PROPHYLACTIC CRANIAL IRRADIATION IN PATIENTS WITH NON-SMALL-CELL LUNG CANCER: A SYSTEMATIC REVIEW AND META-ANALYSIS OF RANDOMIZED CONTROLLED TRIALS

by

KARINE A. AL FEGHALI

A thesis
submitted in partial fulfillment of the requirements for the degree of Master of Sciences in Health Research to the Scholars in HeAlth Research Program (SHARP) of the Faculty of Health Sciences and the Faculty of Medicine at the American University of Beirut

Beirut, Lebanon
September 2016
PROPHYLACTIC CRANIAL IRRADIATION IN PATIENTS WITH NON-SMALL-CELL LUNG CANCER: A SYSTEMATIC REVIEW AND META-ANALYSIS OF RANDOMIZED CONTROLLED TRIALS

by

KARINE A. AL FEGHALI

Approved by:

Dr. Fady Geara, Professor Radiation Oncology, FM
Advisor

Dr. Elie Akl, Professor Internal Medicine, FM
Member of committee

Dr. Asma Arabi, Assistant Professor Internal Medicine, FM
Member of committee

Dr. Toufic Eid, Assistant Professor Radiation Oncology, FM
Member of committee

Date of thesis defense: September 8th, 2016
AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT RELEASE FORM

Student Name: ___AL FEGHALI__KARINE___________ANTOINE

Last First Middle

☒ Master’s Thesis ○ Master’s Project ○ Doctoral Dissertation

☒ I authorize the American University of Beirut to: (a) reproduce hard or electronic copies of my thesis, dissertation, or project; (b) include such copies in the archives and digital repositories of the University; and (c) make freely available such copies to third parties for research or educational purposes.

☐ I authorize the American University of Beirut, three years after the date of submitting my thesis, dissertation, or project, to: (a) reproduce hard or electronic copies of it; (b) include such copies in the archives and digital repositories of the University; and (c) make freely available such copies to third parties for research or educational purposes.

Karine Al Feghali September 20, 2016

Signature Date
ACKNOWLEDGMENTS

I would like to express my profound gratitude to Dr. Ghada El Hajj Fuleihan for her continuous support and mentorship, and her relentless efforts to advance my academic career.

Special thanks to my thesis advisor, Dr. Fady Geara, and thesis committee members, Dr. Elie Akl, Dr. Asma Arabi, and Dr. Toufic Eid, for their help, engagement, and constructive feedback.

I would like to thank Dr. Assem Khamis and Rami Ballout for their help in the meta-analysis.

I would also like to thank Dr. Ibrahim Abu Gheida for his help in the titles and abstracts screening step of this review.

I would like to thank the department of radiation oncology for their support every step of the way.
AN ABSTRACT OF THE THESIS OF

Karine Al Feghali for Master of Sciences

Major: Health Research (SHARP)

Title: Prophylactic Cranial Irradiation In Patients With Non-Small-Cell Lung Cancer: A Systematic Review And Meta-Analysis Of Randomized Controlled Trials

Background: Brain has been reported across multiple studies as first site of failure after curative treatment in 14-28% of patients with NSCLC. Although prophylactic cranial irradiation (PCI) is recommended in the management of small cell lung cancer (SCLC) patients and has been demonstrated to confer a survival advantage over observation in those who achieved a complete remission after curative treatment, it is still not routinely recommended in the management of NSCLC.

Objectives: To systematically review the benefits and harms of PCI in patients with NSCLC treated with a curative intent. We sought to examine the impact of prophylactic cranial irradiation on: (1) the incidence of brain metastases in patients with NSCLC, (2) overall survival and disease-free survival rates and (3) impact of PCI on patients’ quality of life (QOL) and neurocognitive function (NCF), with emphasis on patients with the highest risk of developing brain metastases.

Materials and Methods: 1) Data sources: We selected all randomized controlled trials comparing PCI to no PCI in patients with NSCLC treated with a curative intent. We searched EMBASE, MEDLINE, PubMed and the Cochrane Central Register of Controlled Trials (CENTRAL) with search dates between 1946 and February 2016. We did not apply any limits for language. Search terms included “non-small-cell lung carcinoma”, “cranial irradiation” and “randomized controlled trials”. We reviewed the Cochrane Database for Systematic Reviews, and clinical trials registers and consulted experts in the field for information on potential unpublished data. 2) Study selection: Two independent reviewers screened all papers identified by our search strategy for eligibility. 3) Data collection: A data abstraction form was used independently by the two reviewers. All the data extraction was performed in duplicate and independent manner, and disagreements between the two reviewers were resolved by discussion. Trial authors were contacted, when needed, in order to gather missing information or to confirm accuracy of the information. Data was extracted on the following: study design, year of publication, inclusion/exclusion criteria, characteristics of trial participants, type of treatment received, details of the intervention, control, type of outcome measures, and statistical data. 4) Risk of bias assessment: We assessed the risk of bias in each of the eligible randomized controlled trials using the Cochrane risk of bias tool. 5) Data analysis: We meta-analyzed relative measures of treatment effect for brain metastasis, overall survival and disease-free survival. We used Parmar’s methodology when pooling hazard ratios. We assessed the risk of publication bias using a funnel-plot. We also conducted sensitivity analysis by excluding studies published prior to 1995

Results: Out of 3,548 citations captured by the search strategy, we included eight papers and one abstract, reporting on six trials. Seven reports from six trials contributed data to the quantitative analysis. PCI was associated with a significant reduction in the
odds of brain metastases as compared with those who did not receive PCI (OR = 0.31; 95% CI: 0.20–0.46; p<0.001). The overall HR did not show survival benefit in patients with non-small-cell lung cancer patients who received PCI compared to patients who did not receive PCI (HR=1.08, 95% CI: 0.90 – 1.31; p=0.41). Sensitivity analysis excluding older studies did not show substantively different findings. DFS was only reported in the 2 most recent trials that only included stage III NSCLC patients. There was significant improvement in DFS with PCI (HR, 0.67; 95% CI 0.46–0.98; p = 0.037). There were no statistically significant differences in any of the quality of life measures in two studies included in this qualitative analysis. One study measured neurocognitive function using the Hopkins Verbal Learning Test (HVLT), and found greater deterioration in immediate recall (p-value= 0.03) and delayed recall (p-value= 0.008) at 1 year in patients who received PCI. The quality of evidence was graded as “moderate” for the outcomes of incidence of brain metastases and OS, and “high” for the outcomes of DS, and QOL/NCF.

Conclusion: PCI in NSCLC does not confer an overall survival benefit. In the case of stage III NSCLC patients, this meta-analysis has shown that PCI improves DFS, but not OS. We believe that the benefit-risk ratio is still not clearly in favor of its use. However, it continues to be investigated extensively as evidenced by the significant number of ongoing clinical trials on the matter. Many questions remain unsettled and more research is needed on this topic. It would be important to incorporate prospective NCF testing in all future studies. Efforts to identify high-risk groups based on genetic profile and predictive biomarkers should be pursued, and research should focus on this high-risk patient population who might derive a survival benefit from PCI.
CONTENTS

ACKNOWLEDGMENTS .............................................................................................................. v
ABSTRACT ............................................................................................................................... vi
LIST OF ILLUSTRATIONS ...................................................................................................... xi
LIST OF TABLES ...................................................................................................................... xii
LIST OF ABBREVIATIONS ...................................................................................................... xiii

Chapter
1. INTRODUCTION ............................................................................................................... 1
  1.1. Epidemiology of lung cancer .......................................................................................... 1
  1.2. Brain metastases in lung cancer ................................................................................... 1
  1.3. Prophylactic cranial irradiation: A historical perspective ................................................ 2
  1.4. Prophylactic cranial irradiation in LS- and ES-SCLC ...................................................... 3
  1.5. Prophylactic cranial irradiation: Timing, techniques and dose ....................................... 4
  1.6. Prophylactic cranial irradiation: Potential toxicities and strategies to prevent them ....... 5
  1.7. Prophylactic cranial irradiation in NSCLC: Aim of the current systematic review ... 8
  1.8. Thesis Objectives ......................................................................................................... 9
  1.9. Thesis Hypothesis ........................................................................................................ 10

2. MATERIALS AND METHODS ........................................................................................... 11
  2.1. Protocol ....................................................................................................................... 21
  2.2. Eligibility criteria ......................................................................................................... 11
     2.2.1. Type of studies and participants: ......................................................................... 11
     2.2.2. Type of participants: .......................................................................................... 11
     2.2.3. Type of intervention: ........................................................................................ 12
     2.2.4. Type of outcome measures: ................................................................................. 12
2.3. Information sources ........................................................................... 12

2.4. Search strategy .................................................................................. 13

2.5. Study selection .................................................................................. 13

2.6. Data collection process ..................................................................... 14

2.7. Data items .......................................................................................... 14

2.8. Summary measures .......................................................................... 15

2.9. Synthesis of results and assessment of heterogeneity ..................... 16

2.10. Additional analyses: Subgroup and sensitivity analyses .............. 17

2.11. Risk of bias within studies ............................................................... 18

2.12. Risk of bias across studies ............................................................... 19

2.13. Assessment of the quality of evidence ........................................ 19

3. RESULTS ............................................................................................... 20

3.1. Study selection .................................................................................. 20

3.2. Study characteristics ....................................................................... 21

3.3. Risk of bias assessment ................................................................... 24

3.4. Results of individual studies and synthesis of results .................... 25

3.4.1. Incidence of brain metastasis ....................................................... 25

3.4.2. Overall survival ........................................................................... 25

3.4.3. Disease-free survival .................................................................. 26

3.4.4. Time to brain metastasis .............................................................. 27

3.4.5. Brain metastasis as first site of recurrence – Relapse pattern ...... 27

3.4.6. Toxicities, QOL and NCF analysis: a systematic review .......... 28

3.5. Quality of evidence evaluation using the GRADE framework ....... 29

4. DISCUSSION ........................................................................................ 31

4.1 Review and discussion of findings ..................................................... 31

4.1.1. Prophylactic cranial irradiation and incidence of brain metastases 31

4.1.2. Prophylactic cranial irradiation and survival ................................ 31
4.1.3. Prophylactic cranial irradiation and impact on QOL and NCF ................. 32

4.2. Critique of existing systematic reviews and meta-analysis on the use of PCI in NSCLC ......................................................................................................................... 34

4.3. Limitations and strengths of the current systematic review .......................... 35

4.4. Literature gaps, ongoing trials, and future directions .................................. 36

4.5. Conclusion and recommendations ................................................................ 40

Appendix

1. 2009 PRISMA Checklist on preferred reporting items for systematic reviews and meta-analysis ................................................................. 74

2. SEARCH STRATEGY ......................................................................................... 77

3. FULL-TEXT SCREENING FORM ................................................................. 82

4. DATA EXTRACTION FORM ............................................................................ 83

REFERENCES ........................................................................................................ 84
LIST OF ILLUSTRATIONS

Figure
1. PRISMA Flow Diagram .............................................................................................................. 45

2. Risk of bias assessment across included studies................................................................. 63

3. Effect of prophylactic cranial irradiation on the incidence of brain metastases in 1,287 patients with non-small-cell lung cancer enrolled in six randomized controlled trials ......................................................................................................................... 66

4. Inverted funnel plot for trials addressing the incidence of brain metastases .............. 67

5. Effect of prophylactic cranial irradiation on overall survival in 1,190 patients with non-small-cell lung cancer enrolled in five randomized controlled trials ....................... 68

6. Inverted funnel plot for trials addressing overall survival ............................................ 69

7. Sensitivity analysis; Effect of prophylactic cranial irradiation on overall survival in 1,287 patients with non-small-cell lung cancer enrolled in six randomized controlled trials (Umsawasdi et al. added).............................................................................................................................. 70

8. Sensitivity analysis: Effect of prophylactic cranial irradiation on overall survival in 722 patients with stage III non-small-cell lung cancer enrolled in three randomized controlled trials published after 1995 .................................................................................................................. 70

9. Effect of prophylactic cranial irradiation on disease-free survival in 496 patients with stage III non-small-cell enrolled in two recent randomized controlled trials ............... 71
**LIST OF TABLES**

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Failure patterns of NSCLC in the brain</td>
<td>42</td>
</tr>
<tr>
<td>2. Randomized controlled trials and a meta-analysis evaluating the role of PCI in patients with limited-stage and extensive-stage SCLC who responded to chemotherapy</td>
<td>44</td>
</tr>
<tr>
<td>3. Characteristics of included studies</td>
<td>46</td>
</tr>
<tr>
<td>4. Risk of bias assessment across included studies</td>
<td>56</td>
</tr>
<tr>
<td>5. Summary of results - incidence of brain metastases and survival- extracted from the RCTs on NSCLC included in this systematic review and meta-analysis (PCI versus no PCI)</td>
<td>64</td>
</tr>
<tr>
<td>6. Assessment of the quality of the evidence for each outcome using GRADE</td>
<td>72</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

PCI: Prophylactic Cranial Irradiation
RCT: Randomized Controlled Trial
CI: Confidence Interval
WHO: World Health Organization
SD: Standard Deviation
HR: Hazard Ratio
OR: Odds Ratio
PRISMA: Preferred Reporting Items for Systematic reviews and Meta-Analyses
GRADE: Grading of Recommendations, Assessment, Development, and Evaluation
QOL: Quality of Life
NCF: Neurocognitive Function
RTOG: Radiation Therapy Oncology Group
ECOG: Eastern Cooperative Oncology Group
VALG: Veterans Administration Lung Cancer Group
SWOG: Southwest Oncology Group
SCLC: Small Cell Lung Cancer
NSCLC: Non-Small Cell Lung Cancer
HVLT: Hopkins Verbal Learning Test
OS: Overall Survival
DFS: Disease-Free Survival
RT: Radiation Therapy
CT: Chemotherapy
WBRT: Whole Brain Radiation Therapy
KPS: Karnofsky Performance Status

LS: Limited Stage

ES: Extensive Stage

Gy: Gray

F: Fraction

ALL: Acute Lymphoblastic Leukemia
CHAPTER 1

INTRODUCTION

1.1. Epidemiology of lung cancer

Lung cancer is among the most common malignancies worldwide. It is predicted to be the second most commonly diagnosed cancer in 2016 in the United States, second to breast cancer in women and prostate cancer in men. It is also the most common cause of cancer deaths in men and women in the United States, accounting for more than one-quarter of cancer deaths \(^1\). Tobacco smoking was and continues to be the overwhelming risk factor for lung cancer, with 80-90% of lung cancer cases attributable to smoking \(^2\). Lung cancer incidence rates started declining in the mid-1980s in men and in the mid-2000s in women, paralleling the decreasing rates of tobacco use which occurred at different time points in men and in women \(^1\).

Non-small-cell lung cancer (NSCLC) accounts for approximately 80 to 85% of lung cancer \(^3,4\).

1.2. Brain metastases in lung cancer

The brain is a frequent site of metastasis in both small cell lung cancer (SCLC) and NSCLC. The advances that have been made in the past two decades, in particular the use of multimodality therapy, effective systemic therapy and optimization of radiation therapy, have resulted in improved locoregional and systemic control, and have led to increasing
proportion of patients with brain metastases. The brain is indeed considered a sanctuary site, with the presence of the blood-brain barrier preventing the passage of most systemic treatments.

As a matter of fact, the brain has been reported across multiple studies as the first site of failure after curative treatment in 14-28% of patients with NSCLC with a higher risk of brain metastases in the setting of adenocarcinoma and large cell carcinoma (non-squamous histologies) and stage IIIB (as compared to stage IIIA). Table 1 summarizes finding from these studies on brain metastases in NSCLC. Brain metastases can be devastating to the patient, leading to impaired quality of life (QOL), impact on neurocognitive function (NCF), potential life-threatening conditions, and decreased survival. Therefore, attempts to decrease their incidence are crucial, based on the premise that preventative treatment might have an impact on survival and QOL.

