

AMERICAN UNIVERSITY OF BEIRUT

HIGH SCHOOL SCHEDULING OPTIMIZATION AS

CONTINUOUS PROBLEM

by

HASSAN ALI NASSER

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master of Science

to Computational Science Program

of the Faculty of Arts and Sciences

at the American University of Beirut

Beirut, Lebanon

April 2016

v

ACKNOWLEDGMENTS

Special thanks are for Prof. Mohamad Adnan Al-Alaoui, Prof. Nabil Nassif,

and Dr. Michel Kazan for their support. In addition, special thanks for everyone

supported me in my private life.

vi

AN ABSTRACT OF THE THESIS OF

Hassan Ali Nasser for Master of Science

Major: Computational Science

Title: High School Scheduling Optimization as Continuous Problem

High School Scheduling is a tedious task to do manually. It is considered as NP

problem where even computers have difficulties to solve. Here we introduce a new

approach to solve High School Scheduling programmatically. We model the problem as

an optimization one with multiple types of constraints where variables are continuous

and functions are continuous and differentiable. Therefore, powerful tools of

optimization for continuous functions would be available. Notice that such continuous

optimization methods are much faster than discrete optimization methods where a huge

number of iterations are usually executed to reach the solution. A lot of papers have

been written about this topic and a lot of software has been designed for this purpose.

However, most, if not all, interpreted such topic variables as discrete variables where

every variable is considered as binary (either 0 or 1). In fact, variables’ type is binary.

However, we turn around this problem by inhibiting variables getting away from 0 or 1

by introducing a penalty sub-function in the continuous optimization function. In

addition, a nonlinear equality constraint is also added to make the variables binary.

We build the continuous model in all its details based on required discrete

input. It consists of function to be optimized (including penalty function), linear

equality constraint, linear inequality constraint, and nonlinear equality constraint.

Corresponding software has been implemented on Matlab. It was tested on two classes

with common teachers whose schedule covers seven sessions per day over five days.

Very good results were achieved. Little iteration was enough to solve the problem.

Varied inputs have been tested and it took always less than one minute to be solved.

vii

CONTENTS

ACKNOWLEDGMENTS .. v

ABSTRACT .. vi

LIST OF ILLUSTRATIONS ... ix

LIST OF TABLES .. x

Chapter

1. INTRODUCTION .. 1

2. METHODOLOGY ... 3

2.1. Inputs ... 3

2.2 Vector X Construction .. 4

2.3 Optimization Function .. 5

2.4 Linear Equality Constraint .. 5

2.4.1 Session Uniqueness Constraint .. 6

2.4.2 Course Sessions Count Constraint ... 6

2.5 Linear Inequality Constraint ... 7

2.5.1 Teacher Time Uniqueness Constraint.. 7

2.5.2 Maximum Course Sessions Number for a Class per Day. 8

2.6 Non-Linear Equality Constraint ... 9

2.6.1 First Term. ... 9

viii

2.6.2 Second Term. ... 10

2.7 Software Flowchart ... 11

3. RESULTS .. 16

4. DISCUSSION .. 23

 Appendix

1. SOURCE CODE ... 24

BIBLIOGRAPHY ... 44

ix

ILLUSTRATIONS

Figure Page

1 Flowchart .. 12

x

TABLES

Table Page

2.1 Possible combinations of AA1 and AA2 .. 10

2.2 Main functions description ... 15

1

CHAPTER 1

INTRODUCTION

A constrained optimization problem is one where we try to find most

convenient set of variables to achieve a given goal (an optimization function satisfying

necessary constraints). When solution is built on discrete variables it is called

combinatorial optimization (CO). High school scheduling belongs to this category of

problems. Typical method for solving CO problems is using backtracking approach

where we try many and many possible combinations of variables without repeating a

previously tried one till we reach a constraint satisfied combination. However, this

method failed when we had an NP hard problem where number of variables is beyond a

certain limit. The main cause of this failure is that backtracking approach should pass

hundred thousands of combinations that should be iterated to detect that a suggested

combination is not applicable. Therefore, many other approaches were done by applying

heuristic ones to improve the solution after imposing an initial suboptimal solution. But

the problem is still heavy for computers because of high number of combinations which

may be in the order of millions.

However, our approach is completely different one. It considers discrete

variables as continuous. Then we push the continuous variables to their possible discrete

values using a continuous penalty function in the function to be optimized. In addition,

a nonlinear constraint is added to force final value of each variable to be either zero or

one. Therefore, the problem turns to be a continuous variables and continuous

2

differentiable optimization function so that a lot of fast optimization algorithms could

be applied. Such modeling gave surprising excellent results that were more than

expected.

One of continuous optimization which we have applied is “interior point”

algorithm. This algorithm accepts as input the vector of variables to be optimized based

on penalty and constraints stated before to make final result binary. In addition, the

algorithm accepts a set of linear equality constraints, linear inequality constraints, and

non-linear equality constraints. These constraints are dedicated to guarantee many

expected output conditions such as:

 Number of sessions per week for each course per class.

 Every session of a given day for each class should be assigned to a unique

course.

 Every teacher could not give two simultaneous sessions except free

sessions (free session is considered as free course).

 Number of sessions per day for some courses should not exceed a

maximum limit.

 Some courses are not allowed to be given together on the same day.

This model was implemented using Matlab where a wide set of continuous optimization

built in functions is available.

3

CHAPTER 2

METHODOLOGY

The implemented software is based on using interior point algorithm of the

following optimization continuous problem:

Find vector X such that:

Minimize optimization function: f(X)

Where 1- Linear equality constraint: Aeq*X = Beq.

2- Linear inequality constraint: A*X <= B.

3- Non-linear equality constraint: Ceq(X) = 0.

4- lower bound <= X <= upper bound.

Before applying interior point algorithm we should construct the vector X whose

optimum value is the solution for the problem. Moreover, we should organize the input

based on which vector X and the constraints would be constructed.

2.1. Inputs

Inputs are organized in a manner that could be easily modified. Inputs are:

 Courses that should be offered to students.

 School Teachers.

 Each class course should be bind to a given teacher. A teacher may give

two courses or more in one or more classes.

4

 Availability of each teacher along the week .i.e. for example, he could

attend sessions one to three on Monday and four to six on Wednesday…

 Total number of sessions per week for each course. For example, Math

course should be offered seven sessions per week while Geography course

should be offered once per week.

