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Global influenza epidemics cause thousands of deaths annually. Vaccination 

campaigns are an important tool to mitigate effects of influenza epidemics. Because of 

the fast evolution of the influenza virus, selecting a vaccine strain that confers 

protection against the main circulating strain remains a key challenge. The WHO uses 

hemagglutination inhibition (HI) assays, where anti-sera against one strain (serum 

strain) is set against another strain (virus strain), to determine which strain from a set of 

vaccine-candidate strains confers best protection against the dominant circulating 

strains. Even though several studies have shown that cross-immunity can be predicted 

from hemagglutinin (HA) sequences, current techniques still use HI assays. One 

shortcoming of sequence-based predictions is that they rely only on the differences 

between two HA sequences, and thus assume symmetry in cross immunity. Our study 

introduces a method for sequence-based prediction of cross-immunity that relaxes the 

symmetry assumption. In our method, each amino acid of the virus strain HA, each 

amino acid of the serum strain HA and each amino acid difference between the virus 

and serum strain HA were included as a potential predictor variable and log-

transformed HI titers were used as response variable. Regression coefficients were 

estimated via elastic net regression with cross-validation. The data was split in a 

training and validation set. The training set was used to estimate regression coefficients 

and the validation set was used to predict HI titers based on estimated coefficients and 

compare them to the actual HI titer values. The coefficients for the correlations between 

estimated and actual HI titers were 0.72 and 0.67 for training and validation sets, 

respectively. Most amino acid positions that received non-zero regression coefficients 

fell within the epitope regions or were in close proximity to those regions on the 3D 

structure of the HA protein. Our results suggest that the proposed model can predict HI 

titers and find antigenically important positons on the HA protein.  
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CHAPTER I 

INTRODUCTION 
 

The influenza virus of types A and B cause seasonal global epidemics in 

humans leading to hundreds of thousands of deaths annually. Vaccinations are 

currently the main defense strategy against the virus (WHO, 2014). However, antigenic 

drift, caused by amino acid substitutions in the virus’ surface proteins requires regular 

vaccine updates in order to match the constantly changing circulating strains (WHO, 

2014).  

Hemagglutinin (HA) and neuraminidase (NA) are two virus surface proteins 

that are recognized by the immune system. HA is the dominant target for immune 

recognition and the HA inhibition (HI) assay is the most commonly used technique to 

determine antibody neutralizing capacity against influenza virus (Russell et al., 2008). 

The HI assay relies on the HA protein’s ability to bind to red blood cells. Because of 

this property, red blood cells agglutinate when mixed with influenza virus particles. 

However, when antibodies specific to the agglutinating influenza virus strain are added 

to the blood/virus mixture, they neutralise the HA protein and prevent blood cell 

agglutination. The minimum amount of antibody necessary to prevent agglutination of 

red blood cells is determined by a series of twofold dilutions. The highest antibody 

dilution level that still prevents agglutination is called the HI titer and is an indication 

of how well particular antibodies neutralize a given influenza virus.  
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An HI titer is called homologous if the virus strain to be neutralized is the same 

as the strain used to raise the antibodies. If these two virus strains differ, the HI titer is 

called heterologous. Heterologous HI titers provide some information about cross-

immunity between virus strains. However, heterologous titers alone do not measure 

cross-immunity between strains because they are influenced by factors that are 

unrelated to the antigen-antibody binding. One such factor is the virus avidity to host 

cell receptors. Viruses with strong avidity to blood-cell receptors require more 

antibodies to neutralize agglutination and the HI values would erroneously suggest that 

the antibodies provide a low protection against such virus. This effect is asymmetric, 

i.e. if virus i has a higher avidity than virus j, the heterologous HI obtained by using 

serum raised against virus j to neutralize virus i is lower than the heterologous HI 

obtained by using serum raised against virus i to neutralize virus j. 

