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An Abstract of the Thesis of

Georges Youssef Younes for Master of Engineering
Major: Mechanical Engineering

Title: COMPARATIVE ASSESSMENT OF NON-FILTER BASED MONOCU-
LAR VISUAL SLAM SYSTEMS

Monocular Visual SLAM refers to the process of determining an agents pose
using a single camera as a sensory input. Extensive research in the field for
the past decade ensued a number of systems that found their ways into various
applications, such as robotics and augmented reality. Although filter-based (e.g.,
Kalman Filter, Particle Filter) Visual SLAM systems were common at some time,
non-filter based (i.e., using optimization) solutions, which are more efficient, have
become the de facto methodologies for building any Visual SLAM system. The
major contribution of this thesis is a comparative assessment of the state of the
art in open source non-filter based mononocular Visual SLAM systems, namely
PTAM, SVO, DT SLAM, LSD SLAM and ORB SLAM. Detailed experiments are
presented for the SLAM comparison. To motivate this comparison, we present
at the beginning of the thesis a case study, of a Visual SLAM application in an
outdoor scene, in which the major problems of Visual SLAM are unearthed. The
second major contribution of this thesis is the development of a scaled monocular
SLAM in which depth from focus is used to determine the correct scale and
maintain it through a SLAM trajectory. Real experiments are also performed
and the obtained results prove the viability of the proposed method.
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Chapter 1

Introduction

1.1 Overview

Localization solutions using a single camera have been gaining considerable pop-
ularity in the past decade. Cameras are today cheap and ubiquitously found in
hand-held devices such as phones and tablets. With the increase in augmented
reality applications we are witnessing today, the camera is the natural sensor of
choice to localize the user while projecting virtual scenes to him/her from the
correct viewpoint. With their small size, cameras are the sensors of choice in lo-
calization applications where weight and power consumption are deciding factors
such as for Unmanned Aerial Vehicles (UAVs). Even though there are still many
challenges facing camera-based localization, it is expected that such solutions will
eventually offer significant positives. Monocular Camera-based localization can
be achieved via three main techniques. In the first technique, known as marker-
based tracking, an artificial landmark of known dimensions is introduced into the
scene. The camera localization problem then reduces to finding the camera pose
with respect to the marker. Unfortunately, the requirement of having a marker al-
ways visible in the scene introduces a major limitation to this method. The second
technique, known as image-based localization, the scene is processed beforehand
to yield its 3D structure, scene images and corresponding camera viewpoints.
The localization problem then reduces to that of matching new query images
to those in the database and choosing the camera position, which corresponds
to the best-matched image. In the third technique, no prior information of the
scene is given; rather, map building and localization are concurrently done. This
third technique is commonly referred to as Visual Simultaneous Localization and
Mapping (Visual SLAM). Although image based localization and Visual SLAM
are equally important, the subject of this thesis is related to the later technique.

Since the first breakthrough in 2003 with Davisons proposal of a filter-based
approach to monocular Visual SLAM [1], significant improvements have been pro-
posed to camera-based localization and mapping solutions. In 2007, Davison et al.
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[2] released an open source implementation of their suggested filter-based system,
also in 2007, Klein and Murray [3] introduced their groundbreaking work dubbed
PTAM (Parallel Tracking and Mapping). 2014 witnessed many contributions in
the Visual SLAM field as Forster et al. [4] presented SVO (Fast Semi-Direct
Visual Odometry), Engel et al. [5] produced LSD SLAM (Large-Scale Direct
SLAM) and Herrera et al. [6] presented DT SLAM. In 2015, Mur-Artal et al.
[7] presented ORB SLAM (Oriented Fast and Rotated Binary Robust Indepen-
dent Elementary Features). It is noteworthy to mention that a number of closed
source systems also exist (such as RD SLAM [8], CD SLAM [9] and real-time
6Dof monocular SLAM [10]).

1.2 Thesis purpose

The purpose of this thesis is fourfold, (1) a survey on Visual SLAM systems,
detailing the inner workings of the state-of-the-art in non-filter monocular-based
systems beyond the information provided in their papers. (2) A comparative
assessment of major open-source systems, namely PTAM, SVO, DT SLAM, LSD
SLAM and ORB SLAM. Detailed experiments are presented for the SLAM com-
parison. To motivate this comparison, we present at the beginning of the thesis
a case study, of a Visual SLAM application in an outdoor scene, in which the
major problems of Visual SLAM are unearthed. (3) The development of a scaled
monocular SLAM in which depth from focus is used to determine the correct
scale and maintain it through a SLAM trajectory. Real experiments are also
performed and the obtained results prove the viability of the proposed method.
(4) An outline of a new Visual SLAM system that builds on the deductions of the
comparison to address the major shortcomings of currently available systems.

This thesis is a valuable tool for any user or researcher in camera-based lo-
calization. With the many new proposed systems coming out every day, the
information is daunting to the novice and one is often perplexed as to which
algorithm he/she should use. Furthermore, the offered information should help
researchers quickly pinpoint the shortcomings of each of the proposed techniques
and accordingly help them focus their effort on alleviating these weaknesses.

The remainder of this thesis is structured as follows. Chapter II introduces
preliminary theoretical computer vision knowledge. Chapter III showcases a case
study of PTAM in an augmented reality application, to highlight the major short-
comings of any Visual SLAM system. Chapter IV lists a historical overview of
monocular visual SLAM systems. Chapter V discusses the different components
required for building a coherent visual SLAM scheme highlighting the differences
between the surveyed systems. Chapter VI discusses the generation of an image
dataset and details its usage to comparatively assess the performance of the sur-
veyed systems while Chapter VII introduces our proposed solution to solving the
inherent scale loss issue of monocular based systems and builds on the knowledge
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presented in the context of this thesis to suggest a monocular SLAM backbone
that benefits from the advantages of the surveyed systems while alleviating many
of their shortcomings. Chapter VIII concludes by presenting future venues for
this research.
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Chapter 2

Background

To elaborate more on the visual SLAM topic, it shall prove helpful at this point
to introduce some basic principles of Computer Vision techniques that form the
required building blocks for the development of any visual SLAM system.

2.1 Image formation

The image formation process is comprised of a combination of two processes, a
geometric transformation and a radiometric process.

Geometric model

The geometric image formation model describes the geometric mapping of a 3D
scene onto a 2D image plane. For such purpose, Brunelleschi proposed, around
the beginning of the fifteenth century, to approximate the geometric transforma-
tion of a 3D point to a 2D point found on the image plane by the intersection of
the image plane with a ray traveling from the 3D point and through a pinhole,
hence the naming pinhole projection model as depicted in Figure 2.1.
Unfortunately, for a single ray to pass through the pinhole, the latter must be

of infinitesimal size, which is not the case for real cameras equipped with lenses;
however, the pinhole model is mathematically convenient and provides an accept-
able approximation to the real image geometric formation process. One effect of
the pinhole projection model is that the end-result is an inverted representation
of a 3D object onto the image plane; for convenience, a virtual image plane is
considered equidistant to the pinhole such that the object representation in this
plane is no longer inverted.

To fully project a 3D points to a 2D image plane, 3 coordinates frames are
required; a world coordinate frame, a camera coordinate frame and a pixel coor-
dinate frame. A 3D point PW = (X, Y, Z, 1)T in the world’s coordinate frame is
mapped into the camera’s coordinate frame (Xc, Yc, Zc)

T using the homogeneous
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Figure 2.1: Pinhole projection model.

transformation matrix:

PC =

[
R T
0 1

]
PW , (2.1)

where R is an SO(3) rotation matrix and T is a (3x1) translation vector, describe
the relationship between the world’s coordinate frame to the camera’s coordinate
frame. The projected point in the camera’s frame is next transformed into the
pixel coordinate frame by an affine transformation matrix such that

 u
v
1

 =

 α −α cot θ x0

0 β
sin θ

y0

0 0 1



XC

YC
ZC
1

 , (2.2)

where α = kf and β = lf ; f is the focal length, k and l represents the dimensions of
the pixels in the sensors array and θ is the skew angle between the horizontal and
vertical axis of the sensor. In theory, for orthogonal axis, θ should be 90°but due
to errors in the manufacturing process of the sensor this value is slightly different.
x0 and y0 are the coordinates in pixel units of the image center expressed in the
pixel coordinate frame. The origin of the pixel coordinates is generally located
at the top left corner of the image.

Radiometry formation

Light incoming from an illumination source reflects against an object, enters the
imaging system and intersects the image plane. The image plane in a modern
digital camera is an array of light detecting sensors. A spatial and tonal sampling
of the scene takes place at the sensor level and the result is a finite, discrete
pixelated representation of the scene in the form of an array of numbers. For a
gray-scale image, the magnitude of the numbers found at each pixel corresponds
to the intensity value of the light ray recorded at that pixel. Figure 2.2 shows
the discrete array representation corresponding to a small region in the image.
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Figure 2.2: digital image representation.

Many factors contribute into the generation of the intensity values, one can list
few of the major ones such as light sources (strength and direction), surface
geometry, surface material and camera gain/exposure. During a Visual SLAM
session, information regarding these factors is rarely available with the exception
of the camera gain/exposure; hence a proper explanation of how the imaging
systems operates is due.

Light reflected from an object forms what is known as the scene’s radiance.
Once the radiance goes through the lens and reaches the surface of the image
plane it forms the image irradiance (energy arriving at a surface) and finally
the response of the imaging sensor to the image irradiance results in the image
brightness values. For a scene subjected to a constant light source, the radiance
along a certain direction is constant, so is the image irradiance; however, the
camera’s response to irradiance is a function of the camera’s internal systems
and it can be estimated through a radiometric calibration process. For further
understanding of camera’s internal system, the following section describes modern
camera mechanisms.

2.2 Epipolar geometry

Epipolar geometry is the projective relationship that exists between two images.
It is independent of the observed scene and only depends on the camera’s internal
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parameters and the relative pose between the two images. To better understand
epipolar geometry suppose a point X in 3D (as shown in Figure 2.3) and its
projection on Image 1 is denoted by x and on Image 2 by x′. The cameras

Figure 2.3: epipolar geometry.

centers (C and C ′), the 3D point X and the 3D point projections x and x′ on the
corresponding image planes, form a plane known as the epipolar plane. Suppose
now that X is not known and one is given x and seeks to find what constrains x′

in the second image. Since x′ must reside on the epipolar plane then its location
in the second image is constrained along the line L′ , that is the intersection
of the second image plane with the epipolar plane. One last definition in the
context of epipolar geometry is the fundamental matrix F , it is the relationship
that constrains where the projection of X can occur in both Images, such that
Fx forms the epipolar line L′.

2.3 Structure from Motion

Structure from motion is the process of geometrically reconstructing a scene and
recovering camera motion from two or more images. SfM methods take as in-
puts an arbitrary number of images, taken from arbitrary poses and are able to
output the 3D shape of the observed scene, in the form of point clouds, along
with the relative poses of the images taken within the scene. They exploit spe-
cial geometrical relationships (epipolar constraints) relating images observing the
same scene to achieve their goal. Many SFM methods exists in the literature,
they vary depending on the inputs at hand; some are optimized for incremen-
tally taken images while some are optimized for randomly captured images of the
scene.

The SfM pipeline summarized in Figure 2.4, starts by establishing feature
correspondences across the images before estimating for each pair, that share
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enough overlap, a Fundamental matrix. The Fundamental matrices are exploited
to jointly recover the camera poses and the scenes structure. The algorithm
loops over itself and aims to minimize the projection error of all 3D features
onto all the images they appear in, by varying the entire set of cameras poses
and the 3D coordinates of the structure. At each iteration, better results are
produced, by using the previous ones as priors for guided feature matching and
error minimizations in the estimation of the camera poses and the 3D structure.

The minimization is performed through a nonlinear minimization (such as
Levenberg-Marquardt) that exploits the sparse nature of the system and is known
as sparse bundle adjustment. Bundle adjustment results in an immunity to drift,
as it provides a mean to compare the integrity of the camera pose to the in-
tegrity of the structure and vice versa, minimizing the errors accumulated in the
estimation of both; however, the added value of drift immunity is countered by
the immense increase of computational expenses. Due to inherent limitations of

Figure 2.4: Typical SfM pipeline.

monocular visual tracking, SfM methods suffer from the loss of scale and hence
the results are up to an unknown scale that is determined through other means;
they produce dense point clouds (Figure 2.5) at the expense of processing time
and hence they are considered offline methods and not suitable for real-time
applications such as the one discussed in the upcoming chapter.
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Figure 2.5: Typical input and output of an SfM system.
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Chapter 3

Case study: Visual SLAM in an
AR application

This chapter details a case study of a visual SLAM system integration into an
augmented reality (AR) application. In contrast to virtual reality applications
(VR) that works in a completely artificial, enclosed and controlled virtual en-
vironment, AR augments in real-time what the user is actually observing in a
scene. To achieve a realistic augmentation, the point of view from which the user
is observing the scene must be accurately estimated.

The main intuition is to use a camera to record the scene, to track the camera’s
pose within the scene and accordingly augment the theoretical model on top of
the live video feed from the camera, before displaying it to the user. The major
challenge in the above objective manifested itself in the difficulty of tracking
the camera’s pose in the outdoor scene without the possibility of installing an
infrastructure for tracking (e.g., such as a Vicon system).

The success of our augmented reality application relied heavily on an accurate
user’s pose estimate, hence the necessity to have a reliable motion estimation
method that is capable of operating in outdoors and does not require a setup of
permanent external hardware on site. The Microsoft’s Kinect was considered at
first, however, the Kinect would fail to operate once exposed to sunlight as its
sensors would saturate with infrared readings.

The motion estimation task is then defined as the problem of estimating a
camera’s pose from its video feed. This problem had undertaken a significant
amount of research by the computer vision community that was able, over the
past two decades, to develop many solutions to it under the title of VO (visual
odometry); however, visual odometry tend to drift over time and does gener-
ate a representation of the scene yielding a poor augmented reality experience,
therefore our application fell under the classification of monocular SLAM (Simul-
taneous localization and mapping using a single camera).
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3.1 PTAM

Early solutions for monocular SLAM were filter-based therefore only capable
of tracking a limited number of landmarks which restricted their operations to
confined spaces. PTAM was the first system to successfully separate camera
tracking from scene mapping, paving the path for non-filter based solutions.

PTAM (parallel tracking and mapping) is a camera tracking system designed
for augmented reality; it uses automatically extracted ”Landmarks” from a video
feed to estimate the ego-motion of the camera recording the feed. Its requirements
are a laptop and a hand-held/head-mounted calibrated camera.

A simplistic diagram of how PTAM works is shown in Figure 3.1. A system
initialization procedure is required only once at startup to kick-start the virtual
map of the scene and henceforth the tracking algorithm: every incoming frame is
processed to extract features, the features are matched against their precedents in
the map and are used to estimate the frame’s pose within the map. The estimated
frame’s pose is then used to refine the map and to render an augmented scene
into the frame before displaying it to the user.

