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AN ABSTRACT OF THE THESIS OF 

 

Hanna Nizar Shehwaro   for  Master of Engineering 

     Major: Civil Engineering 

 

 

Title: Studying the Effect of Learning Curve on Labor Productivity Using Agent-Based 

Modeling 

 

 

 
The labor-intensive nature of construction projects requires proper management and 

efficient utilization of labor resources. Improvement of labor productivity can enhance 

project performance and thereby lead to substantial time and cost savings. Several studies 

focused on identifying the effect of different factors on labor productivity, whereby the 

learning curve factor proved of paramount importance. Previous research efforts developed 

models to analyze the effect of learning curve on labor productivity but failed to capture all 

the complexities of this mechanism and its dynamics. This paper presents an agent-based 

construction learning model that models a construction site as an active environment in 

which construction personnel or agents interact with each other and their surroundings 

thereby creating an adaptive environment open for learning and improvement. More 

specifically, the developed work illustrates many scenarios representing different learning 

levels and typical interactions between workers on construction sites. The components of 

the proposed model were created and results highlighted the potential of using the agent-

based modeling paradigm to better simulate the effect of learning on labor productivity in 

the construction industry. 
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CHAPTER 1 

INTRODUCTION 

 

1. Background 

Productivity has always been a source of attention for researchers. Productivity rates in 

construction specifically have been suffering from lack of standards and steadily 

declining over the last few decades (Shehata & El-Gohary, 2012). In construction, 

productivity mostly refers to labor performance (Hafez et al., 2014). Some studies 

focused on collecting all the factors that affect labor productivity on construction 

projects (Lee, 2007, Singh, 2010, Hafez et al., 2014)  and in this case, overtime, 

overmanning, congestion, shift work, weather, and the learning curve were identified 

(Lee, 2007). Among these factors, the learning curve has long been proven to be of 

paramount importance. The learning curve theory states that, under a repetitive process, 

whenever the production quantity of a product doubles, the unit required for production 

drops by a certain percentage of the previous unit referred to as the learning rate (Jarkas, 

2010).  Many models have been developed to illustrate this learning curve phenomenon 

and show, for example, the relationship between the cycle number and the time per 

cycle.  These models include: (1) The Straight-Line Model (Wright’s Log-Linear 

Model) (2) The Stanford “B” Model (3) The Exponential Model (4) The De Jong’s 

Model; and (5) The Cubic Power Model (The S-Curve Model) (Thomas et al., 1990, 

Hijazi et al., 1992, Naresh and Jahren, 1998, Chen et al., 2009, Taylor et al., 2009, 

Jarkas, 2010, Shehata and El-Gohary, 2012, Pellegrino et al., 2012, Panas and 

Pantouvakis 2014). On the other hand, using simulation for modeling the learning curve 

phenomenon has gained more and more attention over the last years. The most popular 
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simulation techniques adopted were Discrete-Event Simulation (DES) (Hijazi et al. 

1992, Lutz et al. 1994, Panas and Pantouvakis 2014) and System dynamics (SD) 

(Nasirzadeh and Nojedehi, 2013).  However, none of the previous studies used Agent-

Based Modeling (ABM) to model the effect of learning on labor productivity. ABM can 

be defined as a computer simulation technique allowing the examination of how system 

patterns develop from the behaviors of individual agents.  ABM creates virtual agents 

that have the ability to interact with each other and their environment and accordingly 

make autonomous decisions (Awwad et al. 2014).  ABM was used to model the effect 

of congestion (Watkins et al., 2009, Marzouk and Ali, 2013) and safety (Marzouk and 

Ali, 2013) on labor productivity but the effect of learning development was not 

modeled.   

 

2. Objectives and Scope of Work 

The overarching objective of this study is to analyze the effect of learning 

curve on labor productivity by creating an agent-based model that allows modeling 

different learning levels of workers on sites, observing their interaction over time, and 

detecting emergent construction environment behavior and learning patterns. Four 

specific interim objectives are identified in the proposed initiative: 

 

- Identify construction tasks of repetitive nature and crews involved  

- Develop an agent-based model to capture the complexities and dynamics of the 

learning curve mechanism and its effect on labor productivity, as well as pave 

the way for a further sophisiticated model that can allow running a variety of 

experiments and gaining insights into the complexity of the construction 

environment and tasks involving learning. 
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- Verify the proposed model through animation and visualization (i.e.face 

validation). 

- Carry out a statistical analysis for a rigorous interpretation of the results. 

 

3. Thesis structure 

Besides this introductory chapter, the thesis consists of three appendices as 

follows: 

 Appendix A is a review article. It is an elaborate critical review of the 

literature related to the learning curve effect on labor productivity 

 Appendix B is a research article. It presents the proposed agent-based 

learning model in addition to a statistical analysis of the results.  

 Appendix C is a supplementary material section. It presents a summary of the 

data produced from the various simulation runs, as well as a model description together 

with details about the statistical R code. 
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APPENDIX A A REVIEW OF THE LEARNING CURVE 

EFFECT ON LABOR PRODUCTIVITY IN CONSTRUCTION 
 

ABSTRACT 

This study presents a state-of-the-art review of research studies that have focused generally 

on productivity in construction, and specifically on the learning curve effect on labor 

productivity. Although learning curve models have been reviewed and compared (Srour et 

al., 2015), this study takes it a step further by presenting  detailed information  about the 

general concepts of productivity in construction, proceeding into discussing the factors 

affecting labor productivity leading to the importance of the learning curve effect including 

the related research done in that regards. Then finally, the last part presents and discusses 

the tools and techniques used to illustrate and model the effect of learning curve on 

productivity in construction. As an outcome, the objective of this study is to build a 

comprehensive overview for researchers and practitioners in this field, as well as highlight 

the shortcomings of previous research and identify the gaps that need be filled in future 

research studies. 

 

KEYWORDS 

Construction, management, labor, productivity, learning-curve, simulation. 

 

A.1.  INTRODUCTION 

The appropriate planning and control of construction sites depend heavily on the precision 

of estimating labor productivity of different tasks onsite in order to develop realistic 

schedules and control labor costs (Pellegrino el al., 2012). High-rise buildings in 

construction encounter many tasks that are repetitive in nature. As more projects in 

construction are moving towards the implementation of high-rise construction as a result of 

increased numbers of populations; the improvement in the rate of performance for each 
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repetitive task has a noticeable effect on cost and time. Thus, this improvement in 

productivity resulting from the learning curve effect must be taken into consideration when 

preparing schedules and calculating costs. The objective of this study is to (1) present a 

comprehensive literature review for the productivity and factors affecting it, especially the 

learning curve effect (2) present a thorough literature review about learning curve concept 

itselfl, and its effect on labor productivity in construction, including the techniques that 

have been used to evaluate this effect (3) highlight areas that have been not adequately 

studied and the need for future research in these specific areas.  

 

A.2.  LITERATURE REVIEW 

A.2.1 Productivity 

In the construction industry, productivity refers mostly to labor productivity. This 

productivity can be interpreted in many different ways. Therefore, several definitions of 

productivity have been provided in order to avoid any misinterpretation. It is important to 

choose the productivity measure that can best suit the purpose (Shehata & El-Gohary, 

2012). These definitions are summarized and briefly presented as follows (Shehata & El-

Gohary, 2012): 

Section (1): Economic models 

Total factor productivity (TEP) 

TEP =
Total output

Labor + Materials + Equipment + Energy + Capital
 

TEP factor is used in economics to calculate the ratio of output/input. This factor has no 

unit as both the output and the input are in dollars. The denominator could change to other 

variables to fit other input. 
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Section (2): Project-specific models 

Productivity =
Output

Labor + Equipment + Materials
 

This form of productivity is commonly used by designers. The unit of productivity in this 

form is the unit of work (e.g. square feet) per dollar. 

Section (3): Activity-oriented models 

Labor productivity =
Output

Labor cost (or Work hour)
 

Productivity has a unit of output per dollar or output per work-hour. This form is mainly 

used by contractors to calculate productivity of tasks. 

Also, some contractors use the same for but inverted as follows: 

𝐿𝑎𝑏𝑜𝑟 𝑝𝑟𝑜𝑑𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
Labor cost or Work hour

Output
 

 

This form of productivity is called the unit rate. Some other contractors depend on the 

performance factor to express productivity. This factor is calculated as follows: 

Performance factor =
Estimated unit rate

Actual unit rate
 

 

Section (4): The baseline productivity 

This productivity represents the best productivity that can be achieved without disruptions. 

There’s no accurate equation to calculate it. There are steps to estimate the baseline 

productivity as presented previously (Shehata & El-Gohary, 2012), but these steps have 

been criticized for inaccuracy. 

Section (5): Cumulative productivity 

Cumulative productivity =
Total work hours charged to a task

Total quantity installed
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As the name implies, this form of productivity calculate the cumulative of total work hours 

to the total quantity installed. This factor can give an idea of the progress of work. 

 Section (6): The project management index (PMI) 

It is calculated as follows: 

PMI =
Cumulative productivity − baseline productivity

baseline productivity
 

 

This is a non-dimensional parameter that can be used to normalize the management 

influence to compare different projects performance. 

The importance of labor productivity is explained by the fact that it directly affects the time 

and cost of construction projects. Therefore, many studies have focused on identifying 

major factors affecting labor productivity. Among these studies, one comprehensive 

reviewhas been done whereby it collected major factors of labor productivity, classified 

them into categories, and presented  quantifying methods for measuring of  impacts of 

change on productivity levels (Lee, 2007). From this study, seven major factors affecting 

productivity can be extracted. These factors are: overtime, over-manning, congestion, shift 

work, weather, and the learning curve. Another batch of studies has identified major factors 

affecting labor productivity for a specific region by collecting data from surveys. These 

included studies in United Arab Emirates (Singh, 2010), Egypt (Enshassi et al., 2010, Hafez 

et al., 2014), and Turkey (Kazaz et al., 2010). A large number of factors are identified in 

these studies as more detailed focus is put on the impact regarding each region. It is 

concluded that construction labor productivity is not under full control of project managers 

rather affected by workers and work environment (Kazaz et al., 2010). 

It is apparent in previous studies that calculating labor productivity is a very complex 

process. Furthermore, there is an overlap between different factors of productivity, which 

make it even harder to estimate the impact of each factor separately or as a part of multiple 
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factor calculation. Therefore, there is a clear need for further evaluation of factors affecting 

productivity in order to create a common technique or a generic environment that 

researchers can always build upon. This becomes more of a necessity given the different 

equations and techniques out there or that have been developed by researchers, as 

mentioned previously (Lee, 2007). In essence, studying the learning curve effect in 

construction is of importance especially given its impact on labor productivity yet it has not 

been evaluated thoroughly. A detailed focus on this issue is presented in the following 

section. 

A.2.2  The learning curve 

The learning curve theory states: “Whenever the production quantity of a new or changed 

product doubles, the unit or cumulative average cost (hours, man-hours, dollars, etc.) will 

decline by a certain percentage of the previous unit or cumulative average rate. This 

percentage is called the learning rate and identifies the learning achieved. It also establishes 

the slope of the learning curve”. According to Lutz et al. (1994), “the lower the learning rate 

the greater the learning”. According to Thomas et al. (1986), “A learning rate of 100% 

means that no learning takes place”. The learning rate in construction is assumed to be 

between 80% and 95% (Arditi et al., 2001). Additionally, in order for learning to be 

effective, the flow of work should be continuous without interruptions, the type of work 

should be identical, and the type of activity repetitious (Thomas et al., 1986).  

The concept of learning curve was first proposed by Wright (Wright T. , 1936) when he 

derived a mathematical linear relationship between number of units produced and 

productivity. Many other learning curve models have been developed. Learning curve 

models can be summarized as follows (Thomas et al., 1986, Arditi et al., 2001): 

1. Wright’s log-linear model (Straight-line model) (1936) 

This is the first model representing the learning curve. The relationship between 
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productivity and units produced is assumed to be linear on a log-log plot as the learning rate 

remains constant.  

The mathematical model is as follows: 

𝑌 = 𝐴 ∗ 𝑋𝑛 

 

Where: Y: cost, man-hours, or time. A=cost, man-hours, or time necessary to perform the 

first unit. X=cycle number of the unit; and n represents the slope of the logarithmic curve 

(the learning rate), which is calculated as: 

𝑛 =
ln 𝑆

ln 2
 

 

Where n is the learning rate, which is defined as the percentage reduction in the unit input, 

i.e., cost, man-hours, or time, as a result of doubling the number of units completed. The 

number 2 is explained as follows: for a learning rate of 80% each time the production rate 

doubles, the production rate will increase by 20%. 

 

Figure  A-1: Wright’s Learning Curve (Kar, 2007) 

 
This model is the most commonly used because of its simplicity although it assumes the 

improvements in productivity have no limit which is not realistic. Furthermore, this model 

assumes that the learning rate is a constant value, which many studies disagreed with and 

considered it as unreliable (Thomas et al., 1986). 
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2. Stanford B model (1961) 

This model was developed by The Stanford Research institute. It incorporates additional 

“B” factor which represent the previous experience acquired by workers. It is apparent that 

this model is a modification of the straight-line model that accounts for past experience. The 

updated formula is as follows: 

𝑌 = 𝐴 (𝑋 + 𝐵)𝑛  

 

Where B: a factor that represents the previous experience acquired by labor 

Notice that when (B=0) the formula would be the same as straight-line linear model. 

 

3. Exponential Models 

3.1 Basic exponential model (1963) 

In this model that is developed by the Norwegian Building Research institute, the cost (or 

time) will be reduced by half after a constant number of repetitions. The formula is as 

follows: 

𝑌 = 𝑌𝑢 +
𝐴 − 𝑌𝑏

2
𝑋
𝐻

 

 

Where: Y = operational time for unit x, Yb = ultimate time per unit (minimum value that Y 

can reach), A = operational time for the first unit, X = unit number, H = Halving factor 

(constant), it is the unit number that will reduce the time or cost to the half.  By obtaining 

one set of X, Y we can calculate it from the following equation: 

𝐻 =
𝑋. 𝑙𝑜𝑔2

log(𝐴 − 𝑌𝑏) − log(𝑌 − 𝑌𝑏)
 

 

3.2 De Jong Model (1957) 

This model also modifies the straight-line model by incorporating the machine participating 
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factor. It assumes that the ratio of worker-machine affects the learning development. The 

higher the participation of a machine in a task, the less compressible the duration of the 

task. This model’s equation is as follows: 

𝑌 = 𝐴 [𝑀 +
1 − 𝑀

𝑋𝑛
] 

 

Where: M is the factor of incompressibility (Constant). When M=0 the model reduce to the 

log-linear model, which implies a complete manual operation. If M=1, then unit cost 

becomes equal to C1 which suggest that there is no cost improvement possible in machine 

controlled operations.  

4. The Cubic Power Model (The S-Curve Model) (1973) 

This model was proposed by Carlson. He indicated that a further enhancement of the 

straight-line model can be achieved using a curve with multiple slopes. The model’s 

formula is as follows: 

𝑌 = 𝐴 [𝑀 + (1 − 𝑀) ∗ (𝑋 − 𝐵)−𝑛] 
 

This model’s parameter is a combination of all parameters of other models. This model tries 

to incorporate both the machine-worker ratio and previous experience factor. The result is 

an S-Curve. Some learning curve models are illustrated in Figure A-2. 

 

Figure  A-2: Some Learning Curve Models (Thomas et al., 1986) 
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There are also other notable learning curve models including: 

 Levy’s adaptation function 

 Knecht’s upturn model 

 Glover’s Learning Formula 

 Pegel’s exponential function 

 Multiplicative power model (Cobb-Douglas) 

On the other hand, studying and analyzing the effect of the learning curve in construction, 

through different applications and case studies, was carried out by many researchers. In a 

previous study done by Jarkas (Jarkas, 2010), after the learning theory and models have 

been proposed, the rebar fixing operation of beams and slabs was presented. A case study of 

21 residential buildings in Kuwait was done and productivity data were collected. Rebar 

fixing labor inputs were collected using the intermittent observation technique (collection 

upon the completion of an activity) as delays were calculated and deducted. A statistical 

analysis of data was conducted to plot the learning curve. The straight-line model was 

adopted because the concentration is on a task level not a project level. This study is mainly 

important since it had been concluded that there is no productivity improvements due to 

learning. A few cases showed some improvements while the others showed a reduction on 

productivity. This is due to many reasons especially the physical nature of fixing rebar 

(fatigue) that may have overshadowed the learning effect. Another notable study done by 

Pellegrino (Pellegrino el al., 2012) reviewed the theory of learning and its applications in 

construction. Data was collected from 15 multi-story concrete structures, and analysis was 

done to come up with the most important factors affecting learning (especially the negative 

impact of interruptions) by doing two multilevel regression analyses using Matlab software. 