To account for this problem of varying receptor-binding avidity, Archetti and 

Horsfall (1950) suggested converting HI titers of any two strains into a symmetric 

antigenic distance (AD).  The AD is calculated as the geometric mean of the two ratios 

of homologous to heterologous titer. Specifically, the AD between two viruses i and j, 

is calculated based on the homologous titers for virus i and j (Hii and Hjj, respectively), 

the heterologous titer obtained by neutralizing virus j with serum raised on virus i (Hij), 

and the titer obtained by neutralizing virus i with serum raised on virus j (Hji) and is 

given by the following equation: 

 

𝐴𝐷 =  √ 
   𝐻𝑖𝑖  ∗ 𝐻𝑗𝑗     

𝐻𝑖𝑗  ∗ 𝐻𝑗𝑖
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The AD removes asymmetric effects. This can easily be seen from the fact that 

exchanging i and j in the above formula does not change the AD. The AD has been 

shown to predict between-strain vaccine efficacies better than HI titers (Ndifon, 

Dushoff, & Levin, 2009) and is now widely used as a measure of cross-immunity 

between influenza strains. 

Setting up HI assays however is relatively expensive and time consuming. 

Monoclonal antibodies specific to one influenza strain are required for the assay. 

Recent advances in sequencing technology triggered increased interest in 

computational approaches that can predict cross-immunity based on HA protein 

sequence data. The purpose of such computational approaches is twofold. On the one 

hand, predicting cross-immunity from sequence data could allow replacing of HI assays 

by cheap and fast sequencing techniques. In addition, predicting cross-immunity from 

sequence data can reveal amino acid residues that can alter the antigenic properties of a 

given virus and thereby improves our understanding of antigen-antibody interactions. 

Most computational approaches that estimate antigenic similarity from protein 

sequences use AD as measure for antigenic distance between strains (Bedford et al., 

2014; Lee & Chen, 2004; Lees, Moss, & Shepherd, 2010; Liao, Lee, Ko, & Hsiung, 

2008; Sun et al., 2013).   

While AD has been proven to be a very useful measure for antigenic similarity 

between influenza strains (Ndifon et al., 2009), it has some limitations. The utility of 

AD is a predictor of vaccine efficacy  has been called into question by a later study ( 

Pan & Deem, 2009). A more important limitation of AD is that it removes all 
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asymmetric effects on HI titers. While the AD calculation removes non-antigenic 

effects such as virus avidity to host receptor, it also removes asymmetric effects that are 

antigenically relevant, such as general serum neutralizing capacity. If the antibodies 

raised against virus i have stronger neutralizing capability than antibodies raised against 

virus j, the heterologous titer Hij obtained by neutralizing virus j with serum raised on 

virus i, is larger than Hji, the titer obtained by neutralizing virus i with serum raised on 

virus j. Since the AD calculation removes serum neutralizing capacity effects, 

computational studies that relate AD to protein sequences fail to identify amino acid 

residues that influence serum neutralizing capacity. 

The purpose of the present study is to develop a novel framework for 

predicting cross-immunity from HA sequence data. According to this framework the 

response variable are HI titers instead of AD and predictor variables do not only 

include HA sequence differences but also virus receptor binding avidity and serum 

potency effects. Choosing HI titers rather than AD as response variable allows 

identifying amino acid residues with asymmetric effects, e.g. residues that influence 

virus receptor binding avidity or serum potency.  The two principal aims of this study 

are to determine how well HI titers can be predicted from sequence data and to identify 

amino acid residues that influence different factors affecting HI titers.  
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CHAPTER II 

MATERIALS AND METHODS 
 

A. Data collection 

HI information collated by Bedford et al. (2014) was downloaded from an 

online repository (doi:10.5061/dryad.rc515). This data set contains over 10,000 HI 

assay results from 465 different H3N2 virus strains that were collected between 1968 

and 2011. HA amino acid sequences of the strains found in this data set were 

downloaded from NCBI (http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/) and 

GISAID (http://platform.gisaid.org/epi3/frontend#1136b8). The downloaded sequences 

were aligned using MUSCLE (Edgar, 2004). The virus and serum strain of each HI titer 

was matched to its HA sequence from the alignment using strain names.  

