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Title: Pricing and Inventory Decisions of an Assortment under Equal Profit Margin 

We consider the interdependent decisions on inventory and pricing of 

substitutable products in an assortment that is differentiated by some secondary 

attributes such as color, flavor, etc.  We assume we have a newsvendor-type model with 

several products and one selling period under a logit consumer choice model. We also 

assume that all products in the assortment have equal profit margins. Demand assumes a 

multiplicative-additive structure where both variance and coefficient of variation depend 

on the pricing captured by the common profit margin.  This is a realistic demand 

structure (Maddah et al., 2013) reflecting customers arriving according to a Poisson 

process and making purchases, at random, according to the logit model. Our problem is 

then to determine the common profit margin and the inventory levels of products in the 

assortment in a way that maximizes the expected profit. This problem has been studied 

in the literature for homogenous products, having equal unit costs or equal costs and 

average consumer valuations, but not for general assortments due to its complex nature. 

Under an adopted Taylor Series approximation, the profit function is proved unimodal 

in the common profit margin. Then, we compare the optimal profit margin to the 

“riskless” profit margin, where no inventory exists, in order to understand the effect of 

inventory considerations on pricing.  We further perform a comparative static 

(sensitivity) analysis on demand and cost parameters to understand the environment 

impact on pricing. We continue to study the structure of the optimal assortment and 

establish dominance results. 
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CHAPTER I 

INTRODUCTION 

Quite often, when a consumer enters a store, she has to choose among a set of 

horizontally differentiated products (similar products that differ in color, flavor, etc.) 

available at the store. A major determinant that will affect her choice is the retailer’s 

price. Price may not only affect her choice of whether to purchase her most favorable 

product or not, price may also shift her interest into a new product. Hence, pricing 

decisions does not only affect demand for every product but also has an impact on the 

overall demand and the allocation of demand among the set of products.  For that 

reason, it is beneficial to decide on assortment, inventory and pricing jointly.  

Our work is an attempt at exploring the benefit of joint decisions for a category 

of substitutable products. We first assume a Multinomial logit consumer choice model 

(MNL) which is a common approach in literature (e.g., Aydin and Porteus, 2008, van 

Ryzin and Mahajan, 1999) in a newsvendor inventory setting where the inventory is 

sold in a single time period. In order to simplify the pricing decision, we assume that all 

the products have the same profit margin. We verify that this assumption yields near 

optimal results via a vast numerical study. To avoid the independence-from-irrelevant-

alternatives pitfall (IIA
*
) that the MNL model exhibits, we extend our results to the 

more general case of a nested logit model where consumers’ purchase behavior is 

                                                           
 

* IIA property: the property of a model where the ratio of the probabilities of 
choosing any two alternatives is independent of the attributes or the availability of a third 
alternative. For a detailed explanation, please refer to McFadden et al., 1977. 
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modeled through a two-step decision process; consumers first decide on the nest of 

preference then they choose to purchase an item within this nest. For instance, a 

customer entering a store wanting to buy a knit needs to first decide on whether to buy a 

cardigan, a V-neck sweater or a round neck sweater among other alernatives. Each of 

the three options can be seen as a distinct nest. Once she chooses to buy a cardigan; i.e. 

she chooses her nest, the consumer then decides on the color of cardigan she wants to 

purchase.  

This paper is an extension of the work done by Maddah et al. (2014) where the 

authors analyze assortment, pricing, and inventory decisions for a category of 

substitutable products assuming (i) a “multiplicative-additive” demand model and logit 

choice, (ii) all products in the category have equal unit cost, and are accordingly priced 

at the same level, and (iii) a newsvendor-type inventory setting. This paper first relaxes 

Assumption (ii) of Maddah et al. (2014) by considering a category with products having 

heterogeneous costs. To keep the pricing decision trackable, we assume that all products 

have equal unit profit margins identified as the retail price minus the unit cost. We then 

relax Assumption (i) of Maddah et al. (2014) and analyze a nested-logit-based demand 

instead of the logit-based demand. The main contribution of this paper is showing that 

(i) many results in Maddah et al. (2014) continue to hold in our more general setting, 

and (ii) other results in that paper hold under reasonably weaker settings.  Specifically, 

the unimodalarity of the profit function still holds under the more general case. We 

show that “popular sets” are “optimal sets” in the proposed upper and lower bounding 

functions, which conforms to the dominance result in Maddah et al. (2014). We 

compare risky and riskless prices as well, but we obtain different functions in terms of 

additional parameters that allows the comparison.  
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The remainder of this article will be organized as follows: In Section 2, we 

provide a review of common approaches to study the aforementioned joint decisions. In 

Section 3, we introduce our model. In Section 4, we establish some structural properties 

of the expected profit function to simplify the search for the optimal pricing policy. In 

Section 5, we compare riskless and “risky” profit margins. In Section 6, we provide a 

numerical analysis that validates the near optimality of assuming an equal profit margin. 

Finally in Section 7, we examine the structure of the optimal assortment. In Section 8, 

we extend some of our results on a nested-logit-based demand model. 
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CHAPTER II 

LITERATURE REVIEW 

As it affects the effectiveness of companies’ decisions on product planning, 

pricing and control, product substitution has recently grasped substantial attention in the 

operations management literature (Shin et al., 2015). In this context, Shin et al. (2015) 

explain three substitution mechanisms: (1) assortment-based substitution, where the 

customer substitutes the initially preferred product by another newly introduced to the 

retailer’s assortment, (2) inventory based substitution where the customer substitutes in 

the case of stock out of initially preferred product and (3) price based substitution, 

where the customer substitutes her initially preferred product due to change in relative 

prices of substitutable products. Considering these substitution mechanisms, the 

literature has focused on four major areas of decisions that can affect customers’ 

substitution behavior: assortment planning, inventory decision, pricing decision, and 

capacity planning. In this paper, we examine the first three decisions in a two-facet 

approach. First, the assortment is considered fixed and optimal prices and inventory 

levels are determined. In the next step, prices are assumed fixed and the structure of 

optimal assortment and inventory levels are then determined. As shown in figure 1, our 

research follows suit of several works in literature. 
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Figure 1: Area of decision and modeling environment under product              

substitution in the literature (adopted from Shin et al., 2015) 

Examples of works that consider joint inventory and pricing decisions for a 

given assortment include Aydin and Porteus (2009), Maddah et al. (2014), 

Kocabiyikoglu and Popescu (2011), Li and Huh (2011), Roels (2012), Karakul and 

Chan (2010), and Akan et al. (2013). 

Example of works on joint assortment and inventory decisions under 

exogeneous pricing include Van Ryzin and Mahajan (1999), Aggrawal and Smith 

(2000), Kok and fisher (2007), Maddah et al. (2014), and Honhon et al. (2010).  

It is also worth mentioning that a stream of the literature considers all three 

namely assortment, pricing, and inventory decisions jointly (e.g. Maddah and Bish 

(2007), Ghoneim and Maddah (2015), and Tang and Yin (2010)). More details on these 

works are available in Ghoneim and Maddah (2015) and Shin et al. (2015).  

Recent works on the joint decisions can be further classified based on their 

solution methodology; some utilize mathematical programming (MP), and others utilize 

stylized models. In the mathematical programming approach, most authors examine at 

most two of the three decisions (namely pricing, inventory, and assortment planning) by 
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optimizing on a data-driven model with the exception of Ghoneim and Maddah (2015) 

who study three decisions simultaneously. Example of works that utilize the MP 

approach include Dobson and Kalish (1993) and Subramanian and Sherali (2010). More 

details are available in Ghoneim and Maddah (2015). 

