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An Abstract of the Dissertation
of

Amara Adham Al Sayegh for Doctor of Philosophy
Major: Physics

Title: Collective Behaviour of Active Matter:
Transition between States and Cone of Vision Effects

Examples of collective behavior are everywhere around us, from birds flocking,
fish schooling, fireflies synchronizing, ants colonizing, crowds flowing, to individ-
uals self-organizing into neighborhoods in cities. How does this all come about?
Are these forms of collective behavior governed by unifying principles, and can
one apprehend them through mathematical models, with insights, physical? I ex-
hibit serious attempts at dealing with such similar questions, the way a physicist,
armed with computational resources would. Working with agent-based models, I
studied two dimensional swarms, explored emergent self-organized states at low
energies, their stability, their basins of attraction and the transitions between
them. My experiments identify key ingredients for any future first principles the-
ory of such behavior. Then, I shift settings and take a deep look at leader-follower
dynamics, with cone-of-vision type coupling. My work here is motivated by stud-
ies of shoals of fish in tanks. But rather than focusing on leadership behavior
(which is fashionable in this field), I identify leader-avoiding states, which have
as much to say about conditions of effective leadership, as they do about robots
in formation, and/or paradoxical regimes of human behavior in confinement.
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Chapter 1

Introduction

The philosophy of physics since its inception has been linked to the notion of

reductionism: that the world around us can be understood in terms of properties

of simple blocks. The other fundamental notion at the heart of this philosophy is

determinism. This framework which was clearly formulated by Isaac Newton, has

allowed scientists to perceive the world as being the product of cause and effect

interactions between isolated objects, that can be represented by mathematical

equations. This approach has achieved tremendous successes in the mechanical

and industrial sectors, but started to get questioned in the beginning of the

twentieth century with the revolutionary discoveries of relativity and quantum

mechanics. These discoveries gave mankind a new outlook on matter, time, space,

life and the universe, and also paved the road to technological physics including

nuclear energy, semi-conductors, lasers, and new materials superconductive one.

These technologies have changed the methods of our industrial production and

our ways of life. Soon after, around mid-century, the urge to understand non-

linear problems escalated and led to the development of a new type of physics,

computational physics. It has gained its popularity after the great progress it
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achieved in developing chaos theory [1], in discovering solitons [2] and in exploring

the long-time tail [3]. Moreover, with significant advances in the computational

power, the trend spread among various fields such us biology, economics, neural

science and much more.

The world is becoming more and more complex. Globalization, technology

and Big Data present us with new challenges of understanding, designing and

managing systems -classified as complex systems- that are highly interacting,

interconnected, interdependent and non-linear. Few examples are swarms of fish

or birds, ant colonies, ecosystems, brains, crowds, cars and financial markets. The

complexity doesnt come from the large number of constituents, rather from the

complicated interactions between them. We understand systems with avogadro’s

number of particles (1023), yet we are not able to fully comprehend such systems

with few hundreds to few billions agents. Moreover, the fact that they are out

of equilibrium systems makes their study even more perplexing and necessitates

the development of new tools and theories. I can’t agree more with physicists

R. B. Laughlin and D. Pines who stated in their paper entitled “The Theory of

Everything”that:

The central task of theoretical physics in our time is no longer to write down

the ultimate equations, but rather to catalogue and understand emergent behavior

in its many guises, including potentially life itself. We call this physics of the

next [21st] century the study of complex adaptive matter. For better or worse,

we are now witnessing a transition from the science of the past, so intimately

linked to reductionism, to the study of complex adaptive matter, firmly based in

experiment, with its hope for providing a jumping-off point for new discoveries,

new concepts, and new wisdom.

The search for alternative scientific methods better suited to research in
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these complex systems, supported by the paradigm that sees the world as inter-

connected elements whose interactions give rise to the patterns we observe, ne-

cessitated the emergence of specialized research institutes and departments in

universities around the world that bring together researchers from natural sci-

ences, social sciences and even humanities. Thanks to the generous support of

FAS Dean’s Office, I got the chance to take a summer course at one of the lead-

ing institutes in the field, “Santa Fe Institute”, Santa Fe, New Mexico, USA.

There, I learned about different tools implemented in the field such as: agent

based models, cellular automata, genetic algorithms, non-linear dynamics and

far-from-equilibrium thermodynamics. I implemented some of these tools during

my research, and I am curious to explore others in the future.

Collective behaviour of complex sytems is fascinating as well as puzzling for

both scientists and layman. Examples include systems with varying scales such

as: human crowds [4], traffic [5], and autonomous robots [6], in addition to biolog-

ical systems ranging from molecular scale such as actin and tubilin filaments [7],

up to microscopic such as bacteria [8], up to fish, birds flocks [9] and herds. One

asks how can local interactions among agents give rise to ubiquitous emergent

patterns and phenomena? Models are devised to understand and replicate obser-

vations, and to make predictions about these systems’ behavior. These models

provide the ground for the exploration of the most important issues encountered

in artificial life, of the continuous phase transitions observed in biological systems,

and of the behavioral criteria leading to collective behavior in social organisms.

On the other hand, physicists are mainly concerned with building a basic theory

for these systems as new state of matter and classifying the generic types of be-

haviors in terms of non-equilibrium phases and phase transitions, characteristic

instabilities, correlations and responses.
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Models ranging from agent-based, to kinetic, to hydrodynamic were developed

and principles of non-equilibrium statistical mechanics were applied to a collec-

tion of active particles [10, 11, 41, 13, 14, 15, 16, 17, 18, 19, 20, 21]. A living

system termed ”active matter” can be thought of as new kind of material in a

fundamentally new non-equilibrium regime. It is new in the sense that: 1) the

input of energy which drives the system out-of-equilibrium takes place locally and

is thus homogeneously distributed through the bulk of the system, unlike sheared

fluids or three dimensional bulk granular matter, where forcing is applied at the

boundaries; 2)the system is force free and the direction of self-propelled motion

is set by the orientation of the particle itself rather than being imposed by ex-

ternal fields (although some models study the effect of external field on swarms,

nonetheless the latter does not have a major contribution in inducing the mo-

tion). In the following sections we discuss of the models studied in literature as

well as the attempts to find equilibrium thermodynamic analogies.

Agent-based models. In contrast to the field view of traditional fluid dy-

namics, agent-based models consider rule-based interactions among individual

agents. They have some advantage over the continuum approach for two rea-

sons: a- they are closer to the mental models people have for these systems and

b- experimental data maybe more directly mapped onto agents’ behavioral rules

than onto system level equations. Moreover, complex boundary conditions are

much easier to implement in agent based models than in continuum models with

partial differential equations. They are also more appropriate for studying small

populations which cannot be approximated by continuous distributions. In sim-

ulations, agents have different initial conditions and thus different conditions in

their local environments and this makes them more realistic.

The most general ingredients of agent-based models are self-propulsion, dis-
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sipation and three behavioral mechanisms: attraction, repulsion and alignment.

Different models select few or all of the above components and thus they produce

various self-organized states. The first model to report collective behavior is the

Viscek’s model ([13]), which is very basic and uses alignment as the only ingredi-

ent. Each agent is associated with a velocity vector of fixed magnitude. At each

time step, the orientation of each agent is updated to match the mean direction

of its neighbors in the presence of some noise. Different variations of the model

are studied in literature and it is found that the Viscek family of models displays

a well defined transition from a disordered phase to a coherent flock as the noise

level is decreased or the number density is increased. The particle model pro-

posed by Cucker-Smale ([15]) also considers only alignment mechanism to obtain

flocking. Here each individuals adjust their relative velocities with all others in

the swarm, but the strength of this averaging process depends on the mutual

distance; closer individuals have more influence than the far distance ones.

Another family of models is that of systems of self-propelled particles (SPPs),

which includes most of the ingredients mentioned above; i.e the particles are self-

propelled, they interact according to an attractive-repulsive pairwise potential

([17, 18, 19, 20]) and they are subject to a drag force. This family produces a

rich variety of states such as coherent flock, single-mill, double-mills, rigid rota-

tion and droplet. Levine et al. introduced this type of models in [17] and showed

that these simple rules lead to coherent localized self-organizing states that are

stable in the presence of noise and disorder in one- and two-dimensions. They fo-

cus on the single mill (vortex) state, which appeared for the first time without the

need of a confining boundary or of a rotational chemo-taxis. Through a system-

atic numerical exploration of the parameter space of the same model, Touma et

al. identified in [18] different types of collective behavior and summarized results
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in a phase diagram where regions over which each state occur and the transition

lines between the states are specified. The analysis of phase-transitions between

ordered and disordered states which are driven by self-propulsion to viscosity

ratio, is supported by a thermodynamic analogy with temperature-driven tran-

sitions between liquid and gaseous states. In [20], another member of the family

that implements the same Morse potential but different propulsion and friction

is introduced.

Agent-based models discussed above are able to catch the essence of certain

behavior observed in nature, but they are clearly far from being realistic in their

basic form. There are various attempts to make these models more realistic by:

adding stochasticity, implementing cone of vision, imposing external fields or/and

adding non-markovian terms. On the other hand, agent-based models are faced

with the limitations of speed or memory of current computers as the number of

members in the swarm increases, so continuum models come to rescue.

Continuum approaches. Instead of tracking trajectories and velocities of

individual agents, kinetic models, following the strategy from kinetic theory of

gases, describe the collective behavior encoded by the density distribution whose

evolution is governed by partial differential equation. In the traditional language

of stochastic processes this amounts to using the Fokker-Planck equation instead

of the Langevin equations for individual particle trajectories. The change in

time of the density distribution depends on transport (agents moving freely) and

interactions with others.

The connection between Langevin and Fokker-Planck equations was used to

obtain an analytic solution to a restricted type of open out-of-equilibrium swarm-

ing systems, namely the canonical-dissipative systems [22]. The basic assump-
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tion on both the conservative and the dissipative elements of the dynamics of

such systems, is that they are determined by invariants of motion. The complex

dynamics is mapped to analytically tractable model. The equations of motion

of a tractable model with Hamiltonian H is extended by adding the propulsion-

dissipation term (which is only a function of H or some other invariant of motion).

Langevin equations are then obtained by adding a white noise terms and even-

tually the corresponding Fokker-Plank equation for the probability distribution

of many-particle system is written. It is proved in [22] that the obtained Fokker-

Plank equation has an exact stationary solution which turns out to be a direct

extension of the equilibrium canonical ensemble. This approach is very clean but

the basic restriction that the propulsion-friction terms must be expressed only in

terms of the constants of motion of the underlying Hamiltonian system it is too

strong to cover realistic swarming models.

We close the discussion of continuum models by introducing the hydrody-

namic ones. They are obtained by coarse-graining the equations of motion of

individual agents and studying the flow of the swarm in terms of velocity mo-

ments of the particle distribution function. The system is now represented by the

coupled fields of the density and momentum density governed by the continuity

equations and momentum equation. This approach presents a computational ad-

vantage for simulations but is less illuminating in deciphering the basic interaction

mechanisms in natural settings.

H-stable and catastrophic potentials. The notion of H-stability was in-

troduced in the classical equilibrium statistical mechanics in connection with the

thermodynamic limit definitions [23]. A system of N interacting particles is said

to be H-stable if the potential energy per particles is bounded below by a con-

stant which is independent of the number of particles present; thus the average
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potential energy per particle remains finite in the limit of N →∞. H-stability is

necessary and sufficient for the existence of the thermodynamic limit. Potentials

that are not H-stable are called catastrophic. H-stability was discussed in con-

nection to the agent-based models of swarms in [19, 20]. It was shown that the

majority of the self-organized states are observed when the interaction potential is

catastrophic. Vortex states with small number of particles can exist for H-stable

potentials but do not survive when the number of particle increases beyond a

certain value. Thus the existence of self-organized dynamic states precludes the

”normal” thermodynamic behavior and vice versa. H-stability criterion is also

linked to the validity of the continuum kinetic theory approach. As shown in [20]

the continuum model does not approximate the particle dynamics when interac-

tion potential is H-stable and it does when the potential is catastrophic.

My work. The work which is to be presented in this thesis is solely based on

agent-based models and it is split into two parts. In the first part, I study two

closely related agent-based models of self-propelled particles in the low energy

regime and find the generic characteristics common to both. Besides, I classify

the obtained states, find their life-times and characterize the transitions between

them. Eventually, I derive the potential of the mean force that drives the change

in an order parameter characterizing all of the obtained states. In the second

part, I develop a minimal model that focuses on two key aspects of collective

behavior, namely, visual cues and leader-follower dynamics. On one hand, there

is a growing research suggesting that visual cues are the main mechanisms for

information transfer in fish schools. On the other hand, there is an increasing

interest in understanding the conditions for following the leader in biological and

social systems. The unexpected non-monotonic behavior of the follower as a

function of one control parameter makes the focus of this study. Although the
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constructed model is too simplified to mimic reality closely, it lies at the interface

between different interdisciplinary fields and its results might have significant

implications in the study of complex systems.
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Chapter 2

Low-energy States in Swarms of

Self-Propelled Particles

2.1 Introduction

This chapter studies the generic characteristics of two closely related determin-

istic models of self-propelled particles (SPPs) that interact according to an at-

tractive/repulsive potential and are subject to a dissipative force [17, 18, 19, 20].

These terms proved to be sufficient to give rise to collective self-organized mi-

gration such as the coherent flock, single mill, double mills, ring, droplet and

rigid-body rotation. The most common potential used is the attractive/repulsive

Morse potential, but other forms of repulsion (hard core) are also checked to

produce the same qualitative results [17]. The two models that we study differ

in their prescription of particle propulsion and drag. The first, which we refer to

as the linear model, has constant self-propulsion and is subject to viscous drag

proportional to ~v [18]. The second, which we refer to as the cubic model, has self

propulsion proportional to its speed and is subject to drag opposing its motion
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and proportional to ~v3 [19, 20]. Here, one asks whether these differences will lead

to different self-organized states or not.