 Maximum number of sessions per day and class for each course. For

example, if the teacher of Math course is available on all seven sessions of

a given day, we should not assign seven Math sessions on this day. In

general, we should not assign more than two.

 Courses that should not be offered the same day for the same class. For

example, it’s preferable not to offer History and Geography on the same

day because they usually need memorization.

2.2 Vector X Construction

Based on the inputs we construct the vector X=[x1 x2 x3 ….xn]
T
 in parallel with

matrix nonzeroAvail (non zero availability) = [class1 course1 day1 session1 teacher1

 class2 course2 day2 session2 teacher2

 classn coursen dayn sessionn teachern]

5

Where every xi corresponds to [classi coursei dayi sessioni teacheri] . So every possible

combination of course, day, session, class where the teacher is available (i.e. could

attend the session of that day and is assigned a course for that class) is represented by an

entry in X vector whose corresponding details are represented in the same entry level of

“nonzeroAvail” matrix. At the end, when X vector is optimized every entry should have

a zero or one value. When xi is one we can say that the corresponding coursei given by

teacheri is assigned to sessioni on dayi for classi .

2.3 Optimization Function

 The optimization function is the function to be minimized while maintaining

constraints that we will explain in next sections. This function is constructed in a

manner to push every entry in X vector towards either zero or one. For every entry of X

the function is a parabola whose concavity is down and its peak value is at 0.6 :

F(X) = -(X-0.6)
T
*(X-0.6)

When every entry xi is below 0.6 it will move towards zero because F(X) will be

decreasing and it will stop at zero because it’s bounded by zero from bottom. On the

other hand, when every entry xi is above 0.6 it will move towards one because F(x) will

also be decreasing and it will stop at one because it is the upper bound. You may ask

why we consider 0.6 not 0.5. In fact, this will affect the constraints so xi will not be

stuck at 0.5 meanwhile 0.6 is unstable point for constraints and it will always try to

move either left or right.

2.4 Linear Equality Constraint

6

Linear equality constraint is:

 Aeq * X = Beq

It is formed of two basic parts: session uniqueness constraint and course sessions count

constraint.

2.4.1 Session Uniqueness Constraint

Every session of the same day and the same class should be assigned to a

single course only. This is done by appending a row AeqRow to Aeq matrix for each

session that could be assigned to more than one course. One is assigned for

corresponding locations of those session courses and zero elsewhere. The corresponding

Beq single element is of course one. Mathematically speaking:

AeqRow * X = 1

AeqRow=[x 1 x2 ….xn] where

 xi=1 for all its corresponding entry in nonzeroAvail matrix belong to the

same session, day, and class.

 xi=0 elsewhere.

In other words for each session:

∑ xi=1 for every xi belongs to this session.

This criterion will guarantee 100% that a given session would not be assigned twice. So,

a single class will not have two courses at the same time.

2.4.2 Course Sessions Count Constraint

 Another important linear equality constraint that should be appended to Aeq

7

has to guarantee that the number of sessions for each class course is as required by the

input. For example, class A should be assigned 7 sessions of Math over the week, 1

session of Geography, 5 sessions of Arabic, 4 sessions of English… Another class B

may be assigned 6 sessions of Math, 4 sessions of Arabic … This could be done by

appending, for each class course, to Aeq a row AeqRow where the corresponding Beq

entry is equal to the number of session required by the input for this class course.

AeqRow * X = b

AeqRow=[x 1 x2 ….xn] where

 xi=1 where all its corresponding entry in nonzeroAvail matrix belong to

the same course and class.

 xi=0 elsewhere.

 b is the number of sessions, of this course, that should be offered over the

week.

In other words for each class course:

∑ xi=bj for every xi belongs to this class course. bj is the number of sessions

required for this course over the week.

2.5 Linear Inequality Constraint

Linear inequality constraint is:

 A * X <= B

Formed of two basic parts.

2.5.1 Teacher Time Uniqueness Constraint

8

 This constraint is dedicated to guarantee that a given teacher who is common

between multiple classes should not be assigned two or more sessions that have the

same time. Imagine that teacher Issam is assigned a session from 8:00AM to 8:50AM

for class A and class B at the same time! Of course, he will not subdivide himself into

two parts. This is done by appending, for each session of a given day that may belong to

more than one class for the same teacher, a row ARow in matrix A where corresponding

B entry should be one:

 ARow*X<=1

ARow=[x 1 x2 ….xn] where

 xi=1 where all its corresponding entry in nonzeroAvail matrix belong to

the same teacher, session number, and day.

 xi=0 elsewhere.

i.e. ARow*X=0 so that the neither sessions is assigned to this teacher.

ARow*X=1 so that the only one session is assigned to this teacher at a given time.

In other words:

∑ xi <= 1 for every xi belongs to same session of a day and same teacher.

2.5.2 Maximum Course Sessions Number for a Class per Day

 This constraint will guarantee that a given course should not be assigned in the

schedule of a class more than a given limit per day. For example, theoretically speaking

Math course of class A could be available for six sessions on Monday but practically it

should not be offered more than two times on every day. This is done by appending a

9

row ARow for each course of a class on every day such that the corresponding B

element should be equal to a given value b determined by the input requirements.

 ARow*X <= b

ARow=[x 1 x2 ….xn] where

 xi=1 where all its corresponding entry in nonzeroAvail matrix belong to

the same course, day, and class.

 xi=0 elsewhere.

 b is the maximum number of sessions per day for the class course.

In other words:

∑ xi <= b for every xi belongs to same course, day, and class.

2.6 Non-Linear Equality Constraint

Non-linear equality constraint is:

 Ceq (X)= conflictFactor*((AA1*X)')*(AA2*X)+(X')*(1-X)=0

formed of two basic terms:

2.6.1 First Term

First term guaranties that every entry in X vector is either one or zero. The term

is : (X')*(1-X). Notice that the result of this term is always positive because every term

of X and (1-X) is positive and between zero and one. Moreover it would not be zero

unless every term of X is zero or one.

10

2.6.2 Second Term

Second term is dedicated to guarantee that two given courses should not be scheduled

on the same day for a given class. For example, many schools ask not to put History and

Geography courses on the same day for a given class. Its expression is :

conflictFactor*((AA1*X)')*(AA2*X).

Where conflictFactor is equal to number of rows in AA1 matrix which is the same as

number of rows in AA2 matrix. Each entry in AA1 and AA2 corresponds to first and

second courses that should not be assigned on the same day. Every couple of entries of

AA1 and AA2 corresponds to every combination of two sessions that should not conflict.