The virtual map in PTAM is a sparse 3D point cloud correlated with features
extracted from the camera images. In this context, 2D features are a 9×9 patch
of pixels extracted from a two dimensional image location with a distinctive
appearance. It is noteworthy to mention that PTAM has many limitations; one

Figure 3.1: Simplistic diagram of PTAMs pipeline

drawback, of particular importance is the requirement of initialization at startup.
Different initializations means different scales of maps and pose estimates (a
drawback for all monocular systems). Such limitation is unacceptable in our
application as the user’s pose must be tracked with an SI metric scale i.e. in
meters. A direct consequence to this limitation is the need for proper anchoring of
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the augmented models in the initialization-dependent PTAM’s coordinate frame.
Both issues appear in Figure 3.2

Figure 3.2: The augmented model on site before anchoring and scale are deter-
mined

3.2 PTAMM

To address the above limitations, we opted a variant of PTAM, called PTAMM
[11] (parallel tracking and multiple mapping). Down to its core, PTAMM tracks
motion the exact way as PTAM; however, it offers an option to serialize (save) the
created map. Furthermore, by exploiting the failure recovery methods developed
by PTAM, it allows the system to re-start without the need of an initialization
step. Therefore, if we were to create a PTAMM compatible map of the site
where the augmentation is to take place, and determine its scale and the proper
anchoring of the augmented parts in it, we would be able to save the above
configuration and use it to re-start the application for any user in the site without
requiring them any initialization or manual anchoring procedures.
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3.3 Scale estimation

To determine PTAMM’s map scale, an object of known size in the scene is suffi-
cient. However, due to the sparse property of the map, higher perception methods
are not an option, so we chose to add an artificial marker in the scene. For this,
we used ARUCO [12] (a library that performs marker detection). For added ro-
bustness, the library was used to generate a board of markers; the cameras pose
is estimated, with respect to the center of the board in an SI metric scale, as the
combination of the estimated camera poses with respect to each marker in the
board. The generated board is shown in Figure 3.3.

Correlation between differential changes in the marker camera pose estimates
and PTAMM’s camera pose estimates is used to scale the map. As the camera
moves, PTAMM’s record its pose estimates in its own scale; here we define:

DB =
√

(XP
i+1 −XP

i )2 + (Y P
i+1 − Y P

i )2 + (ZP
i+1 − ZP

i )2 (3.1)

Db =
√

(XM
i+1 −XM

i )2 + (Y M
i+1 − Y M

i )2 + (ZM
i+1 − ZM

i )2 (3.2)

where P corresponds to the measurements taken in PTAM’s internal scale and M
the measurements taken in the marker based coordinate frame, between 2 frames
captured at time i and i + 1 where both, the camera tracking of PTAMM is
deemed good and the marker is observed.

PTAMM’s scale is then recovered through a linear regression procedure

S = min
S

n∑
i=1

||Dbi − S ×DBi||2, (3.3)

that minimizes the error between a set of correlated measurments in PTAMM’s
space and another in the marker’s space by varying S over a vector of multi-
ple measurements established through a moving window of size n whenever the
marker is detected in the frame.

Even though, the marker is sufficient to track the cameras pose on its own,
its presence is only used to determine the maps scale and does not in any way
contribute to the pose estimation for the augmented reality application. This is
due to the major limitation of marker based tracking that requires the marker
to be always fully present in the observed scene; In contrast to our application,
where the marker is only required once during map creation, and can later be
removed from the scene without compromising the tracking quality. Hence the
marker presence is not mandatory onsite.

3.4 Model anchoring

For accurate anchoring of the augmented model into the map, we were able to
exploit the markers known location in the scene to correlate between PTAMM’s
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Figure 3.3: Board of HRM (highly reliable markers) generated using ARUCO
library

map and the actual scene. The origin of the augmented model in PTAMM’s
map is set to coincide with the board of marker’s origin. PTAMM’s map is
then aligned with the actual scene by placing the board, in the actual site, at
the exact location corresponding to the origin of the augmented model. This
procedure is summarized in Figure 3.4. Once the marker’s pose is recorded, the
marker becomes of obsolete value and hence removed.

3.5 Miscellaneous modifications

While the system behaved well in the indoor lab environment, once onsite, the
algorithm failed to maintain a good tracking quality and hence internal variations
and optimizations to the code were performed: A better feature extractor was
added, FAST features [13] were replaced with AGAST [14] (adaptive and generic
accelerated segment test) due to the fact that they are slightly faster to compute
and are more repetitive in self similar structures than FAST. An outdoor mode
was introduced that varies PTAMM’s internal parameters to best operate in
outdoors environment by reducing the number of lower level pyramid features
most susceptible to lighting and view points changes.

3.6 Challenges and future work

During testing sessions of our augmented reality application, it was noted that
maps created at different times of the day failed to correctly estimate the user’s
pose; i.e., a map created at 10 am yielded poor tracking quality when invoked
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Figure 3.4: Summary of the anchoring process; the board’s center is placed at
point A in the real site and its location is recorded within PTAMM’s map; this
location is assumed to be the origin of the theoretical model

at 3 pm. The primary reason behind this failure is due to the changing lighting
conditions throughout the day.

Another limitation manifested itself in tracking failure when the user’s POV
(point of view) towards the scene varied drastically, in terms of translation and
rotation between the POV of the keyframes that generated the landmarks and
the currently observed POV of the scene. The primary reason behind this mode
of failure is the inability of PTAM to correctly warp the landmarks generated
by the distant keyframes to be able to establish reliable data associations for
tracking to succeed.

While the above limitations are still challenging scenarios for state of the art
monocular SLAM systems in outdoors environment, we opted to simply address
them by generating multiple maps of the scene, dividing the scene into different
sub-maps and have each sub-map recorded at different times of the day with 2
hours separating each session. Unfortunately, due to the vast amount of memory
required to generate such database of maps, and to the fact that local variations
in the lighting conditions, i.e., a cloud blocking the sun or the temporal changes
of the sun’s position in the sky throughout different days, rendered our solution
obsolete and hence the need for an efficient lighting and point of view changes
handling mechanism.
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While visual SLAM systems constitutes an attractive solution to augmented
reality applications, it has become evident throughout this chapter that they lack
in many aspects: many milestones stand between the current implementations
and a user friendly adaptation of Visual SLAM that may be used for generic AR
applications especially in outdoors environment.

In an effort to unearth the origins of these shortcomings, the next chapter
thoroughly investigate the different components of visual SLAM system, detailing
the state of the art open source implementations.

16



Chapter 4

A brief history

Visual SLAM has been getting an increasing amount of interest from the scientific
community in the past decade, mainly due to its importance in robotics and
augmented reality applications. For such reasons, many algorithms have been
developed and either released as an open-source or closed-source implementation.

Vision SLAM solutions are either filter- or non-filter based. In 2007, [2]] pre-
sented the first monocular-based SLAM solution, which was named MonoSLAM
and was built around the framework of an Extended Kalman Filter. Although
successful, its application in real-time was limited to very small scenes with no
more than dozens of tracked features. The reason is that the computational ex-
penses and data inference in filter based methods are high. In fact, [15]] later
proved that non-filter based methods outperform filter based methods. In this
paper filter based methods will not be covered in this thesis.

In 2007, Parallel Tracking and Mapping (PTAM) was released, and since
then many variations and modifications of it have been proposed in [11] and [16].
PTAM was the first algorithm to successfully separate tracking and mapping
into two parallel threads that run simultaneously and share information when-
ever necessary. This separation made the adaptation of off-line SfM methods
possible within PTAM in a real-time performance. Its ideas were revolutionary
in the monocular visual SLAM methods and the notion of separation between
tracking and mapping became the standard backbone of almost all visual SLAM
algorithms thenceforth.

In 2013, RD SLAM [8], short for Robust Monocular SLAM in Dynamic En-
vironments, was released as a closed source algorithm, with the aim to handle
occlusions and slowly varying, dynamic scenes. Alike PTAM, RD SLAM divides
the tracking and mapping into two parallel threads.

In 2014, SVO [4] (semi-direct visual odometry) was published as an open-
source implementation. It is a hybrid system that employs both direct and indi-
rect methods in its proposed solution for solving the Visual SLAM task. Unlike
PTAM, SVO requires a high frame rate camera. SVO was designed with the con-
cern of operating on high end platforms as well as computationally limited ones
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such as on-board hardware of a generic MAV. To achieve such resilience, SVO
comes with 2 configurations, one optimized for speed and the other is optimized
for accuracy.

Also in 2014, LSD SLAM [5] (Large Scale Direct monocular SLAM) was re-
leased as an open source adaptation of the visual odometry method proposed in
[17]. LSD SLAM employs an efficient probabilistic direct approach to estimate
semi-dense maps to be used with an image alignment scheme to solve the SLAM
task. In contrast to other methods that uses bundle adjustment, LSD SLAM em-
ploys a pose graph optimization over Sim(3) as in [18] which explicitly represents
the scale in the system, allowing for scale drift correction and loop closure detec-
tion in real-time. A modified version of LSD SLAM was later released running
on a mobile platform. LSD SLAM employs 3 parallel threads after initialization
takes place: tracking, depth map estimation and map optimization.

In late 2014, short for Deferred Triangulation SLAM, DT SLAM [6] was re-
leased as an indirect method. Similar to other algorithms, it applies parallel
threading to divide the visual SLAM task into 3 parallel threads: tracking, map-
ping and bundle adjustment. One of the main contributions in DT SLAM is its
ability to estimate the camera pose from 2D and 3D features in a unified frame-
work and suggests a bundle adjustment method that incorporates both types
of features. This gives DT SLAM robustness against pure rotation movements.
Another characteristic of the system, is its ability to handle multiple maps with
undefined scales and merge them together once enough 3D matches are estab-
lished. One important characteristic of DT SLAM is that no initialization pro-
cedure is explicitly required; rather, its embedded in the tracking thread, and is
able to perform multiple initializations whenever the system is lost. Since initial-
ization takes place automatically whenever tracking failure occurs, data can still
be collected and camera tracking functions normally although at a different scale.
This ability to re-initialize local sub-maps reduces the need of re-localization pro-
cedures; once enough correspondences between keyframes residing in separate
sub-maps are found, the sub-maps are fused into a single map with a uniform
scale throughout.

In 2015, named after the feature descriptor ORB (Oriented Fast and Rotated
Binary Robust Independent Elementary Features) [19], ORB SLAM [7] was re-
leased as an indirect method for solving the visual SLAM task. Following the
basic idea of PTAM, ORB SLAM also divide the problem into parallel threads,
one for tracking, one for mapping, and a third for map optimization. The main
contributions of ORB SLAM are the usage of ORB features in real-time, a model
based initialization as suggested by Torr et al. [20], re-localization with invari-
ance to viewpoint changes, a place recognition module using bags of words to
detect loops, covisibility and Essential graphs optimization. . In Chapter V, we
will further delve into the details of each of the most important Visual SLAM
systems.

Table 4.1 lists the different Visual SLAM systems released to this date.
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Table 4.1: List of different visual SLAM systems

Year Name Method Type Reference

2003 Real-time simultaneous localisation and map-
ping with a single camera

filter indirect [1]

2004 Simultaneous localization and mapping using
multiple view feature descriptors

filter indirect [21]

2004 Real-Time 3D SLAM with Wide-Angle Vision filter indirect [22]
2005 Real-Time Camera Tracking Using a Particle

Filter
filter indirect [23]

2006 Scalable Monocular SLAM filter indirect [24]
2007 MonoSLAM filter indirect [2]
2007 Parallel Tracking and Mapping (PTAM) non-filter indirect [3]
2007 Monocular SLAM as a Graph of Coalesced Ob-

servations
filter indirect [25]

2007 Mapping Large Loops with a Single Hand-Held
Camera

filter indirect [26]

2007 Dimensionless Monocular SLAM filter indirect [27]
2008 FrameSLAM: From Bundle Adjustment to

Real-Time Visual Mapping
filter indirect [28]

2008 An Efficient Direct Approach to Visual SLAM non-filter direct [29]
2009 Towards a robust visual SLAM approach: Ad-

dressing the challenge of life-long operation
filter indirect [30]

2009 Use a Single Camera for Simultaneous Localiza-
tion And Mapping with Mobile Object Tracking
in dynamic environments

filter indirect [31]

2010 On Combining Visual SLAM and Visual Odom-
etry

filter indirect [32]

2010 Scale Drift-Aware Large Scale Monocular
SLAM

non-filter indirect [33]

2011 Dense Tracking and Mapping (DTAM) non-filter direct [34]
2011 Omnidirectional dense large-scale mapping and

navigation based on meaningful triangulation
non-filter direct [35]

2012 CD SLAM - Continuous localization and map-
ping in a dynamic world

non-filter indirect [9]

2013 Robust monocular SLAM in dynamic environ-
ments (RD SLAM)

non-filter indirect [8]

2014 Real-time camera tracking using a particle filter
combined with unscented Kalman filters

filter indirect [36]

2014 Semi-direct Visual Odometry (SVO) non-filter hybrid [4]
2014 Large Scale Direct monocular SLAM (LSD

SLAM)
non-filter direct [5]

2014 Deferred Triangulation SLAM (DT SLAM) non-filter indirect [6]
2015 Robust large scale monocular visual SLAM non-filter indirect [37]
2015 ORB SLAM non-filter indirect [7]
2015 Dense Piecewise Parallel Tracking and Mapping

(DPPTAM)
non-filter direct [38]
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Chapter 5

Design of Visual SLAM systems

A generic non-filter Visual SLAM system tend to eight main issues (Fig. 5.1);
namely (1) input data, (2) initialization, (3) data Association, (4) pose estima-
tion, (5) map generation, (6) map maintenance, (7) failure recovery, and (8) loop
closure. In the following sections we will detail each of these issues and critically
assess how each Visual SLAM implementation addressed them.

Figure 5.1: Eight building blocks of a Visual SLAM system

5.1 Data Type

Vision SLAM methods are categorized as being either direct, indirect, or hybrid.
Direct methods exploit the information available at every pixel in the image
(brightness values) to estimate the required parameters that fully describe the
camera pose.

Indirect methods were introduced to reduce the computational complexity of
processing each pixel. They process the image first to extract salient image
locations known as features. A descriptor to each feature is then computed
to uniquely identify the same feature in other images. Hence, the size of the
processed information is reduced to include only the salient locations instead
of all pixel values. Indirect methods are basically a spin-off of Structure from
Motion (SfM) [39] with a goal to obtain an on-line performance, in contrast to
SfM which is an off-line method. Figure 5.2 Highlights the difference between
direct and indirect methods and Table 5.1 summarize the data type of the Visual
SLAM systems covered in this Thesis.
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5.1.1 Direct methods

The basic underlying principle for all direct methods is known as the brightness
consistency constraint and is best described as:

J(x, y) = I(x+ u(x, y) + v(x, y)), (5.1)

where x and y are pixel coordinates; u and v denotes displacement functions of
the pixel (x, y) between two images I and J of the same scene. Every pixel in
the image provides one brightness constraint however it adds two unknowns (u
and v) and hence the system becomes underdetermined with n equations and 2n
unknowns (where n is the number of pixels in the image). To render eq. 5.1
solvable,Lucas and Kanade [40] suggested, in what they refer to as Forward Ad-
ditive Image Alignment (FAIA), to replace all the individual pixel displacements
u and v by a single general motion model, in which the number of parameters is
dependent on the implied type of motion. For example, for a general 3D motion
estimation, the number of required parameters are six according to the following
equation:

W (x, y, P ) =

[
1 + p1 p3 p5

p2 1 + p4 p6

] x
y
1

 , (5.2)

where p1, , p6 define the parameters of the transformation. FAIA then proceeds
by iteratively minimizing the squared difference between a template and input
image by changing the transformation parameters. Since then, to reduce com-
putational complexity, other variants of the FAIA were suggested such as FCIA
(Forward Compositional Image Alignment), ICIA (Inverse Compositional Image
Alignment) and IAIA (Inverse Additive Image Alignment) [41]. Further discus-
sion regarding these methods is outside the scope of this work; however, it is
noteworthy to mention that they all allow the recovery of inter-frame camera
motion and are referred to as visual odometry. While VO estimates the camera
motion between consecutive frames only, Visual SLAM further builds a map of
the environment and uses it to optimize the cameras pose estimates. As a re-
sult, VO methods tend to suffer from drift. Direct Visual SLAM methods such
as LSD SLAM, employ modified versions of direct methods for visual odome-
try along with a map representation that is used to optimize the camera pose
estimates.