Comparing both models, considerable overlap of the states is observed but

the differences are also quite noticeable. In particular, the low energy states re-

ported for the cubic model are the coherent flock and the rigid-rotation which

have crystalline-like lattice structures. Instead, compact disk states with random

velocities are reported for the linear model. The relaxation of the velocity mag-

nitude to the terminal speed is linear and independent of self-propulsion in one

model, while it is non-linear with linearized rate proportional to propulsion in

the other. In literature, each model is studied using different set of parameters

with different physical meanings which makes understanding the discrepancies

difficult. Although phase diagrams representing different cross-sections of the

entire parameter space are constructed, the picture is still not complete because

of the complexity of the parameter space. It is not clear whether the reported

differences between the two models observed at low energies have physical origins

or are just the result of looking at different regions of the parameter space.

There are several questions that motivated our work, starting with the sim-

plest ones: why would a state appear in one model but not in the other? What is

the role played by the velocity dependence of the the dissipative force in approach-

ing the final state? More specific questions relate to the possibility of competing

self-organized states once the model parameters are fixed: why would the system

end up in one state rather than the other for the same set of parameters? What

is the probability of ending up in each state? How stable each state is? What

types of transitions are involved? Can we deduce the final outcomes based on

the transients? Finally, taking a broader view one asks if there is a mechanism

for relaxation to the final state which is not model-specific, and whether there
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is an appropriate extremal principle for the selection of a final steady state? In

other words, is there a natural thermodynamic potential for non-equilibrium self-

propelled systems that controls the relaxed phases, in the same way that such

potentials operate in equilibrium thermodynamics? This is admittedly a chal-

lenging program. Here we report on considerable progress in answering most

of the questions, while setting stringent constraints on any further attempts to

answering more thorny issues.

The chapter is organized as follows. In section 2.2 we start by comparing the

equations of motion and the resultant steady states for the two models under

study. We employ the re-scaled dimensionless parameters that are equally appli-

cable to both models. The re-scaled form provides a solid basis for comparing the

models and allows a natural mapping between two sets of original parameters.

We limit our investigations to the high-viscosity regime characterized by the ex-

istence of three competing low-energy states, namely the coherent flock, the rigid

rotation, and the random droplet. In section 2.3 we characterize the properties of

each state and attempt to quantify their respective basins of attraction. We also

address the question of their stability and conclude that the random droplet is

a transient state, although possibly a long-lived one. We report the first-passage

time from the random droplet to either of the two true steady states, and demon-

strate that both models are very close both in terms of the attraction basins

and the lifetimes of the random droplet transient. In section 2.4 we investigate

the transition from disordered to ordered states, both by following single particle

trajectories, and studying the evolution of relevant order parameters with time.

We present the equation of motion for a composite scalar order parameter and

interpret it as a Langevin-type equation containing the mean force and a rapidly

fluctuating noise. We evaluate the potential of mean force numerically and ad-
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dress the question of meta-stability of the random droplet. In section 2.5, we

discuss and summarize our results.

2.2 The Model

We consider N agents as point particles with masses mi, position vectors ~ri, and

velocity vectors ~vi. In the following we discuss the re-scaling procedure taking

the cubic model as example. The particles interact with each other according to

the Morse potential. The Newtonian equations for the ith particle are given by:

d~ri
dt

= ~vi

mi
d~vi
dt

= (α− β|~vi|2)~vi − ~5~ri
Ui (2.1)

where,

Ui =
∑
i 6=j

(
−Cae−

|~ri−~rj |
la + Cre

−
|~ri−~rj |

lr

)
(2.2)

is the Morse potential, Ca and Cr specify the respective strengths of attraction

and repulsion while la and lr specify their respective length scales. Competition

between the self-propulsion and drag term forces the speeds to relax to their

terminal value (vt =
√

α
β
), while the Morse potential in biologically relevant

cases combines shorter-range repulsion with a longer-range attraction. In [19]

the final patterns obtained were classified according to the dimensionless ratios

C = Cr
Ca

and l = lr
la

. As discussed in [19], the biologically relevant range, C > 1

and l < 1, is split in two parts: H-stable for Cl2 > 1 and catastrophic for Cl2 < 1,

the latter being particularly important for self-organized states. Following [24],
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we introduce the rescalings:

~ri = la~r′i

~vi = vt~v′i

t = t∗t′

where vt =
√

α
β

is the terminal speed, la is the characteristic length of attraction

and t∗ is to be defined later. Substituting in Eqs. (2.1) we obtain:

d~r′i
dt′

=
t∗

la

√
α

β
~v′i = t∗

vt
la
~v′i

d~v′i
dt′

=
αt∗

m
(1− |~v′i|2)~v′ −

Cat
∗

mla

√
β

α
~5~r′i

U ′i (2.3)

where

U ′i =
∑
i 6=j

(
−e−|~ri−~rj | + Ce−

|~ri−~rj |
l

)
(2.4)

Writing the equations in the dimensionless form above, three characteristic times

appear: 1) tkin = la
vt

is the time required to cover the characteristic distance of

a swarm by a freely moving particle, 2) trel = m
α

is the time of relaxation to

terminal speeds due to the propulsion/ friction terms, and 3) tpot = mla
Ca
vt is the

characteristic time for a noticeable momentum change due to the Morse potential

forces. The choice of vt as the unit speed and la as the unit length makes t∗ = tkin

the unit time. Dropping the prime, Eq. 2.3 is given by:

d~ri
dt

= ~vi

d~vi
dt

= γ1(1− |~vi|2)~vi − γ2 ~5~ri
Ui (2.5)

14



where γ1 = tkin
trel

and γ2 = tkin
tpotential

are the corresponding rates of the change of

momentum. In this way the initial seven parameters of the model (N, la, lr, Ca,

Cr, α, β) are reduced to two characteristic time ratios γ1 and γ2, a length ratio

l = lr
la

,an energy ratio C = Cr

Ca
, and N . For the linear model, the equation of

motion of the ith particle is given by:

mi
d~vi
dt

= a
~vi
|~vi|
− b~vi − ~5~ri

Ui (2.6)

Here the terminal velocity and speed relaxation time are given by different ex-

pressions: vt = a
b

and trel = m
b

, while the other two characteristic times tkin and

tpot are defined as before in the cubic model. Eventually, the reduced equations

of motion take a very similar form (see appendix A for details):

d~ri
dt

= ~vi

d~vi
dt

= γ1(1− |~vi|)
~vi
|~vi|
− γ2 ~5~ri

Ui (2.7)

where γ1 = tkin
trel

and γ2 = tkin
tpotential

have exactly the same physical meaning as in

the case of the cubic model. We are interested in studying high viscosity limit

with low kinetic energy states. High viscosity implies large relaxation rate γ1,

while large potential forces imply large rate γ2. The values of the parameters

used in this study are as follows: C = 2 and l = 0.25 corresponding to the

catastrophic part of the biologically relevant region; N = 100, and γ2 = 112.

The last parameter, γ1, serves as the relevant control parameter and is varied

in the range γ1 ∈ [1, 90] i.e. with γ2 > γ1. We solve Eqs. (2.5) and (2.7) in

two dimensions numerically using (4, 5) Runge-Kutta time discretization solver

in Matlab R2014lb. Initial x− and y− components of positions and velocities are
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chosen randomly from uniform distributions in the range: −1 < xi < 1, −1 <

yi < 1, −1 < vxi < 1 and −1 < vyi < 1. For each value of the control parameter

γ1, 50 trajectories with different initial conditions are generated. The trajectory

length is typically tfinal = 100 (in units of tkin) although longer trajectories up

to tfinal = 500 are studied in some relevant cases.

2.3 Bound States and Basins of Attraction

Low energy states for the model with Morse potential were identified in [20] as

a coherent flock and a rigid rotation state, while the flock and a random droplet

were observed in [18]. Although both papers study Morse potential models, the

exact form of the self-propulsion and friction terms differed. We demonstrate

here that all three low energy states emerge irrespective of the specific form of

the propulsion/friction term and their basins of attraction vary with the change

in the control parameter in a very similar way. In the following subsections we

initially characterize each of these states using two order parameters P and M

defined as:

P =
|
∑

i ~vi|∑
i |~vi|

M =
(
∑

i ~ri × ~vi).~k∑
i |~vi||~ri|

(2.8)

For the coherent flock P = 1 and M = 0, for the perfect rigid rotation P = 0 and

M = ±c where c is a constant close to 1, while for the random droplet both P and

M are consistent with the notion of Maxwellian particle velocities as discussed

later.
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Figure 2.1: Coherent flock.(a)Velocity vectors superimposed on the positions of
particles in a snapshot;(b) lattice positions in a snapshot. (γ1 = 40)

2.3.1 Coherent Flock

The coherent flock has a ring-like lattice structure corresponding to the La-

grangian configuration with ∇U = 0 so that the net potential force acting on

each particle sums up to zero. Once the particles reach these lattice positions

and their velocities are aligned they move together with a constant terminal ve-

locity (self-propulsion and friction terms cancel up), all relative distances being

fixed. Figure 2.1 shows the configuration of a coherent flock and the vectors

are the velocity vectors in a fixed frame of reference (panel a), and the lattice

positions in the co-moving frame of reference (panel b). Note that the flock is a

perfect state with a δ− peak distributions of the translational order parameter

P = 1 and the rotational order parameter M = 0; there are no fluctuations in

either positions or velocities. This is true for both linear and cubic models.
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2.3.2 Rigid Rotation

A perfect rigid rotation state is a frozen-configutration state where particles ro-

tate all together at a constant angular velocity ω about the center of mass. In

a co-rotating frame the configuration would be static with the particles fixed at

positions slightly deformed from the non-rotating Lagrangian configuration to

compensate for the centrifugal forces and unbalanced propulsion/friction terms.

Rotating Lagrangian configurations can be obtained numerically from the station-

arity conditions as discussed in appendix C. However, our dynamic simulations

produce rigid rotation states that are not perfect. Particles are found to rotate

around the center of mass with small non-linear oscillations about mean positions

and velocities while the angular velocities are not exactly equal. This imperfec-

tion is reflected in the distribution of the rotational order parameter M , see panel

(b) of Fig. 2.2, which has a pronounced width rather than being sharply peaked.

As is the case of the coherent flock state, the particles are also arranged in 6 rings

(panel (c) of Fig. 2.2). The mean speed of particles as a function of the radial

position is shown in panel (d) of Fig. 2.2. The relation is linear with constant

of proportionality ω(v = ωr) for the first 3 rings with saturation at the unit

terminal speed for the outer rings. It is also observed that the rotating states

become more and more distorted for larger values of the control parameter γ1

transforming into a single mill with empty center for large γ1.

2.3.3 Random Droplet

The random droplet state turns out to be not quite random, at least as far as

particle positions are concerned. A snapshot of the configuration with velocity

vectors superimposed on the positions of the particles (panel (a) of Fig. 2.3)
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Figure 2.2: Rigid rotation.(a)Configuration with velocity vectors superimposed on
positions; (b) distribution of order parameter M which has a non-zero width rather
than being peaked, indicating that the rigid rotation state is not a perfect state;(c)
radial density of particles showing six rings;(d) distribution for the fluctuation-averaged
velocity as a function of radius in the center of mass frame as a function of radius,
showing a linear dependence for the first three rings after which the velocity saturates
at the terminal velocity.(γ1 = 25)
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indicates that although velocities have random orientations, particles are confined

inside a circular drop of radius close to 1 (i.e. attraction length la ). Moreover,

following the trajectories of all particles over time indicates that the particles,

rather than being randomly distributed, are mostly localized on rings that keep

some memory of the Lagrangian configuration (panel(d) of Fig. 2.3). The outer

rings are well separated in contrast to the inner ones. The trajectory of a single

particle shows that after a short initial transient the particle mostly moves along

well defined rings of small thickness with occasional jumps from one ring to

another (Fig. 2.3 (d)). The distribution of the rotational order parameter M is

peaked at zero and is well represented by a Gaussian distribution with mean zero

and a standard deviation σ that depends on the value of γ1 ,see Fig. 2.3),panel

(c). On the other hand the distribution density of the flocking order parameter

P is that of a modulus of a two-component Gaussian random variable, similar to

a Maxwell speed distribution in 2d, see panel (c) of Fig. 2.3.

2.3.4 Basins of attraction and transient state lifetimes

An estimate of the size of the basin of attraction of each of the three states dis-

cussed above is obtained statistically by calculating the probability of obtaining

a given state at the end of a simulation starting with random initial conditions.

The statistics is based on 50 independent simulation runs with random initial

conditions for each value of the control parameter γ1 (velocity relaxation rate),

displayed in Fig. 2.4 for both the cubic (panel a) and the linear model (panel b).

It is clear that the random droplet state dominates at the lowest values of the

control parameter γ1 = 1, 2 as well at the largest values starting from γ1 = 80.

At intermediate values of γ1 the share of the random droplet is negligible and

20



Figure 2.3: Random droplet.(a)Configuration with velocity vectors superimposed
over positions; (b) distribution of order parameter P fitted with a Rayleigh distribution
(Maxwell speed distribution in 2d); (c) distribution of parameter M fitted with a Gaus-
sian with zero mean;(d) superimposed single particle trajectories; the particles spend
most of the time close to rings that pass through the lattice points of the Lagrangian
configuration.(γ1 = 80).
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Figure 2.4: Probability of obtaining each of the three organized states
as a function of γ1. (a)The linear model; (b)the cubic model. The length of the
trajectory is tfinal = 100tkinetic. Statistics is based on 50 runs with different random
initial conditions at fixed control parameters.

the outcomes are either a flock or a rigid rotation state with probabilities be-

ing roughly 2/3 and 1/3, respectively. The data for the cubic and the linear

models (panels a and b, respectively) are quite close; the statistical error for 50

distinct trajectories is rather pronounced but better statistics were out of reach

with available computational facilities.

