

AMERICAN UNIVERSITY OF BEIRUT

Towards Fully Self-Supervised Free Space
Estimation For Unmanned Ground Vehicles

by

Ali Harakeh

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Mechanical Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
April 2016

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Student Name:
Last First Middle

�� �� �� �� �� ��Master’s Thesis Master’s Project Doctoral Dissertation

2 I authorize the American University of Beirut to: (a) reproduce hard or elec-
tronic copies of my thesis, dissertation, or project; (b) include such copies in the
archives and digital repositories of the University; and (c) make freely available
such copies to third parties for research or educational purposes.

2 I authorize the American University of Beirut, three years after the date of
submitting my thesis, dissertation, or project, to: (a) reproduce hard or elec-
tronic copies of it; (b) include such copies in the archives and digital repositories
of the University; and (c) make freely available such copies to third parties for
research or educational purposes.

Signature Date

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Prof. Daniel
Asmar for the continuous support of my Masters study and research, for his patience,
motivation, enthusiasm, and immense knowledge. His guidance helped me in all the
time of research and writing of this thesis. I could not have imagined having a better
advisor and mentor for my Masters study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.
Elie Shammas, and Prof. Imad Elhajj for their encouragement, insightful comments,
and hard questions.

I thank my fellow labmates at AUB’s Vision and Robotics Lab: Salah Bazzi, Bilal
Hammoud, Mohammad Alsalman, and Abdelrahman Elmakdah for the stimulating
discussions, for the sleepless nights we were working together before deadlines, and
for all the fun we have had in the last two years.

Last but not the least, I would like to thank my family: my mother Iman, and two
sisters, Miray and Dana for fully supporting me in any path I pursue throughout my
life.

I dedicate this thesis to the memory of my father, Samir Harakeh. May I always
make you proud.

Finally, I thank Jessica and Nini for keeping me sane. I love you both.

v

An Abstract of the Thesis of

Ali Harakeh for Master of Engineering
Major:Mechanical Engineering

Title: Towards Fully Self-Supervised Free Space Estimation For Unmanned Ground Vehicles

With the era of autonomous robots about us, the problem of scene understanding
has become particularly important. The transformation of robots from human super-
vised systems to fully autonomous agents requires these robots to have a reliable un-
derstanding of their environment. In its most basic form, this understanding reduces
to delineating occupied space from free space. Such reliable detection of free space
is essential for a system to safely navigate its environment and therefore is a major
interest for the robotics research community.

This thesis provides a system that automatically learns, classifies and maps free
space in an environment using a stereo sensor. This is done through employing self-
supervision by designing an algorithm that extracts training data automatically and
reliably from free space in stereo data. The proposed algorithm is shown to be superior
to other algorithms in literature by benchmarking on three stereo datasets. The results
of free space classification and mapping are presented and analyzed to further validate
the proposed system.

vi

Contents

Acknowledgements v

Abstract vi

List of Figures ix

List of Tables x

1 Introduction 1

2 Literature Review 3

3 Background 5
3.1 Stereo Sensor Model . 5
3.2 The V-Disparity Image . 7
3.3 The Projection of The Ground Class Onto The V-Disparity Image . . 8

4 Self Supervised Free Space Estimation For UGVs 10
4.1 V-Disparity Image Filtering . 10
4.2 A Stochastic Model For Pixel Occupancy Probability 13

4.2.1 Modeling The Uncertainty In The Stereo Sensor: 13
4.2.2 Defining The Vector Space vs over R: 13

4.3 Online Learning of The Occupancy Probability Density Function Via
Bayesian Linear Regression . 14
4.3.1 Learning The Predictive Distribution 14
4.3.2 Bayesian Linear Regression 15
4.3.3 Learning The Precision Parameters 16
4.3.4 Using The Learned PDF For Training Pixels Extraction 18

4.4 The Second Stage Classifiers . 21
4.4.1 The Positive Naive Bayes Classifier 21
4.4.2 The ν-Support Vector Classifier 22

4.5 Feature Space Selection and The Mapping Algorithm 23
4.5.1 Free Space Mapping . 23
4.5.2 The Selected Feature Space 24

vii

5 Experiments And Results 26
5.1 Hardware . 26
5.2 Datasets . 26
5.3 Assessing The Quality Of Extracted Training Pixels 27
5.4 Comparison With Other Training Data Extraction Algorithms In Lit-

erature . 34
5.5 Free Space Classification and Mapping Results 40

6 Conclusion and Future Work 46

Bibliography 47

List of Figures

3.1 The stereo sensor coordinate system. 6
3.2 Transformation from (u,d,v) to (v,d,s) [1] 7
3.3 Examples of a disparity image and its corresponding v-disparity image. 9

4.1 Flowchart of the proposed system. 10
4.2 V-disparity image filtering. 12
4.3 Bayesian linear regression results. 19
4.4 The effect of varying the confidence interval on the amount and quality

of training pixels extracted in the image. 20

5.1 Deployed sensors and robot. The Zed Stereo Camera is rigidly mounted
on top of the Clearpath Husky UGV. 27

5.2 Outlier fraction. 30
5.3 Easy dataset histogram comparison. 31
5.4 Medium dataset histogram comparison. 32
5.5 Difficult dataset histogram comparison. 33
5.6 Plots of recall values of the ν-SVC and computational time (in sec-

onds) of the three training data extraction methods per frame of the
datasets. 38

5.7 Examples of the results of three training data extraction methods. . . . 39
5.8 Comparison of second stage classifiers. 42
5.9 PNB results. 43
5.10 ν-SVC results. 44
5.11 Mapping results. 45

ix

List of Tables

4.1 Comparison of feature computation time. 25

5.1 A comparison of the estimated feature histogram with ground truth . . 29
5.2 Comparison with other training data extraction algorithms. 35

x

Chapter 1

Introduction

With the era of autonomous robots about us, the problem of scene understanding has
become particularly important. The transformation of robots from human supervised
systems to fully autonomous agents requires these robots to have a reliable under-
standing of their environment. In its most basic form, this understanding reduces to
delineating occupied space from free space. Such reliable detection of free space is es-
sential for a system to safely navigate its environment and therefore is a major interest
for the robotics research community.

Fully autonomous free space estimation is considered one of the holy grails of
robotics research. Despite an abundance of algorithms tackling this problem, it is still
considered an unsolved problem mainly due to the particularity of proposed algorithms
to certain environments. This phenomenon is much more prominent in environments
where the properties of free space vary, whether the variation was spatial or tempo-
ral. Algorithms tailored specifically to an environment are expected to perform rather
poorly when the properties of the environment change.

This led to a great emphasis on machine learning when trying to tackle scene un-
derstanding tasks such as free space estimation. The main issue with learning based
algorithms is that they usually require a training phase, where training data describing
free space is used as an input to model its properties. The extraction and classifica-
tion of training data is usually performed through direct human supervision, which
becomes impractical and time consuming as the range of properties to be learned be-
comes larger. Furthermore, the resulting system cannot extend classification beyond
environments it learned before restricting its autonomy.

Recent free space estimation approaches tackle this problem through self-supervision,
the process in which one classifier directly supervises input to a second classifier. The
first classifier can usually reliably label a small portion of the environment as free
space, which is then provided as input to the second classifier that extends the labeling
over the whole environment. It is within this framework that this thesis find its call,
mainly using self-supervision to design a fully autonomous self-supervised free space
estimation algorithm.

The main contributions of this thesis are as follows:

1

• A filtering algorithm that increases the reliability of estimating the ground cor-
relation line in the v-disparity space.

• A mathematical proof that measuring the uncertainty in disparity measured by
a stereo sensor is sufficient to measure the uncertainty in 3D-coordinates of a
point in space.

• A method to model this uncertainty for points that belong to the ground plane
through Bayesian linear regression.

• A novel training data extraction method that uses the modeled uncertainty to
extract training pixels from the ground class in a stereo image and that is fast,
accurate, and can be applied in structured and unstructured environments.

• Using the proposed algorithm to supervise two classifiers and to perform free
space mapping.

• Validated the method on outdoor datasets.

The remainder of this thesis is structured as follows: Chapter 2 provides a review of
recent trends in self-supervised free space estimation. Chapter 3 provides an explana-
tion of the stereo sensor model, the v-disparity image construction, and the projection
of the ground class onto the v-disparity space. Chapter 4 describes the different com-
ponents of the proposed system including the filtering algorithm and it’s results , the
necessary equations to model the uncertainty in disparity for pixels belonging to the
ground plane, how to use this uncertainty to reliably select training pixels belonging
to free space, a description of the two supervised classifiers used, feature space selec-
tion, and the free space mapping algorithm. Chapter 5 presents the experimental setup
and results and describes the datasets acquired and then provides an analysis of how
well the feature distributions of the ground class are represented by the extracted train-
ing data. Finally, Chapter 6 concludes the thesis and provides the direction for future
research.

2

Chapter 2

Literature Review

This chapter reviews recent work on free space estimation with emphasis on self-
supervised learning approaches.