Multiple prognostic indices, such as the RTOG recursive partitioning analysis (RPA) and Graded Prognostic Assessment (GPA) have been developed and validated in patients with brain metastases to help guiding treatment. These indices incorporate different factors such as age, Karnofsky Performance Status (KPS), extracranial metastases, and number of metastases. The response rate to whole brain radiation therapy (WBRT) is only 50%, and survival for lung cancer patients who develop brain metastases remain dismal, with a median of 3-18 months, despite advances in the treatment of these brain metastases.

1.3. Prophylactic cranial irradiation: A historical perspective

The rationale behind prophylactic cranial irradiation is that the brain is a sanctuary site,
and most systemic therapies are not able to reach it due to the presence of the blood-brain barrier. Prophylactic cranial irradiation was first introduced in the 1960s in the treatment of acute lymphoblastic leukemia (ALL) to target the subclinical malignant cells in the central nervous system, and led to improvement in DFS and OS \(^{22-24}\). Intrathecal chemotherapy has now replaced PCI in ALL, after a meta-analysis demonstrated that PCI and intrathecal therapy led to similar outcomes \(^{25}\), and PCI was associated with more potential late complications, such as neurotoxicity, endocrinopathies, and intellectual detriment, as well as secondary brain neoplasms \(^{26-29}\), complications that are of particular concern in this curable population of pediatric patients.

Nowadays, current indications for PCI are few: selected cases of high-risk childhood ALL and acute myelogenous \(^{30,31}\), highly aggressive Philadelphia-chromosome positive adult ALL with (in the GMALL PH-01 study, ClinicalTrials.gov Identifier: NCT01724879), limited-stage (LS) \(^{32}\) and extensive stage (ES) SCLC \(^{33}\).

1.4. **Prophylactic cranial irradiation in LS- and ES-SCLC**

Prophylactic cranial irradiation (PCI) is currently recommended in the management of small cell lung cancer based on a large body of evidence (Table 2).

The use of PCI in LS-SCLC was started in 1977 \(^{34}\), and was shown to decrease the risk of brain metastasis substantially, and to improve OS of SCLC patients in complete remission based on randomized controlled trials \(^{35-41}\) and an individual-patient-data-based meta-analysis by Auperin et al \(^{32}\). In this meta-analysis, PCI was shown to significantly reduce the rate of brain metastasis by 54% (59% versus 33% at 3 years, i.e. an absolute decrease of 25%, \(p\) –value < 0.001) In patients with SCLC, which translated into a
significant 5.4% benefit in 3-year OS with PCI (15.3% versus 20.7%) \(^{32}\). An RCT by the European Organisation for Research and Treatment of Cancer (EORTC) Lung Cancer Group also demonstrated that PCI is beneficial in patients with ES-SCLC with complete or partial response to chemotherapy in terms of DFS (HR, 0.76 in favor of PCI; 95% CI 0.59-0.96) and OS (HR, 0.68; 95% CI 0.52-0.88) \(^{33}\). It also reduces the incidence of symptomatic brain metastases from 40.4% in the control group to 14.6% in the PCI group at one year (HR, 0.27; 95% CI 0.16-0.44). The benefit-risk ratio of PCI in SCLC was also addressed and, despite some neurotoxicity, PCI was shown to offer better quality-adjusted life expectancy than no PCI \(^{42}\).

1.5. **Prophylactic cranial irradiation: Timing, techniques and dose**

The optimal timing for initiation of PCI has been investigated but not settled. In the Auperin meta-analysis for SCLC, the time between initiation of induction therapy and PCI (<4 months, 4–6 months, >6 months) had no effect on the risk of death, although there was a significant trend (\(p\)-value=0.01) toward a greater effect of prophylactic cranial irradiation on the incidence of brain metastasis in patients randomized sooner after induction therapy than in those randomized later \(^{32}\). Similarly, in a more recent single-institution retrospective study, early administration of PCI (<4 months) in SCLC led to a decrease in the rate of brain metastases compared to later administration of PCI, but no OS benefit \(^{43}\). Also, a pooled analysis from four phase II or III North Central Cancer Treatment Group trials reached the same conclusion \(^{44}\). As far as timing of PCI in NSCLC is concerned, a retrospective study indirectly addressed this question, as it randomized 134 patients with stage IIIB NSCLC to induction chemotherapy followed by chemoradiation or definitive
chemoradiation. 13.8% developed brain metastases in the induction therapy group, as compared to only 3.9% in the upfront chemoradiation group (p-value = 0.03), suggesting a benefit from earlier PCI use without delay caused by induction protocols.

Nowadays, and in the absence of level I evidence, PCI is typically started 4 to 6 weeks after completion of induction chemotherapy or chemoradiation.

Radiation to the intracranial content (planning target volume) is administered with the use of two opposed lateral fields with a linear accelerator (4 to 18 MV). Each field is treated 5 times per week, and doses are commonly prescribed to midline.

Different fractionations have been tried for PCI in SCLC, to a total dose ranging from 8 to 40 Gy. Examples of fractionations used include: 25 Gray (Gy) in 10 fractions, 30 Gy in 10 fractions, 40 Gy in 20 fractions, 8-36 Gy in 1-18 fractions. The Auperin et al. meta-analysis indirectly compared different doses in limited-stage SCLC, and showed a dose-effect relationship with PCI. The incidence of brain metastases was indeed reduced by 24%, 48%, 66%, and 73% with a total dose of 8 Gy, 24–25 Gy, 30 Gy, and 36–40 Gy, respectively. This finding led to a dose-escalation trial, RTOG 0212, randomizing standard-dose PCI (25 Gy) to high-dose PCI (36 Gy) in 720 SCLC patients in complete remission. Unexpectedly, the arm receiving higher dose PCI had worse survival than the standard-dose arm, with a 5% survival difference at 2 years (37% in the higher-dose group versus 42% in the standard-dose group), and no significant difference in the 2-year incidence of brain metastases. A PCI dose of 25 Gy is now considered standard of care in SCLC.

1.6. Prophylactic cranial irradiation: Potential toxicities and strategies to prevent them
Prophylactic and therapeutic cranial irradiation is certainly not innocuous. Sheline’s report in the 1980s was the first to subdivide radiation-induced brain injury into acute (early, during radiation), subacute (up to six months post-radiation therapy), and late effects (chronic, more than six months post-radiation therapy) \(^{48,49}\).

Acute encephalopathy, consisting of headache, nausea, vomiting and fever with onset during treatment, occurs almost exclusively if high dose per fraction is used, and not with the conventionally used dose of 3 Gy or less per fraction \(^{50,51}\). This acute effect has been linked to edema formation secondary to blood-brain barrier disruption, due to apoptosis of endothelial cells \(^{52-55}\). Corticosteroids can help in treating these symptoms.

Subacute complications include somnolence syndrome, which symptoms are transient and include excessive sleepiness, drowsiness and anorexia, mainly documented in children receiving PCI for ALL \(^{56,57}\), or in adults receiving definitive doses of radiation therapy (45 – 55 Gy) for primary brain tumors \(^{58,59}\). Another subacute effect is impairement in verbal memory function 6-8 weeks after PCI completion as demonstrated by Welzel et al. \(^{60}\).

Late or chronic effects are the most dreaded of all radiation-induced injuries, as they are usually irreversible. Molecular mechanisms underlying the development of these chronic effects are inflammation \(^{61,62}\), hypoxia with vascular endothelial growth factor upregulation \(^{63,64}\), and neurogenesis inhibition \(^{65}\). This cascade of events can lead to radiation-induced demyelination and leukoencephalopathy that can occur months to years after irradiation \(^{49}\), as well as radiation necrosis \(^{66}\). In long-term SCLC survivors, PCI has been shown to result in progressive ventricular dilatation or cerebral atrophy up to 8 years after therapy completion, and slow decline in neurocognitive function \(^{67,68}\).
The incidence and severity of radiation-induced toxicities do not only depend on radiation dose, but also on some patient-related factors, such as age, chemotherapy and existing comorbidities. In RTOG 0212, age (> 60 years) was the most significant predictor for the development of chronic neurotoxicity (p-value = 0.005). Pre-existing medical conditions, such as hypertension, have also been shown to accelerate vascular radiation damage. Also, all of the patients treated with PCI usually received preceding chemotherapy, which also plays a role in cognitive impairment.

Some strategies have been tested to potentially mitigate the neurocognitive complications of brain irradiation. One of them is the use of neuroprotective drugs, such as angiotensin-converting enzyme inhibitors, angiotensin type-1 receptor blockers, erythropoietin, and lithium, all of which have been tested in vivo. Two of these potential neuroprotective drugs, memantine and donepezil, deserve special mention, as they have both been investigated in phase III clinical trials. The effectiveness of memantine, an N-Methyl-D-aspartate receptor antagonist, in reducing cognitive dysfunction has been tested in the phase III trial, RTOG 0614. There was a trend toward less decline in the primary endpoint of delayed recall at 24 weeks with memantine as compared to placebo. This result did not reach statistical significance though (p-value= 0.059), probably because of significant drop-out, resulting in a statistical power of 35% only. Also, the patients on the memantine arm had significantly longer time to cognitive decline, and better results in executive functioning and processing speed. Also, donepezil, a reversible acetylcholine esterase inhibitor, has been tested in a phase III trial in 198 adult brain tumor survivors, and although it did not show significant improvement in the overall composite cognitive score (primary endpoint), it showed significant benefit over placebo in some specific cognitive
functions, such as memory, as well as motor speed and dexterity. One of the limitations of this study was the low dose of donepezil used (10 mg per day), given that studies on patients with moderate-to-severe Alzheimer’s disease showed significantly greater cognitive benefits with higher doses of donepezil 23 mg/day than donepezil 10 mg/day.

Another strategy to avoid cognitive dysfunction, and more specifically short-term memory loss, is hippocampal-avoidance PCI. It uses conformal radiation therapy to avoid neural stem cells in the hippocampal dentate gyrus, which are mitotically active and radiosensitive, and are responsible for formation of new memories. This technique was tested in the phase II cooperative trial RTOG 0933, which showed significant memory preservation with hippocampal avoidance cranial irradiation, whereby relative decline in Hopkins Verbal Learning Test–Revised Delayed Recall (HVLT-R DR) at 4 months was 7% in the experimental arm, which was significantly lower than pre-specified historical control of patients with brain metastases treated without hippocampal avoidance. An ongoing trial, NRG-CC003 (ClinicalTrials.gov Identifier: NCT01780675), is currently examining the role of hippocampal avoidance in the setting of PCI for SCLC specifically.

1.7. Prophylactic cranial irradiation in NSCLC: Aim of the current systematic review

To date, prophylactic cranial irradiation has not been shown to be associated with superior survival and is not routinely recommended in the management of NSCLC. A Cochrane review was published in 2005, that included four randomized controlled trials (RCTs) comparing prophylactic cranial irradiation (PCI) to observation in non-small-cell lung cancer patients treated with a curative intent. Authors included the Veterans
Administration Lung Cancer Group (VALG) trial\textsuperscript{86}, Umsawasdi et al\textsuperscript{87}, the Radiation Therapy Oncology Group 84-03 (RTOG 84-03) trial\textsuperscript{46}, and the Southwest Oncology Group (SWOG) trial\textsuperscript{88} were included in this review. Search dates were from 1966 to December 2004. This review showed that PCI significantly reduced the incidence of brain metastases in three of the four RCTs, but no survival benefit was observed in any of the four studies. No meta-analysis of the data was performed in this systematic review, because of heterogeneity in the four randomized controlled trials that were included, as stated by the authors\textsuperscript{46,85–88}.

The current paper aimed at systematically reviewing the benefits and harms of PCI in patients with NSCLC treated with a curative intent and carrying out a meta-analysis taking into account the new RCTs published after December 2004 on the matter at hand. We attempted to address as well the effect of PCI on quality of life and neurocognitive function in patients with NSCLC, an issue that was not tackled in the above-mentioned Cochrane review. We were also planning to perform subgroup analyses to evaluate the effect of PCI on survival in highest risk patients, in an attempt to evaluate subsets of patients in whom PCI might be beneficial.

1.8. **Thesis Objectives**

To systematically review the benefits and harms of PCI with a curative intent in patients with NSCLC.

(1) Examine whether PCI reduces incidence of brain metastasis as compared to no PCI in patients with non-small-cell lung cancer treated with a curative intent.

(2) Examine whether prophylactic cranial irradiation improves overall survival and
disease-free survival

(3) Examine the impact of PCI on quality of life

(4) Evaluate the effect of PCI on survival in highest risk NSCLC patients, in an attempt to evaluate subsets of patients in whom PCI might be beneficial.

1.9. **Thesis Hypothesis**

Our hypothesis is that PCI decreases the incidence of brain metastases in all patients with NSCLC, and might confer a survival advantage in highest risk NSCLC patients. The benefit-risk ratio, taking into account incidence of brain metastases, survival, neurocognitive toxicity and QOL, might be in favor of PCI only in stage III NSCLC.
CHAPTER 2
MATERIALS AND METHODS

This systematic review and meta-analysis was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A checklist of evidence-based set of items to be included in a systematic review and meta-analysis, adapted from the PRISMA statement, can be found in Appendix 1.

2.1. Protocol
Pre-specified objectives, eligibility criteria, outcomes of interest, search strategy and analysis plan were documented in a protocol, published in the PROSPERO International prospective register of systematic reviews (PROSPERO 2015: registration number CRD42015023982)\textsuperscript{89}.

2.2. Eligibility criteria
2.2.1. Type of studies:
- Inclusion criteria:
  We included all prospective randomized controlled trials, with no restriction on language, publication date or publication status (published, unpublished material and abstracts).
- Exclusion criteria:
  We excluded prospective studies that were not specifically randomizing the use of PCI.

2.2.2. Type of participants:
• Inclusion criteria:
We included trials recruiting participants with non-metastatic NSCLC of any age and stage who completed definitive locoregional therapy (a combination of surgery, and/or thoracic radiation therapy (dose >30 Gy)) with or without chemotherapy, with complete response, partial response, or stable disease after therapy were selected.

• Exclusion criteria:
We excluded studies including participants who had brain metastases upon diagnosis, who had progression or distant metastasis after locoregional therapy, or who were treated in a palliative intent.

2.2.3. Type of intervention:
Studies included compared PCI to no PCI. We did not segregate studies based on PCI dose or radiation therapy technique used.

2.2.4. Type of outcome measures:
The outcomes of interest were incidence of brain metastasis, time to brain metastasis, overall survival, disease-free survival and quality of life.

2.3. Information sources
A systematic search of the literature was conducted using the electronic databases EMBASE, MEDLINE, PubMed and the Cochrane Central Register of Controlled Trials (CENTRAL) with search dates between 1946 and February 2014, then search was updated until July 2016. No limits for language were applied. Search terms included “non-small-cell lung carcinoma”, “cranial irradiation” and “randomized controlled trials”. The
Cochrane Database for Systematic Reviews was also reviewed. We searched for ongoing trials in clinical trials registers: ClinicalTrials.gov, EU Clinical Trials Register (EU-CTR), the International Clinical Trial registry Platform (ICTRP), and the International Standard Randomised Controlled Trial Number (ISRCTN) registry, and contacted their principal investigators. The search was also guided by reference lists of published studies (trials or reviews) and pertinent books, as well as proceedings of meetings, such as abstracts from the American Society of Clinical Oncology. Experts in the field (Benjamin Movsas, MD) were consulted for information on potential unpublished data.

2.4. Search strategy

The detailed search strategy can be found in Appendix 2.