Direct methods, exploit all information available in the image and are there-
fore more robust than indirect methods in regions with poor texture. However,
calculation of the photometric error at every pixel is computationally intensive
and real-time application requires heavily parallelized implementations. Direct
methods are also susceptible to failure when scene illumination changes occur
as the minimization of the photometric error between two frames relies on the
underlying assumption of the brightness consistency constraint eq. 5.1, that cor-
responding pixel values remain unchanged in both frames.
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5.1.2 Indirect methods

Indirect methods rely on features for matching. On one hand, feature extractors
are expected to be somewhat invariant to viewpoint changes (translation, rotation
and scale), and somewhat immune to illumination changes. On the other hand,
it is desirable for feature extractors to be computationally efficient and fast.
Unfortunately, such objectives are hard to achieve at the same time and a tradeoff
between computational speed and feature quality is required. The computer
vision community had developed over decades of research many different feature
extractors, each exhibiting varying performances in terms of rotation invariance,
scale invariance, and speed. The selection of an appropriate feature detector
depends on the target platform to be used, the environment in which the visual
SLAM algorithm is expected to operate in as well as the expected frame rate of
the Visual SLAM algorithm. Further information regarding feature extractors is
outside the scope of this work, but the reader can refer to [42]for the most recent
survey on the matter.

From the list of systems that are covered in this thesis, PTAM and DTSLAM
use FAST feature extractor as described in [13], while RD SLAM employ a GPU
accelerated SIFT [43], and ORB SLAM uses ORB features [19].

5.1.3 Hybrid methods

Different from the direct and indirect methods, systems such as SVO are con-
sidered hybrids, which uses a combination of direct methods to establish feature
correspondences and indirect methods to refines the camera pose estimates.

Figure 5.2: Data types used by a Visual SLAM system; (left) direct methods
using all information of the triangle to match to a query.
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Table 5.1: Method used by different Visual SLAM systems. Abbreviations used:
indirect (i), direct (d), and hybrid (h)

PTAM SVO
RD
SLAM

DT
SLAM

LSD
SLAM

ORB
SLAM

CD
SLAM

Method i h i i d i

5.2 Initialization

Figure. 5.3 represents the initialization required in any Visual SLAM system.
Monocular Visual SLAM systems require an initialization phase during which a
map of 3D landmarks is generated. To do so, the same scene must be observed
through at least two viewpoints which are separated by a significant baseline.
Different solutions were proposed by different Visual SLAM systems. Table. 5.2
lists the initialization solutions employed by each SLAM system.

Figure 5.3: Initialization required by any Visual SLAM system

MonoSLAM initialization In early Visual SLAM systems such as in MonoSLAM
[2], system initialization required the camera to be placed at a known distance
from a planar scene composed of 4 corners of a square, and SLAM was initialized
with the distance keyed in by the operator.
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PTAM initialization To lessen the obligation of a user’s manual input of
depth, PTAM’s [3] initial release suggested the usage of the five-point algorithm
[44] to estimate and decompose a Fundamental matrix into an assumed to be
non-planar initial scene. PTAM initialization was later changed to the usage of a
Homography [45] here the scene is assumed to be composed of 2D planes. PTAM’s
initialization requires the user input twice to capture the first two keyframes
in the map; furthermore, it requires the user to perform, in between the first
and the second keyframe, a slow, smooth and relatively significant translational
motion parallel to the observed scene. FAST Features [13] extracted from the
first keyframe are tracked, within a search range surrounding their position in
the previous frame, in each incoming frame until the user flags the insertion of
the second keyframe.

As the matching procedure takes place through the ZMSSD (zero-mean sum of
squared differences) [46] metric without warping the features, establishing correct
matches is susceptible to both motion blur and significant appearance changes
of the features caused by camera rotations; hence the strict requirements on the
user’s motion during the initialization.

To ensure minimum false matches, the features are searched for twice, once
from the current frame to the previous frame and a second time in the opposite
direction. If the matches in both directions are not coherent, the feature is
discarded.

Finally, since PTAM’s initialization employs a Homography estimation method,
the observed scene during the initialization is assumed to be planar. Once the
second keyframe is successfully incorporated into the map, a MLESAC [47] loop
uses the established matches to generate a Homography relating both keyframes
and uses inliers to refine it before decomposing it as described in [45] into 8
possible solutions. The correct pair of camera poses is chosen such that all trian-
gulated 3D points do not generate unreal configurations (negative depths in both
frames).

The generated initial map is then scaled by assuming the magnitude of the
found translation to be 0.1 units before a structure only BA (optimize only the
3D poses of the landmarks) step takes place. For augmented reality purposes,
a plane is fitted to the reconstructed scene and the mean of the landmarks is
selected to serve as the world coordinate frame while the positive z-direction is
chosen such as the camera poses reside along its positive side.

PTAM’s initialization procedure is brittle and remains a tricky procedure to
perform, especially for inexperienced users. Furthermore, it is subject to degen-
eracies when the planarity of the initial scenes assumption is violated or when the
users motion is an appropriate, crashing the system, without means of detecting
such degeneracies.
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SVO initialization Similarly, Forster et al. [4] adopted in SVO, a Homography
for initialization, however, SVO requires no user input and the algorithm acquires
the first frame as a keyframe at startup; it extracts FAST features and tracks
them with an implementation of KLT [48] (variant of direct methods) across
incoming frames. To avoid a second user input, SVO monitors the median of
the baseline of the features tracked between the first keyframe and the current
frame; whenever this value reaches a certain threshold, the algorithm assumes
enough parallax have been achieved and signals the Homography estimation to
start in a RANSAC [49] scheme. The Homography is then decomposed; the
correct camera poses are then selected and the landmarks corresponding to inlier
matches are triangulated and used to estimate an initial scene depth. Bundle
Adjustment takes place for the two frames and all their associated landmarks
before the second frame is considered as the second keyframe and passed to the
map management thread.

As PTAM, the initialization of SVO requires the same type of motion and is
affected by sudden movement and non-planar scenes; in an attempt to automate
the initial keyframe pair selection, SVO monitors the median of the baseline
between features. While this method is generally successful, it could fail against
degenerate cases with no means for the system of detecting such failures.

RD SLAM initialization In RDSLAM an Essential matrix decomposition is
chosen [50] as their initializing procedure.

DT SLAM initialization DT SLAM did not have an explicit initialization
phase; rather, it was integrated within their tracking module as an Essential
matrix estimation method.

LSD SLAM initialization With the exception of MonoSLAM, all the sug-
gested methods described above suffer from degeneracies when subjected to cer-
tain scenes; namely under low-parallax movements of the camera or when the
scenes structure assumption for the corresponding method (Fundamental ma-
trix assumption for general non-planar scenes or the Homography assumption of
planar scenes) is violated. To address this issue, Engel et al. [5] suggested in
LSD SLAM, a randomly initialized scenes depth from the first viewpoint that is
later refined through measurements across subsequent frames. LSD SLAM uses
a direct initialization method that does not require two view geometry. Instead
of tracking features across two frames as the other systems do, LSD SLAM ini-
tialization procedure takes place on a single frame; pixels of interest (i.e., image
locations that have high intensity gradients) are initialized by default into the
system with a random depth distribution and a large variance. Tracking starts
directly as image alignment takes place between the first initialized keyframe and
proceeding frames. Using the incoming frames, the depth measurements of the
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initialized features are refined using a filter based scheme until convergence. This
method does not suffer from the degeneracies of two view geometry methods
(Homography and Fundamental matrix estimations), however depth estimation
requires a relatively large number of processed frames before convergence takes
place, resulting in an intermediate tracking phase where the generated map is
not reliable.

ORB SLAM initialization To deal with the limitations arising from all the
above methods, Mur-Artal et al. [7] suggested to compute in parallel, both
a Fundamental matrix and a Homography in a RANSAC scheme, penalizing
each model according to the symmetric transfer error of each [39], to select the
appropriate model to be used. Once the best model is selected, appropriate
decomposition takes place and both the scene structure and the camera poses
are recovered before a bundle adjustment step optimizes the map. If the chosen
model yields poor tracking quality/few feature correspondences in the upcoming
frame, the initialization is quickly discarded by the system and it restarts with
a different pair of frames. It is noteworthy to mention that the relationship
between image coordinates and corresponding 3D point coordinates, in all the
listed initialization methods aside that of monoSLAM, can only be determined
up to an unknown scale.

Table 5.2: Initialization used by different Visual SLAM systems. Abbreviations used:
homography decomposition (h.d.), Essential decomposition (e.d.), random depth ini-
tialization (r.d.), planar (p), non-planar (n.p.), no assumption (n.a.)

PTAM SVO
RD
SLAM

DT
SLAM

LSD
SLAM

ORB
SLAM

Initialization h.d. h.d. e.d. e.d. r.d. h.d.+e.d.

Initial scene assumption p p n.p. n.p. n.a. n.a.

5.3 Data association

To be able to estimate the camera pose of an initialized system (given a map),
data association between the current frame and the map is required. This step is
inherent in systems that employ direct methods and hence data association for
direct methods will be discussed with the corresponding camera pose estimation
modules. On the other hand, indirect visual SLAM methods requires explicit
feature matching to establish correspondences between the current frame and
the map. Figure 5.4 represent the data association problem and Table. 5.3
summarizes the data association methods employed by different Visual SLAM
systems.
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Figure 5.4: Data association problem

PTAM data association After a successful initialization of PTAM, a 4 level
pyramid representation of every incoming frame is generated (e.g. level 1: 640x480,
level 2: 320x240). The pyramid levels are used so that features gain robustness
against scale changes and to decrease the convergence radius of the pose estima-
tion module as shall be described later. FAST features are extracted at each level
and a Shi-Tomasi score [51] for each feature is estimated; features having a Shi-
Tomasi score below a threshold are removed before non-maximum suppression
takes place in order to ensure high saliency of the extracted features and limit
their numbers in order to remain computationally tractable. Different pyramid
levels have different thresholds for Shi-Tomasi score selection and non-maximum
suppression giving control over the strength and the number of features to be
tracked across the pyramid levels. Reducing the thresholds for high pyramid lev-
els gives the algorithm robustness against motion blur and rapid camera motions,
while reducing the thresholds for low pyramid levels gives the tracker precision
over the estimated camera pose. However, reducing the thresholds too much may
lead to the addition of outliers into the system (non saliency of the features) and
increased computational requirement for the increased number of features.

Different feature types require different data association procedures. In the
case of PTAM, FAST features are matched using a sum of squared difference
(SSD) metric over a small area of pixels surrounding the feature location and an
area in the other image where the feature is suspected to be at. If the score is
below a certain threshold then a match is established; however, as the two frames
observing the 3D feature exhibit a significant change in viewpoint, feature match-
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ing using only the above metric is expected to return poor results. Hence, further
processing is required, where the feature is warped using an affine transformation
that predicts how the feature would appear in the second view before attempting
to match it. To gain robustness against illumination changes, the SSD metric is
replaced with Zero-Mean SSD score [46].

SVO data association In a similar scheme to PTAM, SVO generates a 5 levels
pyramid representation of the incoming frame; However, data association is first
established through an iterative direct image alignment scheme starting from the
highest pyramid level up till the third level. Preliminary data association from
the previous step is then used as a prior to a FAST feature matching procedure
similar to PTAM’s warping methodology with a Zero-Mean SSD score.

DT SLAM data association Relying also on FAST features, DT SLAM em-
ploys the same mechanism as PTAM to establish feature matches between frames.

LSD SLAM data association LSD SLAM does not employ an explicit data
association procedure; it is inherent from the image alignment procedure em-
ployed in its camera pose estimation module.

ORB SLAM data association Also similar to PTAM’s pyramidal scheme,
ORB SLAM extracts FAST corners throughout 8 pyramid levels. To ensure a ho-
mogeneous distribution along the entire image, each pyramid level is divided into
cells and the parameters of the FAST detector are fine-tuned on-line to ensure a
minimum of 5 corners are extracted per cell. A 256-bit ORB descriptor is then
computed for each extracted feature. The higher order feature descriptor, ORB
is used to establish correspondences between features. A match is established
when a distance function, between the queried descriptor and its corresponding
candidate in the map, scores below a certain threshold. To maintain real-time per-
formance of such matching method, a special implementation is required: ORB
SLAM discretizes and stores the descriptors into bags of words known as visual
vocabulary [52]. Bags of words are used to speed up image and feature matching
as the matching process in then constrained between those features that belong
to the same node in the vocabulary tree.

RD SLAM data association Similar to ORB SLAM, RD SLAM employs a
high order feature descriptor to establish feature matches. In contrast to other
algorithms that extracts computationally cheap features using CPUs, RD SLAM
employs a heavily parallelized GPU accelerated SIFT extractor. SIFT descriptors
are then stored in a KD-Tree [53] that accelerates feature matching based on the
nearest neighbor of the queried feature in the tree.
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Table 5.3: Data association used by different Visual SLAM systems. Abbreviations
used:local patch of pixels (l.p.p.)

PTAM SVO
RD
SLAM

DT
SLAM

LSD
SLAM

ORB
SLAM

Feature type FAST FAST SIFT FAST None FAST

Feature descriptor l.p.p. l.p.p. SIFT l.p.p. l.p.p. ORB

5.4 Pose estimation

Data association for a newly acquired frame is required to estimate its pose;
however, as establishing data associations blindly is computationally expensive,
most Visual SLAM systems use a prior to the frames pose, which guides and
limits the amount of work required for data association. Estimating this prior is
generally the first task of the pose estimation module. Figure 5.5 represent the
pose estimation problem and Table. 5.4 summarizes the pose estimation methods
used by different Visual SLAM systems. PTAM, RD SLAM, DT SLAM and ORB

Figure 5.5: Pose estimation required by any Visual SLAM system

SLAM employ a constant velocity motion model that assume a smooth camera
motion and uses the pose changes across the two previously tracked frames to
estimate the prior of the current frame. Unfortunately, such model is prone to
failure when sudden change of direction of the cameras motion occur. LSD SLAM
and SVO assumes no significant change in the camera pose between consecutive
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frames (such as the case in high frame rate cameras) and hence they assign the
prior pose of the current frame to be the same as the previously tracked one.
The prior frame pose is used to guide the data association procedure in several
ways. It helps determine a potentially visible set of features from the map in the
current frame, reducing computational expenses of blindly projecting the entire
map; further, it helps establish an estimated feature location in the current frame,
so that feature matching takes place in small search regions, instead of across the
entire image. Finally, it serves as a starting point for the minimization procedure
that refines the camera pose.

While direct methods estimate the camera pose by minimizing the photomet-
ric error between the current frame and the previous one over the prior pose as
described before, indirect methods estimate the camera pose, by minimizing the
re-projection error of landmarks from the map over the frames prior pose. The
re-projection error is formulated as the distance in pixels between a projected
3D landmark onto the frame using the prior pose and its found 2-D position in
the image through data association. To gain robustness against outliers (wrongly
associated features), the minimization takes place over an objective function that
penalizes features with large re-projection errors.

PTAM pose estimation PTAM represent the camera pose as an SE(3) trans-
formation [54] that can be minimally represented by 6 parameters. The mapping
from the full SE(3) transform to its minimal representation Sξ(3) and vice versa
can be done through logarithmic and exponential mapping in Lie algebra. The
minimally represented Sξ(3) transform is of great importance as it reduces the
number of parameters to optimize from 12 to 6 leading to significant speedups in
the optimization process.