As a result of the buildings being different in the crew compositions and work conditions, 
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different learning curve for each building was plotted. Parameters affecting the learning 

process of the case study were suggested in order to be evaluated using the regression 

model. It has been concluded that the variability in productivity rates are mainly due to site 

management and more focus should be invested on improving the productivity of the first 

floor in order to reach the highest level of progress before 40% of work is completed. 

Learning dynamics was also studied by Taylor (Taylor et al., 2009). This paper simulated 

learning dynamics between multiple firms to adopt changes within the construction 

technologies. The main focus was on the impact of both relational instability and task 

interdependency, and how these two factors might influence organizational learning 

resulting in the affect of productivity rates. A multi-agent simulation model was developed 

using Python programming language. Each firm is represented as an agent with learning 

capabilities in the individual level and between firms. The experiment consisted of four 

different combinations of task interdependence and relational instability. It had been 

concluded that organizations adopting new technologies should reduce relational instability 

to achieve higher rates of productivity due to learning. Another study analyzing how 

learning effects the marine lock guide walls construction was addressed using SLAM 

simulation program. This was done by Naresh (Naresh & Jahren, 1998). Normal 

distribution (PERT) was implemented to account for variations in activity durations. Data 

was collected from experts. A sensitivity analysis was done to examine the learning effect 

on production, time and cost. This study concluded that learning rates should be improved 

to reach higher production rates. Learning effect was high in the beginning and decreased 

with time, so the focus was on the first period of the construction. The effect of learning on 

line-of-balance (LOB) scheduling was done by Arditi (Arditi et al., 2001) as famous 

learning models were explained briefly. LOB plots were injected with new and modified 

productivity rates that incorporate learning, thereby transforming them into curves instead 

of lines, given that the straight-line model of learning had been chosen. The learning rates 
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are modified after the first run in order to account for factors affecting learning (number of 

operations, complexity, and job and management conditions), which were then divided into 

two categories, factual and subjective. Fuzzy set theory is used to describe subjective 

factors (uncertainty). An S-curve was used to modify learning rates. Fictitious project was 

used as a case study to illustrate the proposed method. It has been concluded that 16% 

decrease in total duration and 27% decrease in labor resource requirement are observed due 

to learning. A satisfactory industry-wide learning model that applies to all activities may not 

be feasible. In a study of learning curve models done by Thomas (Thomas et al., 1986), 

learning curve models are presented and explained. Data collected from three construction 

projects was plotted and Pearson's Coefficients of Determination (adjusted) were calculated 

to analyze the capabilities and validity of learning curve models. Least-squares curve fitting 

routines were applied to develop the parameter estimates that provided the best fit. This 

study concluded that the cubic model of learning curve has much wider application due to 

the complexities and variations associated with the construction activities. In project 

networks, learning decay effect on project performance was studied by Chen (Chen et al., 

2009). This paper examines the impact of forgetting (decay) as a factor affecting learning 

between firms in project networks, by developing an experiment with different scenarios 

with varying relational instability values (degree of task interdependence). Wright curve is 

the basis of this study. It has been concluded that as relationship instability and task 

interdependence increase, the impact of forgetting diminishes. Other study by Hijazi (Hijazi 

et al., 1992) had investigated factors affecting learning. Variability in learning is discussed. 

Three cases (no learning, 95% learning rate, and learning rate as a variable with triangular 

distribution) were applied on a previous case study (High-rise hotel). A confidence level of 

95% was constructed in the variability analysis. It was concluded that the exclusion of 

learning development will lead to overestimation in project duration.  

Therefore, the learning curve effect was chosen to be studied for many reasons: (1) it is 
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among the most important factors affecting labor productivity (2) it has not been adequately 

studied in previous research works (3) studying the effect of learning involves to a certain 

extent the inclusion of other factors that affect labor productivity, and (4) the need to 

identify a common way to estimate the effect of learning and other factors on labor 

productivity to reduce the divergence of available techniques. It has been stated that the 

modeling of the learning phenomenon results in a more competitive bidding by providing 

more realistic schedules and cost estimates (Lutz et al., 1994). It is also important to notice 

the capability of the learning curve in predicting future performance, which can help in 

planning and forecasting targets. It also helps in estimating the effect of a delay or an 

interruption in work flow. For instance, the principle of learning curve is useful to the 

contractor when the owner decides to delay the work of the contractor since the latter can 

now make a claim for compensation to regain the losses resulting from the loss of learning 

caused by the delay (Hinze, 2011).  

Beyond highlighting the importance of the learning effect, modeling it as a variable is even 

more imperative. It can yield a more accurate representation of the real situation. The 

following section thereby presents different factors affecting the learning rate. 

 

A.2.3 Factors affecting learning 

Although many learning curve models have been developed to reflect the effect of learning 

on productivity, no single model incorporated all different factors affecting the learning. As 

a result, developing a model that can be adopted for all kinds of tasks related to different 

industries is not reasonable. This section highlights the most common factors that can affect 

the outcome of learning in construction. These factors should be taken into consideration 

when estimating labor productivity, estimating the cost of a delay, or estimating durations 

of different tasks using a learning curve model.  
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Some factors causing learning has been identified in construction that include: the increase 

in workers’ familiarity, improved coordination of crews and equipment, improved job 

organization, better engineering support, better management and supervision, developed 

techniques and methods, development in material supply systems, and stabilized design 

leading to fewer modification and rework (Thomas et al., 1986). 

In some other study, it was stated that “learning rate is greatly influenced by various 

factors” and provides the main factors that affect the learning rate in construction (Hijazi et 

al., 1992). These factors were put into four main categories: management, labor, project, 

and task characteristics as shown in Figure A-3. 

Learning Rate

Management 

Characteristics

Labor 

Characteristics

Project

Characteristics

Task

Characteristics

- Planning Strategies

- Incentive & 

Motivation Programs

- Responsibility 

Changes

- Level of Supervision 

& Inspection

- Safety precautions

- Morale

- Physical Skill

- Cognitive Skill

- Coherence Among 

Crew Members

- Weather Conditions

Cold

Heat

Wind

- Noise

- Accessibility

- Skill Requirement

- Work Complexity

- Hazard

- Danger

- Boredom

 
Figure  A-3: Factors affecting learning rate (Hijazi et al., 1992) 

 
Another noticeable study estimated the weight of each factor affecting the learning rate as a 

percentage of importance for two industries, in particular construction (Cochran, 1960, 

Arditi et al., 2001). These weights are shown in Table A-1. 
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Table  A-1: Approximate weights of importance for factors of learning (Arditi et al., 2001) 

 

Construction Weight of importance 

(%) 

Worker learning 40 

Construction method 20 

Managerial support 15 

Quality of design 15 

Others (job conditions, 

weather, etc.) 

10 

 100 

 

In order to better represent the aforementioned factors affecting learning and include them 

in studies, automated tools in particular simulation tools were deemed necessary. The 

following section sheds the light on these tools. 

 

A.2.4 Automating the effect of learning curve on labor productivity 

Studies that used simulation to analyze the effect of learning in the construction industry 

have been gathered and summarized in order to get a general overview of previous research 

on this topic. Three main simulation techniques have been used over the past few decades. 

Discrete-Event Simulation (DES), System Dynamics (SD), and Agent-Based Modeling 

(ABM) have been adopted for illustrating any phenomenon that is affected by many factors. 

Discrete-Event Simulation (DES) focuses on defining the process for simulation. Discrete-

Event simulation is a top down modeling approach that is process oriented and focused on 

modeling the system in detail (Siebers et al., 2010). It is the most widely used technique 

adopted more than 40 years ago in operational research (OR) (Siebers et al., 2010). 

DES has been widely and more commonly used as a simulation technique in construction 

with many researchers adopting DES as the modeling approach for their studies. Among 

these studies, two stand out as the most relevant to this topic and were found to have used 

DES to illustrate the effect of learning curve as a factor of labor productivity. The first study 
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was done in 1994 by Lutz (Lutz et al., 1994). Discrete-event modeling was conducted using 

an improved MicroCYCLONE package that models the impact of learning based on the 

Boeing (Wright) learning curve. The simulation was improved to include input parameters 

of learning. Seven operations including 43 processes were modeled (processes that 

incorporate improvement). As a conclusion of this study, the use of learning-development 

modeling provides more realistic production forecasting, more accurate scheduling and 

budgeting, more competitive bidding, and improved system performance. Another study 

that also used DES is done by Panas (Panas & Pantouvakis, 2014). In this study, statistical 

analysis and Discrete-event simulation were done using an enhanced simulation platform 

named CaissonSim and by using Stroboscope simulation language. The results were 

evaluated by changing learning rates. Learning rates were plotted as a triangular 

distribution. Input data were collected form a case study for simulation and a statistical 

analysis was executed to predict future performance. The least mean-squares method was 

used to determine the learning rate for every activity. The point where no additional 

improvements occur is set prior to the simulation. It has been concluded in this study that 

the learning phenomenon has significant impact on productivity of caisson operations and 

both the simulation and statistical approaches yield satisfactory results. 

System Dynamics (SD) was created by MIT Professor Jay Forrester in 1950 (Grigoryev, 

2015). It illustrates the positive or negative impact of each factor on all other factors 

adopted for the study.  “System dynamics is typically used in long-term, strategic models, 

and it assumes high levels of object aggregation: SD models represent people, products, 

events, and other discrete items by their quantities. System dynamics is a methodology to 

study dynamic systems. It suggests you: 

• Model the system as a causally closed structure that defines its own behavior. 

• Discover the system's feedback loops (circular causality) balancing or reinforcing.  
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• Identify stocks (accumulations) and flows that affect them.” (Grigoryev, 2015) 

System Dynamics (SD) have been used as a tool to model labor productivity in construction 

(Nasirzadeh & Nojedehi, 2013). Researchers developed a SD model that illustrates a cause 

and effect modeling of factors affecting labor productivity. This modeling can highlight the 

important factors that affect labor productivity in order to take corresponding actions to 

prevent loss in labor productivity. The flowchart that illustrated these factors can be shown 

in Figure A-4. 

 

Figure  A-4: Conceptual model of labor productivity using SD (Nasirzadeh & Nojedehi, 2013) 

 

On the other hand, Agent-Based Modeling (ABM), was found in the early 90s (Grigoryev, 

2015). It is not used as widely as Discrete-Event simulation (DES). ABM is an agent-

oriented technique that focuses on defining agents’ behaviors and relationships among 

different agents. This interactive environment would let the simulation emerge resulting 

from interaction between different agents and from interaction between agents and the 

environment. For instance, in a study done by Watkins (Watkins et al., 2009), an ABM 
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model was developed to simulate congestion as a factor affecting labor productivity. This 

study simulated congestion that accounts for spatial locality rather than the average space 

for each worker. In this regards, congestion can be estimated in a simulation manner that 

cannot be done manually. This illustrates the importance of simulation in providing close-

to-reality scenarios. Agents in this study were tasks and workers. This study concluded that 

ABM can depict a more realistic environment whereby congestion can be studied as an 

emergent property due to crew interactions. Another related study modeled the influence of 

congestion and other factors that affect productivity such as: space, safety and soil behavior. 

The agents chosen were: crane agent, rig agent and pile agent (Marzouk & Ali, 2013). This 

study has concluded that ABM is useful to estimate factors affecting labor productivity and 

to identify the ideal scenarios in which the loss in productivity is minimal.  

Although ABM was used to model the effect of congestion (Watkins et al. 2009, Marzouk 

and Ali 2013) and safety (Marzouk and Ali 2013) on labor productivity but the effect of 

learning development was not modeled.  As a matter of fact, it was stated in prior ABM 

efforts that the limitation was the exclusion of the learning curve effect (Watkins et al. 

2009). 

Table A-2 summarizes and synthesizes the aforementioned review.  
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Table  A-2: Previous research studies 

Author Title Methodology Main Findings 

Productivity 

(Lee, 2007) Understanding and 

Quantifying the Impact of 

Changes on Construction 

Labor Productivity: 

Integration of 

Productivity Factors and 

Quantifying Methods 

A comprehensive review of factors affecting 

productivity has been done as it collected major 

factors of labor productivity, placed them in 

categories, and presented the quantifying methods 

of these impacts of change 

This comprehensive overview of all methods 

in calculating productivity and its factors gives 

a big picture that helps in capturing the 

limitations and advantages of available 

techniques. Analysis of each method is also 

provided. 

(Singh, 2010) Factors affecting the 

productivity of 

construction operations in 

the United Arab Emirates 

Examining the factors affecting labor productivity 

in UAE is done to understand how improvement in 

labor productivity can be achieved. 

“Results show that the induction of new 

players in the industry has tended to introduce 

waste and has had lower productivity levels 

attached to the product delivered.” (Singh, 

2010) 

(Kazaz et al., 2010) Effect of basic 

motivational factors on 

construction workforce 

productivity in Turkey 

A questionnaire comprising 54 detailed questions 

under 18 subject headings, such as demographic 

features of firms, experience levels of respondents, 

or factor groups, was first prepared. In the 

application stage of the questionnaire, face-to-face 

(one-to-one) interview technique was utilized in 

order to ensure the validity and reliability of the 

survey; however, 10 firms could not  be contacted 

and were interviewed by e-mail 

Among the 4 factor groups affecting 

construction labor productivity, organizational 

factors were found as the most important group 

followed byeconomic factors and physical 

factors which came in  second and third place 

respectively. 
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(Enshassi et al., 2010) Factors affecting labour 

productivity in building 

projects in the Gaza strip 

This research is based on a survey designed to 

gatherall necessary information in an effective way.  

The survey presents 45 productivity factors 

generated on the basis of related research work on 

construction productivity 

The most important factors affecting 

productivity were identified and ranked. 

Several recommendations were provided (such 

as providing a materials’ supply schedule for 

each project, using project scheduling 

techniques in each project to optimize the time 

span for the related activities. This alsoensured 

that work would flow continuously and labor 

force would maximize time usage. Pertaining 

training courses and seminars were also 

conducted to improve productivity in 

construction projects. 

(Shehata & El-

Gohary, 2012) 

Towards improving 

construction labor 

productivity and projects' 

performance 

Factors affecting productivity are classified into 

three categories: Industry, management, and labor 

related factors. Models of productivity were 

classified as follows: physical, symbolic, mental 

and schematic. Finally, two previous case studies 

were also presented. The first was concerning a 

building in Egypt andthe focus on a tiling system on 

the 2nd floor. Active and inactive work time was 

evaluated with subsets for each  

The second case study in Egypt addressed two 

principles of lean; benchmarking and reducing 

variability. It was a collection of masonry activities 

from 11 commercial and residential construction 

projects. 

It was concluded that the key for productivity 

improvement was not to complete as many 

tasks as possible or to maximize workload, 

work output, or work hours without following 

the work plan. Rather, the key was to focus on 

maintaining a predictable work flow and thus 

be able to match the available workload with 

capacity (work hours). Hence, to improve 

project performance, variability in labor 

productivity should be reduced with regard to 

available workload and capacity (work hours). 
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(Khanh & Kim, 2014) Determining Labor 

Productivity Diagram in 

High-Rise Building using 

Straight-Line Model 

This study considers SLM as a tool for estimating 

the labor productivity of high-rise buildings. A 

questionnaire (in Vietnamese) was prepared to 

collect the appropriate data regarding the general 

characteristics in high-rise buildings and labor 

productivity rates for three main repetitive 

activities: formwork setting, rebar 

fabrication/installation, and concrete casting. A 

statistical analysis was applied on the data collected. 

The accuracy of models was assessed by Mean 

Absolute Percentage Error (MAPE) and R-squared 

index. 

The hypothesis about critical floor, which labor 

productivity of floors above this floor is 

probably fixed or constant, is quite appropriate. 

(Hafez et al., 2014) Critical factors affecting 

construction labor 

productivity in Egypt 

This research is based on a survey designed to 

gather all necessary information in an effective way. 

The survey presents 27 productivity factors 

generated on the basis of related research works on 

construction productivity. 

In conclusion, it is believed that the outcomes 

of this 

paper can assist in achieving high labor 

productivity by 

focusing and acting upon the most important 

factors. 

