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Major: Pure Mathematics

Title: On the Uniqueness of the Radon Transform over Lines, Planes and Spheres

This thesis will discuss the uniqueness problem of the Radon transform over
lines in R2, hyper planes in RN for N > 2, and in more detail, the Radon trans-
form over spheres whose centers are restricted subsets of RN for N ≥ 2. It will
also examine the connection between probability theory, and the injectivity of the
Radon transform over lines. The study of the uniqueness of the spherical Radon
transform is important to the development of some medical imaging methods such
as Thermoacoustic Tomography (TAT). It also has applications in approximation
theory, integral geometry, inverse problems for PDE’s, and other fields.
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INTRODUCTION

If we know the integrals of a function under certain conditions over all lines in

the plane, hyper-planes in n-space or over all spheres for a given set of centers, can

we obtain the function back uniquely?

Such integrals are expressed by what is called the Radon transform over lines,

hyper-planes or circles. Ever since J. Radon investigated the uniqueness of the Radon

transform in 1917, it has been studied extensively and formulated in different aspects

(see [1, 2] for references). Its applications, as Lawrence Zalcman phrased, “range,

truly, from heaven above to the earth beneath and the water under the earth” [2].

In this work, we discuss the uniqueness of the Radon transform in three forms: first

taken over lines in the plane, second over hyper-planes in n-space and finally over

circles in the plane.

We prove uniqueness theorems and construct counterexamples whenever certain

conditions are removed. Moreover, we connect the problem of injectivity with

probability theory to simplify matters of generalization. On the other hand, the

circular Radon transform, whose methods of investigation differ from the other two

forms, is discussed extensively. We perform algebraic characterizations of sets of

non-injectivity and asymptotic analysis of certain algebraic curves in order to present

and prove a major theorem by Agranovsky and Quinto [3].

Consequently, chapter one will introduce the Radon transform over lines in the

plane. In it we prove the uniqueness of the Radon transform over lines, provided that

the function is globally integrable, using uniqueness of Fourier coefficients. Further,

we present in detail a construction given by Armitage and Goldstein [4], which
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disproves the theorem whenever global integrability is removed.

In chapter two, we discuss the connection of the injectivity of the Radon transform

over lines with a major theorem in probability theory. This theorem, originally proved

by Cramer and Wold [5], uses a well-known result that a distribution function is

uniquely determined by its characteristic function. The connection is established

using a method by Renyi [6], in which we convert integrals over lines to integrals

over half-planes and vice versa.

Chapter three discusses the injectivity of the Radon transform over hyper-planes.

We give an idea of the proof of the uniqueness theorem using methods of chapter

two, and demonstrate another construction by Armitage and Goldstein [7] that uses

approximation by harmonic functions.

Finally, and perhaps the most important of the work, chapter four discusses the

uniqueness of the spherical then circular Radon transform. We prove uniqueness

whenever the sets of centers are spheres. Most importantly, we present a necessary

and sufficient condition on sets of centers for which the Radon transform is not

injective.
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CHAPTER 1

THE RADON TRANSFORM OVER LINES

In 1957, D.J Newman proposed the following problem: If a function f is continu-

ous and integrable over the plane and is such that the line integral
∫
l fds = 0 for

every line l that is infinite in both directions then f ≡ 0. After Newman himself

showed this [8], many others formulated several proofs for it. Perhaps one of the

most elegant of these is a proof by Laurence Zalcman which was discussed in this

paper [1] where he uses the uniqueness of Fourier coefficients.

In this chapter, we will define the Radon transform over lines in the plane; present

Zalcman’s proof of Newman’s problem and finally give a construction of a non-zero

function that is not globally integrable and whose Radon transform vanishes over

all lines in the plane. This construction is due to Armitage and Goldstein in their

paper [4].

Let us then begin with a definition of the Radon transform
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1.1 Newman’s Problem and its Proof

Definition 1.1.1. Let f be a continuous and integrable function over lines in C,

the Radon transform of f with respect to plane Lebesgue measure is given by:

Rf =
∫
l
fds

where l is a doubly infinite line and ds denotes the length measure.

Theorem 1.1.1. If f is continuous and integrable over C, with respect to plane

Lebesgue measure, and if ∫
l
fds = 0

for every line l (doubly infinite), where ds denotes length measure, then f ≡ 0.

Proof. First, notice that
∫
l fds = 0 over any line l. So let us consider the lines passing

through the origin. Thus
∫
l fds = 0 ⇐⇒

∫+∞
−∞ f(x,mx)dx = 0 for any m ∈ R and

so we deduce that
∫
l fds = 0 over any line l is equivalent to

∫+∞
−∞ f(x, y)dx = 0 for

each fixed value of y ∈ R.

Consider the Fourier transform of f given as

f̂(ξ, η) =
∫∫

f(x, y)e−i(xξ+yη)dxdy

With l being a line through the origin, choose orthogonal coordinates in a way that l

becomes the imaginary axis. To be more precise, let us consider the following linear

transformation T : R2 → R2 defined as follows:

Since the line l has the form l : y = mx with x,m ∈ R we would like to apply a

rotation so that it becomes the imaginary axis. Since m is the slope let α = tan−1m

so that α is the angle between the line l and the x-axis. Let A be a 2 × 2 matrix

given as A =

sinα − cosα

cosα sinα

 so that we can define T

x
y

 = A

x
y

 for x, y ∈ R.
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Now
∫ ∫

f(x, y)dxdy =
∫ ∫

f◦T (u, v)
∣∣∣∣∣δ(x, y)
δ(u, v)

∣∣∣∣∣ dudv. It is easy to check that
∣∣∣∣∣δ(x, y)
δ(u, v)

∣∣∣∣∣ =

1 and thus conclude that
∫ ∫

f(x, y)dxdy =
∫ ∫

f ◦ T (u, v)dudv.

Therefore, since T is a rotation we may use the fact that f̂ ◦ T = f̂ ◦ T in order to

obtain

f̂(0, η) =
∫ ∫

e−iyηf(x, y)dxdy

By Fubini’s theorem we obtain

f̂(0, η) =
∫
e−iyη

(∫
f(x, y)dx

)
dy

Since
∫
l fds = 0,

∫+∞
−∞ f(x, y)dx vanishes for each fixed value of y. Therefore, f̂

vanishes on l and hence on each line through 0. Thus f̂ = 0 and so by the uniqueness

of Fourier coefficients f = 0 almost everywhere. Since f is assumed to be further

continuous, we obtain that f ≡ 0.

As this theorem was proved in several ways, it is important to discuss a method

of proof that allows us to generalize to higher dimensions. In the next chapter,

we will give a brief history behind the several formulations of theorem 1.1.1 and

investigate a way of proof using probability theory.

But, the question now is, if we remove the integrability condition on our function

f in theorem 1.1.1, would the result still follow?

1.2 Removing the Integrability Condition on f

Removing the integrability condition of the continuous function f would render

the previous result untrue. That is, a continuous function whose integral over all

lines is zero, but is not identically zero can be constructed (this function would not
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be globally integrable). Zalcman first constructed such a function using an approxi-

mation theorem by Arakelian for holomorphic functions [1]. However, Armitage and

Goldstein did a similar construction using elementary complex analysis [4]. We will

demonstrate their construction.

Let us assume that the constructed function has derivatives with vanishing inte-

grals over all lines. Therefore, we need a function g with the following properties:

1. ∫
l
|g(n+1)|ds <∞

2.

g(n)(z)→ 0 as z →∞ (z ∈ l).

where we can define f = g′, then f (n) is integrable over every line l and∫
l f

(n)(z)ds = 0, ∀n ∈ N.

We would like to clarify why
∫
l f

(n)(z)ds = 0, ∀n ∈ N. We know that ds = |z′(t)|dt,

(t ∈ R), so letting z(t) = (1− t)z1 + tz2, (z1, z2 ∈ l), we obtain dz = (z2 − z1)dt.

With z2 − z1 = |z2 − z1|eiα, α ∈ R, and any continuous integrable function h in C,∫
l hds = e−iα

∫
l h(z)dz = limz1,z2→∞ e

−iα ∫ z2
z1
h(t)dt = limz1,z2→∞ e

−iα(H(z1)−H(z2))

with H ′ = h, by using the fundamental theorem of calculus.

So, by a similar argument, we have

∫
l
g(n+1)(z)ds = lim

z1,z2→∞

(
g(n)(z2)− g(n)(z1)

)
= 0
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(by the second property g(n)(z)→ 0 as z →∞ ).

And thus we have
∫
l f

(n)(z)ds = 0, ∀n ∈ N.

1.3 Construction of non-constant function f whose

integral on every line is zero

To find f , we will construct the function g presented in the previous section. But,

before we begin the construction of g, we will state and prove the following lemma:

Lemma 1.3.1. Suppose that z1, z2 ∈ C and |z1 − z2| < 1. If φ1 is holomorphic in

C\z1 and ε > 0, then there is φ2 that is holomorphic in C\z2 such that

|(φ2 − φ1)(z)| < ε(1 + |z|)−2, (|z − z2| > 1).

Proof. φ1 has a Laurent expansion at z2 given as

φ1(z) = φ0(z) +
∞∑
j=1

aj(z − z2)−j (|z − z2| > |z1 − z2|),

where φ0 is an entire function.

Define

φ2(z) = φ0(z) +
m∑
j=1

aj(z − z2)−j (z 6= z2)

where m ∈ N

Now

|(φ2 − φ1)|(z) = |
∞∑
m+1

aj(z − z2)−j|

≤
∞∑
m+1

|aj|
|z − z2|j

= 1
|z − z2|m+1

∞∑
j=m+1

|aj|
|z − z2|j−m−1
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If we assume that |aj| ≤M for some M > 0 and |z − z2| ≥ c > 1 for some constant

c we obtain

|(φ2 − φ1)|(z) ≤ 1
|z − z2|m+1

∞∑
j=m+1

M

cj−m−1

= Mc

c− 1 .
1

|z − z2|m+1

|z − z2| ≥ |z2| − |z| ≥ (1 + |z2|)− (1 + |z|) so that if we take in particular 1 + |z2| >

2(1 + |z|) then |z − z2| ≥ (1 + |z|) and therefore,

|(φ2 − φ1)(z)| ≤ Mc

c− 1 .
2

(1 + |z|)2
1

|z − z2|m−1

<
ε

(1 + |z|)2

for large m and with ε > 0.

In remaining annular region, we would have

|(φ2 − φ1)(z)| ≤
∞∑

j=m+1

|aj|
|z − z2|j

≤M
∞∑

j=m+1

1
cj

= M

cm(c− 1) < ε

= ε

(1 + |z|)2 .(1 + |z|)2

≤ Mε

(1 + |z|)2

This Lemma would be our guide in the construction. The aim is to produce

a sequence of functions that is locally uniformly convergent to an entire function

having the properties mentioned above.
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So, first, let (ξk) be a sequence of points on the parabolic arc P = {t+ it2 : t ≥ 0},

such that ξ0 = 0 and |ξk − ξk−1| < 1, (k ≥ 1) with ξk →∞ as k →∞.

Define g0(z) = z−2 which is holomorphic in C\ξ0. Using Lemma 1.3.1, there exists a

holomorphic function g1(z) in C\ξ1 such that for ε = 1
2 we have

|(g1 − g0)(z)| < 1
2(1 + |z|)−2, (|z − ξ1| > 1).

Doing this repeatedly, we obtain

|(gk − gk−1)(z)| < 2−k(1 + |z|)−2, (|z − ξk| > 1) and k ≥ 1. (1.1)

Because of the obtained equation 1.1, (gk) is locally uniformly convergent to a limit

function g which is entire. We explain this in detail in what follows.

Local uniform convergence of gn

Let K be a compact subset of C. Then, there is R > 1, such that K ⊆ {|z| ≤ R}.

Since ξk → ∞ as k → ∞, there is k0 such that |ξk| > 2R for every k > k0, then

|z− ξk| > R and in particular |z− ξk| > 1 for every z ∈ K. Thus, (gk) is well defined

and holomorphic on K for every k > k0.

Let m > n > k0,

|(gm − gn)(z)| ≤
m∑

k=n+1
|(gk − gk−1)(z)|

≤
m∑

k=n+1
2−k(1 + |z|)−2

≤
m∑

k=n+1
2−k ≤ 2−n.

Thus, ∃N such that ∀n > N, 2−n < ε for any given ε, and thus local uniform

convergence is verified.
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Proof that g is entire

Let D = {z; |z − z0| ≤ R} for R > 0. D is clearly a compact subset of C. Let

γ = ∂D, ∃k0 > 0 such that gk is holomorphic on D, ∀k > k0. Using Cauchy’s integral

formula we have

gk(z) = 1
2πi

∫
γ

gk(ζ)
ζ − z

dζ

g(z) = 1
2πi lim

k→∞

∫
γ

gk(ζ)
ζ − z

dζ

and so

g(z) = 1
2πi

∫
γ

g(ζ)
ζ − z

dζ (by DCT ).