 

B. Regression Model 

Regression models were fitted to predict HI titers from the HA protein 

sequence of the virus strain, the HA protein sequence of the serum strain, and the 

differences between the two HA protein sequences. The core of our model is described 

by the standard multiple regression equation: 

𝑦𝑗 =  𝛽0 +  ∑ 𝛽𝑖𝑥𝑖𝑗

𝑛

𝑖

+ 𝜀𝑗  
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Where yj is the j
th

 value of the response variable, in our case a log-transformed 

HI titer, xij is the value of the i
th

 predictor variable in the j
th

 measurement, n is the total 

number of predictor variables,  𝛽0 and 𝛽𝑖 are the estimated regression coefficients, and 

j is an error term, describing the difference between prediction and observation. 

Our baseline model generated three predictor variables per amino acid position 

on the HA protein, namely one for the amino acid residue on the virus strain HA, one 

for amino acid residue on the serum strain HA and one for the amino acid residue 

difference between the virus and serum strain HA. We included all 322 amino acid 

residues of the H3 protein as potential predictors, and hence our baseline model 

contained n = 322*3= 966 predictor variables per HI value.  

 To avoid overfitting due to the large number of predictor variables we 

estimated regression coefficients using penalized regression approaches. Regression 

coefficients were estimated via elastic net regression. In elastic net (Zou & Hastie, 

2005), each coefficient is calculated through minimizing the following equation: 

1

2𝑁
∑ ∑(𝑦𝑗 − 𝛽0 − 𝛽𝑖𝑥𝑖𝑗)

2
+ 𝜆 [(1 −  𝛼)

1

2
 𝛽𝑖

2 +  𝛼|𝛽𝑖|]

𝑖𝑗

 

The first term in in the above equation is the squared deviation between 

prediction and observation and the second term is an additional penalty term. A 

characteristic of elastic net is that its penalty term has two components (𝛽𝑖
2
 and |𝛽𝑖|) 

and a parameter (𝛼) that determines the weight of each penalty component. The first 

component of the penalty term is called ridge penalty. It tends to give equal coefficients 

to highly correlated predictors. The second component of the penalty term is called the 

lasso penalty. It tends to minimize the number of non-zero coefficients. We obtained 
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the optimal values for 𝜆 and 𝛼 in a stepwise procedure. First a grid of 𝛼 values was set 

up (ranging from 0 to 1 with a step width of 0.1, followed by a fine tuning set up with 

range from 0.5 to 1 with a step width of 0.05) and for each 𝛼 the 𝜆 that minimize the 

mean prediction error was determined through five-fold internal cross validation using 

the R-package glmnet (Friedman, Hastie, & Tibshirani, 2010). Next the combination of 

𝛼 and 𝜆 was selected that lead the lowest overall mean prediction error (for more 

details check script in appendix). The estimated regression coefficients () were used to 

predict HI titers of any two strains based on their HA sequences. 

 Since the regression model required numeric predictor variables, virus and 

serum amino acid sequences were converted to numeric scores as described below. To 

simplify the descriptions we will refer to the HA amino acid sequences of the serum 

and virus strain as the serum sequence and virus sequence, respectively.  

 

C. Response variable transformation 

The response variable of our regression models were log transformed HI 

values (base 10). For example, if HI = 320, or response variable is log10(320) = 

2.5.Whenever HI values were specified by an upper limit (e.g. < 20) we chose that 

upper bound.  

 

D. Baseline model and analysis 

Values for sequence difference predictor variables were calculated for each 

pair of HA sequences by assigning to each amino acid position a value of zero if it 
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contained the same amino acid in the virus and serum sequence and a value of one 

otherwise. In addition, separate predictor variables were generated for the virus and 

serum sequences. Each amino acid position received a value of zero if it contained the 

amino acid that is most common at the respective position across all strains and a value 

of one otherwise. 

After running the model, positions that received non-zero coefficients were 

compared with the positions of the five canonical epitopes on the HA protein (Wiley, 

Wilson, & Skehel, 1981) and with positions that have been shown to influence HA 

affinity to human receptors (Lin et al., 2012). The positions selected by the model were 

highlighted on the 3D structure of the H3 trimer (PDB: 2HMG) in comparison to the 

canonical epitope regions using the visualization tool provided by the Influenza 

Research Database (IRD) website (direct link to the online rendering tool: 

http://www.fludb.org/brc/structureOperation.spg?accession=2HMG&decorator=influen

za&context=1463220628681#). 