For example:

Course1 is available on sessions 1,2, and 3 on Monday.

Course2 is available on sessions 4 and 5 on Monday.

Six entries would be appended to AA1 and AA2 as follows:

AA1 AA2

Session 1 on Monday Session 4 on Monday

Session 2 on Monday Session 4 on Monday

Session 3 on Monday Session 4 on Monday

Session 1 on Monday Session 5 on Monday

Session 2 on Monday Session 5 on Monday

Session 3 on Monday Session 5 on Monday

Table 2.1 Possible combinations of AA1 and AA2.

11

2.7 Software Flowchart

 The following is the flowchart of the software. Functions used in flowchart are

described in table 2.2.

12

Figure 1 Flowchart

13

Function Description

Initialize No input parameters.

Initialize the constants used in the software.

getInputs No input parameters.

Get all the inputs that should be given by the user

to build up the output schedule as described in

section 2.1.

initializeAvailability

No Input parameters.

Use the global variables entered in “getInputs”

function to build X vector and “nonzeroAvail”

matrix as described in section 2.2.

getAeqUniqueSession

No input parameters.

Append to Aeq and Beq to guarantee session

uniqueness as described in section 2.4.1.

getCourseSessionsCount

No input parameters.

Append to Aeq and Beq to assign a required

number of sessions per week of a course for a given

class as entered by “getInputs” function. This

function implements section 2.4.2.

insertAB_uniqueTeacher

No input parameters.

Append to A and B matrices to guarantee that the

same teacher will not be in two classes at the same

14

time as described in section 2.5.1.

insertAB_maxperDay

Input parameters are:

A and B to be appended

Class id

Course id

Maximum number of sessions allowed per day and

class

Append to A and B corresponding rows to limit

number of sessions of same course per day for a

given class as described in section 2.5.2.

This function is called multiple times as needed.

It’s called once per class course.

insertA1A2_dayCoursesConflict

Input parameters:

AA1 and AA2 to be appended

Class id

Course 1 id

Course 2 id

Append to AA1 and AA2 necessary rows to

guarantee that course 1 and course 2 should not be

given on the same day for the class passed in

parameters as described in section 2.6.1

This function may be called many times as needed.

15

fmincon

Matlab built in function that uses interior point

optimization as default.

displayOutput

Arrange the schedule from the result X vector.

Display the schedule.

Display elapsed time.

Display maximum of possible combinations of

inputs to get an idea how much time was saved.

Table 2.2 Main functions description

16

CHAPTER 3

RESULTS

Software was tested on a computer with the following specifications:

1- 64 bit Windows 8 operating system.

2- 1.7 GHZ i5-3317U CPU Intel(R) Core (TM).

3- 4 GB Ram

4- Matlab version 2015.

The results were surprising. Multiple Inputs with varying situations were tested.

Whenever there is a solution it was found. The elapsed time is less than one minute for

two classes multiple situations. The results for appendix 1 software version is as

follows:

vectorSize = 311

options =

 fmincon options:

 Options used by current Algorithm ('interior-point'):

 (Other available algorithms: 'active-set', 'sqp', 'trust-region-reflective')

 Set by user:

 FinDiffType: 'central'

17

 MaxFunEvals: 1288000

 MaxIter: 5000

 TolCon: 1.0000e-09

 TolFun: 1.0000e-09

 TolX: 1.0000e-30

 Default:

 Algorithm: 'interior-point'

 AlwaysHonorConstraints: 'bounds'

 DerivativeCheck: 'off'

 Diagnostics: 'off'

 DiffMaxChange: Inf

 DiffMinChange: 0

 Display: 'final'

 FinDiffRelStep: 'eps^(1/3)'

 FunValCheck: 'off'

 GradConstr: 'off'

 GradObj: 'off'

 HessFcn: []

 Hessian: 'bfgs'

 HessMult: []

 InitBarrierParam: 0.1000

 InitTrustRegionRadius: 'sqrt(numberOfVariables)'

18

 MaxProjCGIter: '2*(numberOfVariables-numberOfEqualities)'

 ObjectiveLimit: -1.0000e+20

 OutputFcn: []

 PlotFcns: []

 ScaleProblem: 'none'

 SubproblemAlgorithm: 'ldl-factorization'

 TolProjCG: 0.0100

 TolProjCGAbs: 1.0000e-10

 TypicalX: 'ones(numberOfVariables,1)'

 UseParallel: 0

 Show options not used by current Algorithm ('interior-point')

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than

the selected value of the step size tolerance and constraints are

satisfied to within the selected value of the constraint tolerance.

<stopping criteria details>

output =

 iterations: 138

 funcCount: 86058

 constrviolation: 1.6290e-14

 stepsize: 2.2023e-30

 algorithm: 'interior-point'

19

 firstorderopt: 2.9733

 cgiterations: 59

 message: 'Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than

the selected value of...'

Class 1:

str =

 'Day 1: 2-Math., 2-Math., 5-Biol., 3-Comp., 4-Engl.,14-Phil., 7-Arab.,Courses

Number:7;'

str =

 'Day 2: 8-Sport, 5-Biol.,13-Geog., 9-Fren., 7-Arab., 4-Engl.,10-Chem.,Courses

Number:7;'

str =

 'Day 3: 4-Engl., 4-Engl.,12-Phys.,11-Reli., 2-Math., 7-Arab., 7-Arab.,Courses

Number:7;'

str =

 'Day 4: 2-Math., 2-Math.,10-Chem., 4-Engl., 4-Engl., 7-Arab., 9-Fren.,Courses

Number:7;'

str =

 'Day 5: 6-Hist., 4-Engl., 2-Math.,12-Phys.,16-Art.., 7-Arab.,15-Educ.,Courses

Number:7;'

20

str =

Day 6:Courses Number:0;

Class 2:

str =

 'Day 1:17-Math.,17-Math.,19-Engl.,19-Engl.,18-Biol., 3-Comp., 6-Hist.,Courses

Number:7;'

str =

 'Day 2:13-Geog.,18-Biol.,17-Math.,23-Arab.,23-Arab., 9-Fren.,20-Chem.,Courses

Number:7;'

str =

 'Day 3:19-Engl.,19-Engl.,21-Reli.,22-Phys.,17-Math.,23-Arab.,23-Arab.,Courses

Number:7;'

str =

 'Day 4:17-Math.,17-Math.,20-Chem.,14-Phil.,19-Engl., 9-Fren.,23-Arab.,Courses

Number:7;'

str =

 'Day 5:19-Engl.,19-Engl., 8-Sport,22-Phys.,15-Educ.,16-Art..,23-Arab.,Courses

Number:7;'

str =

Day 6:Courses Number:0;

21

elapsedTime =

 24.2797

possibleCombinations =

 3.0487e+32

Notice how the following constraints are satisfied:

6 sessions of Math course per week for each class distributed on the valid available

sessions of Math teacher.