2.5. Study selection

We checked and excluded duplicate publications: duplicate of literatures retrieved from different databases using EndNote library and duplicate reporting using manual check. The title and abstracts of all papers identified were evaluated by two independent reviewers in an unblinded standardized manner, for the presence or absence of all PICO (Population, Intervention, Comparator, Outcomes) elements. The full text articles for the potentially eligible studies were retrieved and were again independently screened for eligibility by two reviewers. Studies were screened using a pre-specified screening template (Appendix 3). Disagreement between reviewers was resolved by consensus in the title and abstract screening step, and by seeking the opinion of an expert in the field in the full-text screening step.
2.6. Data collection process

We devised a data abstraction form that the two reviewers (KA and RB) used independently (Table 1 in Appendix 4). This form was pilot-tested on 2 papers, randomly selected among the included studies to check for consistency between the reviewers, and was refined accordingly. All the data extraction was performed in duplicate. Disagreements between the two reviewers were resolved by discussion. If agreement was not reached, then the senior author (FG) made the final decision, after getting in contact with trial authors in order to confirm accuracy of the information or to gather missing information. Authors were contacted by emails explaining the purpose of our review, and a reminder email was sent to those who did not reply after one week of the initial one. In case of no reply to the second email, our plan was to exclude the study for lack of adequate information, or extract data from figures. We resorted to the latter method, i.e. using Kaplan-Meier curves when this was the best available information. We also tried to get in contact with the authors of RTOG 0214 for information about the different subgroups (stage IIIA and stage IIIB, different histologies) and their outcomes. However, we did not get any response from the authors, and were therefore unable to perform meta-analyses based on histology, nor were we able to perform a meta-analysis comparing stage IIIA versus IIIB. We rather lumped all patients with stage III together (included in the three most recent trials).

2.7. Data items

Data was extracted from each one of the included trials on the following: - Study design, year of publication
- Inclusion/exclusion criteria

- Trial participants: Age, gender, performance status, stage, type of non-small-cell lung cancer with histologic confirmation of the diagnosis (adenocarcinoma, large cell carcinoma, and/or squamous cell carcinoma), type of treatment received (surgery and/or chemotherapy and/or thoracic radiation therapy)

- Intervention: Dose and fractionation of the prophylactic cranial irradiation, versus observation

- Type of outcome measures: Incidence of brain metastasis, time to brain metastasis, overall survival, disease-free survival, effect on quality of life (using a validated score), and neurocognitive function.

2.8. Summary measures

The primary measures of treatment effect in this meta-analysis are the relative risks (RR) of incidence of brain metastasis and the hazard ratios (HR) for OS and DFS comparing prophylactic cranial irradiation to observation.

Hazard ratios were derived based on Parmar et al, Spruance et al. and Guyot et al. methods. Parmar et al proposed three methods that allowed us to recalculate a HR and its standard error. First, the standard error (SE) was calculated indirectly in two studies (Li et al. and Gore et al.) that reported the HR and its 95% CI based on this equation:

\[
SE [\ln(HR)] = \frac{upper CI − lower CI}{2 \times 1.96}
\]

Second, we used the number of observed events in the intervention (Or) and control arm (Oc), the total number of observed events (O), the total randomized number of patients
in each arm (Rr, Rc), and the p-value of the log-rank test (if available) to recalculate the HR and its SE in three studies (Russel et al., Cox et al. and Miller et al.) according to these equations:

\[
\ln(\text{HR}) = \frac{O - E}{\sqrt{V_r}} \quad \text{and} \quad \text{var}[\ln(\text{HR})] = 1/V_r
\]

where: 

\[O - E = \sqrt{\frac{O \cdot r \cdot R_f}{R_c + R_r}} \cdot X \cdot Z \left(1 - \frac{p^2}{2}\right)\]

and 

\[V_r = \frac{O_c \cdot O_r}{O}\]

Third, when hazard ratios could not be derived from the information given (no number of events, total randomized number, or log-rank p-value was provided), and the only information available was a Kaplan-Meier (KM) curve, we used pixel coordinates to determine survival rates, working backwards and extracting data points from the KM curve. Umwasadi et al. did not report the p-value of log-rank test \(^87\), so the HR was estimated through analyzing the KM curve using online software (WebPlotDigitizer, a web-based tool to extract data from plots) and the equations mentioned in Parmar’s study. Although The Cochrane Handbook does not address methods for data extraction from figures \(^96\), a recently published paper has shown that extracting data from figures is more reliable than manual extraction \(^97\). The second and third methods were tested on other studies (Li et al. \(^98\) and Gore et al. \(^90,95\)) that reported HR in order to compare between reported and calculated value of HR.

2.9. Synthesis of results and assessment of heterogeneity

Analyses were carried out on an intention-to-treat basis. The meta-analyses were performed by computing RR or HR and 95% CI for each outcome using the random effect model. Statistical heterogeneity among trials was assessed using the Chi-squared tests with
significance at p-value \( \leq 0.1 \). We quantitatively assessed it using \( I^2 \), which measures the degree of inconsistency across studies in a meta-analysis. \( I^2 \) can be calculated, using the following formula, in which \( Q \) is the Cochran's heterogeneity statistic and \( df \) the degrees of freedom:

\[
I^2 = \left( \frac{Q - df}{Q} \right) \times 100\%
\]

\( I^2 \) ranges from 0-100%, with the adjectives “low”, “moderate”, and “high” arbitrarily assigned to \( I^2 \) values of 25%, 50%, and 75% respectively.\(^{99}\)

### 2.10. Additional analyses: Subgroup and sensitivity analyses

We were planning to perform a subgroup analysis to evaluate the effect of PCI on survival in highest risk patients (stage IIIA and IIIB), however it was not made possible by the available information. We were also not able to assess outcomes based on radiation therapy doses, and on NSCLC histology (squamous versus non-squamous), as not enough information was available.

Sensitivity analyses were performed, excluding older studies (before 1995), as we expected the potential benefit of PCI to be more evident in more recent studies after the introduction of cisplatin-based chemotherapy, and these latter studies to have a more rigorous methodology. Cisplatin was heralded in the 1980s as a radiosensitizing drug\(^{100–102}\), and RCTs comparing radiation therapy to sequential or concurrent chemoradiation in inoperable stage III NSCLC were undertaken in the 1990’s, showing superiority of combined treatment over RT alone in terms of local control and survival\(^{103–107}\). These trials established the role of chemotherapy, in addition to RT, as standard of care in these
patients. In the current era of lung cancer treatment, and with advances in systemic therapy and improved surgical and radiation techniques, loco-regional failure and incidence of non-brain metastasis have decreased, and more patients will live long enough to develop brain metastases.

Another sensitivity analysis was performed, including Umsawasdi et al., which was excluded from the primary analysis as its HR has been derived working backwards from the KM graph (using WebPlotDigitizer), a method that can lack precision and accuracy.

2.11. Risk of bias within studies

We used the Cochrane Collaboration’s tool for assessing risk of bias in randomized trials, and check their internal validity (Table 2 in Appendix 4). This tool covers six domains of bias: (1) Selection bias, as assessed by random sequence generation and allocation concealment, (2) Performance bias, as assessed by blinding of participants and personnel, (3) Detection bias, as assessed by blinding of outcome assessment, (4) Attrition bias, i.e. incomplete outcome data, (5) Reporting bias due to selective outcome reporting, (6) Other biases due to problems not covered elsewhere\textsuperscript{108}. We looked for selective reporting within studies by comparing the outcomes reported in the published report to the outcomes outlines in the protocol, if available, or in abstracts of presentations that preceded publication of the study.

Two independent reviewers assigned a judgment of high, low, or unclear risk of bias for each of these six domains, and then provided a summary assessment for the risk of bias for each study. We did not exclude studies based solely on the risk of bias.
2.12. Risk of bias across studies

We used the funnel-plot method to assess and correct for publication bias. We assessed symmetry of the funnel plot visually and formally using Egger’s test. We acknowledge however that asymmetry in funnel plots could be due to various factors other than publication bias, such as selective outcome reporting, differences in trial quality or true heterogeneity in intervention effect.

2.13. Assessment of the quality of evidence

The quality of evidence was assessed for the outcomes of incidence of brain metastases, OS, DFS and QOL/NCF. Appraisal was carried using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. This instrument allows us to determine the extent to which one can be confident that an effect estimate truly represents reality. It depicts five factors that can lead to rating down the quality of evidence and three factors that can lead to rating up the quality of the evidence, from a starting point determined by study design. High likelihood of bias, inconsistency (heterogeneity, $I^2$), indirectness of evidence (indirect population, intervention, control, outcomes), imprecision (wide confidence intervals) and presence of publication bias can all lead to downgrading of evidence. If, to the contrary, a large magnitude of effect is demonstrated, or a dose response relationship is shown, or all plausible confounding would reduce a demonstrated effect or suggest a spurious effect when results show no effect, then the quality of the body of evidence will be upgraded. Based on this appraisal, the body of evidence can be classified into four levels of quality (high, moderate, low or very low) for each outcome of interest \cite{109,110}. 

CHAPTER 3

RESULTS

3.1. Study selection

We identified a total of 3,550 records through systematic search of the electronic databases EMBASE, MEDLINE, PubMed and the Cochrane Central Register of Controlled Trials (CENTRAL), as well as oncology meetings proceedings and references from previous reviews on the topic, with search dates between 1946 and July 2016. After removal of duplicate records, 2,741 records were retained. These articles’ titles and abstracts were screened, and 19 records were retained at the end of this first screen. The remaining articles were excluded, as some were not targeting the study population of interest, for example patients with malignancies other than lung cancer (breast cancer, renal cancer, etc.), or patients with lung cancer with brain metastasis at diagnosis treated in a palliative intent; also, few studies were on SCLC and not NSCLC. Other abstracts were excluded because the intervention studied was whole brain radiation therapy for metastatic brain lesions and not as a prophylactic measure. Excluded also were abstracts of review articles on lung cancer and prophylactic cranial irradiation.

We retrieved the full text articles (some were only in the form of abstract) for 19 citations. Some of the articles were then excluded, as they were not RCTs. When multiple reports for the same RCT were found (or results were only reported in abstract form), we only retained the most recent report with the most updated results, unless different outcomes were reported in the different manuscripts or abstracts. Reasons for exclusion in
the final stages were: different fractionation for thoracic irradiation (and not brain irradiation) (n=1), pilot phase II study (n=1), preliminary reports/abstracts of RCT (n=4, only final and updated reports, even if in abstract form, were included in the meta-analysis), review article (n=1), use of PCI not randomized (n=3).

Of note, the trial by Pottgen et al. 111 was excluded (it was erroneously included in the systematic review by Xie et al. 112 as an RCT), as the administration of PCI was not based on a random allocation. In this trial, randomization was performed on two curative treatment options, and patients in one of the two arms all received PCI.

Eight reports (of six studies) were included in the qualitative analysis, and only seven of them in the quantitative analysis (one of these reports is an updated report, in abstract form, of an earlier study). Among these eight reports, two reported QOL measures, and the other seven reported on outcomes relating to incidence of brain metastasis as well as survival outcomes.

3.2. Study characteristics

The six studies (eight reports) included in this systematic review and meta-analysis are all prospective randomized controlled trials.

Table 1 details for each of these studies the design, characteristics of participants, with inclusion and exclusion criteria, the treatment modality used as a curative treatment for these NSCLC patients, specifics about the intervention and control arm, the outcomes assessed, as well as potential funding and conflicts of interest.

A total of 1,373 patients with NSCLC were included in this meta-analysis. Most of these patients were males (62-77%), and most had a Karnofsky Performance Status of more
than 70% or an Eastern Cooperative Oncology Group Performance Status (ECOG PS) of 0 or 1, indicating that most patients were ambulatory and able to care for self.

All of the included studies mandated histological or pathological confirmation of the diagnosis of NSCLC. Most patients had stage III disease: exclusively stage III in Li et al. 98, Gore et al. 90, and Miller et al. 88; 87% stage III in Umsawasdi et al. 87, and more than 70% in Russel et al 46.

There were some important differences across trials. First, distribution of NSCLC histologies (adenocarcinoma, squamous cell carcinoma and other histologies) differed markedly from one study to the other, some such as Li et al. included predominantly adenocarcinoma 98, while others such as Miller et al. had more squamous cell carcinomas 88.

Curative treatment preceding PCI administration also differed between trials, some of which could be considered suboptimal, based on today’s standards of care, including old radiation therapy (RT) techniques, inadequate dose of thoracic RT, and suboptimal or no chemotherapy in a setting where it would have been indicated nowadays. The details of the curative therapy used in Umsawasdi et al. were discussed in another publication 113; it consisted of chemoradiation as a definitive treatment for 63 patients (thoracic RT to a dose of 50 Gy in 25 fractions), and a combination of surgical resection, chemotherapy, and thoracic RT for the remaining 34 patients. The patients in Cox et al. either received primary “short-course” lung RT (42 Gy in 15 fractions), or “intermediate-course” lung RT (50 Gy in 25 fractions), with no chemotherapy 86. Russel et al. allowed primary thoracic RT alone (without chemotherapy) to 60 Gy in 30 fractions, or resection of all gross intrathoracic disease followed by post-operative RT (50 Gy in 25 fractions) 46. None of the patients in Miller et al. underwent surgery 88. They were either treated with thoracic RT alone (58 Gy
in 29 fractions) or with neoadjuvant chemotherapy, followed by thoracic RT and adjuvant chemotherapy. RTOG 0214 allowed all potentially curative therapy, defined as high-dose thoracic RT ( >30 Gy) or surgery. Neoadjuvant, adjuvant or concurrent chemotherapy was permitted, as well as pre- or post-operative RT. Finally, all patients in the study by Li et al. had complete resection (pneumonectomy in 15%, lobectomy in 84%, and bilobectomy in 1% of patients) followed by adjuvant chemotherapy.

Most studies mandated a radionuclide/radioisotopic brain scan, a CT scan of the brain, or an MRI of the brain after completion of curative treatment and prior to study entry. Miller et al. though did not mention the need for a pre-treatment brain imaging in the study. Most studies used 30 Gy (in 10 or 15 fractions) as total dose for PCI, except the first 34 patients in Miller et al. who received 37.5 Gy in 15 fractions, and the patients in Cox et al. who were treated with 20 Gy in 10 fractions. The comparative arm in the 6 studies included consisted of observation after potentially curative treatment.

Outcomes studied are incidence of brain metastases in all 6 studies, overall survival in 4 studies, disease-free survival in 2 studies, time to development of brain metastasis in 3 studies, QOL in 2 studies, and NCF in one study. Heterogeneity between studies was also seen in the different follow-up protocols. Some protocols required brain imaging only if symptoms developed, whereas others ordered them routinely every 6 months even without symptoms. Miller et al. did not detail the investigations to be performed as part of the monthly follow-up visits after treatment completion.
3.3. Risk of bias assessment

Risk of bias assessment across all studies is shown in Figure 2 and detailed in Table 2. Only two studies had adequate random sequence generation: In Russel et al., the “randomization scheme described by Zelen” was used, and in Li et al, a minimization method with stratification was used. In the 4 other studies, the randomization method was unclear, making selection bias a possibility. As for allocation concealment, it was properly performed and detailed in 4 out of studies: Russel et al. (by RTOG headquarters), Cox et al. (centrally by telephone to the Statistical center at Statistical center at Frontier Science and Technology Research Foundation), and Li et al. (by an independent provider by telephone). It was not properly documented in the other two studies.

Blinding of participants and personnel was not feasible when testing such an invasive procedure, and all of the studies were “open-label”. Blinding of outcome assessment was also not performed across all studies, but detection bias is not a concern as the outcomes of brain metastases and death are objective. Incomplete patient data was improperly addressed in two trials; three patients were excluded from the intervention group in the trial by Umsawasdi et al., and one of these three patients developed brain metastasis. In the trial by Cox et al, a significant number of patients refused PCI and loss of these patients might have been related to the trial's outcome measures, thus possibly introducing attrition bias. Intention-to-treat analysis was performed in four out of six trials (Gore et al., Li et al., Russel et al., and Miller et al.), and incomplete outcome data was adequately assessed in these trials. Only one study (RTOG 0214) had predefined outcomes specified in a published protocol on www.rtog.com and clinicaltrials.gov, thus obviating
the risk of reporting bias. All other studies were at high risk of reporting bias as no protocols were found despite extensive search.