A variety of sensors and sensor combinations have previously been employed for
free space estimation. Sugar et al.[2] employed a 3-D LIDAR to find the occupancy
probability of the environment through a semi-supervised learning approach. The
robot is driven by a human operator through a safe trajectory where it collects the
remission and spatial features of free space, which are used as training data for a one-
class classifier. Dahlkamp et al.[3] used a 2-D LIDAR to extract training data belong-
ing to free space using the Probabilistic Terrain Analysis (PTA) algorithm proposed in
[4]. The training data is then projected to a monocular camera and used to build a color
based classifier. The PTA algorithm requires unknown parameters to be learned offline
using human supervision. These two systems are suitable when the properties of the
robot’s operating environment resemble these of the training environment. The system
presented in this paper differs from both methods in that it is totally independent of
any human supervision and it does not have free parameters that need to be trained
prior to deployment in a given environment.

Radars have also been successfully employed for self-supervision in free space
estimation. Milella et al.[5] used the echo in a radar image to identify ground patches
and then projected these patches to a monocular camera coordinate frame in order to
train a visual classifier. The classification was done through Mahalanobis distance
thresholding. The optimal threshold is determined by constructing ROC curves on
a training dataset. In their work, the radar produces training patches at a specified
distance of 11.4 meters in front of the robot. Unfortunately, in some scenarios distance
patches might not posses the same features as closer ones, thereby causing the latter to
be classified as obstacles. The system presented in this paper gets around this problem
by extracting training patches from all over the field of view of the camera.

Stereo cameras are also used for self-supervised free space estimation and provide
a dense 3-D representation of the scene with additional color information. Milella et
al.[6] utilizes a stereo camera to extract geometric features that are used to classify
voxels in a 3-D point cloud belonging to free space through the same classifier used

3

in [5]. Reina et al.[7] also used a stereo sensor to classify free space via a mixture of
Gaussians model with automatic estimation of the number of components. The main
weakness in these two systems is that in order to create the ground model, both systems
need to be initialized in an area free of obstacles. The requirement for initialization
is problematic when the systems fails and the human operator cannot intervene to
reinitialize them. My proposed system does not need any special initialization and in
fact can be launched inside a heavily cluttered scene.

Vernaza et al.[8] used a stereo sensor in a Markov Random Field framework to
classify pixels in the image belonging to the ground plane. The largest planar region is
assumed to be the ground plane, and pixels belonging to it are taken as ground pixels.
Hadsell et al.[9] uses the hough transform up to three times to fit planes to stereo
point clouds, while bounding the maximum slope a UGV can drive on, to remove
points belonging to the ground plane. Moghadam et al.[10] uses Ransac plane fitting
to determine points belonging to the largest plane in 3-D stereo generated point clouds,
which is assumed to be the ground plane. These points are then used to supervise a
supervised classifier to classify far away pixels in stereo images. These training data
extraction method fails in scenarios where the ground plane is not the largest plane in
the image. The novel training data extraction algorithm presented in this thesis utilizes
the properties of the projection of the ground on the v-disparity image, and is able to
extract training pixels even if the ground is not planar.

Kim et al.[11] uses the assumption that free space in stereo data should have a low
derivative in stereo disparity space to provide training labels for a supervised classi-
fier that describes class data in a codebook method. The requirement of a threshold
to determine the definition of low derivative makes the training data extraction algo-
rithm unreliable. The training training data extraction algorithm presented in this thesis
overcomes this problem by only requiring a single free parameter that determine the
reliability vs number of training points extracted.

Proprioceptive sensors such as vibration sensors have also been used to provide
labels for free space classification tasks [12], [13]. These sensors require the robot
to have previously driven over a patch to determine if it belongs to the ground class.
Furthermore, the vibration based classifiers usually requires manual tuning [13]. The
proposed algorithm in this thesis requires minimal human supervision and does not
require manual tuning.

It is noticed that the main weakness in the state of the art is in the supervision
methods, i.e. the training data extraction methods. The weakness of these methods is
that they impose strong assumptions on the geometry of the ground plane.

4

Chapter 3

Background

This chapter aims to provide an explanation of the stereo sensor model, the v-disparity
image construction, and the projection of the ground class onto the v-disparity space.

3.1 Stereo Sensor Model

A stereo setup (Fig.3.1) consists of two cameras that are assumed identical with equal
calibration matrices; after rectification the image planes of both cameras become copla-
nar with their centers of projections separated by a baseline b.

The coordinate frames Cr(Xr,Yr,Zr) and Cl(Xl,Yl,Zl) are pinned to the optical
center of the right and left cameras respectively, while the world coordinate frame
W (Xw,Yw,Zw) of the stereo rig is located at the midpoint between the two cameras at
a distance b

2 from both Cl and Cr. The focal length is designated as f and the optical
centers of the images as u0 and v0 . Another assumption in my proposed system is that
the stereo rig can only rotate in the pitch angle, θ , and as such no angular rotation oc-
curs in the roll and yaw directions. For each camera, projective geometry [14] results
in the following relation between a 3D point and its projection:

u
v
1

= Q×

Xp
Yp
Zp
1

 , (3.1)

where Xp, Yp, Zp are the coordinates of P with respect to the world coordinate frame,
and Q is known as the projection matrix and is given by:

Q =

 f u0 sinθ u0 cosθ ±b
2

0 f cosθ + v0 sinθ − f sinθ + v0 cosθ 0
0 sinθ cosθ 0

 (3.2)

5

Figure 3.1: The stereo sensor coordinate system.

Expanding (3.1) the image coordinates of a point P are:

ul,r = u0 + f
Xp± b

2
Yp sinθ +Zp cosθ

(3.3)

v = v0 + f
Yp cosθ −Zp sinθ

Yp sinθ +Zp cosθ
(3.4)

The epipolar constraint reduces the search for corresponding pixels in the two images
to a 1-D search problem along the epipolar line. The disparity d of the matched feature
is thus calculated as:

d = f
b

Yp sinθ +Zp cosθ
(3.5)

Following the method presented in [15] Xp, Yp, Zp can be derived from ul , v and d as
follows to get:

Xp = b
d−2u+2u0

2d
(3.6)

Yp = b
(v− v0)cosθ + f sinθ

d
(3.7)

Zp = b
f cosθ +(v0− v)sinθ

d
(3.8)

6

3.2 The V-Disparity Image

The v-disparity algorithm was first proposed by Labayrade et al.[16] for road plane
estimation in urban scenes. It transforms a disparity image to a v-disparity image by
forming a 256-bin histogram of disparity values for each row of the disparity image
and concatenating these histograms in the same order as the rows they where gener-
ated from. Fig.3.3 provides an example of a v-disparity image with its corresponding
disparity image and a psuedocode describing the construction procedure is provided in
algorithm 1.

Algorithm 1: v-Disparity Image Construction
Input: m×n Disparity Image, D
Output: m×256 v-Disparity Image, V D

1 Initialize V D as an empty array ;
2 begin
3 for every row i in D do
4 Compute the 256 bin histogram h of disparity values in row i ;
5 Insert h at the bottom of V D ;
6 end
7 end

Fig.3.2 provides a visual representation of the transformation in the algorithm. For
further reference on the construction of the v-disparity image, refer to [16].

Figure 3.2: Transformation from (u,d,v) to (v,d,s) [1]

7

3.3 The Projection of The Ground Class Onto The V-
Disparity Image

For unmanned ground vehicles, the ground class in the world coordinate system is
made up of either horizontal planes, oblique planes, or a mixture of both. The equa-
tions of such planes in the world coordinate system are:

Yw = h (3.9)

for the horizontal plane and

Zw = ψYw +κ (3.10)

for the oblique plane, where h is the height of the stereo sensor with respect to the
plane and ψ and κ are constants. By combining the above equations with (3.3), (3.4),
and (3.5), the equations of the projection of the horizontal and oblique planes in the
disparity space can be written as:

h
b

d = f sinθ +(v− v0)cosθ (3.11)

for the horizontal planes and

κ

b
d = f (cosθ +ψ sinθ)+(v0− v)(sinθ+ψ cosθ). (3.12)

for the oblique planes. The resulting equations suggest that for pixels belonging to
horizontal and oblique planes, the pixel’s disparity d is a linear function of its row
coordinate v. As such, the projection of the ground class onto the v-disparity space
produces a mixture of slanted lines with a slope proportional to the pitch angle θ

[16]. As a final note, vertical planes are also projected onto the v-disparity space,
but as vertical lines. For a more detailed analysis of the projection of planes onto the
v-disparity space, I refer the reader to the work by Hu and Uchimura [15].

8

Figure 3.3: Left: disparity image. The bright color signifies larger disparity and hence
smaller depth. Right: v-disparity image. The projection of the ground class in the
scene is a slanted line, which is visible in the v-disparity image.