A histogram of virus, serum and sequence difference coefficients was plotted 

to assess the estimated coefficients’ signs and magnitude. We also investigated 

temporal trends in virus and serum effects. Virus and serum effects were calculated by 

multiplying each position-specific coefficient estimated by the model with its 

corresponding predictor variable value in a particular strain, and then summing this 

product over all positions. This sum was calculated for each strain and plotted against 

the year of its isolation. We also explored whether the time between the isolation dates 

of two strains that form an HI titer modifies difference effect. We calculated the time 

range by subtracting serum strain year from virus strain year, and calculated difference 
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effect for each HI pair by summing the product of difference predictor variable values 

and estimated coefficients over all amino acid positions. We plotted these difference 

effects against the time range. Last, we plotted the residuals of the model, i.e. actual HI 

titers subtracted from estimated titers, against the time between the isolation dates of 

two strains that form an HI value. Such a plot indicates whether the model 

systematically over or underestimates HI at certain time ranges. 

 

E. Decade dependent model 

The decade dependent scoring model allowed for sequence effects to vary by 

time. Each position in the virus and serum sequences was split into six dummy 

variables, one per decade from the 1960’s to the 2010’s. If the amino acid at a 

particular position in a particular strain differed from the most common amino acid at 

this position, the value on this position was set to one in the dummy variable 

corresponding to the decade in which the respective strain was collected and to zero in 

all other dummy variables. If the amino acid at a particular position in a particular 

strain was the most common amino acid on that position, the value was set to zero in all 

dummy variables. If the virus and sequence effects were consistent over time, the same 

amino acid position should produce the same regression coefficient across different 

decades. To summarize the temporal consistency of regression coefficients we 

therefore counted for each amino acid position with at least one non-zero coefficient 

the number decades in which its regression coefficient was non-zero. If effects were 

decade-specific, this number should be equal to one for most amino acid positions. If 

on the other hand, effects were consistent through time, this number should equal to six 
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for most positions, because then any amino acid position that showed an effect in one 

decade showed this effect in all other decades as well. We summarized the number of 

decades in which a coefficient is non-zero separately for virus and serum coefficients. 

 

F. Other Modifications 

Other predictor variable modifications were tested in an attempt to improve 

model prediction. The first modification factored in specific amino acids seen in each 

position of the HA of the virus and serum strain; every position in the strain sequence 

received a dummy variable for each amino acid seen at that specific position. Similar to 

the time variable, on each position, a value of one was given to the dummy variable 

corresponding to the amino acid seen in that specific position, and a zero to all other 

dummy variables.  

The second modification incorporated interactions between all possible 

position pairs in the difference variables. Every position in the difference string was 

multiplied by every other possible position. Coefficients estimated of this modification 

were analysed for sign and magnitude. The different predictor models were tested in 

different combinations (Table 1). 
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Table 1: Predictor model combinations tested 

   
Experiment 

Virus/Serum scoring 

model 

Difference scoring 

model 

1 Baseline Baseline 

2 Decade dependent Baseline 

3 Amino acid specific Baseline 

4 Baseline Interaction model 

 

G. Model validation 

Validation experiments were done, where one third of the data was removed 

from the estimation procedure, to later test the performance of the model on data not 

used to estimate regression coefficients. The data used to estimate regression 

coefficients is called the training set, the data used to test the model predictions is 

called the validation set. The first experiment selected the all strains after 2005 as the 

validation set. This was done to simulate real life situations where the model would be 

used to estimate HI for new strains, based on data of existing strains. However, in 

standard model validation, the training and validation sets are supposed to be random 

draws from the same distribution. Therefore, a second experiment was performed 

where the validation set was selected randomly. Correlations between actual HI titers 

and titers estimated by the model were used to evaluate strength of the model.  
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CHAPTER III 