So we deduce that g is differentiable and thus holomorphic over D. Since we chose

an arbitrary region D, we conclude that g is entire.

The second step is to show that the limit function constructed is not identically zero

and satisfies properties 1 and 2.

Proof that g is not identically zero

Define Pa = {z : infw∈P |z − w| > a}.

For z ∈ P1 we have

|(g − g0)(z)| = |g1 − g0 + g2 − g1 + . . . |

≤ |g1 − g0|+ |g2 − g1|+ . . .

=
∞∑
k=0
|gk − gk−1|

< (1 + |z|)−2 < |g0(z)|.
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So, we deduce that g 6≡ 0. Otherwise, using the previous equation, if we plug in 0

for g(z), we obtain |g0(z)| < |g0(z)| which is false. Also we see that

|g(z)| − |g0(z)| < |(g − g0)(z)| < |g0(z)|

|g(z)| < (1 + |z|)−2 + |g0(z)| < 2|z|−2, (z ∈ P1).

Using Cauchy’s estimates to finalize the construction

The writers used Cauchy’s estimates to draw out a relation that includes the nth

derivative of g where it was obtained that

|g(n)(z)| < 2n!(|z| − 1)−2 n ∈ N (z ∈ P2).

To verify this result, let C be a circle of radius ρ and z a point inside C, we know

that

g(n)(z) = n!
2πi

∫
C

g(ζ)
(ζ − z)n+1dζ

|g(n)(z)| ≤ n!
2π

∫
C

2|ζ|−2|dζ|
|ζ − z|n+1

= n!
πρn+1

∫
C

|dζ|
|ζ|2

≤ 2n!
ρn(ρ− |z|)2 .

Here we have used the fact that |z − ζ| ≤ ρ which implies |z| − |ζ| ≤ ρ and so

|ζ| ≥ |z| − ρ whereby we finally obtain |ζ|−2 ≤ (|z| − ρ)−2.

Taking ρ = 1 we obtain the needed result

|g(n)(z)| < 2n!(|z| − 1)−2.

To finalize the construction notice that l\P2 is bounded (we will prove a general
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case of this fact in section 3.5 of chapter 3). We claim now that the properties 1 and

2 mentioned earlier are thus satisfied.

Therefore, it is to be proved that:

1. ∫
l
|g(n+1)|ds <∞

2.

g(n)(z)→ 0 as z →∞ (z ∈ l).

Proof that g satisfies the two properties

To prove property 1, divide the line l on which the integral is calculated into three

portions: l1, l\P2 and l2 (l1 and l2 are the infinite portions left of l after removing

P2). Since l\P2 is bounded,
∫
l\P2
|g(n+1)(z)|ds <∞. Now,

∫
l1
|g(n+1)(z)|ds < 2(n+ 1)!

∫
l1

ds

(|z| − 1)2 .

Noting that |z| > |x| (for z = x + iy) and taking the following parametrization of

l1(t) = (t, at + b), −∞ < t < t1 (t1, a, b ∈ R and t1 + iy1 (y1 ∈ R) is the point of

intersection between l1 and l\P2), we obtain the following

∫
l1
|g(n+1)(z)|ds < 2(n+ 1)!

∫ t1

−∞

√
1 + a2

(|t| − 1)2dt assuming t 6= 1

≤ 2(n+ 1)!
∫ t1

−∞

√
1 + a2

(t− 1)2 dt

< 2(n+ 1)!
∫ t1

−∞

√
1 + a2

t2 + 5 dt <∞.

Here (t−1)2 > t2 + 5 because t1 + iy1 ∈ l\P2∩ l1 and therefore |t1| ≥ 2 so −2t1 ≤ −4

and −2t1 ≥ 4. So, (t− 1)2 = t2 − 2t+ 1 ≥ t2 − 2t1 + 1 ≥ t2 + 5 as needed.

We do the same for l2.
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To verify the second property 2, notice that we have already shown that

|g(n)(z)| < 2n! 1
(|z| − 1)2 z ∈ P2, z ∈ l.

so as z →∞, limz→∞ |g(n)(z)| < 0. ∴ limz→∞ g
(n)(z) = 0 for z ∈ P2.

If z ∈ l\P2, |z| < M for some M > 0.

Thus as z →∞, z ∈ P2 and so limz→∞ g
(n)(z) = 0.

Therefore, after obtaining our function g, letting g′ = f we obtain a function f that

is not identically zero but whose integral over every line is zero.

The question now is whether or not we can generalize this construction and work

in the space of Rn. That is to say, can we find a non-zero harmonic function that

has vanishing integrals over every hyper plane? In fact, we can, and this has been

also shown by Armitage and Goldstein in their paper [7]. We will demonstrate the

construction in detail in chapter 3.
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CHAPTER 2

THE RADON TRANSFORM AND PROBABILITY
THEORY

The proof we presented of theorem 1.1.1, does not help in the generalization to

higher dimensions. Thus it is a must that we look at other methods that may be

helpful.

In his paper [6], Renyi explains a method that relates integration over straight

lines to integration over half planes. He then connects this to probability theory

and paves the way for further results and generalizations in the area. Although we

start with strict conditions on the function to be studied and its domain, the method

holds new ideas that it was necessary to study it separately. It is also important to

give credit to Cramer and Wold [5] who originally introduced and worked on several

applications of the method.

Let us first begin with a brief history

Originally, in 1917 Radon proved the following theorem:

(*) If K is a bounded domain of the (x, y) plane, and the integral of the continuous

function f(x, y) vanishes along every chord of the domain K, then f(x, y) is identi-

cally equal to zero.

Renyi then shows that theorem (*) is equivalent to the following theorem:

14



(**) A continuous and non-negative function f(x, y) defined in the convex domain

K, is uniquely determined if the value of its integral along every chord of K is given

as a finite value.

Although the proof is straightforward, we will present it for completeness.

Lemma 2.0.1. Theorem (*) ⇐⇒ theorem (**).

Proof. (⇒) If
∫
l fds =

∫
l gds for every chord l, then

∫
l f − gds = 0 (since the values

of
∫
l fds and

∫
l gds are finite) and thus f ≡ g.

∴ (*) ⇒ (**).

(⇐) We are given that
∫
l fds = 0 for every line l ⊂ K. Let

f1(x, y) =


f(x, y) if f(x, y) ≥ 0.

0 if f(x, y) < 0.

and f2(x, y) = f1(x, y)− f(x, y) with (x, y) ∈ R2.

Clearly, f1, f2 are continuous and non-negative. Also
∫
l f1ds =

∫
l f2ds ∀ l ⊂ K.

Hence (**) ⇒ (*).

The method we will represent in this chapter can easily prove theorems (*) and

(**). But before we introduce the preliminaries, we will demonstrate a beautiful

idea presented by Renyi in his paper [6], which allows us to convert, under certain

conditions, the integral over all lines to an integral over all half-planes and vice versa.
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2.1 From Integrals over lines to Integrals over

Half-Planes

Let us state and prove the following lemma:

Lemma 2.1.1. Let f be a continuous non-negative function over a bounded convex

domain K ⊂ R2. Define i(l) =
∫
l fds. Then i(l) is known as a finite value for every

line l ∈ K if and only if I(H) =
∫ ∫

Hf(x, y)dxdy is known as a finite value for every

half-plane H in the plane.

Proof. (⇐) We claim that if I(H) is known for every half-plane, then
∫ ∫

S∆
f(x, y)dxdy

is known for every parallel strip S∆ whose breadth is equal to ∆.

To see this, let l1 be an arbitrary line in the plane. Take H1 to be the half plane

whose boundary line is parallel to l1 and is at a distance ∆ form l1. Then, take H2

to be the half-plane whose boundary line is l1, in such a way that H1 ⊂ H2. Now,

we know that I(H1) and I(H2) are both known and finite values, thus

∫ ∫
H2
f(x, y)dxdy −

∫ ∫
H1
f(x, y)dxdy =

∫ ∫
S∆
f(x, y)dxdy

is known for every parallel strip S∆.

Now, let l be the mid-line of the parallel strip S∆.

Consider,

∫ ∫
S∆
f(x, y)dxdy =

∫ ∫
S1/∆

f(x, y)dxdy + · · ·+
∫ ∫

S1/∆

f(x, y)dxdy

∆ times. That is

∫ ∫
S∆
f(x, y)dxdy = ∆

∫ ∫
S1/∆

f(x, y)dxdy

16



which implies that

∫ ∫
S1/∆

f(x, y)dxdy = 1
∆

∫ ∫
S∆
f(x, y)dxdy

so that finally we would have

∫
l
fds = lim

∆→0

1
∆

∫ ∫
S∆
f(x, y)dxdy

which allows us to conclude that i(l) is known for every chord l.

(⇒) We know i(l) over every line l in the plane. Let H be any half-plane, and

take (d) to be the boundary line of H. Let (d′) be the line perpendicular to (d) and

passing through the origin. Define lt to be the line parallel to (d) that cuts (d′) at a

point of abscissa t on the line (d′). Then, we claim that I(H) =
∫+∞
−∞ i(lt)dt.

To see this, and without loss in generality, we can consider a rotation T that

takes the line (d′) to the x-axis. Thus, any line lt would be a vertical line passing

through the point (t, 0). So then, i(lt) =
∫
lt
fds =

∫+∞
−∞ f(t, y)dy.

Since, we are working on a bounded domain K,

I(H) =
∫ ∫

K∩H
f(x, y)dxdy =

∫ ∫
H
f(x, y)dxdy =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)dxdy

This is equivalent to saying I(H) =
∫+∞
−∞

∫+∞
−∞ f(t, y)dtdy =

∫+∞
−∞ i(lt)dt.

It is important to note that throughout this whole proof, the main worry was

about the existence of the integrals we’re working with. Having f defined over a

bounded region K ensures this property. So then if we remove the condition of f

being defined over the bounded region K, and replace it by the condition that f is
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integrable over the whole plane, the existence of the integrals would be also verified

and the result of the lemma would follow accordingly.

In what follows we will give some preliminaries in probability theory that we will

need to connect with theorems (*) and (**), and consequently prove theorem 1.1.1.

2.2 Probability Distribution and its Projection

Definition 2.2.1. A distribution function in Rn is a completely additive, non-

negative set function F (E) defined for all Borel sets E of Rn and is such that

F (Rn) = 1.

Definition 2.2.2. The characteristic function (or Fourier Stieltjes transform) of

a probability distribution F (E) is the function f(t) defined for all t ∈ Rn by the

Lebesgue Radon integral

f(t) =
∫
Rn
ei(t1x1+···+tnxn)dF, t ∈ Rn

where x ∈ Rn = (x1, x2, . . . , xn).

(These definitions are obtained from [5]).

It well known that a distribution function is uniquely determined by its charac-

teristic function. We will not prove this so as not to steer away from our subject.

See [5] for references to the proof.

Let f be a non-negative, continuous function that is integrable over the plane.∫+∞
−∞

∫+∞
−∞ f(x, y)dxdy < ∞ and so we can take, without loss of generality,∫+∞

−∞
∫+∞
−∞ f(x, y)dxdy = 1. This way we can consider f(x, y) to be a density function
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of a probability distribution.

Define the corresponding distribution function of f(x, y) as follows

F (x, y) =
∫ x

−∞

∫ y

−∞
f(u, v)dvdu

The characteristic function of F (x, y) is given as

ψ(u, v) =
∫ +∞

−∞
ei(ux+vy)dF (x, y)

Let l be an arbitrary line passing through the origin. Let u be the unit vector

parallel to l. If the angle between the line l and the x-axis is θ, u can be chosen

to be u = (cos θ, sin θ). Define the coordinate of the projection at a random point

x = (x1, x2) ∈ R2 on the line l as

px,θ = u.x = x1 cos θ + x2 sin θ

The line l through the origin whose angle with the x-axis is θ, can be repre-

sented as follows y = x tan θ which gives y cos θ = x sin θ so that we finally obtain

l : y cos θ − x sin θ = 0. Thus, any line perpendicular to l with coordinate p on l

would have (cos θ, sin θ) as a normal and hence be of the form x cos θ + y sin θ = p.

Now, let Hp denote the half-plane whose boundary line is perpendicular to l and

intersects l at a point whose coordinate on l is equal to p. Define the distribution

function of the projection on l of any point in the plane as

Fl(p) =
∫ ∫

Hp
f(x, y)dxdy.