9

Chapter 4

Self Supervised Free Space Estimation
For UGVs

A flowchart of our proposed system is shown in Fig.4.1, where the training data extrac-
tion algorithm is shown in the top row. This chapter explains in details the theoretical
aspects of each block of the proposed system.

Figure 4.1: A flowchart that shows the different components of the system. In this
specific example, the results of the Positive Naive Bayes Classifier are shown.

4.1 V-Disparity Image Filtering
The raw v-disparity image contains the projection of both the ground class and the
obstacle class, the latter appearing as vertical lines. Direct detection of the ground
correlation line 1 in the raw v-disparity image is unreliable, especially in cluttered

1The slanted line projection of the ground class is termed the ground correlation line [16]

10

and unstructured scenes [17],[1],[18]. This section provides a solution to this prob-
lem through a modified version of the v-disparity filtering algorithm provided by the
authors in [17].

The proposed filtering algorithm takes as an input the v-disparity image and pro-
vides as an output a binary filtered version that only contains pixels belonging to the
ground correlation line. The first step of the filtering algorithm is the removal of ver-
tical line segments from the v-disparity image. This is done through Sobel horizontal
edge detection. Vertical lines are greatly attenuated in the resulting image, reducing to
residuals with a small area. A majority black morphological operation is then applied
to eliminate noise induced edge blobs, and to fill holes found within the ground corre-
lation line. The final filtering stage filters the remaining blobs by area, such that is set
blobs with an area smaller than a curtain threshold are removed, cleaning any residu-
als that remain after previous filtering stages. To avoid the limitation of changing the
threshold to accommodate different v-disparity images, the value of the threshold is set
to be the total area of all blobs divided by a random integer sampled from a uniform
distribution defined between 5 and 25. The area filtering is then continuously iterated
while sampling a new random integer value at each iteration until the correlation co-
efficient of the v,d coordinate pairs remaining in the resulting image is greater than
or equal to 0.98. This convergence criterion forces the remaining v,d coordinate pairs
in the image to have a psuedo-linear relation while at the same time allowing some
deformation in the ground correlation line to accommodate multi-planar ground class
geometry. The three stages of the filtering algorithm are presented in Fig.4.2.

11

Figure 4.2: a) Original v-disparity image with visible vertical lines representing obsta-
cles. b) Application of Sobel horizontal edge detection. c)Application of a majority
black morphological operation. d) Application of the randomized binary area opening
morphological operation. The final filtered version of the v-disparity image after the
randomized binary area opening procedure.

12

4.2 A Stochastic Model For Pixel Occupancy Probabil-
ity

This section provides a proof that for a subset of pixels laying on the ground plane,
estimating the probability of their disparity value to belong to the ground correlation
line is sufficient to describe their occupancy probability.

4.2.1 Modeling The Uncertainty In The Stereo Sensor:
The random vector (u,v,d) is denoted as the measurement vector Z and (Xp,Yp,Zp) as
the state vector X. Z belongs to the vector space v defined over R3. From (3.3), (3.4),
and (3.5) their exists a transformation J that projects the world coordinates of the scene
to the image coordinate frame according to:

Z =

u
v
d

= round(J

Xp
Yp
Zp

+ ε) (4.1)

The measurement vector is assumed to be a noisy projection of the state vector
X, corrupted by Gaussian noise. Such a noise model is due to errors in the imaging
process of each individual camera, matching errors in the disparity computation al-
gorithm, and truncation errors due to rounding. The noise is modeled by adding the
Gaussian random vector ε in (4.1). Accordingly, the vector Z is a random vector with
mean µz = [u,v,d] and covariance Σz expressed as:

ΣZ =

 σ2
u λu,v λu,d

λv,u σ2
v λv,d

λd,u λd,v σ2
d

where λxi,x j is the cross-covariance of xi and x j.

4.2.2 Defining The Vector Space vs over R:
At first, vector Z is mapped from the disparity space to the v-disparity space. This
mapping preserves the value of v and d and as such is linear for both variables, which
implies that the Gaussian uncertainty in both variables is preserved. Furthermore, the
frequency s is a sum of logical outcomes and as such is deterministic and is not relevant
when applying uncertainty analysis. This transformation redefines a new vector space
over R2 and as such, the measurement vector becomes a function of v and d with a
covariance matrix:

ΣZ =

[
σ2

v λv,d
λd,v σ2

d

]
(4.2)

13

It was noted in Section 3.3 that the ground class is projected as a slanted lines in
the v-disparity image. Rearranging (3.12) and combining constant terms into a single
variable would result in this line having the form:

d = w0 +w1v (4.3)

Due to this linear relation, the covariance matrix of the measurement vector Z in the
vicinity of this line changes from positive definite to positive semi-definite. This im-
plies that as long as this relation holds, only one of the variables is sufficient to describe
the state. To recover the positive definite property of the covariance matrix, a new vec-
tor space vs is now defined over R where the measurement vector reduces to a single
variable d with a covariance σ2

d . The new measurement variable Z can be written as:

d = N (µd,σ
2
d) (4.4)

The above simplification implies that given the linear relation in (4.3) there exists a
subset of pixels, specifically pixels belonging to the ground plane in R3 where estimat-
ing the occupancy probability of d is sufficient to estimate the occupancy probability
of the pixel with measurement vector X. It should be noted that for a UGV, the occu-
pancy probability of a pixel is equivalent to the probability of its measurement vector
X to belong to the ground plane, and hence to the probability of its disparity value d to
belong to the ground correlation line.

4.3 Online Learning of The Occupancy Probability Den-
sity Function Via Bayesian Linear Regression

To learn the distribution of the Gaussian random variable d in 4.4, the (v,d) pairs that
remain in the image after filtering are used as training data input to Bayesian linear
regression, with v as the input variable and d as the target variable. Although the
predictive distribution P(d/v) learned through Bayesian linear regression is usually
used to predict new values of d, it can be used to compute the probability of a measured
disparity value from the disparity image to belong to the ground correlation line.

4.3.1 Learning The Predictive Distribution

The non-planar nature of the ground plane in off-road scenarios leads to a distorted
ground line projection in the v-disparity image that might not be straight. To accom-
modate this case, the disparity d is modeled as a second degree polynomial function
of v which has the form:

d = w0 +w1v+w2v2 +δ = wT
φ
∗(v)+δ , (4.5)

14

where φ∗(v) are the set of second degree polynomial basis function, [φ0(v) φ1(v) φ2(v)]=
[v0 v1 v2] and w the parameter vector w = [w0 w1 w2]. δ is a zero mean Gaussian ran-
dom variable with precision β . The conditional distribution of d takes the following
form:

P(d|v,w,β) = N (d;wT
φ
∗(v),β−1). (4.6)

The vectors v = [v1...vN] and d = [d1...dN] are now defined as the training data
pairs, where vn,dn are coordinate pairs extracted from the filtered v-disparity image.
Target training variables [d1...dN] are assumed to be IID variables drawn from the con-
ditional distribution in (4.6) and as such, their likelihood function has the expression
:

P(d|v,w,β) =
N

∏
n=1

N (dn;wT
φ
∗(vn),β

−1). (4.7)

4.3.2 Bayesian Linear Regression
At first, it should be noted that throughout this section, the variables v and v will be
added to the conditional variables through the independence assumption. To begin
with the Bayesian treatment of linear regression, a prior distribution is defined over the
model parameter vector w as:

P(w|α) = P(w|v,v,α,β) = N (0,α−1I), (4.8)

For simplicity, the prior is considered to be zero mean and isotropic Gaussian with
a single precision parameter α . This assumption reduces the number of unknown
parameters in the prior to only α and results in a Gaussian posterior distribution when
multiplied with the likelihood function in (4.7). Having set the prior, the posterior
distribution of the parameter vector w given the training data can be written using
Bayes rule as:

P(w|v,v,d,α,β) = ΓP(d|v,v,α,β ,w)P(w|v,v,α,β), (4.9)

where Γ is a normalization coefficient and P(d|v,v,α,β ,w) is the likelihood function
in (4.7). The posterior distribution is computed by completing the squares in the ex-
ponential and then making use of the standard form of the normalization coefficient of
the Gaussian, and has the form:

P(w|v,v,d,α,β) = N (w; µw,Σw), (4.10)

where µw is the mean:

µw = βΣwΦ
T d, (4.11)

15

and Σw is the 3×3 covariance matrix:

Σ
−1
w = αI +βΦ

T
Φ. (4.12)

Here, I is a 3× 3 identity matrix and Φ is the design matrix, written in terms of the
input vector v as:

Φ =

1 v1 v2

1
.
.
1 vn v2

n

 (4.13)

Th predictive distribution is expanded according to the theorem of total probability as:

P(d|v,v,d,α,β) =
∫

w
P(d|v,v,d,α,β ,w)P(w|v,v,d,α,β)dw. (4.14)

It is noted that the predictive distribution is the result of a convolution of two Gaus-
sian distributions in (4.6) and (4.10). Accordingly, the predictive distribution has the
following form:

P(d|v,v,d,α,β) = N (d; µ
T
w φ
∗(v),Σp), (4.15)

where the variance Σp can be written as:

Σp =
1
β
+φ

∗(v)T
Σwφ

∗(v). (4.16)

Although the unknown parameter w has been marginalized, the previous equations
require precise knowledge of the precision parameters α and β , which might not be
available apriori.