RESULTS 
 

A. HI prediction 

The calibrations found that an 𝛼 of 0.7 and a 𝜆  around 0.8 minimized the 

prediction error. The correlation between predicted and observed HI values was similar 

across all versions of our model for the training data (R
2
 > 0.7 in all models, Fig. 1, 

Table 2).  For the validation data on the other hand, the correlation between predicted 

and observed HI depended on how the validation data were chosen. When the 

validation data were selected based on a time threshold the R
2
 value for the correlation 

between predicted and observed HI among validation data was 0.096, whereas selecting 

validation data at random produced an R
2
 value of 0.67 (Fig. 1, Table 2). Modifications 

on scoring method show little improvement over the baseline scoring method (Table 2). 
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Figure 1: Log-transformed HI titers estimated based on sequence data plotted against observed HI 

values. (A) Comparison of predicted and observed HI titers in training set; training and validation set 

were separated by time. (B) Comparison of predicted and observed HI titers in validation set; training 

and validation set were separated by time. . (C) Comparison of predicted and observed HI titers in 

training set; training and validation set were separated randomly. (D) Comparison of predicted and 

observed HI titers in validation set; training and validation set were separated randomly. 

 

Table 2: Reported R
2
 values of the baseline model and modifications 

          

Model 
Time Based Validation Random Validation 

Training R
2
 Validation R

2
 Training R

2
 Validation R

2
 

Baseline model 0.76 0.069 0.72 0.67 

Decade dependent 0.78 0.095 0.75 0.72 

Amino acid specific 0.79 0.085 0.75 0.73 

Interaction model 0.81 0.074 0.79 0.71 

 
 

    
B. Positions with significant coefficients 

Estimated coefficients are an indicator of position importance and predictors 

with zero coefficients are positions estimated to have no effect on virus immune 

recognition. The baseline model selected non-zero coefficients for 132 positions in at 
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least one of the three predictor variable groups, 93 of which are within the epitope 

regions (Fig. 2). Forty five of these 132 positions have non-zero coefficients for all 

three predictor variable groups (virus, serum and difference effects), 37 of these 45 

positions fall within the epitope regions (Fig. 3). Most of the 39 positions with at least 

one non-zero coefficient that fall outside the epitope regions resided in the vicinity of 

these regions (Fig. 2). Eight of these positions have an effect in all three predictor 

groups (the positions are: 31, 199, 202, 222, 223, 225, 233, and 269). All positions 

reported to have a strong effect on host cell receptor binding by Lin et al. (2012) were 

selected by the model (positions: 190, 193, 222, 225, 226, and 227). 

 

 

Figure 2: 3D structure of the hemagglutinin protein trimer (PDB: 2HMG) highlighting the positions 

selected by the model. Total positions selected (A), difference positions (B), virus positions (C) and 

serum positions (D) are highlighted above 
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Figure 3: Positions that received zero and non-zero coefficients within known HA epitopes. Each box 

shows a canonical epitope and the name of the epitope is indicated by the bold letter on the left. The 

three different rows correspond to coefficients corresponding to effects of the virus strain HA, serum 

strain HA and the HA differences. 

 

Coefficients of the sequence difference part of the estimation are more 

negative than positive, while the coefficients of the virus and serum components are 
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evenly distributed (Fig. 4). The interaction modification selected a total of 780 

interactions from 90 different positions. Coefficients of this modification were mostly 

negative (about 60%). 

 

 

Figure 4: histogram of coefficients of the estimation 

 

C. Time plots 

Virus and serum effects do not follow a consistent temporal trend (Fig. 5). 

Estimated effects of sequence difference become more negative with the increase of 

time between strains (Fig. 6A). The residuals of the estimation tend to be negative 

when virus and serum are about 15 to 20 years apart (Fig. 6B). 

Positions selected by the decade dependent model were examined for the 

number of decades they appear in. Most of the positions selected by the model appear 

in only one or two decades (Fig. 7). 
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Figure 5: Estimated serum and virus effect over time. The effects are calculated using the coefficients 

estimated for each role by the model and the strain sequences. Effects are plotted against the year that 

specific strain was seen. 