Furthermore, by focusing on the significance 

of the 

evaluated factors constraining labor 

productivity, Egyptian 

construction companies could be well guided 

in their efforts 

to addressing the factors in a time, cost and 

quality-effective 

manner 

  



 25 

Learning Curve 

(Thomas et al., 1986) Learning curve models of 

construction productivity 

Learning curve models are presented and explained. 

Data collected from three construction projects was 

plotted and Pearson's Coefficients of Determination 

(adjusted) were calculated to analyze the capabilities 

and validity of learning curve models. Least-squares 

curve fitting routines were applied to develop the 

parameter estimates that provided the best fit. 

The cubic model has much wider application 

due to the complexities and variations 

associated with the construction activities. 

(Hijazi et al., 1992) Modeling and simulating 

learning development in 

construction 

Factors affecting learning are investigated and 

summarized. Variability in learning is discussed. 

Three cases (no learning, 95% learning rate, and 

learning rate as a variable with triangular distribution) 

were applied on a previous case (High-rise hotel). A 

confidence level of 95% was constructed in the 

variability analysis. 

It is suggested that a stochastic learning 

model be adopted due to the random 

factors affecting learning in construction. 

(Naresh & Jahren, 

1998) 

Learning outcomes from 

construction simulation 

modeling  

This study analyzes how learning effect of marine 

lock guide walls construction was addressed using 

SLAM simulation program. Normal distribution 

(PERT) was done to account for variations in activity 

durations. Data was collected from experts. A 

sensitivity analysis was done to examine the learning 

effect on production, time and cost. 

Learning rates should be improved to reach 

higher production rates. Learning effect is 

high in the beginning and decreases with 

time, so the focus in on the first period of the 

construction. 
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(Arditi et al., 2001) Effect of learning on line-

of-balance scheduling 

Famous learning models were explained briefly. LOB 

plots were injected with new and modified 

productivity rates that incorporate learning, which 

transforms them into curves instead of lines as the 

straight-line model of learning is chosen. The learning 

rates are modified after the first run in order to 

account for factors affecting learning (number of 

operations, complexity, and job and management 

conditions), Fictitious project was used as a case study 

to illustrate the proposed method. 

16% decrease in total duration and 27% 

decrease in labor resource requirement were 

observed due to learning. A satisfactory 

industry-wide learning model that applies to 

all activities may not be feasible. 

(Chen et al., 2009) Simulating the effect of 

learning decay on 

adaptation performance 

in project networks 

This paper examines the impact of forgetting (decay) 

as a factor affecting learning between firms in project 

networks, through  developing an experiment with 

different scenarios with varying relational instability 

values(degree of task interdependence). Wright curve 

is the basis of this study.  

As relationship instability and task 

interdependence increase, the impact of 

forgetting diminishes.  

(Taylor et al., 2009) Simulating learning 

dynamics in project 

networks  

This paper simulates learning dynamics between 

multiple firms to adopt changes within the 

construction technologies. The main focus is on the 

impact of both relational instability and task 

interdependency, and how these two factors affect 

organizational learning plus productivity rates. Using 

a multi-agent simulation model developed using 

Python programming language, each firm is 

represented as an agent with learning capabilities at 

the individual level and between firms. The 

experiment consisted of four different combinations of 

task interdependence and relational instability.  

Organizations adopting new technologies 

should reduce relational instability to 

achieve higher rates of productivity due to 

learning.  
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(Jarkas, 2010) Critical investigation into 

the applicability of the 

learning curve theory to 

rebar fixing labor 

productivity 

This study defines the learning theory and models, and 

explains the rebar fixing operation of beams and slabs. 

A case study of 21 residential buildings in Kuwait was 

done and productivity data were collected. Rebar 

fixing labor inputs were collected using the 

intermittent observation technique (collection upon 

the completion of an activity) as delays were 

calculated and deducted. A statistical analysis of data 

was conducted to plot the learning curve. The straight-

line model was adopted because the concentration is 

on a task level not a project level 

No productivity improvements due to 

learning. A few cases showed some 

improvements while the others showed a 

reduction on productivity. This is due to 

many reasons especially the physical nature 

of fixing rebars (fatigue) that may have 

overshadowed the learning effect. 

(Pellegrino el al., 

2012) 

Construction of multi-

story concrete structures 

in Italy: Patterns of 

productivity and learning 

curves  

Overview of the theory of learning and its applications 

in construction. Data collection from 15 multi-story 

concrete structures and analysis to come up with the 

most important factors affecting learning (especially 

the negative impact of interruptions) by doing two 

multilevel regression analyses using Matlab. As a 

result, different learning curve for each building was 

plotted. Parameters affecting the learning process of 

the case study are suggested in order to be evaluated 

using the regression model. 

Variability in productivity rates are mainly 

due to site management. More focus should 

be invested on improving the productivity 

of the first floor in order to reach the 

highest level of progress before 40% of 

work is completed. 

(Tavakolan & Ashuri, 

2012) 

Simulation of absorptive 

capacity impact on the 

performance of project 

networks learning 

This paper studies the capability of a firm to learn how 

to adapt to innovation changes in a project network. 

The impact of innovation has been considered based 

on the Wright's curve. Productivity is improved by 

innovation but cannot exceed the absorptive capacity. 

The results of 25 projects were plotted to analyze the 

effect of innovation and absorptive capacity. 

Relational instability and the degree of task 

interdependence of project networks affect 

innovation due to technological changes.  



 28 

(Srour et al., 2015) Learning Curves in 

Construction: A Critical 

Review and New Model 

Literature review on learning curve models. A new 

model wasproposed to accommodate both 

mechanization and forgetting.  

Evaluating learning curve models in predicting future 

performance by comparing 4 different case studies.  

“The model used in this study demonstrates 

less than 1% error in predicting cumulative 

average unit construction times in three out 

of the four cases studied. Although these 

results are encouraging, further research is 

necessary to resolve multiple outstanding 

questions in the field.” 
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Automating Productivity factors Using Simulation Techniques 

System Dynamics (SD) 

(Nasirzadeh & 

Nojedehi, 2013) 

Dynamic modeling of 

labor productivity in 

construction projects 

A system dynamics qualitative model of labor 

productivity is constructed using governing cause 

and effect feedback loops. Then the inter-

relationships that exist between different factors 

were defined by mathematical equations and a 

quantitative model of labor productivity was built. 

Sensitivity analysis is conducted to assess the 

impact of different factors on labor productivity. 

Historical data and case studies data were 

collected. Using multiple linear regression tool of 

Matlab software, the relationships that exist 

between labor productivity and the influencing 

factors were determined. The proposed SD model 

is employed in a housing project to validate and 

evaluate its performance.  

The proposed SD approach offers a flexible and 

robust 

method for the simulation of labor productivity 

with the possibility of finding the root causes of 

a decrease in productivity. 

(Jiang et al., 2014) Understanding the 

Causation of 

Construction Workers’ 

Unsafe Behaviors Based 

on System Dynamics 

Modeling 

This paper presents a system dynamic model of 

workers' behavior effect on safety. A holistic 

cognitive analysis approach is developed by the 

authors to identify the critical factors that could 

result in a worker’s cognitive failure. Based on 

factors of individual workers, environment, and 

management that affect safety, a preliminary model 

is built. In order to demonstrate that the predicted 

pattern by the model test is a correct reflection of 

the real system, a five-week survey and observation 

on a building construction project in Hong Kong 

was conducted by the authors with Interviews. A 

statistical analysis using Student t test. 

A comparison between data statistical analysis 

and the model shows that the model was valid. 

Management conditions on supervisory level 

were effective on the improvement of workers’ 

safety awareness. Where the enhancement of 

safety performave was considered, preventive 

actions were more effective than reactive ones. 
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Discrete-Event Simulation (DES) 

(Lutz et al., 1994) Simulation of learning 

development in repetitive 

construction  

Discrete-event modeling was conducted using an improved 

MicroCYCLONE package that models the impact of learning 

based on the Boeing (Wright) learning curve. The simulation 

was improved to include input parameters of learning. Seven 

operations including 43 processes were modeled (processes that 

incorporate improvement) 

The use of learning-development 

modeling provides more realistic 

forecasting for production, more 

accurate scheduling and budgeting, 

more competitive bidding, and 

improved system performance.  

(Panas & 

Pantouvakis, 2014) 

Simulation-Based and 

statistical analysis of the 

learning effect in floating 

caisson construction 

operations   

Statistical analysis and Discrete-event simulation were done 

using an enhanced simulation platform named CaissonSim and 

using Stroboscope simulation language. The results were 

evaluated by changing learning rates. Learning rates were 

plotted as a triangular distribution. Input data were collected 

form a case study for simulation, and a statistical analysis were 

executed to predict future performance. The least mean-squares 

method was used to determine the learning rate for every 

activity. The point where no additional improvements occur is 

set prior to the simulation. 

Learning phenomenon has significant 

impact on productivity of caisson 

operations. Both the simulation and 

statistical approaches yielded 

satisfactory results. 
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Agent-Based Modelling (ABM) 

(Watkins et al., 2009) Using agent-based 

modeling to study 

construction labor 

productivity as an 

emergent property of 

individual and crew 

interactions 

This study simulates congestion using ABM that accounts for 

spatial locality rather than the average space for each worker.   

ABM illustrated a more realistic 

simulation models which 

reflected real case scenarios. 

(Marzouk & Ali, 

2013) 

Modeling safety 

considerations and space 

limitations in piling 

operations 

using agent based 

simulation 

This paper proposes a model for estimating the productivity of 

bored piles, taking into consideration safety requirements and 

space availability. The model captures the probabilities of 

equipment breakdowns based on equipment historical data. The 

model has three agents: two types of equipment (crane and rig), 

and a pile agent. In the model, piling activity is divided into two 

processes. The first one is drilling process and second one is 

concreting process. Safety constraints are imposed to prevent any 

overlap between agents. The simulation was compared to a case 

study results. 

The paper described a model that 

can be used to estimate piling 

productivity taking into 

consideration site space 

availability and safety 

requirements. 



 32 

A.3.   SUMMARY OF RESEARCH FINDINGS 

This study presented a comprehensive literature review of the effect of learning curve on 

labor productivity. Productivity as a concept was been presented and factors affecting labor 

productivity were identified. Moreover, the importance of the learning curve as a factor 

affecting labor productivity was highlighted. The factors that affect the learning process 

were also collected and identified. In addition, methods and techniques that were used to 

automate the effect of learning or other factors of labor productivity had been also presented 

and discussed. It is shown that labor productivity has always been a major topic in previous 

studies, and simulating the effect of many factors on labor productivity is getting more 

attention over the past few decades. Among labor productivity factors, the learning curve 

effect is classified as a main factor affecting labor productivity and targeted by many 

studies, but no comprehensive demonstration of its corresponding effect was previously 

proposed. Thus, this factor should be further investigated. Furthermore, most studies 

adopted Wright’s learning curve for simplicity, although other curves are more realistic and 

incorporate additional factors. Simulating the effect of the learning curve on labor 

productivity had been done using Discrete-event simulation (DES) and has not been tested 

using other simulation techniques such as System Dynamics (SD) and Agent-Based 

Modelling (ABM). Lastly, previous models of simulation lack the inclusion of the learning 

curve (Watkins et al., 2009). 

 

A.4.  NEED IN FUTURE RESEARCH 

As presented above, many studies have focused on productivity and factors affecting it. The 

need for future research lies in using simulation techniques that haven’t been used to 

illustrate the effect of these factors. DES and SD were used as techniques to illustrate the 

effect of learning on labor productivity unlike ABM. ABM can be promising in evaluating 

the effect of learning on labor productivity because it is agent-oriented and can better depict 
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different interactions between workers on construction sites. Still, this has to be further 

investigated in future research. On the other hand, learning curves other than Wright’s 

straight-line model should be adopted since they reflect more realistic scenarios. These gaps 

must be filled by future research to evaluate the use of different techniques in estimating the 

effect of different factors on labor productivity. 
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APPENDIX B EVALUATING THE EFFECT OF LEARNING 

CURVE ON LABOR PRODUCTIVITY USING AGENT-

BASED MODELING 
 

ABSTRACT 

The labor-intensive nature of construction projects requires proper management and 

efficient utilization of labor resources. Improvement of labor productivity can enhance 

project performance and thereby lead to substantial time and cost savings. Several studies 

focused on identifying the effect of different factors on labor productivity, whereby the 

learning curve factor proved of paramount importance. Previous research efforts developed 

models to analyze the effect of learning curve on labor productivity but failed to capture all 

the complexities of this mechanism and its dynamics. This paper presents an agent-based 

construction learning model that models a construction site as an active environment in 

which construction personnel or agents interact with each other and their surroundings 

thereby creating an adaptive environment open for learning and improvement. More 

specifically, the developed work illustrates many scenarios representing different learning 

levels and typical interactions between workers on construction sites. The components of 

the proposed model were created and results highlighted the potential of using the agent-

based modeling paradigm to better simulate the effect of learning on labor productivity in 

the construction industry. 

 

KEYWORDS 

Construction, Labor Productivity, Learning Curve, Interaction, Agent-Based Modeling 

 

B.1. INTRODUCTION AND RELATED WORK 

Productivity rates in construction have been suffering from a lack of standards and 

declining over the last few decades (Shehata & El-Gohary, 2012). Productivity has always 
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been of great importance for researchers and contractors due to the fact that it directly 

affects time and cost of construction projects. In construction, productivity mostly refers to 

labor performance. The evaluation effort to estimate the effect of a change in a work 

environment has increased the focus on analyzing factors affecting productivity (Lee, 2007, 

Hinze, 2011). Many studies have focused on collecting factors that affect labor productivity 

in construction (Lee, 2007, Singh, 2010,  Hafez et al., 2014). Overtime, over-manning, 

congestion, shift work, weather, and the learning curve were identified as the major factors 

that affect the productivity of work (Lee, 2007). Many equations derived from real case 

studies were used to estimate the effect of each factor (Thomas et al., 1990, Gunduz, 2004, 

Awad et al., 2005). Some attempts have been made to combine multiple factors as the 

resulting effect is different when more than one factor occurs and is actually a better 

representation of the real construction world (Lee, 2007). Other studies have estimated the 

effect of these factors from surveys conducted on participants from different projects and 

statistical analysis (Singh, 2010, Hafez et al., 2014). Among many factors that impact 

construction labor productivity (Gunduz 2004, Hanna et al. 2005, Lee 2007, Singh 2010, 

Hinze 2011, Hafez et al. 2014), the learning curve has long been proven to be of paramount 

importance (Wright 1936).   

The concept of learning curve was first proposed by Wright (1936). The learning curve 

theory states: “Whenever the production quantity of a product doubles, the unit or 

cumulative average cost required for production, i.e., man-hours, cost, or time, declines by a 

certain percentage of the previous unit or cumulative average rate. This percentage is 

referred to as the “learning rate,” which identifies the learning achieved in the process.” 

(Jarkas, 2010). This theory is applicable only if the work is repetitive, continuous (with no 

interruptions), and identical (Jarkas, 2010). Learning curve models show the relationship 

between the cycle number and the time per cycle as a mathematical equation. Many models 

have been developed to illustrate such a phenomenon. These models include: (1) The 
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Straight-Line Model (2) The Stanford “B” Model (3) The Cubic Power Model (4) The 

Piecewise Model; and (5) The exponential model. Most previous studies adopted the 

straight-line (Wright’s) model as a basis for their studies (Hijazi et al., 1992, Naresh & 

Jahren, 1998, Chen et al., 2009, Taylor et al., 2009, Jarkas, 2010, Shehata & El-Gohary, 

2012, Pellegrino el al., 2012, Panas & Pantouvakis, 2014). The straight-line model was 

chosen for its simplicity and for the goal of simulation.   

Although many learning curve models have been developed to reflect the effect of learning 

on productivity, no single model incorporated all different factors affecting the learning. As 

a result, developing a model that can be adopted for all kinds of tasks related to different 

industries is not reasonable. These factors should be taken into consideration when 

estimating labor productivity, estimating the cost of a delay, or estimating durations of 

different tasks using a learning curve model. Some factors causing learning has been 

identified in construction that include: the increase in workers’ familiarity, improved 

coordination of crews and equipment, improved job organization, better engineering 

support, better management and supervision, developed techniques and methods, 

development in material supply systems, and stabilized design leading to fewer 

modification and rework (Thomas et al., 1986). In some other study, it was stated that 

“learning rate is greatly influenced by various factors” and provides the main factors that 

affect the learning rate in construction (Hijazi et al., 1992). These factors were put into four 

main categories: management, labor, project, and task characteristics. 