3.4. Results of individual studies and synthesis of results

3.4.1. Incidence of brain metastasis

All six individual studies included in the quantitative analysis demonstrated a reduction in the incidence of brain metastases with PCI as compared to observation, some were significant and others were not: 4% with PCI versus 14% with observation in Umsawasdi et al. \( (p=0.02) \), 9% vs. 19% in Russel et al. \( (p=0.1) \), 1% vs. 11% in Miller et al. \( (p=0.003) \), 6% vs.13% in Cox et al. \( (p=0.038) \), 17.3% vs. 26.8% (at 5 years) in Gore et al. \( (p=0.02) \), 20.3% vs. 49.9% (at 5 years) in Li et al \( (p<0.001) \) (Table 5).

The results of these six studies were combined in a meta-analysis (Figure 3), including 657 patients in the PCI arm and 630 patients in the observation arm. PCI was associated with a significant reduction in the rate of brain metastases as compared with those who did not receive PCI \( (OR = 0.31; 95\% CI: 0.20–0.46; p<0.001) \). There was minimal heterogeneity among included studies \( (Chi^2 = 5.43, df = 5, p = 0.37, I^2 = 8) \). Figure 4 shows the inverted funnel plot regarding the outcome of incidence of brain metastases. Its symmetry was checked visually, and no publication bias was detected.

3.4.2. Overall survival

Figure 5 and Table 5 show six RCTs that were included in the meta-analysis for OS. The overall HR showed no survival benefit for PCI in the non-small-cell lung cancer patients compared to patients who did not have PCI \( (HR=1.08, 95\% CI: 0.90–1.31; \)
There was moderate heterogeneity among included studies ($\chi^2 = 9.31$, df= 5, $p = 0.10$, $I^2 = 46\%$). Figure 6 shows the funnel plot where no publication bias is detected regarding the included studies for the OS outcome.

We performed a sensitivity analysis including Umsawasdi et al., which was excluded from the primary analysis as its HR has been derived working backwards form the KM graph, a method that can lack precision and accuracy (Figure 7). However, the conclusion did not differ, and the point estimate and CI were very close to the ones from the primary analysis (HR=1.08, 95 % CI: 0.91 – 1.27; $p=0.39$).

Another sensitivity analysis including studies published after 1995\textsuperscript{88,90,98}, when platinum-based chemotherapy, added to RT, became the standard of care for locoregionally advanced NSCLC\textsuperscript{103–107} (Figure 8). The three studies in this sensitivity analysis included patients with stage III NSCLC exclusively. There was also no difference in overall survival between PCI and no PCI (HR=1.05, 95 % CI: 0.74 – 1.49; $p=0.79$).

### 3.4.3. Disease-free survival

Two studies (3 reports) reported on DFS\textsuperscript{90,94,115}, and were combined in a meta-analysis including 244 patients with stage III NSCLC in the PCI arm versus 252 in the no PCI arm (Figure 9).

In RTOG 0214 initial report, the 1-year DFS rates were 56.4% and 51.2% for PCI and observation arms, respectively ($p$-value = 0.11). In the study’s updated report (in abstract form only), the 5-year DFS was 18.5% for PCI versus 14.9% for observation ($p$-value = 0.13), and HR for observation versus PCI was 1.20 (95% CI, 0.95-1.52) (according to KM curve included in Gore’s presentation related to the abstract).
In Li et al. study, DFS was the primary endpoint. The 3-year and 5-year DFS were, respectively, 42.0% and 26.1% with PCI, and 29.8% and 18.5% with observation. The median DFS was significantly longer in the PCI group (28.5 months, 95% CI 21.9–35.1) compared with the control group (21.2 months, 95% CI 15.0–27.4).

The meta-analysis demonstrated significantly improved DFS with PCI (HR, 0.67; 95% CI 0.46–0.98; \( p = 0.037 \)). There was no heterogeneity among included studies (\( \chi^2 = 0.92, \text{df} = 1, p = 0.34, I^2 = 0\% \)).

### 3.4.4. Time to brain metastasis

Three studies reported on the time to brain metastases. In Umsawasdi et al. trial, the median time to brain metastasis was delayed in the PCI group (50.5 weeks in the PCI group versus 23 weeks in the control group, \( p\text{-value} = 0.002 \)) \(^{87}\). In Cox et al., the median time for development of brain metastases was prolonged from 29 weeks in the observation group to 34 weeks in the PCI group (statistical significance not reported) \(^{86}\). In Russel et al., PCI use also appeared to delay the onset of brain metastasis (no specific information provided) \(^{46}\).

### 3.4.5. Brain metastasis as first site of recurrence – Relapse pattern

Three of the included studies report on the patterns of failure. In Umsawasdi et al., the brain was the first site of relapse in 12 out of 14 patients in the control arm who developed brain metastasis, and in none of the 2 patients who developed brain metastases in the PCI arm \(^{87}\). In Gore et al., brain metastasis as a component of first failure occurred in 23% of patients not receiving PCI versus 10% of patients receiving PCI, and brain metastasis as the only failure was reported in 21.5% (no PCI arm) versus 9.1% (PCI arm).
In the trial by Li et al., the crude 5-year brain relapse as first site of recurrence was 33.3% in the no PCI arm and 9.9% in the PCI arm (p-value<0.001).

3.4.6. Toxicities, QOL and NCF analysis: a systematic review

Reported acute toxicities from PCI include epilation and acute skin reaction. Other acute toxicities mentioned in the trial by Li et al. were grade 3 headache (1%) and fatigue (2%).

Most trials report on the late toxicities, with more or less details. In the trial by Miller et al., it is reported that there were “no excess neurological toxicities” in patients treated with PCI as compared to those in the observation arm, however the definition of neurological toxicity was unclear. In Umsawasdi et al., no late neurological complications were noted although there was no formal neurologic assessment. In RTOG 0214, 4 patients in the PCI developed Grade 3 late toxicities (syncope, weakness, fatigue), but there was no late toxicity greater than Grade 3. Similarly, in Li et al., the main late toxicities were moderate headache or great lethargy (11.1%), severe headache (2.5%), Grade 3 skin atrophy (one patient), and grade 3 fatigue (one patient). Toxicities were not addressed in the trial by Cox et al.

Late neurological complications from PCI and QOL have only been formally studied in 2 trials. As these two studies used different QOL tools, it is impossible to combine them in a meta-analysis.

In the RCT by Li et al., QOL analysis can be found in the supplemental material. QoL was assessed by means of the Functional Assessment of Cancer Therapy-Lung (FACT-L) questionnaire for 129 out of 156 randomized patients (70 in the PCI arm, 59 in
the observation arm). No significant differences in QOL deterioration were found between the two groups.

QOL analysis for RTGO 0214 was performed using the European Organisation for Research and Treatment of Cancer (EORTC) core tool (QOL Questionnaire-QLQC30) and brain module (QLQBN20)\textsuperscript{114}. There were no statistically significant differences at 6 or 12 months in any component of the EORTC-QLQC30 or QLQBN20 scale ($p$-value > 0.05) as compared to baseline, although there was a trend towards greater decline in patient-reported cognitive functioning in the PCI arm (unadjusted $p$-value = 0.02 at 6 months, adjusted $p$-value= 0.24). Similarly, there was no significant difference in NCF deterioration as determined by MMSE between the 2 arms, except at 3 months ($p$-value= 0.04). In the Activity of Daily Living Scale (ADLS), the percentage of patients who remained independent at 12 months is not different between the two arms ($p$-value= 0.88). The only significant difference in the NCF analysis was in the Hopkins Verbal Learning Test (HVLT), whereby patients who received PCI had greater deterioration in immediate recall ($p$-value= 0.03) and delayed recall ($p$-value= 0.008) at 1 year.

3.5. Quality of evidence evaluation using the GRADE framework

We applied the Grading of Evidence, Assessment, Development and Evaluation (GRADE) approach to the principal patient-important outcomes. Results are summarized in Table 3. The quality of evidence was rated down to “moderate” for the outcomes of incidence of brain metastases and overall survival because of the important risk of bias in three out of six studies included in the meta-analysis. As for the disease-free survival
outcome, the quality of the body of evidence was graded as “high”, as the evidence was direct, precise, consistent, and free of biases.
CHAPTER 4

DISCUSSION

4.1 Review and discussion of findings

The present systematic review and meta-analysis showed that PCI significantly decreased the incidence of brain metastases in NSCLC (by 70%), improved disease-free survival in stage III patients, had no effect on overall survival, imparted some radiation-induced cognitive impairment, but had no impact on QOL.

4.1.1. Prophylactic cranial irradiation and incidence of brain metastases

As already shown in previous systematic review and meta-analysis, our study showed that PCI decreases significantly the rates of brain metastases in patients with NSCLC as compared with no PCI (OR = 0.31, 95% CI 0.20-0.46). A previous meta-analysis by Xie et al., which did not include the RCT by Li et al., showed similar results, i.e. that PCI reduced the risk of brain metastases as compared with non-PCI in NSCLC patients (OR = 0.30, 95% CI, 0.21–0.43).

4.1.2. Prophylactic cranial irradiation and survival

Our meta-analysis showed no significant difference in overall survival between the PCI and control arms (HR = 1.08, 95% CI, 0.91-1.27), whereas Xie et al. meta-analysis showed a detrimental effect on OS of NSCLC patients with a HR of 1.19 (95% CI, 1.06–1.33, p=0.004). We argue in the next section (4.2) that Xie’s methodology seems to be flawed and some HRs erroneously reported, leading to a wrong conclusion.

A non-randomized, population-based study using the Surveillance, Epidemiology,
and End Results (SEER) database also addressed the effect on PCI on survival in NSCLC patients and is worth mentioning. It included a total of 17,852 patients with NSCLC, among whom only 1.8% received PCI as part of their treatment. No statistically significant difference in survival was shown between the patients who received PCI and those who did not (HR, 1.04; 95% CI, 0.93-1.16), even in subgroups of patients at higher risk of brain metastases (patients younger than 60 years, adenocarcinoma histology, or stage IIIB). In this meta-analysis, we were unable to perform subgroup analysis because in most trials, results were not stratified by histology, stage, and response to induction chemotherapy (if applicable).

4.1.3. Prophylactic cranial irradiation and impact on QOL and NCF

A sequential association between neurocognitive effects and QOL decline was demonstrated after whole brain radiotherapy in patients with brain metastases. It was shown that neurocognitive deterioration preceded QOL decline by 9-153 days. Such an association has not been duplicated in the setting of PCI. Although RTOG 0214 showed a decline in NCF based on HVLT-DR with PCI, there were no significant differences in QOL between the patients who received PCI and those who did not.

Although not addressing the issue of prophylactic cranial irradiation exclusively, it is interesting to discuss the results from the multicenter trial by Pottgen et al., which compared two different locoregional treatment strategies in patients with operable stage III NSCLC. In the first arm, patients underwent surgery followed by adjuvant thoracic RT. In the second arm, therapy consisted of induction chemotherapy, followed by concurrent chemoradiation and then surgery. All patients in the second arm received PCI (30 Gy in 10
fractions). One has to be careful in interpreting results pertaining to PCI use in this trial, as this was not the original aim of the trial, and patients randomized to arm 2 received a more aggressive locoregional treatment (trimodality approach) than patients in arm 1. PCI reduced the rate of brain metastasis as first site of failure, and the overall brain relapse rate. There was no significant difference in neurocognitive performance between the PCI and observation arms\textsuperscript{111}. This is the only study, besides RTOG 0214 (included in our meta-analysis)\textsuperscript{114} that reported on NCF in the setting of PCI for NSCLC.

Another study by Gondi et al. was not included in this systematic review as it pooled QOL and NCF results from two RTOG randomized studies: RTOG 0214 (already included in this review), and RTOG 0212\textsuperscript{47}, which is discussed in the introduction of the current review, and randomized patients with limited-stage SCLC to standard-dose versus higher-dose PCI. PCI was associated with a higher risk of decline in self-reported cognitive functioning (SRCF) at 6 months (OR 3.60, 95% CI 2.34-6.37, P<0.0001) and 12 months (OR 3.44, 95% CI 1.84-6.44, P<0.0001). PCI was also associated with a significant decline on HVLT-Recall and HVLT-Delayed Recall at 6 and 12 months, but was not closely correlated with decline in SRCF at the same time points (P=0.05 and P=0.86, respectively). PCI was not associated with a decline in global health status/QOL or any other EORTC QLQ-C30 symptom or functional scales. Age >60 years was associated with higher rates of HVLT- DR decline at 12 months\textsuperscript{115}.

These results show that PCI-induced cognitive decline is not only captured on formal memory testing like HVLT but is also, and more importantly, self-reported, and thus experienced by the patient.
4.2. Critique of existing systematic reviews and meta-analysis on the use of PCI in NSCLC

The first systematic review on PCI in NSCLC was undertaken by the Cochrane Collaboration. Two of the limitations of this Cochrane review were the absence of meta-analysis due to heterogeneity of the trials included at that time, and the fact that it was not updated since 2010. As a matter of fact, after the paper was published in 2005, new literature searches by the Cochrane group were performed, last one in May 2010, and therefore it does not include the two most recent RCTs: Gore et al. (RTOG 0214), and Li et al. When the review was last updated, RTOG 0214 was only published in the abstract form, and the studies on the impact of PCI on QOL and NCF were not yet published.

Another systematic review and meta-analysis by Brown et al. was found in abstract form (two abstracts). The search performed by the authors and a librarian does not seem to be systematic. In the methods section of the abstract, it is mentioned that databases were searched using the search terms: "prophylactic cranial irradiation" AND "non-small cell lung carcinoma", and that 112 citations were retrieved. We argue that this search strategy does not seem to be exhaustive, and would not really capture all abstracts/manuscripts on the topic, as evidenced by the small number of retrieved studies. Also, they chose as one of their primary outcomes one-year survival, compromising the data to a single survival estimate at one point in time, instead of taking the entire survival curve into consideration by using HRs.

In another systematic review and meta-analysis by Xie et al., the authors included a study by Pottgen et al. which is a randomized controlled trial, but is not randomizing the use
of prophylactic cranial irradiation specifically. Inclusion of this trial introduces a flaw in the methodology of this meta-analysis. Another flaw is in ‘Figure 4’, a forest plot evaluating the role of PCI on OS, by pooling HRs from six studies (including the non-randomized trial of Pottgen et al.). In this forest plot, some of the hazard ratios included were improperly reported. For example, they incorrectly reported a HR of 1.07 favoring observation for Gore et al.\textsuperscript{90,95}, where they should have used the inverse of this ratio, as the reference used in the statistical analyses by Gore et al. was the PCI group and not the observation group (i.e. authors reported HR of observation versus PCI, and not PCI versus observation). The title of this meta-analysis by Xie et al. “Prophylactic Cranial Irradiation May Impose a \textbf{Detrimental Effect} on Overall Survival of Patients with Non-small Cell Lung Cancer” is based on this forest plot where some of the HRs seem to be incorrect, threatening the validity of the meta-analysis (low-quality evidence). The HRs we obtained using a more rigorous methodology showed no survival detriment nor benefit from PCI (HR, 1.08, 95\% CI 0.91-1.27). Also, the RCT by Li et al.\textsuperscript{98} was not included in Xie systematic review because it was published in 2014.