4.3.3 Learning The Precision Parameters
In a fully Bayesian treatment, the predictive distribution would be expanded using the
theorem of total probability over all three unknown parameters α , β , and w. This
expansion would have the form:

P(d|v,v,d) =
∫

α

∫
β

∫
w

P(d|v,v,d,α,β ,w)P(w|v,v,d,α,β)P(α,β |v,v,d)dwdβdα,

which has no closed form solution due to the lack of knowledge of the conditional
joint PDF P(α,β |v,v,d). An approximation of the fully Bayesian treatment of this
hierarchical model is computed by setting the hyperparameters at the highest level of
the hierarchy (α and β) to their most likely values instead of integrating them out [19].

16

We start by assuming that the conditional joint pdf is sharply peaked around the
values of the true hyper-parameters α̂ and β̂ . The predictive distribution in this case
can be estimated as:

P(d|v,v,d)' P(d|v,v,d, α̂, β̂) =
∫

w
P(d|v,v,d, α̂, β̂ ,w)P(w|v,v,d, α̂, β̂)dw.

To estimate the two hyperparameters, the conditional joint pdf is expanded using Bayes
theorem as:

P(α,β |v,v,d) ∝ P(d|v,v,α,β)P(α,β |v,v). (4.17)

Due to the lack of knowledge of the hyperparametes α and β their joint prior P(α,β |v,v)
is assumed to be uniform and thus is relatively flat. Because of the previous assump-
tion, maximizing the conditional joint pdf P(α,β |v,v,d) is equivalent to maximizing
P(d|v,v,α,β) and as such, the true hyper parameters can be estimated as:

α̂ = argmax
α

P(d|v,v,α,β),

β̂ = argmax
β

P(d|v,v,α,β),
(4.18)

The estimates of the hyperparameters require the computation of the likelihood func-
tion P(d|v,v,α,β), which has the form:

P(d|v,v,α,β) =
∫

w
P(d|v,v,α,β ,w)P(w|v,v,α,β)dw, (4.19)

Working out the convolution, the evidence function P(d|v,v,α,β) has the form:

P(d|v,v,α,β) =

(
β

2π

)N
2

(α) |Σ−1
w |−

1
2 exp

[
−β

2
||d−Φµw||2 +

α

2
µwµ

T
w

]
.

Maximizing the evidence function is the same as maximizing its natural logarithm and
as such, the hyper-parameters can be computed by setting the partial derivative of the
logarithm of the evidence function with respect to the respective hyper-parameter to
zero. The natural logarithm of the evidence function can be written as:

lnP(d|v,v,α,β) = lnα +
N
2

lnβ − ln |Σ−1
w |

2
− N

2
ln(2π)− β

2
||d−Φµw||2−

α

2
µwµ

T
w .

The derivative equation with respect to α is:

∂ lnP(d|v,v,α,β)

∂α
=

1
α
− 1

2

[
µwµ

T
w +

∂ ln |Σ−1
w |

∂α

]
. (4.20)

17

The determinant of the matrix Σ−1
w can be rewritten in terms of the eigenvalues of the

matrix βΦT Φ as:

|Σ−1
w |= ∏

i
(λi +α).

Computing the partial derivative the following equation is obtained:

∂ ln |Σ−1
w |

∂α
= ∑

i

1
λi +α

. (4.21)

Setting the partial derivative in (4.20) to zero, the hyper-parameter α will have the
form:

α =
1

µwµT
w

∑
i

λi

λi +α
. (4.22)

Similar analysis is done with respect to the hyper-parameter β to obtain:

1
β
=

1

N−∑i
λi

λi+α

N

∑
n=1

[dn−µ
T
w φ
∗(vn)]

2. (4.23)

It is noted that both solutions are implicit solutions of the parameters themselves. To
solve for the hyper-parameters, an initial value must be chosen to calculate µw and
the sum ∑i

λi
λi+α

and then compute α and β using (4.22) and (4.23) until convergence,
which is determined when the difference between the old and new value of the hyper-
parameters is less than a specified tolerance. The tolerance is set to a very low value of
10−10 for both hyper parameters. Furthermore, the initial value of the hyperparmeter
does not affect the convergance of the algorithm.

4.3.4 Using The Learned PDF For Training Pixels Extraction

After learning the hyperparameters α̂ and β̂ from (4.22) and (4.23) respectively, Σp
can be computed from (4.16) resulting in a tractable form of the predictive distribution
written as:

P(d|v,v,d, α̂, β̂) = N (d; µ
T
w φ
∗(v),Σp). (4.24)

A visual representation of the predictive distribution can be seen in Fig.4.3. The
predictive distribution (4.24) is used to extract training pixels by labeling pixels with a
disparity value d belonging to a certain confidence interval as training pixels. Fig.4.4
shows the effect of varying the confidence interval on the quality and quantity of train-
ing pixels. The first row shows training pixels extracted at 90% confidence interval.
The confidence interval is decreased by 20% for each lower row up to the last row,
which shows training pixels extracted at 10% confidence interval. It can be noted that
as the width of the confidence interval decreases, the number of correctly labeled train-
ing pixels (Green) decreases while the number of outliers (Red) increases. It can be
seen that as the confidence interval decrease, less but more precise training pixels are
obtained.

18

Figure 4.3: The original v-disparity image (black and white) and the resulting prob-
ability density function in equation (4.24) estimated from Bayesian linear regression
(colored). The estimated PDF can be seen to closely resemble the ground correlation
line, with an additional probabilistic interpretation. The color of each pixel determines
the probability of a point in the v-disparity image to belong to the ground class.

19

Figure 4.4: The effect of varying the confidence interval on the amount and quality of
training pixels extracted in the image.

20

4.4 The Second Stage Classifiers
The training data extraction algorithm proposed earlier provides incomplete pixel la-
bels that contain no negative samples. The algorithm separates N image pixels into
two subsets: T P denoting pixels with a label l f ree = 1, and UP denoting unlabeled
pixels with l = /0. Furthermore, each pixel in both subsets is assigned an M dimen-
sional feature vector f̄ = (f1... fm). The second stage classification task is thus defined
as providing a label l ∈ { f ree,occupied}= {1,0} for every pixel in UP. This section
provides two classifiers that can be used to perform this task.

4.4.1 The Positive Naive Bayes Classifier
The Positive Naive Bayes (PNB) classifier as defined by Denis et al.[20] estimates the
probability of a pixel to belong to a class by counting the frequencies of its observed
features. It then provides unlabeled pixels a label l according to:

l = argmax
l∈{0,1}

P(l| f1, f2, .., fm) (4.25)

= argmax
l∈{0,1}

ηP(l)P(f1, f2, .., fm|l), (4.26)

where η is a normalization coefficient, and where (4.26) was derived from (4.25)
through Bayes rule. Assuming conditional independence of each component of the
feature vector, (4.26) reduces to:

l = argmax
l∈{0,1}

ηP(l)
M

∏
i=1

P(fi/l). (4.27)

For now, it is assumed that each component of the feature vector lies in a strictly pos-
itive discrete feature space such that fi ∈ [0,2, ..,K]∀i ∈ [1,M], creating a vocabulary
V of discrete features. Furthermore, the features are assumed to be multinomialy dis-
tributed given the class label such that P(fi/l) ∼ multinomial. The functions C(fi,S)
and C(S) are counting functions that return the number of occurrences of feature fi
in the set S and the number of elements of set S respectively. Mathematically, these
functions are defined as:

C(fi,S) =
N

∑
j=1

1{ fi = f j∧ l = lS} (4.28)

C(S) =
N

∑
j=1

1{l = lS}, (4.29)

where lS is the label associated with a set S and 1 is the indicator function. The PNB
classifier estimates the positive class conditional probability for each component of the

21

feature vector as:

P(fi|l = 1) =
ζp +C(fi,T P)

ζpCard(V)+C(T P)
, (4.30)

where Card(V) is the cardinality of the vocabulary V , and ζp is a smoothing parameter.
Estimating the negative class conditional probability is a non-trivial problem due

to the absence of negative labeled training data. The derivation is formulated using the
law of total probability is used to write the P(fi) as:

P(fi) = P(fi|l = 0)P(l = 0)+P(fi|l = 1)P(l = 1), (4.31)

The negative probability is then written as:

P(fi|l = 0) =
P(fi)−P(fi|l = 1)P(l = 1)

P(l = 0)
. (4.32)

Furthermore, P(fi) is estimated from the unlabeled data using the counting functions
defined above as:

P(fi) =
C(fi,UD)

C(UD)
, (4.33)

Finally, the negative class conditional probability estimate can be written as:

P(fi/l = 0) =
1+max(0,C(fi,UD)−P(l = 1)P(fi/l = 1)C(UD))

Card(V)+(1−P(l = 1))C(UD)
, (4.34)

where the max function was used to insure a non-negative probability [21], and where
Laplace smoothing was applied. It has to be noted that the estimation of the prior
probability P(l = 1) directly from the available data is not possible, ans should be
provided as an input. Finally, equations (4.30) and (4.34) are substituted in (4.27), and
labels can be generated for each pixel in the scene.