The main difference between the MP approach and the stylized model 

approach is that in the first, authors seek an exact solution for large data-driven models 

whereas, authors utilizing stylized models are more concerned about gathering insight 

on the behavior of the profit function and the parameters affecting the profit. 

Furthermore, the MP approach takes on fewer assumptions but assumes that demand is 

deterministic, whereas in stylized models demand is more realistically taken as 

stochastic but several simplifying assumptions are often made. Examples of works that 

utilize stylized models include Aydin and Ryan (2000), Aydin and Porteus (2008), 

Besanko et al. (1998), Cattani et al. (2003), Hopp and Xu (2005), Van Ryzin and 

Mahajan (1999), Kök and Xu (2011), and Li and Huh (2011).  Our work uses the 

stylized approach and contributes to the literature by expanding the results of Maddah at 

al. as explained earlier. 

Other authors assume exogenous demand models, where demand is 

predetermined for each product (e.g. Smith and Agrawal (2000) and Kok and Fisher 

(2007)). Locational demand has been widely used as well. Locational demand links the 

attractiveness of a product to its “distance” from an ideal product location (Gaur and 

Honhon, 2006.).   

To avoid the IIA property that the MNL exhibits, many authors study 

consumer choice under the more general nested multinomial logit choice model 
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(NMNL). Examples of such work includes Kalakesh  (2006), Li and Huh (2011), and 

Kök and Xu (2011). Kalakesh (2006) concludes through a numerical study that “popular 

sets” are optimal sets and that the equal profit margin heuristic renders near optimal 

results under the nested logit choice model. Li and Huh (2011) study the pricing 

problem and show that revenue and profit are concave in the market share vector. Kök 

and Xu (2011) also assume a nested logit choice model and present their results under a 

brand primary and a demand primary choice model further differentiated under 

centralized and decentralized management. They derive closed form expressions for 

optimal profit margins and item revenues while taking on the assumption that inventory 

costs follow a function increasing and concave in the expected demand. In section 8 of 

this paper, we also consider the NMNL to study the validity of our findings. We use a 

model similar to that utilized by Kalakesh (2006) where customers can only choose not 

to purchase while choosing among nests. That is, if a nest is chosen, the costumer has to 

purchase an item within a nest and cannot leave empty handed. 
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CHAPTER III 

MODEL AND ASSUMPTIONS 

To study the problem, discussed in Section 1, we will assume a similar model to 

that utilized by Maddah et al. (2014). We define   = {1, 2, . . . , n} as the set of 

products, differing in secondary characteristics, from which the retailer can form her 

assortment S. Variants in  have equal profit margins, denoted by m, defined as the 

difference between the retail price, ip
, and the unit cost, ic

, of a product  i ; 

i im p c 
. A consumer has a mean reservation price for Product i  defined as i . 

The customer chooses the product that maximizes her utility, defined by utilizing a logit 

choice model as i i i iU p   
 for every product i S ; and a utility of the no-

purchase option given by 0 0U 
 where , without loss of generality, i ,

 0i S 
, are 

independent and identically distributed (i.i.d.) Gumbel random variables with mean 0 

and shape factor 1(e.g., Guadagni and Little (1983)). We assume that a consumer acts to 

maximize her utility. Hence the probability of purchasing i  is given by

  0
( , ) Pr maxi i jj S

q m S U U
 

 
, and the no-purchase probability is given by 

0 ( , ) 1 ( , )i

i S

q m S q m S


 
, which simplifies to 

( , )
1

i i

i i

c m

i c m

i S

e
q m S

e





 

 




  ,

0

1
( , )

1 i ic m

i S

q m S
e
  




   (1) 

We assume that a consumer takes her decision of purchasing based only on 

price, variety and quality (assortment-based substitution). Assuming that the arrival 
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process to the store follows a Poisson distribution with rate λ, the demand for Product

i S , Xi, is a normal random variable with mean 
( , )iq m S

 and standard deviation

( , )iq m S
. Since both the coefficient of variation and standard deviation (given by 

1/ ( , )iq m S
and 

( , )iq m S
  respectively) of the demand are functions of the profit 

margin m, our demand model may be seen as “multiplicative–additive”. This is because

( , ) ( , )i i i iX q m S q m S Z  
, where Zi are i.i.d. with a standard normal distribution. 

Following established results on the newsvendor model under normal demand 

(e.g. Silver et al., 1998) the optimal inventory level, 
*( , )iy m S

, for each product in S, 

and the total profit, ( , )m S , from Assortment S at optimal inventory levels can be 

written as  

* 1( , ) ( , ) (1 ) ( , )k
i i i

k

c
y m S q m S q m S

m c
    


   (2) 

1

1
( , ) ( , ) ( ) ( (1 )) ( , )

k i
i i ii

i

c
m S m q m S m c q m S

m c
   


    




 (3) 

where (.) and (.) define the probability density function and the cumulative 

distribution function of the standard normal distribution.  In Equation (3) the first term 

is the profit with no inventory considerations, while the second term accounts for 

inventory cost. Through a numerical search, the profit margin and assortment size that 

maximize the expected profit function can be determined. Obtained optimal values can 

be then replaced in Equation (2) to determine optimal inventory levels. Finally, letting 

k S
 and rearranging (3), the expected profit can be written as 
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1

1

( , ) ( , ) ( , ) ( ) ( (1 ))
i ci

k
i

k i

i i

c
m k m g m k g m k m c e

m c



    






    



(4) 

where  

( , )
1

m

m

k

e
g m k

e 







, and 1

i i
k c

k i
e
 


 . 
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CHAPTER IV 

STRUCTURE OF THE PROFIT FUNCTION 

In this section, we analyze the properties of the optimal profit margin one that 

maximizes the expected total profit function; 
*

0arg max ( , )k mm m k 
. Since the 

expected profit is complex to analyze, we adopt a Taylor series-based approximation 

developed by Maddah et al. (2014). Then, we prove that the resulting approximate 

expected profit 
ˆ ( , )m k  is unimodal in the profit margin, m. To ensure that the retailer 

is not better off by not selling anything, we first make the following assumption:  

Assumption 1: The expected profit
ˆ ( , )m k is increasing in m at 0m  ; that is 

0

ˆ ( , )
0

m

m k

m






, rearranging, 

2

2

(1 )k k

k

a  







, where 1

i i

k
c

k

i

e
 




 . 

This assumption will hold in the remainder of the paper. Maddah et al. (2014) 

approximation is as follows: 
1( (1 )) ( 1)x ax x      , where 1.66a  . The profit 

function becomes  

ˆ ( , ) ( , ) ( , ) ( , )km k m g m k a g m k m k      
     (5) 

where 1

( , ) i i

k
ci

i i

c
m k e

m c

 







. 

Now, we will study the structure of the expected profit as function of the profit 

margin. Since 
ˆlim ( , ) 0m m k 

 
, it can be shown that 

*ˆ
km
 is an internal point 
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solution satisfying the first- and second-order optimality conditions under Assumption 

1. The following lemma establishes our first set of structural properties on the expected 

profit as a function of m. 

Lemma 1. The expected profit 
ˆ ( , ) 0m k   if and only if m ϵ 

(0, )km
where 

0km 
is the 

unique solution to the equation
2 2 2( ) ( , ) ( , ) 0k g m k a m k   

. Furthermore, 
*ˆ
k km m

and km
 is decreasing in k. 