 

 

Figure 6: Effect of the time range between the virus and the serum strain difference effects (A), and 

residuals of the model (B). 
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Figure 7: Frequency distribution of numbers of decades with non-zero coefficients per amino acid 

position. 
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CHAPTER IV 

DISCUSSION 
 

In this project we showed that it is possible to predict HI titers between any 

two influenza strains based on their HA protein sequences. However, there is some 

evidence that the coefficients estimated by our model from data in a particular time 

period cannot be extrapolated to a different time period. Nevertheless, the model does 

find antigenically important positions in or around epitopes and positions that have 

been shown to influence receptor-binding avidity. In contrast to previous AD-based 

approaches, our model can identify amino acids with effects that are specific to the 

virus or serum strain and are therefore potentially related to virus receptor binding 

avidity or serum potency. 

The correlations between predicted and observed HI values in the training 

data of our study were comparable to the results of a previous study that predicted AD 

from HA sequence data without a validation step (Lee & Chen, 2004). Correlations 

between predicted and observed HI values in the validation data of our study were not 

far below the correlations in the training data if the validation data were selected at 

random. If, however, training and validation data were chosen according to a time 

threshold, the correlation between predicted and observed HI titers in the validation 

data dropped dramatically (Fig. 1B). This drop in correlation indicates that the 

coefficients estimated from data in one time period cannot be used to make predictions 

in another time period. The result that estimated coefficients are time-specific is 

corroborated by the model that estimated decade-specific coefficients. Only a small 
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minority of amino acid positions showed effects that were consistent across multiple 

decades (Fig. 7).  Furthermore, serum strain effects were even more ephemeral than 

virus strain effects (Fig. 7). According to the residual plots, the model tends to 

overpredict HI titers for strains that are separated by 15-20 years (Fig. 5B). In other 

words, if the virus and serum strain that form an HI titer are separated by 15-20 years, 

these strains are antigenically more different from each other than what our model 

predicts based on their HA sequences. One possible interpretation of this pattern is that 

multiple amino acid changes have synergistic antigenic effects such that the combined 

result of many amino acid differences is stronger than the sum of individual effects. 

The fact that the majority estimated coefficients for interaction terms are negative 

confirms this interpretation since a negative interaction coefficient means that 

differences between serum and virus HA sequence at two amino acid positions lower 

the HI titer even more than the sum of effects of the two individual differences. 

Amino acid positions that received non-zero coefficients were identified as 

important by the model. Most of these selected positions fell within the epitope regions 

(Fig. 3). Selected positions outside the epitope ranges tend to be around those regions 

(Fig. 2). All the positions that were previously found to be important for virus receptor 

binding avidity (Lin et al. 2012) were also selected by our model, even the positions 

that fall outside the epitope regions (positions: 222 and 225). The model also selects 

some positions that are under positive selection reported by other methods in all three 

predictor groups, such as positions: 63, 126, and 133 (Zaraket et al., 2009) (more 

positions are selected in at least one predictor group), positions: 124, 133, 138, 145, 

156, 158, 186, 190, 193, 197, 262, and 275(Bush, Bender, Subbarao, Cox, & Fitch, 

2007) (all positions by Bush et al. are seen in at least one predictor group).This 
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suggests that the model can find antigenically important positions only using 

sequences.  

While the spatial locations of amino acid positions with non-zero coefficients 

are largely consistent with prior biological knowledge of their functions, the sign of 

these coefficients did not always confirm prior expectation. Virus and serum effects 

could either increase or decrease HI titers, and indeed for each of these effects the 

number of positions with positive and negative coefficients are roughly equal. 

However, for difference predictors one would expect only negative coefficients since 

amino acid differences between HA proteins of two strains should lower cross-

immunity between strains and thereby decreased HI titer values.  In contrast to these 

expectations about 40% of the coefficients for difference predictors are positive. This is 

most likely a statistical artefact. Sun et al. (2013) observed a similar phenomenon in 

their analysis of AD data. While the positions selected by our model appear to be 

biologically meaningful, the magnitude of individual coefficients should be interpreted 

with caution. 