The tracking procedure first starts by estimating a prior to the frames pose
using the constant velocity motion model. The prior is then refined, using a Small
Blurry Image (SBI) representation of the frame, by employing an Efficient Second
Order minimization as described in [55]. The velocity of the prior is defined as
the change between the current estimate of the pose and the previous camera
pose. If the velocity is high, PTAM anticipates a fast motion is taking place and
hence the presence of motion blur; to counter failure from motion blur, PTAM
restricts tracking to take place only at the highest pyramid levels (most resilient
to motion blur) in what is known as a coarse tracking stage only; otherwise the
coarse tracking stage is followed by a fine tracking stage. However, when the
tracker is stationary, the coarse stage may lead to jittering of the cameras pose
and hence is turned off.

2D-3D feature-landmark correspondences, to be used in the previous step, are
established by a search range in surrounding regions of their projected location
in the image plane. Feature matching in PTAM is separated into two steps:
coarse matching and sub-pixel refinement. For coarse level matching, a window
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surrounding the features location, in the first keyframe it was observed in, is
used to generate a warped representation that takes into account the viewpoint
changes between the current camera pose estimate and the landmarks originating
keyframe pose, however, choosing the features first appearance in their original
keyframe to generate the warped matrix constitutes a weakness in PTAM’s fea-
ture matching method as largely deformed patches will fail to correctly match. If
sub-pixel refinement is required, an inverse compositional matching template is
generated and 8 iterations of patch alignments takes place; Established correspon-
dences are used to formulate the re-projection error. The minimally represented
initial camera pose prior is then refined by minimizing an objective function of
the re-projection error that down-weights observations with large error. The
objective function used is the tukey-biweight objective function as described in
[56].

At this point, coarse tracking is complete and the estimated pose is passed to
the map making thread for further processing; If fine tracking is to take place,
features from the lowest pyramid levels are selected and a similar procedure to
the above is repeated.

The tracking threads also monitors the ratio of successfully matched features
in the frame against the total number of attempted feature matches to determine
the tracking quality. If the tracker’s performance is deemed bad for 3 consecutive
frames, failure recovery methods are initiated. Finally, the tracking thread is
responsible for choosing frames to become keyframes.

A frame is labeled as keyframe in PTAM if the following conditions are met:

1. 20 frames have passed since the last keyframe was accommodated into the
map.

2. The euclidean distance from the current frame’s pose to the nearest keyframe
in the map has exceeded a threshold determined by the observed scene’s
mean depth.

3. The queue structure of the map making thread is not full (it can contain
up to 3 frames only) as processing keyframes may take time (not at frame
rate).

The second condition is set so that if the tracker is close to the observed scene,
landmarks are anticipated to go out of the field of view quickly and hence new
landmarks must be generated in time not to suffer from tracking failure. Whereas
if the observed scene is far, landmarks will not go out of view quickly and adding
new keyframes will cause an increase in redundant data and bundle adjustment
time.

SVO pose estimation SVO uses a sparse model based image alignment in a
pyramidal scheme (from highest pyramid level to the third) in order to estimate
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an initial camera pose estimate. It starts by assuming the camera pose at time
t to be the same as at t − 1 and aims to minimize the photometric error of
2D image locations of known depth in the current frame with respect to their
location at t − 1, by varying the camera transformation relating both frames.
The minimization takes places through thirty Gauss Newton iterations of the
inverse compositional image alignment method. This however introduces many
limitations to SVO since the ICIA requires small displacements between frames
(1pixel). This limits the operation of SVO to high frame rate cameras (typically
> 70fps) so that the displacement limitation is not exceeded. Furthermore, the
ICIA is based on the brightness consistency constraint rendering it vulnerable to
any variations in lighting conditions.

SVO does not employ explicit feature matching for every incoming frame,
however feature matching takes place implicitly as a byproduct of the image
alignment step. Once image alignment takes place, map landmarks, that are
estimated to be visible in the current frame, are projected onto the image and
divided into a grid. The 2D location of the projected landmarks are fine-tuned
by minimizing the photometric error between a patch extracted from the initial
projected location in the current frame and a warp of the landmark generated
from the nearest keyframe observing it. The minimization takes place through
ICIA. Only one projected landmark per grid is used to decrease the computa-
tional complexity and to maintain only the strongest features (high saliency).
This minimization however violates the epipolar constraint for the entire frame
and further processing in the tracking module is required. Motion only Bundle
Adjustment that refines the camera pose by minimizing the re-projection resid-
uals caused by individual alignment of features in the previous step takes place,
followed by a structure only Bundle Adjustment that refines the 3D location of
the landmarks based on the refined camera pose of the previous step.

Finally, a joint (pose and structure) local bundle adjustment fine-tunes the
reported camera pose estimate. The camera pose estimation module in SVO also
keeps records of the tracking quality; if the number of observations in a frame
is a below a certain threshold or if the number of features between consecutive
frames drops drastically, tracking quality is deemed insufficient and failure re-
covery methods are initiated. The camera pose estimation is also responsible for
flagging certain frames as keyframes. A frame is selected as a keyframe in SVO if
its distance (pose) to the nearest keyframe is larger than a threshold proportional
to the mean of the observed scenes depth in the current frame.

DT SLAM pose estimation DT SLAM maintains a camera pose based on
three tracking modes: full pose estimation, Essential matrix estimation, and
pure rotation estimation. When enough 3D matches exist, a full pose can be
estimated, otherwise if a sufficient number of 2D matches are established that
exhibit small translations, an Essential matrix is estimated and finally if a pure
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rotation is exhibited, 2 points are used to estimate the absolute orientation of
the matches [57]. The tracking finally aims to minimize the error vector of both
3D-2D re-projections and 2D-2D matches in an iterative scheme. When tracking
failure occurs, the system initializes a new map and continues to collect data and
tracking continue in a different map; however, the map making thread continues
to look for possible matches between the keyframes of the new map and the
old one and once a match is established, both maps are fused together in an
optimization scheme over the similarity transform linking both maps, allowing
the system to handle multiple sub-maps with different scales.

LSD SLAM pose estimation The tracking thread in LSD SLAM is respon-
sible for estimating the current frame pose with respect to the currently active
keyframe in the map using the previous frame pose as a prior. The required
pose is represented by an SE(3) transformation and is found by an iteratively
re-weighted Gauss-Newton optimization that minimizes the variance normalized
photometric residual error, as described in [17], between the current frame and
the active keyframe in the map. A keyframe is considered active if it is the
most recent keyframe accommodated in the map. To minimize outliers effects,
measurements with large residuals are down weighted from one iteration to the
other.

ORB SLAM pose estimation The tracking thread in ORB SLAM is respon-
sible for maintaining the camera pose at frame rate and makes decisions whether
the processed frame is a keyframe or not. The main tracking work can be divided
into two main steps: initial pose estimate and local map tracking. The initial pose
estimate is first established through a constant velocity motion model similar to
PTAM’s and an optimization step takes place, refining the camera pose through
a minimization of the re-projection error of all features that were observed in the
previous frame in a narrow search range guided by the motion model. However,
as this motion model is expected to be easily violated through abrupt motions,
ORB SLAM detects such failure through the number of matched features, if it
falls below a certain threshold, map points are projected onto the current frame
using the camera pose of the previous frame and a wide range feature search takes
place around the projected locations before the pose optimization takes place. If
tracking fails (i.e., both of the above solutions fail to establish a sufficient num-
ber of feature matches or the bundle adjustment does not converge) ORB SLAM
invokes its failure recovery method to establish an initial frame pose via global
re-localization.

When the initial pose estimate is established, ORB SLAM’s tracking thread
moves to local map tracking. To bound the complexity of large maps in an effort
to make the system operate in large environments, a subset of the global map
known as the local map, is defined by all landmarks corresponding to the set of
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all keyframes that share edges with the current frame as well as all neighbors of
this set of keyframes, taken from the covisibility graph. The keyframe from this
set that shares the highest number of features with the current frame is known
as K-ref to be used later for keyframe insertion checks. The selected landmarks
are filtered out to keep only the features that are most likely to be matched in
the current frame by monitoring the relative angle between the average norm of
all keyframes observing the landmark and the ray connecting the current frames
center to the landmark. Furthermore, if the distance from the cameras center to
the landmark is beyond the range of the valid features scales, the landmark is
also discarded. The remaining set of landmarks is then searched for and matched
in the current frame before a final camera pose refinement step takes place. The
tracking thread is also responsible for labeling the current frame a keyframe
or not. In contrast to some of the other systems that tends to add keyframes
when the cameras pose has moved a significant distance, ensuring a minimum
positional change (rotational and translational), ORB SLAM, like RD SLAM,
aims to ensure a minimum visual change while spawning as many keyframes as
possible to increase the robustness of the tracking algorithm and maintain real-
time operation. Overall, the following must be met so that the current frame is
considered a keyframe:

1. 20 frames have passed since the last successful global re-localization proce-
dure.

2. 20 frames have passed since the insertion of the previous keyframe or the
local mapping thread is idle.

3. The current frame tracks successfully more than 50 features.

4. The current frame track less than 90% of K-ref.

RD SLAM pose estimation Once RD SLAM establishes enough feature
matches between the incoming frame and the database of features in the KD-Tree
[53], the frames pose is estimated through a motion only BA step that minimizes
the re-projection error of the features over the camera pose parameters. To cope
with dynamic (moving objects) in the scene and to attenuate their impact on
the camera pose estimate, RD SLAM suggests a prior based adaptive RANSAC
implementation, which samples (based on the outlier ratio of features in previous
frames) the features in the current frame from which to estimate the camera pose
and discard from the optimization the features that it suspects belong to moving
objects. The tracking thread in RD SLAM is also responsible for the keyframe
selection criteria as it aims to ensure enough structural change before the ad-
dition of new keyframes. Keyframe selection is divided into 2 checks, the first
one ensures that the frames pose was correctly tracked and that it contains less
than 80 features in common with other keyframes; if the frame passes the first
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check it is considered a potential keyframe. The second check attempts to match
features between the potential keyframe and the features associated with its 5
nearest keyframes; if the number of newly added landmarks is above a threshold
the potential keyframe becomes a keyframe and is incorporated into the KD-Tree
of the system. Since KD-tree updates are slow, the system maintains 2 trees,
one active and one waiting to be updated. Once a sufficient number of newly
created 3D landmarks are added into the system, it switches trees and update
the inactive tree.

Table 5.4: Pose estimation used by different Visual SLAM systems. Abbreviations
are as follows: constant velocity motion model (c.v.m.m), same as previous pose
(s.a.p.p.), similarity transform with previous frame (s.t.p.f.), optimization through
minimization of features (o.m.f.), optimization through minimization of photometric
error (o.m.p.e.), Essential matrix decomposition (E.m.d.), pure rotation estimation
from 2 points (p.r.e.), significant pose change (s.p.c.), significant scene appearance
change (s.s.a.c)

PTAM SVO
RD

SLAM
DT

SLAM
LSD
SLAM

ORB
SLAM

Motion
prior

c.v.m.m.
+ESM

s.a.p.p. none s.t.p.f. s.a.p.p. c.v.m.m.
or place
recogn.

Tracking o.m.f. o.m.p.e. o.m.p.e. o.m.f. 3 modes:
1-E.m.d.;
2-o.m.f;
3-p.r.e.

o.m.p.e.

keyframe
add
criterion

s.p.c. s.p.c. s.s.a.c. s.s.a.c. s.p.c. s.s.a.c.

5.5 Map generation

The map making module in a generic visual SLAM implementation is responsi-
ble for updating the map as the camera explores new territory. At this point, a
distinction between features and landmarks must be made; features are salient
2D locations belonging to the image plane whereas landmarks are 3D points be-
longing to the map of the scene and triangulated through the re-observation of
a given feature across two+ frames separated by sufficient baseline. The map
making process handles the initialization of new landmarks into the map as well
as outliers detection and handling. Figure 5.6 represent the map generation task
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and Table. 5.5 summarizes the landmark triangulation methods used by differ-
ent Visual SLAM systems. Landmarks are triangulated via different methods;

Figure 5.6: Map generation required by any Visual SLAM system

while some algorithms triangulate landmarks through features matched across
two frames (PTAM, DT SLAM, RD SLAM and ORB SLAM) others employ a
particle filter implementation and only integrate a landmark in the scene once
enough views of the feature are established (SVO, LSD SLAM). A major limi-
tation in all these methods is that they require a baseline between the images
observing the feature for accurate 3D triangulation and hence are all prone to
failure when the cameras motion is constrained to pure rotations. To counter
such mode of failure, DT SLAM introduced 2D landmarks in the map that can
be used for rotation estimation before their triangulation into 3D landmarks.

PTAM map generation PTAM implements Levenberg-Marquard optimiza-
tion [39] that performs sparse bundle adjustment either on a local or a global
magnitude. The bundle adjustment step minimizes the re-projection error of the
landmarks to all keyframes they are observed in, by jointly optimizing both the
3D positions of the landmarks and the SE(3) poses of the keyframes. If a new
keyframe is added to the system, all bundle adjustment operations are halted and
the new keyframe inherits the pose from the coarse tracking stage. The poten-
tially visible set is then re-projected onto the new keyframe and feature matches
are established (not only at the highest pyramid levels). Correctly matched land-
marks are marked as Seen again; this is done to keep track of the quality of the
landmarks and to allow for the map refinement step to remove corrupt data. The
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correctly matched landmarks average depth from the current keyframe is used to
limit the epipolar search, for new feature matches, in regions that do not contain
projected landmarks, between the current keyframe and the closest to it in the
database in term of position. This limits the computational cost of the search
for new features and avoid adding them in regions where nearby landmarks exist
as they could be the same; however, this limits the newly created features to
be within the search region of the epipolar lines and hence very large variations
in the scenes depth may lead to the negligence of possible landmarks that does
not reside within the search region, leading in certain circumstances to tracking
failure. The computational cost in PTAM scale with the map and become in-
tractable as the number of keyframes get large and hence PTAM is designed to
operate in small workspaces.

SVO map generation The map generation thread in SVO runs parallel to
the tracking thread and is responsible for creating and updating the map. SVO
parametrize 3D landmarks using an inverse depth parameterization model [58].
Upon insertion of a new keyframe, features extracted with highest Shi-Tomasi
scores from each grid cell that does not contain any projected landmarks are
chosen to initialize depth filters. These features are labeled as seeds and are
initialized to be along a line passing through the camera center and the 2D
location of the seed in the originating keyframe. The only parameter that remains
to be solved is then the depth of the landmark. By default, the depth of the seed
is initialized to the mean of the scenes depth as observed from the keyframe of
origin with high uncertainty.

If no keyframe is being accommodated, the map management thread monitors
and updates map seeds by subsequent observations in newly acquired frames.
The seed is searched for in new frames along an epipolar search line limited by
the uncertainty of the seed and the mean depth distribution observed in the
current frame. As the filter converges, its uncertainty decreases and the epipolar
search range decreases. If seeds fail to match frequently or diverge to infinity
or a long time has passed since their initialization, they are considered as bad
seeds and hence removed. Otherwise, the uncertainty of the filter is modeled
as one of two types: a Gaussian distribution or a uniform model. The filter is
considered to have converged when the estimated depth possesses a Gaussian
distribution. Upon convergence, the filter’s depth is assigned to the seed and
the latter is accommodated in the map as a landmark. This however limits SVO
to operate in environments of relatively uniform depth distributions. Since the
initialization of landmarks in SVO relies on many observations for the features
to be triangulated, the map contains few if any outliers and hence no outliers
deletion methods are required. However, this comes at the expense of delayed
time before the features are turned into landmarks and added to the map to be
tracked.
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LSD SLAM map generation LSD SLAM’s map generation module is mainly
responsible for selection and accommodation of new keyframes into the map.Its
function can be divided into two main categories depending whether the current
frame is deemed a keyframe or not; if it is, depth map creation takes place by
keyframe accommodation, if it is not deemed a keyframe depth map refinement
is done on regular frames. Since LSD SLAM is a direct method, it operates on
the underlying assumption of small displacements between frames. To maintain
tracking quality, LSD SLAM requires frequent addition of keyframes into the map
as well as relatively high frame rate cameras.