1 session of Computer course per week for each class…..

No Geography, History, or Philosophy is given on the same day for the two classes.

No more than two sessions of Math are given per day.

No more than two sessions of English are given per day.

Notice that although Computer, History, Sport, French, Geography, Philosophy,

Education, and Art have common teachers for both classes, the software didn’t assign

the same session on the same day for both classes because the same teacher couldn’t

attend both classes at the same time.

The following output of the class 2:

“Day 5:19-Engl., 19-Engl., 8-Sport,22-Phys.,15-Educ.,16-Art..,23-Arab.,Courses

Number:7;”

Means for day 5 of class 2:

The following output of the class 2:

'Day 5:19-Engl.,19-Engl., 8-Sport,22-Phys.,15-Educ.,16-Art..,23-Arab.,Courses

Number:7;'

22

Means for day 5 of class 2:

session 1 is English whose teacher id is 19.

session 2 is English whose teacher id is 19.

session 3 is Sport whose teacher id is 8.

session 4 is Physics whose teacher id is 22.

session 5 is Education whose teacher id is 15.

session 6 is Art whose teacher id is 16.

session 7 is Arabic whose teacher id is 23.

Total number of assigned sessions for this day is 7.

In addition, important results are that:

Elapsed time is 24.3 sec.

Number of iterations is 138.

23

CHAPTER 4

DISCUSSION

 As a conclusion, the software succeeded to find the solution despite the

complicated practical conditions, in little iteration with little time. This makes it eligible

to solve more complicated real cases where interrelated fifteen classes are asking for a

convenient schedule. These results make this new approach of solving school

scheduling problem quite competitive and promising of excellent results in future.

Interior point algorithm is a powerful tool for linear and nonlinear constraints. Applying

it in this approach has proven more and more how much this algorithm is powerful in

solving large constrained problems.

24

APPENDIX 1

SOURCE CODE

function schedule01()

clear;

global Math

global Computer

global English

global Biologie

global History

global Arabic

global Sport

global French

global Chemistry

global Religion

global Physics

global Geography

global Philosophy

global Education

global Art

global nonzeroAvail

global vectorSize

global AA1

global AA2

global A

global B

global Aeq

global Beq

global conflictFactor

global midX

global X

global elapsedTime

initialize();

getInputs();

25

% initialize positive and negative availability of each teacher per session

% per day so that variable vector that should be optimized and its class,

% course,day,session,teacher positive availability matrix are constructed

initializeAvailability();

% this is the size of the variable vector to be optimized

vectorSize=size(nonzeroAvail,1)

% lower bound vector of X variable vector to be optimized

lb=zeros(vectorSize,1);

% higher bound vector of X variable vector to be optimized

ub=ones(vectorSize,1);

% initial value of X variable vector

X0=midX*ones(vectorSize,1);

%Aeq*X=Beq

[Aeq1,Beq1]=getAeqUniqueSession();

[AeqArray,BeqArray]=getCourseSessionsCount();

Aeq=[Aeq1;AeqArray];

Beq=[Beq1;BeqArray];

% Build A and B where A*X<=B

[A,B]=insertAB_uniqueTeacher();

%class 1

[A,B]=insertAB_maxperDay(A,B,1,Math,2);

[A,B]=insertAB_maxperDay(A,B,1,English,2);

[A,B]=insertAB_maxperDay(A,B,1,Biologie,1);

[A,B]=insertAB_maxperDay(A,B,1,Arabic,2);

[A,B]=insertAB_maxperDay(A,B,1,French,1);

[A,B]=insertAB_maxperDay(A,B,1,Chemistry,1);

[A,B]=insertAB_maxperDay(A,B,1,Physics,1);

%class 2

[A,B]=insertAB_maxperDay(A,B,2,Math,2);

[A,B]=insertAB_maxperDay(A,B,2,English,2);

[A,B]=insertAB_maxperDay(A,B,2,Biologie,1);

[A,B]=insertAB_maxperDay(A,B,2,Arabic,2);

[A,B]=insertAB_maxperDay(A,B,2,French,1);

[A,B]=insertAB_maxperDay(A,B,2,Chemistry,1);

[A,B]=insertAB_maxperDay(A,B,2,Physics,1);

26

% AA1,AA2,and conflictFactor are terms to be used in nonlinear

% equality constraint

AA1=[];

AA2=[];

[AA1,AA2]= ...

 insertA1A2_dayCoursesConflict(AA1,AA2,1,History,Geography);

[AA1,AA2]= ...

 insertA1A2_dayCoursesConflict(AA1,AA2,1,Philosophy,History);

[AA1,AA2]= ...

 insertA1A2_dayCoursesConflict(AA1,AA2,1,Philosophy,Geography);

[AA1,AA2]= ...

 insertA1A2_dayCoursesConflict(AA1,AA2,2,History,Geography);

[AA1,AA2]= ...

 insertA1A2_dayCoursesConflict(AA1,AA2,2,Philosophy,History);

[AA1,AA2]= ...

 insertA1A2_dayCoursesConflict(AA1,AA2,2,Philosophy,Geography);

conflictFactor=size(AA1,2);

% Select non default optimization before applying it

warning('off','MATLAB:nearlySingularMatrix');

options = optimoptions('fmincon','MaxFunEvals',1288000, ...

 'TolCon',1.0e-09,'TolFun', 1.0e-09, ...

 'TolX',1.0e-30,'MaxIter',5000, ...

 'FinDiffType','central')

% Apply optimization and get results in X and status in output

tic;

[X,fval,exitflag,output] = fmincon(@objectivefun,X0,A,B,Aeq,Beq,lb,ub, ...

 @nonLinearConst,options);

elapsedTime=toc;

X=round(X);

% display optimization status (if fail or success)

display(output)

% display outcome of software

displayOutput();

27

end

function returnVar=objectivefun(X)

% returnVar is function to be optimized

 global midX

 Y=X-midX;

 returnVar=-Y'*Y ;

end

function [c,ceq] = nonLinearConst(X)

% This is non linear constraint where ceq should be zero when evaluated.