\textbf{4.3. Limitations and strengths of the current systematic review}

Our systematic review and meta-analysis is unique, as the methodology used is rigorous, the literature search thorough and exhaustive, and it includes the most recent trials, one of which (Li et al.) was not included in any of the previously mentioned reviews. Our study also fills a knowledge gap: it is the only meta-analysis done on stage III patients specifically (although formal subgrouping – stage III versus I-II and stage IIIB versus IIIA, pre-specified in the protocol, was not made possible by the available data), a group whom
we thought might benefit more from PCI. We believed that the therapeutic ratio of benefits versus risks might have been more advantageous in this group of patients than in patients with earlier stage NSCLC, as their propensity for brain metastases is much greater. Results of our meta-analysis showed otherwise, and even in this specific subset of patients, PCI seems to have no overall survival benefit, but had a significant disease-free survival benefit.

As part of the limitations, we were not able to perform subgroup analysis as most corresponding authors did not answer our e-mails. For instance, we asked for results stratified by stage (stage IIIA vs stage IIIB) in Gore et al., as well as NSCLC histology, but our request was left unanswered (two e-mails sent).

In Cox et al., 13% of the patients included had SCLC, and results were provided for NSCLC and SCLC separately for the endpoints of incidence of brain metastases and time-to-brain metastasis, but not for the endpoints of overall survival. This could have introduced a small error in the reporting for OS, which has probably been diluted when combining all the trials together in the meta-analysis shown in Figure 6.

Another limitation of our study is that in the current targeted therapy era, some of the drugs, such as erlotinib and gefitinib can effectively cross the blood-brain barrier and reduce the incidence of brain metastases in NSCLC \(^{119-125}\), thus potentially lessening the reported effect of PCI on the incidence of brain metastases and maybe dampening the disease-free survival benefit.

4.4. Literature gaps, ongoing trials, and future directions

PCI was definitely shown to change the failure pattern of NSCLC, from failing in the brain first to failing outside of the brain. However, more information is needed from RCTs
to determine whether a specific subset of patients might derive a survival benefit from PCI. Patients at high risk of brain metastases include: (1) Patients with superior sulcus tumors, also known as Pancoast tumors, who have a 40% risk of failing in the brain\textsuperscript{126,127}, (2) Patients with operable stage IIIA-N2 NSCLC and with non-squamous histology\textsuperscript{7,128,129} (We need another study like Li et al.\textsuperscript{98} but adequately powered, or to be combined in a meta-analysis with the results from Li et al.), and (3) Patients with a complete pathological response to neoadjuvant therapy - in a study by Chen et al., 43\% of patients developed brain metastases as first site of failure, and 55\% of patients developed brain metastases at some point in their clinical course\textsuperscript{130}. Other literature gaps include the impact of PCI on QOL and NCF, topics on which only insufficient evidence exists.

In order to determine whether our unanswered questions were being addressed, we searched four large clinical trial registries on August 10\textsuperscript{th}, 2016 for any ongoing or completed trials relevant to our review for their potential inclusion in this manuscript or future versions of the manuscript. We searched the North American (http://clinicaltrials.gov/), European (https://www.clinicaltrialsregister.eu), World Health Organization (WHO) (http://apps.who.int/trialsearch/), and BMC (http://www.isrctn.com/) trial registries. Our search yielded seven trials relevant to our review.

Of the seven trials captured by this search, one was completed with its results posted in October 2015 (NCT00048997) and its results are already included in this meta-analysis\textsuperscript{90,95,114}. A Chinese trial entitled “Prophylactic Cranial Irradiation (PCI) Versus no PCI in Non Small Cell Lung Cancer After a Response to Chemotherapy” (NCT00745797) was opened in 2008 and terminated back in January 2014 due to slow accrual and lack of funding.
Another trial from the Netherlands had a “completed” status in April 2015 (NCT01282437), with no published reports yet. This trial is interesting in that it randomized only stage III (III A and IIIB) patients to PCI or no PCI, and is examining development of symptomatic brain metastases as a primary endpoint, and time to development of neurological symptoms, side effects from PCI, and QOL/NCF (NCT01290809) as secondary endpoints. We marked this trial for tracking to follow up on its results as soon as they are available for inclusion in future updates of our review.

Two other trials had an “ongoing but not recruiting” status, a Chinese study NCT02448992: “Hippocampal-Sparing Prophylactic Cranial Irradiation in Pathologically Nodal Positive Non-Small-Cell Lung Cancer” and a Mexican study NCT01603849: “Prophylactic Cranial Irradiation in Patients With Lung Adenocarcinoma With High Risk of Brain Metastasis”, in January and February 2016 respectively. We also marked these two trials for tracking for future inclusion in updated versions of our review. It is interesting that one is trying to maximize the benefit-risk ratio by attempting to minimize the neurocognitive side effects of PCI, and the other is looking at a high-risk group, i.e. patients with a high-risk histology, adenocarcinoma.

Of the two remaining trials, one had a “recruiting” status back in July 2010 (Chinese trial NCT01158170: Prophylactic Cranial Irradiation in Erlotinib/Gefitinib-responders With Non-small Cell Lung Cancer (NSCLC)) while the other had a “not yet recruiting” status in January 2010 (Korean trial NCT00955695: “A Randomized, Phase III Trial of Prophylactic Cranial Irradiation (PCI) in Patients With Advanced Non-small Cell Lung Cancer (NSCLC) Who Are Nonprogressive on Gefitinib or Erlotinib”. This trial is reserved for stage IIIB and IV NSCLC). Both trials have no reported results and their
statuses on clinicaltrials.gov have not been updated since 2010.

The Dutch (NCT01282437/ NCT01290809) and the Mexican (NCT01603849) ongoing studies reported above both address QOL and NCF, and might allow us in future versions of this review to perform a meta-analysis for QOL and NCF outcomes, by pooling their results with results from the trials by Li et al. 98, and Sun et al. 114, already included in the current review. The main issue with QOL/NCF outcomes is that different trials are using various instruments for QOL and NCF assessment, which might preclude pooling these results in a meta-analysis.

Tools should be developed to determine patients at the highest risk of brain metastasis based on a combination of factors. In the paper by Li et al., a mathematical model was devised to predict the risk of brain metastasis, based on the number of metastatic lymph nodes, the surgical resection evaluation, histology, region of lymph node metastases, TNM stage, and adjuvant chemotherapy.

The following formula was reproduced from the supplementary material from Li et al. paper:

\[
\text{Logit (p)} = 8.215 - 0.903 \times (\text{number of metastatic lymph node}) - 0.872 \times (\text{surgical resection evaluation}) - 0.714 \times (\text{histology}) - 1.893 \times (\text{region of lymph node metastases}) - 0.948 \times (\text{TNM stage}) - 1.034 \times (\text{adjuvant chemotherapy})
\]

Scoring is as follows: number of metastatic lymph node (NML) is 1 if NML is less than 4, 2 if NML ranges from 4 to 6, and 3 if NML is more than 6; surgical resection evaluation (SRE) is 1 for complete resection, 2 for incomplete resection; histology is 1 for squamous, 2 for non-squamous; region of lymph node (LN) metastases is 1 for L1, 2 for L2 and L3; TNM stage is 1 for IIIA, 2 for IIIB; adjuvant chemotherapy is 0 for no
chemotherapy, and 1 for chemotherapy. Finally, \( P=1-p, \) and \( P \geq 0.44 \) predicts for a high risk of brain metastases.”

Similar instruments could be devised to enroll patients in future clinical trials on the matter, since only a highly selected subset of patients with NSCLC will most likely derive benefit from the addition of PCI.

4.5. Conclusion and recommendations

In summary, PCI in NSCLC does not confer an overall survival benefit. In the case of stage III NSCLC patients, this meta-analysis has shown that PCI improves DFS, but not OS. Authors believe that the benefit-risk ratio is still not clearly in favor of its use. However, it continues to be investigated extensively as evidenced by the significant number of ongoing clinical trials on the matter. Many questions remain unsettled and more research is needed on this topic. It would be important to incorporate prospective NCF testing in all future studies. Research should focus on the high-risk patient population discussed above, and efforts to identify other high-risk groups based on genetic profile and predictive biomarkers should be pursued. Also, should novel and emerging targeted therapies improve the survival of NSCLC patients, then PCI should be reconsidered seriously, especially if the strategies being investigated to reduce the late neurotoxicity associated with its use (such as hippocampal avoidance and/or neuroprotective drugs) prove to be beneficial.

If the number of RCTs increases enough (10 studies or more) to be able to perform regression analysis, then a meta-regression could be valuable to examine the impact of different study variables on the effect size. In a meta-regression, as in other regression analyses, an outcome is predicted based on one or more explanatory variables. The
difference is that in a meta-regression the explanatory variable is a study characteristic, and the outcome is an effect estimate $^{131}$. Finally, an individual patient data meta-analysis would be of great value. It should include only the most recent trials, and would need to be conducted after new data becomes available, as its importance would be to perform subgroup analysis based on histology, stage (IIIA versus IIIB), modality of curative treatment, and pathological response to induction chemotherapy if applicable.

Patients in the high-risk groups should be allowed to make an informed decision, based on the above body of evidence. Caution should be taken in discussing possible risks associated with PCI, especially in elderly people, and in patients with other comorbidities, who might be at higher risk of developing neurocognitive dysfunction. High-risk patients should be encouraged to enroll in clinical trials
<table>
<thead>
<tr>
<th>Study (author, year)</th>
<th>Number of Participants</th>
<th>Curative treatment received</th>
<th>Brain as the first site of failure</th>
<th>Any brain failure</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Albain et al. (1995)</strong></td>
<td>101</td>
<td>CT/RT: 12</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT /RT/Surgery: 89</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Kumar et al. (1996)</strong></td>
<td>63</td>
<td>CT/RT: 17</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT/RT/surgery: 46</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Cox et al. (1999)</strong></td>
<td>1765</td>
<td>RT only: 1415</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT/RT: 350</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Histology</strong></td>
<td>RT only</td>
<td>RT + CT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Squamous Cell</td>
<td>11 %</td>
<td>8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adenocarcinoma</td>
<td>20 %</td>
<td>16 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Large Cell</td>
<td>18 %</td>
<td>16 %</td>
</tr>
<tr>
<td><strong>Keller et al. (2000)</strong></td>
<td>470</td>
<td>RT only: 234</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT/RT: 236</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Andre et al. (2001)</strong></td>
<td>267</td>
<td>Primary Surgery: 186</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Induction CT/surgery: 81</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Post-op CT in 10 patients and RT in 160 patients)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Brain Metastases:**

- Component of systemic failure: 7%
- Isolated: 19%

<table>
<thead>
<tr>
<th>Study (author, year)</th>
<th>Number of Participants</th>
<th>Curative treatment received</th>
<th>Brain as the first site of failure</th>
<th>Any brain failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Brain Metastases:**

- Component of systemic failure: 11%
- Isolated: 13%
<table>
<thead>
<tr>
<th>Study</th>
<th>Enrollment</th>
<th>CT/RT</th>
<th>CT/RT/Surgery</th>
<th>Histology</th>
<th>Resection</th>
<th>Non-resection</th>
<th>Stage of disease</th>
<th>CT/RT/Surgery</th>
<th>CT/RT/Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Law et al. (2001)</td>
<td>42</td>
<td>11</td>
<td>31</td>
<td>Squamous</td>
<td>17 %</td>
<td>0 %</td>
<td>Stage IIIA</td>
<td>33 %</td>
<td>43 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Non-squamous</td>
<td>32 %</td>
<td>40 %</td>
<td>Stage IIIB</td>
<td>19 %</td>
<td>25 %</td>
</tr>
<tr>
<td>Robnett et al. (2001)</td>
<td>142</td>
<td>53</td>
<td>89</td>
<td>Brain Metastases:</td>
<td>8 %</td>
<td>39 % at 2 yrs</td>
<td>CCRT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Component of systemic failure</td>
<td></td>
<td></td>
<td>20 % at 2 yrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Isolated</td>
<td>11 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carolan et al. (2005)</td>
<td>83</td>
<td>67</td>
<td>16</td>
<td>24.6 % (95% CI: 14.7% - 41.1%) at 2 yrs</td>
<td>34.2 % (95% CI: 4.5% - 47.7%) at 2 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Abbreviations:** NSCLC: Non-small-cell lung cancer; CT: Chemotherapy, RT: radiation therapy, CI: Confidence interval
**TABLE 2:** Randomized controlled trials and a meta-analysis evaluating the role of PCI in patients with limited-stage and extensive-stage SCLC who responded to chemotherapy

<table>
<thead>
<tr>
<th>Study (author, year)</th>
<th>Number of participants</th>
<th>PCI dosage (dose in Gy per fractions)</th>
<th>Brain Metastases Rates</th>
<th>Survival (median survival in months or overall survival rates)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Observation arm (No PCI)</td>
<td>Intervention arm (PCI)</td>
</tr>
<tr>
<td><strong>Limited-stage SCLC</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroney et al. (1983)</td>
<td>29</td>
<td>30 Gy : 10 F</td>
<td>36 % (overall)</td>
<td>0 %</td>
</tr>
<tr>
<td>Ohonoshi et al. (1993)</td>
<td>46</td>
<td>40 Gy : 20 F</td>
<td>52 % (overall)</td>
<td>22 % (overall)</td>
</tr>
<tr>
<td>Arriagada et al. (1995)</td>
<td>300</td>
<td>24 Gy : 8 F</td>
<td>67 % at 2 yrs</td>
<td>40 % at 2 yrs</td>
</tr>
<tr>
<td>Wagner et al. (1996)</td>
<td>31</td>
<td>25 Gy : 10 F</td>
<td>50 % (overall)</td>
<td>20 % (overall)</td>
</tr>
<tr>
<td>Gregor et al. (1997)</td>
<td>314</td>
<td>8-36 Gy : 1-18 F</td>
<td>54 % at 2 yrs</td>
<td>30 % at 2 yrs</td>
</tr>
<tr>
<td>Laplanche et al. (1998)</td>
<td>211</td>
<td>24-30 Gy : 8-10 F</td>
<td>51 % at 4 yrs</td>
<td>44 % at 4 yrs</td>
</tr>
<tr>
<td>Auperin et al. (1999)</td>
<td>987</td>
<td>8-40 Gy : 1-20 F</td>
<td>58.6 % at 3 yrs</td>
<td>33.3 % at 3 yrs</td>
</tr>
<tr>
<td><strong>Extensive-stage SCLC</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slotman et al. (2007)</td>
<td>286</td>
<td>20-30 Gy : 5-10 f</td>
<td>40.4 % at 1 yr</td>
<td>14.6 % at 1 yr</td>
</tr>
<tr>
<td>Seto et al. (2014)</td>
<td>163</td>
<td>25 Gy : 10 f</td>
<td>58 % at 1 yr</td>
<td>32.4 % at 1 yr</td>
</tr>
</tbody>
</table>

**Abbreviations:** SCLC: Small cell lung cancer; PCI: prophylactic cranial irradiation; Gy: Gray; F: Fraction
FIGURE 1: PRISMA Flow Diagram

Records identified through database searching (n = 3,548)

Additional records identified through other sources (n = 1)

Records after duplicates removed (n = 2,740)

Records screened (n = 2,740)

Records excluded (n = 2,721)

Full-text articles assessed for eligibility (n = 19)

Full-text articles excluded (n = 10)
- Thoracic irradiation (and not brain irradiation) (n=1)
- Pilot phase II study (n=1)
- Preliminary reports/abstracts of RCT (n=4)
- Review article (n=1)
- Use of PCI not randomized (n=3)

Studies included in qualitative synthesis (n = 6 studies, 8 reports)