The data of Fig. 2.4 are based on trajectories of length tfinal = 100 in units of

tkin. Longer simulations reveal that the random droplet is a long-lived (possibly

meta-stable) state rather than a true stationary state for the system; i.e random

droplets are formed relatively fast but if we wait long enough all of them evolve

into either a flock or a rotating state. Thus the apparent statistics describing the

basins of attraction is strongly affected by the lifetime of the random droplet as

compared to the duration of the simulation run, and the observed predominance

of the random droplet state at the lowest and highest values of γ1 is of a purely

kinetic nature. The waiting time to observe a transition to any of the true

stationary states turns out to be strongly dependent on the control parameter

γ1. Note that for the same fixed set of parameters we get a distribution of first
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passage times corresponding to different initial conditions. Figure 2.5(a) gives

the mean first passage time for the cubic model as a function of γ1 along with

the maximum and the minimum waiting times observed in a set of 50 runs. The

dependence is strongly non-monotonic with three distinct regimes. For small

values 1 < γ1 < 20 the mean of the waiting time starts at very large values and

drops with the increase in γ1. In the intermediate range 20 < γ1 < 60, the mean

of the waiting time is more or less constant and much smaller than the trajectory

length. For γ1 > 60 the mean waiting time increases dramatically with increasing

γ1. For comparison, a similar graph for a linear model is shown in panel (b). Here,

only the mean first passage time is displayed. Taken together, Figs. 2.4 and 2.5

demonstrate that the behavior of the two models (linear and the cubic) in the

high viscosity, low-energy regime is essentially the same. So, in the more detailed

analysis presented below we discuss only the cubic model as a representative the

class of Morse potential swarms.

2.3.5 Linear Stability

The droplet state turns out to be a transient, albeit a long-lived one in some

range of the control parameter. Together, Figs. 2.4 and 2.5 show that the linear

and the cubic models are qualitatively and even semi-qualitatively very close once

they are characterized in terms of the re-scaled parameters γ1 and γ2. The fact

that random droplet and rigid rotation were reported differently in the literature

can be readily understood. Since only relatively small parts of the parameter

space were explored it was easy not to notice the random droplet in the range

20 < γ1 < 60 where its lifetime is quite short, and conversely, to overlook the

rigid rotation for γ1 > 80 when the sampling trajectories were not long enough.
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Figure 2.5: First passage times for transition from a random initial con-
dition to a final steady state vs. the velocity relaxation rate γ1. (a)Mean
of first passage time for the linear model with the number of particles N = 50; (b)the
maximum, the minimum,and the mean values of first passage times obtained from a set
of 50 independent runs for the cubic model are shown by dashed green, dashed-dotted
red and solid blue curves, respectively. The inset displays the same data on a log scale
indicating relative broadening of the first passage time distribution with the increase
in γ1.

To understand better the properties of the two true stationary states we present

their linear stability analysis. Phase space configurations, linearized equations of

motion, and the relevant eigenvalue problem for the cubic model are described in

appendix B. The main results are qualitatively similar for both models and can

be summarized as follows.

Coherent flock The flock is stable at any values of the control parameters γ1

and γ2. The stability matrix has 4 zero-eigenvalue modes representing 2 indepen-

dent uniform translations, one virtual rigid-rotation displacement for coordinates

and one uniform rotation for velocity vectors. All the other eigenvalues have neg-

ative real parts as displayed in Fig. 2.6 (b) vs. the control parameter, γ1. The

real parts (λr) are confined between two lines: λr = 0 and λr = −2γ1 where the

latter is the line of the mode with fastest relaxation. The largest real-part eigen-

value describes the relaxation of the slowest mode and is shown in Fig. 2.6 (a) as

a function of the control parameter. The curve actually consists of two branches,
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Figure 2.6: Flock stability.(a) Largest non-zero eigenvalue versus γ1 for the coherent
flock state; (b) all 400 eigenvalues vs γ1 for the stability matrix of a coherent flock of
100 particles.

the first one being linear in γ1 and the other branch appearing as a result of a

bifurcation in a pair of complex-conjugate eigenvalues. A more detailed analysis

of the eigenvalues and their bifurcations falls outside the scope of this paper.

Rigid Rotation A perfect rigid rotation state can be constructed by deform-

ing a Lagrangian configuration as described in the appendix C. In the limit of

γ2 >> 1 and γ2 >> γ1 these deformations can be arbitrarily small. There are

3 zero-value eigen-modes (compared to the flock state,the uniform rotation in

the velocity space is missing). However, the state turns out to be always linearly

unstable. The real part of the eigenvalue describing the fastest growing perturba-

tion is displayed in Fig. 2.7 as a function of γ1. Small deviations from the perfect

rotating state in either coordinates or velocities grow exponentially with time

but eventually saturate due to non-linearities in the full equations of motion, as

illustrated in Fig. 2.8 panels (a) and (b). With the increase in γ1the linear insta-

bility becomes more pronounced which is consistent with the shrinking basin of
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Figure 2.7: Largest eigenvalue versus γ1 for the rigid rotation state. The
relationship is linear and the graph passes through the origin; i.e. for arbitrarily small
γ1 the largest positive eigenvalue which represents the linear growth of perturbations
of the perfect rigid rotation becomes very small.

attraction of the rigid rotation state as seen in Fig. 2.4, and stabilization occurs

with larger deviations from the perfect rigid rotation. As the viscous velocity

relaxation rate γ1 approaches the velocity change rate due to potential forces γ2

the rotating states becomes closer to a mill with all speeds maintained close to

the terminal value.

2.4 Transition mechanisms

Above, we noted a marked difference in the mean waiting time to observe a

transition to one of the two steady states (flock or rigid rotation), and studying

the dependence of this transition time with γ1. Here, we point out that the

transition mechanism itself is different for different values of γ1. Indeed, two types

of transitions are observed and discussed in the following subsections: 1) Gradual
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Figure 2.8: Growth of perturbations of the perfect rigid rotation state
for γ1 = 0.08 and γ2 = 83.(a) Speed of a single particle as a function of time;
(b) radial position of a single particle as a function of time. Linear instabilities grow
exponentially, but are then stabilized by non-linear terms.
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Figure 2.9: Slow gradual transition to flock.(a) Typical single particle trajec-
tory with each color representing a part of the trajectory and the order in time is:
cyan,red, green, magenta and blue; (b)time evolution of the flocking order parameter
P as the swarm transits gradually from a random initial condition to a coherent flock.
(γ1 = 9)

slow transition for very small values of γ1 and 2) sharp transition following the

long-lived random state for large values of γ1.

2.4.1 Case 1: Slow Gradual Transition

The transition is studied by following the time evolution of the order parameters

P and M for the coherent flock and the rigid rotation respectively. We observe

that for small values of γ1 (2 < γ1 < 20), the transition to the final state is quite

slow and proceeds gradually. The relevant order parameter grows in a quasi-

monotonic way from a typically low initial value to the final value characterizing

the steady state, as illustrated in Fig. 2.9 for a transition to a flock and in Fig.

2.10 for a transition to a rigid rotation state. Initial stage is accompanied by some

noise but deterministic evolution dominates. Single-particle trajectories in panels

(a) are mostly confined to rings with a few ring-to-ring jumps due to collisions.
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Figure 2.10: Slow gradual transition to rigid rotation. (a)Typical single
particle trajectory, see Fig. 2.9 for the color scheme; (b) time evolution of the order
parameter M as the swarm transits gradually from a random initial condition to a rigid
rotation.(γ1 = 7)

An important characteristic of this transition mechanism is the proportionality

of the mean first passage time to the velocity relaxation time trelaxation = 1
γ1

, as

displayed in Fig. 2.11.

2.4.2 Case 2: Sharp Transition

For intermediate and large values of γ1 we observe that the system resides in

the random droplet state described earlier for a long time before undergoing an

abrupt jump-wise transition to the final state. The jump itself occurs over a very

short time interval. Typical graphs representing the evolution of the relevant

order parameter as well as single-particle trajectories are shown in Figs. 2.12

and 2.13. The most prominent feature of the evolution curves is their strongly

stochastic nature as compared to much smoother evolution demonstrated in the

previous sub-section. A standard approach in analyzing stochastic evolution in-
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Figure 2.11: Mean first passage time to an organized steady state vs.
the velocity relaxation time trel = 1

γ1
. The range displayed corresponds to γ1

between 2 and 20.

volves filtering out the noise to define the mean force. If the mean force can be

described by a potential, certain conclusions may be made about the transition

dynamics. In particular, the question of whether a long-lived transient state is

actually meta-stable can be addressed.

2.4.3 Potential of mean force

In an attempt to understand the transition mechanisms and the broad variation

of the lifetimes we consider the potential of mean force as a function of the order

parameter borrowing an analogy from the non-equilibrium free energy first intro-

duced by Landau in his theory of phase transitions. From a dynamical point of

view, this is also related to the approach whereby the order parameter is treated

as a ”slow” variable and the conjugate net force is split into a systematic compo-

nent causing deterministic drift and a rapidly fluctuating zero-mean component

related to much faster dynamic variables. Our original choice of two order pa-

30



Figure 2.12: Sharp transition to flock. (a)Typical single particle trajectory for
the long-lived random state with each color representing a part of the trajectory, see
Fig. 2.9 for color scheme; (b) time evolution of the flocking order parameter P as the
swarm transits from a random initial condition to a coherent flock. (γ1 = 70)

Figure 2.13: Sharp Transition to rigid rotation.(a) Typical single particle tra-
jectory for the long-lived random state,see Fig. 2.9 for the color scheme; (b)time evo-
lution of the order parameter M as the swarm transits from a random initial condition
to a rigid rotation. (γ1 = 75)
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rameters, P and M , presents a big challenge for carrying out this program: a

function of two variables is quite difficult to quantify reliably based on numer-

ical data especially if a noise-filtering stage is involved. An additional (though

not a principal) complication is that the mean force defined as a function of two

variables would be generally non-potential. To overcome these difficulties, we in-

troduce a new scalar order parameter, s, able to discriminate between the flock,

the rigid rotation state and the random droplet. It is defined as the particle

velocity dispersion in the center-of-mass reference frame,

s =

∑
i ṽ

2
i

N
(2.9)

where ṽi = ~vi −
∑

i ~vi
N

. Clearly, in the coherent flock, s = 0; simulation data

show that for the rigid rotation state s take values in the range[0.87, 0.99], while

the random droplet is characterized by s ∈ [0.55, 0.80]. Figure 2.14 gives the

equilibrium value of the order parameter at the three states studied as a function

of model parameter γ1. Simulations are done at different values of γ1 and it

is observed that s for the rigid rotation and the droplet states increase with γ1

within the ranges mentioned above. The generalized force conjugate to the chosen

order parameter is defined on the basis of the evolution equation for s:

ds

dt
=

2

N

∑(
γ1(1− v2i )~vi − γ2 ~5iU

)
.~vi

−2γ1

(
1−

∑
i ṽ

2
i

N
− 2

ṽ2i cos
2(θi)

N

)
m2

+2γ1
|ṽi|3cos(θi)m

N
+ 2γ1m

4

=
−2γ1
N

∑
i

(
ṽi

4 +
(
3ṽi

3cosθi − 2ṽicosθi
)
m+ 2ṽi

2cos2θim
2
)

−2γ1
N

(∑
i

4ṽicosθim
3 + 2γ1(1−m2)s+

∑
i

γ2ṽi. ~5iU

)
(2.10)
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Figure 2.14: Average value of the order parameter s for the 3 organized
states as a function of γ1.

where ~m =
∑

i ~vi
N

and θi is the angle between ṽi and ~m. This can be interpreted as

a Langevin-type equation for motion, s representing a slow degree of freedom and

the right-hand side representing the conjugate force, f , which contains a smooth

deterministic contribution representing the mean force fmean, and a rapidly vary-

ing noise-like contribution with zero mean. In contrast to a standard Langevin

equation for a Brownian particle, the noise is not thermal but is generated by

intrinsic swarm dynamics. Filtering out the noise is achieved by the following

procedure: the net force f is evaluated along the trajectory in the course of sim-

ulation along with the instantaneous values of the order parameter s. This gives

an implicit function f(s) parameterized by time. The values of the force at fixed

s are averaged within a single simulation trajectory, and then over 50 trajectories

with random initial conditions at fixed control parameter value. The averaged

data for fmean(s) is then integrated to give the potential of mean force, V (s)

satisfying dV
ds

= −fmean.
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Figure 2.15: Instantaneous Forces and Potentials of mean force as a
function of s at γ1 = 30 and γ1 = 75. Panels (a) and (c) give the instantaneous
forces as a function of s for γ1 = 30 and γ1 = 75 respectively. The noise is dependent on
s, it is zero at s = 0 (coherent flock state) and very small around s = 0.9 (rigid rotation
state). Panels (b) and (d) give the corresponding potentials of mean forces which have
two distinct minima characterizing the coherent flock (s = 0) and the rigid rotation
state (s = 0.9 for γ1 = 30 and s = 0.99 for γ1 = 75) and a flat maxima characterizing
the random droplet state (s = 0.63 for γ1 = 30 and s = 0.77 for γ1 = 75 ).
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Figure 2.15 displays the numerical data for the potential of mean force V (s)(panels

(b) and (d)), and the instantaneous random force as a function of s (panels (a)

and (c)) for two values of the control parameter, γ1 = 30 and γ1 = 75, represent-

ing the cases of a short-lived and a long-lived state, correspondingly. The most

important result of this approach is the appearance of the three states discussed

in this paper. The potential of mean force has two distinct minima, representing

the coherent flock (at s = 0) and the rigid rotation state (near s = 0.9 for γ1 = 30

and s = 0.99 for γ1 = 75 ) consistent with their stationarity. On the other hand,

the random droplet range (indicated by the relevant arrow) does not show any

pronounced minimum which makes it difficult to classify this state as meta-stable.

Indeed, in the panel (b) of Fig. 2.15 the random droplet range corresponds to

a clear maximum. Certain change in the shape of the mean force potential can

be seen with the increase in the control parameter γ1 which leads to a longer-

living transient state (panel (d)). First, the rigid rotation minimum grows more

shallow, which is consistent with stronger velocity fluctuations mentioned above.