% evaluation of ceq should be zero to consider non linear constraints

% equality valid c is used for non linear constraints inequality that

% is not needed in our modeling of problem to be solved.

 global AA1

 global AA2

 global conflictFactor

 ceq = conflictFactor*((AA1*X)')*(AA2*X)+(X')*(1-X);

 c = [];

end

function [AeqReturn,BeqReturn]=getAeqUniqueSession()

% This function determine the linear equality constraint of form :

% AeqReturn*X = BeqReturn

% such that the the same session on the same day of the same class should

% be assigned once and not assigned twice ore more.

 global vectorSize

 global nonzeroAvail

 global SessionDim

 global DayDim

 global ClassDim

 AeqReturn=[];

 zeroRow=zeros(1,vectorSize);

 for classCounter=1:ClassDim

 for sessionCounter=1:SessionDim

 f3=find(nonzeroAvail(:,4)==sessionCounter);

28

 for dayCounter=1:DayDim

 tempo=zeroRow;

 f1=find(nonzeroAvail(:,1)==classCounter);

 f2=find(nonzeroAvail(:,3)==dayCounter);

 for f1Counter=1:size(f1,1)

 for f2Counter=1:size(f2,1)

 for f3Counter=1:size(f3,1)

 if ((f1(f1Counter)==f2(f2Counter))&& ...

 (f1(f1Counter)==f3(f3Counter)))

 tempo(f1(f1Counter))=1;

 end

 end

 end

 end

 if (sum(tempo)>=2)

 AeqReturn=[AeqReturn;tempo];

 end

 end

 end

 end

 BeqReturn=ones(size(AeqReturn,1),1);

end

function [AeqReturn,BeqReturn]=getCourseSessionsCount()

% This function determine the linear equality constraint of form :

% AeqReturn*X = BeqReturn

% such that every course is assigned a determined number of sessions for

% each class all around the week.

 global vectorSize;

 global nonzeroAvail

 global ClassDim

 global CourseDim

 global Empty

 global Math

 global Computer

 global English

 global Biologie

29

 global History

 global Arabic

 global Sport

 global French

 global Chemistry

 global Religion

 global Physics

 global Geography

 global Philosophy

 global Education

 global Art

 global classCourseNumber

 AeqReturn=[];

 BeqReturn=[];

 zeroRow=zeros(1,vectorSize);

 for classCounter=1:ClassDim

 for courseCounter=1:CourseDim

 tempo=zeroRow;

 match=false;

 for counter=1:vectorSize

 if ((nonzeroAvail(counter,2)==courseCounter)&& ...

 (nonzeroAvail(counter,1)==classCounter))

 tempo(1,counter)=1;

 match=true;

 end

 end

 if (match)

 AeqReturn=[AeqReturn;tempo];

 BeqReturn=[BeqReturn;classCourseNumber(classCounter, ...

 courseCounter)];

 end

 end

 end

end

30

function [AReturn,BReturn]=insertAB_uniqueTeacher()

% This function determine the constraint of form : AReturn*X <= BReturn

% such that the same teacher should not give two sessions at the same time

% in two or more classes.

 global vectorSize

 global nonzeroAvail

 global SessionDim

 global DayDim

 global TeacherDim

 AReturn=[];

 zeroRow=zeros(1,vectorSize);

 for sessionCounter=1:SessionDim

 for dayCounter=1:DayDim

 f2=find(nonzeroAvail(:,3)==dayCounter);

 f3=find(nonzeroAvail(:,4)==sessionCounter);

 for teacherCounter=1:TeacherDim

 f1=find(nonzeroAvail(:,5)==teacherCounter);

 tempo=zeroRow;

 for f1Counter=1:size(f1,1)

 for f2Counter=1:size(f2,1)

 for f3Counter=1:size(f3,1)

 if ((f1(f1Counter)==f2(f2Counter))&& ...

 (f1(f1Counter)==f3(f3Counter)))

 tempo(f1(f1Counter))=1;

 end

 end

 end

 end

 %?

 if (sum(tempo)>=2)

 AReturn=[AReturn;tempo];

 end

 end

 end

 end

31

 BReturn=ones(size(AReturn,1),1)+0.01;

end

function [Areturn,Breturn]=insertAB_maxperDay(A,B,classNb, ...

 courseNb,maxDaySession);

% This function determine the constraint of form : Areturn*X <= Breturn

% such that every course whose number is courseNb should not be assigned

% a number of sessions greater than maxDaySession per day for class classNB.

% For eaxample if Math course is available five sessions for a day we

% should assign it not more than two hours a day.

 global vectorSize

 global nonzeroAvail

 global DayDim

 Atempo=[];

 zeroRow=zeros(1,vectorSize);

 for dayCounter=1:DayDim

 tempo=zeroRow;

 for counter=1:vectorSize

 if ((nonzeroAvail(counter,2)==courseNb)&& ...

 (nonzeroAvail(counter,3)==dayCounter)&& ...

 (nonzeroAvail(counter,1)==classNb))

 tempo(1,counter)=1;

 end

 end

 if (sum(tempo)>0)

 Atempo=[Atempo;tempo];

 end

 end

 Btempo=(ones(size(Atempo,1),1)+0.01)*maxDaySession;

 Areturn=[A;Atempo];

 Breturn=[B;Btempo];

end

function [A1return,A2return]=insertA1A2_dayCoursesConflict(A1,A2,classNb,

courseNb1,courseNb2);

32

% This function determine the constraint of form : ((A1return*X)')*(A2return*X)=0

% such that every course whose number is courseNb1 should not be assigned

% a session the same day with another course whose number is courseNb1.

% For example some schools may not prefer to give History and Geography the

% same day

 global vectorSize

 global nonzeroAvail

 global DayDim

 A1tempo=[];

 A2tempo=[];

 zeroRow=zeros(1,vectorSize);

 for dayCounter=1:DayDim

 for counter1=1:vectorSize

 for counter2=1:vectorSize

 if ((nonzeroAvail(counter1,2)==courseNb1) && ...

 (nonzeroAvail(counter2,2)==courseNb2) && ...

 (nonzeroAvail(counter1,3)==dayCounter) && ...

 (nonzeroAvail(counter2,3)==dayCounter) && ...

 (nonzeroAvail(counter1,1)==classNb) && ...