Studies included in quantitative synthesis (meta-analysis) (n = 6 studies, 7 reports)
<table>
<thead>
<tr>
<th>Study name (Author, year)</th>
<th>Study design and follow-up methods</th>
<th>Participants (N, age, gender, performance status, NSCLC stage and histology)</th>
<th>Treatment modality used as curative treatment</th>
<th>Inclusion/exclusion criteria</th>
<th>Intervention (PCI technique and dose)</th>
<th>Control arm</th>
<th>Outcomes assessed (with outcome measures)</th>
<th>Funding and conflicts of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umsawasdi T, 1984</td>
<td>Randomized 2-arm trial. Radionuclide brain scan or CT scan of the brain if neurological symptoms developed Follow-up protocol not clear</td>
<td>100 patients with locally advanced non-small cell lung cancer (3 excluded) - Any age - Any performance status - 13% stage I/II, 87% stage III - 36% squamous cell carcinoma, 48% adenocarcinoma, 16% other histologies “Most patients were male, had good performance status, and minimal pretherapy</td>
<td>Combined chemoradiotherapy either as the sole treatment for active disease or as an adjuvant therapy Thoracic RT not described</td>
<td><strong>Inclusion criteria:</strong> Patients with locally advanced NSCLC with normal bone marrow, liver, and renal functioning <strong>Exclusion criteria:</strong> Not clear</td>
<td>PCI (30Gy/10F/2 weeks)</td>
<td>Observation</td>
<td>Incidence of brain metastases, time to development of brain metastases, and survival reported Significant reduction in the incidence of brain metastases with PCI (4% versus 27%, p= 0.02) PCI significantly prolonged time to brain metastases (50.5 weeks versus 23 weeks, p=0.02) No significant difference in survival</td>
<td>Supported in part by Grant CA 05831 Project 9A from the National Cancer Institute, NIH, USPHS, DHHS, Bethesda, Maryland and by Bristol Laboratories, Syracuse, New York COI: Not reported</td>
</tr>
<tr>
<td>Study name</td>
<td>Study design and follow-up methods</td>
<td>Participants (N, age, gender, performance status, NSCLC stage and histology)</td>
<td>Treatment modality used as curative treatment</td>
<td>Inclusion/exclusion criteria</td>
<td>Intervention (PCI technique and dose)</td>
<td>Control arm</td>
<td>Outcomes assessed (with outcome measures)</td>
<td>Funding and conflicts of interest</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------</td>
<td>----------------------------------------------------------------------------</td>
<td>---------------------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>-------------------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Russel AH, 1991</td>
<td>Randomized 2-arm trial. Clinical assessment every 3 months. CT head in all patients surviving 7.5 months from PCI completion, and in any patient developing new neurological symptoms</td>
<td>187 patients with adenocarcinoma or large cell carcinoma of the lung clinically confined to the chest: -161 patients with inoperable or unresectable adenocarcinoma or large cell carcinoma of the lung confined to the chest who received primary thoracic RT (55-60Gy/30F/6 weeks) -26 patients with resected adenocarcinomas and large cell carcinomas of the lung who received post-operative RT (50Gy/25F/5 weeks) following resection of all gross intrathoracic</td>
<td>&quot;weight loss.&quot;</td>
<td>Inclusion criteria: Patients with inoperable or unresectable adenocarcinoma or large cell carcinoma of the lung confined to the chest as well as patients with resected adenocarcinomas and large cell carcinomas of the lung</td>
<td>PCI (30Gy/10F/2 weeks) (PCI given concurrently with the sixth fraction of chest irradiation)</td>
<td>Observation</td>
<td>Incidence of brain metastases, median, 1- and 2-year OS reported</td>
<td>Funding: Not reported COI: Not reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study name (Author, year)</td>
<td>Study design and follow-up methods</td>
<td>Participants (N, age, gender, performance status, NSCLC stage and histology)</td>
<td>Treatment modality used as curative treatment</td>
<td>Inclusion/exclusion criteria</td>
<td>Intervention (PCI technique and dose)</td>
<td>Control arm</td>
<td>Outcomes assessed (with outcome measures)</td>
<td>Funding and conflicts of interest</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------------------------------</td>
<td>---------------------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
<td>-------------</td>
<td>--------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Miller TP, 1998</td>
<td>Randomized 2x2 factorial design (4-arm trial)</td>
<td>254 patients with unresectable stage III</td>
<td>Arm 1: Chest RT alone (58Gy/29F/6 weeks)</td>
<td>Inclusion criteria: Inoperable limited stage (stage III) NSCLC; limited stage = &quot;unresectable&quot;</td>
<td>PCI 37.5Gy/15F/3 weeks (first 34 patients) or 30Gy/15F/3</td>
<td>Observatio n</td>
<td>Incidence of brain metastases and median survival</td>
<td>Supported in part by PHS Cooperative Agreement grants awarded by the National Cancer Institute</td>
</tr>
<tr>
<td></td>
<td>Monthly follow-up</td>
<td>Arm 2: Chest RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No chemotherapy was given concurrently with primary radiation therapy for unresectable disease (so treatment was not optimal).

Although the time adjusted incidence of brain metastases did not significantly differ between the treatment arms, the administration of PCI did appear to delay the onset of late brain metastasis.

Patients (19%) randomized to receive chest irradiation subsequently developed brain metastases, whereas 8 of 93 (9%) randomized to receive PCI developed brain metastases (p = 0.10).
<table>
<thead>
<tr>
<th>Study name (Author, year)</th>
<th>Study design and follow-up methods</th>
<th>Participants (N, age, gender, performance status, NSCLC stage and histology)</th>
<th>Treatment modality used as curative treatment</th>
<th>Inclusion/exclusion criteria</th>
<th>Intervention (PCI technique and dose)</th>
<th>Control arm</th>
<th>Outcomes assessed (with outcome measures)</th>
<th>Funding and conflicts of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cox JD, 1981</strong></td>
<td>Randomized 4-arm trial. Clinical assessment and CXR every 410 patients with locally advanced NSCLC and SCLC</td>
<td>NSCLC - Median age: 61 (29-78) - Females: 23% - ECOG PS 0-1: 89% - Stage III: 100% - 52% squamous cell carcinoma, 31% adenocarcinoma, 17% large cell carcinoma</td>
<td>+ PCI Arm 3: Chest RT + CT (adjuvant and neoadjuvant CT) Arm 4: Chest RT + CT + PCI</td>
<td>disease confined to a single hemithorax, and/or ipsilateral hilar, mediastinal, or supraclavicular LNs, and encompassable in a single radiation port”, KPS&gt;60, ECOG PS&lt;2, normal myocardial function, kidney function and bone marrow reserves</td>
<td>PCI 20Gy/10F/2 weeks</td>
<td>Incidence of brain metastases, time to brain metastases and median survival</td>
<td>Supported in part by the Veterans Administration and grant CA 23415-02 awarded by the National Institute, DHHS COI: Not reported</td>
<td></td>
</tr>
<tr>
<td>Study name (Author, year)</td>
<td>Study design and follow-up methods</td>
<td>Participants (N, age, gender, performance status, NSCLC stage and histology)</td>
<td>Treatment modality used as curative treatment</td>
<td>Inclusion/exclusion criteria</td>
<td>Intervention (PCI technique and dose)</td>
<td>Control arm</td>
<td>Outcomes assessed (with outcome measures)</td>
<td>Funding and conflicts of interest</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>-------------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Any age</td>
<td>Arm 2: Intermediate course + PCI (lung: 50Gy/25F/5 weeks; brain: 20 Gy/10F/2 weeks)</td>
<td>KPS&gt;50, normal radionuclide brain scans</td>
<td></td>
<td></td>
<td>Significant reduction in the incidence of brain metastases with PCI (6% versus 13%, p= 0.038)</td>
<td>reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- KPS&gt;50</td>
<td>Arm 3: Short-course irradiation (lung: 42Gy/15F/3 weeks)</td>
<td>Exclusion criteria: SCV or contralateral hilar LNs, bloody or malignant pleural effusion, previous RT or chemotherapy</td>
<td></td>
<td></td>
<td>Time to brain metastases: 34 weeks versus 29 weeks.</td>
<td>Significant improvement in median survival with PCI (35.4 weeks versus 41.4 weeks, p=0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No details on stage</td>
<td>Arm 4: Short course + PCI (lung: 42Gy/15F/3 weeks; brain: 20 Gy/10F/2 weeks)</td>
<td></td>
<td></td>
<td></td>
<td>No formal assessment of QOL or toxicity</td>
<td>No formal assessment of QOL or toxicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 40% squamous cell carcinoma, 10% adenocarcinoma, 17% large cell carcinoma, 20% other NSCLC histologies and 13% SCLC</td>
<td>The 2 thoracic RT schedules were combined for statistical analysis of PCI effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cancer Institute, and by an Interagency Agreement between the Veterans Administration and the National Cancer Institute. No. Y01-CM-70107 COI: Not reported</td>
</tr>
<tr>
<td></td>
<td>Radionuclide brain scan if neurological symptoms developed</td>
<td>87 patients excluded out of 410 patients entered into the study (Analysis based on 323 patients)</td>
<td>Thoracic RT schedules and technique (2D) would not be considered optimal by modern standards.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>42/323 patients had SCLC (excluded from this review)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study name (Author, year)</td>
<td>Study design and follow-up methods</td>
<td>Participants (N, age, gender, performance status, NSCLC stage and histology)</td>
<td>Treatment modality used as curative treatment</td>
<td>Inclusion/exclusion criteria</td>
<td>Intervention (PCI technique and dose)</td>
<td>Control arm</td>
<td>Outcomes assessed (with outcome measures)</td>
<td>Funding and conflicts of interest</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>-------------</td>
<td>------------------------------------------</td>
<td>----------------------------------</td>
</tr>
</tbody>
</table>
| Gore EM, 2010 (updated analysis in an abstract form in 2012) Sun A, 2010 (NCF and QOL analysis) | Randomized 2-arm trial All patients had evaluation of NCF and QOL at baseline. NCF was reassessed at 3, 6, 12, 18, 24, 30, 36, and 48 months and then yearly. QOL was assessed, and brain imaging was performed at 6, 12, 24, 36, and 48 months and then yearly. Patients were observed in follow-up at 6 months from start of PCI, every 6 months for 2 | 356 patients with locally advanced NSCLC  - Median age: 62 (39-84)  - Females: 38%  - ECOG PS 0-1: 96%  - Stage III: 100% (Stage IIIA (54%) to IIIB (46%)) with stable disease or better (i.e., complete response or partial response) after potentially curative therapy - 32% squamous cell carcinoma, 33% adenocarcinoma | Potentially curative therapy, defined as high-dose thoracic radiation therapy (RT; ie, >30 Gy) or surgery. Radiation could be given with or without neoadjuvant, adjuvant, or concurrent chemotherapy. Pre- or postoperative RT and/or chemotherapy were allowed | **Inclusion criteria:** Patients with locally advanced NSCLC of stages IIIA to IIIB who have ‘a stable disease or better (ie, complete response or partial response) after potentially curative therapy, defined as high-dose thoracic radiation therapy (RT; >30 Gy) or surgery’ and with ‘no evidence of progressive intrathoracic disease, brain metastases, or extra-cranial metastases’  
**Exclusion criteria:** Acute or subacute grade >3 toxicities from previous therapy that did not | PCI (30Gy/15F/3 weeks) | Observatio n | 1-year and 5-year survival, DFS, incidence of brain metastasis, NCF, and QOL  
No significant difference in 1-year overall survival (75.6% with PCI vs 76.9%, p=0.86), and 5-year overall survival (26.1% with PCI vs 24.6%, p=0.57, abstract only)  
No significant difference in 1-year DFS (56.4% with PCI vs 51.2%, p=0.11), and 5-year DFS (18.8% with PCI vs 14.9%, p=0.13, abstract only) | No funding  
COI: An author (James A. Bonner) indicated a financial or other interest relevant to the subject matter |
<table>
<thead>
<tr>
<th>Study name (Author, year)</th>
<th>Study design and follow-up methods</th>
<th>Participants (N, age, gender, performance status, NSCLC stage and histology)</th>
<th>Treatment modality used as curative treatment</th>
<th>Inclusion/exclusion criteria</th>
<th>Intervention (PCI technique and dose)</th>
<th>Control arm</th>
<th>Outcomes assessed (with outcome measures)</th>
<th>Funding and conflicts of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>years, and then yearly.</td>
<td>.6% large cell carcinoma, and 29% other NSCLC histologies</td>
<td>decrease to grade &lt;2 at the time of enrollment</td>
<td></td>
<td></td>
<td></td>
<td>Significant decrease in 1-year (7.7% with PCI vs 18%, p=0.004), and 5-year incidence of brain metastases (17.3% with PCI vs 26.8%, abstract only)</td>
<td>Only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No significant difference in QOL as assessed by EORTC-QLQC30 or QLQBN20 (p&gt;0.5)</td>
<td>No significant differences in MMSE (p=0.60) or ADLS (p=0.88). Greater decline in immediate and delayed recall for the HVLT in the PCI arm at 1 year.</td>
</tr>
<tr>
<td>Study name (Author, year)</td>
<td>Study design and follow-up methods</td>
<td>Participants (N, age, gender, performance status, NSCLC stage and histology)</td>
<td>Treatment modality used as curative treatment</td>
<td>Inclusion/exclusion criteria</td>
<td>Intervention (PCI technique and dose)</td>
<td>Control arm</td>
<td>Outcomes assessed (with outcome measures)</td>
<td>Funding and conflicts of interest</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>-------------------------------------------------</td>
<td>-----------------------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>-----------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Li N, 2015</td>
<td>Randomized 2-arm trial</td>
<td>MRI of the brain and baseline evaluation of QOL</td>
<td>Patients were followed up every 3 months during the first 2 years after randomization, and every 6 months thereafter. Thoracic and upper abdomen CT and brain MRI scans were scheduled every 6 months after randomization for evaluation of tumor relapse/metastasis by investigators, and repeated if necessary.</td>
<td>Resection (lobectomy, bilobectomy or pneumonectomy) followed by adjuvant chemotherapy (platinum-based)</td>
<td><em>Inclusion criteria:</em> Fully resected stage IIIA–N2 NSCLC with high cerebral metastases risk (after adjuvant chemotherapy, age 18–75 years, ECOG PS 0–2, no evidence of tumor relapse. <em>Exclusion criteria:</em> Incomplete resection, previous RT or targeted therapy, other current or previous malignancies, any concurrent unstable disease, history of neurological or psychiatric disorders and pregnancy, N2 disease identified preoperatively.</td>
<td>PCI (30Gy/15F/3 weeks)</td>
<td>Observatio</td>
<td>DFS, incidence of brain metastases, OS, toxicity and QOL.</td>
</tr>
</tbody>
</table>

The interval from day 1 of the last chemotherapy cycle to PCI was 4 weeks. The median OS was significantly increased in the PCI group compared with the control group (median DFS of 28.5 months versus 21.2 months [HR, 0.67; 95% CI 0.46–0.98; p = 0.037]. Decrease in risk of brain metastases (the actuarial 5-year brain metastases rate, 20.3% versus 49.9%; HR, 0.28; 95% CI 0.14–0.57; p < 0.001).
<table>
<thead>
<tr>
<th>Study name (Author, year)</th>
<th>Study design and follow-up methods</th>
<th>Participants (N, age, gender, performance status, NSCLC stage and histology)</th>
<th>Treatment modality used as curative treatment</th>
<th>Inclusion/exclusion criteria</th>
<th>Intervention (PCI technique and dose)</th>
<th>Control arm</th>
<th>Outcomes assessed (with outcome measures)</th>
<th>Funding and conflicts of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>clinically indicated.</td>
<td></td>
<td></td>
<td>to randomization must be within 6 weeks.</td>
<td></td>
<td></td>
<td></td>
<td>was 31.2 months in the PCI group and 27.4 months in the control group (HR, 0.81; 95% CI 0.56–1.16; p = 0.310). Mild toxicities in PCI arm: headache, nausea/vomiting and fatigue. No significant differences in deterioration rate for QOL and symptoms between the two groups, as assessed by total score (OR, 0.91; 95% CI, 0.43 to 1.95; P=0.81), the FACT-L TOI (OR, 0.87; 95% CI, 0.39 to 1.95; P=0.73) and the FACT-L LCS (OR, 1.03; 95% CI, 0.56–1.99; p = 0.86).</td>
<td></td>
</tr>
<tr>
<td>Study name (Author, year)</td>
<td>Study design and follow-up methods</td>
<td>Participants (N, age, gender, performance status, NSCLC stage and histology)</td>
<td>Treatment modality used as curative treatment</td>
<td>Inclusion/exclusion criteria</td>
<td>Intervention (PCI technique and dose)</td>
<td>Control arm</td>
<td>Outcomes assessed (with outcome measures)</td>
<td>Funding and conflicts of interest</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------------------------------</td>
<td>----------------------------</td>
<td>-----------------------------------</td>
<td>------------</td>
<td>---------------------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CI, 0.46 to 2.32; P=0.94)</td>
<td></td>
<td></td>
<td>Cl. 0.46 to 2.32; P=0.94)</td>
</tr>
</tbody>
</table>