Our approach allows estimating total virus and serum effects per strain by 

summing the products of fitted coefficients and predictor variable values. These strain-

specific effects can give indications of trends in virus properties that affect HI titers. It 

is unclear what biological mechanisms influence the serum and virus effects estimated 

by our model. One potential driver of virus effects is virus avidity to host cell receptors. 

Lin et al. (2012) reported for H3N2 influenza a general decrease of receptor binding 

avidity over time from 1968 - 2010. Our model does not show the same trend for virus 

effects. It is therefore unlikely that the virus effects estimated by our model are due to 

receptor-binding avidity.   
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The analyses presented here could be extended in various ways. Phylogenetic 

comparative techniques (Pagel & Meade, 2006) could be used to test whether residue 

changes on positions that our model identified are correlated, indicating potential 

interactions between different amino acid residues. Furthermore, the decade-specific 

coefficients could be analysed to determine whether at specific times some regions on 

the H3 protein were most antigenically active. The model also provides a potential 

avenue to explore aspects of serum potency by analysing the positions selected from 

the serum predictor group. 

This study has shown that predicting HI from HA sequences can produce 

novel insights into different aspects of virus-antigen binding. Our results revealed 

antigenically important amino acid positions and trends in receptor binding avidity that 

are consistent with and expand previous results. The approach presented here provides 

an important new avenue for studying the influenza virus antigenicity. 
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APPENDIX 
 

 

Below is the script that runs the baseline prediction model and calculates the 

correlations between predicted and actual HI values. 

 

 

library(ape) 

library(seqinr) 

library(glmnet) 

 

# Read in alignment and convert to uppercase 

Alignment <- read.fasta("Data/ProcessedData/AASeq_HI_alignednogap.fas") 

Alignment <- t(sapply(Alignment, function(x) (x))) 

Alignment <- toupper(Alignment) 

 

#read in HIData 

HIData <- read.delim("Data/RawData/H3N2_HI_data.txt", stringsAsFactors=FALSE) 

 

#remove homologous titers 

HIData <- HIData[HIData$virusStrain != HIData$serumStrain,] 

 

# Create a variable that indicates whether the titer value is exact (TRUE) 

# or upper bound (FALSE) 

HIData$TiterExact <- !c(1:nrow(HIData)) %in% grep("<", HIData$titer) 

 

# remove all "<" from titer column and convert to numeric vector 

HIData$titer <- gsub("<", "", HIData$titer) 

HIData$titer <- as.numeric(HIData$titer) 

 

# log all titers 

HIData$logT   <- log(HIData$titer, base = 10) 

 

# Calculate scoremat (difference between every strain combination found in  

# HI table) 

ScoreMat <- CalcScoreMat(HIData$virusStrain, HIData$serumStrain, Alignment, 

                         1:ncol(Alignment), "binary") 

 

# remove non-existing sequences from HIData 

HIData <- HIData[!is.na(ScoreMat[,1]),] 

 

## OPTIONAL 

# create training and validation sets by date (commented out) 

#AVGyear <- (HIData$virusYear + HIData$serumYear)/2 

#THIData     <- HIData[AVGyear<2005,] 

#VHIData     <- HIData[AVGyear>=2005,] 
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# create random training and validation set 

random  <- sample(1:3, length(HIData$titer), replace = TRUE) 

THIData <- HIData[random>1,] 

VHIData <- HIData[random==1,] 

 

# recalculate scoremat (for validation set only) 

ScoreMat <- CalcScoreMat(THIData$virusStrain, THIData$serumStrain, Alignment, 

                         1:ncol(Alignment), "binary") 

 

#   Fit model for Virus, serum and difference coefficients 

#   based on sequences     

 

# Create a vector that gives for each AA position the number of unique AAs 

NrAA  <- apply(Alignment, 2, function(x) length(unique(x))) 

 

# Turn alignment into a score by assigning 0 to the most common AA and 1 

# to all others.  

AlignScore <- apply(Alignment, 2, function(x) { 

  Counts   <- table(x) 

  as.numeric(x != names(Counts)[which.max(Counts)]) 

}) 

 