If a frame is labeled a keyframe, the estimated depth map from the previous
keyframe is projected onto it to serve as an initial depth map. Spatial regulariza-
tion then takes places by replacing each projected depth value by the average of
its surrounding depth values and the variance is chosen as the minimal variance
value of the neighboring measurements.

An outliers detection step takes place by monitoring the probability of the pro-
jected depth hypothesis at each pixel to be an outlier or not. To make the outliers
detection step possible, LSD SLAM keeps records of all successfully matched pix-
els during the tracking thread and accordingly increase or decrease the probability
of it being an outlier.

During the spatial regularization step, if the probability that all contributing
neighbors are outliers is above a given threshold, the hypothesis is removed from
the system. The newly projected depth map is scaled to have a mean inverse
depth value of 1. The scaling ratio is then incorporated into the Sim(3) transfor-
mation that describes the new keyframe pose in the map. This is done to allow
for scale optimization and correction during subsequent steps.

The Sim(3) of a newly added keyframe is then estimated and refined in a
direct, scale-drift aware image alignment scheme, which is similar to the one done
in the tracking thread but with respect to other keyframes in the map and over
the 7d.o.f. Sim(3) transform, in contrast to the 6d.o.f. SE(3) transform used
for the regular tracking procedure. Furthermore, as the photometric error alone
does not constrain the scale, the depth error integration into the minimization of
the Sim(3) transform is mandatory.

Due to the non-convexity of the direct image alignment method on Sim(3),
an accurate initialization to the minimization procedure is required; for such
purpose, ESM [55] (Efficient Second Order minimization) and a coarse to fine
pyramidal scheme with very low resolutions proved to increase the convergence
radius of the task. The newly accommodated keyframe is flagged as the currently
active keyframe and subsequent frames are tracked according to it.

If the map generation module deems the current frame as not a keyframe,
depth map refinement takes place by establishing stereo matches for each pixel
in a suitable reference frame. The reference frame for each pixel is determined by
the oldest frame the pixel was observed in, where the disparity search range and
the observation angle do not exceed a certain threshold. A 1-D search along the
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epipolar line for each pixel is used with an SSD metric to establish pixel matches;
the search range is limited by the prior depth value at a given pixel if available;
otherwise, the entire range is scanned (if the pixel is newly observed).

To minimize computational cost and reduce the effect of outliers on the map,
not all established stereo matches are used to update the depth map; instead,
a subset of pixels is selected for which the accuracy of a disparity search is suf-
ficiently large. The accuracy is determined by three criteria: the photometric
disparity error, the geometric disparity error, and the pixel to inverse depth ra-
tio. Further details regarding these criteria are outside the scope of this work, the
interested reader is referred to [17]. The depth map is then propagated using the
selected subset before depth map regularization takes place and outliers handling
similar to the keyframe processing step.

ORB SLAM map generation ORB SLAM’s local mapping thread is respon-
sible for keyframe insertion, map point triangulation, map point culling, keyframe
culling and local bundle adjustment. The keyframe insertion step is responsible
for updating the covisibility and essential graphs with the appropriate edges as
well as computing the bag of words representing the newly added keyframe in the
map. The covisibility graph is a pose graph that represents keyframes by nodes.
Node poses within the graph represent a similarity transformation Sim(3), simi-
lar to LSD SLAM, to incorporate a 7th degree of freedom (scale). Edges in a pose
graph represent measurements observed in both nodes. The higher the number of
features matched the higher the strength of the edge. In contrast to other meth-
ods, such as LSD SLAM, that imposes a minimum number of feature matches
between keyframes to establish an edge between their corresponding nodes, ORB
SLAM does not employ any thresholds on the edge creation process leading to
a base graph that contains all possible connections and later, depending on the
task required, extract a thresholded graph.

During keyframe insertion, ORB SLAM creates and updates a spanning tree
that starts with the initial keyframe and incorporates all subsequent keyframes,
that share with it the highest number of features; the result is a minimum con-
nectivity graph. While performing graph optimization of the map, a threshold of
100 is applied to the base graph and the connectivity edges found are added to
the spanning tree to form what is known as the Essential graph. In case of loop
closure, the edges linking the loop ends are also included in the Essential graph.
This implementation of graphs, ensures a fast optimization of the map through
strongly connected network of cameras.

The map point creation module spawn new landmarks by triangulating ORB
features from connected keyframes in the covisibility graph. Triangulated land-
marks are tested for positive depth, re-projection error, and scale consistency in
all keyframes they are observed in to be accommodated into the map.
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DT SLAM map generation Similar to ORB SLAM, DT SLAM also aims
to add keyframes when enough visual change has occurred. the three criteria for
keyframe addition are

1. The frame to contain enough new 2D features that can be created from
areas not covered by the map.

2. A minimum number of 2D features can be triangulated into 3D landmarks.

3. A given number of already existing 3D landmarks have been observed from
a significantly different angle.

The map contains two types of features, 3D and 2D, the triangulation of 2D
features into 3D is deferred until enough parallax between keyframes is observed
hence the name of the algorithm.

Table 5.5: Map generation used by different Visual SLAM systems. Abbreviations as
follows: 2 view triangulation (2.v.t.), particle filter with inverse depth parametrization
(p.f.), 2D landmarks triangulated to 3D landmarks (2D.l.t.), depth map propagation
from previous frame (p.f.p.f.), depth map refined through small baseline observations
(s.b.o.)

PTAM SVO
RD
SLAM

DT
SLAM

LSD
SLAM

ORB
SLAM

Map generation 2.v.t. p.f. 2.v.t. 2D.l.t. p.f.p.f
or
s.b.o.

2.v.t.

5.6 Map maintenance

Map maintenance takes care of optimizing the map through either bundle adjust-
ment or pose graph optimization. During a map exploration phase in a generic
Visual Slam session, new 3D landmarks are triangulated based on the camera pose
estimates. After some time, system drift manifests itself in wrong camera pose
measurements due to accumulated errors in previous camera poses (keyframes)
that were used to expand the map. Table 5.6 summarizes the map maintenance
procedure adopted by different Visual SLAM system.

Bundle adjustment Bundle adjustment (BA) is inherited from SfM and con-
sists of a nonlinear optimization process of refining a visual reconstruction to
jointly produce an optimal structure and coherent camera pose estimates. Bun-
dle adjustment is computationally involved and computationally intractable if

40



performed on all frames and all poses. The breakthrough that enabled its ap-
plication in PTAM is the notion of keyframes, where only select frames labeled
as keyframes are used in the map creation and passed to the bundle adjustment
process in contrast to SfM methods that uses all available frames. Different algo-
rithms apply different criteria for keyframe labeling as well as different strategies
for BA, some use jointly a local (over a local number of keyframes) LBA and
global (over the entire map) GBA while others argue that a local BA only is
sufficient to maintain a good quality map. To reduce the computational expenses
of bundle adjustment, Strasdat et al. [59] proposed to represent the visual SLAM
map by both a Euclidean map for LBA, along with a topological map for pose
graph optimization that explicitly distributes the accumulated drift along the
entire map.

Pose graph optimization Pose graph optimization first generates a pose
graph of the map, where the keyframes are represented by nodes and edges be-
tween nodes corresponds to matched features between keyframes; the result is
known as a connectivity graph. It then proceeds by minimizing the re-projection
error of features onto the nodes by varying the pose of the nodes only. The
Pose Graph Optimization (PGO) returns inferior results to those produced by
GBA. The reason is that while PGO optimizes only for the keyframe posesand
accordingly adjusts the 3D structure of landmarksGBA jointly optimizes for both
keyframe poses and 3D structure. The stated advantage comes at the cost of com-
putational time, with PGO exhibiting significant speed up compared to GBA;
however, pose graph optimization requires efficient loop closure detection and
may not yield an optimal result as the errors are distributed along the entire
map, leading to locally induced inaccuracies in regions that were not originally
wrong. Map maintenance is also responsible for detecting and removing outliers
in the map due to noisy and faulty matched features. While the underlying as-
sumption of most Visual SLAM algorithms is that the environment is static, some
algorithms such as RD SLAM exploits map maintenance methods to accommo-
date slowly varying scenes (lighting and structural changes).

PTAM map maintenance The map making thread in PTAM runs parallel
to the tracking thread and does not operate on a frame by frame basis instead it
only processes select frames known as keyframes. If the map making thread is not
processing new keyframes, it performs various optimizations and maintenance to
the map:

� Ensure the maps local convergence through an LBA to the last added
keyframe and its 4 nearest neighbors (in terms of pose) with all landmarks
associated to them.

� Ensure the maps global convergence by applying a global adjustment to the
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entire map.

� Applies data refinement by first searching and updating landmarks observa-
tions in all keyframes and then by removing all landmarks that have failed
to successfully match features many times while marked as a potentially
visible point more than 8 times.

DT SLAM map maintenance Similar to PTAM, the bundle adjustment
thread of DT SLAM continuously optimizes the entire map in the background
through a sparse full BA.

SVO mao maintenance For runtime efficiency reasons, SVO’s map manage-
ment maintains only a fixed number of keyframes in the map and removes distant
ones when new keyframes are added. This is performed so that the algorithm
maintains real-time performance after prolonged periods of operation over large
distances.

LSD SLAM map maintenance LSD SLAM runs a third parallel thread that
continuously optimizes the map in the background by a generic implementation of
a pose graph optimization using the g2o-framework [18]. This however leads to an
inferior accuracy when compared to other methods for reasons stated above. As
the pose graph optimization neglects to optimize the map against landmarks in
the map and only optimizes the pose graph of the keyframes within the map and
the landmarks locations are adjusted accordingly, in contrast to other methods
that employ a bundle adjustment step that jointly optimize the keyframes poses
as well as the landmarks measurements in each keyframe.

ORB SLAM map maintenance To maintain a good quality map and counter
the effect of frequently adding features from keyframes, ORB SLAM employs
rigorous landmark culling to ensure low outliers in the map. A landmark must
be correctly matched 25% of the frames in which its predicted to be visible; it
also must be visible from at least three keyframes after more than one keyframe
has been accommodated into the map since it was spawned. Otherwise, the
landmark is removed. To maintain lifelong operation and to counter the side
effects (computational complexity, outliers, redundancy) of the presence of high
number of keyframes in the map, a rigorous keyframe culling procedure takes
place as well. Keyframes that have 90% of their associated landmarks observed in
3 other keyframes are deemed redundant and removed. The local mapping thread
also performs a local bundle adjustment over all keyframes connected to the
latest accommodated keyframe in the covisibility graph and all other keyframes
that observe any landmark present in the current keyframe even if they’re not
connected through the covisibility graph.
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RD SLAM map maintenance To gain immunity against slowly varying scene
structures and gradual lighting changes, RD SLAM employs an on-line 3D point
update mechanism at each incoming frame to remove 3D landmarks from the map
that might have changed. To detect changed regions, RD SLAM monitors the
histogram of colors between the current frame and the five nearest keyframes to
it in the map. If enough difference between the histograms is detected then either
of the following could be true: region occluded due to change in the point of view,
3D structure changed due to object removals, or scene lighting changes occurred.
RD SLAM then employs a 3D point and keyframe culling mechanism to remove
the points that have changed due to the latter two reasons while maintaining the
points that are suspected to be only occluded by temporary obstacles.

Table 5.6: Map maintenance used by different Visual SLAM systems. Abbreviations
used: Local Bundle Adjustment (LBA), Global Bundle Adjustment (GBA),Pose Graph
Optimization (PGO),

PTAM SVO
RD
SLAM

DT
SLAM

LSD
SLAM

ORB
SLAM

Optimization
type

LBA &
GBA

LBA GBA LBA &
GBA

PGO PGO&
LBA

Scene type static &
small

uniform
depth

static or
slow dy-
namic

static &
small

static
&small
or large

static &
small or

large

5.7 Failure recovery

Whether due to wrong user movement (abrupt change in the camera pose and
motion blur), or camera observing a featureless region or failure to match enough
features, or for any other reason visual SLAM methods can eventually fail. A
key module essential for the usability of any visual SLAM system is its ability
to correctly recover from such failures and resume its ordinary tasks. The failure
problem is described as a lost camera pose that needs to re-localize itself in the
map it had previously created of its environment before failure. For such purpose
different algorithms employ different methods. Table 5.7 summarizes the failure
recovery mechanisms used by different Visual SLAM system.

PTAM failure recovery Upon tracking failure, PTAM’s trackerinitiates a
recovery procedure, where the SBI of each incoming frame is compared to the
database of SBIs for all keyframes. If the intensity difference between the in-
coming frame and its nearest looking keyframe is below a certain threshold, the
current frame’s pose is assumed to be equivalent to that of the corresponding

43



keyframe, ESM tracking takes place (similar to that of the tracking thread) to
estimate the rotational change between the keyframe and the current frame. If
converged, a PVS of landmarks from the map is projected onto the estimated pose
and the tracker attempts to match the landmarks to the features in the frame. If
enough features are correctly matched, the tracker resumes normally otherwise a
new frame is acquired and the tracker remains lost. For successful re-localization,
this method requires the lost cameras pose to be near the recorded keyframes pose
and otherwise would fail when there is a large displacement between the two.

SVO failure recovery When tracking quality is deemed insufficient, SVO
initiates its failure recovery method. The first procedure in the recovery process
is to apply image alignment between the incoming frame and the closest keyframe
to the last known correctly tracked frame. If more than 30 features are correctly
matched during the image alignment step, then the re-localizer considers itself
converged and continues tracking regularly; otherwise it attempts to re-localize
using new incoming frames. Such a re-localizer is sensitive to any change in the
lighting conditions of the scene and the lost frame location should be close enough
to the queried keyframe for successful re-localization to take place.

LSD SLAM failure recovery LSD SLAM’s recovery procedure first chooses
randomly a keyframe from the map that has more than 2 neighboring keyframes
connected to it in the pose graph. It then attempts to align the currently lost
frame to it. If the outliers to inlier ratio is large, the keyframe is discarded and
replaced by another keyframe at random; otherwise, all neighboring keyframes
connected to it in the pose graph are then tested; If the number of neighbors,
with a large inlier to outliers ratio, is larger than the number of neighbors with
a large outlier to inlier ratio, or if there are more than 5 neighbors with a large
inlier to outlier ratio, the neighboring keyframe, with the largest ratio is set as
the active keyframe and regular tracking is accordingly resumed.

ORB SLAM failure recovery Triggered by tracking failure, ORB SLAM
invokes its global place recognition module. Upon running, the re-localizer trans-
forms the current frame into a bag of words and queries the database of keyframes
for all possible keyframes that might be used to re-localize from. The place recog-
nition module implemented in ORB SLAM, used for both loop detection and fail-
ure recovery, relies on bags of words as frames observing the same scene share a
big number of common visual vocabulary. In contrast to other bag of words meth-
ods that return the best queried hypothesis from the database of keyframes, the
place recognition module of ORB SLAM returns all possible hypotheses that have
a probability of being a match larger than 75% of the best match. The combined
added value, of the ORB features along with the bag of words implementation
of the place recognition module, manifest itself in a real-time, high recall and
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relatively high tolerance to viewpoint changes when performing re-localization of
a lost tracker and while detecting loops. All hypotheses are then tested through a
RANSAC implementation of the PnP algorithm [60] that determines the camera
pose from a set of 3D to 2D correspondences. The found camera pose with the
most inliers is then used to establish more matches to features associated with
the candidate keyframe before an optimization over the cameras pose using the
established matches takes place.

