 66.43 

Sonar 75.81 83.44 84.41 77.47 

Parkinson’s 88.76 87.16 90.72 85.45 

Ecoli 62.02 70.08 72.13 69.27 
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Table 38: Neurons reduction rate for experiment 2. 

 Number of Pruned Neurons 
out of 216 neurons 

Fisher Iris 84 

Pima 88 

Sonar 145 

Parkinson’s 137 

Ecoli 91 

 

D. Discussion 

As can be seen from experiment 1, the INP method maintains the performance 

while reducing the number of neurons inside the liquid. In experiment 1, the INP method 

always generates lower EER and always better than any randomly selected neurons (when 

using the same number of neurons that were generated after INP).  For experiment 2, INP 

improved the accuracy in four out of the five datasets for Decision Trees as well as for 

Linear Regression. The reduction rates of the number of neurons are 53.33%, 55.32%, 

32.87%, 36.28 and 53.57% for Fisher Iris, Pima, Sonar, Parkinson’s and Ecoli, 

respectively.  

E. Conclusion  

We introduced in this chapter a method to prune the LSM in such a way that we 

maintained the informative neurons, and hence ensured that the readout is robust and less 

subject to overfitting. The method depends on graph theory and information binding 

probabilities, which makes it more suitable for LSM architecture.  
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CHAPTER XI 

CONCLUSION AND FUTURE WORK  

 

A. Conclusion  

In this work, we introduced LSM as a universal machine learning approach to 

handle pattern recognition in complex systems. By using two different applications, we 

showed that LSM is suitable for such environments. In the first application, emotion 

recognition from EEG, we presented LSM as an anytime multi-purpose model to handle 
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inputs from a stream of signals and used LSM to analyze and study emotions in humans. In 

the second application, continuous authentication in smartphones, we showed how LSM 

can be used in real life applications. Applying LSM for real life applications is important, 

since most of the research on LSM were as experimental approaches.  

The work also introduced two methods to improve on LSM. In the first method, 

active states selection, we introduced a mechanism to sample an LSM at informative states 

such that we reduce the overhead of oversampling, unnecessary information and thus power 

consumption.  

In the second method, which is applying Inattentive neurons pruning, we introduced 

a graph theory based approach to prune uninformative neurons inside LSM. This method 

provides a systematic methodology to rank neurons inside LSM for later analysis and 

pruning. 

A. Future work  

The work includes enormous opportunities for future work, since it covered 

important aspects and topics in LSM. We can summarize the future work as follows:  

 In chapter VI, we used LSM for feature extraction from EEG raw data. The 

results were good. However, the CbNeuron neuron model used in this experiment needs 

more study in order to build a universal model for feature extraction.  

 Chapter VII provided an extensive study for deploying LSM for emotion 

recognition. Among the tested scenarios, LOSO didn’t perform well. Which suggest 

that LSM need to be fine-tuned in order to make it suitable for such scenarios.  
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 Spike encoding in this work, BSA algorithm, didn’t achieve good results, 

where the accuracies of testing BSA with LSM are worse than those resulted from 

direct input feeding. This suggests that a further analysis and improvement for spike 

encoding is needed to improve the performance of such methods.  

 Chapter VIII introduced a framework for continuous authentication in 

smartphones. The results have shown to be promising. However, more data collection is 

needed, since we were able to collect for 22 users. In addition, the procedure of data 

collection was an offline procedure, i.e., the data are first collected from smartphone 

and then transferred and processed on PCs. The suggestion is to use interfacing between 

mobile device and PC such that the process is done online. Moreover, a friendly 

implementation of LSM for smartphones is recommended in order to test the 

framework in a real scenario.  

 In chapter IX, we introduced the active states selection method for choosing 

the most informative sampling times for LSM. In this method, each state is ranked 

independently from other states. The suggestion is to change the method such that it 

takes into consideration the dependencies between states.  Moreover, the number of 

sampling times is choosing arbitrarily and this needs a further study to find the effective 

number of sampling times for an LSM.   

 In chapter X, we introduced a method to prune LSM. This method works by 

ranking neurons in LSM. Firstly, the threshold at which the method prunes LSM is 

chosen arbitrarily. This suggests that we need a procedure to choose the threshold for 

this method. Secondly, the ranking of neurons can be used to build a more robust LSM 
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by using the method to select the architecture of LSM. Thirdly, the method uses the 

binding information between neurons. However, this binding information is computed 

virtually, i.e., the algorithm does not take into account the actual connectivity inside the 

liquid. A more robust version of this method would take into consideration the 

connectivity inside the liquid such that the method will generate a subjective ranking 

for neurons inside the liquid, functionally and architecturally.    
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