Note that the equation representing Hp be would be x cos θ+ y sin θ ≤ p which is the
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set of all lines perpendicular to l and whose coordinate on l is less than or equal to p.

We are ready to state and prove a theorem that will be very useful for our

purposes.

Theorem 2.2.1. Let F (x, y) denote the distribution function of an arbitrary proba-

bility distribution on the plane, and suppose that the projection of this distribution is

known on every straight line l through the origin i.e.

Flϕ(p) =
∫ ∫

x cosϕ+y sinϕ≤p
dF (x, y)

is a known function of p for every value of ϕ (0 ≤ ϕ < π) where ϕ denotes the angle

between the straight line lϕ and the x-axis. Then, F (x, y) is uniquely determined for

every value of x and y.

Proof. Let (ξ, η) ∈ R2 and consider the distribution function F (x, y) on the plane.

Let ψ(u, v) denote the characteristic function of the point (ξ, η) which is given as

ψ(u, v) =
∫ +∞

−∞

∫ +∞

−∞
ei(ux+vy)dF (x, y)

Now denote the coordinate of the projection of the point (ξ, η) on the line lϕ by ζϕ

and this is can be represented in the form

ζϕ = ξ cosϕ+ η sinϕ

so that Flϕ(ζϕ) becomes the distribution function of ζϕ. Since it is assumed that

Flϕ(p) is a known function of p (p being the coordinate of projection of any point in

the plane on the line lϕ), it’s characteristic function

ψϕ(t) =
∫ +∞

−∞
eitζϕdFlϕ(ζϕ) =

∫ +∞

−∞
eit(ξ cosϕ+η sinϕ)dFlϕ(ζϕ) = ψ(t cosϕ, t sinϕ)
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This implies that for every u, v ∈ R the following holds and is known

ψ(u, v) = ψ
tan−1

(v
u

)(
√
u2 + v2)

Since F (x, y) can be uniquely determined by ψ(u, v), we conclude that F (x, y) is

known for every value of x and y which completes the proof.

2.3 Steps towards the generalization of Radon’s

Theorem:

We have started with a non-negative function f that is defined on a bounded

domain K, and whose integral vanishes over every chord of K. The first step is to

remove this restrictive domain and have f defined over the whole plane in such a

way that
∫+∞
−∞

∫+∞
−∞ f(x, y)dxdy <∞ (i.e f is L1 integrable).

The second step would be to remove the continuity condition so f then becomes

non-negative and integrable. Here we can take f to be a density function of a

probability distribution. The question then would be whether the values of F (x, y)

as defined in the previous section 2.2 would determine uniquely the value of our

function f .

The final step of generalization would be to consider distributions that have

no density functions. Theorem 2.2.1 tells us that any distribution function of any

probability distribution on the plane can be uniquely determined by its projections

on every straight line.
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2.4 An alternative proof of theorem 1.1.1

If we weaken the condition on f stated in theorem 1.1.1 and require that f

becomes non-negative, the above procedure can be applied. Again, let f be a non-

negative, continuous and integrable function on the plane and assume with no loss

of generality that
∫+∞
−∞

∫+∞
−∞ f(x, y)dxdy = 1. (Note that with this assumption we are

also assuming that f 6≡ 0 so that we may argue by contradiction).

We know that
∫
l fds = 0 for every line l in the plane with ds denoting the length

measure.

As we have shown earlier, if the integral of f is known over all lines in the plane,

then it is also known over all half-planes. and thus since we are given that
∫
l fds = 0

over all lines, we obtain ∫ ∫
H
f(x, y)dxdy = 0

for all half-planes H. Therefore, using the result of the previous theorem

F (x, y) =
∫ x

−∞

∫ y

−∞
f(x, y)dxdy ≡ 0

Since F (x, y) is continuous limx,y→+∞ F (x, y) = 0 and thus
∫+∞
−∞

∫+∞
−∞ f(x, y)dxdy = 0

which is a contradiction to our assumption that
∫+∞
−∞

∫+∞
−∞ f(x, y)dxdy = 1 and hence

f ≡ 0.

Likewise, theorem (*) which is equivalent to (**) are easily proven by this procedure.

2.5 More Results

One result that may generalize theorem 2.2.1 and which can be used to generalize

theorem (*) is the following:
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Theorem 2.5.1. Let (ξ, η) be a point contained with probability 1 in a disc D of

equation ξ2 + η2 ≤ R2 and the distribution function Flϕ(ζϕ) of the random variable

ζϕ = ξ cosϕ + η sinϕ is given for an infinity of mod π different values of ϕ, then

the distribution function F (x, y) = Pr(ξ < x, η < y) of the random point (ξ, η) is

uniquely determined.

Proof. Let ϕ1, ϕ2, . . . , ϕn, . . . , be the values of ϕ for which Flϕ is known.

Take ϕ0 to be a limit point of the sequence ϕn .

So then ψ(t cosϕ, t sinϕ) is known for each value of ϕi with i = 1, 2, . . . , n, . . . . (see

the proof of theorem 2.2.1 for details of the derivation)

Now we claim that ψ is an analytic function of ϕ for every fixed value of t. We can

see, using dominated convergence, that

∂ψϕ(t)
∂ϕ

= it
∫ ∫

x2+y2≤R2
(−x sinϕ+ y cosϕ)eit(x cosϕ+y sinϕ)dF (x, y)

exists for every value of ϕ. Since the terms eit(x cosϕ+y sinϕ), sinϕ and cosϕ are all

analytic and the integral over the compact set x2 + y2 ≤ R2 is a finite number, then

ψ is thus analytic.

Hence ψ will be known for any fixed value of t for values of ϕ = ϕnk with

limk→∞ ϕnk = ϕ0.

Therefore, ψ(t cosϕ, t sinϕ) is known for every value of t and ϕ. Hence, by the same

way we proved theorem 2.2.1, the distribution function F (x, y) can be determined

uniquely.

Corollary 2.5.2. Let f(x, y) be a continuous function that is equal to 0 outside the
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disk x2 + y2 < R2 for some R > 0. Suppose
∫
l fds = 0 for every line l parallel to

some line belonging to an arbitrary infinite set of lines passing through the origin,

then f ≡ 0.

Proof. We follow the same procedure we used in section 2.4, but this time we use

theorem 2.5.1 to show that F (x, y) ≡ 0 so that f ≡ 0.

In the next chapter, we will discuss briefly how the method described in section

2.2 can generalize the problem of injectivity of the Radon transform, from integrals

taken over lines to integrals taken over hyper-planes. We see then that such integrals

also determine uniquely the value of the function itself provided that this function is

restricted to certain conditions.
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CHAPTER 3

THE RADON TRANSFORM OVER HYPER-PLANES

After the research on the Radon transform over lines it is natural to generalize

to RN . The steps of the construction presented in chapter 1 can be mimicked to

obtain a similar result over hyper planes. However, it was a must that we include

another construction by Armitage and Goldstein in their paper [7]. This paper is

short, concise and holds truly beautiful ideas, particularly those relating to harmonic

approximation that we found essential to include in our study of the Radon Transform.

3.1 Main Definitions, Theorems and Notation

Definition 3.1.1. Let f be real or complex valued on RN where N ≥ 2, and suppose

f is integrable on each (N − 1)-dimensional hyperplane P in RN , then the Radon

transform f̂ of f is defined on the set PN of all such hyperplanes by:

f̂ =
∫
P
fdλ,

where λ denotes the (N − 1)-dimensional Lebesgue measure on P .

To generalize theorem 1.1.1, we can state the following theorem

Theorem 3.1.1. If f is continuous and integrable over RN , and f̂ ≡ 0 on PN , then

f ≡ 0 on RN .
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The proof of this follows from the method represented in chapter 2. For example,

if we take N = 3 we can see that theorem 2.2.1 can be generalized so that a probabil-

ity distribution can be uniquely determined by its projection on every plane passing

through a given line; or in fact, by its projection on every line passing through the

origin, or through a combination of planes and lines that together cover the whole

space (see [6]). So that then we can state the theorem

(***) A probability distribution in the n dimensional space is uniquely determined

by its projections on such a set of subspaces of 1, 2, . . . , (n − 1) dimensions which

together cover the whole space.

Keeping that in mind, the main objective of this chapter now is to prove the next

theorem which is as follows:

Theorem 3.1.2. There exists a non-constant harmonic function h on RN , N ≥ 2

such that ĥ ≡ 0 on PN .

Armitage and Goldstein presented a construction for the required function h [7]

which we will discuss again in more detail. But let us first introduce some preliminary

definitions and notation.

3.2 Preliminary Definitions and Notation for the

Construction

Denote by S the unit sphere in RN , given as {y ∈ RN : ||y|| = 1}. Here we take

the usual inner product on RN as

〈x, y〉 = x1y1 + · · ·+ xNyN ;
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and the usual norm

||x|| =
√
〈x, x〉 ;

where x, y ∈ RN , x = (x1, . . . , xN) and y = (y1, . . . , yN).

For y ∈ S and t ∈ R, define

P (y, t) = {x ∈ RN : 〈x, y〉 = t};

which is the N−dimensional hyperplane, and

for −∞ ≤ a < b ≤ +∞, define

Q(y, a, b) =
⋃

a<t<b

P (y, t),

which is isometric to RN−1 × (a, b).

Let A be the point at infinity of RN and take the topology on RN ∪ {A} to be the

Aleksandroff one-point compactification topology.

What was rather remarkable in Armitage and Goldstein’s proof [7] was the intro-

duction of a certain special set so that they would make use of a theorem on harmonic

approximation that was recent at their time. This theorem would give existence to the

harmonic function we are seeking to prove theorem 3.1.2. So, let us first define this

special set and then use it to build up other sets that are essential for our construction.

3.3 Special Set E and Construction of h

Let E be a non-empty subset of RN with the following properties:

1. E is open in RN .
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2. E ∪ {A} is connected and locally connected in the topology of RN ∪ {A}.

3. If y ∈ S and 0 < a <∞, then E ∩Q(y,−a, a) is bounded.

4. If y ∈ S then ∃T > 0 (depending on y) such that at least one of the sets

E ∩Q(y,−∞,−T ) and E ∩Q(y, T,+∞) is empty.

The authors presented an interesting example of this set which we will provide and

discuss in further detail in the final section of this chapter.

Now, let z ∈ E be a fixed point so that we define the following closed subsets of RN

as:

F1 = RN\E, F2 = {z}, F = F1 ∪ F2.

Let ω1 and ω2 be two open subsets of RN such that ω1 ⊃ F1, ω2 ⊃ F2 and ω1∩ω2 = φ.

Define u : ω1 ∪ ω2 → R as:

u(x) =


0 if x ∈ ω1.

1 if x ∈ ω2.

First, notice that F is unbounded. Second, it is clear that u is harmonic on the open

neighborhood ω1 ∪ ω2 of F , (∆u = 0).

Let us consider the set RN\F = RN\F1 ∪ F2 = E\{z}. It is clear that E\{z} is

open in RN and inherits the properties (1) through (4) of the set E.

To proceed with the construction we need the following theorem:

Theorem 3.3.1. Let F be a non-empty closed subset of an open set Ω in RN (N ≥ 2).

If u is harmonic on an open set containing F except possibly for singularities, then

for each ε > 0, each µ > 0 and each k ∈ N, there exists v that is harmonic on an
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open set containing Ω, except possibly for singularities, such that

Dα(v − u)(x) < ε(1 + ||x||)−µ (x ∈ F, |α| ≤ k).

Moreover, if Ω∗\F is connected and locally connected and u is harmonic in an open

set containing F , except possibly for removable singularities, then we may take v to

be harmonic in an open set containing Ω, except possibly for removable singularities.

Note: here Ω∗ = Ω∪ {∗}, is the Aleksandroff one-point compactification of Ω, where

‘∗’ denotes the ideal point of Ω.

Although we will not provide a proof of this theorem here, we urge the kind

readers to check the following paper [9] which is also by Armitage and Goldstein and

which presents and proves some essential results in harmonic approximation.

Let us take Ω = ω1∪ω2, F to be the closed subset of RN defined earlier, and k = 0.

Thus, since the hypothesis of theorem 3.3.1 is satisfied, there is a function h that is

harmonic on an open set containing Ω except possibly for removable singularities

such that

|h(x)− u(x)| < (1 + ||x||)−N−1 (x ∈ F ). (3.1)

It can be simply shown that |h(x)−1| < 1. So, if we assume that h(x) = 0, ∀x ∈ RN ,

we obtain |0− 1| < 1 which is a contradiction and thus h 6≡ 0.