In order to better represent the aforementioned factors affecting learning and include them 

in studies, automated tools in particular simulation tools were deemed necessary. Three 

main simulation techniques have been used over the past few decades. Discrete-Event 

Simulation (DES), System Dynamics (SD), and Agent-Based Modeling (ABM) have been 

adopted for illustrating any phenomenon that is affected by many factors. DES has been 

widely and more commonly used as a simulation technique in construction with many 
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researchers adopting DES as the modeling approach for their studies. Among these studies, 

two stand out as the most relevant to this topic and were found to have used DES to 

illustrate the effect of learning curve as a factor of labor productivity. The first study was 

done in 1994 by Lutz (Lutz et al., 1994). Discrete-event modeling was conducted using an 

improved MicroCYCLONE package that models the impact of learning based on the 

Boeing (Wright) learning curve. The simulation was improved to include input parameters 

of learning. Seven operations including 43 processes were modeled (processes that 

incorporate improvement). As a conclusion of this study, the use of learning-development 

modeling provides more realistic production forecasting, more accurate scheduling and 

budgeting, more competitive bidding, and improved system performance. Another study 

that also used DES is done by Panas (Panas & Pantouvakis, 2014). In this study, statistical 

analysis and Discrete-event simulation were done using an enhanced simulation platform 

named CaissonSim and by using Stroboscope simulation language. The results were 

evaluated by changing learning rates. Learning rates were plotted as a triangular 

distribution. Input data were collected form a case study for simulation and a statistical 

analysis was executed to predict future performance. The least mean-squares method was 

used to determine the learning rate for every activity. The point where no additional 

improvements occur is set prior to the simulation. It has been concluded in this study that 

the learning phenomenon has significant impact on productivity of caisson operations and 

both the simulation and statistical approaches yield satisfactory results. System Dynamics 

(SD) have been used as a tool to model labor productivity in construction (Nasirzadeh & 

Nojedehi, 2013). Researchers developed a SD model that illustrates a cause and effect 

modeling of factors affecting labor productivity. This modeling can highlight the important 

factors that affect labor productivity in order to take corresponding actions to prevent loss in 

labor productivity. On the other hand, Agent-Based Modeling (ABM), was found in the 

early 90s (Grigoryev, 2015). It is not used as widely as Discrete-Event simulation (DES). 
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ABM is an agent-oriented technique that focuses on defining agents’ behaviors and 

relationships among different agents. This interactive environment would let the simulation 

emerge resulting from interaction between different agents and from interaction between 

agents and the environment. For instance, in a study done by Watkins (Watkins et al., 

2009), an ABM model was developed to simulate congestion as a factor affecting labor 

productivity. This study simulated congestion that accounts for spatial locality rather than 

the average space for each worker. In this regards, congestion can be estimated in a 

simulation manner that cannot be done manually. This illustrates the importance of 

simulation in providing close-to-reality scenarios. Agents in this study were tasks and 

workers. This study concluded that ABM can depict a more realistic environment whereby 

congestion can be studied as an emergent property due to crew interactions. Another related 

study modeled the influence of congestion and other factors that affect productivity such as: 

space, safety and soil behavior. The agents chosen were: crane agent, rig agent and pile 

agent (Marzouk & Ali, 2013). This study has concluded that ABM is useful to estimate 

factors affecting labor productivity and to identify the ideal scenarios in which the loss in 

productivity is minimal.  

Although ABM was used to model the effect of congestion (Watkins et al. 2009, Marzouk 

and Ali 2013) and safety (Marzouk and Ali 2013) on labor productivity but the effect of 

learning development was not modeled.  As a matter of fact, it was stated in prior ABM 

efforts that the limitation was the exclusion of the learning curve effect (Watkins et al. 

2009). Additionally, as a proactive complex process to simulate, learning is better be 

modeled by a proactive technique that can well depict its actual state. ABM defines the 

agents and their behaviors, and the simulation emerges from the interactions among those 

agents. This in turn can represent the learning phenomenon in a better way as learning is a 

heterogeneous process. 
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B.2. METHODOLOGY 

The methodology adopted in this study is divided into four tasks: (1) construction 

process description, (2) agent-based simulation model design and development, (3) 

verification and face validation of the ABM model through animation, and (4) 

simulation data statistical analysis. 

 

B.2.1 Construction process description 

In order to best illustrate the learning curve effect, a process of repetitive nature must be 

selected.  Typically, high-rise buildings projects incorporate many tasks of this nature 

whereby the floors are almost identical and learning can be witnessed. For that reason, a 

case study of a multi-story building was selected and only typical activities related to the 

structural construction, in particular erecting forms, installing steel rebars, and pouring 

concrete were modeled. Based on the RS Means Building Construction Cost Data book (RS 

Means Building Construction Cost Data, 2014), the daily outputs of the aforementioned 

activities together with respective crews were estimated as shown in Table B-1, in particular 

for a slab and a wall.  

Table  B-1: Productivity rates and crews 

 

Task  Task Type Daily Output Crew Nb. of Crews 

Single 

Slab 

Erect slab forms 470 S.F.[44 m
2
] 1 Foreman, 4 

Carpenters 

4 

 Install steel rebars 2.9 Ton [2.6 Ton] 4 Rodmen 3 

 Place concrete 160 C.Y. [122 

m
3
] 

1 Foreman, 5 Laborers 1 

Single 

Wall 

Install steel rebars 4 Ton [3.6] 4 Rodmen 3 

 Erect Forms 280 S.F. [26 m
2
] 1 Foreman, 4 

Carpenters 

4 

 Place concrete 95 C.Y. [73 m
3
] 1 Foreman, 5 Laborers 1 

 

It is worth mentioning that the RS Means is considered as one of the best cost and 

productivity manuals according to professionals from the construction industry (RS Means 

Building Construction Cost Data, 2014). Needless to say, productivity rates vary from 
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country to country, site to site, crew to crew. However, this does not pose a problem in this 

study as the objective is to evaluate the effect of learning on labor productivity rather than 

calculate the exact duration of the project.  

 

B.2.2 Agent-Based model 

An ABM model is typically composed of agents whose behaviors are defined by state-

charts.  State-charts consist of the different states an agent can take and these states are 

linked by transitions defining the underlying model logic. In this study, the proposed ABM 

model consists of five agent types, namely steel crews, formwork crews, concrete crews, 

slabs and walls.  These agent types can be divided into two categories: the crews (active 

agents) and the constructed entities (inactive agents) (Figures B-1 and B-2). The crews’ 

agents are active and interact with each other in the ABM model in order to simulate the 

learning phenomenon, whereas the constructed entities are inactive and their interaction 

within the model dictates the condition of the entity.  Although in reality the type of work 

affects the behavior of the respective crew, it was however assumed that all crews have a 

similar behavior and state-charts.  The same applies for constructed entities.  To that end, 

only one of each is explained.  As shown in Figure B-2, the slab agent has eight states. The 

first one named Constrained is the initial state of every slab and wall.  Construction can not 

begin for any element if it is under the Constrained state.  The transition from Constrained 

to NotConstructed is triggered by the message “unconstrained”.  This message is sent in the 

following cases: (1) On start-up, the floor slab directly moves from Constained to the state 

NotConstructed since it has no predecessors; (2) Each time a slab is done, the wall to be 

built on top of it becomes Unconstrained; and (3) Each time a wall is done, the slab above it 

becomes Unconstrained.  When a slab moves to the NotConstructed state, it sends the 

message “move to slab” to the formwork crew agent.  As shown in Figure B-1, this message 

allows it to move from its initial state Idle to the state WorkingSlab and with this transition 
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it sends a message to the slab to move from NotConstructed to FormWorkErection 

signaling that the formwork for the slab is currently being erected.  The crew becomes idle 

again once the formwork erection task is complete. As such, one of the most important 

transitions in the model is the one that moves the crew from the working state to the idle 

state.  In fact, this transition of type timeout represents the duration it takes to complete a 

certain task and varies each time the crew goes through its specific transition. In order to 

model the learning curve phenomenon, the timeout duration was computed in such a way it 

is gradually decreasing with each task repetition according to the aforementioned learning 

curves models.  Once the specified time elapses, the crew moves back to the state Idle and 

the slab moves to the state FormWorkDone.  The same process is then repeated for other 

slab related steel and concrete activities with their respective crews.  The whole process is 

then repeated for walls.  The state-charts keep interacting until the whole building is 

completed. 

To add flexibility to the model and allow the user to try different scenarios and test different 

learning curve methods, the user, before running the simulation model, is prompted to select 

any of the five learning curve models as shown in Figure B-3. The corresponding formula 

then appears on the screen and the user input the needed parameters allowing him to model 

a specific scenario.  The model then outputs the total project duration and graphs reflecting 

the evolution of the duration required for the completion of each task under the learning 

curve effect. 



 43 

 

Figure  B-1: Statechart of Crews Agents 
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Figure  B-2: Statechart of Slab/Wall agents
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Figure  B-3 : Initial simulation screen 

 

In order to render the model more realistic and depict a better learning environment, it 

was decided to add other types of interactions, not only crew-structural element 

interaction. Since the bulk of the learning involved on a construction site results from 

worker’s learning as shown in Table A-1 (i.e. 40%), the interactions added were thereby 

worker related, including interactions between different crews and within members of a 

crew represented in this case by crew agent’s parameters. More specifically, the 

transferred experience and the psychological effect were chosen as factors affecting 

worker’s learning. Additionally, work interruptions were included in the model since 

they affect worker’s learning due to the forgetting phenomenon. All factors were 

modeled as follows: 

1. Transferred experience effect  

This factor applies to the interaction between individual crew members, as workers with 

high previous experience affect the ones with lower experience. Previous experience 

was already included in the Stanford model as B factor, but the transferred experience 

factor is different and represents how less experienced workers improve when learning 
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from more experienced ones within the same crew. This is reflected in the model by 

assigning a parameter F for each worker within a crew, and workers with high previous 

knowledge increase the knowledge of unexperienced workers. The resulting average F 

corresponding to the average level of experience of the crew determines thereby the 

value of the learning rate.  This rate is a variable affected by the experience and 

knowledge transferred within each crew.  Based on the literature, the learning rate value 

varies between 80% and 95% in construction.  The lower the learning rate, the more 

improvement is witnessed with each repetition.  As such, the learning rate was set to 

(95% - Favg) in the proposed model.  An experience between 0 and 10 was assigned 

randomly to each worker within a crew.  Each worker’s experience below the average 

experience of the crew was increased by a certain weighted percentage with every 

repetition. The weights of this increase in experience (i.e.reduction in learning rate) are 

shown in Table B-2. 

Table  B-2: Weight of transferred experience effect 

Experience below average by Increase in worker’s experience 

0→1 0.1 

1→2 0.2 

2→3 0.3 

3→4 0.4 

≥4 0.5 

 

For comparison purposes, the initial experience of each worker in the five-member 

crews was assigned a value as illustrated in Table B-3. Crews with 4 workers were 

assigned the same experience parameter numbers excluding the worker number 3. 

Table  B-3: Initial experience of workers in a crew 

Worker number Experience Parameter F 

1 8 

2 6 

3 5 

4 3 

5 1 
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The aforementioned effect is illustrated through the code snippet below ( Figure B-4): 

 

Figure  B-4: Transferred Experience Effect 

 
2. The psychological effect 

This factor applies particularly to the interaction between different crews. The 

psychological effect is generally complex and can not be accurately estimated. Furthermore, 

this effect can be affected by on-site accidents, weather conditions, fatigue, etc. However, 

how a crew can be motivated or demotivated by other crews was only modeled.  In this 

case, the crew can be either motivated by a more productive neighboring crew and as a 

result increases its productivity, or it can be affected negatively by a less productive crew 

and decreases its productivity.  This was modeled as follows:  with each repetition, the crew 

with the lowest productivity improvement feels the need to double its efforts in comparison 

to other crews, and therefore the crew’s learning rate was decreased by 0.5% (Table B-4). 

Similarly, the crew with the highest productivity improvement feels comfortable regarding 

its performance and its learning rate was increased by 0.5% (Table B-4).  

Table  B-2: Psychological effect weights 

Affected crew Type of effect Change in learning  rate 

The least productive Motivation, challenge -0.5 % 

The most productive Boredom, overconfident +0.5 % 
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The aforementioned effect is illustrated through the code snippet below ( Figure B-5): 

 

Figure  B-5: Psychological Effect 

 

3. Interruptions effect (forgetting) 

The reasons for on-site interruptions include but are not limited to management 

decisions (or owner), unavailability of materials and tools, or weather conditions. As the 

work stops, losses in learning start to develop due to forgetting. This effect was modeled 

in Anylogic using an Event. This event is assumed to occur occasionally using a 

Poisson distribution. A rate of 1 interruption/hr. was chosen as interruptions randomly 

differ between 1 and 2 days. As a result, each time the simulation runs, it gives different 

values. A small duration has been assigned to interruptions to develop moderate graphs 

of learning curves. The effect of interruptions was set for each crew separately and was 

assumed as shown in Table B-5. 
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Table  B-3: Weights of interruptions effect 

Interruption time (days) Change in learning  rate 

≤ 0.5    +0.5 % 

0.5 → 1 

1 → 1.5 

+1 % 

+2 % 

1.5 → 2  Reset to initial value (80) 

 

The interruption effect explained above is depicted in the following code snippet 

(Figure B-6): 

 

Figure  B-6: Interruptions Effect 

 

B.2.3 Animation and Visualization 

It has been long stated that a primary disadvantage in the use of simulation models is the 

inability of checking the credibility of the models and the authenticity of the results (Khoury 
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et al., 2007). Visualization and animation of simulated operations can be very helpful in the 

verification and validation of models (Khoury et al., 2007; Sargent, 2013). In other words, 

displaying the model’s operational behavior in 3D allows the user to verify that the code is 

free of errors and assure that the model is a good representation of the real world and its 

behavior is reasonable (i.e. face validity). As such, the simulation model presented earlier 

can be verified by animating the process in 3D.  

 

B.2.4 Statistical Analysis of Data 

Two sets of statistical analyses were performed on the data resulting from the simulation 

(Appendix C.1) using R Project for Statistical Computing (Gandrud 2013). The first set 

compares learning curves before and after incorporating different learning factors for the 

four different learning models. The objective of this analysis consists of checking whether 

there is significant difference in learning by incorporating different factors affecting the 

learning rate. This analysis was done for all learning curve models (Straight-line model, 

Stanford B model, De Jong’s model, and the cubic model) except for the exponential one 

that does not include a learning rate component in its equation. More specifically, for each 

learning model, experiments were performed on the three different activities (i.e formwork, 

concrete, and steel) for both slabs and walls before and after incorporating learning factors. 

On the other hand, the second analysis is focused on comparing the different learning 

models for each activity type before and after incorporating additional factors of learning. 

This analysis is done to check whether there is significant difference in learning curve 

models that requires the use of other more complex models.  

Table B-6 summarizes the two hypotheses tested in both stages of this analysis. Both stages 

are further explained below. Addtionally, Type 1 error of 0.05 was chosen and the 

respective R code is available in Appendix C.5. 
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Table  B-4: Hypothesis Testing 

Stage  Null Hypothesis Alternative Hypothesis 

1 There is no significant difference in 

duration with or without adding the 

influence of transferred experience, 

psychological effect, and interruptions as 

factors affecting learning 

There is significant difference by 

adding the influence of transferred 

experience, psychological effect, and 

interruptions as factors affecting 

learning 

2 There is no significant difference in 

duration between different learning curve 

models before or after incorporating 

factors affecting learning 

There is significant difference in 

duration between different learning 

curve models before or after 

incorporating factors affectng learning 
 

Stage 1 

The data before and after incorporating learning curve factors were read and plotted using 

histograms and boxplots (check Appendix C.4.1). Then, each crew was analyzed separately 

for the three different tasks (formwork, concrete work, and steel work) of both slabs and 

walls. Shapiro tests were conducted to check if the data is normally distributed. Normality 

of data was not met and since the boxcox function could not transform the data into 

normality, Non-Parametric Tests were performed. In this case, Wilcox Signed-Ranks Test 

was chosen as it analyzes paired data of two samples (before and after incorporating 

learning factors). Data in this stage is assumed to be paired as each floor’s task duration 

before adding the effect of learning parameters is compared to the one after adding these 

parameters. 