Table 5.7: Failure recovery used by different Visual SLAM systems. Abbreviations
used: photometric error minimization of SBIs (p.e.m.), image alignment with last
correctly tracked keyfram (i.a.l.c.k), image alignment with random keyframe (i.a.r.k.),
bag of words place recognition (b.w.p.r.)

PTAM SVO
RD

SLAM
DT

SLAM
LSD

SLAM
ORB

SLAM

Failure recovery p.e.m. i.a.l.c.k. no data none i.a.r.k. b.w.p.r.

5.8 Loop closure

Since Visual SLAM is an optimization problem, its prone to drifts in camera pose
estimates and returning to a certain pose after an exploration phase may not yield
the same camera pose measurement as it was at the start of the run. Such camera
pose drift can also manifest itself in a map scale drift that will eventually lead the
system to erroneous measurements and fatal failure. To address this issue, some
algorithms detect loop closures in an on-line Visual SLAM session and optimize
the loops track in an effort to correct the drift and the error in the camera pose
and in all relevant map data that were created during the loop. The loop closure
thread attempts to establish loops upon the insertion of a new keyframe in order
to correct and minimize any accumulated drift by the system over time. Table 5.8
summarizes the Loop closure mechanisms used by different Visual SLAM system.

LSD SLAM loop closure Whenever a keyframe is processed by LSD SLAM,
loop closures are searched for within its ten nearest keyframes as well as through
the appearance based model of openFABMAP [61] to establish both ends of a
loop. Once a loop edge is detected, a pose graph optimization minimizes the
similarity error established at the loops edge by distributing the error over the
loops keyframes poses.

ORB SLAM loop closure Loop detection in ORB SLAM takes place via its
global place recognition module that returns all hypotheses of keyframes from
the database that might correspond to the opposing loop end. To ensure enough
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distance change has taken place, the similarity transform between all connected
keyframes to the current keyframe in the thresholded covisibility graph (threshold
of 30 correspondences), is computed; the lowest score is recorded as Smin . All
hypotheses are then tested and removed if any of the following occurs:

� It is connected to the current keyframe through the covisibility graph

� It has a similarity score less than Smin

� It has less than 3 other keyframe hypotheses connected to it in the covisi-
bility graph.

To compute an accurate similarity transform, an initial set of correspondences
between all ORB landmarks associated to the current keyframe are matched to
the associated landmarks of queried keyframe from the database through their
bags of words. Once the 3D-3D correspondences are established, they are used
in a RANSAC scheme to determine a Sim(3) relating both keyframes. If the
similarity is supported by enough inliers, a narrow search range across the ORB
descriptors associated to both keyframes is performed and the result is used
to further refine the similarity transform. If enough inliers support the refined
similarity transform, the queried keyframe is considered to be the other end of
the loop and loop fusion takes place. The loop fusion first merges duplicate map
points in both keyframes and insert a new edge in the covisibility graph that
closes the loop by correcting the Sim(3) pose of the current keyframe using the
similarity transform. Using the corrected pose, all landmarks associated with
the queried keyframe and its neighbors are projected to and searched for (in a
narrow search region) in all keyframes associated with the current keyframe in
the covisibility graph. The initial set of inliers, as well as the found matches
are used to update the covisibility and Essential graphs, establishing many edges
between the two ends of the loop. Finally, a pose graph optimization over the
essential graph takes place similar to that of LSD SLAM, which minimizes and
distributes the loop closing error along the loop nodes.

Table 5.8: Loop closure used by different Visual SLAM systems. Abbreviations used:
Bag of Words place recognition (B.W.p.r), sim(3) optimization (s.o.)

PTAM SVO
RD
SLAM

DT
SLAM

LSD SLAM ORB
SLAM

Loop
closure

none none none none OpenFabMap
+ s.o.

B.W.p.r.
+ s.o.
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Chapter 6

Comparative assessment of
Visual SLAM systems

To analyze the the performance of open source, state of the art visual SLAM
systems, a comparative assessment is conducted in this chapter, underlining the
performance of PTAM, SVO, LSD SLAM, ORB SLAM and DT SLAM. For such
purpose, we developed a dataset with ground truth provided using specialized
hardware as described in the following section.

6.1 Dataset generation

This section explain the AUB-dataset collection procedure, detailing the sen-
sor setup and configuration. It also describe the test environment in which the
dataset was collected, list the measurments recorded and provide tools required to
align the estimated paths from different Visual SLAM systems with our dataset.

6.1.1 Hardware setup

The sensors specs used to generate our dataset can be summarized by:

� A Basler pulse camera (puA1280− 54uc) with a resolution of 1.2 MP, 1/3”
Aptina AR0134 CMOS sensor equipped with a global shutter.

� A Kowa LMVZ164 1/3”, 1.6-3.4mm F1.4 manual iris vari-focal CS mount
lens.

� An Xsens MTi-G-700 with an internal L1 GPS aided INS, typical 1σ RMS
error values for roll/pitch/yaw/horizontal position/vertical position are 0.2°/0.3°/
1.0°/1.0m/2.0m, pose output frequency 400Hz. . . .

The complete setup of the sensors shown in Fig 6.1 communicates with an Intel
Core i7− 4710HQ 2.5GHZ CPU with a 16 GB memory for data acquisition.
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(a) the GPS antenna is fixed to the back of the
Xsens INS which is bolted on a small chassis
on top of the basler camera.

(b) The strap mounted rig.

Figure 6.1: Sensor rig setup

6.1.2 Hardware Configuration

The Basler camera was configured to acquire 640×480 colored images around the
center of the CMOS sensor at 70 frames per second whereas the Xsens INS sys-
tem was configured with a ”GeneralMag” filter profile outputting pose estimates
(rotation and position) at 400 Hz with all inertial and magnetic data enabled
with a 32-bit floating point representations whereas GPS data were outputted
with a 64-bit floating point representation to prevent numerical overflows.

6.1.3 Test set environment

The generated dataset contains about 16, 400, colored, uncompressed ∗.tiff im-
ages with a resolution of 640 × 480, numbered starting from 0 corresponding
to frames acquired during a loop around the green field of AUB, located in the
lower campus (Figure 6.2). For each image a .txt file is provided and named
with the same image number. It contains 7 entries as follows: Image number,
Latitude, Longitude, Altitude, Roll, Pitch, Yaw. Where the Longitude, Lati-
tude and Altitude are represented in the WGS− 84 Ellipsoidal coordinate frame
as shown in Figure 6.3, and the rotation parameters are represented in a local
Earth-fixed coordinate system such as the X-axis is positive to the east, the Y-
axis is positive to the north and the Z-axis positive pointing up. During data
collection, the hand held sensor rig was moved such as the camera viewing di-
rection was always parallel to the path and the loop took place along the first
running lane (closest to the green field) with a trajectory of 400 meters. A sample
of the collected dataset is shown in Figure 6.4 The collected dataset is publicy
available at http://feaweb.aub.edu.lb/research/cvrl/index.html The data
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Figure 6.2: A- Overview of AUB campus. B- AUB’s greenfield

Figure 6.3: Ellipsoidal Coordinates (Latitude, Longitude, Altitude) in WGS-84
Ellipsoid

input classes for all the visual SLAM systems were modified to read our offline
dataset images; whenever tracking quality of the corresponding visual SLAM
system is deemed good, the camera pose is extracted and saved to a ∗.txt file
that contains the image number, the rotation and position estimates of the cam-
era from the visual SLAMs internal map transformed such as the first recorded
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Figure 6.4: Sample images of the generated dataset

camera pose serves as the origin.

6.1.4 Data processing

To extract usable poses from the INS, to compare to the Visual SLAM measure-
ments, data collected in the WGS − 84 coordinate frame are transformed to the
Universal Transverse Mercator (UTM) coordinate frame . The projection from
the ellipsoidal coordinate system to the 2D UTM coordinate system is carried
by exploiting a locally tangent plane as shown in Figure 6.3. While further dis-
cussion regarding the conversion is outside the scope of this work, one aspect of
the conversion that shall prove useful to exploit, is that the mapping through the
LTP does not depend on the altitude,i.e. for a given Latitude and Longitude, the
entire range of altitudes is mapped to a single point in the plane. This means that
we can exclude altitude measurements from the estimated path without violating
its integrity along the in-plane position measurements; therefore, to reduce the
impacts of errors introduced by the altitude sensor of the INS, altitude measure-
ments are set to 0. The pose estimates are then translated such that the pose
estimated by the INS for the first image corresponds to (0, 0, 0)T .
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Due to the way the camera rig and the INS are set up, the transformation
relating the camera to the INS is best described by a rotation along the Y-axis by
−π

2
followed by a rotation along the X-axis by π

2
. This can be interpreted as LTP

plane corresponding to the X-Y plane in the INS coordinates, corresponds to the
X-Z plane in the Visual SLAMs coordinate frame. Therefore, Y measurements
in the Visual SLAM coordinate frame may be excluded from the scale estimation
and pose error estimation without violating the integrity of the results.

The transformation required to align the paths recorded by the INS and by
the different visual SLAM systems, is a rotation R, translation T and a scale Sc,
relating both paths known as a similarity transform; The transformation aims to
minimize the error between the paths

e2(R, T, Sc) =
1

n

n∑
i=0

||P i
INS −

(
Sc×R× P i

V SLAM + T
)
||2, (6.1)

by varying the parameters of the transformation. For such purpose, we exploit
the knowledge of correlation between the camera poses and the INS poses through
the image names by first estimating the centroids of the paths:

CINS =
1

n

n∑
i=0

P i
INS, (6.2)

CV SLAM =
1

n

n∑
i=0

P i
V SLAM , (6.3)

where P i
INS = (X, Y, 0)T is the INS position estimate of the image i and P i

V SLAM =
(X, 0, Z)T is the Visual SLAM position estimate of the same image and n is the
total number of images. Then we estimate the variance of the recorded path by
the VSLAM as:

σ2
x =

1

n

n∑
i=0

||P i
V SLAM − CV SLAM ||2, (6.4)

Next we estimate the covariance matrix as:

Σxy =
1

n

n∑
i=0

(
P i
INS − CINS

)
(PV SLAM i− CV SLAM)T , (6.5)

Similar to [62] to recover the parameters of the transformation, we perform the
following operations: [

UDV T
]

= SV D (Σxy) , (6.6)

R = V UT , (6.7)

Sc =
tr (D × S)

σ2
x

, (6.8)
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T = CINS − Sc×R× CV SLAM , (6.9)

where

S =


I3×3 if det(U)× det(V ) = 1 1 0 0

0 1 0

0 0 −1

 if det(U)× det(V ) = 1
(6.10)

If det(R) was found to be negative, then R is replaced by:

R = V2 × UT , (6.11)

where V2 is V with its last column multiplied by −1. Finally, the similarity
transformation is applied to the visual SLAM recorded path to align it with the
INS path by:

P i
V SLAM,aligned = Sc×R× P i

V SLAM + T, (6.12)

The end result is two optimally aligned paths in the X-Y coordinate frame of the
INS.

6.2 Experimental results

For the purpose of our first experiment, we used our generated AUB-greenfield
dataset as an input to the visual SLAM systems, and left them to loop over the
image sequence once until the camera returned to the same location at which
the corresponding visual SLAM system had been initialized. During the second
experiment, to highlight the importance of the map optimization and map man-
agement threads, the systems were left to continue operating for another loop so
that loop closure and map optimization take place.

The generated maps in the Visual SLAM’s space highlighting the keyframe
poses are shown for PTAMM, LSD SLAM and ORB SLAM in Fig.6.5(a) , Fig.
6.6 and Fig.6.8 respectively. While the keyframe poses are of great importance,
as they ensure the integrity of the map, what is more important for the assess-
ment of the different Visual SLAM systems is the live, local pose estimates they
produce if they were to be used for an agent’s localization in a scene. Therefore,
the pose estimate for each tracked frame is exported and aligned with the INS
measurements, using the method outlined in the previous section, such that the
RMSE between the generated path of each Visual SLAM system and the path
recorded by the INS is minimized for the first and second loop independently.The
results obtained for PTAMM, LSD SLAM and ORB SLAM during the first loop
are shown in Fig. 6.5(b), Fig. 6.7(a) and Fig.6.9(a) respectively, as for the sec-
ond loop, the results of LSD SLAM are shown in Fig.6.7(b) and for ORB SLAM
in Fig. 6.9(b). At the end of the second loop, the number of keyframes used
to represent the map for each system, along with the number of landmarks and

52



their required RAM size. The experimental results are summarized in Table 6.1.
SVO’s results where not reported as the system failed to track the map, no pose
estimates nor map were extracted, whereas DT SLAM reported meaningless pose
estimates and maps that cannot be displayed.

Table 6.1: Summary of experimental results. Abbreviations used: keyframes
(KF), landmarks (LM) and not available (n.a.) RMSE values are reported in
meters.

Visual SLAM Number
of KF

Number of LM RAM usage Loop1
RMSE

Loop2
RMSE

PTAMM 75 3973 163 MB 1.8625 1.8625
SVO n.a. n.a. n.a. n.a. n.a.

DT SLAM n.a. n.a. n.a. n.a. n.a.
LSD SLAM 118 6.7× 106 1.6 GB 5.9298 4.9449
ORB SLAM 166 5570 2.7 GB 2.0265 1.7746

6.3 Discussion of results

This section analyse the previously reported results, exposing different modes of
failures that challenge state of the art systems.

6.3.1 PTAMM

PTAMM’s initialization depends on the user’s choice for the first 2 keyframes.
This unfortunately means that for different selection of starting keyframes, PTAM
will behave in a different manner, as internal parameters, vital to its function-
ing, are scaled by the ratio of the users translation to scenes depth. To achieve
optimum behavior during our experiments, the baseline separating the two ini-
tializing keyframes was roughly chosen as 1/10th of the observed scenes depth.
Furthermore, if the initializing scene does not contain enough planar points, the
homography estimation module fall in an endless loop, crashing the system.

This intricate initialization requirement is considered daunting especially for
unexperienced users and tracking quality dependency on the user’s choice of
keyframes constitutes a major drawback to the algorithm as it can cause many
modes of error: system crash at startup due to the violation of the scene planarity
assumption or the excessive/lack of insertion of keyframes into the map. To high-
light the effect of the scene to depth ratio at startup, PTAMM was initialized
with a very small baseline between the first 2 keyframes, the result was the sys-
tem accommodating dozens of keyframes and triangulating hundreds of outlier
landmarks in a matter of seconds as seen in Figure 6.10. An opposite scenario
occurs when the baseline to depth ratio is large, if thats the case, PTAMM will
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not add new keyframes until a very large positional change had occurred, often
leading to tracking failure as landmarks go out of sight and the system does not
triangulate new ones.