 (nonzeroAvail(counter2,1)==classNb))

 tempo=zeroRow;

 tempo(1,counter1)=1;

 A1tempo=[A1tempo;tempo];

 tempo=zeroRow;

 tempo(1,counter2)=1;

 A2tempo=[A2tempo;tempo];

 end

 end

 end

 end

 A1return=[A1;A1tempo];

33

 A2return=[A2;A2tempo];

end

function initializeAvailability()

% initialize availability of each teacher per session and per day

% construct the vector of variables x from availability only so it could

% be assigned yes (one) or no (zero). Of course a session that is not

% available it is not necessary to seek its status and consider it as a

% variable since it's always no (zero).

 global CourseDim

 global nonzeroAvail

 global ClassDim

 global SessionDim

 global DayDim

 global TeacherDim

 global possibleCombinations

 global classCourseTeacher

 global Avail

 nonzeroAvail=[];

 for courseCounter=1:CourseDim

 for classCounter=1:ClassDim

 for teacherCounter=1:TeacherDim

 if (classCourseTeacher(classCounter,courseCounter)== ...

 teacherCounter)

 for dayCounter=1:DayDim

 for sessionCounter=1:SessionDim

 if (Avail(teacherCounter,dayCounter, ...

 sessionCounter)~=0)

 nonzeroAvail=[nonzeroAvail;classCounter ...

 courseCounter dayCounter ...

 sessionCounter teacherCounter];

 end

 end

 end

 end

 end

 end

 end

34

 possibleCombinations=1;

 for dayCounter=1:DayDim

 for sessionCounter=1:SessionDim

 count=0;

 for counter=1:size(nonzeroAvail,1)

 if ((nonzeroAvail(counter,3)==dayCounter)&& ...

 (nonzeroAvail(counter,4)==sessionCounter))

 count=count+1;

 end

 end

 if count>1

 possibleCombinations=possibleCombinations*count;

 end

 end

 end

end

function getInputs()

 global courseName

 global Empty

 global Math

 global Computer

 global English

 global Biologie

 global History

 global Arabic

 global Sport

 global French

 global Chemistry

 global Religion

 global Physics

 global Geography

 global Philosophy

 global Education

 global Art

 global CourseDim

35

 global ClassDim

 global SessionDim

 global DayDim

 global TeacherDim

 global Monday

 global Tuesday

 global Wednesday

 global Thursday

 global Friday

 global classCourseTeacher

 global Avail

 global classCourseNumber

 courseName=cellstr(['Empty';'Math.';'Comp.';'Engl.';'Biol.';

 'Hist.';'Arab.';'Sport';'Fren.';'Chem.';

 'Reli.';'Phys.';'Geog.';'Phil.';'Educ.';

 'Art..';]);

 Avail=zeros(TeacherDim,DayDim,SessionDim);

 Avail(1,Monday,:)= [1 1 1 1 1 1 1];

 Avail(1,Tuesday,:)= [1 1 1 1 1 1 1];

 Avail(1,Wednesday,:)= [1 1 1 1 1 1 1];

 Avail(1,Thursday,:)= [1 1 1 1 1 1 1];

 Avail(1,Friday,:)= [1 1 1 1 1 1 1];

 Avail(2,Monday,:)= [1 1 1 1 1 1 1];

 Avail(2,Tuesday,:)= [0 1 1 1 0 0 0];

 Avail(2,Wednesday,:)= [0 0 0 0 1 1 1];

 Avail(2,Thursday,:)= [1 1 0 0 0 0 0];

 Avail(2,Friday,:)= [1 1 1 1 1 1 1];

 Avail(3,Monday,:)= [1 1 1 1 1 1 1];

 Avail(3,Tuesday,:)= [0 0 0 0 0 0 0];

 Avail(3,Wednesday,:)= [0 0 0 0 0 0 0];

 Avail(3,Thursday,:)= [1 1 1 0 0 0 0];

 Avail(3,Friday,:)= [0 0 0 0 0 0 0];

36

 Avail(4,Monday,:)= [0 0 1 1 1 1 1];

 Avail(4,Tuesday,:)= [0 0 0 0 0 1 1];

 Avail(4,Wednesday,:)= [1 1 1 1 1 1 1];

 Avail(4,Thursday,:)= [0 0 0 1 1 0 0];

 Avail(4,Friday,:)= [1 1 1 0 0 0 0];

 Avail(5,Monday,:)= [0 0 1 1 1 0 0];

 Avail(5,Tuesday,:)= [0 1 0 0 0 0 0];

 Avail(5,Wednesday,:)= [0 0 0 0 0 0 0];

 Avail(5,Thursday,:)= [0 0 0 0 0 0 0];

 Avail(5,Friday,:)= [0 0 0 0 0 0 0];

 Avail(6,Monday,:)= [0 0 0 0 1 1 1];

 Avail(6,Tuesday,:)= [0 0 0 0 0 0 0];

 Avail(6,Wednesday,:)= [0 0 0 0 0 0 0];

 Avail(6,Thursday,:)= [0 0 0 0 0 0 0];

 Avail(6,Friday,:)= [1 1 1 0 0 0 0];

 Avail(7,Monday,:)= [0 0 0 0 0 0 1];

 Avail(7,Tuesday,:)= [0 0 0 1 1 0 0];

 Avail(7,Wednesday,:)= [0 0 0 0 0 1 1];

 Avail(7,Thursday,:)= [0 0 0 0 0 1 1];

 Avail(7,Friday,:)= [0 0 0 0 1 1 1];

 Avail(8,Monday,:)= [1 1 1 1 1 1 1];

 Avail(8,Tuesday,:)= [1 1 1 1 1 1 1];

 Avail(8,Wednesday,:)= [1 1 1 1 1 1 1];

 Avail(8,Thursday,:)= [1 1 1 1 1 1 1];

 Avail(8,Friday,:)= [1 1 1 1 1 1 1];

 Avail(9,Monday,:)= [0 0 0 0 0 0 0];

 Avail(9,Tuesday,:)= [0 1 1 1 1 1 0];

 Avail(9,Wednesday,:)= [0 0 0 0 0 0 0];

 Avail(9,Thursday,:)= [0 0 1 1 1 1 1];

 Avail(9,Friday,:)= [0 0 0 0 0 0 0];

 Avail(10,Monday,:)= [0 0 0 0 0 0 0];

 Avail(10,Tuesday,:)= [0 0 0 0 0 1 1];

37

 Avail(10,Wednesday,:)= [0 0 0 0 0 0 0];

 Avail(10,Thursday,:)= [0 0 1 1 0 0 0];

 Avail(10,Friday,:)= [0 0 0 0 0 0 0];