Second, in the random droplet range of s the curvature of the potential decreases

suggesting a very small mean force in a relatively broad range of s values. Panels

(a) and (c) indicate that the magnitude of the noise component in the force is

by itself strongly s-dependent. In particular, in the range corresponding to the

droplet state, the noise amplitude is a maximum while upon approaching either

of the steady states the noise goes down dramatically vanishing completely at the

flocking state minimum. This behavior makes a marked difference in comparison

to a more familiar thermal noise. We propose that the evolution of the order

parameter is governed by an advection-diffusion type equation. At low values of

the control parameter γ1 the diffusive mechanism is relatively unimportant, and

the evolution is predominantly deterministic. On the other hand, at large γ1 the
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mean force is much smaller, and the evolution of the order parameter is mostly

diffusive. This results not only in a sharp increase in the mean first passage time

but also in a broader distribution of the first passage times as seen in the inset

of Fig. 2.5 with its logarithmic scale.

2.5 Summary and Discussion

Simulations of swarms with Morse potential interactions between particles were

reported for two related models [18, 19] differing in the exact form of the self-

propulsion and friction terms which we referred to as the linear and the cubic

models. The self-organized states reported for these models coincided only par-

tially. A more systematic comparison was difficult since the parameters defining

the self-propulsion and friction strength in the two models differed even dimen-

sionally. However, parametrization in terms of the three characteristic times tkin,

trel, tpot introduced in [24] and utilized in the present paper in the form of the di-

mensionless rates γ1 and γ2 allows a unique mapping between the models. With

this model-free parametrization, the observed low-energy states, their relative

basins of attraction, stability, and the lifetimes of the transient random droplet

state are essentially the same for the two models. One is tempted to consider

this behavior as generic pertaining to a class of SPP models with Morse potential

interaction.

Our linear stability results, when coupled to our extensive numerical simula-

tions of swarms and their relaxed states, make for nonlinear stability statement

on flocks and rigid rotation states: our coherent flock states appear linear and

nonlinearly stable with a broad basin of attaction; rigid rotation states are lin-

early unstable, but saturate into neighboring nonlinearly stable states, which have
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a reduced though still significant basin of attraction. The mathematical litera-

ture on this aspect of our work is extensive. Noteworthy is a rigorous result [25]

on the nonlinear stability of flocking states under generic interaction potentials

(Morse-type interactions included): it is shown that, under conditions which are

satisfied by our flocking states, linearly stable flocks are also non-linearly stable

over a broad range of perturbations, in the sense that a perturbed flocking state

will relax to a neighboring flocking state (with say a displaced center of mass,

or differing orientation of the mean velocity). Beyond certain limits, the authors

note that perturbations can lead the system into a chaotic state (our random

droplet state) where the mathematics is inconclusive about the relaxed state.

Our numerical experiments provide implicit confirmation of the nonlinear stabil-

ity results as they map out channels for relaxation of swarms when significantly

perturbed away from the flocking states. They also set stringent conditions on

the saturated states of unstable rigid rotation regimes which we hope will in-

spire equally rigorous mathematical treatments. Dynamical modeling that would

cleanly map out our observed basins of attraction and the behavior in and around

them is of course the ultimate desired goal.

It was mentioned that the stochastic dynamics of the order parameter re-

sembles an advection-diffusion equation in the Langevin form. An important

difference is related to the nature of the noise. Whereas the thermal noise is

completely defined by the fluctuation-dissipation theorem which is rooted in the

equilibrium statistical mechanics, the noise properties in the case of the swarm

evolution are very poorly understood. The noise cannot be properly referred to as

thermal, and there is no known equivalent of the fluctuation-dissipation theorem.

The observed amplitude of the noise term depends rather strongly on the order

parameter, s, but not on the control parameter γ1. Further understanding of the
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noise properties would require an evaluation of its time correlation function but

this program falls outside the scope of the present work.

A question which is commonly posed in the context of self-organized dynamic

systems concerns the existence of a general extremal principle that would allow

one to predict the steady states. Starting from the early works of Prigogine

and his school the rate of entropy production was proposed as a suitable can-

didate [26]. In the context of linear non-equilibrium thermodynamics minimum

entropy production principle was shown to be consistent with Onsagers rela-

tions. Recently, Vicsek et al [27] proposed the use of this principle to explain

the self-organized states in driven and self-propelled systems including flocking

phenomena. On the other hand, the maximum entropy production principle was

also proposed and used successfully in a broad range of out-of-equilibrium sit-

uations [28, 29]. It is understood that the two principles are not incompatible

but rather refer to different types of additional constraints [29]. In our case,

it is not clear what would serve as an analogue of constraints (fixed forces or

fixed fluxes) appearing in a general non-equilibrium thermodynamics formula-

tion. The entropy production is easily evaluated as the power dissipated by the

friction forces, so one can test which principle is applicable by following the time

evolution of the entropy production over the simulation trajectory.Interestingly,

during the first short stage of the evolution starting from random initial con-

ditions, the entropy production generally drops and stabilizes once the droplet

state is formed. However, when at much longer times the droplet transits to one

of the true steady states, the entropy productions goes up. In this sense, both

principles are alternatively at work at different stages of self-organization.
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Chapter 3

Leader-Follower Dynamics in a

Confined Space

3.1 Background

In the previous chapter we have studied a class of agent based models of self-

propelled particles (SPP-models). We have investigated the characteristics of

the emerging steady states. These and other models studied in the literature

[13, 12, 16, 18, 30], have achieved their initially set goal of reproducing typical

patterns of collective behavior observed in nature. They also succeeded in propos-

ing the necessary ingredients to achieve cohesion and coordinated motion. From

the point of view of a physicist, these models are attractive out-of-equilibrium

systems that do not satisfy the fluctuation-dissipation theorem (”active mat-

ter”). They form the ground for building new tools with predictive power or

at least finding relevant approximations that make the problem solvable using

the well-developed tools of equilibrium thermodynamics [22, 31, 32]. However,

the validity of the assumptions of these models remains unclear, both from the
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behavioural point of view and in terms of quantitative agreement between out-

comes and empirical data. With the tremendous technological developments in

tracking and recording positions and velocities of agents, the recent trend is to

re-examine these assumptions through experimentally based-behavioural analysis

and modeling.

Observations of species that exhibit schooling tendencies have started in 1927

with Parr [33]. Later, pelagic fish of the Baltic Sea and Atlantic Ocean [34], coral-

fish in the Californian Gulf [35] and many fresh water fish have been investigated

addressing the questions of which/why schooling patterns emerge in natural con-

ditions. Nowadays, increasingly accurate sonar techniques, such as the multi-

beam sonar, the advent of ocean acoustic wave-guide remote-sensing technique

and high-frequency sonar imaging technique, are being implemented to track the

behaviour of species in a wide range of natural environments [36, 37, 38, 39]. On

the other hand, different sorts of controlled experiments on fish, insects, bacteria,

pedestrians in crowds and many others are now plausible and are added to a rich

tradition of observational techniques deployed in the subject [8, 40, 9, 41]. Al-

though, laboratory experiments cannot capture the full diversity of the behaviour

seen under natural conditions, it allows experimentalists to isolate key features

of collective behaviour [42, 43, 44, 45]. They wish to understand both the collec-

tive structures that obtain and the mechanisms that drive it with an increasing

focus on behavioral zones of interaction and on notions of leadership within the

collection of involved organisms. Does each agent interact with every other agent

in the group all the time? What minimum number of interacting neighbors the

model must allow for to guarantee cohesion? Are there informed agents in the

group that lead change?

The range of interaction of a given agent and the number of agents it in-
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teracts with, have been modified in accordance with experiments and real life

observations. For example, the biologically relevant blind sensory zone is added

to existing models [46]. Several hypotheses of interaction zones, namely met-

ric [47, 48] (individuals interact only with others within some fixed distance R),

topological [49, 50]( individuals interact with nearest neighbours) or dynamic

neighbourhood [51] (based on visual and other sensory perception cues) are com-

peting for validation. The metric neighbourhood fails the first test of keeping

cohesion in swarms with low density. The topological neighbourhood, which may

be achieved either by considering fixed number of neighbours according to their

proximity, or by using the first shell of Voronoi tessellation [42, 52], remains in-

variant with respect to density changes and has proved to lead to robust cohesion

of school under predation. However, some observations and experiments have

verified that neither metric, nor topological interactions correctly account for the

visual information employed when making movement decisions, and thus may

overestimate the local redundancy in the group [53, 54]. A simple justification

for using visual perception of neighbours in schools of fish is that schools of fish

are observed to break down at night. More robust justifications come from eco-

logical and physiological studies that prove vision to be the main sensory channel

involved in schooling[55, 56]. There is growing evidence that visual models out-

perform topological and metric models when it comes to explaining data, but

they increase the mathematical complexity of the problem by explicitly including

discontinuous interactions. The number of neighbors with which a given agent

interacts differs drastically over time allowing for interesting dynamics.

On the other hand, there is growing research trying to understand various

aspects of leadership within animal groups. How are the members of a swarm

affected by an informed Leader? How is an informed Leader distracted by the
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social influence from other agents? How many informed agents are required to

orient a group of a given size and properties? Various leader-following variations

of models existing in literature are studied. In [57], the original Viscek model

is modified by adding what they call a 0-agent which has a fixed direction of

motion and acts as a Leader. It is proved that the members of the n-agents

group all eventually follow their Leader under certain conditions. In [58], using a

simple model, it is revealed that the larger the group the smaller the number of

informed agents required for guiding the group. On the other hand, in [59] it is

experimentally demonstrated that decision making in groups of animals is collec-

tively built from individual choices that balances between personal information

(based on their past experience) and social information (based on the behavior of

other individuals). Yet another intriguing problem thought to be related to the

notion of a leader is the intermittent behavior of fish schools whereby the group

suddenly switches between near-steady states of motion without any apparent

change in the external environmental parameters. The interplay between follow-

ing and non-following the Leader and the numerous factors influencing the final

outcomes have remarkable importance in many interdisciplinary fields related to

human behavior like psychology, politics, sociology and others.

With all of the above in mind we propose a model, that is too simplified to be

realistic, but which considers realistic components of the interaction mechanisms

favored by controlled experiments on groups of fish. Namely it implements the

biologically relevant field of vision interactions, confines the fish inside a closed

boundary and studies the Leader-Follower dynamics. In contrast with the model

studied in the first chapter in which each agent interacts with all other agents

in the swarm, here we restricted the interactions to be with agents that fall in

the field of vision of the agent under consideration. Moreover, the agents here
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are confined to move inside a circular rim with harsh reflective boundary con-

ditions (angle of incidence=angle of reflection). We further split members of

the group into Leader/mean field of the organized school, and a single follower

responding to the (mean)-field of the Leader. The model functions at the in-

terface between mathematical billiards [60, 61, 62, 63], now generalized to allow

for interactions between multiple particles, event driven dynamical systems, dis-

continuous dynamical systems [64, 65] and the sociology of human control in

confinement [66, 67, 68, 69, 70]. The upshot of the results of this study is the

seeming inevitability of straying from the Leader for a specific range of values

of the control parameter, in the presence of confinement and a persistent drive

for alignment. The Follower falls into interesting unexpected attractors away

from the Leader. What are the properties of these attractors? Are they chaotic

attractors or integrable limit cycles? Over what range of values of the control

parameter is every attractor defined? What happens at transition points between

attractors? Is the observed behavior robust under model variations? What is the

relevance of the obtained results on various interdisciplinary fields of study? This

chapter addresses these and other questions and is organized as follows: the first

section describes the model, the second gives the characteristics and the basins

of attraction of the emerging states, and the third tests robustness of the results

under variations to the model. Eventually we close with a section summarizing

basic conclusions, their relevance to different fields and insights for future work.

A detailed description of the numerical experiments performed is given in the

apendix.
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Figure 3.1: Model Description. The posi-
tion, orientation, and velocity of fish i are given
by ~ri, θi, and ~vi respectively. φi is the angle
between ~vi and the x-axis, while the relative po-
sition between fish i and j is given by dij .

Figure 3.2: Definition of
COV. Two symmetric rays are
cast from the position of the i-
th fish; its COV is defined as the
angle between the ray and its ve-
locity vector on either sides; fish
j is perceived while k is not.

3.2 The Model

Fish in our model are point particles with coordinates (ri, θi), moving with a

velocity vector ~vi, of constant magnitude v, and varying direction φi measured

from the positive, horizontal x-axis (Fig. 3.1). They move inside a tank with

an elastic reflective circular boundary. A fish interacts and tries to align only

with fish that are in its Cone of Vision (COV)(Fig. 3.2), a biologically motivated

alternative to topological interaction with Voronoi neighbors considered in [42].

A fish’s angular velocity wi is adjusted according to the average behavior of

members of the collective who happen to be in its cone of vision:

dwi
dt

= −v
ξ

(wi(t)− w?i (t)) , (3.1)

where,

w?i =
1

Ni

∑
j∈COVi

κ sin(φj − φi). (3.2)
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Here ξ is a persistence length scale, COVi the cone of vision of fish i, w?i is the

angular velocity that drives alignment with the neighbors for a given coupling

strength κ. The present model is a radically simplified variant of the model in

[42], having dropped attraction and noise from the picture. Now comes a critical

feature of our exercise which consists of further quenching dynamics down to two

entities interacting in Leader-Follower configuration. The Leader moves along the

vertical diameter of the circular boundary where it reflects elastically and is not

affected by the Follower. The Follower tries to align with the Leader whenever it

is in its cone of vision and also reflects elastically from the walls. The motion of

the Follower satisfies Eq. 3.1 and 3.2 with the Leader being the only other parti-

cle it interacts with. We express these equations in dimensionless form , with the

characteristic timescale τ = ξ
v

(the time taken by the fish to adjust its angular

velocity) and length scale R (the radius of the tank). Thus the non-dimensional

update equations for the angular velocity and the position of the Follower ω(t)

are now given by:

dw
dt

= − (w(t)− w?(t)))
dφ
dt

= w(t)

dx
dt

= C2 cos(φ(t))

dy
dt

= C2 sin(φ(t))

(3.3)

with

w? =


C1 sin(φL(t)− φ(t)) if Leader is inside COV

0 otherwise

where C1 = τκ (ratio of time taken by the fish to change its orientation to

the time it takes the Follower to get affected by the leader), φL(t) = ±π
2

and

φ(t) are the orientations of the velocity vectors of the Leader and the Follower
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respectively, and C2 = vτ
R

(ratio of the time needed to change orientation to the

time needed to cross the radius R). The space of parameters is thus reduced to

COV , C1 and C2. In the rest of this paper, we consider C1 = 1 and C2 = 0.006

consistent with the values of ξ, R and v favored in [42], and we vary the cone of

vision (COV).