Proof: See Appendix A 

Lemma 1 shows that the expected profit is positive on the interval extending 

from 0 to km
. This interval defines the logical set of profit margins consumers are 

willing to purchase at, and km
may be seen as a logical upper bound on the optimal 

profit margin
*ˆ
km
. Hence, a retailer offering a wide variety of products cannot assign 

high profit margins. This finding conforms to the behavior of the logit choice model, 

where we recognize demand thinning with high variety.  

The following theorem describes the behavior of 
ˆ ( , )m k on the interval 

defined in Lemma 1. 

Theorem 1. The expected profit
ˆ ( , )m k  is unimodal in m on

(0, )km
. 

Proof: See Appendix A 

This result is in-line with previous findings by Maddah et al. (2014), where the 

authors prove that the expected profit function is unimodal in price which is assumed to 
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be the same for all products having the same unit cost. Utilizing the same method, we 

prove that the expected profit is unimodal in m for homogeneous products having 

different unit costs. Theorem 1 shows that there exists a single optimal solution on

(0, )km
that maximizes the profit. This, along with Lemma 1, allows the determination 

of the optimal profit margin through any line search technique.  
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CHAPTER V 

EFFECT OF INVENTORY CONSIDERATIONS ON PRICING 

In this section, we study the properties of the optimal profit margin
*

km
, while 

establishing means by which we can compare it to the riskless profit margin. The 

riskless profit margin
0

km
, is one which maximizes the profit when no inventory exists; 

i.e. a make-to-order retailer case.  

When no inventory costs are considered, the second part of Equation (4) is 

dropped, and the expected profit function can be written as 

0( , ) ( , )km k m g m k  
      (6) 

In the following corollary, we adopt results established by Li and Huh (2011), 

who find a closed-form expression for the riskless optimal profit margin 

0 0arg max ( , )km m k 
in terms of the Lambert W (.) function. The W (x) function is 

defined as the unit solution of
wwe x ; see Corless et al. (1998) for background on the 

Lambert function). 

Corollary 1.The expected riskless profit 
0 ( , )m k is unimodal in m, with 

10

1
1 ( )j j

k c

k j
m W e

  


  

.      (7) 

Moreover,
0

km
 is 

a. Increasing in the unit cost per item, c; 
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b. Increasing in the mean reservation price of item ki S
, αi; 

c. Insensitive to the demand volume, λ. 

Proof: See Appendix B 

In the related literature, the risky price,
*

kp
, and the riskless price, 

0

kp
, compare 

as follows.  In an additive demand,
* 0

k kp p
, in multiplicative demand, 

* 0

k kp p
 (Petruzzi 

and Dadda, 1999) and in additive-multiplicative demand, 
*

kp
may fall above or below 

0

kp
 (Maddah et al., 2014). In the following we present a result that closely relates to the 

result Maddah et al. provide.  

After considering inventory costs, the riskless profit margin,
0

km
, shifts to a 

risky profit margin,
*ˆ
km
. Thus, studying the inventory cost function will enable us to 

compare 
*

km
and

0

km
. From equation (5), the inventory cost is given by

1
ˆ ( , ) ( , ) ( , )C m k am g m k m k 

. We prove 1
ˆ ( , )C m k  to be unimodal in m, and 

decreasing at
0

km m
. 

Lemma2. The approximate inventory cost 1
ˆ ( , )C m k  is unimodal in m. Moreover,

0
0

0
01

ˆ ( , )( , ) ( , )
( , )

2
k

k

k
k

m mm m

m kC m k m k
a g m k

m m

 




  
  

    .     (8) 

Proof: See Appendix B 

Given Lemma 2, the comparison of the risky 
*ˆ
km
and riskless profit margins 

0

km
 

becomes possible. The unimodilarity result indicates that 
*ˆ
km
would fall above 

0

km
in a 



16 
 
 

way as to obtain a lower inventory cost at
*

km
. The inventory cost, 1

ˆ ( , )C m k , is decreasing 

in 
0

km
when 

0

0( , )( , )

2
k

k

m m

m km k

m









 as 

0

( , )

km m

m k

m








 is negative. Thus, the risky 

profit margin needs to fall above 
0

km
to obtain a lower inventory cost. When 

0

0( , )( , )

2
k

k

m m

m km k

m









, 1

ˆ ( , )C m k is increasing in 
0

km
and thus 

*ˆ
km
would need to fall 

below 
0

km
. Let c be the cost of the most expensive product in the assortment, 

maxi S ic c
  and c be the cheapest product, 

mini S ic c
. When 

0 2km c 
, we are 

certain that 
0

0( , )( , )

2
k

k

m m

m km k

m









, hence, 

* 0ˆ
k km m

. Similarly, if
0 2km c 

, then

* 0ˆ
k km m

.  

Lemma 3.  If 
2(1 ). c

k c e  
, then

* 0ˆ
k km m

. Equivalently, i f 
2(1 ). c

k c e  
, then

* 0ˆ
k km m

.  

Proof: See appendix B 

The conditions on k in Lemma 3 are equivalent to 
0 2km c 

and 
0 2km c 

but they allow the comparison of the riskless and risky profit margins without the need 

to find the value of
0

km
. 
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CHAPTER VI 

NUMERICAL ANALYSIS ON THE EQUAL PROFIT 

MARGIN HEURISTIC 

The objective of the following numerical study is to study the validity of the 

equal profit margin heuristic under different scenarios. We assume a base case with 

three products with equal unit costs (c = 8). Other base parameters were set to the 

following: 100  , 1 15  , 2 14  , 3 13 
. In (a) we vary the arrival rate while 

keeping all parameters constant. In (b), the consumer’s utility is variable and in (c) we 

study the heuristic under both variable costs and variable consumer utilities by 

calculating the percentage optimality gap according to the following:

*( , ) ( )
100

( , )

S m

S

 




*

*

p

p †
.  

A. Effect of arrival on heuristic. 

In this section we study the effect of changing the arrival rate on the validity of 

the equal profit margin. The arrival rate is increased from the minimum value where 

 2 1k ka  
following Assumption 1. At each arrival rate, optimal prices and the 

optimal profit margin are determined.  The percentage optimality gap is then computed. 

                                                           
 

†
 The expected profit ( , )S *

p is the optimal profit assuming that products in the assortment 

have different prices given by 1 2( , ,..., )k= p p pp . ( , ) max ( , )S S  *
p p  where 

1

( , ) ( ) ( , ) ( , )
K

i
i i i i

i i

c
S p c q S a q S

p
 



   p p p  and 

1

( , )

1

i i

j j

p

i K
p

j

e
q m S

e














. 
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Figure 2 (a) shows that at reasonably high arrival rates the optimality gap tends to 0 

validating the equal profit margin heuristic. 

B. Optimality with varying mean reservation prices i . 

Fixing the arrival rate and unit cost constant (at 100  , and 8c  ), we vary 

the mean reservation price of each product and study the optimality gap. It is assumed 

that reservation prices do not change arbitrarily but vary in function of k (assortment 

size), according to the following equation
 ( 1)i k i c     

. A base case of γ = 1.5, 

δ = 0.125 and k = 3 is assumed. The heuristic is then tested by calculating the 

percentage optimality gap according to 
2
 at different k, γ, and δ values. Figures (b) and 

(c) show a plot of the percentage optimality gaps in function of γ, and δ. Ranges for γ, 

and δ were selected in conformity with Assumption 1.  