4.4.2 The ν-Support Vector Classifier
The ν-SVC was proposed by Scholkopf et al.[22] in 1999 and became a popular kernel
based learning algorithm for one class classification problems. The ν-SVC learns a hy-
perplane in a higher dimensional feature space, such that the set T P is separated from
the origin with maximum margin. The hyperplane is found by solving the following
quadratic program:

min
α

1
2 ∑

jk
α jαkk(f̄ j, f̄k) sub ject to :

0≤ α j ≤
1

C(T P)
,

∑
j

α j = ν ,

(4.35)

22

where f̄1.. f̄C(T P) are feature vectors of pixels belonging to the set T P ,and k(f̄ j, f̄k) is
some kernel function that maps the data to a higher dimensional feature space. The
parameter ν ∈ [0,1] is related to the number of pixels to be considered as support
vectors. After constructing the hyperplane, pixels in UD are given a label l such that:

l = max(0,sgn(∑
j

α jk(f̄ j, f̄)−ρ)), (4.36)

ρ = ∑
k

αkk(f̄ j, f̄k), f or any 0≤ αk ≤
1

C(T P)
. (4.37)

Unlike the PNB classifier the feature space need not be discrete. The kernel used
in this implementation is the radial basis function (RBF) kernel with equation:

k(f̄ j, f̄k) = exp(
−(f̄ j− f̄k)

2

2s2), (4.38)

where s is the scale parameter. I refer the reader to the work of Scholkopf et al.[22]
for a detailed analysis of the effect of the ν and s on the classification results of the
ν-SVC.

4.5 Feature Space Selection and The Mapping Algo-
rithm

The aim of this chapter is to present the feature space selection and the free space
mapping algorithm.

4.5.1 Free Space Mapping
To be able to use the output of the proposed classifiers for occupancy grid mapping,
alterations must be done to transform the binary output to usable probabilities. The
world occupancy grid is initialized as a 1000×1000 cell grid with each cell represent-
ing a 10×10 cm world patch.

Initially, the occupancy probability of each cell is set to 0.5. The occupancy proba-
bility is then updated as the unmmaned ground vehicle explores the environment using
the following equation:

Ot = Ot−1 +Osensor, (4.39)

where Ot−1 represents the previous occupancy probability value in the cell, and Osensor
represents the current probability update. Obtaining Osensor is specific to each classi-
fier. For the PNB classifier, Osensor is defined as:

Osensor = log(ηP(l = 1)
M

∏
i=1

P(fi/l = 1))− log(ηP(l = 0)
M

∏
i=1

P(fi/l = 0)). (4.40)

23

The value computed in 4.40 is positive only if the first term i.e., the posterior probabil-
ity of a cell to belong to the ground class is the larger term. Therefore, the occupancy
probability for each cell within the feild of view of the UGV will change at each frame
in proportion to the difference between the two class posterior probabilities.

Modifying the result of the ν-SVC is a bit trickier. At first, the raw score inside the
sgn function in 4.37 is transformed via the logistic function to transform score values
to the interval [0,1]. The transformed value is then doubled, and 1 is subtracted from
it to obtain the new occupancy probability as:

Osensor =
2

1+ exp(−∑ j α jk(f̄ j, f̄)+ρ)
−1. (4.41)

The logic behind the above equation is that the logistic function maps any positive
value to a value greater than 0.5 and any negative value to a value less than 0.5,
and thus by doubling the transformed value and subtracting 1, Osensor values between
[−0.5,+0.5] are obtained.

4.5.2 The Selected Feature Space
The selection of discriminant features to be used by the second stage classifiers is es-
sential for good classification results. However, to maintain real time performance, the
computational requirement of extracting features should also be taken into considera-
tion. In these notes a subset of appearance and geometric based features are chosen to
provide a decent compromise between discriminating power and computational time.

The system proposed is collecting training data per frame and in real time and
thus the features need not be temporally invariant. For this reason, the computational
efficiency of features is used as the selection criterion. Table 4.1 provides the compu-
tational time required to extract different features used in literature. In the performed
experiments, the three geometric features in Table 4.1 were found to be highly discrim-
inant and thus were all chosen to belong the the feature space. From image data, the
mean of the 3 dimensional RGB color space was chosen due to its low computational
time requirement. The final 6 dimensional feature vector thus comprises of the mean
height, height variance,maximum absolute difference in height, and the mean of R, G,
and B channels.

The positive naive Bayes classifier requires the feature space to be discrete. Color
features chosen above are already discrete, taking values between 0 and 255. On the
other hand, the chosen geometric features take continuous values and as such require
discretization before being learned by the PNB classifier. The discretization is per-
formed according to the following equation:

fnew = 255× fold−min(fold)

max(fold)−min(fold)
, (4.42)

producing feature values between 0 and 255 for all components of the feature vector.

24

Table 4.1: Computation time required to extract different features from 720×1280
stereo images, pixel wise and block wise. It should be noted that histogram-based fea-
tures are too computationally expensive to be defined pixel wise, and thus are defined
only per 5×32 pixel blocks. Furthermore, raw measurement data such as RGB color
data and height data require no processing time.

Color Features
Feature Dimension per Frame

Pixel Wise
per Frame
Block Wise

RGB[11],[12],[3],[8] 3 NA 69.2 ms
HSV[11],[23] 3 21.9 ms 77.7 ms
rg Chromaticity[5] 2 22.6 ms 74.2 ms
Lab[10] 3 331.4 ms 384.7 ms

Texture Features
Feature Dimension per Pixel per Block
RGB Histograms[24] 15 NA 2058 ms
HS Histograms[11] 13 NA 1338 ms
Gabor Magnitude[10] 4 681 ms 690 ms
LBP histograms[25] 59 NA 3545.2 ms

Geometric Features
Feature Dimension per Pixel per Block
Mean Height [2],[6],[12] 1 NA 22.8 ms
Height Variance
[12],[26],[6],[13]

1 49 ms 50.7 ms

maximum absolute difference
in height[12],[13],[4],[26],[2]

1 123.1 ms 122.5 ms

25

Chapter 5

Experiments And Results

This chapter presents the experimental setup used for data acquisition and describes
the datasets acquired. It then provides an analysis of how well the feature distributions
of the ground class are represented by the extracted training data. Finally, the classifi-
cation and environment mapping results of the proposed second stage classifiers using
my proposed algorithm for training data extraction are presented and analyzed.

5.1 Hardware

As shown in Fig.5.1, Stereo Lab’s Zed Camera [27] is used to aquire 720×1280 RGB
images as well as 3D point clouds at 10 frames per second. The camera is mounted on
the clearpath Husky UGV that inputs odometry and IMU information to an extended
Kalman filter, which outputs the pose relative to the world coordinate frame. Training
data extraction, feature vector extraction, free space classification, and occupancy grid
mapping were implemented using Matlab and ran on an Intel Core R© i7

TM
processor at

3 GHz with 32 GB of RAM.

5.2 Datasets

To be able to perform the necessary experiments, three datasets were created with
terrains ranging from planar to non-planar ground. Each frame in the dataset is com-
prised of a stereo pair of 720× 1280 colored images, their corresponding disparity
image, and pixel X ,Y ,and Z coordinate with respect to the camera’s coordinate frame.
Furthermore, the frame contains odometry information representing the frame’s posi-
tion and orientation with respect to a world coordinate frame. The algorithm provided
by the camera’s SDK was used to generate the disparity image and the point cloud
coordinates. The three datasets include:
Difficult dataset: 88 images taken with the a stereo camera mounted on a UGV driven
on a highly non-planar off-road terrain.

26

Figure 5.1: Deployed sensors and robot. The Zed Stereo Camera is rigidly mounted
on top of the Clearpath Husky UGV.

Medium dataset: 120 images taken with the a stereo camera mounted on UGV driven
on a slightly non-planar park-like terrain.
Easy dataset: 145 images taken with the a stereo camera mounted on a UGV driven
on a highly planar man-made terrain .

It has to be noted that pixels lacking geometric features due to rectification, occlu-
sion, or being located beyond the stereo camera’s maximum range are not considered
in this evaluation. Finally, ground truth is generated manually for every frame of the
three datasets.

5.3 Assessing The Quality Of Extracted Training Pix-
els

Although I established that the proposed algorithm can indeed provide training pixels,
the quality of the training pixels extracted remains an unanswered question. To begin
with the analysis, goodness criteria needs to be specified. The extracted training data
should contain a minimal number of outliers. Furthermore, it should be a representa-
tive sample of the class from which it has been extracted. It has to be noted that I set
the confidence interval to be 30% for all the tests performed.