 Avail(11,Monday,:)= [0 0 0 0 0 0 0];

 Avail(11,Tuesday,:)= [0 0 0 0 0 0 0];

 Avail(11,Wednesday,:)= [0 0 1 1 0 0 0];

 Avail(11,Thursday,:)= [0 0 0 0 0 0 0];

 Avail(11,Friday,:)= [0 0 0 0 0 0 0];

 Avail(12,Monday,:)= [0 0 0 0 0 0 0];

 Avail(12,Tuesday,:)= [0 0 0 0 0 0 0];

 Avail(12,Wednesday,:)= [0 0 1 1 0 0 0];

 Avail(12,Thursday,:)= [0 0 0 0 0 0 0];

 Avail(12,Friday,:)= [0 0 0 1 1 0 0];

 Avail(13,Monday,:)= [0 0 0 0 0 0 0];

 Avail(13,Tuesday,:)= [1 1 1 0 0 0 0];

 Avail(13,Wednesday,:)= [0 0 0 0 0 0 0];

 Avail(13,Thursday,:)= [0 0 0 1 1 1 1];

 Avail(13,Friday,:)= [0 0 0 0 0 0 0];

 Avail(14,Monday,:)= [0 0 0 0 1 1 1];

 Avail(14,Tuesday,:)= [0 0 0 0 0 0 0];

 Avail(14,Wednesday,:)= [0 0 0 0 0 0 0];

 Avail(14,Thursday,:)= [1 1 1 1 1 1 1];

 Avail(14,Friday,:)= [0 0 0 0 0 0 0];

 Avail(15,Monday,:)= [0 0 0 0 0 0 0];

 Avail(15,Tuesday,:)= [0 0 0 0 0 0 0];

 Avail(15,Wednesday,:)= [0 0 0 0 0 0 0];

 Avail(15,Thursday,:)= [0 1 0 0 0 0 0];

 Avail(15,Friday,:)= [1 1 1 1 1 1 1];

 Avail(16,Monday,:)= [0 0 0 0 0 0 0];

 Avail(16,Tuesday,:)= [0 0 0 0 0 0 0];

 Avail(16,Wednesday,:)= [0 0 0 0 0 0 0];

 Avail(16,Thursday,:)= [0 0 0 0 0 0 0];

 Avail(16,Friday,:)= [1 1 1 1 1 1 1];

38

 Avail(17,Monday,:)= [1 1 1 1 1 1 1];

 Avail(17,Tuesday,:)= [0 1 1 1 0 0 0];

 Avail(17,Wednesday,:)= [0 0 0 0 1 1 1];

 Avail(17,Thursday,:)= [1 1 0 0 0 0 0];

 Avail(17,Friday,:)= [0 0 0 0 1 1 0];

 Avail(19,Monday,:)= [0 0 1 1 1 1 1];

 Avail(19,Tuesday,:)= [0 0 0 0 0 1 1];

 Avail(19,Wednesday,:)= [1 1 1 1 1 1 1];

 Avail(19,Thursday,:)= [0 0 0 1 1 0 0];

 Avail(19,Friday,:)= [1 1 1 0 0 0 0];

 Avail(18,Monday,:)= [0 0 1 1 1 0 0];

 Avail(18,Tuesday,:)= [0 1 0 0 0 0 0];

 Avail(18,Wednesday,:)= [0 0 0 0 0 0 0];

 Avail(18,Thursday,:)= [0 0 0 0 0 0 0];

 Avail(18,Friday,:)= [0 0 0 0 0 0 0];

 Avail(20,Monday,:)= [0 0 0 0 0 0 0];

 Avail(20,Tuesday,:)= [0 0 0 0 0 1 1];

 Avail(20,Wednesday,:)= [0 0 0 0 0 0 0];

 Avail(20,Thursday,:)= [0 0 1 1 0 0 0];

 Avail(20,Friday,:)= [0 0 0 0 0 0 0];

 Avail(21,Monday,:)= [0 0 0 0 0 0 0];

 Avail(21,Tuesday,:)= [0 0 0 0 0 0 0];

 Avail(21,Wednesday,:)= [0 0 1 1 0 0 0];

 Avail(21,Thursday,:)= [0 0 0 0 0 0 0];

 Avail(21,Friday,:)= [0 0 0 0 0 0 0];

 Avail(22,Monday,:)= [0 0 0 0 0 0 0];

 Avail(22,Tuesday,:)= [0 0 0 0 0 0 0];

 Avail(22,Wednesday,:)= [0 0 1 1 0 0 0];

 Avail(22,Thursday,:)= [0 0 0 0 0 0 0];

 Avail(22,Friday,:)= [0 0 0 1 1 0 0];

 Avail(23,Monday,:)= [0 0 0 0 0 0 1];

39

 Avail(23,Tuesday,:)= [0 0 0 1 1 0 0];

 Avail(23,Wednesday,:)= [0 0 0 0 0 1 1];

 Avail(23,Thursday,:)= [0 0 0 0 0 1 1];

 Avail(23,Friday,:)= [0 0 0 0 1 1 1];

 classCourseTeacher=zeros(ClassDim,CourseDim);

 %classCourseTeacher(1,Empty)=1;

 classCourseTeacher(1,Math)=2;

 classCourseTeacher(1,Computer)=3;

 classCourseTeacher(1,English)=4;

 classCourseTeacher(1,Biologie)=5;

 classCourseTeacher(1,History)=6;

 classCourseTeacher(1,Arabic)=7;

 classCourseTeacher(1,Sport)=8;

 classCourseTeacher(1,French)=9;

 classCourseTeacher(1,Chemistry)=10;

 classCourseTeacher(1,Religion)=11;

 classCourseTeacher(1,Physics)=12;

 classCourseTeacher(1,Geography)=13;

 classCourseTeacher(1,Philosophy)=14;

 classCourseTeacher(1,Education)=15;

 classCourseTeacher(1,Art)=16;

 %classCourseTeacher(2,Empty)=1;

 classCourseTeacher(2,Math)=17;

 classCourseTeacher(2,Computer)=3;

 classCourseTeacher(2,English)=19;

 classCourseTeacher(2,Biologie)=18;

 classCourseTeacher(2,History)=6;

 classCourseTeacher(2,Arabic)=23;

 classCourseTeacher(2,Sport)=8;

 classCourseTeacher(2,French)=9;

 classCourseTeacher(2,Chemistry)=20;

 classCourseTeacher(2,Religion)=21;

 classCourseTeacher(2,Physics)=22;

 classCourseTeacher(2,Geography)=13;