While the GBA accompanied with a LBA yielded acceptable results, as the
RMSE of PTAMM’s path reflect, the system suffered from a different type of
failure towards the end of the loop as highlighted in Figure 6.11 When PTAMM
finished the loop, accumulated drift over time manifested itself as an erroneous
camera pose, which led to tracking failure; as map landmarks, generated during
the beginning of the run are being projected onto the wrong camera pose; the
data association fails to correctly match the landmarks to the 2D features of the
frame as they fall outside their search regions and hence tracking is deemed bad
before failure recovery methods are invoked. The re-localizer quickly matches
the current frame to the nearest keyframe that was generated at the beginning
of the loop and the camera tracking algorithm resumes from there on, leaving
behind a discontinuity in the camera pose estimate. It is noteworthy to mention
that no matter how many times the system is left to loop over the dataset, the
end-result is the same discontinuity at the loop closure without having any means
to correct this type of failure. This may also be reflected by the RMSE of the
paths generated in PTAM along the 2 loops which was identical.

Other modes of failure for PTAMM as well as most indirect Visual SLAM
methods is displayed in Figure 6.12 where not enough image gradient is present
to extract features leading to tracking failure.

6.3.2 SVO

One of SVOs major assumptions/drawbacks, is that it requires the observed
scene to be of homogeneous depth for the tracking system to succeed. Unfor-
tunately, it is not the case in our dataset. When SVO starts, it monitors the
disparity vector between incoming frames until its large enough to initialize the
system by inserting the 2nd keyframe into the map, however due to the non-
homogeneous distribution of our scene, the conditions for keyframe insertion are
never met; therefore, tracking quality fades and tracking failure occurs moments
after the insertion of the second keyframe in the map. SVOs optimal performance
is achieved when the camera is mounted downwards on a UAV, as the original
paper [4] shows.

6.3.3 DT SLAM

DT SLAM’s choice of not employing a failure recovery method meant that when-
ever tracking is lost, a new sub-map is initialized. This however lead to many
sub-maps with different scales and camera poses that may not be used as a
meaningful agent pose unless they’re fused together with a uniform scale. For
DT SLAM to achieve this fusion, it requires the tracked scene to remain in sight
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for a significant amount of time so that enough correspondences between sub-
maps are established. While this is a reasonable condition for small workspace
environments such as a desk, its rarely the case in actual Visual SLAM applica-
tions where the camera keeps moving in a single direction and not revisiting the
same scene.

Unfortunately, when benchmarked against our dataset, DT SLAM suffered
from this failure and no useful camera trajectory was extracted.

6.3.4 LSD SLAM

Upon the detection of the loop, LSD SLAM invoked its loop closure mechanism
and the resultant map is reported in Figure 6.6

LSD SLAMs random initialization effects are clearly highlighted with a red
marker, in Figure 6.13, where the camera pose estimates along the local map are
erroneous and not reliable. Moreover, as the system finishes the first loop, drift
manifested itself with a vast misalignment between the camera poses correspond-
ing to the same frame, this is also reflected with the RMSE of the system for the
first loop. It took the system 2000 images after the image sequence was looped
for it to recognize loop closure, the equivalent of 50 meters of going through the
same scenery. This can be scene by the uncorrected poses from the second loop
highlighted with a green marker in Figure 6.7(b).

6.3.5 ORB SLAM

In contrast to PTAMM’s manual initializing keyframe selection procedure, ORB
SLAM employs an automatic mechanism to select a good pair for tracking to
start. While this is supposed to be a fort to the system, it wasnt able to initialize
until it came across a pair of frames that it considered to be good for tracking,
which unfortunately didnt happen till image 8000 or the equivalent of 250 meters
into the loop as shown in Figure 6.14. ORB SLAM’s loop closure mechanism was
instantly capable of detecting and closing the loop and the final map is shown in
Figure 6.9(b). In contrast to LSD SLAM’s 2nd loop that contains artifacts due
to the relatively late loop closure detection.

The RMSE of the path reported by ORB SLAM clearly outperformed LSD
SLAM, and lagged slightly behind PTAMM before loop closure, however by the
end of the second loop it surpassed it.
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(a) PTAMM map after looping the dataset twice

(b) Estimated Path in PTAMM aligned with INS measurements

Figure 6.5: reported results by PTAMM
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Figure 6.6: LSD SLAM map after looping the dataset twice

(a) LSD SLAM path estimate when the image
sequence is looped once ( before loop closure)
aligned with INS measurements

(b) The path estimated by LSD SLAM along
the second loop of the image sequence aligned
with the INS measurements

Figure 6.7: LSD SLAM path aligned with INS.
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Figure 6.8: ORB SLAM map after looping the dataset twice

(a) ORB SLAM path estimate when the im-
age sequence is looped once ( before loop clo-
sure) aligned with INS measurements

(b) The path estimated by ORB SLAM along
the second loop of the image sequence aligned
with the INS measurements

Figure 6.9: ORB SLAM path aligned with INS.
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Figure 6.10: the effect of choosing a small baseline to depth ratio during the
initialization procedure of PTAMM

Figure 6.11: Discontinuity and tracking failure at loop closure
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Figure 6.12: Lost camera tracking in PTAMM due to few image gradient in the
scene

Figure 6.13: LSD SLAM random initialization effect
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Figure 6.14: ORB SLAM map right before loop closure, point A represents the
point at which the dataset sequence starts whereas point B is where the system
was capable of initializing.
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Chapter 7

Suggested improvements

7.1 A. Metric scale recovery in monocular SLAM

A fundamental shortcoming underlying monocular-based localization and map-
ping solutions (SfM, Visual SLAM) is the fact that the obtained maps and motion
are solved up to an unknown scale. Yet, the literature provides interesting solu-
tions to scale estimation using cues from focus or defocus of a camera. In this
chapter, we take advantage of the scale offered by image focus to properly initial-
ize Visual SLAM with a correct scale and show how it can be used to estimate
and compensate for drift. We provide experiments showing the success of the
proposed method and discuss its limitations. Our aim here is to diminish the
initialization limitations discussed in chapter V, Section 2, by suggesting a novel
initialization technique for Visual SLAM that requires no human input. The gist
of the solution is to determine scale of a scene using depth from focus. More
specifically, during initialization, the camera is moved normally to the scene in
search of the image that is most focused. This is possible by performing an offline
pre-calibration of the camera, where for a given camera focal distance, we deter-
mine the corresponding scene depth producing maximum image focus. Although
the system is very sensitive to motion speed, motion rotation, and scene content,
experiments demonstrate the success of the proposed technique. Another objec-
tive here is to reduce pose drift in Visual SLAM. For such purpose, an adaptation
of the suggested initialization is employed, to provide depth information from fo-
cus; we show that the extra information can be used to accurately detect and
compensate accumulated drifts within a SLAM session.

7.1.1 Depth from focus

While traditional visual SLAM concerns itself with depth estimation from par-
allax, research in optics suggest two methods capable of recovering depth from
images that do not exhibit parallax; namely, depth from focus and depth from
defocus.
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Depth-from-Defocus (DfD) provides a solution to estimate the depth of a
scene by measuring the blurriness of objects in an image. On the other hand,
Depth-from-Focus (DfF) estimates depth by searching for the most focused scene
points in a set of images that are captured while moving the camera. Figure 7.1
illustrates the effect of moving an object in front of the camera from the focal
plane at distance df to a distance u. According to the well-known Gauss thin
lens law:

1

f
=

1

u
+

1

v
, (7.1)

Here exists a one-to-one correspondence between an object distance u and its
corresponding image distance v. Objects that are placed at the focal plane will
result in maximum focus on the camera sensor. Any movement of the object
away from the focal plane results in a blurred representation of the scene. What

Figure 7.1: Image formation process through a gauss thin lens model.

is appealing from this theory is that that the depth of a scene in an image can
be determined by measuring image focus (or defocus). Because DfD requires
only one image to determine depth, whereas DfF requires several, DfD appears
to be the most attractive alternative amongst the two to solve our objective.
Unfortunately, DfD requires the ability to accurately measure the amount of blur
in an image at different locations. While some work in the literature [63] suggests
techniques to calculate this blur, our implementation of their techniques did not
provide acceptable results.

As an alternative, DfF methods recover depth by searching for the state of
the imaging system for which the object is in-focus in the image plane. This can
be achieved by either varying the distance v between the lens and the sensor or
by varying the distance from the lens to the object u. In the first technique,
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for each scene the focus of camera is varied until the image is in focus. Pucihar
and Coulton [64], provide such a solution, which requires an offline calibration
resulting in a lookup table relating focus-to-depth. Allowing the camera to change
its focus during a visual SLAM session is ruinous because the intrinsic camera
calibration parameters, vital to achieve acceptable tracking performance, varies
with the focus and would lead to tracking failure. Furthermore, not all cameras
retain an auto-focusing mechanism nor allow access to their drives. Suwajanakorn
et al. [65] recently suggested an algorithm capable of recovering depth from focus
using an uncalibrated camera; however, their suggested pipeline requires twenty
minutes of processing, which is intractable for real-time operations.

In this thesis, we adopt a different approach by moving the camera during
initialization in the direction normal to the scene and estimate depth correspond-
ing to the most in-focus image. For this method to succeed, an appropriate focus
measure operator is a critical in ensuring accurate depth estimation. A wide
variety of algorithms [66] have been used to measure the degree of focus of image
patches or the image as a whole. Operators depending on the derivatives like the
Gradient and Laplacian-based operators have been used to estimate sharpness in
an image by measuring the density of edges. Wavelet [67] and direction cosine-
based [68] operators measure the frequency components of the image as a basis
for extrapolating focus. Statistical-based operators have also been used taking
advantage of statistical measure to compute the focus level.

Given their real-time requirements, Visual SLAM implementations pose con-
straints on the amount of allowable processing time for each frame, Therefore,
a simple, fast, and relatively accurate focus operator is used, consisting of first
extracting the Laplacian:

∇2I(x, y) =
∂2I(x, y)

∂x2
+
∂2I(x, y)

∂y2
, (7.2)

and then summing the Laplacian over a window; a step necessary to help deal
with poorly-textured surfaces:

FM(x0, y0) =
∑

(x,y)∈Ω(x0,y0)

∇2I(x, y), (7.3)

where Ω(x0, y0) is the support window chosen as the 24× 24 pixel patch centered
at I (x0, y0). The total focus measure of the image is then found as:

F =
1

n

∑
(x,y)∈I

FM(x, y)2, (7.4)

where n is the number of pixels in the image. While the theory for finding depth
from focus is straightforward, during implementation it was found to be extremely
sensitive to different parameters, which will be discussed in detail in the following
sections.
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7.1.2 Depth from focus calibration

Falling back on the image formation process in Figure 7.1, it is deducible that
a camera moving longitudinally along a path toward a planar scene exhibits
maximum focus when the camera is positioned at the focal plane. Figure 7.2
illustrates how the focus measure of an image is expected to vary with the distance
from the scene. What is sought is an algorithm that is capable of determining,

Figure 7.2: Focus measure profile vs change in distance between camera and
scene.

among a range of images, the image exhibiting maximum focus Fpeak for a given
scene. To make this possible, before initializing Visual SLAM, the system would
have to be calibrated in order to determine, for a given focal length, the depth
corresponding to maximum focus.

We propose a very simple calibration process that determines, for fixed in-
trinsic parameters, the distance separating the camera from a planar scene for
which the scene appears to be sharp and in focus in the image plane. To quantify
”focus” in the image, we employ the ”Energy of the Laplacian” focus measure
operator described in eq. 7.4.

The calibration procedure then takes place by fixing either the camera or the
planar scene and moving the other longitudinally away, while monitoring the focus
measure response. When a peak in the focus measure response is recorded, the
corresponding distance from the camera is registered as the focal plane’s distance.
Figure 7.3 shows the actual focus measure recorded during one calibration step,
which reveals the cameras focal plane at a distance of 23 cm from the lens.

65



Figure 7.3: Example DfF calibration of a camera. Note that in this case the focal
plane is determined at 23 cm from the lens.

7.1.3 Depth from focus in Visual SLAM

Once the focal plane’s distance is known through the calibration process, it can be
used to initialize any Visual SLAM system, assuming the observed scene during
initialization is planar as is the case in most Visual SLAM implementations.
In this thesis, we test the technique on PTAM as a replacement for its default
initialization using Homographies.

Once the system is started, tracking and mapping are set to an idle state,
while the user is asked to move forward and backward towards a planar scene.
The focus measure is then recorded automatically at every frame and the one
corresponding to the peak focus measurement is registered as the first keyframe
in the map. The initialization here is considerably different from the traditional
methods of Visual SLAM, in which the user is required to trigger the system,
move the camera a distance that is ad-hoc, and then trigger the system again once
sufficient parallax is achieved. In what we are proposing, no human intervention
is required except for the initial trigger and then the camera is moved tangent to
its optical axis until the system automatically initializes. This type of motion is
more natural than a lateral one, especially for mobile platforms such as Unmanned
Aerial Vehicles (UAV) with a downward looking camera, or for nonholonomic land
vehicles equipped with forward looking cameras.

During initialization, the pose of each keyframe is represented as a rigid body
transformation ∈ SE(3). Initially, the pose E1,w belonging to the first KF is
assigned the 4×4 identity matrix. FAST features [13] from the 0th pyramid level
are then extracted and their 3D coordinates are initialized as:[

X ′ Y ′ Z ′ 1
]

= E1,w

[
Px

D

Py

D
Pz

D
1
]T
, (7.5)
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where D = 1
focalplanedistance

, hardcoded into the system beforehand through the
camera calibration process. Px and Py are pixel coordinates of the extracted fea-
tures projected onto a normalized image plane using the radial distortion model
of [69].

Similar to PTAM, the mean of the 3D features is then elected to serve as
the world coordinate frame and the entire map is then transformed accordingly.
Once the initialization procedure is complete, the visual SLAM system resumes
its regular tasks, performing camera tracking and scene mapping. In addition
to using DfF for the initialization phase of Vision SLAM, it can also be used to
correct drift in the map and pose throughout the SLAM session.

7.1.4 Pose drift correction

During the map exploration phase of a generic Visual SLAM session, new 3D
landmarks are triangulated based on the tracker’s camera pose estimates. After
some time, the error in the camera pose estimates accumulates and propagates
throughout the map because the erroneous camera poses are used to triangulate
new 3D landmarks; this is known as drift.

Our proposed system makes use of the extra information provided by the focus
measure to correct drifts under special conditions. In contrast to the initialization
procedure, where both the SLAM map and the camera’s pose are not available,
during regular operations both are explicitly present and may be exploited to
our advantage. The camera pose estimate is continuously monitored, and if the
camera is found, at a distance near its focal plane, from a planar scene, the focus
measure is monitored as the camera approaches the scene.

Figure 7.4 illustrates, the configuration required for the system to account
for drift. Here, the observed scene is theorized to be planar and the camera is
expected to be directed and moving along the normal to the scene. To ensure that
these conditions are met, the 3D landmarks of the observed scene are projected
onto every incoming frame. The mean and standard deviation of their coordinates
expressed in the camera frame along the z-direction are recorded. For the above
conditions to be satisfied, the recorded standard deviation should be 0; if that’s
the case, the distance from the camera to the scene is then monitored until the
camera goes from one side of the band into the other, where the band is defined
by the focal plane’s distance ± δ

2
and δ is a user defined parameter proportional

to the depth of field of the lens in use. For our system we empirically select a δ
of 10 cm. The depth distribution of the features in the frame at which the peak
focus measure was found is then compared to the focal plane distance in order
to estimate the drift.
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Figure 7.4: Conditions under which pose drift correction takes place

7.1.5 Implementation considerations

Although in theory, the steps for implementing DfF in the initialization of SLAM
are relatively straightforward, additional care must be taken during implementa-
tion as will be discussed next.