3.3 The Attractors

Within this greatly reduced phase and parameter space, we were surprised by the

rich, unfamiliar, and deeply significant behavior that remains possible. We had

left ourselves with one single parameter (COV) with which to map out the dy-

namical evolution of one single member which is seeking reunion with the group,

while bouncing from the boundary of their mutual confinement. Varying that pa-

rameter, we explored random initial conditions for the follower on the boundary

(the leader in these experiments is initially set at the base of the vertical diame-

ter heading up), noting steady state behavior, to the best of our computational

abilities and resources.

In the following subsections we describe each of the obtained states, their

characteristics and their basins of attraction. To do so we borrow tools from

“billiards”literature; namely we consider the bounces with the circular boundary

rather than tracing the actual trajectories. The nth bounce is represented by its

angular position (θn) and by the tangential momentum pn = cos(αn), where αn

is the angle between the direction of the velocity vector after impact (φn) and

the forward tangent to the boundary and is given by: αn = φn − θn − π
2
. In

billiards literature obtained orbits are classified into: 1) Closed orbits where the
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Figure 3.3: Basins of attraction of steady states as a function of the cone
of vision (COV). For small and large COV the dominant state is the vertical attrac-

tor. For intermediate values of COV the head-phone and the eight-shaped attractors

are obtained with different probabilities as a function of COV.

trajectory repeats itself after N bounces. These orbit are represents by N points

in (θ, p) phase space and they can be stable, neutrally stable or neutrally stable;

2) orbits that correspond to invariant curves in phase space and which occur only

when the dynamics is governed by a constant of motion F(θ, p); 3)orbits that fill

an area in phase space, and this occurs when the motion in unrestricted by a

constant of motion, and there is chaotic behavior with sensitive dependence on

initial conditions. We use this classification to discuss soe of the properties of the

attractors we obtain.

3.3.1 Vertical Attractor

In this case and after a series of bounces off the boundary, the follower gradually

approaches the leader on its diameter. Full alignment with the leader is achieved

asymptotically. While such an alignment is naturally expected for large enough
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Figure 3.4: Vertical Attractor. (a) For small COV , the Follower hits the boundary
at different angles before getting attracted to the Leader, COV = 0.4; (b) for Large
COV , the Follower aligns with the Leader and moves parallel to it after a very short
transient. At each reflection, the Follower gets closer and closer to the vertical attractor.
The inset enlarges the bounces at the boundary, COV = 2.
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Figure 3.5: Phase space (θ, p)for trajectories approaching the vertical
attractor. The boxes highlights the fact that the last part of the trajectory is along
2 straight lines of equations p = −θ + pi

2 and p = −θ − π
2 respectively. COV = 2.1

cones of vision, it is quite surprising that it is also achieved for blindly small

ones. Indeed alignment with the Leader is the favored outcome for COV < 0.75,

1.1 < COV < 1.3 and COV > 2 (Fig. 3.3). For narrow COV, the Follower

hits the boundary at a spread of angles before it aligns with the Leader and

eventually gets attracted to it (Fig. 3.4a). For large COV , the Follower directly

aligns with the Leader and asymptotically approaches the vertical diameter with

each reflection at the wall (Fig. 3.4b). The trajectories in (θ, p) phase space

approach two points (π
2
, 0) and (3π

2
, 0) along straight lines of equations p = −θ+ π

2

and p = −θ − π
2

respectively (Fig. 3.5). Thus, transients aside, this attractor

is approached along the second type of orbits discussed above; i.e. along an

invariant curve in phase space with the dynamics governed by a constant of

motion (p+ θ)2 = (π
2
)2 which is verified in the appendix.
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Figure 3.6: Left Eight-shaped Attractor.The Follower reflects at point 1 to find

that the Leader is moving upward, and thus get turned counter-clockwise upward to

hit the boundary. Each time the Follower reflects from the boundary it sees the Leader

and get turned upward again. The Follower bounces off the boundary between points 1

and 2 (as shown in the inset). At point 2 the Follower reflects to find that the leader is

moving downward and thus gets turned clockwise downwards. As it turns downwards

the Leader falls outside its COV and thus it continues to move in a straight line to

hit point 3. As the Follower reflects at point 3, it finds that the Leader is still moving

downwards and thus get turned clockwise to hit the boundary. The Follower undergoes

another series of bounces off the boundary between points 3 and 4. At point 4, it

reflects to find the Leader moving up and thus it gets turned counter-clockwise until

the Leader falls outside its COV so it continues in a straight line to reach point 1. The

vertical diameter is the trajectory of the Leader.COV=1.7.

3.3.2 Eight-shaped Attractor

A sample is shown in Fig. 3.6; it obtains for 1.3 < COV < 2 and is dominant

for 1.5 < COV < 1.7 (Fig. 3.3). After a short transient, the Follower is even-

tually trapped in an eight-figure, which interleaves numerous short bounces off

the boundary (with the Leader in sight after each bounce) with long range flights

at points where the Leader reverses direction at the the boundary. Take-off and

landing points (4 in total, making for the anchors of the eight-figure see Fig. 3.6)
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Figure 3.7: Variation of the angular positions of the 4 vertices of the
left eight-shaped attractor (shown in Fig. 3.6) for consequent hits n.
(a) Angular position of vertex 1;(b) angular position of vertex 2;(c) angular position of
vertex 3;(d) angular position of vertex 4.

fluctuate about mean vertices (Fig. 3.7), with the cycle replaying while never ex-

actly repeating. The magnitude of these fluctuations decreases as COV increases

(Figs. 3.8 and 3.9). The obtained eight-shape is symmetric with respect to the

x-axis and can occur either on the right or on the left of the vertical diameter.

Therefore, and without any loss of generality, it can be characterized by the two

neighboring anchors (1 and 2). Note that the follower approaches anchor 1 in a

straight line and is curved after reflection, while it leaves anchor 2 smoothly after

moving tangent to the boundary for a short time. The smoothness or sharpness

of the turns at 2 is a function of the ratio of C1 to C2 which we fix in our simu-

lations (unless otherwise indicated). As COV increases anchor 1 moves closer to

the x-axis while anchor 2 doesn’t move much (Fig. 3.9).

In the proximity of COV = 1.34 (smallest COV for which a steady eight-

shaped attractor appears), the Follower lingers between right and left eight-
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Figure 3.8: Evolution of the eight-shaped attractor at different values of
COV.We observe that it becomes thinner and wider as COV increases.
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Figure 3.9: Characteristics of Eight-figure. The angular position of vertex 1 of

the Eight-figure is almost constant for all COV (blue), that of vertex 2 decreases (red).

The thickness of the arm holding vertex 1 is always larger than that holding vertex 2,

but they both decrease as COV increases.
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Figure 3.10: Transition from the vertical attractor to Eight shape. The

eight shape is stable for COV > 1.34, for values of COV between 1.3 and 1.34 the

follower jumps between left and right eight-shaped attractors and nearly central back

and forth before ending up at the vertical attractor.

shaped attractors and jumps along nearly central paths before ending up on

the vertical attractor (Fig. 3.10). The transition in and out of this trap with

varying COV is mapped by following the angular separation between the mean

position of neighboring anchors (1 and 2, or their symmetric counter-parts, 3 and

4) as function of COV . Shown in Fig. 3.11 is the mean angular separations A12

(between 1 and 2) as a function of the cone of vision (COV), averaged over all

cycles in a given trajectory, and over the subset of the 50 different trajectories

that belongs to this particular attractor with different initial conditions, and the

same (COV). Near zero value of A12 (or A34) means that the follower is hitting

the upper (or lower) part of the circular tank at very close points, and that the

follower is approaching the vertical attractor. For small enough cones of vision

A12 is small; with increasing COV , a transition point is hit beyond which A12

increases smoothly. The vertical attractor has now given way to an increasingly

well defined eight-shaped attractor. The latter dominated with increasing COV
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Figure 3.11: An Order Parameter for the Eight-figure. The orbit averaged
angular separation A12 between vertices 1 and 2 of Fig.1c provides a clean order pa-
rameter with which to map the eight-figure phase with increasing COV . We display
the mean value of A12 over all cycles in a given trajectory, and over 50 trajectories
with varying initial conditions, and the same COV . Near zero values of A12 indicate
that the follower is hitting the upper (hence the lower) part of the circular tank at
neighboring points, and that the follower is thus approaching the vertical attractor.
Increasingly larger values of A12 indicate an increasingly well defined eight-figure at-
tractor. Transition in and out of the eight-figure attractor is evident at COV ∼ 1.3
and COV ∼ 2 respectively.

till another sharp transition is hit, now resulting in a sudden drop in A12: the

follower now has a broad enough cone of vision to escape the eight-figure trap,

and find its way to the leader on the vertical attractor. The curve reflects the

change in the properties of the eight-shaped attractor by itself and the abrupt

transition doesn’t include coexistence effects. The value of COV at which this

drop occurs is a critical value since beyond it the Follower is bound to get at-

tracted to the Leader. This critical value depends on the parameters C1 and C2,

and can be used as an indication for the minimum field of vision needed to be

always attracted to the mean field guaranteeing no stray fish.
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Figure 3.12: (θ, p) phase space for eight-shaped attractors. The transients
are removed and the trajectories on the eight-shaped attractor are drawn in the (θ, p)
phase space for the subset of the 50 initial conditions that lead to the eight-figure for
each value COV ∈ [1.5, 1.55, 1.6, 1.65, 1.7]. Points 1(1’), 2(2’), 3(3’) and 4(4’) represent
the vertices on the right(left) eight-shaped attractor.

Trajectories falling into the (right or left) eight-shaped attractor , obtained

for 1.5 < COV < 1.7, are drawn in (θ, p) phase space shown in Fig. 3.12. We

neglect the transients and notice that each eight-shaped attractor is divided in

two thick curves in phase space, corresponding to hits with the upper and lower

parts of the boundary respectively. The thickness of the trajectory in phase space

(consistent with the fact that the orbit is repetitive but no periodic) indicates

the presence of chaos.

3.3.3 Head-Phone Attractor

The eight-figure attractor is not alone in trapping the follower in an evading

behavior. Another even more curious regime of control away from alignment
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Figure 3.13: Head-phone attractor. Starting at a point on the upper left part of
the circular boundary, the Follower bounce off down the boundary until it reaches point
1. When the Follower is at point 1, the Leader reflects from the boundary switching
its direction of motion and thus causing the Follower to rotate counterclockwise. As
the Follower rotates the Leader is no more in its cone of vision and thus the former
moves in a straight line towards point 2. At point 2, the Follower reflects from the
boundary and is rotated counter-clockwise by the Leader which is now in its COV
and is still moving up. Soon the Leader switches direction and starts moving down at
this instant it is out COV of the follower which is grazing the boundary with nearly
tangent bounces. When the follower gets to the lower part of the circle, the Leader falls
back into its COV and this causes it to rotate counterclockwise every time it bounces
off the boundary. When the Follower is at point 3, the Leader switches direction up
thus causes the former to rotate clockwise. As the Follower rotates, the Leader is no
more in its COV and so it continues in a straight line towards point 4. At point 4,
the Follower reflects and is then rotated clockwise since the Leader is still moving up,
the inset shows the reflection at point 4. Soon the Leader switches direction and start
moving down. The Follower, which is now in the lower part on the circle, bounces off
the boundary and is rotated clockwise at each reflection until it reaches point 1. The
cycle repeats itself. The red and the blue curves represent the trajectories of the leader
and the follower respectively. COV = 0.85.
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appears for a narrow range of the COV (0.76 < COV < 1.1) (Fig. 3.3). We called

it the head-phone attractor ( Fig. 3.13 shows an example for COV = 0.85) . A

distinctive feature of this attractor is that the Follower spends much of its time

tangent to the boundary. Similar to the eight-shaped attractor, this attractor

is repetitive, without showing signs of relaxation into a periodic limit cycle. A

strange attractor of sorts, its full structure remains to be unraveled. Increasing

COV from zero, the head-phone attractor first appears for COV = 0.76 and

disappears beyond COV = 1.1. In the proximity of these two critical values

of COV , central trajectories are favoured (similar to the case of eight-shaped

attractor around transition, see Fig. 3.14) and occasionally the Follower jumps

between the upper and the lower head-phones before relaxing to one or ending

up on the vertical. The shape of this attractor changes as a function of the COV

(Fig. 3.15). We quantify this evolution with the angular separation between

vertices 2 and 4 (S24), which appears to increase linearly with COV (Fig. 3.16).

The trajectories of the (upper and lower) head-phone attractor in the (θ, p)

phase space are shown in Fig. 3.17. They intersect the tangent paths (p = ±1)

and have some thickness indicating chaotic behavior.

3.3.4 Periodic Solutions

The periodic solutions are of considerable interest to the billliards problem al-

though the typically contribute a set of measure zero. Here we discuss them for

the sake of completeness. It is intuitively clear that strictly periodic trajecto-

ries regime keeps the leader forever in the blind zone. If the Follower starts at

the circumference with initial velocity heading along the diameter, it can stick

to that diameter forever provided its COV is small enough to keep the Leader
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Figure 3.14: Transition into and out of the Head-phone attractor. The
follower lingers between upper and lower headphone attractors and nearly central tra-
jectories are favored around transitions into and out of headphone state.
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Figure 3.15: Evolution of the Head-phone attractor at different values
of COV . It becomes thinner and wider as COV increases.