I begin with an analysis of the outlier fraction, that is the fraction of extracted pixels
that are labeled as training pixels from the ground class, but do not actually belong to
the ground class (Fig.5.2, Top). The bottom part of Fig.5.2 provides a plot of the

27

fraction of outliers in the extracted training data per frame of the three datasets. It can
be seen that the training data extraction algorithm becomes more prone to erroneously
label data as the environment becomes harsher. On the other hand, the mean outlier
fraction produced by the algorithm is 0.0268, 0.0452, 0.1098 for the easy, medium and
difficult datasets respectively, which is tolerable and can be handled through second
stage classification. It has to be noted that the fraction of outliers can go as high as
0.2879 for the worst case frame in the difficult dataset.

I noticed that the outlier fraction is highly correlated with the quality of the dis-
parity images, and tend to increase as the quality of the disparity images deteriorates.
This is a natural outcome of the dependence of the proposed algorithm on the disparity
space for training data extraction and I anticipate the proposed algorithm to produce a
very low outlier fraction as disparity generating algorithms become better.

To assess how well the extracted training data resembles the true class distribution,
a comparison of the sufficient statistics of the true distribution and the estimated distri-
bution of the 6 features in the selected feature space is performed. Although an invalid
assumption, and for the sake of comparison, the features are assumed to be normally
distributed and their mean and standard deviation are compared. Table 5.1 present
a comparison between the sufficient statistics of the true and estimated distributions
from a randomly selected frame from each dataset. It can be seen that the estimated
distributions’ mean and variance closely resembles that of the true distribution with
minimal error. This implies that the proposed algorithm accurately models the true
feature distribution for the ground class.

To further validate the goodness of the estimation, the true distribution is visualized
by plotting the normalized histogram of the all the pixels that belong to ground class,
found from the ground truth. The estimated distributions’ plots is superposed over that
of true distributions’ plots in Fig.5.3, Fig.5.4, Fig.5.5 for a random frame from each
of the three datasets. In all three cases, the estimated probability distribution closely
resembles the true distribution.

The reported results validate the claim that the proposed algorithm chooses a repre-
sentative sample of the ground class as training data with a minimal number of outliers.
The remainder of this section is focused on reporting the results of using the extracted
training data to supervise classifiers for free space classification tasks and for environ-
ment mapping.

28

Table 5.1: A comparison of the true ground class distribution’s vs the estimate ground
class distribution sufficient statistics for a random frame from each of the three
datasets. It can be seen that the estimated distribution

Easy Dataset
Statistic Red Blue Green Mean

Height
Height
Variance

Height Dif-
ference

True Mean 151.1 151.4 149.7 24.7 5.1 12.5
Estimated Mean 153.7 153.8 152.3 24.7 5.2 11.8
True Variance 323 323 291 5 115 1867
Estimated Variance 290 311 330 6 113 1804

Medium Dataset
Statistic Red Blue Green Mean

Height
Height
Variance

Height Dif-
ference

True Mean 112.9 130.3 100.9 15.4 2.2 13.2
Estimated Mean 114.6 132.2 102.5 15.2 1.9 12
True Variance 682 431 662 4 25 1842
Estimated Variance 680 431 639 6 23 1376

Difficult Dataset
Statistic Red Blue Green Mean

Height
Height
Variance

Height Dif-
ference

True Mean 71.5 90 69.7 5.6 1.6 14.4
Estimated Mean 66.3 78.4 64 5. 1.8 14.9
True Variance 844 1531 805 2 12 1616
Estimated Variance 718 981 637 2 13 1714

29

Figure 5.2: Top: An example of the presence of outliers in the extracted training pixels.
Correctly labeled training pixels are shown in green, where as outliers are shown in red.
Bottom: The fraction outliers computed by running the proposed algorithm over the
three datasets.

30

Figure 5.3: The true probability distributions of the features for the positive (blue) and
negative (red) class in a random frame from the easy dataset. The estimated probability
distribution for the positive class (green) is found using training pixels extracted via
my algorithm. The features are all linearly separable, and unimodal thus approximated
well by a normal distribution.

31

Figure 5.4: The true probability distributions of the features for the positive (blue)
and negative (red) class in a random frame from the medium dataset. The estimated
probability distribution for the positive class (green) is found using training pixels
extracted via my algorithm. The color features’ distributions are seen to exhibit two
modes due to the fact that the ground class is characterized by two different colors in
this dataset. Furthermore, the geometric features are seen to still be linearly separable
and unimodal.

32

Figure 5.5: The true probability distributions of the features for the positive (blue)
and negative (red) class in a random frame from the difficult dataset. The estimated
probability for the positive class (green) is found using training pixels extracted via
my algorithm. The color features’ positive and negative class distributions seem to be
superposed and highly inseparable. Furthermore, positive and negative class distribu-
tions of the height variance and the maximum absolute difference in height are also
highly inseparable.

33

5.4 Comparison With Other Training Data Extraction
Algorithms In Literature

This section presents an analysis of the goodness of training data extracted by the
proposed algorithm by comparing it against training data extracted via other techniques
in the literature. This is done by inputting each set of data to the ν-SVC and comparing
the three corresponding output pixel labels.

Two training data extraction algorithms are used for the sake of comparison with
the proposed algorithm. The two algorithms are:
Bootstrapping: Bootstrapping was used in [6] and relies on the assumption that the
properties of the ground plane will not change much as the UGV moves through the
environment. This algorithm is implemented by manually providing the robot with
positive labels in the first frame, which it then uses as training data for classification in
the second frame. Positively labeled data in the second frame are used as training data
in the third and so on.
Plane Fitting: this algorithm was used in [8] and [11] and relies on plane fitting in
the stereo generated point cloud to determine patches belonging to the ground plane.
For maximum robustness towards outliers, M-estimator SAmple Consensus (MSAC)
algorithm is used for plane fitting. The expected normal vector of the ground plane is
required to be provided as an input, and inlier points determined by the algorithm are
used as training data input to the ν-SVC algorithm.

A standard off-the-shelf implementation of the ν-SVC is used and thus only the
selection of free parameters in this implementation will be discussed. The three free
parameters in the ν-SVC algorithm are ν , the kernel scale, and the outlier fraction. ν

is a parameter that lies between 0 and 1 and controls the fraction of training data to
become support vectors. In this implementation, it is set to 1 which results in using all
training data as support vectors. The outlier fraction, which determines the percentage
of training data to belong to the negative class is set to be 5%. This combination of
ν and outlier fraction allows the ν-SVC classifier to be robust to only small amounts
of wrong labels in the training data. A large amount of wrongly labeled training data
will change the shape of the decision boundary, emphasizing the effect of training data
extraction algorithms on the quality of the final pixel classification and allowing an ob-
jective comparison between training extraction algorithms. As part of the algorithm,
the scale of the Gaussian kernel is selected automatically, using a heuristic procedure
based on training data subsampling. Finally, due to the difference in their scale, fea-
tures are standardized by subtracting their mean value and dividing by their standard
deviation.

All experiments were done with the feature vector and ν-SVC parameters held
constant across all three datasets. Furthermore, the free parameters of the three training
data extraction methods are also fixed over all trails. The labels obtained from the ν-
SVC using the three algorithms are compared to ground truth labels to compute three
performance criteria, which are the recall, precision, and specificity.

34

Table 5.2: Evaluation of the ν-SVC using the three training data extraction algorithms
over the three datasets. The evaluation is based on the average recall, precision, speci-
ficity, and computation time (of the training data extraction algorithm, in seconds)
over all the frames of each dataset. As the terrain becomes harsher, my algorithm
proves to produce better results.

ν-SVC using My Training Extraction Algorithm
Dataset Recall Precision Specificity Time
Easy 0.8671 0.9604 0.9853 0.0547
Medium 0.8514 0.9326 0.9781 0.0592
Difficult 0.8147 0.9855 0.9725 0.0598

ν-SVC using plane fitting
Dataset Recall Precision Specificity Time
Easy 0.9646 0.9340 0.9731 0.1681
Medium 0.9422 0.8931 0.9592 0.4833
Difficult 0.5784 0.9960 0.9957 1.1138

ν-SVC using Bootstrapping
Dataset Recall Precision Specificity Time
Easy 0.0326 0.9787 0.9995 NA
Medium 0.0869 0.9853 0.9963 NA
Difficult 0.2838 0.9959 0.9992 NA

Recall describes the fraction of ground patches retrieved by the classifier, while
precision describes fraction of the retrieved patches that are correct. Specificity on the
other hand, describes the fraction of correctly identified negative instances, which in
this case are the obstacles. The proposed algorithm’s aim is two-fold, first to maximize
all three performance criteria of the ν-SVC classifier and second, to keep its perfor-
mance relatively the same over all the three types of terrain. Table 5.2 summarizes the
mean recall, precision, and specificity of the ν-SVC classifier using training data from
the three algorithms over all the frames of each datasets.