 

Stage 2 

As a first step, data was plotted as boxplots to get an idea about the changes between 

different learning curve models. Since the data in Stage 1 was identified as not normal, 

Non-Parametric tests were conducted. In this case, since more than two samples are 

available (4 learning curve models), Kruskal Wallis Test was chosen. After a difference in 

learning curve models was noted, multiple-comparison tests, in particular the Pairwise 

Wilcoxon Rank Sum Test was conducted to identify the model that led to the highest 

difference in activity’s duration. 
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B.3. CASE STUDY: RESULTS, DISCUSSION, AND ANALYSIS 

A case study of a multi-story building (50 stories) in the region of Beirut, Lebanon was 

adopted. The building consists mainly of a core wall, slabs and exterior walls. As mentioned 

earlier, only activities related to the structural construction, in particular erecting forms, 

installing steel rebars, and pouring concrete were modeled. The corresponding areas of 

formwork, volumes of concrete and steel needed were calculated and are summarized in 

Table B-7. 

Table  B-7: Materials Takeoff 

Task  Area of Formwork (m
2
) Steel (ton) Concrete (m

3
) 

Single Slab 

Single Wall 

982 

778 

39 

23 

196 

117 

 

 

   

B.3.1 Agent-Based Model Results and Discussion 

Based on the case study data provided in Table B-7, the proposed ABM model was run 

using each of the aforementioned methods (i.e. Straight-Line, Stanford “B”, De Jong, 

and Cubic Power) and then verified through animation (i.e face validation) to ensure an 

error-free process (Figure B-7). 

 

Figure  B-7: Simulation of workers performing formwork and steel tasks 

 

Figures B-8 through B-10 depict the respective learning curves (time or duration vs. 

floor number) for the different slabs activities under each method and with and without 
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the inclusion of the additional interaction variables. Similarly, Figures B-11 through B-13 

illustrate those for the walls activities. By comparing the graphs, it can be concluded that 

the application of the ABM model or the inclusion of the different interaction levels 

between workers leads to different results, especially in the case of work interruptions 

depicted as sudden jumps in the learning curves and leading to higher duration values per 

unit of work. In this case, the height of each jump represents the time of interruption. Some 

of these curves included several interruptions (e.g. Slab formwork-De Jong and Slab 

Formwork-Stanford), whereas others showed little or no interruption (e.g. Wall Concrete- 

Linear). This is due to the fact that the simulation develops different scenarios depending on 

the run, and with additional runs, the resulting data would change to reflect a different 

scenario in the interactive environment of ABM. On the other hand, the transferred 

experience and psychological effect factors are embedded continuously along the curve. In 

the case of a positive combined experience and psychological effect, productivity rates 

improve leading thereby to lower duration estimates as shown in Figures B-8 through B-13. 

Needless to say, that a negative combined experience and psychological effect leads to 

lower productivity rates and higher duration estimates. 
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Figure  B-8: Plots of Learning Curves before and after ABM for Slab Concrete work 
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Figure  B-9: Plots of Learning Curves before and after ABM for Slab Formwork 
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Figure  B-10: Plots of Learning Curves before and after ABM for Slab Steel Work 
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Figure  B-11: Plots of Learning Curves before and after ABM for Wall Concrete Work 
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Figure  B-12: Plots of Learning Curves before and after ABM for Wall Formwork
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Figure  B-13: Plots of Learning Curves before and after ABM for Wall Steel Work
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The total project duration was then computed using each of the four models of learning and 

considering different scenarios created due to a various combination of the learning factors 

(transferred experience, psychological effect, and interruptions). A comparison of duration 

estimates for different scenarios is illustrated in Figure B-14. 

 

Figure  B-14: Duration Times Comparison For Different Scenarios 

 

Based on Figure B-14, the transferred experience factor has a positive impact on 

productivity leading thereby to lower duration estimates. The psychological factor, being a 

combination of positive effect (motivation) and negative effect (boredom), has a slightly 

negative resulting impact on duration. The interruption factor impacts negatively duration 

estimates as work stops for a period of time. When combining two of these factors, the 

result is positive (i.e. better production rates and lower duration estimates) whenever the 

transferred experience factor is included. In this case, higher worker’s experience outweighs 

the negative effect of the other factors. However, the combined effect of psychological and 

interruption factors results in the highest duration estimates even higher when all three 

factors are incorporated.  Additionally, the DeJong and Cubic models led to the highest 

Linear Stanford De Jong Cubic

No factors 1049 1038 1322 1316

All factors 1005 992 1343 1335

Transferred  Experience 946 934 1270 1264

Psychological effect 1054 1043 1324 1319

Interruptions 1104 1088 1394 1383

Experience+Psychological 953 942 1274 1268

Experience+Interruptions 996 985 1333 1337

Psychological+Interruptions 1106 1104 1396 1395

0

200

400

600

800

1000

1200

1400

1600

D
U

R
A

T
IO

N
 (

D
A

Y
S)

 

DURATION TIMES COMPARISON 



 61 

duration values because their formula assumes that the work can be manual in one part and 

mechanized in the other, thereby limiting the worker’s interaction effect when compared to 

the first two models. 

Even though the graphical analysis made earlier allowed reaching some basic 

conclusions, a more statistically rigorous analysis about each task separately was 

needed. As mentioned earlier, two sets of statistical analyses were performed on the data 

and results are presented in the following sections. 

 

B.3.2 Statistical Analysis: Stage 1 Results 

Plots of all learning curve models’ duration before and after incorporating the chosen 

learning factors show that data is right skewed and therefore can not be normalized using 

log transformation or The Box-Cox method. Activity duration estimates were mostly lower 

after incorporating all learning curve factors as illustrated in boxplots of data (Appendix 

C.4.1) since the resulting positive impact outweighed the negative one. On the other hand, 

Table B-7 summarizes the results of the non-parametric tests performed. The majority of 

these tests showed a significant difference before and after adding learning factors. As a 

matter of fact, a P-value << 0.05 for learning curve models refers to rejecting the null 

hypothesis and accepting the fact that learning curve models after incorporating learning 

factors differ from original ones. In all experiments, the null hypothesis was rejected except 

for the De Jong learning curve of the slab formwork task in which the null hypothesis was 

accepted and no significant difference was incorporated. This can be attributed to the 

interaction between positive and negative impacts resulting from the combination of 

transferred experience, psychological effect, and interruptions. To a certain extent, the 

negative impact has minimized the positive impact of these factors, and as a result the 

difference shrined.  
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For almost all results, it can be concluded that incorporating all three learning curve factors 

into the existing learning curve models contributes significantly in better evaluating the 

effect of learning on labor productivity. In other words, the resulting statistical difference 

shows that changes in productivity rates can happen within a unit because of some learning 

factors.This in turn can lead to over-estimating or under-estimating durations of activities 

that typically involve a certain degree of learning. 

Table  B-5: Stage 1 Parametric-Test results 

Learning curve model  Task P-Value Hypothesis 

Linear Slab Formwork 2.322e-06 Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Null 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Alternative 

Slab Concrete Work 4.883e-07 

Slab Steel work 0.0006938 

Wall Formwork 

Wall Concrete Work 

Wall Steel Work 

2.967e-09 

2.035e-09 

2.035e-09 

Stanford Slab Formwork 1.768e-05 

 Slab Concrete Work 3.741e-08 

 Slab Steel work 9.144e-06 

 Wall Formwork 

Wall Concrete Work 

Wall Steel Work 

2.967e-09 

2.035e-09 

2.035e-09 

De Jong Slab Formwork 

Slab Concrete Work 

0.07516 

5.148e-07 

 Slab Steel Work 

Wall Formwork 

Wall Concrete Work 

Wall Steel Work 

5.217e-06 

2.967e-09 

5.394e-06 

2.034e-09 

Cubic Slab Formwork 

Slab Concrete Work 

Slab Steel Work 

Wall Formwork 

Wall Concrete Work 

Wall Steel Work 

0.01858 

5.395e-06 

0.004305 

2.967e-09 

2.035e-09 

2.034e-09 

 

B.3.3 Statistical Analysis: Stage 2 Results 

This stage compares the four different learning curve models before and after incorporating 

the learning curve factors. Plots of this stage can be found in Appendix C.4.2. It was found 

that both the Linear and Stanford models led to similar results, which applies as well to the 

De Jong and Cubic models. Additionally, the Multiple Comparison Tests show that there is 

a significant difference in activities’ duration between the first of models (i.e Linear and 
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Stanford) and the second set (i.e. De Jong and Cubic models). This can be mainly attributed 

to the similarity in the models’ equations. Furthermore, the difference between the learning 

models is reduced after incorporating the learning factors as compared to before 

incorporating them. The reason why is because this integration of learning factors is a better 

representation of real-life construction activities and workers’ interaction on sites. This 

difference between learning curve models can be further diminished if all learning factors 

are injected into the simulation. Although lower, a significant difference still resulted from 

the analysis. The results of this stage are summarized in Table B-8.  

Table  B-6: Stage 2 Non-Parametric and Multiple Comparison Tests’ Results 

Type Task   Difference 

Before Adding 

Learning Factors 

Slab Formwork 

Slab Concrete Work 

Slab Steel Work 

Wall Formwork 

Wall Concrete Work 

Wall Steel Work 

The linear model and the Stanford 
model are the same 

 The De Jong model and the cubic 
model are the same 

-The De Jong model is significantly 
different than both the linear and 
Stanford models 
-The cubic is also significantly different 
than both the linear and Stanford models 
-Maximum difference is between the 
Stanford model with both the cubic and 
De Jong models 

After Adding 

Learning Factors 

Slab Formwork 

Slab Concrete Work 

Wall Formwork 

Wall Steel Work 

The linear model and the Stanford 
model are the same 

The De Jong model and the cubic model 
are the same 

The De Jong model is significantly 
different than both the linear and 
Stanford models 

The cubic is also significantly different 
than both the linear and Stanford models 

Maximum difference is between the 
Stanford model with both the cubic and 
De Jong models 

The maximum difference is lower than 
the one before incorporating learning 
factors 
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 Slab Steel Work 

 

 

+ The similarity between the linear model 

and the Stanford model is slightly reduced 

to 93% 

 Wall Concrete Work 

+ Maximum difference is between the 
Stanford model and the De Jong model 

+ The similarity between the linear 

model and the Stanford model is slightly 

reduced to 82% 

 

B.4. CONCLUSION AND FUTURE WORK  

This study presented an agent-based model of learning whereby construction workers with 

different characteristics and attitudes work with each other over several activities, learn 

about each other’s behavior, and act accordingly. The main advantages of this model over 

previous ones is that it allows the observation of the learning process dynamics, the 

interaction between the different agents, and the emergent learning patterns arising from 

multiple scenarios.  Several simulation experiments or runs were conducted in this study 

given different learning models and learning rates and while incorporating three of the main 

factors affecting learning (transferred experience, psychological effect, and work 

interruptions). A two-stage statistical analysis was then performed and consequently, a 

comparative assessment was made about the different learning models and several 

observations were also made about the effect of each factor and their combination on 

learning which in turn might affect labor productivity and task durations.  

While the proposed agent-based model has achieved promising results under different 

scenarios, it exhibits some limitations and further examination is needed to advance this line 

of research. One limitation of the model is that it considers that various crews exhibit the 

same behavior. This model is being developed further to account for different behaviors and 

attitudes among crews. Surveys and interviews with experts will be carried out to better 

define the assumptions underlying the factors affecting learning. Additionally, other 
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important factors affecting learning must be included to develop a comprehensive agent-

based model of learning. Finally, the model will be validated through real-life case studies 

and will be presented to professionals and experts to ensure credibility and authenticity of 

results. 
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APPENDIX C Supplementary material 
 

C.1 SUMMARY OF DATA BEFORE INCORPORATING THE EFFECT OF 

LEARNING FACTORS 

Table C-1: Duration times for linear learning curve model (Days) 

Number 

of unit 

Concrete Slab Concrete Wall Formwork Slab Formwork Wall Steel Slab Steel Wall 

0 2.3 2.3 8 10.5 6.3 2.8 

1 2.079 2.079 7.24 9.502 5.702 2.534 

2 1.96 1.96 6.829 8.964 5.378 2.39 

3 1.88 1.88 6.552 8.6 5.16 2.293 

4 1.82 1.82 6.345 8.328 4.997 2.221 

5 1.772 1.772 6.181 8.112 4.867 2.163 

6 1.733 1.733 6.045 7.934 4.76 2.116 

7 1.699 1.699 5.93 7.783 4.67 2.075 

8 1.67 1.67 5.83 7.652 4.591 2.041 

9 1.645 1.645 5.742 7.537 4.522 2.01 

10 1.622 1.622 5.664 7.434 4.46 1.982 

11 1.602 1.602 5.593 7.341 4.405 1.958 

12 1.583 1.583 5.529 7.257 4.354 1.935 

13 1.566 1.566 5.471 7.18 4.308 1.915 

14 1.551 1.551 5.417 7.109 4.266 1.896 

15 1.536 1.536 5.366 7.043 4.226 1.878 

16 1.523 1.523 5.32 6.982 4.189 1.862 

17 1.51 1.51 5.276 6.925 4.155 1.847 

18 1.498 1.498 5.235 6.871 4.123 1.832 

19 1.487 1.487 5.197 6.821 4.092 1.819 

20 1.476 1.476 5.16 6.773 4.064 1.806 

21 1.466 1.466 5.126 6.728 4.037 1.794 

22 1.457 1.457 5.093 6.685 4.011 1.783 

23 1.448 1.448 5.062 6.644 3.986 1.772 

24 1.439 1.439 5.032 6.605 3.963 1.761 

25 1.431 1.431 5.004 6.568 3.941 1.751 
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Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

26 1.423 1.423 4.977 6.532 3.919 1.742 

27 1.416 1.416 4.951 6.498 3.899 1.733 

28 1.409 1.409 4.926 6.465 3.879 1.724 

29 1.402 1.402 4.902 6.434 3.86 1.716 

30 1.395 1.395 4.879 6.404 3.842 1.708 

31 1.389 1.389 4.857 6.374 3.825 1.7 

32 1.382 1.382 4.835 6.346 3.808 1.692 

33 1.376 1.376 4.814 6.319 3.791 1.685 

34 1.371 1.371 4.794 6.293 3.776 1.678 

35 1.365 1.365 4.775 6.267 3.76 1.671 

36 1.36 1.36 4.756 6.242 3.745 1.665 

37 1.354 1.354 4.738 6.218 3.731 1.658 

38 1.349 1.349 4.72 6.195 3.717 1.652 

39 1.344 1.344 4.703 6.173 3.704 1.646 

40 1.339 1.339 4.686 6.151 3.69 1.64 

41 1.335 1.335 4.67 6.129 3.678 1.635 

42 1.33 1.33 4.654 6.109 3.665 1.629 

43 1.326 1.326 4.639 6.089 3.653 1.624 

44 1.321 1.321 4.624 6.069 3.641 1.618 

45 1.317 1.317 4.609 6.05 3.63 1.613 

46 1.313 1.313 4.595 6.031 3.619 1.608 

47 1.309 1.309 4.581 6.013 3.608 1.603 

48 1.305 1.305 4.568 5.995 3.597 1.599 

49 1.301 1.301 4.554 5.978 3.587 1.594 
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Table C-2: Duration times for Stanford learning curve model (Days) 

Number of 

unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

0 2.3 2.3 8 10.5 6.3 2.8 

1 1.96 1.96 6.829 8.964 5.378 2.39 

2 1.88 1.88 6.552 8.6 5.16 2.293 

3 1.82 1.82 6.345 8.328 4.997 2.221 

4 1.772 1.772 6.181 8.112 4.867 2.163 

5 1.733 1.733 6.045 7.934 4.76 2.116 

6 1.699 1.699 5.93 7.783 4.67 2.075 

7 1.67 1.67 5.83 7.652 4.591 2.041 

8 1.645 1.645 5.742 7.537 4.522 2.01 

9 1.622 1.622 5.664 7.434 4.46 1.982 

10 1.602 1.602 5.593 7.341 4.405 1.958 

11 1.583 1.583 5.529 7.257 4.354 1.935 

12 1.566 1.566 5.471 7.18 4.308 1.915 

13 1.551 1.551 5.417 7.109 4.266 1.896 

14 1.536 1.536 5.366 7.043 4.226 1.878 

15 1.523 1.523 5.32 6.982 4.189 1.862 

16 1.51 1.51 5.276 6.925 4.155 1.847 

17 1.498 1.498 5.235 6.871 4.123 1.832 

18 1.487 1.487 5.197 6.821 4.092 1.819 

19 1.476 1.476 5.16 6.773 4.064 1.806 

20 1.466 1.466 5.126 6.728 4.037 1.794 

21 1.457 1.457 5.093 6.685 4.011 1.783 

22 1.448 1.448 5.062 6.644 3.986 1.772 

23 1.439 1.439 5.032 6.605 3.963 1.761 

24 1.431 1.431 5.004 6.568 3.941 1.751 

25 1.423 1.423 4.977 6.532 3.919 1.742 
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Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