58



COV (radians)
0.8 0.85 0.9 0.95 1 1.05

an
gu

la
r 

se
pe

ra
tio

n

0.2

0.4

0.6

0.8

1

1.2

1.4
 
y = 4.4*x - 3.2

data points
   linear fit

Figure 3.16: An Order Parameter for the head-phone attractor. The orbit
averaged angular separation S24 between vertices 2 and 4 of Fig.3.13 provides a clean
order parameter with which to map the head-phone attractor with increasing COV .
We display the mean value of S24 over all cycles in a given trajectory, and over 50
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Figure 3.17: (θ, p) phase space head-phone attractors. The transients are
removed and the trajectories on the head-phone attractor are drawn for 50 initial
conditions for COV ∈ [0.85, 0.9, 0.95, 1]. Note that the curves intersect the p=1 and
p=-1 lines, which are the trajectories tangent to the boundary. Points 1(1’), 2(2’), 3(3’)
and 4(4’) represent the vertices on the upper(lower) head-phone attractor.
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Figure 3.18: Relaxation time to Vertical attractor. The logarithmic scale
of the time required to get to the vertical attaractor as a function of COV. Three
prominent peaks are observed at COV values corresponding to transitions between
attractors.

permanently out of sight along that particular diameter. The critical angle COVc

below which the Follower never sees the Leader is given by:

COVc = 2acos

(√
1 + y0√

2

)
(3.4)

where y0 is the initial y-coordinate of the follower on the circumference. For

a free particle in a circular billiard, motion along inscribed polygons is stably

periodic. Here, and as we argue below, the diameter, a degenerate two-gone, is

the only classical periodic orbit that can survive the spell of the Leader. The

two conditions to obtain such stable periodic orbits in our case, are to start the

Follower along one side of the polygon and to have COV small enough that the

Leader in never in it. While the first condition is easy to satisfy, the second is

not, since it requires that the ratio of the side of the inscribed polygon to the

radius to be a rational number and that is true only for hexagons (where the
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side is equal to the radius of the circumscribing circle). It turns out that even

for the hexagon, one cannot find a COV small enough to avoid the Leader at all

times. If the Follower is started with the appropriate initial conditions (i.e make

an angle π
6

with the tangent), it moves on the hexagonal orbit provided that the

Leader is initially outside its COV . However, before completing the second cycle

the Leader will cross the side of the hexagon directly in front of the Follower,

and thus the latter will see the former no matter how small COV is. The only

periodic solution that is capable of escaping the Leader is thus the diameter, and

it is a closed orbit represented by two points in the (θ, p) phase space.

3.3.5 Phase diagram

The intervals of COV over which one state or the other dominates are summarized

once more in the phase diagram of Fig. 3.3. There it is apparent that small and

large COV favors the vertical attractor, while the headphone and eight shaped

attractors obtain over intermediate values of the cone of vision. Not surprisingly

the time needed for alignment with the vertical attractor is longest for the smallest

cone of vision and shortest for the larger cone of vision (Fig. 3.18). At transitions

between vertical, head-phone and eight-shaped attractors the follower lingers

over numerous nearly central trajectories (Figs. 3.10 and 3.14) before settling

on one regime or the other, resulting in a local spike in the time for alignment

(if and when it obtains). We think that the appearance of nearly central (or

diameter) trajectories around transition values of COV , namely at the interface

between total alignment for all initial conditions and non-alignment for some

initial condition, plays an important role to understand the dynamics of the

obtained attractors.
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The periodic nature of the motion of the Leader plays a key role in forming

the eight-shaped and the head-phone attractors. The former has the same period

as the Leader while the latter has double that of the Leader. Here one asks,

is it possible to obtain an attractor whose period is any multiple or maybe any

fraction times that of the Leader? Regardless of the existing dynamics, is there a

finite set of shapes that are good candidates for being attractors under the given

conditions? What are the characteristics of a good candidate? For now we know

that a good candidate is symmetric with respect to the y-axis and/or the x-axis,

since there is no reason to make one side of the axis different from the other. We

can also say that the length of the circumference of a good candidate is a multiple

(or a decimal fraction) of the distance crossed by the Leader in one cycle (4 times

the radius). Both the head-phone and the eight-shaped attractors are formed of

nearly tangent trajectories followed by free flights, is that a common feature for

good candidates for attractors? Further investigation is required to fully answer

the above questions.

3.4 Robustness To Model Variations

The important outcome of the above overview of final states is that, within a

rather minimal set of assumptions, non-aligned, non-following, straying states

have large basins of attraction over a relatively large range of the control param-

eter, the COV. Is this result specific to the studied model or is it recurrent in

different variations of the model? In this section we overview intra- and inter-

model variations, with the aim of answering the above questions of robustness.
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Figure 3.19: Variation of model parameters. C2 is changed to 0.01 instead
of 0.006 and C1 = 1 is unaltered. The obtained states are the same but the occur
over different ranges of COV . (a) Head-phone attractor obtained at COV = 0.9;(b)
eight-shaped attractor COV = 1.6.

3.4.1 Initial Conditions/Model Parameters

For the same model parameters, rather than initializing the follower on the bound-

ary, we initialized it at different positions and orientations inside the circle. This

amounts to introducing an initial phase shift between the leader and the follower.

Transients aside, the same pattern of steady states emerged, as a function of the

cone of vision. On the other hand, the model parameters C1 and C2 were varied.

In some cases the same exact states occurred but with changes in the ranges

of COV over which they obtain, in other cases the shapes of straying attrac-

tors changed but the non-aligning behavior was still prevalent. Figure 3.19 gives

some of the attractors obtained for different values of C1 and C2. Therefore,

non-alignment over a remarkable range of COV is preserved when varying the

initial conditions and the model parameters.
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3.4.2 The Leader as a group

One asks what exactly is the leader in the context of schooling, then of our model?

Naturally, one can think of the leader as the effective mean field of an organized

group of fish. Allowing for that, one then asks what is the fate of such a school on

the vertical attractor and that of the follower in relation to it? We report that a

school bouncing on a diameter maintains its cohesion through bounces provided

that its members are initiated close enough to each other and symmetric with

respect to the diameter (Fig. 3.20); moreover, that a follower relates to the mean

orientation of the school as it would relate to the orientation of the single particle

in the position of the Leader.

3.4.3 Leader along the rim

A natural periodic alternative to the diameter as a locus for the Leader’s path is

the basin’s circular boundary. The Leader is set in counterclockwise motion along

the rim, and the follower is started anywhere on the rim with random orientation.

Similar to the case of the Leader on a diameter, the follower ends up following the

Leader for small and large enough COV , and falling into non-aligned states for

intermediate COV . For the same values of parameters C1 = 1 and C2 = 0, 006,

50 simulations with different initial conditions for the follower are used to obtain

the probability of following or not following the Leader for each value of COV .

Figure 3.21, which gives these probabilities as a function of COV , is qualitatively

similar to its counterpart in the case with Leader on a diameter (Fig. 3.3).

Non-aligned states, include trajectories trapped between a caustic and the

circular rim (similar to the case of a classical circular billiards) and irregular ro-
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Figure 3.20: Cohesion of a group started at the diameter. 100 particles
are initially started at the bottom of the diameter heading up. The initial positions
are chosen such that the particles are symmetric with respect to the vertical diameter
and are within a distance 0.0001 units of length. (a) At tf = 10000 units of time the
group keeps its cohesion around the vertical diameter and all the 100 particles are still
within the same distance of 0.0001 units of length; (b) zoom out of the trajectories of
the 100 particles shown in (a).
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Figure 3.21: Probabilities of being attracted to or escaping the Leader
for the leader on the rim variation of the model. The follower can escape
the Leader in two ways: moving on a polygon (same as circular billiards with no
interaction) or being trapped to the eight-like attractor described in Fig. 3.24.

tating variants of the eight-shaped attractor. Figures 3.23 and 3.24 give examples

of what we call variants of eight-shaped attractors, they are similar in the sense

that they are formed from paths tangent to the circular boundary and straight

flights between two points on the boundary. Their shape evolve with COV as

shown in Fig. 3.15 and the length of the tangent trajectory along the rim gets

shorter as COV increases (Fig. 3.25).
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Figure 3.22: Straying attractors for the leader on the rim variation. This
is part of the trajectory, only few hits are shown to illustrate the behaviour, a complete
trajevtory is given in Fig. 3.23. Note that the follower in trapped in trajectories where
it moves nearly tangent for some time and then moves in straight line to hit the other
side of the boundary. This is similar to the eight-shaped attractor of the initial model,
with rotation superimposed. The angular distance which the follower covers nearly
tangent to the boundary changes with COV and is given in Fig. 3.25.
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Figure 3.23: Irregular rotating variant of Eight-shaped attractor ob-
tained in the case of the leader on the rim variation.

3.4.4 Sharp Follower Response

In this case we perturb the original model drastically by replacing gradual relax-

ation of angular velocity with instantaneous adjustment to the angular velocity

ω∗ describing the social interaction, i.e. by taking the persistence length ξ to zero.

We expected to loose a number of the observed features in the process, given how

the interplay between avoidance and alignment thrives on the gentle curving of

the follower’s gaze together with sharp turn-around at the boundary. We were

surprised to find the same qualitative outcome of the follower landing on straying

attractors (sharper versions of the headphone and eight-shaped attractors shown

in Fig. 3.26) for intermediate COV and aligning with the vertical attractor for

COV small or large enough (Fig. 3.27). As one might expect, the range of

COV over which the non-aligned states exist is shorter (1.45 < COV < 1.85 as

shown in Fig. 3.27) in this case since the follower instantaneously responds to

the Leader’s prompts and alignment is in general more probable.
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Figure 3.24: Example of a Typical state of the leader on the rim vari-
ation. At point 1, the follower hits the boundary infront of the leader which is at
point 3 (red and black arrows give the direction of motion of the leader and follower
respectively) and is in the COV of the follower. The angle between the directions of
motion of the Leader and the Follower φL − φ is less than 180 and thus ω∗ is positive
and the follower rotates counterclockwise. As the follower reflects from the boundary
the Leader is no more in its COV, but ω which doesn’t drop immediately to zero is
still positive and the follower will rotate counterclockwise again and thus move in the
opposite direction of motion of the Leader to hit the boundary. As it reflects from the
boundary the follower will not see the Leader but it already has a positive ω and thus
will rotate counter-clockwise. This process is repeated until the Follower reflects and
finds the leader in its COV(points 2 and 4), here the angle between the Leader and the
Follower is larger than 180 and thus the follower rotates clockwise. Soon the Leader
will no more be in the COV of the Follower which will continue to move in a straight
line to hit the boundary infront of the Leader and the process repeats again.
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Figure 3.25: An order parameter for the irregular rotating variant of
eight-figure. The follower bounces off the boundary between the landing and the
taking off points. The angular displacement along the boundary decreases as the COV
increases. The landing and taking off points rotate along the circle.

Thus variations which tested extremes (whether in the leader’s trajectory, or

the follower response) leave us with a high probability of stray behaviour over a

broad range of the COV. Try as we may, it seems that a follower confined within

a reflecting boundary with a leader dictating alignment when in sight, remains

with substantial freedom to stray when the cone of vision is broad enough for the

boundary to help structure its motion away from the Leader, and not too broad

to find itself overwhelmed by that leader.

3.5 Summary and Discussion

Ground breaking studies, both biological/experimental and mathematical, were

conducted with a view to exploring the issue of leadership in a schools of fish,

rules for group interaction (topological versus metric). Our model is particular in
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Figure 3.26: Straying Attractors for the sharp response variation of the
model. (a) 2-periodic (diameter) attractor obtained atCOV = 1.51; (b) sharper
version of Head-phone attractor obtained at COV = 1.57; (c) nearly eight-shaped
attractor obtained at COV = 1.8 (the follower jumps between the two right and left
attractors on both sides of the vertical diameter)
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Figure 3.27: Probabilities of being attracted to and escaping form the
Leader as a function of COV for the sharp response model variation
of the model. The blue and red lines give the probability of being attracted to or
escaping from the Leader respectively. Note that at the beginning of the interval of
escape from the Leader the follower has the highest probability of ending up in the
nearly diameter attractor, for intermediate values it has highest probability of ending
up in the nearly headphone attractor, and in the last part in the nearly eight-shaped
attractor.
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that it leaves room for entrapment away from alignment, this in the presence of

a persistent drive to align, and continual encouragement/reinforcement of recur-

rent encounter with the leader by the impenetrable reflective boundary. Remove

the boundary and the behavior outcome is trivial: alignment over a set of mea-

sure zero, and otherwise straying for good. Keep the boundary and remove the

leader the particle winds around the circle, except for a set of measure zero for

which it follows periodic trajectories. Put both leader and boundary together

and rich behavior obtains. Boundary and leader provide two recurrent sources of

intermittent collisions one sharp (the reflection off the boundary) and the other

gentle (relaxing turns in contact with the leader).

The follower is one which has internalized the need to align with controlling

field of force. Control is not enforced continuously; rather, as the leader traces its

path periodically, the follower which is otherwise free to explore its domain of con-

finement, bouncing bat-like off its walls, intersects with the leader intermittently.

Cone of vision encounters with the leader autonomously incite the follower to

alignment. For tight cone of vision, deflection resulting from wish-to-align makes

the follower loose track of the leader. Ironically, and following a transient, short

lived deflection coupled to reflections at the boundary favor gradual convergence

of the follower to the leader, and perfect alignment. In other words, intermittent

short impulses with extensive role for boundary adjustment favors alignment,

slow though it may be. On the other end, a wide enough cone of vision min-

imizes the role of the boundary as it enhances fast alignment with the leader,

with few long range bounces. Conclusion: Acute, pervasive, ever-present aware-

ness of the leader, makes for fewer bounces, and faster alignment with the leader,

as expected. Chaotic, leader-avoiding attractors, arise when the encounter with

the leader is long enough to force repression of the follower’s free movement,
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with the boundary reflecting the follower back into potential contact and even-

tual alignment with the leader. The nearly balanced interplay between boundary

and leader makes for periods of repeated short bounces with long flights of fancy

at locations of sharp reversal in the leader’s motion, only to engage in repeated

short bounces again. The dynamics then encourages trapped states in which the

follower is neither totally free nor totally aligned.