# Match names from coefficients to alignment row names 

NameMatchVirusAlign  <- match(THIData$virusStrain, row.names(Alignment)) 

NameMatchSerumAlign <- match(THIData$serumStrain, row.names(Alignment)) 

 

# Subset alignment columns to get only columns with more than one AA 

PredictCols  <- which(NrAA > 1) 

 

## create predictor alignment data frame 

# create virus and serum position scoring matrix 

VirusPos  <- AlignScore[NameMatchVirusAlign, PredictCols] 

SerumPos <- AlignScore[NameMatchSerumAlign, PredictCols] 

 

# create Validation Predictor Matrix 

Tpredictor                   <- cbind(ScoreMat, VirusPos, SerumPos) 

colnames(Tpredictor) <- c(paste("ScoreMat", 1:ncol(ScoreMat), sep = ""),  

                          paste("Virus", 1:length(PredictCols), sep = ""), 

                          paste("Serum", 1:length(PredictCols), sep = "")) 

 

## to select best alpha we run the following commented out section 

## create k-fold vector 

#FoldID     <- sample(1:5, length(THIData$titer), replace = TRUE) 

 

## create list of alpha values to be tested 

#alphaslist <- seq(0.5,1,by=0.05) 

 

## run elasticnet testing all possible alpha values 
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#elasticnet <- lapply(alphaslist, function(a){ 

#  cv.glmnet(Tpredictor, THIData$logT, alpha=a, foldid = FoldID)}) 

 

## print prediction errors of all alpha values tested and select the alpha 

## with the lowest error 

#for (i in 1:11) {print(min(elasticnet[[i]]$cvm))} 

 

# run Elasticnet (several runs show that 0.7 is the best alpha to be used) 

ElasticFit <- cv.glmnet(Tpredictor, THIData$logT, alpha=0.7) 

 

# plot coefficients of estimation across different values of lambda 

plot(ElasticFit$glmnet.fit, "lambda", label = TRUE) 

 

# check fitted prediction 

FittedT    <- as.vector(predict(ElasticFit, Tpredictor)) 

 

#   Run validation for Virus, serum and difference coefficients 

#   based on sequences     

 

# Calculate V scorematrix 

VScoreMat <- CalcScoreMat(VHIData$virusStrain, VHIData$serumStrain, Alignment, 

                         1:ncol(Alignment), "binary") 

 

# recreate virus/serum alignment match vectors 

NameMatchVirusAlign <- match(VHIData$virusStrain, row.names(Alignment)) 

NameMatchSerumAlign <- match(VHIData$serumStrain, row.names(Alignment)) 

 

# create virus and serum position scoring matrix 

VirusPos <- AlignScore[NameMatchVirusAlign, PredictCols] 

SerumPos <- AlignScore[NameMatchSerumAlign, PredictCols] 

 

# predict Elastic fit 

Vpredictor           <- cbind(VScoreMat, VirusPos, SerumPos) 

colnames(Vpredictor) <- c(paste("VScoreMat", 1:ncol(VScoreMat), sep = ""),  

                           paste("Virus", 1:length(PredictCols), sep = ""), 

                           paste("Serum", 1:length(PredictCols), sep = "")) 

FittedV   <- as.vector(predict(ElasticFit, as.matrix(Vpredictor))) 

 

# Diagnostic Plots 

plot(THIData$logT, FittedT, xlab = "Actual", ylab = "Fitted",  

     main = "Elastic training") 

abline(0,1) 

abline(fit <- lm(FittedT ~THIData$logT), col='red') 

legend(x = max(THIData$logT) - 1, y = min(FittedT) + 2, bty="n",  

       legend=paste("R2 is",format(summary(fit)$adj.r.squared, digits=3))) 

 

plot(VHIData$logT, FittedV, xlab = "Actual", ylab = "Fitted", 

     main = "Elastic Validation") 
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abline(0,1) 

abline(fit <- lm(FittedV ~VHIData$logT), col='red') 

legend(x = max(FittedV) - 1, y = min(VHIData$logT) + 1.5, bty="n",  

       legend=paste("R2 is",format(summary(fit)$adj.r.squared 



 
 

 