40

 classCourseTeacher(2,Philosophy)=14;

 classCourseTeacher(2,Education)=15;

 classCourseTeacher(2,Art)=16;

 %number of sessions for each class and course

 classCourseNumber=zeros(ClassDim,CourseDim);

 classCourseNumber(1,Empty)=0;

 classCourseNumber(1,Math)=6;

 classCourseNumber(1,Computer)=1;

 classCourseNumber(1,English)=7;

 classCourseNumber(1,Biologie)=2;

 classCourseNumber(1,History)=1;

 classCourseNumber(1,Arabic)=6;

 classCourseNumber(1,Sport)=1;

 classCourseNumber(1,French)=2;

 classCourseNumber(1,Chemistry)=2;

 classCourseNumber(1,Religion)=1;

 classCourseNumber(1,Physics)=2;

 classCourseNumber(1,Geography)=1;

 classCourseNumber(1,Philosophy)=1;

 classCourseNumber(1,Education)=1;

 classCourseNumber(1,Art)=1;

 classCourseNumber(2,Empty)=0;

 classCourseNumber(2,Math)=6;

 classCourseNumber(2,Computer)=1;

 classCourseNumber(2,English)=7;

 classCourseNumber(2,Biologie)=2;

 classCourseNumber(2,History)=1;

 classCourseNumber(2,Arabic)=6;

 classCourseNumber(2,Sport)=1;

 classCourseNumber(2,French)=2;

 classCourseNumber(2,Chemistry)=2;

 classCourseNumber(2,Religion)=1;

 classCourseNumber(2,Physics)=2;

 classCourseNumber(2,Geography)=1;

 classCourseNumber(2,Philosophy)=1;

41

 classCourseNumber(2,Education)=1;

 classCourseNumber(2,Art)=1;

end

function initialize()

 clear;

 global Monday

 global Tuesday

 global Wednesday

 global Thursday

 global Friday

 global Saturday

 global CourseDim

 global Empty

 global Math

 global Computer

 global English

 global Biologie

 global History

 global Arabic

 global Sport

 global French

 global Chemistry

 global Religion

 global Physics

 global Geography

 global Philosophy

 global Education

 global Art

 global ClassDim

 global TeacherDim

 global SessionDim

 global DayDim

 global midX

 midX=0.6;% 0.55 has shown very good results

 ClassDim=2;

 SessionDim=7;

42

 DayDim=6;

 TeacherDim=23;

 CourseDim=16;

 Monday=1;

 Tuesday=2;

 Wednesday=3;

 Thursday=4;

 Friday=5;

 Saturday=6;

 Empty=1;

 Math =2;

 Computer=3;

 English=4;

 Biologie=5;

 History=6;

 Arabic=7;

 Sport=8;

 French=9;

 Chemistry=10;

 Religion=11;

 Physics=12;

 Geography=13;

 Philosophy=14;

 Education=15;

 Art=16;

end

function displayOutput()

 global nonzeroAvail

 global vectorSize

 global courseName

 global ClassDim

 global TeacherDim

 global SessionDim

 global DayDim

 global possibleCombinations

43

 global classCourseTeacher

 global X

 global elapsedTime

 % display the output schedule

 for classCounter=1:ClassDim

 display(sprintf('Class %d:',classCounter));

 for dayCounter=1:DayDim

 str=sprintf('Day %d:',dayCounter);

 dayCoursesNb=0;

 for sessionCounter=1:SessionDim

 for counter=1:vectorSize

 if X(counter)==1

 if ((nonzeroAvail(counter,3)==dayCounter)&&...

 (nonzeroAvail(counter,4)==sessionCounter)&&...

 (nonzeroAvail(counter,1)==classCounter))

 dayCoursesNb=dayCoursesNb+1;

 courseNum=nonzeroAvail(counter,2);

 str=strcat (str ,sprintf('%2d-', ...

 classCourseTeacher(classCounter, ...

 courseNum)),courseName(courseNum,1),',');

 end

 end

 end

 end

 str=strcat (str ,sprintf('Courses Number:%d;',dayCoursesNb));

 display(str);

 end

 end

 % display elapsed time

 display(elapsedTime)

 % display backtracking possible combinations number

 display(possibleCombinations)

end

44

BIBLIOGRAPHY

[1] Nocedal, Jorge, and Stephen J. Wright “Interior-Point Methods for Nonlinear

Programming” in Numerical Optimization, 563-597, second ed. New York: Springer

Science+Business Media, LLC., 2006.

 [2] Ferris, Michael C., Olvi L. Mangasarian, and Stephen J. Wright, “Interior-Point

Methods,” in Linear Programming with Matlab, 195-215, first ed. Philadelphia: Society

for Industrial and Applied Mathematics, 2007.

[3] Chorbev, Ivan, Ivica Dimitrovski, Dragan Mihajlov, and Suzana Loskovska,

“Hybrid Heuristics for Solving the Constraints Modeled High School Scheduling

Problem,” The International Conference on “Computer as a Tool” (September 2007):

2242-2249.

[4] Ghaemi,, Sehraneh, Mohammad Taghi Vakili, and Ali Aghagolzadeh, Using a

Genetic Algorithm Optimizer Tool to Solve University Timetable Scheduling Problem

(2007).

[5] Aldasht, Mohamed, Mahmoud Alsaheb, Safa Adi, and Mohammad Abu Qopita,

“University Course Scheduling Using Evolutionary Algorithms,” Fourth International

Multi-Conference on Computing in the Global Information Technology (2009): 47-51.

[6] Bhaduri, Antariksha, “University Time Table Scheduling using Genetic Artificial

Immune Network,” International Conference on Advances in Recent Technologies in

Communication and Computing (2009): 289-292.

[7] YuZheng, lingfa Liu, “A Novel Quantum-inspired Genetic Algorithm For a Weekly

University Scheduling Optimization,” International Conference on Information Science

and Technology Nanjing, Jiangsu, China (March 2011): 373-376.

[8] Oner Adalet, Sel Ozcan, and Derya Dengi, Optimization Of University Course

Scheduling Problem With A Hybrid Artificial Bee Colony Algorithm, (2011): 339-346.

[9] Ferdoushi Tania, Prodip Kumer Das, and M.A. H. Akhand, “Highly Constrained

University Course Scheduling using Modified Hybrid Particle Swarm Optimization,”

International Conference on Electrical Information and Communication Technology

(EICT) (2013).