Moreover, notice that limx→A,x∈F h(x) = 0. This is because as x→ A, x ∈ ω1 but

u(x) = 0, ∀x ∈ ω1, so that equation 3.1 gives |h(x)| < 1
(1 + ||x||)N+1 . Taking the

limit as x→ A we see that h(x)→ 0. This step proves that h is non-constant.
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3.4 Finalizing the Construction

Now that we obtained our harmonic function h, the objective from here is to

prove that it is indeed the function needed to complete the proof of theorem 3.1.2.

So we have to prove the following Lemma:

Lemma 3.4.1. For a fixed y ∈ S, h is locally integrable on P (y, t) and ĥ(P (y, t)) = 0

for all t ∈ R.

Before we proceed with the proof, define

BN(r) = {x ∈ RN : ||x|| < r}.

Since E satisfies property (3), and for 0 < a <∞, E ∩Q(y,−a, a) is bounded. So,

there is r > 0 such that E ∩Q(y,−a, a) ⊆ BN(r). Given that F1 = RN\E, we have

E = RN\F1 so that E ∩ Q(y,−a, a) = Q(y,−a, a)\F1. However,

F = F1 ∪ F2 which implies F1 ⊂ F and so Q(y,−a, a)\F ⊂ Q(y,−a, a)\F1. Thus,

Q(y,−a, a)\F ⊆ BN(r).

Proof of the Lemma

Fix y ∈ S and let us consider the following

∫
P (y,t)

|h|dλ =
∫
P (y,t)\F

|h|dλ+
∫
P (y,t)∩F

|h|dλ (3.2)

For −a < t < a, we would have P (y, t)\F ⊂ BN(r) since Q(y,−a, a)\F ⊆ BN(r).

Also, we have |h(x)| < (1+ ||x||)−N−1 + |u(x)| for x ∈ Ω = ω1∪ω2, so that for x ∈ ω1,

|h(x)| < (1 + ||x||)−N−1, and thus we obtain

∫
P (y,t)

|h|dλ ≤ sup
BN (r)

|h|
∫
P (y,t)\F

dλ+
∫
P (y,t)∩F

(1 + ||x||)−N−1dλ(x).
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Now, (1 + ||x||)−N−1 is at its maximum at the origin, and P (y, t) ∩ F ⊂ P (y, t), so

we have ∫
P (y,t)∩F

(1 + ||x||)−N−1dλ(x) ≤
∫
P (y,0)

(1 + ||x||)−N−1dλ(x),

So that finally equation 3.2 becomes:

∫
P (y,t)

|h|dλ ≤ V (r) sup
BN (r)

|h|+
∫
P (y,0)

(1 + ||x||)−N−1dλ(x) (3.3)

where V (r) is (N − 1)−dimensional volume of BN−1(r).

Define f(t) =
∫
P (y,t) |h|dλ.

Let us prove that f(t) is locally bounded. For |t| < a, and using equation 3.3, it is

easy to see that the first term of the equation is bounded. It is left to show that∫
P (y,0)(1 + ||x||)−N−1dλ(x) is bounded.

Let us first take N = 3.

Let y ∈ R3 be such that y belongs to the unit sphere in R3 and is fixed. Let R

be a rotation taking the vector y to the vector (0, 0, 1), then ||Rx|| = ||x|| and so

dλ(Rx) = dλ(x) for x ∈ R3.

Therefore,
∫
P (y,0)(1+||x||)−4dxdy =

∫
x,yplane(1+||x||)−4dxdy where x = (x, y) and thus∫

P (y,0)(1 + ||x||)−4dxdy =
∫+∞
−∞

∫+∞
−∞

(
1

1 +
√
x2 + y2

)4

dxdy =
∫ 2π

0
∫∞

0

( 1
1 + r

)4
rdrdθ

which is a finite number.

If we go to higher dimensions, we work similarly to obtain

∫ 2π

0
. . .
∫ 2π

0

∫ +∞

0

( 1
1 + r

)N+1
rN−2drdθ1dθ2 . . . dθN−2

and we also get a finite number. Therefore, f(t) defined above is bounded for |t| < a,

so it is locally bounded.
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In order to proceed, the authors presented the following result

If s is subharmonic on RN and t 7→
∫
P (y,t) |s|dλ is locally bounded on R, then the

hyperplane mean ŝ(P (y, t)) is a convex function of t on R.

Now take this s to be s = h and s = −h. The conditions of the mentioned result

are satisfied and so ĥ(P (y, t)) and − ˆ(h)(P (y, t)) are both convex functions of t, and

therefore ĥ(P (y, t)) becomes a linear function of t.

By the 4th property of the set E, we see that ∃T > 0 such that P (y, t) ⊂ F,

∀t > T or ∀t < −T . When P (y, t) ⊂ F , we would have

|ĥ(P (y, t))| <
∫
P (y,t)

(1 + ||x||)−N−1dλ(x) =
∫
P (y,0)

(1 +
√
||x||2 + t2)−N−1dλ(x).

Let us explain the last step more. Take N = 3 so that we can visualize the re-

sult. For x ∈ P (y, 0) and x′ ∈ P (y, t), we can use Pythagoras formula to obtain

||x′||2 = t2 + ||x||2. Note that this method is independent on the dimension and thus

holds for higher values of N .

Now,

∫
P (y,0)

(1 +
√
||x||2 + t2)−N−1dλ(x) =

∫
P (y,0)

1
(1 +

√
||x||2 + t2)N

1
(1 +

√
||x||2 + t2)

dλ(x)

< (1 + |t|)−1
∫
P (y,0)

(1 + ||x||)−Ndλ(x)

This is because, we can take (1 +
√
||x||2 + t2)−N < (1 + ||x||)−N and

(1 +
√
||x||2 + t2)−1 < (1 + |t|)−1.

Since
∫
P (y,0)(1 + ||x||)−Ndλ(x) exists, letting t → +∞ or t → −∞, we get
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ĥ(P (y, t))→ 0. Since we proved that ĥ is a linear function of t, it follows that

ĥ(P (y, t)) = 0 ∀t ∈ R

and hence the proof of theorem 3.1.2 is complete.

So, we have obtained a non-constant harmonic function whose integral is zero

over all hyper-planes which proved our theorem.

In the next subsection, we will demonstrate an example of the special set E

defined earlier which was also presented by Armitage and Goldstein [7]. Notice that

the proof of the properties of the constructed set is a generalization to the proof left

out in chapter 1 (the one where we claimed that l\P2 is bounded in section 1.3).

3.5 Example of the special set E

The Goal now is to find a set E that satisfies the properties mentioned at the

beginning of section 3.3. So let us begin the construction by the following:

let I = [0,+∞) and define ψ : I → RN by ψ(ξ) = (ξ, ξ2, . . . , ξN).

Let E = {x ∈ RN : infξ∈I ||x− ψ(ξ)|| < 1}.

The first two properties of the special set defined in section 3.3 are clearly satisfied,

so all that is left to prove are properties (3) and (4). Hence, we need to prove the

following two claims:

Claim 1: for y ∈ S and 0 < a <∞, E ∩Q(y,−a, a) is bounded.

Claim 2: for y ∈ S, ∃T > 0 (depending on y), such that at least one of the sets

E ∩Q(y,−∞,−T ) and E ∩Q(y, T,+∞) is empty.
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Proof of Claim 1

Let y ∈ S be fixed and define η : I → R as follows

η(ξ) =
N∑
j=1

yjξ
j

or in other words η(ξ) = 〈y, ψ(ξ)〉.

It is clear that as ξ →∞, |η(ξ)| → ∞.

The authors here claim that η(ξ) is bounded either below or above on I. That is, for

every ξ ∈ I, ∃M (or M ′) such that η(ξ) ≤M (or M ′ ≤ η(ξ)) for all ξ ∈ I.

η(ξ) exists for any 0 ≤ ξ ≤ b with 0 < b < ∞, and in fact, by the extreme

value theorem, has a maximum or a minimum in that interval. Hence as ξ → ∞,

η(ξ)→ +∞ or −∞ depending on y, and so we see that η is either bounded above

or below on I.

From here we need to utilize the fact that η is either bounded below or above

to show that E ∩ Q(y,−a, a) is bounded, which is equivalent to showing that

{x ∈ E : | 〈x, y〉 | < a} is bounded.

Now, notice that ∀x ∈ E, ∃ξx ∈ I and x′ ∈ BN(1) such that

x = ψ(ξx) + x′ (3.4)

If we take N = 2 or 3, we can see this geometrically. Any point in E belongs to a

sphere of radius 1 centered at a point on the curve represented by ψ and this follows

from the definition of E.

Take the inner product in equation 3.4 with respect to y (y ∈ S fixed) to obtain

〈x, y〉 = 〈ψ(ξx), y〉+ 〈x′, y〉 = η(ξx) +O(1) (as x→ A, x ∈ E) (3.5)

So for x ∈ E ∩Q(y,−a, a), η(ξx) = 〈ψ(ξx), y〉 is bounded.
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To prove that E ∩ Q(y,−a, a) is bounded, we may argue by contradiction. Let

x ∈ E ∩Q(y,−a, a) and assume that ||x|| → A, then ξx →∞ and thus |η(ξx)| → ∞.

But we have just shown that |η(ξx)| is bounded. Therefore, there must exist an

integer M > 0 such that ||x|| < M for all x ∈ E ∩Q(y,−a, a).

Proof of Claim 2

We need to show that there is T > 0 such that at least one of the sets

E ∩ Q(y,−∞,−T ) and E ∩ Q(y, T,+∞) is empty. That is to say, either

{x ∈ E : 〈x, y〉 < −T} or {x ∈ E : 〈x, y〉 > T} is empty, which is also equiva-

lent to saying that either 〈x, y〉 > −T or 〈x, y〉 < T for all x ∈ E. In fact, this follows

immediately from equation 3.5, because we have shown that η is either bounded

below or above on I, so then it follows that 〈x, y〉 is either bounded below or above

on I. Hence, there is such a T > 0 with either 〈x, y〉 < T or −T < 〈x, y〉 which

completes the proof.

We have now understood the behavior of the Radon transform over lines and

planes. But what about its injectivity on other curves? This is a whole study on

its own. One interesting paper may be Cormack’s [10], where he studies the Radon

transform over a family of curves in the plane. What is of more interest to us however

is the circular Radon transform which we will discuss in the next chapter and which

is truly fascinating, both theoretically and practically.
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CHAPTER 4

THE RADON TRANSFORM OVER CIRCLES

We reach now a major part of the thesis where we will explore the circular Radon

transform. The circular or spherical Radon transform (for Rn, n > 2) takes a function

and integrates it over all spheres centered at a given set of centers in Rn. It has

been studied vastly is many areas such as integral geometry, PDEs, sonar and radar

imaging, approximation theory and many others (see [11] for references). Perhaps

the field that required an extensive study of the circular Radon transform is a newly

developed medical imaging technique called Thermoacoustic tomography (TAT).

To understand why such a transform is required, we will give a brief description

of TAT which was presented initially in [11].

Given a biological object understudy, a short microwave or radiofrequency elec-

tromagnetic pulse is sent through it. The cells of the object absorb the energy from

the wave so that given an internal location x, an energy H(x) is absorbed. It is

known that a cancerous cell absorbs much more energy than normal cells. Thus at

tumorous locations, we can see a sudden increase in the values of H(x).

Let us see now how we can measure the values of H(x) so that we can detect the

tumors. After the energy from the microwave or the radio frequency is absorbed, heat

results causing thermo elastic expansion of cells which emit pressure waves. Such

pressure waves are detected by transducers placed outside of the object understudy.
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One can now measure effectively the integrals of H(x) over all spheres centered at

the locations of the transducers.

So then we ask the following questions: Is it possible to obtain the value of H(x)

from the data measured and would the reconstruction of H(x) be unique?

In this chapter we will answer these questions by studying the injectivity of the

circular Radon Transform. Let us then begin by introducing some notation and main

definitions.

4.1 Notation and Main Definitions

The following notation will be used throughout the coming sections:

• C(Rn): Continuous real-valued functions endowed with the topology of the uniform

convergence on compact sets.

• Cc(Rn) ⊆ C(Rn): Subspace of compactly supported functions on C(Rn).

• M(n): the groups of rigid motions of Rn.

• For N ∈ N denote by ΣN the Coxeter system of N lines L0, . . . , LN−1 in the plane

where Lk = {teikπ/N | −∞ < t < +∞}.

Definition 4.1.1. The Radon transform over spheres is given by:

Rf(x, r) =
∫
S(x,r)

fdA, f ∈ Cc(Rn).

Here x ∈ Rn, r ∈ R+ = (0,∞), S(x, r) denotes the sphere centered at x and of

radius r; dA is the normalized area measure on S(x, r).