Figures 2(b) and (c) show that the percentage optimality gap remains low as γ 

and δ are varied. The percentage optimality gap at lower values may be explained by the 

presence of products having a cost exceeding reservation prices which is mostly not the 

case in reality. As for varying δ, a maximum optimality gap of 2.1% was observed. This 

gap tends to 0 at higher δ values. With δ and γ constant, the assumption of 3 products is 

relaxed as k value varies. Figure 2(d) acquires the shape of a plateau when the 

assortment size, k, increases.  
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C. Effect of simultaneous variation in product costs and mean reservation 

prices. 

We utilize the same equation mentioned above and define the cost of product i 

in function of variables c , and c with k = 3. Consumer’s utility remains in function of 

the product cost but γ, δ and k are set to their base values (γ = 1.5, δ = 0.125 and k = 3).  

Therefore, the cost of Product i can be written as, 
 (4 ) 8i c cc i   

. c  and c values 

were varied as to obtain positive costs for the three products with base values of 
0c 

and 
1c 

. Figure 2(e) (f) shows the variation of percentage optimality gap in function 

of the studied parameters. As c varies, the percentage optimality gap increases to a 

peak of less than 3.5% and then converges to 0. Setting c constant and varying c , a 

maximum error of less than 3% was obtained.  

In conclusion, the obtained maximum optimality gaps further validate the equal 

profit margin heuristic.  A retailer may be willing to accept such minimal decrease in 

profits to avoid computational complexity.     
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 2. The variation of the Optimality Gap in % vs. studied parameters 
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CHAPTER VII 

STRUCTURE OF THE OPTIMAL ASSORTMENT 

In this section, we study the problem of determining the products that 

constitute the optimal assortment under the MNL choice model.   

To study the structure of the optimal assortment we introduce two new 

functions that serve as upper and lower bounds to the expected profit function. 

Replacing 

i

i

c

m c
by 1, define 1

( , ) ( , ) ( , )
k

i k i

i

m S m q m S a m q m S 


  
 as a lower 

bound and then, replacing m by km in the same fraction yields an upper bound on 

( , )m S defined by 1

( , ) ( , ) ( , )
n

i
i k i

i i

c
m S m q m S a m q m S

m c
 



  



. We study the 

nature of these bounds by varying the arrival rate, the assortment size, the mean utility 

prices and the unit costs in a similar process to that utilized in the preceding numerical 

study. Figure 3 ((e) to (f)) shows the obtained results. It can be inferred that the 

proposed functions provide a good upper and lower bound on the expected profit 

function.  

Next, we show that an optimal assortment has a simple popular set structure 

under the tight bonds defined here, ( , )m S and ( , )m S . That is, if one utilizes 

( , )m S and ( , )m S as approximate profit functions, then an optimal assortment is a 

popular set.  
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Lemma 4. Assume the profit margin is fixed at some profit margin m, and define i

as

i ic 
 . Then, the upper and lower bounds on the optimal profit functions, 

( , , )im S 
 

and 
( , , )im S 

 are both pseudoconvex in i

. 

Proof: See Appendix B 

As it is standard in literature (e.g. Van Ryzin and Mahajan (1992) and Maddah 

and Bish (2007)), the pseudoconvexity results in Lemma 4 imply a popular set structure 

of the optimal assortment under the lower and upper bound functions.  

Theorem 2. Assume without loss of generality that 1 2' ' .... 'n   
. Under both the 

lower and upper bounds ( , )m S and ( , )m S , an optimal assortment is the popular set 

 1,2,...kS n
for some k n . 

Given the good quality of the bounds ( , )m S and ( , )m S established in 

Figure 3, Theorem 2 suggests that restricting the search for the optimal assortment to 

popular sets, having the products with highest average margin i i ic   
, will 

produce a near-optimal assortment. 
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 3. Assessing the quality of the upper (πub) and lower (πlb) bounds as a 

function of λ, γ, δ, k, γc and δc). 
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CHAPTER VIII 

THE NESTED LOGIT MODEL 

To overcome the IIA limitation of the MNL, we utilize the nested multinomial 

choice model (NMNL) first introduced by Ben-akiva (1973). The NMNL assumes that 

the category Ω is partitioned into n nests (subsets); 1

n

ii
N


 

. 

 The NMNL is characterized by two constants, 1 0   that measures the degree 

of dissimilarity between nests, and 2 0   that measures the dissimilarity among 

products in the same nest. Products across different nests exhibit more differences than 

products included in the same nest, which leads to 1 2  . The NMNL assumes that 

customers first choose a certain subset or nest, and then choose an item within a nest. 

Following Kalakesh (2006), we assume that customers can only choose not to purchase 

in the first stage. Below is an illustration of the decision process adopted from Kalakesh 

(2006). In Figure 4, iq
is defined as the probability of selecting nest i, liq

 as the 

probability of selecting product l from nest i, ik
 as the number of products offered in 

nest i, and m as the number of available nests. Kalakesh (2006) argues that a no 

purchase option within a nest is realistic since a high no purchase utility may make a 

nest highly attractive which is illogical. 

In this section we aim at validating previous findings on the more general 

NMNL choice model. First we introduce our model; then, we show that the unimodality 

result still holds. We provide reviewed functions that allow the comparison of risky 

profit margins to those in a make-to-order setting. Finally, we perform a numerical 
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analysis to test the applicability of the equal profit margin heuristic under the NMNL 

choice model. 

 

Figure 4. Two level decision process under NMNL (adopted from Kalakesh 

(2006)) 

A. Model and Assumptions under NMNL choice model 

The consumer’s utility for product i in nest k is given by  li li li liU p   
 ; 

and the utility of the no-purchase option is 0 0U 
, where i are independent and 

identically distributed (i.i.d.) Gumbel random variables with mean zero and shape factor 

2 . The probability of purchasing a product l given that a nest Ni has been already 

selected is 
 / ( , ) Pr max

il i i li l N liq S m U U 
 which can be written as 

2

2

/ ( , )

c mli li

c mli li

i

l i i

l S

e
q S m

e
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where i iS N
 is the set of products offered in Nest i. The utility of each nest and the no 

purchase option is based on the attractiveness of nests, defined as

2

2 ln

c mki ki

i
i k S

A e





 


 

, for Nest i. Thus the utility of nest i is given by i i iU A  
, 

and the utility of the no purchase option is 0 0U 
where i are independent and 

identically distributed (i.i.d.) Gumbel random variables with mean zero and shape factor 

1 . Hence, the probability of choosing Ni is
    1,2,.. 0

( , ) Pr maxi i jj n
q m N U U

 
 

, 

which simplifies to 

2

1

2

2

1

2

0 1

( , )

c mli li

i

c mlj lj

j

l S

i

n

j l S

e

q m

e

















 

 



 

 
 
 
 

 
 
 
 



 

S

 

Where 2, ,..., )1 n=(S S SS
and

0 1/

0

u
e

 
. Finally, the probability of purchasing a 

product l in Nest i can be written as /( , ) ( , ) ( , )li l i iq m q m N q m N S
. 