The ν-SVC classifier using Bootstrapping performed the worst of all three having
a mean recall of 0.134 over the three datasets and is found to be unusable for reliable
free space estimation. The low recall is attributed to the deterioration of the classi-
fication as the camera moves away from its initial position due to the change in the
properties of the ground. This phenomenon can be clearly seen in Fig.5.6-left where
the recall is plotted as function of frames. Better relative performance of the ν-SVC
using Bootstrapping on the Difficult dataset is mainly due to the constant color prop-
erties of the ground in this dataset. The results of the ν-SVC using Bootstrapping are
shown in the fifth column of Fig.5.7. At the early frames of operation (third and fourth
rows), it provides good results, while at later frames (first, second and fifth rows), the
quality of classification greatly deteriorates. One advantage of bootstrapping is its low
computation time due to the low requirements for training data extraction.

35

The ν-SVC utilizing plane fitting reaches 0.9646 and 0.9422 recall on the easy
and medium dataset respectively. Compared to the ν-SVC using my algorithm, which
has a recall of 0.8671 and 0.8114 on the same datasets, the ν-SVC utilizing plane
fitting seems to perform better. I attribute the better performance to the much larger
amounts of training data provided by plane fitting in cases of planar ground. However,
the increase in recall comes at the expense of a decrease in precision and specificity.
On the two datasets, the ν-SVC using my algorithm achieves a precision of 0.9604
and 0.9326 respectively vs 0.9340 and 0.8931 for the ν-SVC using plane fitting. The
specificity of the ν-SVC using my algorithm was also better, achieving 0.9853 and
0.9781 on the two datasets vs a specificity of 0.9731 and 0.9592 for the ν-SVC using
plane fitting. On the Difficult dataset, a deterioration in the quality of classification of
the ν-SVC using plane fitting was observed. In highly non planar environments, plane
fitting only provides training data from the largest locally planar patch with a normal
vector closest to that provided as input for the algorithm (Fig.5.7 third column, first
row). This leads to a reduction in recall to a value of 0.5784. As the recall decreases,
the precision increases to 0.9959 and the specificity to 0.9992. On the other hand,
the ν-SVC using my algorithm is able to provide a recall value of 0.8147, providing
an increase of 0.2368 over the recall of the ν-SVC using plane fitting. This high
recall is accompanied with high values of precision and specificity, 0.9855 and 0.9725
respectively. This shows that my algorithm is able to provide reliable training data on
highly non planar terrain.

Another important criterion to consider is the computation time of each training
extraction algorithm. The proposed algorithm includes v-disparity image generation,
filtering and Bayesian linear regression and was implemented in Matlab, as were the
other two data extraction algorithms. All the algorithms ran on the same Laptop. The
fifth column of Table 5.2 shows that as the nature of the scene becomes more non-
planar, the computation time of plane fitting increases. Furthermore, Fig.5.6-right
shows that the variance of the computation time between frames is very large for plane
fitting, which is mainly due to the dependence of its computation time on the density
of the point cloud. The proposed algorithm shows a more consistent computation time
whether across datasets (Table 5.2, fifth column) or across frames (Fig.5.6).

The intuition behind the improved performance provided by the ν-SVC using my
proposed algorithm for training data extraction is that in non-planar environments, the
ground plane is actually made up of many small oblique and horizontal planes, which
are all projected to slanted lines in the v-disparity image. Using the v-disparity filtering
algorithm to extract these lines is conceptually equivalent to fitting planes to the whole
scene in one shot. This allows the user to extract training data over the whole scene
even in highly non-planar scenarios (Fig.5.7-first column, first row) and results in the
computational time of my algorithm to remain approximately the same whether the
terrain is planar or non-planar. Finally, selecting training data by using the confidence
interval allows picking only high confidence pixels for training, increasing the final
classification’s precision and specificity. Such examples can be seen in the final row
of Fig.5.7, where the training data provided by my algorithm results in better classifi-

36

cation results. Plane fitting can be seen to provide a large amount of wrongly labeled
training pixels resulting in a deterioration in the quality of the final classification.

37

Figure 5.6: Plots of recall values of the ν-SVC and computational time (in seconds) of
the three training data extraction methods per frame of the datasets.

38

Figure 5.7: Examples of the training data extracted using my algorithm and the plane
fitting algorithm (first and third columns respectively), and the final classification re-
sults obtained from ν-SVC using my algorithm (green), largest fitted plane algorithm
(red) and bootstrapping (blue). Bootstrapping does not explicitly extract training data
at each frame and thus only results of the final classification are shown.

39

5.5 Free Space Classification and Mapping Results
All experiments were done with the feature vector and classifier parameters held con-
stant across all three datasets. Furthermore, the confidence interval of the training data
extraction algorithm is set to 30%. The labels obtained from the two classifiers are
compared to ground truth labels to compute three performance criteria, which are the
recall, precision, and specificity. Examples of these labels are presented in Fig.5.9 for
the PNB classifier and Fig.5.10 for the ν-SVC classifier. It has to be noted that the
PNB classifier classifies each pixel in the 720× 1280 images, where as the ν-SVC
classifies 5×32 image blocks.

Fig.5.8 present a comparison between the three performance criteria of the two
classifiers. On the easy dataset, the PNB classifier performs better than the ν-SVC
classifier achieving a mean recall value of 0.9131 with a mean precision of 0.9823
and mean specificity of 0.9936. The ν-SVC classifier on the other hand achieved a
mean recall of 0.8853, a mean precision of 0.9713, and a mean specificity of 0.9897.
I attribute the better performance of the PNB classifier to the linear separability of
individual features in the proposed feature vector and to the resemblance of their prob-
ability densities to that of the normal distribution as it can be seen in Fig.5.3.

When applied on the medium dataset on the other hand, the ν-SVC classifier seems
to perform better with a mean recall value of 0.8549, mean precision of 0.9416 and
mean specificity of 0.9802 versus a mean recall of 0.8326, mean precision of 0.9540
and mean specificity of 0.9847 for the PNB classifier. The better performance of the
ν-SVC is primarily due to the complex nature of the scene. The ground class color
distribution as it can be seen in Fig.5.4 is multimodal and not linearly separable, and
thus it is expected that the ν-SVC classifier performs better than the PNB classifier in
such scenarios.

Finally, the performance of the ν-SVC classifier on the difficult dataset is also
better than the PNB classifier, achieving a mean recall of 0.8795 with a mean precision
of 0.8561 and specificity of 0.9479. The PNB classifier on the other hand achieved a
mean recall of 0.8590 with a mean precision of 0.8872 and mean specificity of 0.9611.
The reason behind the better preformance is that five out of six features in the difficult
dataset are seen not to be linearly separable in Fig.5.5.

The performance of mapping the classifiers is also of importance. The mapping
procedure is performed by first performing coordinate transformation to align the cam-
era coordinate frame with the robot coordinate frame. The 3-D point cloud is then
projected onto the X and Y 2D-plane. The mapping procedure follows the description
in section 4.5.1. Points with the same X ,Y are handled by addition of their log odds.

Fig.5.11 shows the maps of the environment of the three datasets created by the
two classifiers. For the easy dataset, the performance of the two classifiers is relatively
close. On the other hand, the ν-SVC outperforms the PNB classifier on the medium
and difficult datasets. It can be seen that in the medium dataset, the PNB classifier
cannot find a path as it wrongly classifiers free space as obstacles.

It can be observed from the experiments performed that the ν-SVC classifier is

40

much more conservative than the PNB classifier. This is because the probabilistic
output of the ν-SVC (Fig.5.10) is very close to either 0 or 1, while that of the PNB
classifier (Fig.5.9) is more spread out on the [0,1] interval providing more levels on
the occupancy grid.

Computation time should also be taken into account when evaluating the perfor-
mance of the two classifiers. The computation time is measured as the time required
to extract training data using the proposed algorithm, perform the classification, and
construct the occupancy grid representation. Fig.5.8 shows the results of the computa-
tion time in seconds for both classifiers. It can be clearly seen that the PNB classifier
requires less computation time that the ν-SVC classifier. The PNB classifier requires
0.46, 0.5, 0.58 seconds per frame from the easy, medium, and difficult datasets respec-
tively vs 0.56, 0.57, 0.6 seconds per frame for the ν-SVC classifier.

As a final thought, both classifiers manage to map the environment in the three
datasets fairly well. The PNB classifier classifies the environment pixel wise, and as
such is more susceptible to noise, but is better in detecting boundaries. Furthermore,
the PNB classifier is seen to be faster than the ν-SVC classifier, and provides continu-
ous probability values for each pixel. On the other hand, the ν-SVC classifier performs
better when features are not linearly separable. As a final recommendation, one should
use the PNB classifier in man-made , planar environments, and the ν-SVC classifier in
tough non-planar environments.