Definition 4.1.2. The Radon transform R is said to be injective on a set S if for

any f ∈ Cc(Rn) the condition Rf(x, r) = 0, ∀r ∈ R+ and ∀x ∈ S implies that f ≡ 0.

S is thus called a set of injectivity of the Radon transform R.

37



The objective from here is to explore the injectivity sets of the spherical Radon

transform and eventually be able to get a clear understanding or perhaps a solution

of the following problem:

Problem: Describe all sets of injectivity for the Radon transform on Cc(Rn).

It has not been an easy task to characterize such sets of injectivity. Agranovsky

and Quinto [3], two leading mathematicians in this area, based their results and

proofs on the geometry of zero sets for harmonic polynomials and microlocal analysis

of the circular Radon transform to finally obtain the following theorem:

Theorem 4.1.1. The following condition is necessary and sufficient for S to be a

set of injectivity for the Radon transform R over circles

The set S is not contained in any set of the form ω(ΣN) ∪ F , where ω ∈M(2) and

F is a finite set.

Notice that this theorem is only proved in R2. In fact, the work done by Agra-

novsky and Quinto [3] was considered to be a major breakthrough in the field.

However, their methods were rather restrictive to the plane, so there was a need

to find alternative ways, particularly those that use simple PDE techniques, that

would allow for generalization to higher dimensions. Ambartsoumian and Kuchment

discuss this matter in [11]; they do not prove theorem 4.1.1 but they open the roads

to understand the problem in a different perspective so that we can get closer to

solving the following conjecture:

Conjecture: The following condition is necessary and sufficient for S to be a set

of injectivity for the circular Radon transform on Cc(Rn):

S is not contained in any set of the form ω(Σ)∪ F , where ω ∈M(Rn), Σ is the zero

set of a homogeneous harmonic polynomial, and F is an algebraic subset of Rn of

co-dimension at least 2.
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The subject is quite broad and we can tackle the problem from different directions.

Nevertheless, we choose to present the study done by Agranovsky and Quinto [3] as

it holds some marvelous ideas and connections. Because the topic is rather massive,

we may state some results without proof, particularly those relating to microlocal

Fourier analysis as they require a lot of background information.

Let us first begin by setting up an algebraic characterization of the sets of

non-injectivity of the circular Radon transform.

4.2 Algebraic Characterization

Definition 4.2.1. Let f ∈ Cc(Rn) define

S[f ] = {x ∈ Rn|Rf(x, r) = 0, ∀r ∈ R+}

Let

Qk = Qk[f ] = r2k ∗ f, r2 = x2
1 + x2

2 + · · ·+ x2
n. (4.1)

which is the infinite family of polynomials of degree ≤ 2k associated with f . That is

for each function f we have

Qk(x) = Qk[f ](x) =
∫
Rn
||x− ξ||2kf(ξ)dξ.

with ||.|| the usual norm on Rn.

Finally, let the zero set of any polynomial Q with real coefficients be denoted by

V [Q] = {x ∈ Rn|Q(x) = 0}.

We connect the three definitions above by the following lemma:
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Lemma 4.2.1. S[f ] = ∩∞k=0V [Qk].

Proof. First we remember that any y ∈ Rn except for y = 0 can be represented

uniquely as y = ru where r ∈ R+ and u ∈ Sn−1 (Here Sn−1 is the unit sphere in Rn).

So that, Rn − {0} can be expressed as the cartesian product (0,∞)× Sn−1. One can

then prove the following formula

∫
Rn
fdmn =

∫ ∞
0

rn−1dr
∫
Sn−1

f(ru)dσn−1(u) (4.2)

is valid for every non-negative Borel function f on Rn.

Here, mn is the Lebesgue measure on Rn and σn−1 is a measure defined on Sn−1 as

follows: If A ⊂ Sn−1 and A is a Borel set, define

σn−1(A) = n.mn(Ã)

where Ã is defined to be the set of all points ru, where 0 < r < 1 and u ∈ A. (See

exercise 6 chapter 8 in Rudin’s Real and Complex Analysis).

Notice that the formula would work for f ∈ Cc(Rn).

Letting ξ = ru+ x, where x is some point in Rn and due to invariance of Lebesgue

measure under translation we obtain the following from equation 4.2

∫
Rn
f(y)dmn(y) =

∫ ∞
0

rn−1dr
∫
Sn−1

f(ξ)dσn−1(u)

Now, ξ ∈ S(x, r) (which is the sphere of center x, radius r in Rn−1), so we would

have

dσ(ξ) = rn−1dσn−1(u) for u ∈ Sn−1, ξ ∈ S(x, r).

Thus, ∫
Rn
f(y)dmn(y) =

∫ ∞
0

(∫
S(x,r)

f(ξ)dσ(ξ)
)
dr (4.3)
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Take g(ξ) = ||x− ξ||2kf(ξ) then g ∈ Cc(Rn). Substitute g in equation 4.3 to obtain

∫
Rn
||x− ξ||2kf(ξ)dmn(ξ) =

∫ ∞
0

∫
S(x,r)

||x− ξ||2kf(ξ)dσ(ξ)dr

=
∫ ∞

0
r2k

∫
S(x,r)

f(ξ)dσ(ξ)dr

=
∫ ∞

0
r2kRf(x, r)dr

If x ∈ S[f ] then Rf(x, r) = 0 ∀r > 0 and thus
∫
Rn ||x− ξ||2kf(ξ)dmn(ξ) = 0 ∀k so

that x ∈ ∩∞k=0V (Qk) and therefore S[f ] ⊆ ∩∞k=0V (Qk).

Let us suppose now that x ∈ ∩∞k=0V [Qk] which implies that∫
Rn ||x− ξ||2kf(ξ)dmn(ξ) = 0 for any k. We want to show Rf(x, r) = 0 for any r > 0.

Since f is compactly supported, we see that for a fixed x, Rf(x, r) is also compactly

supported as a function of r. We also claim that Rf(x, r) is a continuous function of

r.

To see this, take r, r′ ∈ (0,∞) with r > r′ and consider

|Rf(x, r)−Rf(x, r′)| =
∣∣∣∣∣
∫
S(x,r)

fds−
∫
S(x,r′)

fds

∣∣∣∣∣
=
∣∣∣∣∣
∫
S(x,r)−S(x,r′)

fds

∣∣∣∣∣
≤
∫
S(x,r)−S(x,r′)

|f |ds ≤M
∫
S(x,r)−S(x,r′)

ds

= Mc(rn−1 − r′n−1)→ 0 as r → r′.

M here is the supremum of f on S(x, r)− S(x, r′) and c is a constant.

∴ Rf(x, r) ∈ Cc((0,∞)) for a fixed x ∈ Rn.

Now notice that if
∫
Rn ||x− ξ||2kf(ξ)dξ = 0 then equivalently for any polynomial α

defined on (0,∞), the following holds

∫
Rn
α(||x− ξ||2)f(ξ)dξ = 0
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which, by equation 4.3, is equivalent to

∫ ∞
0

α(r2)Rf(x, r)dr = 0

By Müntz -Szasz theorem, we know that all finite linear combinations of functions

of the form 1, r2, r4, . . . , r2k, . . . are dense in the space of continuous functions over

compact support because ∑∞k=1
1
2k =∞. Originally, the theorem is taken over the

space of continuous complex functions on the closed unit interval, but since we are

working on a compact set (due to the fact that Rf is of compact support), we can

always do the following:

Take a linear transformation L that takes the unit interval to the compact support of

Rf . Thus, by the Müntz -Szasz theorem, there is a sequence of polynomials spanned

by {1, r2, r4, . . . } such that αn → (Rf ◦ L) on the interval [0, 1], which implies that

the sequence of polynomials αn ◦ L−1 → Rf on the compact support of Rf . So then

we can see that

∫ ∞
0

αn(L−1(r))Rf(x, r)dr = 0

lim
n→∞

∫ ∞
0

αn(L−1(r))Rf(x, r)dr = 0

so that by uniform convergence we have:

∫ ∞
0

Rf 2(x, r)dr = 0

which implies that Rf(x, r) = 0 for any r > 0. And therefore the lemma follows.

Consider next the following proposition:

Proposition 4.2.2. Let f ∈ Cc(Rn). If f ≡ 0 then Qk[f ] ≡ 0, for all k ∈ N. If

f 6≡ 0, then P = Qkmin (which is the non-trivial polynomial of minimal degree in
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definition 4.2.1 equation 4.1) is harmonic. Denote this harmonic polynomial P as

P [f ].

Proof. Using the previous Lemma 4.2.1, S[f ] = ∩∞k=0V [Qk[f ]], so if f ≡ 0, then

S[f ] = Rn which implies that V [Qk[f ]] = Rn for every k ∈ N and so Qk[f ] ≡ 0,

∀k ∈ N.

Now assume Qk[f ] ≡ 0, ∀k ∈ N, then V [Qk[f ]] = Rn ∀k so that ∩∞k=0V [Qk[f ]] = Rn

and thus S[f ] = Rn.

Hence, Rf(x, r) = 0 for all x ∈ Rn, that is the integral of f vanishes over all spheres

and so f ≡ 0.

To see the second part of the proposition, notice the following relation

∆Qk = 2k(2k + n− 2)Qk−1

To obtain this relation, start formQk[f ] =
∫
Rn ||x−ξ||2kf(ξ)dξ with x = (x1, x2, . . . , xn).

which is equivalent to Qk[f ] =
∫
Rn [(x1 − ξ1)2 + · · · + (xn − ξn)2]kf(ξ)dξ where

ξ = (ξ1, ξ2, . . . , ξn).

Now evaluate ∂Qk

∂x1
and ∂2Qk

∂x1
2 to obtain the final result

∂2Qk

∂x1
2 = 4k(k − 1)

∫
Rn
||x− ξ||2k−4(x1 − ξ1)2f(ξ)dξ + 2k

∫
Rn
||x− ξ||2k−2f(ξ)dξ

which is the same as

∂2Qk

∂x1
2 = 4k(k − 1)

∫
Rn
||x− ξ||2k−4(x1 − ξ1)2f(ξ)dξ + 2kQk−1

Taking the 2nd partial derivative of Qk with respect to every xi for i = 0, 1, . . . , n,

we obtain similarly

∆Qk = 2knQk−1 + 4k(k − 1)
∫
Rn
||x− ξ||2k−4[(x1 − ξ1)2 + · · ·+ (xn − ξn)2]f(ξ)dξ
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which is equivalent to

2knQk−1 + 4k(k − 1)
∫
Rn
||x− ξ||2k−2f(ξ)dξ

so that finally we obtain ∆Qk = 2knQk−1 + 4k(k − 1)Qk−1 and hence

∆Qk = 2k(2k + n− 1)Qk−1 (4.4)

as required. Now since we are assuming that f 6≡ 0 and if P = Qkmin , we claim that

Qkmin−1 ≡ 0 so that using the previous relation 4.4, ∆P = 0 and thus P will be a

harmonic polynomial.

To validate this, suppose that Q0(x) 6= 0; this would imply that
∫
Rn f(ξ)dξ 6= 0, also

P (x) = Q0(x) =
∫
Rn f(ξ)dξ which is harmonic. Now take Q0(x) ≡ 0, and assume

Q1(x) 6= 0 then P (x) = Q1(x) and by equation 4.4 we obtain ∆Q1 = 2(1 + n)Q0 = 0

so then P is again harmonic. By choice, our polynomial P (x) = Qkmin is always such

that Qkmin−1 ≡ 0.

Now that we have enough information, we can infer the following about injectivity

sets of the spherical Radon transform:

(*)If the Radon transform R is not injective on a set S, then S is the zero set of a

harmonic polynomial.

To confirm this, let S be a non-injectivity set of the Radon transform R. Take

f ∈ Cc(Rn) with f 6= 0 and such that Rf(x, r) = 0 for every x ∈ S and r > 0. Thus

S ⊂ S[f ] = ∩∞k=0V [Qk] ⊂ V [P ] where P is the harmonic polynomial presented in

proposition 4.2.2. Therefore, S is the zero set of a harmonic polynomial.
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From (*) follows the important corollary which solves the uniqueness problem of

the spherical Radon transform for spherical locations of centers. Let us state and

prove it.

Corollary 4.2.3. If S is the uniqueness set of harmonic polynomials, then S is an

injectivity set of the spherical Radon transform R.

Let us define what is meant by uniqueness sets of harmonic polynomials before

we proceed with the proof. Given any harmonic polynomial h, we say that S is an

injectivity set on h, if the following holds:

If h(x) = 0 for every x ∈ S, then h ≡ 0. In other words, the harmonic polynomial is

uniquely determined by its values on S.