We assume that a consumer will take her decision of purchasing based only on 

price, variety and quality (assortment-based substitution). Then, the optimal inventory 

level, 
* ( , )liy m S

, for each product in the assortment, and the total profit, ( , )m S , from 

the entire assortment at optimal inventory levels can be written as  

* 1( , ) ( , ) (1 ) ( , )li
li li li

li

c
y m q m q m

m c
    


S S S

    (9) 
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1

1
( , ) ( , ) ( ) ( (1 )) ( , )

i

n li
li li lii l S

li

c
m m q m m c q m

m c
   

 
    


 S S S

 (10) 

Similar to the MNL case, the profit margin and assortment size that maximize 

the expected profit function can be determined numerically. Obtained optimal values 

can be then replaced in Equation (10) to determine optimal inventory levels. Finally, 

letting i iK S
and 2, ,..., )1 n=(K K KK

, and rearranging Equation (10) the expected 

profit can be written as 

1

1 1
( , ) ( , ) ( , ) ( ) ( (1 )

in K li
li lii l

li

c
m m p m p m m c

m c
     

 
    


 KK K K

(11) 

Where

( , )
1

m

m

e
p m

e 






 K

K

,

2

1

2

1 1

cli li

in K

i l
e











 

 
 
 
 

 K

, and 

2

1

2 2

1

1

c cli li li li

iK

li l
e e

 





 

  



 
 
 
 


 

Similar to the case in NML, we also take the following assumption to ensure 

that the retailer will not make higher profits when selling nothing.  

Assumption 1A. The expected profit
ˆ ( , )m K is increasing in m at 0m  ; that is 

0

ˆ ( , )
0

m

m

m







K

rearranging, 

2

1

2 2

2

1

0 1
1 1

( )

c cli li li li

i
i

Kn
K

l
i l

a e e

 





  




  


 

 
  
  
    

 

 K

K . 
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To simplify the profit function, we also apply the approximation presented by 

Maddah et al. (2014) on equation (11) which reduces to the following: 

( , ) ( , ) ( , ). '( , )m m p m am p m m     KK K K K
   (12) 

Where 

2

1

2 2

1

1
1 1

'( , )

c cli li li li

i
i

Kn
Kli

l
i l li

c
m e e

m c

 





 

  


 

 
 
 
 

 K

. 

B.  Structure of the Profit Function 

In this subsection, we show that previous results on the structure of the profit 

function continue to hold under the NMNL choice model. We propose logical bounds 

for the optimal profit margin in Lemma 1A in the interval where the total profit is 

positive. Similarly, knowing that 
ˆlim ( , ) 0m m 

 K
, it can be shown that 

*mK  is an 

internal point solution satisfying the first- and second-order optimality conditions under 

Assumption 1A. Thus we can write the following lemma. 

Lemma 1A. The expected profit 
ˆ ( , ) 0m K  if and only if m ϵ (0, )mK where 0m K is 

the unique solution to the equation 
2 2 2( ) ( , ) '( , ) 0p m a m   K K K . Furthermore, 

*m̂ mK K and mK  is decreasing in k. 

Proof: See Appendix A 

The main result of this paper continues to be valid as we prove that the profit 

function under NMNL choice model is also unimodal in m established in Theorem 1A. 
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Theorem 1A. The expected profit
ˆ ( , )m K  is unimodal in m on (0, )mK . 

Proof: See Appendix A 

C.  Effect of Inventory Considerations on Pricing under NMNL choice model. 

In this section, we study the properties of the optimal profit margin
*mK , and 

study how it compares to the riskless profit margin. When no inventory costs are 

considered, the expected profit function simplifies to 

0( , ) ( , )m m p m   KK K .       (13) 

To obtain a close form expression for the riskless profit margin, we apply in 

corollary 1A a result by Li and Huh (2011). 

Corollary 1A.The expected riskless profit 
0( , )m K is unimodal in m, with 

10

1 1
1 ( )

i li li
n K c

i l
m W e

  

 
   K .      (14) 

Proof: See Appendix B 

As discussed earlier, accounting for inventory costs will adjust the optimal 

riskless profit margin
0mK to a risky profit margin, 

*mK . Thus, we compare 
*mK and

0mK by 

studying the cost function as we did previously in section4 for the MNL case. From 

equation (12), the inventory cost is given by 1
ˆ ( , ) ( , ) '( , )C m am p m m K K K

.We 

prove 1
ˆ ( , )C m K  to be unimodal in m, and decreasing at 

0m m K  under NMNL as well. 
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Lemma2A. The approximate inventory cost 1
ˆ ( , )C m K  is unimodal in m. Moreover,  

00

0 0
01

ˆ ( , ) '( , ) '( , )
( , )

2
m mm m

C m m m
a p m

m m

 




  
  

   KK

K K
K

K K K
K

.   (15) 

Proof: See Appendix B 

Given that the inventory cost function is unimodal in m, we can easily compare 

the risky, 
*mK and riskless profit margin , 

0mK by adjusting 
*mK above or below 

0mK  to 

obtain a lower inventory cost. 1
ˆ ( , )C m K is decreasing in 

0mK when 

0

0'( , ) '( , )

2m m

m m

m

 







K

KK K

as 
0

'( , )

m m

m

m








K

K

is negative. Thus, the risky profit margin 

needs to fall above
0mK . When

0 2m c K , we are certain that

0

0'( , ) '( , )

2m m

m m

m

 







K

KK K

, hence, 
* 0m mK K . Similarly, when

0

0'( , ) '( , )

2m m

m m

m

 







K

KK K

, i.e. when 
0 2m c K , 1

ˆ ( , )C m K is increasing in 
0mK . 

Thus, 
*mK would need to fall below

0mK . Using the closed form expression of the riskless 

profit margin derived in (12), we can write Lemma 3A which enables us to perform the 

comparison without optimizing on the riskless profit function. 

Lemma 3A. If 
2(1 ). cc e  K ,  then 

* 0m mK K . Equivalently, if 
2(1 ). cc e  K , then

* 0m mK K .  

Proof: See appendix B 
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D. Numerical Study under the NMNL choice model 

In order to study the magnitude of the loss in profit when assuming an equal 

profit margin, we will perform the following numerical study. First, we assume that a 

customer entering the store will have to choose among three nests or leave empty 

handed. Once the nest has been chosen, the customer will have to choose one of the two 

products in the nest. Recall that a customer who chose a nest in the preliminary step 

cannot leave empty handed. As a base case, assume that people arrive according to a 

Poisson process with rate 100  , and that the degree of dissimilarity among the nests 

is 1 2   and within a nest is 2 1.2  . Other parameters are set to the following: 

11 12  , 21 11  , 12 13  , 22 14  , 13 13 
, 23 16 

11 4c  , 21 5c  , 12 8c  , 

22 9c  , 13 8c 
, and 23 7c 

. In the following subsections we study the validity of the 

equal profit margin heuristic by calculating the percentage optimality gap in a manner 

similar to that of the MNL. In each subsection, we keep all variables constant except 

for: (a) the arrival rate; (b) the consumer’s utility; (c) item costs and consumer utilities; 

(d) degree of dissimilarity. 

1. Effect of arrival on heuristic. 

We will numerically test the equal profit margin heuristic as arrival varies. For 

this, we increase the arrival from the minimum case according to Assumption 1 
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1

2 2

2

1

0

1 1

( )

c cki ki ki ki

i

I K

k S
i k

a e e

 





  




  


 

 
  
  
    

 

 

 while calculating the Optimality Gap at 

each . 

The optimality gap is low at reasonably large arrival rates, thus validating our 

heuristic. 