To ensure few outliers and good features to track in the map, extracted fast
features from the first keyframe are sorted according to their Shi-Tomasi score ,
and only the strongest 400 features are used in the map initialization phase. Once
the first keyframe is successfully inserted into map, tracking starts using features
corresponding only at 0th pyramid level, rendering tracking quality fragile. To
alleviate this drawback, the criteria tested for keyframe insertion are relaxed
so that the second keyframe is quickly inserted in the map as soon as enough
parallax is observed, thereby ensuring the population of features at different
pyramid levels. A moving average filter is employed to attenuate the effect of
noisy measurements in the focus measure operator. To account for various noise in
the system, originating from outlier landmarks, the standard deviation constraint
in the drift correction module is relaxed to accommodate scenes with standard
deviations of up to 2 cm.

To ensure quality of the focus measurements during drift correction, the
recorded focus measures are not used if:

� The camera spends too much time within the band of interest.

� The camera exits from the same side of the band.
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� The camera’s heading deviates from the scene’s normal. . . .

7.1.6 Experiments and results

Our proposed method was implemented in PTAM and tested on a laptop with
an Intel Core i7− 4710HQ 2.5GHZ CPU, 16 GB memory; no GPU acceleration
was used.

As table 7.1 shows, the computational cost for each focus measurement re-
quired at every frame is 5.4 ms; once the focused frame is found, our proposed
initialization requires 8.5 ms to kick-start the system, in contrast to the default
Homography initialization of PTAM that requires on average 250 ms. Further-
more, our proposed initialization does not yield multiple solutions in contrast
to the Homography estimation that in some cases may be degenerate or return
ambiguous results. To test our system, three experiments were conducted. Dur-

Table 7.1: Computational cost for initialization

Operation Time(ms)
Focus measurement 5.4

Our initialization module 8.5
Homography initialization 250

ing our experiments, motion was only in the vertical direction, therefore ground
truth was collected manually, by measuring the actual distance between the lens
and the scene.

Experiment 1

Experiment 1 consisted of fixing the camera on a rig that can move in a single
direction normal to a planar scene. This was necessary to validate the theory
and test its application to PTAM in a controlled environment. The camera was
focused beforehand at a distance of 23 cm. Within the controlled confines of a
fixed rig, the experiment was repeated 31 times, either moving towards the planar
scene from a starting position of 30 cm or moving away from the scene with a
starting position of 10 cm, at a constant rate. The actual distance between the
camera and the scene, at which our proposed method initialized the system, was
then recorded.

The obtained results are shown in Figure 7.5 as circles; with a mean of 22.93
cm and a standard deviation of 0.2 cm, they demonstrate the accuracy and
precision of our initialization module. The same experiment was then repeated
but this time the hand-held camera was free to move in 6D. Nevertheless, the user
was asked to avoid high acceleration movements and tilting as much as possible.
In this experiment, the objective was to study the impact of factors such as
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camera orientation changes and motion blur, induced by human interference, on
the initialization quality of PTAM. The obtained results, shown in Figure 7.5 as

Figure 7.5: Experiment 1: System initialization

’+’ yielded a mean of 21.9 cm and a standard deviation of 0.8 cm in contrast to
the actual focal plane’s distance of 23 cm. The decrease in precision and accuracy
of the initialization are accredited to human induced errors such as positioning
of the camera at a tilted angle during the initialization procedure or by moving
too fast, inducing motion blur into the image frames therefore affecting the focus
measurements.

Experiment 2

The second experiment consists of initializing PTAM using our method and then
recording its camera pose measurements and compare them to the ground truth
for both the fixed rig and hand-held cases. While this experiment can be easily
performed in 6D, for visualization purposes, it was conducted along a single di-
mension. After initialization, the scene was explored, by inserting keyframes with
enough parallax between them, to ensure a good baseline for feature triangulation
to take place, before returning to the experiment’s configuration of motion along
a single direction.

The recorded paths are shown in Figures 7.6(a) and 7.6(b). They show that
our initialization module was able to snap to the actual scene’s scale by yielding
pose estimates with an RMSE of 0.49 cm in the confined camera case and 0.62
cm in the hand held version of the experiment. To contrast our obtained results,
the same experiment was repeated, only this time using the default initialization
procedure of PTAM. Figure 7.7 contrasts the scale differences between the path
estimate extracted from PTAM and the ground truth. It is noteworthy to mention
that, if the experiment were to be repeated, using a different baseline between
the initializing keyframes, the scale would have been significantly different since
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(a) Camera fixed on a rig

(b) Hand-held camera

Figure 7.6: Reported paths after initializing using our proposed method

the estimated scale is inversely proportional to the baseline to depth ratio.

Experiment 3

For the sake of testing our system in correcting drift, the following experiment
took place within a single SLAM session. First PTAM was initialized through
our proposed method and the camera was moved along the rig while the camera’s
path was recorded. A case of drift was then simulated by shifting PTAM’s map
by 5 cm and the trajectory was recorded again. Our drift detection routine was
then initiated, as the camera spanned the trajectory of the rig. Once our system
detected and corrected the drift, the camera’s path was recorded again. Our
module detected a drift of 5.1 cm and corrected the map accordingly. Figure 7.8
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Figure 7.7: Path recorded by PTAM initialized using its default method

shows the recorded paths and Table 7.2 reports the RMSE values for each path.

Figure 7.8: Paths recorded during the drift experiment

Table 7.2: RMSE of paths measured in experiment 3

Path RMSE(cm)
Before Drift 0.255

After drift uncorrected 4.7086
After drift corrected 0.2502
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7.1.7 Discussion

The accuracy and repeatability reported in Experiment 1 proves the viability of
the suggested initialization under the constraints, where the camera moves nor-
mally to the planar scene; furthermore, our method demonstrated its strength
in drift detection and correction through Experiment 3, where the system was
able to fully recover from the forcibly induced drift under the proper constraints.
However, as the constraints are relaxed through the hand-held version of Experi-
ment 1, where the camera’s motion is subject to human interference, the decrease
in accuracy and repeatability can be traced back to several factors namely, (1)
motion blur caused by jittering and fast motions of the camera, (2) rotation
deviations from the normal of the scene due to camera handling errors.

Figure 7.9 illustrates the impact of motion blur and noise on the focus mea-
sure; it emphasizes the effect of subjecting the camera to small abrupt motions,
inducing false peaks in the focus measurements. To reduce the effects of jittering

Figure 7.9: Impact of jittering and motion blur on Focus measure.

and motion blur on the system, a down sampled representation of the image may
be used to estimate the focus measure, at the expense of decreasing its sensitivity.

Figure 7.10 illustrates the repercussions of violating the motion along the nor-
mal to the plane constraint. As the camera is tilted at an angle with the normal
to the plane, the reported distance at which the peak focus measure would fall
shorter than the actual focal plane distance, which explains why the mean of the
hand held version of Experiment 1 was shifted below the actual value of the focal
plane. Furthermore, as the camera translates, its field of view increases/decreases;
as such, many objects come into and out of the image, interfering with the glob-
ally estimated focus measure and leading to difficulties in estimating the correct
focus measure peak.

Future venues of this work include an automatic region of interest selection
and tracking criteria to perform selective focus measurements over subsets of the
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Figure 7.10: Impact of jittering and motion blur on Focus measure.

images, reducing the impact of increasing/decreasing field of view on the focus
measure operator. Furthermore, it is interesting to test if obtaining few focus
measures at their associated regions of interest may be extrapolated to yield
accurate depth estimates without the requirement of the camera’s focal plane to
sweep through them and hence relaxing the initial scene’s planarity constraint.

7.2 A suggested visual SLAM pipeline

During the course of this work we outlined, detailed and discussed state of the art
in monocular SLAM. We laid out the fortes and the flaws of various systems and
at this point, a combination of all the different modules, presented by various
systems, can be put together in an effort to establish a new, superior Visual
Slam algorithm. An ideal monocular Visual SLAM is expected to be immune to
lighting changes and dynamic scenes while accurately providing pose estimates
that does not drift over time along with a reliable map representation that is
both computational and memory efficient to handle large-scale environments.

7.2.1 Data type

When choosing the input data type, one must bare in mind the computational
efficiency of indirect methods vs. the systems robustness when subjected to low
gradient scenes. For this purpose, we suggest an alternating direct and indirect
data types similar to SVOs implementation.
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7.2.2 Initialization

Our proposed DfF initialization in the previous section would constitute a vi-
able solution to kick start a visual SLAM system; however, it requires a planar
scene and a camera motion along the scenes normal; one could argue that these
requirements have important degenerative ramifications when violated and the
method require more research for it to become a reliable initialization procedure.
In the shadow of the stated argument and till our DfF initialization matures, a
dual initialization procedure that estimates both a fundamental and a Homogra-
phy, similar to the ORB SLAM’s implementation is suggested, where the system
does not suffer from degeneracies when subjected to planar or non planar scenes
and does not initialize a non-reliable map that requires dozens of frames before
converging.

7.2.3 Data association

Data association methods using feature descriptors are somehow robust against
rotations and illumination changes, however they suffer when the scene changes
considerably, leading to erroneous camera pose estimates hence failure. To ad-
dress these modes of failure, the data association mechanism suggested in ORB
SLAM (BoW matching of high order descriptors) is suggested to be used, where a
features descriptor is updated to the latest descriptor it was successfully matched,
in conjunction with the sampling mechanism employed in RD SLAM, based on
prior outlier measurements, to flag features that belong to dynamic objects.

7.2.4 Pose estimation

While DT SLAMs tracker offer interesting properties, we have no proof that they
constitute a reliable camera tracking mechanism; whenever tracking is lost, the
system re-initialized a new map and tracking continued in the newly spawned map
so that no data is lost and no failure recovery methods are required; however,
as the tracking module failed plenty of times, the result was dozens of meaning-
less sub-maps with no coherent camera pose estimates in the process. For such
purpose, we propose a variant of DT SLAM’s tracker, that incorporates both 2D
and 3D landmarks in a unified framework to estimate the camera pose, however
re-initialization of a new map is deferred until a re-localization mechanism fails
after a significant number of attempts. Furthermore, to overcome the limitations
of tracking methods that employs alternating pose estimate schemes (direct and
indirect), we suggest to separate the two methods, resorting to direct methods
when few indirect features are observable.
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7.2.5 Map generation

To ensure a minimum number of outliers in the map as well as spawning enough
landmarks to maintain tracking quality, the map generation module is suggested
to have a lean appearance change based keyframe selection criteria where new
3D landmarks in the map are triangulated if and only if the 2D feature was
successfully observed in at least 3 keyframes that exhibit a significant baseline
between them.

Furthermore, if the operator desires, an option for a dense map representation
could be enabled through an independent parallel thread that recovers a dense
representation of the map based on the camera pose estimates anchored by the
sparse, feature based tracking module similar to [70].

7.2.6 Map maintenance

Similar to ORB SLAM, a rigorous map point and KF culling criteria is recom-
mended to ensure the health of the map, coupled with an appearance change
detection mechanism, similar to the one employed in RD SLAM, that updates
keyframes corresponding to significantly changed regions; allowing the system to
gain robustness against slowly varying scenes.

To handle sub-maps, the map maintenance module should be equipped, sim-
ilar to DT SLAM, with a mechanism that allows it to fuse multiple, separate
maps into one when enough correspondences are established between keyframes
residing in different maps.

7.2.7 Failure recovery

For a reliable failure recovery procedure, a combination of ORB & LSD SLAM
is desired: upon tracking failure, the system attempts to re-localize using all
keyframes connected to the last accurate camera pose estimate through the co-
visibility graph. If it fails, the entire map is queried, similar to ORB SLAM,
to generate multiple recovery candidates throughout the map. If the system
fails to recovery after the above procedure was repeated many times, the sys-
tem re-initializes a new map and tracking resumes in the new map until enough
correspondences between different sub-maps are established through the map
maintenance module and the sub maps are merged into one in a scheme similar
to DT SLAM’s.

7.2.8 loop closure

A robust loop closure mechanism is mandatory for the system to correct for drifts
accumulated during large scale operations. For such purpose an implementation
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similar to the one presented in ORB SLAM is suggested to complete the suggested
system.
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Chapter 8

Conclusion

Throughout this thesis, we have outlined the fundamental building blocks of a
generic monocular visual SLAM system, thoroughly analyzed the state of the
art in monocular visual SLAM implementations uncovering what gives each sys-
tem its individualities, before comparatively assessing the performance of ORB
SLAM, PTAM and LSD SLAM using our generated dataset dubbed AUB dataset.
Our analysis of all available systems unveiled the skeleton of a new monocular vi-
sual SLAM system that combines the added value of previously released systems
while diminishing their shortcomings. Furthermore, we have suggested a novel
Visual SLAM initialization procedure capable of recovering an accurate metric
scale and proved the viability of the method under the proper constraints. We
have also showcased the implementation of PTAM, a visual SLAM system, in an
augmented reality application for outdoor environments.

Future venues and continuation of this work include the development of our
suggested depth from focus initialization method to overcome the limitations
outlined in chapter VII as well as the implementation of the suggested visual
SLAM system and finding new approaches to address lighting impact on Visual
SLAM system.

Visual SLAM methods have noticeably advanced during recent years; nev-
ertheless, one major problem that needs to be addressed by the Visual SLAM
community is that of changing lighting conditions. The inputs, upon which Visual
SLAM heavily rely on, whether direct or indirect, becomes obsolete as lighting
conditions vary, causing failure due to their inability to establish correspondences
with the map.
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Appendix A

Abbreviations

FAIA Forward additive image alignment
FCIA Forward compositional image alignment
ICIA Inverse compositional image alignment
IAIA Inverse additive image alignment
SLAM Simultaneous localization and mapping
VSLAM Visual SLAM
SfM Structure from Motion
PTAM Parallel tracking and mapping
PTAMM Parallel tracking and multiple mapping
RD SLAM Robust Dynamic SLAM
SVO Semi-direct visual odometry
MAV Micro aerial vehicle
LSD Large scale direct monocular slam
DT SLAM Deferred triangulation SLAM
ORB oriented FAST and rotated binary robust independent elementary features
VO Visual odometry
FAST Feature from accelerated segment test
GPU Graphics processing unit
SIFT Scale invariant feature transform
ZMSSD Zero mean sum of squared difference
MLESAC Maximum likelihood estimation sample consensus
BA Bundle adjustment
KLT Lucas-kanade tracker
KF Keyframe
RANSAC Random sample consensus
SSD Sum of squared difference
SE Special Euclidean group
SO Special rotation group
Sim Similarity transform
BoW Bags of Words
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K-d tree K-dimensional tree
CPU Central processing unit
SBI Small blurry image
ESM Efficient second order minimization
LBA Local bundle adjustment
GBA Global bundle adjustment
PGO Pose graph optimization
AR Augmented reality
VR Virtual reality
RMSE Root mean squared error
DfF Depth from focus
DfD Depth from Defocus
INS Inertial navigation system
UTM Universal Transverse Mercator
GPS Global positioning system
AGAST Adaptive and generic accelerated segment test
ABO Array buffer object
Fps Frames per second
RAM Random access memory
HRM Highly reliable markers
HD Homography decomposition
ED Essential decomposition
RD Random depth
PEM Photometric error minimization
Ialck Image alignment with last correctly tracked frame
Iark Image alignment with random keyframe
Bwpr Bags of words place recognition
Cvmm Constant velocity motion model
Sapp Same as previous pose
Stpf Similarity transform with previous frame
Omf Optimization through minimization of features
Ompe Optimization through photometric error
Pre Pure rotation estimation
Spc Significant pose change
Ssac Significant scene appearance change
2vt 2 view triangulation
2mvt 2 or more view triangulation
Pf Particle filter
2Dlt 2D landmarks triangulated to 3D landmarks
Pfpf Depth map propagation from previous frame
Sbo Small baseline observation
POV Point of view
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