For example, any sphere is a uniqueness set of a harmonic polynomial. This can

be seen using the mean value property of harmonic functions. That is, since h is

harmonic in Rn, it is then harmonic over any sphere S(a, r) in Rn (where a ∈ Rn

is the center and r is some radius), and so the mean value property of harmonic

functions tells us that:

h(a) = 1
nωnrn−1

∫
S(a,r)

hdσ

(ωn being the volume of the unit sphere in n dimensions and σ being the n-1 dimen-

sional surface measure).

Let us now prove corollary 4.2.3.

Proof. Let S be a uniqueness set of harmonic polynomials and take f ∈ Cc(Rn).

Assume that f 6≡ 0 and that Rf(x, r) = 0 for any x ∈ S and any r ∈ R+. Thus, we

are assuming that R is not injective on S, so there is a harmonic polynomial h such

that S = V [h] by (*). Hence, for any x ∈ S, h(x) = 0. Since S is by hypothesis

a uniqueness set of harmonic polynomials, we obtain that h ≡ 0 and so, S = Rn,

but also S ⊆ S[f ]. This implies that S[f ] = Rn and so Qk[f ] ≡ 0 for any k ∈ N.
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Therefore, f ≡ 0.

Therefore, using the previous corollary, we see that spheres are injectivity sets of

the Radon transform.

Before we proceed, we will introduce in a separate subsection an example which

Agranovsky and Quinto included in their work [3] that will also show the importance

of choosing functions in Cc(Rn). In fact, if these were replaced by bounded functions,

even functions that vanish at infinity, corollary 4.2.3 will no longer hold.

4.2.1 An Example

Consider the following spherical function φ on Rn defined as

φ(x) = Jk(||x||)||x||−k

where k = (n− 2)/2 and Jk is the Bessel function. The authors state that corollary

4.2.3 fails for φ.

They claim that if E = {x ∈ Rn : ||x|| = λ 6= 0, Jk(λ) = 0}, then E is a uniqueness

set of harmonic polynomials, yet it is not an injectivity set of the spherical Radon

transform R.

It is easy to see that the set E is a union of spheres which are uniqueness

sets of harmonic polynomials by the previous discussion. However, proving that

Rφ(x, r) = 0 for every x ∈ E and any r > 0 requires some background in the theory

of spherical functions. It basically uses the general integral equation for spherical

functions. We refer the readers to proposition 2.4 in Chapter 4 of [12].
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This next proposition will set us off to the next section of this chapter which

deals with asymptotic analysis of the algebraic curve V [P ]. We now restrict our

discussion to the case where f ∈ Cc(R2).

Proposition 4.2.4. f ∈ Cc(R2), f 6= 0, assume that S[f ] is infinite. There is a

non-constant polynomial ψ = ψ[f ] and a finite set F such that:

1. S[f ] = V [ψ] ∪ F , F is a finite set.

2. V [ψ] = S1 ∪ S2 ∪ · · · ∪ Sm, where Sj is real analytic, topologically connected

curve in R2.

3. ψ divides P [f ].

Proof. Since f 6= 0, we have P = Qkmin is harmonic. So now let us decompose P

into a product of irreducible polynomials P = P1 . . . Pl. Choose k to be any arbitrary

integer and consider Qk. Bezout Theorem tells us that for real algebraic curves, the

number of points of intersection

#V [Qk] ∩ V [Pi] ≤ degQk.degPi

whenever Qk and Pi have a common divisor (that is when Pi divides Qk since Pi is

irreducible).

Now pick Pi1 , . . . , Pim to be all irreducible factors of P such that for any α = 1, . . . ,m,

V [Piα ] ∩ V [Qk] is infinite ∀k ∈ N (this is possible because S[f ] is infinite by hypoth-

esis).

Using lemma 4.2.1, we know that S[f ] = ∩∞k=0V [Qk], which implies that

S[f ] = V [P ] ∩ V [Qkmin+1] ∩ . . .
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S[f ] = (V [P1] ∪ · · · ∪ V [Pl]) ∩ V [Qk] ∩ . . .

S[f ] = (V [Pi1 ] ∪ · · · ∪ V [Pim ]) ∪ (V [Pi] ∩ V [Qk] ∩ . . . )︸ ︷︷ ︸
which is finite

Therefore, we finally obtain

S[f ] = V [Pi1 ] ∪ · · · ∪ V [Pim ] ∪ F

where F is a finite set.

Define now ψ = Pi1 . . . Pim . This is just the greatest common divisor of the Qks.

It is easy to see that ψ satisfies properties (1) and (3) by construction, so we need to

only verify property (2) so that we have a complete proof.

V [ψ] (the zero set of ψ) is a real algebraic curve. Take x0 to be a singular point of

V [ψ]. Thus, the gradient ∇ψ(x0) = 0. Without loss of generality, we may assume

x0 = 0 (otherwise we take a translation).

Let ψ = ψk + (summands of higher degree) be the decomposition of ψ into homo-

geneous polynomials.

Since ψ is the divisor of a non-zero harmonic polynomial, we claim that

ψk = l1 . . . lk, where lj are linear functions defining k lines lj = 0 where the angles

between them are rational multiples of π.

This is due to the following theorem which we will state as a lemma but not prove.

(see [13] for proof).

Lemma 4.2.5. Given p = pn+pn−1+· · ·+pm where pj (m ≤ j ≤ n) is a homogeneous

polynomial of degree j. A necessary condition for the existence of a harmonic

polynomial u such that p|u is that pn = ∏n
i=1 Li, pm = ∏m

i=1Ki where Lis and Kis are

real homogeneous linear factors; The angle between any two lines Li = 0 (1 ≤ i ≤ n)

or Ki = 0 (1 ≤ i ≤ m) is a rational multiple of π. If p is homogeneous, then the
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above condition is sufficient.

We would like to write V [ψ] as a union of real analytic curves. To do this we

consider ψ = 0 is polar coordinates, divide by rk and apply the implicit function

theorem. Doing this provides us with k smooth curves that intersect transversely in

a neighborhood of our singular point x0. Also we see that the lines li = 0, where li

for i = 0, 1, . . . , k are the linear factors constituting ψk, are each tangent to one of

the smooth curves obtained in a neighborhood of x0 = 0. (This will be written out

rigorously in the next section 4.3).

So then, in a neighborhood of its singular points, we see that V [ψ] is a union of k,

non-singular smooth curves which intersect transversely at this singular point. Note

that there are no self intersections, otherwise by the maximum modulus principle

P ≡ 0. Hence, globally, V [ψ] is the union of k smooth curves as is required of part

(2) of the proposition.

Notice throughout the proof of proposition 4.2.4, we begin to see how the Coxeter

system of lines in the statement of theorem 4.1.1 starts to come into the picture.

Knowing this, we will dedicate the next section to the asymptotic analysis of the

algebraic curves V [P ] and V [ψ].

4.3 Asymptotic Analysis Of V [P ] and V [ψ]

In this section, we have that f ∈ Cc(R2) is a non-zero function. Assume that S[f ]

is infinite. By proposition 4.2.2, we know that P [f ] is harmonic and during the proof

of proposition 4.2.4, we introduced the function ψ = gcdk(Qk) that is ψ = Pi1 . . . Pim

where Pij ∩ V [Qk] is infinite for every k.
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From proposition 4.2.3, we know that S[f ] is contained in the zero set of the

harmonic polynomial P . Thus it is important to study V [P ] so that we can obtain

further information about the geometric properties of the set S[f ]. Let us then

proceed with the analysis.

4.3.1 Presentation of P as a product of linear factors

Let us first represent P as follows:

P (z) = Im(cNzN + cN−1z
N−1 + · · ·+ c0), z = x+ iy

We use a normalization to obtain cN−1 = 0 and cN > 0 (this step is important for

the upcoming discussions).

We may now let Pk = Im(ckzk) for k = 0, . . . , N so that we have

P = PN + PN−2 + · · ·+ P0

which is the decomposition of P into a sum of homogeneous polynomials. Because

we chose cN > 0, we see that PN vanishes on the points of the form z = reikπ/N with

r ∈ R+ for any k = 0, . . . , N − 1. This is due to the fact that

PN = Im(cNzN) = cNIm(eikπ) = cN sin(kπ) = 0.

Therefore, we can write PN as follows:

PN(x, y) = cst
N−1∏
k=0

(akx+ bky)
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where ak = sin kπ
N

and bk = − cos kπ
N

. So Pn now is represented as a product of

linear factors.

Let us explain this factorization in further detail. Since PN vanishes on

zk = reikπ/N for r ∈ R, the terms of the product must be of the form Im
(

1− z

zk

)
.

For z = x+ iy,

1− z

zk
= 1− z

r
e−ikπ/N = 1− 1

r
(x+ iy)

(
cos kπ

N
− i sin kπ

N

)

= 1− 1
r

[
x cos kπ

N
+ y sin kπ

N
− ix sin kπ

N
+ iy cos kπ

N

]

so then Im
(

1 + z

zk

)
= 1
r

(
x sin kπ

N
− y cos kπ

N

)

which verifies the product PN(x, y) = cst
∏N−1
k=0

(
x sin kπ

N
− y cos kπ

N

)
.

4.3.2 Asymptotic analysis of V [P ]

Before we proceed, remember that ψ is a divisor of the harmonic polynomial P

and thus V [P ] has a similar structure as that of V [ψ]. Hence, due to proposition

4.2.4, we see that V [P ] = G1 ∪ G2 ∪ · · · ∪ GN , where each Gi is a real algebraic

topologically connected curve in R2. We will call these the non-singular components

of V [P ] throughout this section.

Notice that all the non-singular components of V [P ] are unbounded. To prove

this, assume that some singular component Gi is bounded. Since algebraic curves

are topologically closed sets, we obtain that Gi is in fact a closed curve in the plane.

Thus P = 0 throughout the interior of Gi by the maximum modulus principle for

harmonic functions and is thus identically zero throughout the whole plane. This is
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a contradiction to the fact that P is non-trivial.

Denote by Lk the line Lk = {(x, y)|akx+ bky = 0} and divide each Lk in half to

obtain the following rays

L±k = {teikπ/N , t ∈ R±}

Then, we can observe the following properties:

1. Each ray L±k is an asymptote for some non-singular component of the algebraic

curve V [P ].

Proof. This can be verified by applying the implicit function theorem. We

will present this in detail in the next subsection 4.3.3 during the asymptotic

analysis of V [ψ].

2. Each non-singular component has two asymptotes, each of which is one of the

2N rays L±0 , L±1 , . . . , L±N−1.

Proof. Let us take P = 0 in polar representation. So then we’ll have for

z = reiθ,

Im(cNrNeiNθ + cN−2r
N−2ei(N−2)θ + · · ·+ c0) = 0

Divide by rN to obtain the following

Im(cNeiNθ + cN−2

r2 ei(N−1)θ + · · ·+ c0

rN
) = 0

Now let r tend to infinity to obtain

Im(cNeiNθ) = 0 cN 6=0⇐⇒ sin(Nθ) = 0 ⇐⇒ θ = kπ

N
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with k = 0, 1, . . . , N − 1. So then L±k are asymptotes of V [P ] = G1 ∪ · · · ∪GN .

Therefore, each singular component Gi has two asymptotes of the 2N rays.

Note that having the normalization cN−1 = 0 and cN > 0 guarantees that the

asymptotes coincide with two of the rays.

3. No ray L±k can be the asymptote for two different non-singular components of

V [P ].

Proof. Noting that the zeros of the spherical harmonic PN(cos θ, sin θ) are

simple, we see that each ray must be the asymptote of one curve Gi.

4.3.3 Asymptotic analysis of V [ψ]

Lemma 4.3.1. Let f 6≡ 0 and assume that S[f ] is an infinite set, then there is a

collection of rays

L±i1 , . . . , L
±
iM

where M = degψ such that

1. Each curve Sj in proposition 4.2.4 has two asymptotes among the rays.

2. Each ray is an asymptote for some Sj.

3. No ray serves as an asymptote for different curves Si, Sj.

Proof. From the second property of V [P ] in the previous subsection 4.3.2, and know-

ing that the cuves Si are unbounded and that Si ⊂ V [ψ] ⊂ V [P ], part (1) of this

lemma follows clearly.

In order to verify the second property, we need to select rays among L±k (defined

in the previous subsection) which are asymptotes to V [ψ]. First we divide ψ into
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homogeneous polynomials

ψ = ψM + ψM−1 + · · ·+ ψ0

where M = deg(ψ).

Since ψ divides P , ψM divides PN and therefore ψM can be expressed as a product

of linear factors as follows

ψM(x, y) = cst
M∏
α

(akαx+ bkαy)

we remember that akα = sin kαπ
N

and bkα = − cos kαπ
N

.