2. Optimality with varying mean reservation prices li
. 

In this section, we will study how the attractiveness the optimality gap varies as 

the mean utilities for products in Nest 1 vary. The arrival rate, degrees of dissimilarity 

and costs will remain constant. We assume that the mean reservation price of product k 

in Nest 1 follows the following equation 
 1 1 1 1( 1)k kK i c      

, where K is the 

assortment size (K=2). At 
1 

and 
0 

, we obtain the base case.  and  take 

values that conform with conditions of Assumption 1A. In graph 2 of figure 5(b),  is 

constant at its base value and  varies. The optimality gap reaches a peak of 3% and 

declines to zero as  increases. Figure 5 (c) shows the loss in profit when  is set 

constant and  varies. The findings further confirm our heuristic as at the worst case 

conditions, the plot shows a loss of about 3.5% and the optimality tends to 0. In 

conclusion, varying mean reservation prices validates the equal margin approach. 
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3. Effect of simultaneous variation in product costs and mean reservation prices. 

Now, we study the effect of changing the unit cost of items in Nest 1. The 

utilities of each items will vary accordingly similar to part (b) but with a constant 
1 

and 
0 

. The cost of product i in Nest 1 will vary in function of variables c , and c  

as follows 
  1' (3 )i c c ic i c   

. When 
1c 

and 
0c 

, the parameters will be equal 

to the initial base case. 

 Figures 5 (d) and (e) show the variation of percentage optimality gap in 

function of the studied parameters. As c varies, the percentage optimality gap fluctuates 

with a maximum less than 3.5%. As c  varies, the optimality gap increases again to 

maximum less than 3.5 % and decreases thereafter. The obtained results prove that 

when the costs of items in a nest vary, assuming equal profit margins results in minimal 

loss in profits. 

4. Effect of degrees of dissimilarity on heuristic. 

In this section, we begin by varying the degree of dissimilarity among nests 

and then we set this parameter constant and change the degree of dissimilarity within 

each nest. In both cases, the percentage optimality gap fluctuates between maximums 

and minimums (Figure 5(f) and (g)). Examining the global maximum in each variation, 

we can conclude that the loss in profit is no more than 4% in case 1, and no more than 

3% in the second case.  

In conclusion, the above numerical study further validates the equal profit 

margin heuristic as maximum percentage optimality gaps are acceptable. A retailer may 
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save on computational efforts which may exceed the loss in profit by assuming an equal 

profit margin over similar products. 

 

 
 

(a) (b) 

  

(c) (d) 
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(e) (f) 

 

                                                                          (g) 

Figure 5. The variation of the Optimality Gap in % vs. studied parameters 

(NMNL) 
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CHAPTER IX 

CONCLUSION AND FURTHER RESEARCH DIRECTIONS 

This paper is an integration of marketing and operations management as it 

studies pricing and assortment planning while accounting for inventory costs. We 

consider the interdependent decisions on inventory, pricing and assortment planning of 

horizontally differentiated products (color, flavor, etc.) under a logit consumer choice 

model and the more general nested logit model within a newsvendor-type inventory 

setting. Demand assumes a multiplicative-additive function where both variance and 

coefficient of variation depend on the profit margin m. Under an accurate Taylor Series 

approximation, the profit function is proved unimodal in m. We further provide basis 

that allow the comparison between the optimal profit margin and the “riskless” profit 

margin, where no inventory exists. Finally, we study the optimal assortment and 

inventory decisions problem under exogenous prices. Under tight lower and upper 

bound approximations of the expected profit, we show that an optimal assortment is a 

popular set, having products with the highest i ic 
, which suggests that restricting the 

search for the optimal assortment to popular sets will yield a “good” assortment with 

near-optimal results. 

This research can be seen as an extension of the work by Maddah et al. (2014) 

through the validation of findings in a single variable problem, the profit margin, and on 

the nested logit consumer choice model.  

Anderson and De Palma (1992), and Aydin and Ryan (2000) show that under 

the MNL demand model, equal profit margins are optimal. A limiting assumption both 
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research take is a “make to order” setting with no inventory considerations. The 

numerical analysis we presents in this paper shows that profits at optimal profit margins 

while considering inventory costs are near optimal. Thus, an important addition to this 

paper would be to derive an analytical upper bound on the loss of profit when assuming 

equal profit margins. The same applies to popular sets which this paper found to be also 

near-optimal. Deriving an analytical bound on the loss of profit from utilizing popular 

sets is also an important direction for future research.  
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APPENDIX 

A. Appendix A 

1. Proof of Theorem 1 

a. MNL choice model 

Define
( )

( )
( )

m
h m

g m


 . We begin by proving that ( , )h m k is pseudonvex in m 

for 0m   . We begin by rewriting ( )h m as follows:
( )

( )
( )

l m
h m

k m
  where ( ) m

kl m e  

and 
1

( )
( )

k m
m

 . For  0,m   Note that
( )

0
2

m

m

k

l m e

m e 


 


increasing in m, and 

2

2

( 2 )( )
0

2( )

m m

k

m

k

e el m

m e






 


which proves the convexity of ( )l m . Now observe that 

( )
0

k m

m


  and decreasing in m and

2

3 22
1 1 1

32

1

2 2
( ) ( )( )

0

k k k
i i i

i i i

i i ii i i

k
i

i

i i

c c c

m c m c m ck m

m c

m c

  



  



   
    

       
 
 

 

  



, proving that ( )k m  

is concave. To prove
2

2

( )k m

m


negative, we start by assuming that 

2

3 2
1 1 1( ) ( )

k k k
i i i

i i

i i ii i ii

c c c

m c m c m c
  

  

    
    

      
   . Simplifying the above, we obtain 

3 2 2
1 1 1 1( ) ( ) ( ) ( )

k k k k
i j i j i j i j

j i j ii j i j

c c c c

c m c m c m c m

   

   


   

  . This implies that 
2( ) 0i jc c  , 

which is true at all cost values. Since ( )h m can be written as a fraction of a positive 
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convex function over a positive concave function, ( )h m  is then pseudoconvex in m. 

This follows from a result in Avriel (2003, p.156).  

Setting ( , ) 0m k  implies that ( ) kh m
a

 
 . Since ( , )h m k is pseudoconvex 

in m for (0, )m  , the function 1( , ) ( , ) ( )m k g m k a m     has at two solutions in 

(0, )m  . Observe that (0, ) 0k  and Assumption 1 imply that ˆ (0 , ) 0k  . So 

under Assumption 1, 1
ˆ ( , ) ( , ) ( , )m k m g m k m k    equals zero at only one point km  

with (0, )km   . This means that ˆ ( , )m k  is positive for (0, )km m  and is negative 

otherwise. This shows that km  constitutes an upper bound on
*ˆ
km . 

b. NMNL choice model 

Define
'( , )

'( , )
( , )

m k
h m k

p m k


 . We begin by proving that '( , )h m k is pseudonvex in m 

for 0m   similar to the above proof. Note that '( )h m can be written as follows:

'( , )
'( , )

'( , )

l m k
h m k

k m k
  where '( ) m

kl m e   and 
1

'( )
'( )

k m
m

 . For  0,m   Note that

'( )
0

2

m

m

k

l m e

m e 


 


increasing in m, and 

2

2

( 2 )'( )
0

2( )

m m

k

m

k

e el m

m e






 


which proves the 

convexity of '( )l m . Now observe that 
'( )

0
k m

m


  and decreasing in m and

2

3 22
1 1 1 1 1 1

32

3
1 1

2 2
( ) ( )'( )

0

( )

I K I K I K
ki ki ki

ki ki ki

i k i k i kki ki ki

I K
ki

ki

i k ki

c c c

m c m c m ck m

m c

m c

  



     

 

 
   

     
 
 

 

  



, proving 

that '( )k m  is concave. To prove

2

2

'( )k m

m


negative, we start by assuming that 
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2

3 2
1 1 1 1 1 1( ) ( )

I K I K I K
ki ki ki

ki ki ki

i k i k i kki ki ki

c c c

m c m c m c
  

     

 
  

   
   . Simplifying the above, we 

obtain
2( ) 0ki jlc c  , which is true at all cost values. Since ( )h m can be written as a fraction of 

a positive convex function over a positive concave function, ( )h m  is then pseudoconvex in m. 