26 1.416 1.416 4.951 6.498 3.899 1.733 

27 1.409 1.409 4.926 6.465 3.879 1.724 

28 1.402 1.402 4.902 6.434 3.86 1.716 

29 1.395 1.395 4.879 6.404 3.842 1.708 

30 1.389 1.389 4.857 6.374 3.825 1.7 

31 1.382 1.382 4.835 6.346 3.808 1.692 

32 1.376 1.376 4.814 6.319 3.791 1.685 

33 1.371 1.371 4.794 6.293 3.776 1.678 

34 1.365 1.365 4.775 6.267 3.76 1.671 

35 1.36 1.36 4.756 6.242 3.745 1.665 

36 1.354 1.354 4.738 6.218 3.731 1.658 

37 1.349 1.349 4.72 6.195 3.717 1.652 

38 1.344 1.344 4.703 6.173 3.704 1.646 

39 1.339 1.339 4.686 6.151 3.69 1.64 

40 1.335 1.335 4.67 6.129 3.678 1.635 

41 1.33 1.33 4.654 6.109 3.665 1.629 

42 1.326 1.326 4.639 6.089 3.653 1.624 

43 1.321 1.321 4.624 6.069 3.641 1.618 

44 1.317 1.317 4.609 6.05 3.63 1.613 

45 1.313 1.313 4.595 6.031 3.619 1.608 

46 1.309 1.309 4.581 6.013 3.608 1.603 

47 1.305 1.305 4.568 5.995 3.597 1.599 

48 1.301 1.301 4.554 5.978 3.587 1.594 

49 1.297 1.297 4.541 5.96 3.576 1.589 
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Table C-3: Duration times for De Jong learning curve model (Days) 

Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

0 2.3 2.3 8 10.5 6.3 2.8 

1 2.19 2.19 7.62 10.001 6.001 2.667 

2 2.13 2.13 7.415 9.732 5.839 2.595 

3 2.09 2.09 7.276 9.55 5.73 2.547 

4 2.06 2.06 7.172 9.414 5.648 2.51 

5 2.036 2.036 7.09 9.306 5.584 2.482 

6 2.016 2.016 7.022 9.217 5.53 2.458 

7 2 2 6.965 9.141 5.485 2.438 

8 1.985 1.985 6.915 9.076 5.446 2.42 

9 1.972 1.972 6.871 9.018 5.411 2.405 

10 1.961 1.961 6.832 8.967 5.38 2.391 

11 1.951 1.951 6.797 8.921 5.352 2.379 

12 1.942 1.942 6.765 8.879 5.327 2.368 

13 1.933 1.933 6.735 8.84 5.304 2.357 

14 1.925 1.925 6.708 8.805 5.283 2.348 

15 1.918 1.918 6.683 8.772 5.263 2.339 

16 1.911 1.911 6.66 8.741 5.245 2.331 

17 1.905 1.905 6.638 8.712 5.227 2.323 

18 1.899 1.899 6.618 8.686 5.211 2.316 

19 1.893 1.893 6.598 8.66 5.196 2.309 

20 1.888 1.888 6.58 8.636 5.182 2.303 

21 1.883 1.883 6.563 8.614 5.168 2.297 

22 1.878 1.878 6.547 8.592 5.155 2.291 

23 1.874 1.874 6.531 8.572 5.143 2.286 

24 1.87 1.87 6.516 8.552 5.131 2.281 

25 1.866 1.866 6.502 8.534 5.12 2.276 
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Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

26 1.862 1.862 6.488 8.516 5.11 2.271 

27 1.858 1.858 6.475 8.499 5.099 2.266 

28 1.854 1.854 6.463 8.483 5.09 2.262 

29 1.851 1.851 6.451 8.467 5.08 2.258 

30 1.848 1.848 6.439 8.452 5.071 2.254 

31 1.844 1.844 6.428 8.437 5.062 2.25 

32 1.841 1.841 6.418 8.423 5.054 2.246 

33 1.838 1.838 6.407 8.409 5.046 2.243 

34 1.835 1.835 6.397 8.396 5.038 2.239 

35 1.832 1.832 6.387 8.384 5.03 2.236 

36 1.83 1.83 6.378 8.371 5.023 2.232 

37 1.827 1.827 6.369 8.359 5.016 2.229 

38 1.825 1.825 6.36 8.348 5.009 2.226 

39 1.822 1.822 6.352 8.336 5.002 2.223 

40 1.82 1.82 6.343 8.325 4.995 2.22 

41 1.817 1.817 6.335 8.315 4.989 2.217 

42 1.815 1.815 6.327 8.304 4.983 2.215 

43 1.813 1.813 6.319 8.294 4.977 2.212 

44 1.811 1.811 6.312 8.284 4.971 2.209 

45 1.809 1.809 6.305 8.275 4.965 2.207 

46 1.806 1.806 6.298 8.266 4.959 2.204 

47 1.804 1.804 6.291 8.256 4.954 2.202 

48 1.803 1.803 6.284 8.247 4.948 2.199 

49 1.801 1.801 6.277 8.239 4.943 2.197 
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Table C-4: Duration times for Cubic learning curve model (Days) 

Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

0 2.3 2.3 8 10.5 6.3 2.8 

1 2.13 2.13 7.415 9.732 5.839 2.595 

2 2.09 2.09 7.276 9.55 5.73 2.547 

3 2.06 2.06 7.172 9.414 5.648 2.51 

4 2.036 2.036 7.09 9.306 5.584 2.482 

5 2.016 2.016 7.022 9.217 5.53 2.458 

6 2 2 6.965 9.141 5.485 2.438 

7 1.985 1.985 6.915 9.076 5.446 2.42 

8 1.972 1.972 6.871 9.018 5.411 2.405 

9 1.961 1.961 6.832 8.967 5.38 2.391 

10 1.951 1.951 6.797 8.921 5.352 2.379 

11 1.942 1.942 6.765 8.879 5.327 2.368 

12 1.933 1.933 6.735 8.84 5.304 2.357 

13 1.925 1.925 6.708 8.805 5.283 2.348 

14 1.918 1.918 6.683 8.772 5.263 2.339 

15 1.911 1.911 6.66 8.741 5.245 2.331 

16 1.905 1.905 6.638 8.712 5.227 2.323 

17 1.899 1.899 6.618 8.686 5.211 2.316 

18 1.893 1.893 6.598 8.66 5.196 2.309 

19 1.888 1.888 6.58 8.636 5.182 2.303 

20 1.883 1.883 6.563 8.614 5.168 2.297 

21 1.878 1.878 6.547 8.592 5.155 2.291 

22 1.874 1.874 6.531 8.572 5.143 2.286 

23 1.87 1.87 6.516 8.552 5.131 2.281 

24 1.866 1.866 6.502 8.534 5.12 2.276 

25 1.862 1.862 6.488 8.516 5.11 2.271 
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Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

26 1.858 1.858 6.475 8.499 5.099 2.266 

27 1.854 1.854 6.463 8.483 5.09 2.262 

28 1.851 1.851 6.451 8.467 5.08 2.258 

29 1.848 1.848 6.439 8.452 5.071 2.254 

30 1.844 1.844 6.428 8.437 5.062 2.25 

31 1.841 1.841 6.418 8.423 5.054 2.246 

32 1.838 1.838 6.407 8.409 5.046 2.243 

33 1.835 1.835 6.397 8.396 5.038 2.239 

34 1.832 1.832 6.387 8.384 5.03 2.236 

35 1.83 1.83 6.378 8.371 5.023 2.232 

36 1.827 1.827 6.369 8.359 5.016 2.229 

37 1.825 1.825 6.36 8.348 5.009 2.226 

38 1.822 1.822 6.352 8.336 5.002 2.223 

39 1.82 1.82 6.343 8.325 4.995 2.22 

40 1.817 1.817 6.335 8.315 4.989 2.217 

41 1.815 1.815 6.327 8.304 4.983 2.215 

42 1.813 1.813 6.319 8.294 4.977 2.212 

43 1.811 1.811 6.312 8.284 4.971 2.209 

44 1.809 1.809 6.305 8.275 4.965 2.207 

45 1.806 1.806 6.298 8.266 4.959 2.204 

46 1.804 1.804 6.291 8.256 4.954 2.202 

47 1.803 1.803 6.284 8.247 4.948 2.199 

48 1.801 1.801 6.277 8.239 4.943 2.197 

49 1.799 1.799 6.271 8.23 4.938 2.195 

 

 

 

 

 

 

 

 

 

 

  



 75 

C.2 SUMMARY OF DATA AFTER INCORPORATING THE EFFECT OF 

LEARNING FACTORS 

Table C-5: Duration times for linear learning curve model (Days) 

Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

0 2.3 2.3 8 10.5 6.577 2.8 

1 2.079 2.079 7.24 9.502 5.702 2.534 

2 2.593 1.973 6.871 9.019 5.411 2.405 

3 1.89 1.89 6.581 8.638 5.183 2.303 

4 1.78 1.78 6.353 8.338 5.003 2.195 

5 1.724 1.724 6.167 8.095 4.857 2.128 

6 1.728 1.701 6.007 7.885 4.658 2.038 

7 1.632 1.632 5.866 7.699 4.543 2.019 

8 1.594 1.594 7.588 7.532 4.44 1.973 

9 1.559 1.589 5.622 7.379 4.427 1.896 

10 1.53 1.53 5.524 7.251 4.267 1.897 

11 1.533 1.502 5.434 7.133 4.28 1.864 

12 1.508 1.508 5.351 7.023 5.54 1.797 

13 1.453 1.453 5.272 6.919 4.152 1.806 

14 1.463 1.431 5.198 6.822 3.918 1.78 

15 1.442 1.442 6.604 6.73 5.102 1.716 

16 1.388 1.388 5.055 6.634 4.142 1.729 

17 1.4 1.368 4.985 6.542 3.745 1.704 

18 1.382 1.382 4.923 6.462 3.877 1.643 

19 3.082 1.333 4.87 6.392 3.743 1.664 

20 1.384 1.317 4.813 6.317 3.698 1.643 

21 1.301 1.334 4.758 6.244 3.654 1.583 

22 1.354 1.286 4.704 6.174 3.611 1.605 

23 1.272 1.272 4.659 6.114 3.575 1.589 

24 1.325 1.291 4.608 6.048 3.535 1.53 

25 1.312 1.244 4.565 5.992 3.409 1.556 
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Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

26 1.231 1.231 4.517 5.929 3.557 1.539 

27 1.285 1.251 4.774 5.868 4.218 1.482 

28 1.205 1.205 4.431 5.816 3.395 1.509 

29 1.193 1.193 4.387 5.758 4.708 1.493 

30 1.249 1.214 4.343 5.7 3.233 1.437 

31 1.169 1.169 4.306 5.652 3.425 1.465 

32 1.192 1.158 4.265 5.597 3.358 1.45 

33 1.214 1.18 4.223 5.543 3.231 1.395 

34 1.135 1.135 4.183 5.49 3.199 1.422 

35 1.193 1.125 4.029 5.288 3.08 1.452 

36 1.113 1.147 4.11 5.395 3.237 1.355 

37 1.103 1.137 4.078 5.352 3.117 1.344 

38 1.162 1.127 3.803 4.991 4.628 1.414 

39 1.083 1.083 4.003 5.254 3.152 1.359 

40 1.141 1.107 3.972 5.214 2.942 1.307 

41 1.064 1.098 3.7 4.856 4.919 1.378 

42 1.087 1.054 3.781 4.963 2.886 1.365 

43 1.078 1.078 5.072 5.081 3.049 1.273 

44 1.037 1.105 3.607 4.735 2.932 1.303 

45 1.028 1.062 3.579 4.698 2.91 1.335 

46 1.089 1.054 3.786 4.969 2.888 1.243 

47 1.014 1.081 3.634 4.77 2.955 1.232 

48 1.006 1.039 3.498 4.591 2.845 1.306 

49 1.064 0.997 3.906 4.863 2.734 1.255 
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Table C-6: Duration times for Stanford learning curve model (Days) 

Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

0 2.3 2.3 8 10.5 7.182 2.8 

1 1.96 1.96 6.829 8.964 5.378 2.39 

2 1.895 1.895 6.603 8.666 5.324 2.311 

3 1.832 1.832 6.378 8.371 5.022 2.232 

4 1.729 1.729 6.189 8.124 4.874 2.136 

5 1.681 1.681 6.031 7.915 4.676 2.078 

6 1.667 1.667 5.891 7.731 4.486 1.994 

7 1.601 1.601 5.764 7.565 4.539 1.982 

8 1.566 1.566 5.648 7.413 4.448 1.941 

9 1.535 1.565 5.54 7.272 5.176 1.866 

10 1.507 1.507 5.451 7.154 4.292 1.87 

11 1.513 1.482 5.367 7.044 4.055 1.84 

12 1.458 1.49 5.289 6.942 4.165 1.774 

13 2.641 1.436 5.215 6.844 4.107 1.786 

14 1.447 1.415 5.145 6.752 3.873 1.761 

15 1.395 1.427 6.74 6.665 3.999 1.697 

16 1.374 1.374 5.008 6.573 3.944 1.712 

17 1.421 1.354 5.146 6.485 3.799 1.688 

18 1.337 1.37 4.882 6.407 3.752 1.627 

19 1.354 1.321 4.831 6.34 3.804 1.649 

20 1.339 1.306 4.776 6.268 3.576 1.63 

21 1.358 1.323 4.722 6.198 3.533 1.57 

22 1.31 1.276 4.671 6.13 3.678 1.593 

23 1.262 1.262 4.626 6.072 3.549 1.577 

24 1.282 1.282 4.577 6.008 3.418 1.519 

25 1.235 1.235 4.536 5.953 3.572 1.545 
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Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

26 1.256 1.264 4.489 5.892 3.348 1.529 

27 1.243 1.243 5.329 5.832 3.312 1.472 

28 1.231 1.197 4.405 5.782 3.469 1.5 

29 1.186 1.186 4.361 5.724 3.435 1.484 

30 1.207 1.207 4.319 5.668 3.213 1.428 

31 1.162 1.196 6.245 5.621 3.373 1.415 

32 1.185 1.151 4.121 5.409 4.122 1.485 

33 1.208 1.139 4.201 5.514 3.213 1.428 

34 1.163 1.163 4.162 5.462 3.089 1.373 

35 1.119 1.153 3.89 5.106 3.251 1.445 

36 1.141 1.107 3.97 5.21 3.033 1.432 

37 1.131 1.131 4.058 5.327 3.196 1.337 

38 1.122 1.122 3.783 4.966 2.979 1.407 

39 1.077 1.111 5.433 4.918 3.138 1.395 

40 1.102 1.102 3.954 5.19 3.114 1.301 

41 1.092 1.059 3.918 5.143 4.458 1.33 

42 1.049 1.082 3.647 4.787 2.964 1.359 

43 1.107 1.073 3.855 5.059 2.85 1.267 

44 1.066 1.066 3.826 5.022 3.013 1.257 

45 1.057 1.057 3.563 4.677 2.806 1.329 

46 1.017 1.017 4.666 4.949 2.876 1.278 

47 1.043 1.043 3.738 4.906 2.943 1.226 

48 1.035 1.035 3.483 4.571 2.743 1.301 

49 1.026 0.993 3.572 4.688 2.906 1.292 
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Table C-7: Duration times for De Jong learning curve model (Days) 

Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

0 2.3 2.3 8 10.5 6.388 2.8 

1 2.19 2.19 7.62 10.001 6.001 2.667 

2 2.137 2.137 7.436 9.759 7.453 2.602 

3 2.095 2.095 7.291 9.569 5.741 2.552 

4 2.04 2.04 7.177 9.419 7.373 2.498 

5 2.024 2.012 7.084 9.297 5.51 2.464 

6 1.988 2.001 7.846 9.192 5.515 2.419 

7 1.966 1.966 6.933 9.1 5.46 2.41 

8 1.961 1.947 6.869 9.016 5.41 2.387 

9 1.944 1.944 6.811 8.939 5.283 2.348 

10 1.915 1.915 6.762 8.875 5.325 2.348 

11 1.916 1.901 6.717 8.816 5.206 2.332 

12 1.889 1.904 6.675 8.761 5.214 2.298 

13 1.877 1.877 7.116 8.71 5.226 2.303 

14 1.865 1.865 7.39 8.661 5.197 2.29 

15 1.871 2.188 6.564 8.615 5.08 2.258 

16 1.86 1.844 7.462 8.567 5.14 2.265 

17 1.85 1.834 6.492 8.521 6.61 2.252 

18 2.912 1.825 6.462 8.481 4.998 2.241 

19 1.833 1.85 6.376 8.369 5.068 2.212 

20 1.809 1.809 6.406 8.408 4.999 2.222 

21 1.8 1.8 6.379 8.372 4.977 2.212 

22 1.827 1.81 6.235 8.183 4.956 2.223 

23 1.803 1.82 6.27 8.229 4.892 2.174 

24 1.778 1.795 7.429 8.274 4.964 2.165 

25 1.789 1.789 6.164 8.091 4.854 2.199 

 

  



 80 

Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

26 1.782 2.702 6.14 8.059 4.929 2.191 

27 2.416 1.775 6.235 8.184 4.817 2.141 

28 1.752 1.752 6.216 8.158 4.847 2.154 

29 1.763 1.763 6.2 7.973 4.877 2.168 

30 1.774 1.74 6.172 8.1 4.813 2.139 

31 1.734 1.769 6.093 7.997 4.798 2.112 

32 1.763 3.556 6.662 7.892 4.735 2.146 

33 1.723 1.723 6.112 8.022 4.813 2.118 

34 1.752 1.735 6.092 7.995 4.75 2.09 

35 1.747 1.729 5.956 7.817 4.69 2.126 

36 1.707 1.707 7.835 7.869 4.721 2.119 

37 1.736 1.702 6.039 7.926 4.708 2.093 

38 1.697 1.731 5.901 7.746 4.694 2.086 

39 1.725 1.708 5.883 7.722 4.679 2.101 

40 1.687 1.687 5.986 7.857 4.667 2.074 

41 1.699 1.699 5.968 7.833 4.7 2.047 

42 1.694 1.694 7.601 7.655 4.593 2.083 

43 1.689 1.672 7.592 7.712 4.674 2.077 

44 1.702 1.685 5.921 7.772 4.57 2.031 

45 1.664 1.698 7.012 7.599 4.605 2.047 

46 1.677 1.677 5.776 7.581 4.641 2.063 

47 1.674 1.674 5.876 7.713 4.536 2.016 

48 1.669 1.686 5.807 7.621 4.619 2.012 

49 1.665 1.665 5.736 7.528 4.517 2.048 
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Table C-8: Duration times for Cubic learning curve model (Days) 

Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

0 2.3 2.3 8 10.5 8.085 2.8 

1 2.13 2.13 7.415 9.732 5.839 2.595 

2 2.098 2.098 7.301 9.583 7.234 2.556 

3 2.066 2.066 7.189 9.435 5.661 2.516 

4 2.014 2.014 7.095 9.312 5.587 2.468 

5 3.094 1.991 7.015 9.208 5.452 2.439 

6 1.969 1.983 6.986 9.116 5.469 2.397 

7 1.95 1.95 6.882 9.033 5.42 2.391 

8 1.933 1.933 6.824 8.956 5.374 2.37 

9 1.948 1.932 6.77 8.886 5.29 2.333 

10 1.919 1.904 6.725 8.827 5.212 2.335 

11 2.911 1.891 6.684 8.772 5.22 2.32 

12 1.879 1.895 6.644 8.721 5.189 2.287 

13 1.868 1.868 8.257 8.672 7.03 2.293 

14 1.857 1.857 6.572 8.626 5.176 2.28 

15 1.847 1.864 6.539 8.582 5.104 2.249 

16 1.87 1.837 6.504 8.537 5.076 2.256 

17 1.844 1.827 6.47 8.492 5.838 2.244 

18 1.835 1.835 6.441 8.454 5.885 2.214 

19 1.811 1.811 6.415 8.42 5.006 2.225 

20 1.803 1.803 6.388 8.384 5.03 2.215 

21 1.795 1.812 6.361 8.349 4.963 2.185 

22 1.788 1.788 6.335 8.315 4.989 2.196 

23 1.798 1.781 6.313 8.286 6.847 2.189 

24 1.774 1.791 7.637 8.254 4.952 2.159 

25 1.784 1.767 6.268 8.226 4.842 2.173 
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Number 

of unit 

Concrete 

Slab 

Concrete 

Wall 

Formwork Slab Formwork Wall Steel Slab Steel Wall 

26 1.761 1.761 6.245 8.196 4.918 2.165 

27 1.771 1.771 6.222 8.166 4.806 2.136 

28 1.766 1.749 6.203 8.141 4.884 2.15 

29 1.76 1.743 6.181 8.112 6.604 2.142 

30 1.753 1.753 6.159 8.084 4.85 2.114 

31 1.748 1.731 6.141 8.061 4.742 2.128 

32 1.726 1.726 6.994 7.954 4.82 2.142 

33 1.72 1.737 6.101 8.007 4.804 2.093 

34 1.731 1.731 7.143 7.981 4.695 2.087 

35 1.709 1.726 5.945 7.803 4.776 2.123 

36 1.738 1.704 6.045 7.934 4.667 2.095 

37 1.699 1.716 6.029 7.913 4.748 2.069 

38 1.711 1.711 5.892 7.733 4.64 2.104 

39 1.705 1.689 7.327 7.786 4.719 2.097 

40 1.684 1.701 5.977 7.845 4.66 2.051 

41 1.713 1.713 5.841 7.666 4.646 2.065 

42 1.674 1.691 6.617 7.644 4.632 2.08 

43 2.429 1.687 7.637 7.78 4.621 2.033 

44 1.7 1.683 5.913 7.761 4.61 2.028 

45 1.662 1.679 7.365 7.588 4.646 2.065 

46 1.675 1.658 5.885 7.725 4.542 2.039 

47 1.671 1.671 5.869 7.703 4.622 2.013 

48 1.667 1.667 5.741 7.536 4.614 2.05 

49 1.663 1.647 5.786 7.594 4.511 2.046 
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C.3 Agent-Based Model (Anylogic 7) 

 

 
 

Figure  C-1: Slab and Wall Agent Statechart 
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Figure  C-2: Formwork, Concrete, and Steel Crews Statechart 
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Figure  C-3: Interruption Effect on Duration and Learning Rate 
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C.4 R PLOTS 

C.4.1 Stage 1 plots 

 
 

Figure  C-4: Linear Model Histograms 
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Figure  C-5: Linear Model Boxplots 
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Figure  C-6: Stanford Model Histograms 
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Figure  C-7: Stanford Model Boxplots 
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Figure  C-8: De Jong Model Histograms 
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Figure  C-9: De Jong Model Boxplots 



 92 

 
 

Figure  C-10: Cubic Model Histograms 
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Figure  C-11: Cubic Model Boxplots 
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C.4.2 Stage 2 plots 

C.4.2.1  Plots before incorporating factors affecting learning 

 
 

Figure  C-12: Slab Concrete Work Boxplot 
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Figure  C-13: Slab Formwork Boxplot 
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Figure  C-14: Slab Steel Work Boxplot 

 

 



 97 

 
Figure  C-15: Wall Concrete Work Boxplot 
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Figure  C-16: Wall Formwork Boxplot 
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Figure  C-17: Wall Steel Work Boxplot 
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C.4.2.2  Plots after incorporating factors affecting learning 

 
 

Figure  C-18: Slab Concrete Work Boxplot 
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Figure  C-19: Slab Formwork Boxplot 
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Figure  C-20: Slab Steel Work Boxplot 
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Figure  C-21: Wall Concrete Work Boxplot 
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Figure  C-22: Wall Formwork Boxplot 
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Figure  C-23: Wall Steel Work Boxplot 
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C.5 R Code 

getwd() 

# Stage 1 

# Test if incorporating factors affecting learning curve models is significant 

# Straight-line Model 

slabFW=read.csv("linear-slabFW.csv", header=T) 

slabC=read.csv("linear-slabC.csv", header=T) 

slabS=read.csv("linear-slabS.csv", header=T) 

wallFW=read.csv("linear-wallFW.csv", header=T) 

wallC=read.csv("linear-wallC.csv", header=T) 

wallS=read.csv("linear-wallS.csv", header=T) 

# Plotting the data 

windows(title = "Histograms of data") 

par(mfrow=c(4,3)) 

hist(slabFW$before,main = "") 

hist(slabFW$after,main = "") 

hist(slabC$before,main = "") 

hist(slabC$after,main = "") 

hist(slabS$before,main = "") 

hist(slabS$after,main = "") 

hist(wallFW$before,main = "") 

hist(wallFW$after,main = "") 

hist(wallC$before,main = "") 

hist(wallC$after,main = "") 

hist(wallS$before,main = "") 

hist(wallS$after,main = "") 

# The data seems not normal  

windows(title = "Boxplots of data") 

par(mfrow=c(3,2)) 

boxplot(slabFW,xlab="slab FW",ylab="Duration (days)") 

boxplot(slabC,xlab="slab C",ylab="Duration (days)") 

boxplot(slabS,xlab="slab S",ylab="Duration (days)") 

boxplot(wallFW,xlab="wall FW",ylab="Duration (days)") 

boxplot(wallC,xlab="wall C",ylab="Duration (days)") 

boxplot(wallS,xlab="wall S",ylab="Duration (days)") 

# Check if the data is normally distributed 

shapiro.test(slabFW$before)# not normal 

shapiro.test(slabC$before)# not normal 

shapiro.test(slabS$before)# not normal 

shapiro.test(wallFW$before)# not normal 

shapiro.test(wallFW$before)# not normal 

shapiro.test(wallFW$before)# not normal 

shapiro.test(slabFW$after)# not normal 

shapiro.test(slabC$after)# not normal 

shapiro.test(slabS$after)# not normal 

shapiro.test(wallFW$after)# not normal 

shapiro.test(wallFW$after)# not normal 

shapiro.test(wallFW$after)# not normal 
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# Try log transformation 

shapiro.test(log(slabFW$before)) # not normal 

shapiro.test(log(slabC$before)) # not normal 

shapiro.test(log(slabS$before)) # not normal 

shapiro.test(log(wallFW$before)) # not normal 

shapiro.test(log(wallFW$before)) # not normal 

shapiro.test(log(wallFW$before)) # not normal 

shapiro.test(log(slabFW$after)) #  normal 

shapiro.test(log(slabC$after)) # not normal 

shapiro.test(log(slabS$after)) #  normal 

shapiro.test(log(wallFW$after)) #  normal 

shapiro.test(log(wallFW$after)) #  normal 

shapiro.test(log(wallFW$after)) #  normal 

# Data is not normal even with log transformation 

# Try the Box-Cox Method 

lm=lm(slabFW) 

require(MASS) 

windows() 

boxcox(lm) 

shapiro.test((slabFW$before)^(-2)) 

# Also not working 

# Non-Parametric tests 

# Because the analysis is for two-sample paired test, we use Wilcoxon Signed-Ranks 

Test 

wilcox.test(slabFW$before,slabFW$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(slabC$before,slabC$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(slabS$before,slabS$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(wallFW$before,wallFW$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(wallC$before,wallC$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(wallS$before,wallS$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

# Stanford Model 

slabFW=read.csv("stanford-slabFW.csv", header=T) 

slabC=read.csv("stanford-slabC.csv", header=T) 

slabS=read.csv("stanford-slabS.csv", header=T) 

wallFW=read.csv("stanford-wallFW.csv", header=T) 

wallC=read.csv("stanford-wallC.csv", header=T) 

wallS=read.csv("stanford-wallS.csv", header=T) 

# Plotting the data 

windows(title = "Histograms of data") 

par(mfrow=c(4,3)) 

hist(slabFW$before,main = "") 

hist(slabFW$after,main = "") 

hist(slabC$before,main = "") 



 108 

hist(slabC$after,main = "") 

hist(slabS$before,main = "") 

hist(slabS$after,main = "") 

hist(wallFW$before,main = "") 

hist(wallFW$after,main = "") 

hist(wallC$before,main = "") 

hist(wallC$after,main = "") 

hist(wallS$before,main = "") 

hist(wallS$after,main = "") 

# The data seems not normal  

windows(title = "Boxplots of data") 

par(mfrow=c(3,2)) 

boxplot(slabFW,xlab="slab FW",ylab="Duration (days)") 

boxplot(slabC,xlab="slab C",ylab="Duration (days)") 

boxplot(slabS,xlab="slab S",ylab="Duration (days)") 

boxplot(wallFW,xlab="wall FW",ylab="Duration (days)") 

boxplot(wallC,xlab="wall C",ylab="Duration (days)") 

boxplot(wallS,xlab="wall S",ylab="Duration (days)") 

# Check if the data is normally distributed 

shapiro.test(slabFW$before)# not normal 

shapiro.test(slabC$before)# not normal 

shapiro.test(slabS$before)# not normal 

shapiro.test(wallFW$before)# not normal 

shapiro.test(wallFW$before)# not normal 

shapiro.test(wallFW$before)# not normal 

shapiro.test(slabFW$after)# not normal 

shapiro.test(slabC$after)# not normal 

shapiro.test(slabS$after)# not normal 

shapiro.test(wallFW$after)# not normal 

shapiro.test(wallFW$after)# not normal 

shapiro.test(wallFW$after)# not normal 

# Try log transformation 

shapiro.test(log(slabFW$before)) # not normal 

shapiro.test(log(slabC$before)) # not normal 

shapiro.test(log(slabS$before)) # not normal 

shapiro.test(log(wallFW$before)) # not normal 

shapiro.test(log(wallFW$before)) # not normal 

shapiro.test(log(wallFW$before)) # not normal 

shapiro.test(log(slabFW$after)) #  normal 

shapiro.test(log(slabC$after)) # not normal 

shapiro.test(log(slabS$after)) # not normal 

shapiro.test(log(wallFW$after)) # normal 

shapiro.test(log(wallFW$after)) # normal 

shapiro.test(log(wallFW$after)) # normal 

# Data is not normal even with log transformation 

# Try The Box-Cox Method 

lm=lm(slabFW) 

require(MASS) 

windows() 
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boxcox(lm) 

shapiro.test((slabFW$before)^(-2)) 

# Also not working 

# Non-Parametric tests 

# Because the analysis is for two-sample paired test, we use Wilcoxon Signed-Ranks 

Test 

wilcox.test(slabFW$before,slabFW$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(slabC$before,slabC$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(slabS$before,slabS$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(wallFW$before,wallFW$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(wallC$before,wallC$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(wallS$before,wallS$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

# De Jong Model 

slabFW=read.csv("de jong-slabFW.csv", header=T) 

slabC=read.csv("de jong-slabC.csv", header=T) 

slabS=read.csv("de jong-slabS.csv", header=T) 

wallFW=read.csv("de jong-wallFW.csv", header=T) 

wallC=read.csv("de jong-wallC.csv", header=T) 

wallS=read.csv("de jong-wallS.csv", header=T) 

# Plotting the data 

windows(title = "Histograms of data") 

par(mfrow=c(4,3)) 

hist(slabFW$before,main = "") 

hist(slabFW$after,main = "") 

hist(slabC$before,main = "") 

hist(slabC$after,main = "") 

hist(slabS$before,main = "") 

hist(slabS$after,main = "") 

hist(wallFW$before,main = "") 

hist(wallFW$after,main = "") 

hist(wallC$before,main = "") 

hist(wallC$after,main = "") 

hist(wallS$before,main = "") 

hist(wallS$after,main = "") 