Let us now set ψ = 0 and rewrite it in polar coordinates. To do this consider first

ψM(r cos θ, r sin θ) = cst
M∏
α=1

(rakα cos θ + rbkα sin θ)

= rMcst
M∏
α=1

(akα cos θ + bkα sin θ)

= rMψM(cos θ, sin θ).

thus we obtain the following expression for ψ = 0 in polar

rMψM(cos θ, sin θ) + rM−1ψM−1(cos θ, sin θ) + · · ·+ ψ0(cos θ + sin θ) = 0

now divide by rM in order to obtain

ψM(cos θ, sin θ) + 1
r
ψM−1(cos θ, sin θ) + · · ·+ 1

rM
ψ0(cos θ + sin θ) = 0

Set ε = 1
r

and let F (ε, θ) = 0 define ψ = 0 so that then we have

F (ε, θ) = ψM(cos θ, sin θ) + εψM−1(cos θ, sin θ) + · · ·+ εMψ0(cos θ + sin θ) = 0
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Fix kα and let θ0 = kαπ

N
and notice that

F (0, θ0) = ψM(cos θ0, sin θ0)

= cst
M∏
α=1

(akα cos θ0 + bkα sin θ0)

= cst
M∏
α=1

(sin θ0 cos θ0 − cos θ0 sin θ0)

= 0

Also notice that ∂F
∂θ

∣∣∣∣
(0,θ0)

= ∂ψM
∂θ

∣∣∣∣
θ0

.

It is easy to see that ψM can be written as

ψM = cst
M∏
α=1

sin(θ − θα)

= cst sin(θ − θk0) sin(θ − θk1) . . . sin(θ − θ0) . . . sin(θ − θkM )

Therefore,

∂ψM
∂θ

= cos(θ − θ0) [sin(θ − θk1) . . . sin(θ − θkM )]
∣∣∣∣
θ=θ0

+ sin(θ − θ0) d
dθ

[sin(θ − θk1) . . . sin(θ − θkM )]
∣∣∣∣
θ=θ0

seeing that the second term is equal to zero, the expression becomes

∂ψM
∂θ

= cos(θ − θ0) [sin(θ − θk1) . . . sin(θ − θkM )]
∣∣∣∣
θ=θ0
6= 0

Thus, we may use the implicit function theorem to find θ = θ(r) which satisfies

F (ε, θ) = 0 in a neighborhood of ε = 0, θ = θ0 or equivalently r =∞ and θ = θ0.

Let us obtain a description of the asymptotic behavior of θ = θ(ε) or equivalently

θ = θ(r). We know that θ(ε) is the solution of F (ε, θ). By the implicit function
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theorem we can obtain that as ε→ 0

dθ

dε
= ∂F/∂ε

∂F/∂θ

= ψM−1(cos θ0, sin θ0)
sin(θ0 − θk1) . . . sin(θ0 − θkm) + o(ε)

= cstψM−1(cos θ0, sin θ0) + o(ε)

so that then we obtain

θ(ε) = cst.ψM−1(cos θ0, sin θ0)ε+ o(ε) + θ0

which can be equivalently expressed as

θ
(1
r

)
= C

(1
r

)
+ o

(1
r

)
+ θ0

with C = cst.ψM−1(cos θ0, sin θ0).

Thus, we see that the ray L+
kα

is parallel to an asymptote of the curve θ = θ(r),

r > r0. But, since this curve is a subset of V [ψ] and L+
kα

is the only half line parallel

and in the same direction as an asymptote of V [ψ], we conclude that L+
kα

is an

asymptote for the curve θ = θ(r). The same discussion can be repeated for the case

of L−kα . So then part (2) of this lemma 4.3.1 follows.

The third property is also inherited from property (3) of V [P ]. Seeing that for each

pair of m asymptotes corresponds a pair of M rays, we conclude that m = M = degψ.

The next proposition is very important for the final proof of theorem 4.1.1.

Although we will not provide a proof, we urge the readers to read its proof in [3].

Proposition 4.3.2. Let f 6= 0 and assume that S[f ] is infinite. Only the two

following cases are possible:
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1. There exists t ∈ R2 such that the shifted polynomial ψt(x) = ψ(x + t) is

homogeneous;

2. At least two non-singular components Si, Sj of V [ψ] are disjoint.

4.4 Proof of theorem 4.1.1

Before we proceed with the proof of theorem 4.1.1, a very important and fascinat-

ing result is needed. Perhaps the most significant of the work done on the subject by

Agranovsky and Quinto in their paper [3], is the use of Micro-local Fourier Analysis

to prove the support theorem. Although the proof branches into different concepts

that are very interesting to revise and study regarding the circular Radon transform,

we will not present it in this work. [3] contains the full proof.

Theorem 4.4.1. (Support Theorem) Let S be a regular real-analytic curve (possibly

disconnected). Assume that S contains two points, a and b, a 6= b, such that the

segment ab is perpendicular to the tangent lines La and Lb at the point a and b

respectively. Then, the Radon transform R is injective on S.

Now that we are equipped with all the knowledge needed, we are ready to discuss

the proof of theorem 4.1.1 by Agranovsky and Quinto [3].

We will state the theorem again

Theorem: The following condition is necessary and sufficient for S to be a set of

injectivity for the Radon transform R over circles:

(*) The set S is not contained in any set of the form ω(ΣN) ∪ F , where ω ∈M(2)

and F is a finite set.

We will divide the proof into two parts: Sufficiency and Necessity of the condition

(*).
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4.4.1 Sufficiency

Let us take a function f ∈ Cc(R2) and consider the set S[f ]. We wish to show

that either S[f ] = R2 or S[f ] ⊂ ω(ΣN) ∪ F .

Notice that if S[f ] = R2 then f ≡ 0.

So assume that f 6≡ 0. By corollary 4.2.3, we know that uniqueness sets of har-

monic polynomials are injectivity sets of the Radon transform, which indicates that

S[f ] 6= R2 (R2 is clearly a uniqueness set of harmonic polynomials).

If S[f ] is finite, then we are done. So assume that S[f ] is infinite. Therefore, by

propositions 4.2.2 and 4.2.4, we have the polynomials P = P [f ] which is harmonic

and ψ = ψ[f ] as defined earlier.

From proposition 4.3.2, we see that two cases are possible:

1. For some t ∈ R2, the shifted polynomial ψt = ψ(x+ t) is homogeneous. Thus, by

proposition 4.2.4, we have that ψt divides the leading homogeneous part P t
N of the

shifted polynomial P t. This implies that V [ψt] ⊂ V [P t
N ] and we recall that V [PN ] is

in fact ΣN .

Notice that V [ψ] = V [ψt] + t and remember that in section 4.3, subsection 4.3.2,

we have used a rotation and translation to normalize the polynomial P. There-

fore V [ψ] ⊂ ω(ΣN) for some ω ∈ M(2) so that proposition 4.2.4, which says

S[f ] = V [ψ] ∪ F , yields the following

S[f ] ⊂ ω(ΣN) ∪ F.
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2. At least two non-singular components, say S1 and S2 of V [ψ] are disjoint. First of

all, notice that the distance between S1 and S2 can never be infinite. This is because,

by lemma 4.3.1, we know the curves S1 and S2 have two different and non-parallel

asymptotes. Thus, we can find two points a ∈ S1 and b ∈ S2 such that

d = dist(S1, S2) = dist(a, b) > 0

We will now use the support theorem 4.4.1 on the regular real analytic curve S1 ∪ S2.

Let us first check if S1 ∪ S2 satisfies the conditions of theorem 4.4.1.

We know that d is the minimal distance between the point a ∈ S1 and any other

point in S2. This implies that the circle centered at a of radius d is tangent to S2 at

the point b. Note that this is emphasized by the fact that S2 is a regular curve and

that b is not an end point of S2, so then the circle cannot meet S2 transversally.

Therefore, the segment ab is perpendicular to the tangent to S2 at b, and similarly

ab is perpendicular to the tangent to S1 at a.

Thus, S1 ∪ S2 satisfies the conditions of the support theorem and so the Radon

transform R is injective on S1 ∪ S2. Again, by proposition 4.2.4, we know that

S[f ] = V [ψ] ∪ F where F is a finite set, and thus Rf(x, r) = 0 for any x ∈ S1 ∪ S2

and all r > 0. Therefore, because S1 ∪ S2 is an injectivity set of the transform R,

f is then identically zero, which contradicts our assumption.

This completes the proof of the fact that condition (*) is sufficient for S to be a set

of non-injectivity for the Radon transform R over circles.
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4.4.2 Necessity

To prove the necessity of the condition (*), we need to construct a non-zero

function f ∈ Cc(R2) such that Rf(a, r) = 0 for any r > 0 and every a ∈ ΣN ∪ F

where F is a finite set. Notice that taking a rigid motion ω ∈ M(2) here is not

important. Consider now the following lemma:

Lemma 4.4.2. For any function f ∈ Cc(R2) of the form

f(x) =
l∑

j=1
fj(r) sin(jNθ), x = reiθ, (4.5)

with l being some integer, the Radon transform Rf(a, .) ≡ 0 for all a ∈ ΣN .

Proof. First, for k = 0, 1, . . . , N − 1, we claim that f is odd with respect to the

reflection wk about the line Lk = {teikπ/N |t ∈ R} ⊂ ΣN , that is f(wk(x)) = −f(x)

for all x ∈ R2.

To see this, pick x = reiθ, r > 0, and consider f(wk(x)). wk is a reflection about the

line Lk which has an angle θk = kπ

N
with the x axis. So then it is easy to see that

under the action of wk, x will be rotated by an angle of 2(θk − θ). Thus

wk(x) = rei(θ+2(θk−θ)) = rei(2θk−θ).
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Now,

f(wk(x)) = f(rei(2θk−θ))

=
l∑

j=1
fj(r) sin(jN(2θk − θ))

=
l∑

j=1
fj(r) sin(jN(2kπ

N
− θ))

=
l∑

j=1
fj(r) sin(2kπj − jNθ))

=
l∑

j=1
fj(r) [sin(2kπj) cos(jNθ)− cos(2kπj) sin(jNθ)]

= −
l∑

j=1
fj(r) sin(jNθ) = −f(x)

Thus for C(a, r) being a circle of center a and radius r, we see that if a ∈ Lk, we

have ∫
C(a,r)

fdA =
∫
C(a,r)

(f ◦ wk)dA = −
∫
C(a,r)

fdA

so that 2
∫
C(a,r) fdA = 0 and therefore Rf(a, r) = 0 for any r > 0, and all a ∈ Lk.

We still have to find a non-negative function that satisfies the remaining finite

number of cases for which the Radon transform R is zero.

Let F = {a1, a2, . . . , aq} with as = rse
iθs , s = 1, 2, . . . , q, and assume further that

as 6∈ ΣN . We need to find a function f ∈ Cc(R2) such that Rf(as, r) = 0 for any

radius r > 0 and any s = 1, . . . , q.

We claim that if we solve the following condition

∫ 2π

0
f(as + zeiθ)dθ = 0 for s = 1, . . . , q and z = x+ iy (4.6)

then our function f would be the desired function.
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To validate this, take for some center as ∈ F and a positive radius r, Rf(as, r) = 0.

This implies that
∫
C(as,r) fdA = 0. If we let z(θ) = as + reiθ for a fixed r > 0

and since dA = |z′(θ)|dθ, we have
∫ 2π
0 f(as + reiθ)rdθ = 0 which is equivalent to∫ 2π

0 f(as + reiθ)dθ = 0 since r 6= 0.

Notice now that this is true for any r > 0 because by hypothesis Rf(as, r) = 0.

So then if we define F : C→ R as

F (z) =
∫ 2π

0
f(as + zeiθ)dθ

we see that F (z) ≡ 0.

The goal from here is to find this function f that satisfies the condition 4.6.

Before venturing into that, notice that the Fourier transform of F is well defined

and F̂ (ξ) = 0 for all ξ ∈ R2. Also, we know that any rotation commutes with the

Fourier transform. That is, if T is a rotation then f̂ ◦ T = f̂ ◦ T .

Consider then

F̂ (ξ) =
∫
e−2πi〈ξ,z〉F (z)dz

=
∫
e−2πi〈ξ,z〉

∫ 2π

0
f(as + zeiθ)dθdz

Fubini=
∫ 2π

0

∫
e−2πi〈ξeiθ,z〉f(as + z)dzdθ

=
∫ 2π

0
e2πi〈ξeiθ,as〉f̂(ξeiθ)dθ

Here, we take
〈
ξeiθ, as

〉
to be the real inner product in R2. Letting ξeiθ = λeiϕ, we
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obtain the following system of integral equations

∫ 2π

0
f̂(λeiϕ)ei〈as,λeiϕ〉dϕ = 0 (4.7)

for all λ ∈ C and s = 1, . . . , q.