This follows from a result in Avriel (2003, p.156).  

Setting ( , ) 0m k  implies that ( ) kh m
a

 
 . Since '( , )h m k is pseudoconvex in m 

for (0, )m  , the function 1' ( , ) ( , ) '( )km k p m k a m     has at two solutions in 

(0, )m  . Observe that (0, ) 0k  and Assumption 1 imply that ˆ (0 , ) 0k  . So under 

Assumption 1, 1
ˆ ( , ) ( , ) ' ( , )m k m p m k m k    equals zero at only one point km  with

(0, )km   . This means that ˆ ( , )m k  is positive for (0, )km m  and is negative otherwise. 

This shows that km  constitutes an upper bound on
*ˆ
km . 

2. Proof of Theorem 1. 

a. MNL choice Model 

Let kA  , kB a  .  Rearranging Equation (6), we get 

 

  (A2) 

 

Based on a result from Avriel (2003, p. 154, Theorem 6.9), we prove that this 

function is pseudoconcave in m. Since the studied function is a single-variable function 

( , )
ˆ ( , )

m

k

m

k

A B e m k
m k

e

m m
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with an internal point maximum, pseudo concavity implies unimodularity. (Assumption 

1 and Lemma 2 imply that an internal-point maximum exists.) Let 

( )
1

( )

m

k

B
f m A e

m





    , 

1

4( ) ( )m

ky m e   , and 

1
( )

( , )
k m

m k
 . 

k (m) is concave in m, as proven in Lemma 1, and 

3

4
4 3

3 3 4

( ) 1 1 1
( ) ( )

4 4
( )

m m

k m
m

k

y m
e e

m
e e







 


  




Since
( )y m

m




 is increasing in m and

2

2

( )
0

y m

m





, y (m) is convex in m. Given that 

2 ( )
( ( ), ( ))

( )

y m
f y m z m B A

z m
  . The 

Hessian of f (y, z) is written as       
2

2

2 3

2 2

2
2

B By

z z
H

By y
B

z z







which is positive semi-definite. 

This proves that f (y, z) is convex. Following Theorem 6.9 in Avriel (2003),  f (m) is 

convex in m. Define ( )
m

ke
r m

m m


  . Then, 

2 2

( ) m m

kr m e e

m m m m


  


 and 

2
2

2 3 3

2( )
( 1) 1 0

m

ky m e
m

m m m


      

. Note that 
( , )ˆ ( , )
( , )

f m k
m k

r m k
   where ( , )f m k is 

convex and negative over (0, )km  and ( , )r m k is positive and convex. According to a 
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theorem discussed by Avriel (2003, p. 156), ˆ ( , )m k is pseudo convex for (0, )km m

or, equivalently, ˆ ( , )m k is pseudo concave for (0, )km m . 

b. NMNL choice model 

We prove the profit function to be unimodal in m utilizing the exact above 

method. That is, we rewrite the opposite of the profit function as a fraction of a convex 

negative function over a positive convex one. Following the aforementioned result in 

Avirel, we show that the opposite of the profit function is pseudoconvex in m. This 

proves the profit function to be pseudoconcave in m.  The constants and functions 

utilized in the above proof take the following forms under NMNL: kA  , B a  ,

'( , )
ˆ ( , )

m

k

m

k

A B e m k
m k

e

m m

 



 
 



 ,
'

( ) '
1

'( )

m

k

B
f m A e

m





    , 
1

4( ) ( )m

ky m e   ,

1
( )

'( , )
k m

m k
 and ( )

m

ke
r m

m m


  . 

B. Appendix B 

1. Proof of Corollary 1 

The profit with no inventory cost reduces to the following

0 ( , )
1

m

k
k m m

k k

me
m k m

e e

 
 

 




  

 
. Setting

0 ( , )
0

m k

m





, we obtain: 

0

0

0

1 0 1

10

1

(1 )

( 1)

1 ( )

k

k

j j

m

k k

m

k k

k
c

k

j

e m

e m e

m W e
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We utilize Theorem 2 and Corollary 1 from Li and Huh (2011) to prove the 

unimodularity of 0 ( , )m k and the closed-form expression in Equation (7). The 

monotonicity results follow from Equation (8) by noting that W(x) is positive and 

increasing in x > 0 with 
( ) ( )

(1 ( ))

w x w x

x x W x




 
 (e.g., Corless et al. (1996)). Using the 

same method, the established result can be easily proved under NMNL. 

2. Proof of Lemma 2 

a. MNL choice model 

Finding we rewrite 1
ˆ ( , )C m k as follows, 

1

( ( , ))ˆ ( , ) ( , )
m

k

m m k
C m k a a m k

e


 




   


. Notice that the denominator is

2 ( )y m

and can be easily shown as a convex positive function. Note as well that   ,

2
1 1

( ( , ))

( )

k k
i i

i i

i ii i

c cm m k
m

m m c m c


 

 

 
  

  
  increasing in m and  where i ic

i e
 



and 
2

2 3 2
1 1

( ( , ))
2 0

( ) ( )

k k
i i

i i

i ii i

c cm m k
m

m m c m c


 

 

 
   

  
  . The positive result extends 

from comparing the positive and negative terms of the second derivative which 

simplifies to the condition of 2 0im c  . For obvious reasons, this condition is always 

satisfied, hence the second derivative is always positive and the above function is 

convex in m. ( , )m k can hence be written as a negative convex function over a positive 

convex function. Following a result by Avriel (2003, p.156), ( , )m k is pseudoconvex in 

m. Hence, 1
ˆ ( , ) ( , )C m k a m k  is pseudoconcave in m, completing the proof that 

the cost function is unimodal in m. 
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We write the first derivative of the cost function as follows, 

1

( , )
( , )ˆ ( , ) ( , )

( , ) ( , )
2 ( , )

g m k
m k

C m k m k ma g m k m k m m
m m g m k




 

 
      

  
 

  (A3). 

Now, we study the behavior of 1
ˆ ( , )C m k at

0

km . We define 
0

km from the first-

order condition of 0 ( , )m k . Setting 
0

0 ( , )
0

km m

m k

m






implies that

0

0 ( , )
( , )

k

k

m m

g m k
g m k m

m 


 


 (A4). Replacing this expression into Equation (A3) gives  

0
0

0
01

ˆ ( , )( , ) ( , )
( , )

2
k

k

k
k

m mm m

m kC m k m k
a g m k

m m

 




  
  

   

. 

b. NMNL choice model 

We rewrite 1
ˆ ( , )C m k as follows, 1

( '( , ))ˆ ( , ) ( , )
m

k

m m k
C m k a a m k

e


 




   


. 