# The data seems not normal  

windows(title = "Boxplots of data") 

par(mfrow=c(3,2)) 

boxplot(slabFW,xlab="slab FW",ylab="Duration (days)") 

boxplot(slabC,xlab="slab C",ylab="Duration (days)") 

boxplot(slabS,xlab="slab S",ylab="Duration (days)") 

boxplot(wallFW,xlab="wall FW",ylab="Duration (days)") 

boxplot(wallC,xlab="wall C",ylab="Duration (days)") 

boxplot(wallS,xlab="wall S",ylab="Duration (days)") 
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# Check if the data is normally distributed 

shapiro.test(slabFW$before)# not normal 

shapiro.test(slabC$before)# not normal 

shapiro.test(slabS$before)# not normal 

shapiro.test(wallFW$before)# not normal 

shapiro.test(wallFW$before)# not normal 

shapiro.test(wallFW$before)# not normal 

shapiro.test(slabFW$after)# not normal 

shapiro.test(slabC$after)# not normal 

shapiro.test(slabS$after)# not normal 

shapiro.test(wallFW$after)# not normal 

shapiro.test(wallFW$after)# not normal 

shapiro.test(wallFW$after)# not normal 

# Try log transformation 

shapiro.test(log(slabFW$before)) # not normal 

shapiro.test(log(slabC$before)) # not normal 

shapiro.test(log(slabS$before)) # not normal 

shapiro.test(log(wallFW$before)) # not normal 

shapiro.test(log(wallFW$before)) # not normal 

shapiro.test(log(wallFW$before)) # not normal 

shapiro.test(log(slabFW$after)) # not normal 

shapiro.test(log(slabC$after)) # not normal 

shapiro.test(log(slabS$after)) # not normal 

shapiro.test(log(wallFW$after)) # not normal 

shapiro.test(log(wallFW$after)) # not normal 

shapiro.test(log(wallFW$after)) # not normal 

# Data is not normal even with log transformation 

# Try The Box-Cox Method 

lm=lm(slabFW) 

require(MASS) 

windows() 

boxcox(lm) 

shapiro.test((slabFW$before)^(-2)) 

# Also not working 

# Non-Parametric tests 

# Because the analysis is for two-sample paired test, we use Wilcoxon Signed-Ranks 

Test 

wilcox.test(slabFW$before,slabFW$after,paired = TRUE) # Cannot Reject the null 

hypothesis. Difference is not significant 

wilcox.test(slabC$before,slabC$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(slabS$before,slabS$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(wallFW$before,wallFW$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(wallC$before,wallC$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(wallS$before,wallS$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 
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# Cubic Model 

slabFW=read.csv("cubic-slabFW.csv", header=T) 

slabC=read.csv("cubic-slabC.csv", header=T) 

slabS=read.csv("cubic-slabS.csv", header=T) 

wallFW=read.csv("cubic-wallFW.csv", header=T) 

wallC=read.csv("cubic-wallC.csv", header=T) 

wallS=read.csv("cubic-wallS.csv", header=T) 

# Plotting the data 

windows(title = "Histograms of data") 

par(mfrow=c(4,3)) 

hist(slabFW$before,main = "") 

hist(slabFW$after,main = "") 

hist(slabC$before,main = "") 

hist(slabC$after,main = "") 

hist(slabS$before,main = "") 

hist(slabS$after,main = "") 

hist(wallFW$before,main = "") 

hist(wallFW$after,main = "") 

hist(wallC$before,main = "") 

hist(wallC$after,main = "") 

hist(wallS$before,main = "") 

hist(wallS$after,main = "") 

# The data seems not normal  

windows(title = "Boxplots of data") 

par(mfrow=c(3,2)) 

boxplot(slabFW,xlab="slab FW",ylab="Duration (days)") 

boxplot(slabC,xlab="slab C",ylab="Duration (days)") 

boxplot(slabS,xlab="slab S",ylab="Duration (days)") 

boxplot(wallFW,xlab="wall FW",ylab="Duration (days)") 

boxplot(wallC,xlab="wall C",ylab="Duration (days)") 

boxplot(wallS,xlab="wall S",ylab="Duration (days)") 

# Check if the data is normally distributed 

shapiro.test(slabFW$before)# not normal 

shapiro.test(slabC$before)# not normal 

shapiro.test(slabS$before)# not normal 

shapiro.test(wallFW$before)# not normal 

shapiro.test(wallFW$before)# not normal 

shapiro.test(wallFW$before)# not normal 

shapiro.test(slabFW$after)# not normal 

shapiro.test(slabC$after)# not normal 

shapiro.test(slabS$after)# not normal 

shapiro.test(wallFW$after)# not normal 

shapiro.test(wallFW$after)# not normal 

shapiro.test(wallFW$after)# not normal 

# Try log transformation 

shapiro.test(log(slabFW$before)) # not normal 

shapiro.test(log(slabC$before)) # not normal 

shapiro.test(log(slabS$before)) # not normal 

shapiro.test(log(wallFW$before)) # not normal 
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shapiro.test(log(wallFW$before)) # not normal 

shapiro.test(log(wallFW$before)) # not normal 

shapiro.test(log(slabFW$after)) # normal 

shapiro.test(log(slabC$after)) # not normal 

shapiro.test(log(slabS$after)) # not normal 

shapiro.test(log(wallFW$after)) # not normal 

shapiro.test(log(wallFW$after)) # not normal 

shapiro.test(log(wallFW$after)) # not normal 

# Data is not normal even with log transformation 

# Try The Box-Cox Method 

lm=lm(slabFW) 

require(MASS) 

windows() 

boxcox(lm) 

# Log transformation didn't work 

shapiro.test((slabFW$before)^(-2)) 

# Also not working 

# Non-Parametric tests 

# Because the analysis is for two-sample paired test, we use Wilcoxon Signed-Ranks 

Test 

wilcox.test(slabFW$before,slabFW$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(slabC$before,slabC$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(slabS$before,slabS$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(wallFW$before,wallFW$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(wallC$before,wallC$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

wilcox.test(wallS$before,wallS$after,paired = TRUE) # Reject the null hypothesis. 

Difference is significant 

 

# Stage 2 

# Test if there is a difference between different learning models 

# Before incorporating the learning factors 

# Slab concrete work 

slabC=read.csv("slabC-before.csv", header=T) 

# Plotting the data 

windows() 

boxplot(slabC,main="Slab Concrete work",ylab="Dutation(Days)",xlab="Learning 

models") 

# Non-Parametric tests 

# We use Kruskal Wallis Test because of multiple groups 

require(stats) 

kruskal.test(slabC) # Reject the null hypothesis. there is a difference in learning models 

# Identify the different model (Multiple-comparison tests) 

pairwise.wilcox.test(stack(slabC)[,1],stack(slabC)[,2],p.adj = "holm",paired = F) 

# The linear model and the stanford model are the same 
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# The De Jong model and the cubic model are the same 

# The De Jong model is significantly different than both the linear and stanford models 

# The cubic is also significantly different than both the linear and stanford models 

# Maximum difference is between the stanford model with both the cubic and De Jong 

models 

# Slab formwork work 

slabFW=read.csv("slabFW-before.csv", header=T) 

# Plotting the data 

windows() 

boxplot(slabFW,main="Slab formwork",ylab="Dutation(Days)",xlab="Learning 

models") 

# Non-Parametric tests 

# We use Kruskal Wallis Test because of multiple groups 

require(stats) 

kruskal.test(slabFW) # Reject the null hypothesis. there is a difference in learning 

models 

# Identify the different model (Multiple-comparison tests) 

pairwise.wilcox.test(stack(slabFW)[,1],stack(slabFW)[,2],p.adj = "holm",paired = F) 

# The linear model and the stanford model are the same 

# The De Jong model and the cubic model are the same 

# The De Jong model is significantly different than both the linear and stanford models 

# The cubic is also significantly different than both the linear and stanford models 

# Maximum difference is between the stanford model with both the cubic and De Jong 

models 

# Slab steel work 

slabS=read.csv("slabS-before.csv", header=T) 

# Plotting the data 

windows() 

boxplot(slabS,main="Slab steel work",ylab="Dutation(Days)",xlab="Learning models") 

# Non-Parametric tests 

# We use Kruskal Wallis Test because of multiple groups 

require(stats) 

kruskal.test(slabS) # Reject the null hypothesis. there is a difference in learning models 

# Identify the different model (Multiple-comparison tests) 

pairwise.wilcox.test(stack(slabS)[,1],stack(slabS)[,2],p.adj = "holm",paired = F) 

# The linear model and the stanford model are the same 

# The De Jong model and the cubic model are the same 

# The De Jong model is significantly different than both the linear and stanford models 

# The cubic is also significantly different than both the linear and stanford models 

# Maximum difference is between the stanford model with both the cubic and De Jong 

models 

# Wall concrete work 

wallC=read.csv("wallC-before.csv", header=T) 

# Plotting the data 

windows() 

boxplot(wallC,main="Wall concrete work",ylab="Dutation(Days)",xlab="Learning 

models") 

# Non-Parametric tests 

# We use Kruskal Wallis Test because of multiple groups 
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require(stats) 

kruskal.test(wallC) # Reject the null hypothesis. there is a difference in learning models 

# Identify the different model (Multiple-comparison tests) 

pairwise.wilcox.test(stack(wallC)[,1],stack(wallC)[,2],p.adj = "holm",paired = F) 

# The linear model and the stanford model are the same 

# The De Jong model and the cubic model are the same 

# The De Jong model is significantly different than both the linear and stanford models 

# The cubic is also significantly different than both the linear and stanford models 

# Maximum difference is between the stanford model with both the cubic and De Jong 

models 

# Wall formwork work 

wallFW=read.csv("wallFW-before.csv", header=T) 

# Plotting the data 

windows() 

boxplot(wallFW,main="Wall formwork",ylab="Dutation(Days)",xlab="Learning 

models") 

# Non-Parametric tests 

# We use Kruskal Wallis Test because of multiple groups 

require(stats) 

kruskal.test(wallFW) # Reject the null hypothesis. there is a difference in learning 

models 

# Identify the different model (Multiple-comparison tests) 

pairwise.wilcox.test(stack(wallFW)[,1],stack(wallFW)[,2],p.adj = "holm",paired = F) 

# The linear model and the stanford model are the same 

# The De Jong model and the cubic model are the same 

# The De Jong model is significantly different than both the linear and stanford models 

# The cubic is also significantly different than both the linear and stanford models 

# Maximum difference is between the stanford model with both the cubic and De Jong 

models 

# Wall steel work 

wallS=read.csv("wallS-before.csv", header=T) 

# Plotting the data 

windows() 

boxplot(wallS,main="Wall steel work",ylab="Dutation(Days)",xlab="Learning 

models") 

# Non-Parametric tests 

# We use Kruskal Wallis Test because of multiple groups 

require(stats) 

kruskal.test(wallS) # Reject the null hypothesis. there is a difference in learning models 

# Identify the different model (Multiple-comparison tests) 

pairwise.wilcox.test(stack(wallS)[,1],stack(wallS)[,2],p.adj = "holm",paired = F) 

# The linear model and the stanford model are the same 

# The De Jong model and the cubic model are the same 

# The De Jong model is significantly different than both the linear and stanford models 

# The cubic is also significantly different than both the linear and stanford models 

# Maximum difference is between the stanford model with both the cubic and De Jong 

models 

# After incorporating learning factors 

# Slab concrete work 
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slabC=read.csv("slabC-after.csv", header=T) 

# Plotting the data 

windows() 

boxplot(slabC,main="Slab concrete work",ylab="Dutation(Days)",xlab="Learning 

models") 

# Non-Parametric tests 

# We use Kruskal Wallis Test because of multiple groups 

require(stats) 

kruskal.test(slabC) # Reject the null hypothesis. there is a difference in learning models 

# Identify the different model (Multiple-comparison tests) 

pairwise.wilcox.test(stack(slabC)[,1],stack(slabC)[,2],p.adj = "holm",paired = F) 

# The linear model and the stanford model are the same 

# The De Jong model and the cubic model are the same 

# The De Jong model is significantly different than both the linear and stanford models 

# The cubic is also significantly different than both the linear and stanford models 

# Maximum difference is between the stanford model with both the cubic and De Jong 

models 

# The maximum diffference is lower than the one before incorporating learning factors 

# Slab formwork work 

slabFW=read.csv("slabFW-after.csv", header=T) 

# Plotting the data 

windows() 

boxplot(slabFW,main="Slab formwork",ylab="Dutation(Days)",xlab="Learning 

models") 

# Non-Parametric tests 

# We use Kruskal Wallis Test because of multiple groups 

require(stats) 

kruskal.test(slabFW) # Reject the null hypothesis. there is a difference in learning 

models 

# Identify the different model (Multiple-comparison tests) 

pairwise.wilcox.test(stack(slabFW)[,1],stack(slabFW)[,2],p.adj = "holm",paired = F) 

# The linear model and the stanford model are the same 

# The De Jong model and the cubic model are the same 

# The De Jong model is significantly different than both the linear and stanford models 

# The cubic is also significantly different than both the linear and stanford models 

# Maximum difference is between the stanford model with both the cubic and De Jong 

models 

# The maximum diffference is lower than the one before incorporating learning factors 

# Slab steel work 

slabS=read.csv("slabS-after.csv", header=T) 

# Plotting the data 

windows() 

boxplot(slabS,main="Slab steel work",ylab="Dutation(Days)",xlab="Learning models") 

# Non-Parametric tests 

# We use Kruskal Wallis Test because of multiple groups 

require(stats) 

kruskal.test(slabS) # Reject the null hypothesis. there is a difference in learning models 

# Identify the different model (Multiple-comparison tests) 

pairwise.wilcox.test(stack(slabS)[,1],stack(slabS)[,2],p.adj = "holm",paired = F) 
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# The linear model and the stanford model are the same 

# The De Jong model and the cubic model are the same 

# The De Jong model is significantly different than both the linear and stanford models 

# The cubic is also significantly different than both the linear and stanford models 

# Maximum difference is between the stanford model with both the cubic and De Jong 

models 

# The maximum diffference is lower than the one before incorporating learning factors 

# The similarity between the linear model and the stanford model is slightly reduced to 

93% 

# Wall concrete work 

wallC=read.csv("wallC-after.csv", header=T) 

# Plotting the data 

windows() 

boxplot(wallC,main="Wall concrete work",ylab="Dutation(Days)",xlab="Learning 

models") 

# Non-Parametric tests 

# We use Kruskal Wallis Test because of multiple groups 

require(stats) 

kruskal.test(wallC) # Reject the null hypothesis. there is a difference in learning models 

# Identify the different model (Multiple-comparison tests) 

pairwise.wilcox.test(stack(wallC)[,1],stack(wallC)[,2],p.adj = "holm",paired = F) 

# The linear model and the stanford model are the same 

# The De Jong model and the cubic model are the same 

# The De Jong model is significantly different than both the linear and stanford models 

# The cubic is also significantly different than both the linear and stanford models 

# Maximum difference is between the stanford model and the De Jong model 

# The similarity between the linear model and the stanford model is slightly reduced to 

82% 

# Wall formwork work 

wallFW=read.csv("wallFW-after.csv", header=T) 

# Plotting the data 

windows() 

boxplot(wallFW,main="Wall formwork",ylab="Dutation(Days)",xlab="Learning 

models") 

# Non-Parametric tests 

# We use Kruskal Wallis Test because of multiple groups 

require(stats) 

kruskal.test(wallFW) # Reject the null hypothesis. there is a difference in learning 

models 

# Identify the different model (Multiple-comparison tests) 

pairwise.wilcox.test(stack(wallFW)[,1],stack(wallFW)[,2],p.adj = "holm",paired = F) 

# The linear model and the stanford model are the same 

# The De Jong model and the cubic model are the same 

# The De Jong model is significantly different than both the linear and stanford models 

# The cubic is also significantly different than both the linear and stanford models 

# Maximum difference is between the stanford model with both the cubic and De Jong 

models 

# The maximum diffference is lower than the one before incorporating learning factors 

# Wall steel work 
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wallS=read.csv("wallS-after.csv", header=T) 

# Plotting the data 

windows() 

boxplot(wallS,main="Wall steel work",ylab="Dutation(Days)",xlab="Learning 

models") 

# Non-Parametric tests 

# We use Kruskal Wallis Test because of multiple groups 

require(stats) 

kruskal.test(wallS) # Reject the null hypothesis. there is a difference in learning models 

# Identify the different model (Multiple-comparison tests) 

pairwise.wilcox.test(stack(wallS)[,1],stack(wallS)[,2],p.adj = "holm",paired = F) 

# The linear model and the stanford model are the same 

# The De Jong model and the cubic model are the same 

# The De Jong model is significantly different than both the linear and stanford models 

# The cubic is also significantly different than both the linear and stanford models 

# Maximum difference is between the stanford model with both the cubic and De Jong 

models 

# The maximum diffference is lower than the one before incorporating learning factors 
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