The plan from here is to find a solution for equations 4.7, that has the form of

the functions introduced in lemma 4.4.2 and defined in equation 4.5. We do this in

the following steps:

Step 1: Find the Fourier transform of functions of the form 4.5 in polar coordinates

(ρ, ϕ). These then can be written as

f̂(ρeiϕ) = 1
2π

∫ 2π

0

∫ ∞
0

l∑
k=1

fk(r) sin kNθe−i〈ρeiϕ,reiθ〉rdrdθ

=
l∑

k=1

1
2π

∫ ∞
0

fk(r)
(∫ 2π

0
e−iρr cos(θ−ϕ) sin kNθdθ

)
rdr

We can now do the following

sin(kNθ) = sin(kNθ + kNϕ− kNϕ)

= sin(kNϕ) cos(kNθ − kNϕ) + cos(kNϕ) sin(kNθ − kNϕ)

and we note that ∫ 2π

0
sin(kN(θ − ϕ))e−iρr cos(θ−ϕ)dθ = 0
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so that we obtain the following

f̂(ρ, ϕ) = 1
2π

l∑
k=1

∫ ∞
0

fk(r) sin kNϕ
(∫ 2π

0
cos(kN(θ − ϕ))e−iρr cos(θ−ϕ)dθ

)
rdr

We know that

Jn(z) = 1
2πin

∫ 2π

0
eiz cos θ cosnθdθ

and by simple calculation we can obtain Jn(−z) = i2nJn(z). so then

f̂(ρ, ϕ) = 1
2π

l∑
k=1

sin kNϕ
∫ ∞

0
fk(r)JkN(−ρr)(2πikN)rdr

=
l∑

k=1
sin kNϕ

∫ ∞
0

fk(r)JkN(ρr)(i−kN)rdr

(this is true because the integrands we are dealing with are periodic, so applying a

change of variable doesn’t affect the value of the integral after changing the bounds).

Finally, we obtain

f̂(ρ, ϕ) =
l∑

k=1
i−kN f̂k(ρ) sin(kNϕ) (4.8)

where f̂k(ρ) =
∫∞
0 fk(r)JkN(rρ)rdr is the Fourier Bessel transform.

Step 2: Substitute the equation 4.8 inside equation 4.7 in order to obtain the

following

∫ 2π

0

l∑
k=1

i−kN f̂k(ρ) sin(kNϕ)ei〈as,ρeiϕ〉dϕ = 0

⇐⇒
l∑

k=1
i−kN

∫ 2π

0
f̂k(ρ)sin(kNϕ)ei〈as,ρeiϕ〉dϕ = 0

Now since we took as = rse
θs , we have

ei〈as,ρeiϕ〉 = ei(rs cos θs,rs sin θs).(ρ cosϕ,ρ sinϕ)

= eirsρ cos(ϕ−θs)
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Notice again that

sin(kNϕ) = sin(kNϕ+ kNθs − kNθs)

= sin(kNθs) cos(kNϕ− kNθs) + cos(kNθs) sin(kNϕ− kNθs)

So then

l∑
k=1

i−kN f̂k(ρ)
∫ 2π

0
sin(kNϕ)eirsρ cos(ϕ−θs)dϕ = 0

⇐⇒
l∑

k=1
i−kN f̂k(ρ) sin(kNθs)

∫ 2π

0
cos(kN(ϕ− θs))eirsρ cos(ϕ−θs)dϕ

+
l∑

k=1
i−kN f̂k(ρ) cos(kNθs)

∫ 2π

0
sin(kN(ϕ− θs))eirsρ cos(ϕ−θs)dϕ = 0

But, it can be seen clearly by using a substitution that

l∑
k=1

i−kN f̂k(ρ) cos(kNθs)
∫ 2π

0
sin(kN(ϕ− θs))eirsρ cos(ϕ−θs)dϕ = 0

So then we are left with

l∑
k=1

i−kN f̂k(ρ) sin(kNθs)
∫ 2π

0
cos(kN(ϕ− θs))eirsρ cos(ϕ−θs)dϕ = 0 (4.9)

We can now apply the following formula again

∫ 2π

0
eiβ cosxcosnxdx = 2inπJn(β)

so that equation 4.9 becomes

l∑
k=1

f̂k(ρ) sin(kNθs)(2πJkN(rsρ)) = 0
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We have thus obtained q linear equations for l functions. Let us take l = q + 1 to get

q+1∑
k=1

Ms,k(ρ)f̂k(ρ) = 0 for s = 1, . . . , q. (4.10)

where Ms,k(ρ) = sin(kNθs)JkN(ρrs).

Denote by M(ρ) = [Ms,k(ρ)] q, q+1
s, k=1 which is the matrix of the system presented in

equation 4.10.

Step 3: Now the objective from here is to find a suitable solution for the system of

linear equations obtained in equation 4.10. To do this, let us take

q̄ = max {rank (M(ρ))|ρ ∈ R+}

and let ρ0 be such that M(ρ0) = q̄. Since we chose as 6∈ ΣN , we see that M(ρ) 6≡ 0.

Therefore, q̄ > 0 and there is a neighborhood W of ρ0 such that M(ρ) = q̄ for every

ρ ∈ W . Also, some q̄ × q̄ minor of the matrix doesn’t vanish on W .

Without loss of generality, take this q̄ × q̄ minor to be a principal minor and denote

it by ∆(ρ).

Take the first q̄ equations in the system presented in 4.10 and set f̂q̄+1 = · · · = f̂q = 0.

Define now a new truncated system of 4.10 as follows

M̃(ρ)F̂ (ρ) = −F̂q+1(ρ) (4.11)

where M̃(ρ) = [Ms,k(ρ)]q̄,q̄s,k=1, F̂ = (f̂1, . . . , f̂q̄)T and F̂q+1 = (M1,q+1f̂q+1, . . . ,Mq̄,q+1f̂q+1)T .

Let us now solve 4.11. Let f̂q+1(ρ) = ∆(ρ)û(ρ), where u is an arbitrary, fixed, smooth,

non-zero radial function of compact support that satisfies ∆(ρ)û(ρ) 6≡ 0 on W .
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By Cramer’s Rule, we can see that

f̂k(ρ) = −∆k(ρ)

where ∆k(ρ) is the determinant obtained by replacing the kth column in ∆(ρ) by

the column

(M1,q+1(ρ)û(ρ), . . . ,Mq̄,q+1(ρ)û(ρ))T

f̂1, . . . , f̂q+1 gives a solution to 4.11. For ρ ∈ W this becomes a solution for the whole

system as well. This is because the last q − q̄ equations are linear combinations of

the first q̄ equations.

Notice that the functions we are dealing with that are in terms of ρ are real analytic

so the solution becomes valid for all ρ.

To see this more clearly, and since f̂k(ρ) = −∆k(ρ), we can use Laplace expansion,

to obtain

∆k(ρ) = û(ρ)
q̄∑
s=1

sin(kNθs)JkN(ρrs)As,k(ρ)

where As,k(ρ) is the co-factor of the matrix M̃k(ρ), this being the matrix M̃(ρ) with

the kth column replaced by (M1,q+1(ρ)û(ρ), . . . ,Mq̄,q+1(ρ)û(ρ))T (so it is made up of

û(ρ) and JkN(ρrs)). We chose u to be smooth and of compact support, thus û is in

C∞(R+). The Bessel function is also a real analytic function of ρ.

From here we can define f̂ as in equation 4.8. We claim that from the construction

f̂ ∈ L2(R2).

To prove this, It is enough to show that √ρf̂k(ρ) is in L2(R+). Now, we know that
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f̂k are made up of functions of the form û(ρ)Jkn(ρrs). First notice that

|JkN(ρrs)|2 =
∣∣∣∣ 1
πikN

∫ π

0
eiρrs cosx cos(kNx)dx

∣∣∣∣2
≤
( 1
π

∫ π

0
| cos(kNx)|dx

)2

=
(

2 sin(kNπ/2)
kNπ

)2

(k,N 6= 0)

which is a constant and can be taken out of the integral. So we only need to study

the L2 integrability of √ρû(ρ), that is whether
∫∞

0 |û(ρ)|2ρdρ is finite or not.

Since we chose u ∈ C∞c (R+), we can say that for any N > 0 there is a constant CN

such that |û(ρ)| ≤ CN
(1 + ρ)N for all ρ ∈ R+, which makes û ∈ L2(R+). Thus, consider

∫∞
0

C2
Nρ

(1 + ρ)2N dρ. We can see that
∫ 1
0

C2
Nρ

(1 + ρ)2N dρ <∞, so then let us look at

∫ ∞
1

C2
Nρ

(1 + ρ)2N dρ ≤
∫ ∞

1

C2
Nρ

1 + ρ2N dρ

≤
∫ ∞

1

C2
N

ρ2N−1dρ <∞.

We then obtain that √ρf̂k(ρ) ∈ L2((0,∞)), and therefore, f̂ ∈ L2(R2).

Now, we claim that f̂ has analytic extension to C2, as a function of exponential

growth.

Analytic continuation of f̂ : First, we know that f̂(ρ, ϕ) = ∑q+1
k=1 i

−kN f̂k(ρ) sin(kNϕ)

where ρ ∈ R+ and ϕ ∈ R. It is easy to see that sin(kNϕ) can be defined for ϕ ∈ C.

So let us then study the analytic continuation of f̂k. To do this, we need to

consider the analytic the continuation of û(ρ) and JkN(ρrs). Since u was chosen

to be of compact support, say supp(u)⊂ {x ∈ C : |x| < A}, then we see that

û(z) =
∫
|x|<A e

−2πiz.xu(x)dx converges absolutely for all z ∈ C. This is due to the

fact that |e−2πiz.x| = |e−2πixRe(z)e2πxIm(z)| ≤ eAIm(z). As for the functions JkN(ρrs),
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analytic continuation is possible due to the following relation

Jν(xemπi) = emνπiJν(x) m ∈ Z, ν ∈ C x ∈ R.

Proof that f̂ is of exponential type: We will show now that for non-negative

integers N , there is CN > 0 such that

|f̂(z)| ≤ CN(1 + |z|)−NeA|Im(z)| ∀z ∈ C2

Again we look at f̂k(ρ) = û(ρ)∑q̄
s=1 sin(kNθs)JkN(ρrs)As,k(ρ) but after extension

we have ρ ∈ C. We know that that there is CN > 0 for every non-negative integer N

such that |û(ρ)| ≤ CN
(1 + |ρ|)N for all ρ ∈ C. So let us consider now JkN(ρrs). A well

known Bessel integral equation we can use is the following

Jn(z) = 1
2π

∫ π

−π
e−inθ+iz sin θdθ

so then |Jn(z)| ≤ 1
2π

∫ π
−π e

|Im(z)|dθ = e|Im(z)|.

Therefore, |JkN(ρrs)| ≤ ers|Im(ρ)|.

Functions of the form |û(ρ)JkN (ρ)| ≤ CN
(1 + |ρ|)N e

rs|Im(ρ)| for all ρ ∈ C are then of expo-

nential type. f̂k is a finite sum of powers (at most 2) of such functions. This wouldn’t

change the type particularly because the sum is independent of ρ and so f̂k is of

exponential type as well. We conclude then that f̂(ρ, ϕ) = ∑q+1
k=1 i

−kN f̂k(ρ) sin(kNϕ)

is also of exponential type.

To proceed, we will need Paley Wiener’s theorem which we will state as follows:

Theorem (Paley Wiener): Let U(z) be analytic on Cn and such that for non-
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negative integers N , there is CN > 0 such that

|U(z)| ≤ CN(1 + |z|)−NeA|Im(z)| ∀z ∈ Cn,

then there exists f ∈ C∞c (Rn) with suppf ⊂ BA(0) (ball of radius A center 0) such

that U(ξ) = f̂(ξ) ∀ξ ∈ Rn.

So then using Paley Wiener’s theorem, we obtain that f ∈ C∞c (R2). We have, by

construction that Rf(as, r) = 0 for any r > 0 and s = 1, . . . , q. Further, f 6≡ 0 since

f̂q+1 6≡ 0 in the neighborhood W which completes our proof of necessity.

As Charles Colton, an English critic and writer, once said “The study of mathe-

matics, like the Nile, begins in minuteness but ends in magnificence.” Throughout

the years, the study and applications of the Radon transform proved such magnifi-

cence. The topics presented in this thesis are three out of many forms of the Radon

transform and the field of integral geometry is still vast and open for further results

and explorations.
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