**Abbreviations:** NSCLC: Non-small cell lung cancer; PCI: prophylactic cranial irradiation; Gy: Gray; F: Fractions; CT: Computed tomography; RT: Radiation therapy; QOL: Quality of life; NCF: Neurocognitive function; COI: Conflict of interest; OS: Overall survival; ECOG: Eastern Cooperative Oncology Group; PS: Performance status; KPS: Karnofsky performance status; LN: Lymph node; DFS: Disease-free survival; HR: Hazard ratio; CI: Confidence interval; FACT-L: Functional Assessment of Cancer Therapy-Lung; OR: Odds ratio
TABLE 4: Risk of bias assessment across included studies

<table>
<thead>
<tr>
<th>Study name (Author, year)</th>
<th>Random sequence generation (Selection bias)</th>
<th>Allocation concealment (Selection bias)</th>
<th>Blinding of participants and personnel (Performance bias)</th>
<th>Blinding of outcome assessment (Detection bias)</th>
<th>Incomplete outcome data (Attrition bias)</th>
<th>Selective outcome reporting (Reporting bias)</th>
<th>Other sources of bias</th>
<th>Summary assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umsawasdi T, 1984</td>
<td>Randomization method was not specified, although it is stated that this is a “prospective randomized study”</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Not specified, yet outcomes are objective, so there is low risk for detection bias.</td>
<td>“Three of 49 patients who were randomized to receive EBI were excluded from the analysis because they did not receive EBI as planned due to scheduling error. One of these patients had CNS metastasis during their course of treatment”. The fact that three patients were excluded from the intervention group, including one who developed brain metastases (one of the main endpoints of the study), could have introduced attrition bias. It also means that intention-to-treat</td>
<td>No published protocol</td>
<td>None</td>
<td>Unclear</td>
</tr>
</tbody>
</table>

Unclear risk
<table>
<thead>
<tr>
<th>Study name</th>
<th>Random sequence generation (Selection bias)</th>
<th>Allocation concealment (Selection bias)</th>
<th>Blinding of participants and personnel (Performance bias)</th>
<th>Blinding of outcome assessment (Detection bias)</th>
<th>Incomplete outcome data (Attrition bias)</th>
<th>Selective outcome reporting (Reporting bias)</th>
<th>Other sources of bias</th>
<th>Summary assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russel AH, 1991</td>
<td>“The randomization scheme described by Zelen was used to achieve institutional balance and incorporated three patient-related stratifications: prior surgery, pretreatment KPS, and histology.”</td>
<td>Not specified</td>
<td>Not specified, yet outcomes are objective, so there is low risk for detection bias.</td>
<td>Complete outcome data on the 187 patients included: “One hundred sixty-nine patients have been followed until death.” “18 patients remain alive.” Intention-to-treat analysis: “All the analyses were based upon the intention-to-treat principle”</td>
<td>No published protocol</td>
<td>Unclear risk</td>
<td>None</td>
<td>Low</td>
</tr>
<tr>
<td>Miller TP, 1998</td>
<td>Randomization method was not specified</td>
<td>Not specified</td>
<td>Not specified, yet outcomes are objective, so there is low risk for detection bias.</td>
<td>“254 patients were entered on the study […] 28 patients were declared ineligible.” Reasons for exclusion are explained, are legitimate, and unlikely to affect</td>
<td>No published protocol</td>
<td>Unclear risk</td>
<td>None</td>
<td>Low</td>
</tr>
<tr>
<td>Study name (Author, year)</td>
<td>Random sequence generation (Selection bias)</td>
<td>Allocation concealment (Selection bias)</td>
<td>Blinding of participants and personnel (Performance bias)</td>
<td>Blinding of outcome assessment (Detection bias)</td>
<td>Incomplete outcome data (Attrition bias) Intention-to-treat analysis</td>
<td>Selective outcome reporting (Reporting bias)</td>
<td>Other sources of bias</td>
<td>Summary assessment</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------------------------</td>
<td>-----------------------------------------</td>
<td>-----------------------------------------------------</td>
<td>-----------------------------------------------</td>
<td>------------------------------------------------------------------</td>
<td>------------------------------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Cox JD, 1981</td>
<td>“Patients were centrally randomized by telephone call” Randomization method was not specified, although “central” randomization points toward an adequate randomization, however more information is</td>
<td>“Patients were centrally randomized by telephone to the Statistical center at Frontier Science and Technology Research Foundation”</td>
<td>Not specified</td>
<td>Not specified, yet outcomes are objective, so there is low risk for detection bias.</td>
<td>“410 patients were entered into the study. The analysis of brain irradiation was based on 323 patients. 87 patients were excluded; 7 had no on-site report, 27 were not eligible according to protocol criteria, 12 refused brain</td>
<td>No published protocol</td>
<td>None</td>
<td>Unclear</td>
</tr>
</tbody>
</table>

Concern can be raised that selection bias might have been introduced by this stratification, if patients with poorer performance status were excluded from tougher treatment arms. *Unclear risk*

Yet outcomes are objective, so there is low risk for detection bias. *Low risk*
<table>
<thead>
<tr>
<th>Study name (Author, year)</th>
<th>Random sequence generation (Selection bias)</th>
<th>Allocation concealment (Selection bias)</th>
<th>Blinding of participants and personnel (Performance bias)</th>
<th>Blinding of outcome assessment (Detection bias)</th>
<th>Incomplete outcome data (Attrition bias)</th>
<th>Intention-to-treat analysis</th>
<th>Selective outcome reporting (Reporting bias)</th>
<th>Other sources of bias</th>
<th>Summary assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>needed on the sequence generation.</td>
<td></td>
<td></td>
<td></td>
<td>irradiation, 10 never started treatment, 9 did not receive the assigned treatment, and 20 had unknown or inconclusive results of brain scans before treatment.”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low to unclear risk</td>
<td></td>
<td></td>
<td>Reasons for exclusion are detailed, however it is possible that imbalance might have resulted in the two arms in terms of baseline characteristics based on this high number of patients excluded. A significant number of patients refused PCI or never started treatment, and this attrition might have been related to the outcome of interest. Also, no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study name (Author, year)</td>
<td>Random sequence generation (Selection bias)</td>
<td>Allocation concealment (Selection bias)</td>
<td>Blinding of participants and personnel (Performance bias)</td>
<td>Blinding of outcome assessment (Detection bias)</td>
<td>Incomplete outcome data (Attrition bias)</td>
<td>Intention-to-treat analysis</td>
<td>Selective outcome reporting (Reporting bias)</td>
<td>Other sources of bias</td>
<td>Summary assessment</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------------------</td>
<td>-----------------------------------------</td>
<td>----------------------------------------------------------</td>
<td>-----------------------------------------------</td>
<td>-----------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| Gore EM, 2010
(updated analysis in an abstract form in 2012)
Sun A, 2010
(NCF and QOL analysis) | “Randomly assigned to either PCI or observation.” No information on method of sequence generation in manuscript. **Unclear risk** | “Patients were stratified by stage (IIIA or IIIB), histology (nonsquamous or squamous), and therapy (surgery or none) and were randomly assigned to either PCI or observation.” **Unclear risk** | Not specified **Unclear risk** | Not specified, yet outcomes are objective, so there is low risk for detection bias. **Low risk** | “Data from 340 eligible patients were analyzed as of November 2008. At the time of this analysis, there were 150 patients alive with 23.8 months of median follow-up […] and there were 17 patients alive with less than 12 months of follow-up; three of these patients withdrew consent for follow-up […] At the time of this analysis, 190 deaths had occurred of 340 evaluable patients.” | No selective outcome reporting. Predefined outcomes in a published protocol on www.rtog.com (RTOG 0214) and clinicaltrials.gov (NCT00048997) **Low risk** | None **Low risk** | **Low risk** |
<table>
<thead>
<tr>
<th>Study name (Author, year)</th>
<th>Random sequence generation (Selection bias)</th>
<th>Allocation concealment (Selection bias)</th>
<th>Blinding of participants and personnel (Performance bias)</th>
<th>Blinding of outcome assessment (Detection bias)</th>
<th>Incomplete outcome data (Attrition bias) Intention-to-treat analysis</th>
<th>Selective outcome reporting (Reporting bias)</th>
<th>Other sources of bias</th>
<th>Summary assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li N, 2015</td>
<td>“Prospective, open-label, randomized, phase III trial. Eligible patients were randomly assigned in a 1:1 ratio to receive either PCI or observation. Random assignment instructions were obtained through an independent provider by telephone. A minimization procedure was used with stratification according to ECOG PS (0 or 1 versus 2) and histology. &quot;Random assignment instructions were obtained through an independent provider by telephone. A minimization procedure was used with stratification according to ECOG PS (0 or 1 versus 2) and histology (squamous versus nonsquamous) and center.”</td>
<td>Intention-to-treat analysis as seen in CONSORT diagram</td>
<td>Not specified, yet outcomes are objective, so there is low risk for detection bias.</td>
<td>No attrition bias: The 156 patients who were randomized have been followed-up, and analyzed for safety and efficacy of PCI</td>
<td>Intention-to-treat analysis as seen in CONSORT diagram</td>
<td>None</td>
<td>Low risk</td>
<td></td>
</tr>
</tbody>
</table>

"Random assignment instructions were obtained through an independent provider by telephone. A minimization procedure was used with stratification according to ECOG PS (0 or 1 versus 2) and histology (squamous versus nonsquamous) and center.”

**Low risk**

Blinding of participants and personnel not performed: “open-label”

**High risk**

Low risk

No published protocol

**Unclear risk**

None

**Low risk**
<table>
<thead>
<tr>
<th>Study name (Author, year)</th>
<th>Random sequence generation (Selection bias)</th>
<th>Allocation concealment (Selection bias)</th>
<th>Blinding of participants and personnel (Performance bias)</th>
<th>Blinding of outcome assessment (Detection bias)</th>
<th>Incomplete outcome data (Attrition bias) Intention-to-treat analysis</th>
<th>Selective outcome reporting (Reporting bias)</th>
<th>Other sources of bias</th>
<th>Summary assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimization procedure was used as randomization method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Low risk</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: EBI: Elective brain irradiation; PCI: prophylactic cranial irradiation; ECOG: Eastern Cooperative Oncology Group; PS: Performance status
FIGURE 2: Risk of bias assessment across included studies

<table>
<thead>
<tr>
<th></th>
<th>Random sequence generation (selection bias)</th>
<th>Allocation concealment (selection bias)</th>
<th>Blinding of participants and personnel (performance bias)</th>
<th>Blinding of outcome assessment (detection bias)</th>
<th>Incomplete outcome data (attrition bias)</th>
<th>Selective reporting (reporting bias)</th>
<th>Other bias</th>
</tr>
</thead>
</table>
### TABLE 5: Summary of results - incidence of brain metastases and survival- extracted from the RCTs on NSCLC included in this systematic review and meta-analysis (PCI versus no PCI)

<table>
<thead>
<tr>
<th>Study name (Author, year)</th>
<th>Primary therapy</th>
<th>Stage</th>
<th>PCI Dose</th>
<th>N</th>
<th>PCI (+)</th>
<th>Observation</th>
<th>p</th>
<th>Median Survival (months) / Overall Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox JD, 1981</td>
<td>RT only</td>
<td>Inoperable</td>
<td>20 (2 Gy x 10)</td>
<td>281</td>
<td>7/136 (6%)</td>
<td>16/145 (13%)</td>
<td>0.038</td>
<td>8.2 months / 9.7 months</td>
</tr>
<tr>
<td>Umsawasdi T, 1984</td>
<td>Trimodality</td>
<td>I-II (13%) III (87%)</td>
<td>30 (3 Gy x 10)</td>
<td>97</td>
<td>2/46 (4%)</td>
<td>14/51 (27%)</td>
<td>0.002</td>
<td>22% (3 years) / 23.5% (3 years) / NA</td>
</tr>
<tr>
<td>Russell AH, 1991</td>
<td>RT only</td>
<td>I/III</td>
<td>30 (3 Gy x 10)</td>
<td>187</td>
<td>8/93 (9%)</td>
<td>18/94 (19%)</td>
<td>0.1</td>
<td>8.4 months / 40% (1 year) / 13% (2 years) / 8.1 months / 44% (1 year) / 21% (2 years) / 0.36</td>
</tr>
<tr>
<td>Miller TP, 1998</td>
<td>CT/RT</td>
<td>III</td>
<td>30 (2 Gy x 15) 37.5 (2.5 Gy x 15)</td>
<td>226</td>
<td>1/111 (1%)</td>
<td>13/115 (11%)</td>
<td>0.003</td>
<td>8 months / 11 months / 0.004</td>
</tr>
<tr>
<td>Gore EM, 2012</td>
<td>Trimodality</td>
<td>III</td>
<td>30 (2Gy x 15)</td>
<td>340</td>
<td>19/163 (17.3%)</td>
<td>39/177 (26.8%)</td>
<td>0.009</td>
<td>75.6% (1 year) / 26.1% (5 years) / 76.9% (1 year) / 24.6% (5 years) / 0.57</td>
</tr>
<tr>
<td>Li N, 2015</td>
<td>Surgery and CT</td>
<td>IIIA-N2</td>
<td>30 (3 Gy x 10)</td>
<td>156</td>
<td>10/81 (12%)</td>
<td>29/75 (39%)</td>
<td>&lt;0.001</td>
<td>31.2 months / 44.5% (3 years) / 27.4% (5 years) / 27.4 months / 38.7% (3 years) / 22.8% (5 years) / 0.310</td>
</tr>
</tbody>
</table>
Abbreviations: RCT: Randomized controlled trial; NSCLC: Non-small cell lung cancer; PCI: prophylactic cranial irradiation; RT: Radiation therapy; Gy: Gray; CT: Chemotherapy
FIGURE 3: Effect of prophylactic cranial irradiation on the incidence of brain metastases in 1,287 patients with non-small-cell lung cancer enrolled in six randomized controlled trials

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>PCI Events</th>
<th>PCI Total</th>
<th>No PCI Events</th>
<th>No PCI Total</th>
<th>Weight</th>
<th>M–H, Random, 95% CI</th>
<th>Odds Ratio</th>
<th>M–H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miller 1998</td>
<td>1</td>
<td>111</td>
<td>13</td>
<td>115</td>
<td>3.9%</td>
<td>0.07 [0.01, 0.56]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umsawasdi 1984</td>
<td>2</td>
<td>46</td>
<td>14</td>
<td>51</td>
<td>6.7%</td>
<td>0.12 [0.03, 0.56]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li 2015</td>
<td>10</td>
<td>81</td>
<td>29</td>
<td>75</td>
<td>22.5%</td>
<td>0.22 [0.10, 0.50]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core 2011</td>
<td>13</td>
<td>163</td>
<td>32</td>
<td>177</td>
<td>30.1%</td>
<td>0.39 [0.20, 0.78]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russell 1991</td>
<td>8</td>
<td>93</td>
<td>18</td>
<td>94</td>
<td>19.0%</td>
<td>0.40 [0.16, 0.97]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cox 1981</td>
<td>7</td>
<td>136</td>
<td>16</td>
<td>145</td>
<td>17.8%</td>
<td>0.44 [0.17, 1.10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total (95% CI)</strong></td>
<td><strong>630</strong></td>
<td><strong>657</strong></td>
<td><strong>100.0%</strong></td>
<td></td>
<td></td>
<td><strong>0.31 [0.20, 0.46]</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>41</td>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.02$; $\chi^2 = 5.43$, df = 5 ($p = 0.37$); $I^2 = 8%$