Notice that the denominator is
2 ( )y m and can be easily shown as a convex positive 

function. Note as well that   ,
2

1 1 1 1

( '( , ))

( )

I k I k
ki ki

ki ki

i k i kki ki

c cm m k
m

m m c m c


 

   

 
  

  
 

increasing in m and  where i ic

i e
 

 and 

2

2 3 2
1 1 1 1

( '( , ))
2 0

( ) ( )

I k I k
ki ki

ki ki

i k i kki ki

c cm m k
m

m m c m c


 

   

 
   

  
  . The positive result 

extends from comparing the positive and negative terms of the second derivative which 

simplifies to the condition of 2 0kim c  . For obvious reasons, this condition is always 

satisfied, hence the second derivative is always positive and the above function is 

convex in m. ( , )m k can hence be written as a negative convex function over a positive 



50 
 
 

convex function. Following a result by Avriel (2003, p.156), ( , )m k is pseudoconvex in 

m. Hence, 1
ˆ ( , ) ( , )C m k a m k  is pseudoconcave in m, completing the proof that 

the cost function is unimodal in m. 

We write the first derivative of the cost function as follows, 

1

( , )
'( , )ˆ ( , ) '( , )

( , ) '( , )
2 ( , )

p m k
m k

C m k m k ma p m k m k m m
m m p m k




 

 
      

  
 

 (A3’). 

Now, we study the behavior of 1
ˆ ( , )C m k at

0

km . We define 
0

km from the first-

order condition of 0 ( , )m k . Setting 
0

0 ( , )
0

km m

m k

m






implies that

0

0 ( , )
( , )

k

k

m m

p m k
g m k m

m 


 


 (A4’). Replacing this expression into Equation (A3’) gives  

0
0

0
01

ˆ '( , )( , ) '( , )
( , )

2
k

k

k
k

m mm m

m kC m k m k
a p m k

m m

 




  
  

   

. 

3. Proof of Lemma 3 

a. NML choice model 

Since
0

1
ˆˆ ( , ) ( , ) ( , )m k m k C m k   , 

0 *ˆ ˆ( , ) ( , )k km k m k  , and 

0 0 0 *ˆ ˆ( , ) ( , )k km k m k  , it can be concluded that 
* 0

1 1
ˆ ˆ( , ) ( , )k kC m k C m k . Utilizing Lemma 

2 we can establish the following finding. When
0 2k mm c  , we are certain that 1

ˆ ( , )C m k

is decreasing at
0

km . This, along with the fact that 1
ˆ ( , )C m k is unimodal, shows that 

* 0ˆ
k km m . Note that mc is the highest cost in the assortment and lc is the least cost. The 
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opposite happens if 
0 2k lm c  . Finally, we show that 

0 2k mm c   is equivalent to 

2
(1 ) mc

k mc e 
  . This follows from the closed form of 

0

km  in Equation (7) and the 

monotonicity of the Lambert W (.) function. Specifically, based on Equation (7), 

0 2k lm c  is equivalent to 
1( ) 2 1k lW e c     , which, in turn, is equivalent to

11 (1 ) lc

k le c e    , which, upon simplification, completes the proof. 

b. NMNL choice model 

Since
0

1
ˆˆ ( , ) ( , ) ( , )m k m k C m k   ,

0 *ˆ ˆ( , ) ( , )k km k m k  , and 

0 0 0 *ˆ ˆ( , ) ( , )k km k m k  , it can be concluded that 
* 0

1 1
ˆ ˆ( , ) ( , )k kC m k C m k . Utilizing Lemma 

2 we can establish the following finding. Define lc as the cost of the least expensive 

item and mc as the cost of the most expensive item. When
0 2k lm c  , we are certain that

1
ˆ ( , )C m k is increasing at

0

km . This, along with the fact that 1
ˆ ( , )C m k is unimodal, shows 

that
* 0

k km m . The opposite happens if
0 2k mm c  . Finally, we show that 

0 2k mm c   is 

equivalent to
2

(1 ) mc

k mc e 
  . This follows from the closed form of 

0

km  in Equation 

(7A) and the monotonicity of the Lambert W (.) function. Specifically, based on 

Equation (7A), 
0 2k lm c  is equivalent to

1( ) 1k lW e c    , which, in turn, is equivalent 

to
11 (1 ) lc

k le c e    , which, upon simplification, completes the proof. 

4. Proof of Lemma 4 

We extend the proof by Maddah and Bish (2007) on our equal profit margin 

case. We set i i ic m m

iv e e
    

  , hence the lower bound function can be written as
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1

( , , )
1 1

n
i i

i k

i j j

j j

v v
m S v m a m

v v
 



  
 


 

and the upper bound function can be 

written as 
1 1

( , , )
1 1

n
i i i

i k

i j ji
j j

v c v
m S v m a m

v vm c
 



  
 


 

. In order to prove 

Lemma 5, we first prove ( , , )iS m v to be pseudoconvex in iv . For this purpose, we write

( )
( , , )

( )

i
i

i

v
m S v

v




  . If ( )iv is convex and ( )iv is linear, then ( , , )iS m v is 

pseudoconvex in iv . Let 
1 1

2 2
1 2 3 4 5( , , ) ( ) ( )( )i i i im S v K K v K K v K v      where

1 j

i j
j s

K m v



 ,
2K m , 3 k j

i j
j s

K a v



 , 4K  , and 5 1j

i j
j s

K v



  . The second 

derivative of ( )iv  with respect to iv  simplifies to

32 3
22 2

5 3 4 52

( ) 1
( ) ( ) 0

4

i
i i

i

v
K v K K K v

v

  
   


. The positive result proves the convexity of

( )iv . We define ( ) 1i i j

j i
j S

v v v



   which is linear in iv . This proves ( , , )im S v to be 

pseudoconvex in iv . Taking 3

j

k j

i j j
j s

c
K a v

m c








 and 4
i

i

c
K

m c



, ( , , )im S v can 

be similarly proved to be pseudoconvex in iv . From the definition of i m

iv e
 

 , iv is 

strictly increasing in i
 . Hence, ( , , )im S   and ( , , )im S   are pseudoconvex in i

 . 

A similar proof is used to show that ( , , )i iS m  and are pseudoconvex in i
where

1 3 0K K  , 5 1K  and ( ) 1i iv v   . 

5. Proof of Theorem 2 
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We prove theorem 2 through the Lemma 5 and 6.  

Lemma 5. Suppose  * 1,...,S k is the optimal assortment, then 

1

0
  





. 

For this Lemma to be valid, ( , , )im S   and ( , , )im S  need to be increasing 

in i
 at 1i   . Lemma 5 implies that ( , , )im S   and ( , , )im S   are pseudoconvex 

in i
 . By contradiction, assume that ( , , )im S   and ( , , )im S   are nonincreasing in

i
 at 1i   . Since ( , , )im S   and ( , , )im S   are pseudoconvex in i

 , then 

( , , )im S   and ( , , )im S   are strictly decreasing in i
 for 1i   . Setting 1

    

(which is equivalent to removing item 1 from S
*
) implies that

* * * *( , , ) ( , , )im S m S    . Thus, 
* * * *

1( , /{ }) ( , )im S i m S  which contradicts 

with the definition of S
*
 as the optimal assortment. 

 

Lemma 6. Suppose 2 1' '  ; if 2 *S , then  1 *.S  

 We prove this Lemma by contradiction. Assume  2 *K but  1 *.K Let

   * *

1 / 2 1K K . Then, 
* *

1( ) ( )K K  . This result contradicts with Lemma 6 

where
* *

1( ) ( )K K  . Thus, item  *1 K . 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