One of the initial motivations for this work was the inquiry whether the vi-

sual cues inside a closed circular domain can account for the observed temporal

alternation between coexisting self-organized phases in shoals of fish. For sure,

our model is too simplified to answer this question; however, the special phases

obtained and the transitions between them as a function of COV , encourages

further explorations of visual communication networks. In fact, the visual cues

are established as the most likely mode of transfer of information in a fish shoal

[45, 53] and variations in the COV can naturally occur whenever the line of sight

of a given fish is occluded by some obstacle. Thus, one is tempted to ask: Could

temporal variations in the effective COV of a given fish -variations which may

result from the play of shadows and clearings in a shoal- lead to transitions from

one self organized state to the other and back? The phase diagram presented

above suggests that this could be a possible explanation of the observed inter-

mittency. However, the relatively long time the follower takes to relax to one

or the other attractor at critical COV s around transitions, makes us pause and

rethink other possibilities.

As is already apparent from the presentation above, our results also touch

the extensive interface between dynamical systems theory, systems control, and

ultimately, and most interestingly, the study of human social behaviour. We wish

to conclude our exposition by drawing out the connections and implications of
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our work in these fields.

Mathematical vistas The dynamics of a particle bouncing off a closed curve

belongs to the vast field of mathematical billiards. The follower bounces off the

boundary but is curved by the mean-field of the Leader instead of moving in

straight lines between bounces. Thus we can think of our system as a novel type

of billiards, with a special discontinuous force field acting. Classically one particle

billiards are regular (integrable), chaotic or mixed. Examples of regular billiards

are circular billiards, where orbits are tangent to concentric circles(caustics),

and elliptical billiards which have two caustics: conformal ellipses and confor-

mal hyperboli. Dispersing billiards (Sinai and Diamond containers) and billiards

with focusing boundaries (stadium) are examples of chaotic billiards. However

non-concentric anulli, ovals and mushrooms are examples of billiards with mixed

regular-chaotic dynamics. To the best of our knowledge, the only modifications to

the one-particle billiards studied are: few particles billiards with head-on particle-

particle collisions,and vertical billiards with gravitational field acting on the par-

ticle. Therefore there are several novel ways in which our system, and associated

results couple to the field: a) classically, a single particle is allowed to bounce of

an enclosure of arbitrary shape; here we consider the controlling effect of a per-

turber/mean field confined with the particle: the resulting dynamics is no longer

Hamiltonian, with (chaotic) attractors arising in the process; b) classically, when

more than one particle are considered, it is with local collisional interactions in

mind; here, we consider long range, intermittent interactions with the controlling

agent; c) classically, the departure of the boundary from circular allows hamilto-

nian chaos and mixing to emerge; here dissipative chaos over attractors emerges

within a circular domain. The models we consider, and the behavior they sus-

tain make for open mathematical questions which are best addressed within the
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growing field of dynamical systems with discontinuities [65]. There one learns

that novel behavior arises when a particle hits the surface of discontinuities along

a tangent, so called grazing orbits; here we have preliminary indications that

the angle at which the particle encounters the boundary (i.e. how close it is to

the normal), plays a role around transitions from one attractor to another. Our

exercise is complicated by the coupling between two sources of discontinuities,

the basin’s boundary, but also the unforseeable encounters with the leader on its

periodic trajectory. Anything more definite will require more experimentation,

and careful mathematical analysis, along the lines studied in [65].

Control Systems Another interesting class of problems to which our model

relates is that of pursuit-evasion type. These problems have fascinated mathe-

maticians for centuries, who succeeded in finding analytic solutions to some while

solved the others numerically. In his book ”Chases and Escapes”, P.J Nahil gives

a comprehensive review of problems studied in the literature. Here, we mention

one of the problems presented in the book and which is known as ”The Lady-in-

the-Lake” problem. The original problem as it first appeared in Martins Gardners

Mathematical Games column in Scientific American (November and December

1965) is:

A young lady was vacationing on Circle Lake, a large artificial body of water

named for its precisely circular shape. To escape from a man who was

pursuing her, she got into a rowboat and rowed to the center of the lake,

where a raft was anchored. The man decided to wait it out on the shore.

He knew she would have to come ashore eventually; since he could run

four times faster than she could row, he assumed that it would be a simple

matter to catch her as soon as her boat touched the lakes edge. But the girl, a

mathematics major at Radcliffe, gave some thought to her predicament. She
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knew that on foot she could outrun the man [which does raise the question

of why such a smart lady got herself into this situation in the first place by

rowing out into a lake!]; it was only necessary to devise a rowing strategy

that would get her to a point on shore before he could get there. She soon hit

on a simple plan, and her applied mathematics applied successfully. What

was the girl’s strategy?

This classical formulation shares some aspects with our model: a- Leader-

Follower is analogous to Lady-Man; b- the motion is confined to a circular region

including the boundary; c- existence of non-following (Lady escaping) states.

Various modifications of the problem can be formulated and studied in connection

to the evading regimes discussed above.

In a broader sense, one can ask about strategies for guiding a self propelled

particle into a given regime of motion, within confinement. A possible answer

suggested by our work: a diametric sentinel which guides a robot through a

broad enough cone of vision, can force it into an eight figure or a headphone

attractor, without the need for continuous monitoring. Control into eight-shaped

trajectories has been studied in relation to grid-tie inverters for photo-voltaic

applications ([72]), and quadrotors going around two focal points ([73]).

Sociological connections Our model and the non-aligned states which it

sustains can be linked to the modeling of opinion dynamics, particularly when

a collective is caught between the competing influence of media on one large

scale, and that of neighbouring social groups on another more local scale, with

the undecided group playing a crucial role in the outcome [66]. In [66] it is

shown that for relatively small media pressure and in the presence of enough

proportion of un-decided agents, the opinion, which is neither favored by media
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nor by the interactions among peers, survives and might even gain the support

of the majority. This is another example of non-alignment appearing in systems

subject to different kinds of competing pressures.

We close our discussion with a less obvious but more curious tentative con-

nection between our work and the works of Milgram and Goffman on social psy-

chology and the sociology of collective human behavior respectively. The works

of both social scientists have already made their way into mathematical mod-

eling of social dynamical phenomena. Milgram’s pioneering work on the ”small

world problem” stimulated extensive studies of network dynamics (e.g. [68]),

and Goffman’s insights into pedestrian traffic were incorporated in recent work

on crowd dynamics in public spaces [40]. Here it is through their independent

work on human response to conflicting pressures to conform, that we see them

further informing socio-dynamical modeling [69, 70]. This connection is largely

stimulated by the explicitly dynamical language employed by both observers, in

settings which bear resemblence to ours. In experiments probing ”the conditions

of obedience and disobedience to authority” [69], Milgram’s subject is caught

between obedience to authority and compassion with the victim. Milgram notes

variations in the subject’s response with closeness of authority, and proximity to

the victim, describing the two influences as fields of force that weaken with dis-

tance. Milgram notes the tension between the two influences, promoting erratic

behavior in the subject, all the while being trapped in a conflicting state without

the sufficient strength to terminate the experiment. ”Similarly”, the follower in

our experiments is caught between the Leader’s normative (but intermittent) in-

fluence and the boundary’s reflective perturbation, and finds itself with sufficient

though not overwhelming presence of authority, trapped in ”un-willfull” states of

incomplete obedience. One wonders how Milgram’s results would have changed
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with intermittent rather than persistent intervention by authority, the actual

distance being fixed. Equally suggestive is Goffman’s extensive treatment of an

individual’s self as shaped (even constituted) by continuous dynamical interac-

tions with the social environment. Goffman was keenly interested in mapping the

force fields (mostly mediated by face-to-face interactions) which couple the indi-

vidual to authority. A ”gathering” is that interactive, compact, confined, space

in which a collective is self-regulated through those dynamically shifting force

fields. Goffman notes that in a given ”gathering”, the individual is constrained

to maintain a consistent, ”viable image in the eyes of others”. He further notes

that due to the constant, and unexpected shift in local circumstances, adjust-

ments will be continuously necessary, to the point that an individual’s sense of

him- or her-self emerges as a dynamical byproduct of inter-face with fluctuating

social encounters. On a very speculative note, we ponder if the trapping though

evading attractors of our follower could re-emerge, in a richer setting, as dynam-

ical analogs of Goffman’s ”conception of the self as contingent in the sense of

being only probabilistic, a theatre run of performances to audiences and critics

whose responses are always in play, whose applause is never certain...”[74]?
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Chapter 4

Future Work

The work presented in this thesis opens the scope for further investigations in dif-

ferent directions. In the discussion of each chapter some directions are included.

Here we give a brief description of some of the possible continuations and varia-

tions that can be implemented and that were not clearly explained previously.

Completing the mean field approach of low-energy swarms: We suc-

ceeded in constructing a mean field potential that recovers the three observed

low-energy steady states of the swarms of self-propelled particles considered. We

averaged over all the noise and studied the dynamics in terms of a single order pa-

rameter s. Consistent with our numerical simulations, the constructed potential

has two minima corresponding to the stable states (coherent flock and rigid ro-

tation), and a maximum/plateau corresponding to the long-lived transient state

(random droplet). Although the flatness of the potential increases with γ1 and

this is consistent with the longer life of the random droplet for larger γ1, we

still don’t have a clear explanation of the relatively long time the swarm spends

wondering in the random state before transitioning to one of the stable states.

We also need to investigate further the necessity that the swarm spends some
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time in the random droplet state before jumping into the coherent flock or rigid

rotation state. Keeping in mind that the obtained noise cannot be classified as

a white thermal noise whose effects are well understood, we intend to explore

its properties by computing its correlation function. Furthermore, we think that

we might have neglected some aspects of the dynamics by reducing it to a single

slow degree of freedom s and the mean force conjugate to it. Work has already

been started in this direction by considering two coupled order parameters (s and

m) and looking at the velocity fields in the (s,m) phase space, where s is the

dispersion of velocities in center of mass frame and m is the velocity of the center

of mass. Preliminary results in this direction encourage more exploration.

Understanding transitions from random droplet to ordered states:

One of the remarkable results presented here is that the random droplet is not

at all random in configuration space. The directions of the velocity vectors of

individual particles are random, but the particles are found to move in something

like a random walk on well defined rings while occasionally jumping from one

ring to another. We wish to understand the internal dynamics of this state that

eventually drives the transition to one of the other ordered states. Separating the

radial and angular motions of a given particle and assuming the radial motion

to be much slower we obtain a restricted system closely resembling oscillators

studied in Kuramoto models. Some progress was achieved in this direction and

further analysis is required to complete the picture.

Exploring Variations of Leader-follower dynamics in confined areas:

Natural variations of the model introduced in chapter 3 can be explored: first,

consider different shapes of confining boundaries such as rectangles, ovals, ellipses

and mushrooms (inspired by billiards literature); second, consider different types

of interactions between leader and follower (e.g. apply Viscek rules of interaction,
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add some noise, add attraction not only alignment); third, add other followers

interacting with the leader and between themselves. It is curious to explore all

these directions to test for the robustness of non-alignment in the presence of the

“will ”to align.

Searching for ingredients of intermittency : Swarms of fish are observed

to naturally shift between milling and flocking states. This intermittency between

states is not recovered by existing swarming models. Here one asks: under what

conditions might a given model allow for intermittency? Our leader-follower

minimal model gives some insights that the cone of vision (COV ) might be the

missing ingredient that will lead to this observed behaviour if implemented prop-

erly. In our model, different attractors were obtained for different values COV

and the latter can naturally change/fluctuate with the change of shadows or in

the presence of obstacles. So a promising extension of the model would be to

allow for a time varying COV , coupling strength and/or noise.
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Appendix A

Non-Dimensionalizing the

equation of motion of the Linear

model

For the linear model, the Newtonian equations for the ith particle are given by:

d~ri
dt

= ~vi

mi
d~vi
dt

= a
~vi
|~vi|
− b~vi − ~5~ri

Ui (A.1)

where,

Ui =
∑
i 6=j

(
−Cae−

|~ri−~rj |
la + Cre

−
|~ri−~rj |

lr

)
(A.2)

is the Morse potential, Ca and Cr specify the respective strengths of attraction

and repulsion while la and lr specify their respective length scales. Following [24],
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we introduce the rescalings:

~ri = la~r′i

~vi = vt~v′i

t = t∗t′

where vt = a
b

is the terminal speed, la is the characteristic length of attraction

and t∗ is to be defined later. Substituting in Eqs. (A.1) we obtain:

d~r′i
dt′

=
t∗

la

a

b
~v′i = t∗

vt
la
~v′i

d~v′i
dt′

=
bt∗

m
(1− |~v′i|2)~v′ −

Cat
∗

mla

b

a
~5~r′i

U ′i (A.3)

where

U ′i =
∑
i 6=j

(
−e−|~ri−~rj | + Ce−

|~ri−~rj |
l

)
(A.4)