41

Figure 5.8: A plot of the Recall, Precision, Specificity, and Computation time (in
seconds) of the PNB and ν-SVC classifiers vs the frames of the three datasets. It is
noticed that the two classifiers are similar in terms of classification results, but the PNB
classifier is faster.

42

Figure 5.9: The results of training data extraction (first column), the occupancy frame
(second column) and the final ground segmentation of the PNB classifier. The first two
rows are from the easy dataset, the second two from the medium dataset, and the final
two from the difficult dataset

43

Figure 5.10: The results of training data extraction (first column), the occupancy frame
(second column) and the final ground segmentation of the ν-SVC classifier. The first
two rows are from the easy dataset, the second two from the medium dataset, and the
final two from the difficult dataset.

44

Figure 5.11: The free space mapping results of the PNB and ν-SVC for the three
datasets. The ν-SVC is seen to perform better in free space mapping than the PNB
mainly because of it’s conservative nature.

45

Chapter 6

Conclusion and Future Work

This thesis provides a system that automatically learns, classifies and maps free space
in an environment using a stereo sensor. This is done through employing self-supervision
by designing an algorithm that extracts training data automatically and reliably from
free space in stereo data. The proposed algorithm is shown to be superior to other
algorithms in literature by bench-marking on three stereo datasets. As a conclusion,
the main contributions of this thesis are :

• A filtering algorithm that increases the reliability of estimating the ground cor-
relation line in the v-disparity space.

• A mathematical proof that measuring the uncertainty in disparity is sufficient to
measure the uncertainty in 3D-coordinates of a point in space.

• A Bayesian linear regression frame work to estimate the uncertainty without any
prior assumptions on the environment or free variables.

• Using the output PDF from the above framework to extract training data, which
are used to supervised two types of classifiers to detect and map free space in an
environment.

However, much work remains to be done. The proposed system is memory-less,
and throws away precious training data from previous frames. Furthermore, looking
into Markov random fields to model inter-pixel dependencies could provide decent
boosts in classification performance. Also, switching between the two proposed clas-
sifiers would allow the system to benefit from the advantages of both. Finally, it is
an interesting idea to perform SLAM using the proposed system to further refine the
results of free space mapping.

46

Bibliography

[1] D. Yiruo, W. Wenjia, and K. Yukihiro, “Complex ground plane detection based
on v-disparity map in off-road environment,” in Intelligent Vehicles Symposium
(IV), 2013 IEEE. IEEE, 2013, pp. 1137–1142.

[2] B. Suger, B. Steder, and W. Burgard, “Traversability analysis for mobile
robots in outdoor environments: A semi-supervised learning approach based on
3d-lidar data,” in Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2015. [Online]. Available: http://ais.informatik.uni-freiburg.de/publications/
papers/suger15icra.pdf

[3] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. R. Bradski, “Self-
supervised monocular road detection in desert terrain.” in Robotics: science and
systems. Philadelphia, 2006.

[4] S. Thrun, M. Montemerlo, and A. Aron, “Probabilistic terrain analysis for high-
speed desert driving.” in Robotics: Science and Systems, 2006, pp. 16–19.

[5] A. Milella, G. Reina, J. Underwood, and B. Douillard, “Visual ground segmenta-
tion by radar supervision,” Robotics and Autonomous Systems, vol. 62, no. 5, pp.
696–706, 2014.

[6] A. Milella, G. Reina, and M. M. Foglia, “A multi-baseline stereo system for
scene segmentation in natural environments,” in Technologies for Practical Robot
Applications (TePRA), 2013 IEEE International Conference on. IEEE, 2013,
pp. 1–6.

[7] G. Reina and A. Milella, “Towards autonomous agriculture: automatic ground
detection using trinocular stereovision,” Sensors, vol. 12, no. 9, pp. 12 405–
12 423, 2012.

[8] P. Vernaza, B. Taskar, and D. D. Lee, “Online, self-supervised terrain classifica-
tion via discriminatively trained submodular markov random fields,” in Robotics
and Automation, 2008. ICRA 2008. IEEE International Conference on. IEEE,
2008, pp. 2750–2757.

47

http://ais.informatik.uni-freiburg.de/publications/papers/suger15icra.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/suger15icra.pdf

[9] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu,
U. Muller, and Y. LeCun, “Learning long-range vision for autonomous off-road
driving,” Journal of Field Robotics, vol. 26, no. 2, pp. 120–144, 2009.

[10] P. Moghadam and W. S. Wijesoma, “Online, self-supervised vision-based terrain
classification in unstructured environments,” in Systems, Man and Cybernetics,
2009. SMC 2009. IEEE International Conference on. IEEE, 2009, pp. 3100–
3105.

[11] D. Kim, S. M. Oh, and J. M. Rehg, “Traversability classification for ugv nav-
igation: A comparison of patch and superpixel representations,” in Intelligent
Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on.
IEEE, 2007, pp. 3166–3173.

[12] M. Bajracharya, A. Howard, L. H. Matthies, B. Tang, and M. Turmon, “Au-
tonomous off-road navigation with end-to-end learning for the lagr program,”
Journal of Field Robotics, vol. 26, no. 1, pp. 3–25, 2009.

[13] C. A. Brooks and K. Iagnemma, “Self-supervised terrain classification for plan-
etary surface exploration rovers,” Journal of Field Robotics, vol. 29, no. 3, pp.
445–468, 2012.

[14] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cam-
bridge university press, 2003.

[15] Z. Hu and K. Uchimura, “Uv-disparity: an efficient algorithm for stereovision
based scene analysis,” in Intelligent Vehicles Symposium, 2005. Proceedings.
IEEE. IEEE, 2005, pp. 48–54.

[16] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detection in stereo-
vision on non flat road geometry through” v-disparity” representation,” in Intel-
ligent Vehicle Symposium, 2002. IEEE, vol. 2. IEEE, 2002, pp. 646–651.

[17] A. Harakeh, D. Asmar, and E. Shammas, “Ground segmentation and occu-
pancy grid generation using probability fields,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015, pp. 695–702.

[18] J. Zhao, J. Katupitiya, and J. Ward, “Global correlation based ground plane esti-
mation using v-disparity image,” in Robotics and Automation, 2007 IEEE Inter-
national Conference on. IEEE, 2007, pp. 529–534.

[19] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[20] F. Denis, A. Laurent, R. Gilleron, and M. Tommasi, “Text classification and co-
training from positive and unlabeled examples,” in Proceedings of the ICML 2003
workshop: the continuum from labeled to unlabeled data, 2003, pp. 80–87.

48

[21] J. He, Y. Zhang, X. Li, and Y. Wang, “Naive bayes classifier for positive unlabeled
learning with uncertainty.” in SDM. SIAM, 2010, pp. 361–372.

[22] B. Schölkopf, R. Williamson, A. Smola, and J. Shawe-Taylor, “Sv estimation
of a distributions support,” Advances in neural information processing systems,
vol. 12, 1999.

[23] B. Lee, K. Daniilidis, and D. D. Lee, “Online self-supervised monocular visual
odometry for ground vehicles,” in Robotics and Automation (ICRA), 2015 IEEE
International Conference on. IEEE, 2015, pp. 5232–5238.

[24] M. J. Procopio, J. Mulligan, and G. Grudic, “Learning terrain segmentation with
classifier ensembles for autonomous robot navigation in unstructured environ-
ments,” Journal of Field Robotics, vol. 26, no. 2, pp. 145–175, 2009.

[25] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rota-
tion invariant texture classification with local binary patterns,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 24, no. 7, pp. 971–987,
2002.

[26] M. Häselich, M. Arends, N. Wojke, F. Neuhaus, and D. Paulus, “Probabilistic
terrain classification in unstructured environments,” Robotics and Autonomous
Systems, vol. 61, no. 10, pp. 1051–1059, 2013.

[27] S. Labs, https://www.stereolabs.com/.

49

https://www.stereolabs.com/

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Background
	Stereo Sensor Model
	The V-Disparity Image
	The Projection of The Ground Class Onto The V-Disparity Image

	Self Supervised Free Space Estimation For UGVs
	V-Disparity Image Filtering
	A Stochastic Model For Pixel Occupancy Probability
	Modeling The Uncertainty In The Stereo Sensor:
	Defining The Vector Space vs over R:

	Online Learning of The Occupancy Probability Density Function Via Bayesian Linear Regression
	Learning The Predictive Distribution
	Bayesian Linear Regression
	Learning The Precision Parameters
	Using The Learned PDF For Training Pixels Extraction

	The Second Stage Classifiers
	The Positive Naive Bayes Classifier
	The -Support Vector Classifier

	Feature Space Selection and The Mapping Algorithm
	Free Space Mapping
	The Selected Feature Space

	Experiments And Results
	Hardware
	Datasets
	Assessing The Quality Of Extracted Training Pixels
	Comparison With Other Training Data Extraction Algorithms In Literature
	Free Space Classification and Mapping Results

	Conclusion and Future Work
	Bibliography