Writing the equations in the dimensionless form above, three characteristic times

appear: 1) tkin = la
vt

is the time required to cover the characteristic distance of

a swarm by a freely moving particle, 2) trel = m
b

is the time of relaxation to

terminal speeds due to the propulsion/ friction terms, and 3) tpot = mla
Ca
vt is the

characteristic time for a noticeable momentum change due to the Morse potential

forces. The choice of vt as the unit speed and la as the unit length makes t∗ = tkin

the unit time. Dropping the prime, Eq. A.3 is given by:

d~ri
dt

= ~vi

d~vi
dt

= γ1(1− |~vi|)
~vi
|~vi|
− γ2 ~5~ri

Ui (A.5)
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where γ1 = tkin
trel

and γ2 = tkin
tpotential

are the corresponding rates of the change of

momentum. In this way the initial seven parameters of the model (N, la, lr, Ca,

Cr, a, b) are reduced to two characteristic time ratios γ1 and γ2, a length ratio

l = lr
la

,an energy ratio C = Cr

Ca
, and N .
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Appendix B

Linear stability analysis of the

coherent flock

In the flocking state, all particles are moving parallel to each other with terminal

speed. Without loss of generality the direction of motion can be taken along the

x-axis. The equations of motion in the co-moving frame are given by:

dxi
dt

= vxi

dyi
dt

= 0

dvxi
dt

= γ1
(
1− (vxi + 1)2

)
(vxi + 1)− γ2

∂U

∂xi
dvyi
dt

= −γ2
∂U

∂yi
(B.1)

In the co-moving frame the flock state is a stationary state where the positions

of the particles are those of the Lagrangian configuration and vxi = vyi = 0. A
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generic perturbation in the co-moving frame has the form:

x′i = x0i + δxi

y′i = y0i + δyi

v′xi = δvxi

v′yi = δvyi (B.2)

where (x0i, y0i) specify the positions in the Lagrangian configuration. Time evo-

lution of the perturbation is given by the linearized equations:

dδxi
dt

= δvxi

dδyi
dt

= δvyi

dδvxi
dt

= −2γ1δvxi − γ2
∑
j

C1ij(δxi − δxj)

+γ2
∑
j

C2ij(δyi − δyj)

dδvyi
dt

= −γ2
∑
j

C2ij(δxi − δxj)

+
∑
j

C3ij(δyi − δyj)) (B.3)
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where

C1ij =

−
∑
j 6=i

1

r20ij

(
−C
l2
e−

r0ij
l + e−r0ij

)
(x0i − x0j)2

+
∑
j 6=i

1

r30ij

(
−C
l
e−

r0ij
l + e−r0ij

)
(y0i − y0j)2

C2ij =∑
j 6=i

1

r30ij

(
−C
l
e−

r0ij
l + e−r0ij

)
(y0i − y0j) (x0i − x0j)

−
∑
j 6=i

1

r20ij

(
−C
l2
e−

r0ij
l + e−r0ij

)
(x0i − x0j) (y0j − y0j)

C3ij =

−
∑
j 6=i

1

r20ij

(
−C
l2
e−

r0ij
l + e−r0ij

)
(y0i − y0j)2

+
∑
j 6=i

1

r30ij

(
−C
l
e−

r0ij
l + e−r0ij

)
(x0i − x0j)2 (B.4)

and x0i, y0i and r0ij are the x-coordinate and the y-coordinate of the ith particle

and the distance between the ith and the jth particle in the Lagrangian configu-

ration of the unperturbed flock. In the matrix form

dδu

dt
= Aδu (B.5)

where u = (δxi, δyi, δvxi, δvyi) and A is a 4N x 4N stability matrix. Note that the

only diagonal terms appearing in the evolution matrix are related to the longi-

tudinal velocity perturbation δvxi and have negative constant value proportional

to viscosity (−2γ1). Off-diagonal terms originate from perturbing coordinates

or velocities that would lead to a deformation of the Lagrangian configuration
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causing oscillations. Therefore we conclude that any perturbation of the coherent

flock dies out after some oscillations which amounts to absolute linear stability.

This is verified numerically by identifying a Lagrangian configuration, building

up the stability matrix A and finding its eigenvalues as functions of the two con-

trol parameters, γ1 and γ2 . Matrix A has 4 zero eigenvalues corresponding to

two uniform coordinate translations, a rigid-body coordinate rotation, and a uni-

form velocity rotation. The other eigenvalues are complex conjugate pairs with

negative real parts discussed in the main text.
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Appendix C

Linear stability of the rigid

rotation state

We study the stability of the rigid rotation state in a rotating frame, with equa-

tions of motion modified to:

d~ri
dt

= ~vi

d~vi
dt

= t1
(
1− |~vi + ~ω × ~ri|2

)
(~vi + ~ω × ~ri)− t2 ~5~ri

Ui

−2~ω × ~vi − ~ω × ~ω × ~ri (C.1)

where ω is the angular velocity of the rotating frame. A perfect rigid rotation

state is stationary in a co-rotating frame leading to vxi = vyi = 0 while the

positions ~r0i = (x0i, y0i) are expected to be slightly deviating from the nearest

Lagrangian configuration. These deviations are necessary to provide forces that

balance the fictitious centrifugal force resulting from the rotating frame, as well

as maintain most of the particle speeds away from the terminal value. Setting
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vxi = vyi = 0 and ~r0i = (x0i, y0i) in Eq.(C.1) gives:

~Fi0 = t1
(
1− |~ω × ~ri0|2

)
(~ω × ~ri0)− ~ω × (~ω × ~ri0) (C.2)

where ~Fi0 = t2 ~5~ri
Ui are the potential forces resulting from the deviations from

the Lagrangian configuration. The net torque of these potential forces is zero:

∑
i

~Fi0 × ~ri0 = 0 (C.3)

Eqs. (C.2) and (C.3) define the angular velocity of the rotation :

ω =

√ ∑
x2i0 + y2i0∑

(x2i0 + y2i0)
2

(C.4)

Eqs. (C.1) and (C.4) together with the stationarity condition, vxi = vyi = 0,

constitute a set that defines a rotating Lagrangian configuration. Equations

are solved numerically by an iterative procedure that starts with a non-rotating

Lagrangian configuration as a seed. Once the configuration is found, the angular

velocity is given by Eq. (C.4), and the particle velocities in the non-rotating

frame are defined by the rigid rotation condition. If a perfect rotation state is

taken as initial condition and then evolved in the fixed frame we observe that rigid

rotation is not maintained. Particle velocities and coordinates develop oscillations

that grow initially but later saturate. This suggests that the rigid-body rotation

state may be linearly unstable. Linearised equations of motion for a generic

91



perturbation are given by:

dδxi
dt

= δvxi

dδyi
dt

= δvyi

dδvxi
dt

=
(
2γ1x0iy0iω

3 + ω2
)
δxi − γ2

∑
j

C1ijδxj

+γ1
(
x20iω

3 + 3y20iω
3 − ω

)
δyi − γ2

∑
j

C2ijδyj

+γ1
(
1− x20iω2 − 3y20iω

2
)
δvxi +

(
2γ1ω

2x0iy0i + 2ω
)
δvyi

dδvyi
dt

= γ1
(
−y20iω3 − 3x20iω

3 + ω
)
δxi − γ2

∑
j

C2ijδxj

+
(
−2γ1x0iy0iω

3 + ω2
)
δyi − γ2

∑
j

C3ijδyj

+
(
2γ1ω

2x0iy0i − 2ω
)
δvxi

+γ1
(
1− y20iω2 − 3x20iω

2
)
δvyi (C.5)

where C1ij, C2ij and C3ij are obtained from the positions of the particles rigid

rotation state in the co-rotating frame defined earlier. The eigenvalues of the

stability matrix are then found numerically as functions of the control parameters.
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Appendix D

Derivation of mean-field equation

Starting from the single particle equation for the cubic model (Eq. 2.5) we derive

the equation of the change with time of the order parameter s (Eg. 2.10). Below

we give the details of this derivation:

d~vi
dt

= γ1(1− |~vi|2)~vi − γ2 ~5~ri
Ui (D.1)

let ~m =
∑
~vi
N

and ṽi = ~vi − ~m and substitute them in the above equation to get:

dṽi
dt

+
d~m

dt
= γ1(1− (ṽi + ~m).(ṽi + ~m))(ṽi + ~m)− γ2 ~5~ri

Ui (D.2)

Taking the sum over all N particles, all potential forces (which are pairwise)

cancel out and we are left with:

N
d~m

dt
= γ1

∑
i

(ṽi + ~m− (ṽ2i + 2ṽi.~m+m2).(ṽi + ~m))(ṽi + ~m)− γ2 ~5~ri
Ui (D.3)
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Expanding all terms and substituting
∑

i ṽi = 0 we get:

N
d~m

dt
= γ1

(
N ~m−

∑
i

|ṽi|2ṽi −
∑
i

ṽ2i ~m− 2
∑
i

ṽi.~mṽi −Nm2 ~m

)
(D.4)

Taking the dot product of ~m with both sides of the equation we get:

N

2

dm2

dt
= γ1

(
Nm2 −

∑
i

|ṽi|2ṽi.~m−
∑
i

ṽ2im
2 − 2

∑
i

(ṽi.~m)2 −Nm4

)
(D.5)

substituting ṽi.~m = |ṽi|m cos θi θi be the angle between ṽ and ~m we get:

dm2

dt
= 2γ1

(
m2 −

∑
i |ṽi|3 cos θi

N
m−

∑
i ṽ

2
i

N
m2 − 2

∑
i(|ṽi|2 cos θi

2)

N
m2 −m4

)
dm2

dt
= 2γ1

(
1−

∑
i ṽ

2
i

N
− 2

∑
i |ṽi|2 cos θi

2

N

)
m2 − 2γ1

∑
i |ṽi|3 cos θi

N
m− 2γ1m

4(D.6)

initially we considered q = m2 as our order parameter, but q is equal to one for

the coherent flock state and zero for both the random droplet and rigid-rotation

state. So q is not a good enough parameter to describe the rigid rotation state.

Therefore, we had to think of another parameter which uniquely describes the

three states. A good candidate is s =
∑

i ṽ
2
i

N
, which is zero for the coherent flock,

something around 0.6 for the random droplet and something between 0.8 and 1

for the rigid-rotation. Before writing the equation for the change of s with time,
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we write s as:

s =

∑
i ṽi.ṽi
N

=

∑
i(~vi − ~m).(~vi − ~m)

N

=

∑
i(v

2
i − 2~vi.~m+m2)

N

=

∑
i v

2
i − 2Nm2 +Nm2

N

=

∑
i v

2
i −Nm2

N
(D.7)

therefore the change of s with respect to time is given by:

ds

dt
=

1

N

d
∑
v2i

dt
− dq

dt

=
2

N

∑
i

~vi.
d~vi
dt
− dq

dt

(D.8)

evaluating Eqs. D.1 and D.6 we get:

ds

dt
=

2

N

∑
i

~vi.
(
γ1(1− |~vi|2)~vi − γ2 ~5~ri

Ui

)
− 2γ1

∑
i |ṽi|3 cos θi

N
m− 2γ1m

4

−2γ1

(
1−

∑
i ṽ

2
i

N
− 2

∑
i |ṽi|2 cos θi

2

N

)
m2 (D.9)

95



expanding the first term of the right side of the equation and rearranging terms

we get:

ds

dt
=

2

N

∑(
γ1(1− v2i )~vi − γ2 ~5iU

)
.~vi

−2γ1

(
1−

∑
i ṽ

2
i

N
− 2

ṽ2i cos
2(θi)

N

)
m2

+2γ1
|ṽi|3cos(θi)m

N
+ 2γ1m

4

=
−2γ1
N

∑
i

(
ṽi

4 +
(
3ṽi

3cosθi − 2ṽicosθi
)
m+ 2ṽi

2cos2θim
2
)

−2γ1
N

(∑
i

4ṽicosθim
3 + 2γ1(1−m2)s+

∑
i

γ2ṽi. ~5iU

)
(D.10)

s and the right hand side of this equation (f(s)) are evaluated simultaneously

at different points in time of the trajectory and are stored in columns 1 and 2

respectively of a matrix. We collect results from 50 trajectories for a given value

of γ1, combine all matrices in one huge matrix of two columns. Then we sort the

second column (f(s)) according to the first one (increasing order of s). Plotting

the second column versus the first gives the dependence of the conjugate force

f(s) as a function of s (Figs. 2.15a and 2.15c). The range of s which between 0

and 1 is separated into 1000 equal bins, and the values of f are averaged over

each bin. The averaged data fmean(s) is then integrated, using the trapezoid built

in integrator of matlab, to give the potential of the mean force V (s) satisfying

dV
ds

= −fmean(s).
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Appendix E

Details of the Computational

Scheme of Leader-Follower Model

Equations 3.3 were solved using an Euler scheme with time step δt = 0.001: the

position and orientation of the follower are integrated forward in time, while the

leader moves unaffected along the vertical diameter, with the same speed as the

follower. The leader’s position relative to the follower’s cone of vision is tracked

in order to update ω∗ in Eq.3.3. The COV is defined as the angle between the

follower’s velocity vector and the clockwise and counterclockwise rays cast from

its position; the leader is in the follower’s field of view if the angle between the

ray and the particles’ relative positions is less than the COV (Fig. 3.1).

Collisions with the boundaries of both the follower and leader are treated

as follows: when the updated particle’s position falls outside the boundary the

particle is reflected back into the circle. More precisely, we define ~vb to be the

velocity vector just before collision, ~r0 to be the vector joining the center of the

circle and the point of intersection of ~vb with the boundary, and ~va be the velocity
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vector after collision, which is shown to be:

~va = ~vb − 2(~vb.~r0)~r0 (E.1)

Then we can write:

φa = arctan

(
sin(2θ0 − φb)
cos(2θ0 − φb)

)
, (E.2)

where φa, φb, and θ0 are the angles the vectors ~va, ~vb, and ~r0 make with the

positive x− axis respectively. Additionally, to balance out the traveled distance

outside the boundary the position is updated as follows:

xa = x0 + c cosφa

ya = y0 + c sinφa,

where c = x′ cosφb + y′ sinφb −
√

1− (x′ cosφb − y′ sinφb)2, and (xa, ya), (x′, y′)

and (x0, y0) are the particle’s coordinates before collision, outside the circle and

those of ~r0 respectively. For each value of COV 50 instances with varying initial

conditions were followed for 5 × 107 iterations. The results, which depend on

initial conditions, are then summarized in the phase diagram.
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