Test for overall effect: $Z = 5.71$ ($p < 0.00001$)
FIGURE 4: Inverted funnel plot for trials addressing the incidence of brain metastases

*Abbreviations:* OR, odds ratio; SE, standard error
FIGURE 5: Effect of prophylactic cranial irradiation on overall survival in 1,190 patients with non-small-cell lung cancer enrolled in five randomized controlled trials

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log(Hazard Ratio)</th>
<th>SE</th>
<th>Weight</th>
<th>Hazard Ratio IV, Random, 95% CI</th>
<th>Hazard Ratio IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox 1961</td>
<td>0.08531736</td>
<td>0.12549171</td>
<td>22.4%</td>
<td>1.09 [0.85, 1.40]</td>
<td></td>
</tr>
<tr>
<td>Gore 2011</td>
<td>-0.068</td>
<td>0.12564206</td>
<td>22.3%</td>
<td>0.93 [0.73, 1.20]</td>
<td></td>
</tr>
<tr>
<td>Li 2015</td>
<td>-0.211</td>
<td>0.18577513</td>
<td>15.6%</td>
<td>0.81 [0.56, 1.17]</td>
<td></td>
</tr>
<tr>
<td>Miller 1998</td>
<td>0.38553232</td>
<td>0.13365089</td>
<td>21.4%</td>
<td>1.47 [1.13, 1.91]</td>
<td></td>
</tr>
<tr>
<td>Russel 1991</td>
<td>0.14518842</td>
<td>0.15361250</td>
<td>18.4%</td>
<td>1.15 [0.85, 1.58]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>100.0%</td>
<td></td>
<td></td>
<td>1.08 [0.90, 1.31]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.03; Chi² = 9.17, df = 4 (P = 0.06); P = .56%

Test for overall effect: Z = 0.32 (P = 0.41)
FIGURE 6: Inverted funnel plot for trials addressing overall survival
FIGURE 7: Sensitivity analysis: Effect of prophylactic cranial irradiation on overall survival in 1,287 patients with non-small-cell lung cancer enrolled in six randomized controlled trials (Umsawasdi et al. added)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log(Hazard Ratio)</th>
<th>SE</th>
<th>Weight</th>
<th>Hazard Ratio IV, Random, 95% CI</th>
<th>Hazard Ratio IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox 1981</td>
<td>0.08531736</td>
<td>0.12649171</td>
<td>20.5%</td>
<td>1.09 [0.85, 1.40]</td>
<td></td>
</tr>
<tr>
<td>Gore 2011</td>
<td>-0.068</td>
<td>0.12664206</td>
<td>20.5%</td>
<td>0.93 [0.73, 1.20]</td>
<td></td>
</tr>
<tr>
<td>Li 2015</td>
<td>-0.211</td>
<td>0.18577513</td>
<td>13.5%</td>
<td>0.81 [0.56, 1.17]</td>
<td></td>
</tr>
<tr>
<td>Miller 1998</td>
<td>0.38553232</td>
<td>0.13395089</td>
<td>19.4%</td>
<td>1.47 [1.13, 1.91]</td>
<td></td>
</tr>
<tr>
<td>Russel 1991</td>
<td>0.14518842</td>
<td>0.15861258</td>
<td>16.3%</td>
<td>1.16 [0.85, 1.58]</td>
<td></td>
</tr>
<tr>
<td>Umsawasdi 1984</td>
<td>-0.00332238</td>
<td>0.23502592</td>
<td>9.7%</td>
<td>1.00 [0.63, 1.58]</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI) 100.0% 1.08 [0.91, 1.27]

Heterogeneity: Tau² = 0.02; Chi² = 9.31, df = 5 (P = 0.10); I² = 46%
Test for overall effect: Z = 0.85 (P = 0.39)

FIGURE 8: Sensitivity analysis: Effect of prophylactic cranial irradiation on overall survival in 722 patients with stage III non-small-cell lung cancer enrolled in three randomized controlled trials published after 1995

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log(Hazard Ratio)</th>
<th>SE</th>
<th>Weight</th>
<th>Hazard Ratio IV, Random, 95% CI</th>
<th>Hazard Ratio IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gore 2011</td>
<td>-0.068</td>
<td>0.12664206</td>
<td>35.6%</td>
<td>0.93 [0.73, 1.20]</td>
<td></td>
</tr>
<tr>
<td>Li 2015</td>
<td>-0.211</td>
<td>0.18577513</td>
<td>28.6%</td>
<td>0.81 [0.56, 1.17]</td>
<td></td>
</tr>
<tr>
<td>Miller 1993</td>
<td>0.38553232</td>
<td>0.13395089</td>
<td>34.9%</td>
<td>1.47 [1.13, 1.91]</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI) 100.0% 1.05 [0.74, 1.49]

Heterogeneity: Tau² = 0.07; Chi² = 9.02, df = 2 (P = 0.01); P = 78%
Test for overall effect: Z = 0.27 (P = 0.79)
FIGURE 9: Effect of prophylactic cranial irradiation on disease-free survival in 496 patients with stage III non-small-cell enrolled in two recent randomized controlled trials

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log[Hazard Ratio]</th>
<th>SE</th>
<th>PCI Total</th>
<th>No PCI Total</th>
<th>Weight</th>
<th>Hazard Ratio IV, Random, 95% CI</th>
<th>Hazard Ratio IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gore 2011</td>
<td>-0.1823</td>
<td>0.1206</td>
<td>163</td>
<td>177</td>
<td>71.8%</td>
<td>0.83 [0.66, 1.06]</td>
<td></td>
</tr>
<tr>
<td>Li 2015</td>
<td>-0.40048</td>
<td>0.1922</td>
<td>81</td>
<td>75</td>
<td>28.2%</td>
<td>0.67 [0.46, 0.98]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td>244</td>
<td>252</td>
<td>100.0%</td>
<td>0.78 [0.64, 0.96]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: \( \tau^2 = 0.00; \text{Chi}^2 = 0.92, \text{df} = 1 (P = 0.34); I^2 = 0\%

Test for overall effect: \( Z = 2.39 (P = 0.02)\)
TABLE 6: Assessment of the quality of the evidence for each outcome using GRAD

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No of patients</th>
<th>Effect</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Incidence of brain metastases</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RCTs</td>
<td>Serious(^1)</td>
<td>Not serious</td>
<td>Not serious</td>
</tr>
<tr>
<td><strong>OS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RCTs</td>
<td>Serious(^1)</td>
<td>Not serious(^2)</td>
<td>Not serious</td>
</tr>
<tr>
<td><strong>DFS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RCTs</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
</tr>
<tr>
<td><strong>QOL/NCF</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RCTs</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
</tr>
</tbody>
</table>
Abbreviations: GRADE, Grading of Evidence, Assessment, Development and Evaluation; CI, confidence interval; RCT, randomized controlled trial; RR, relative risk; HR, hazard ratio; DFS: Disease-free survival; OS: Overall survival; QOL: Quality of life; NCF: Neurocognitive function; HVLT: Hopkins Verbal Learning Test

1. Three out of the 6 studies included had low risk of bias; the other 3 studies had unclear risk of bias
2. $I^2$ was 46% indicating moderate level of heterogeneity. This was taken into account along with the borderline risk of bias by downgrading the level of evidence by one level. This downgrading has been applied to the risk of bias criteria.
3. The CI includes values that indicate benefit, and others that indicate harm.
APPENDIX 1: 2009 PRISMA Checklist on preferred reporting items for systematic reviews and meta-analysis

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>1</td>
<td>Identify the report as a systematic review, meta-analysis, or both.</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structured summary</td>
<td>2</td>
<td>Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review</td>
</tr>
<tr>
<td></td>
<td></td>
<td>registration number.</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rationale</td>
<td>3</td>
<td>Describe the rationale for the review in the context of what is already known.</td>
</tr>
<tr>
<td>Objectives</td>
<td>4</td>
<td>Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>design (PICOS).</td>
</tr>
<tr>
<td>METHODS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol and registration</td>
<td>5</td>
<td>Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>including registration number.</td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td>6</td>
<td>Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>status) used as criteria for eligibility, giving rationale.</td>
</tr>
<tr>
<td>Information sources</td>
<td>7</td>
<td>Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>search and date last searched.</td>
</tr>
<tr>
<td>Search</td>
<td>8</td>
<td>Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.</td>
</tr>
<tr>
<td>Study selection</td>
<td>9</td>
<td>State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>analysis).</td>
</tr>
<tr>
<td>Section/topic</td>
<td>#</td>
<td>Checklist item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Data collection process</td>
<td>10</td>
<td>Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.</td>
</tr>
<tr>
<td>Data items</td>
<td>11</td>
<td>List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.</td>
</tr>
<tr>
<td>Risk of bias in individual studies</td>
<td>12</td>
<td>Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.</td>
</tr>
<tr>
<td>Summary measures</td>
<td>13</td>
<td>State the principal summary measures (e.g., risk ratio, difference in means).</td>
</tr>
<tr>
<td>Synthesis of results</td>
<td>14</td>
<td>Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis.</td>
</tr>
</tbody>
</table>

**RESULTS**

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study selection</td>
<td>17</td>
<td>Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.</td>
</tr>
<tr>
<td>Study characteristics</td>
<td>18</td>
<td>For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.</td>
</tr>
<tr>
<td>Risk of bias within studies</td>
<td>19</td>
<td>Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).</td>
</tr>
<tr>
<td>Results of individual studies</td>
<td>20</td>
<td>For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.</td>
</tr>
<tr>
<td>Synthesis of results</td>
<td>21</td>
<td>Present results of each meta-analysis done, including confidence intervals and measures of consistency.</td>
</tr>
<tr>
<td>Risk of bias across studies</td>
<td>22</td>
<td>Present results of any assessment of risk of bias across studies (see Item 15).</td>
</tr>
<tr>
<td>Additional analysis</td>
<td>23</td>
<td>Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).</td>
</tr>
</tbody>
</table>
### DISCUSSION

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>24</th>
<th>Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limitations</td>
<td>25</td>
<td>Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).</td>
</tr>
<tr>
<td>Conclusions</td>
<td>26</td>
<td>Provide a general interpretation of the results in the context of other evidence, and implications for future research.</td>
</tr>
</tbody>
</table>

### FUNDING

| Funding                                    | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.                                                                                                                                                                                                                                                                                                                                 |


[www.prisma-statement.org](http://www.prisma-statement.org)*
APPENDIX 2: SEARCH STRATEGY

a. Database: Ovid MEDLINE(R) <1946 to February Week 3 2014>
(Then same search was run again until July 2016)

Search Strategy:

1 randomized controlled trial.pt. (363020)
2 controlled clinical trial.pt. (87529)
3 randomized.ab. (263363)
4 placebo.ab. (142471)
5 drug therapy.fs. (1664948)
6 randomly.ab. (187940)
7 trial.ab. (271136)
8 groups.ab. (1212670)
9 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 (3117256)
10 humans.sh. (13184976)
11 9 and 10 (2549148)
12 exp Lung Neoplasms/ (168804)
13 exp Carcinoma, Bronchogenic/ (39136)
14 exp Bronchial Neoplasms/ (48792)
15 exp Pleural Neoplasms/ (10809)
16 ((lung* or pulmonary or bronch* or pleura*) adj2 (carcinoma* or cancer* or tumor* or tumour* or neoplasm*)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier] (197526)
17 12 or 13 or 14 or 15 or 16 (200699)
18 exp Carcinoma, Large Cell/ (1838)
19 exp Adenocarcinoma/ (277518)
20 exp Carcinoma, Squamous Cell/ (101275)
21 (squamous adj cell adj4 (carcinoma* or cancer* or tumor* or tumour* or neoplasm*)).tw. (60223)
22 (large adj cell adj4 (carcinoma* or cancer* or tumor* or tumour* or neoplasm*)).tw. (3413)
23 adenocarcinoma*.tw. (89669)
24 (lung* or pulmonary or bronch* or pleura*).tw. (805435)
25 18 or 19 or 20 or 21 or 22 or 23 (394138)
26 24 and 25 (49473)
27 NSCLC.ti,ab. (16355)
28 exp Carcinoma, Non-Small-Cell Lung/ (30382)
29 (((non adj small) or nonsmall) adj3 ((lung* or pulmonary or bronch* or pleura*) adj3 (carcinoma* or cancer* or tumor* or tumour* or neoplasm*)).mp. (35791)
30 29 or 26 or 27 or 28 (77115)
31 exp Carcinoma, Small Cell/ (16406)
32 SCLC.ti,ab. (4694)
33  ((lung* or pulmonary or bronch* or pleura*) adj3 (small adj2 (carcinoma* or cancer* or tumor* or tumour* or neoplas*))).mp. (33394)
34  31 or 32 or 33 (47045)
35  17 or 30 or 34 (213159)
36  35 not (34 not (34 and 30)) (201358)
37  exp Cranial Irradiation/ (4108)
38  pci.tw. (11374)
39  wbrt.tw. (698)
40  ((brain or crani* or head* or skull*) adj3 (radiotherap* or irradiat* or radiat*)).mp. (13019)
41  37 or 38 or 39 or 40 (25090)
42  11 and 36 and 41 (459)

b. Database: EMBASE

<table>
<thead>
<tr>
<th>No.</th>
<th>Query</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#38 AND #1 AND #31 AND #37</td>
<td>69,210</td>
</tr>
<tr>
<td></td>
<td>#37 OR #32 OR #33 OR #34 OR #35 OR #36</td>
<td>1,435</td>
</tr>
<tr>
<td></td>
<td>#36 wbrt:ab,ti</td>
<td>26,763</td>
</tr>
<tr>
<td></td>
<td>#35 pci:ab,ti</td>
<td>42,700</td>
</tr>
<tr>
<td></td>
<td>#34 (brain OR crani* OR head* OR skull*) NEAR/3 (radiotherap* OR irradiat* OR radiat*)</td>
<td>3,975</td>
</tr>
<tr>
<td></td>
<td>#33 'brain radiation'/exp</td>
<td>2,616</td>
</tr>
<tr>
<td></td>
<td>#32 'skull irradiation'/exp</td>
<td>305,525</td>
</tr>
<tr>
<td></td>
<td>#31 #30 NOT (#29 NOT (#29 AND #22))</td>
<td>321,793</td>
</tr>
<tr>
<td></td>
<td>#30 #7 OR #22 OR #29</td>
<td>80,199</td>
</tr>
</tbody>
</table>
#23 OR #26 OR #27 OR #28

79,443

#28
lung* OR pulmonary OR bronch* OR pleura* AND small NEAR/2 (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*)

6,769

#27
sclc:ab,ti

6,965

#26
#24 AND #25

1,816,340

#25
lung* OR pulmonary OR bronch* OR pleura*

9,490

#24
'small cell carcinoma'/exp

16,377

#23
'lung small cell cancer'/exp

117,949

#22
#16 OR #17 OR #18 OR #19 OR #20 OR #21

62,828

#21
non NEAR/1 small OR nonsmall AND (lung* OR pulmonary OR bronch* OR pleura*)
NEAR/2 (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*)

55,722

#20
'lung non small cell cancer'/exp

29,842

#19
nsclc:ab,ti

4,896

#18
'lung squamous cell carcinoma'/exp

16,194

#17
'lung adenocarcinoma'/exp

67,893

#16
#14 AND #15

1,816,340

#15
lung* OR pulmonary OR bronch* OR pleura*

327,145

#14
#8 OR #9 OR #10 OR #11 OR #12 OR #13
'adenocarcinoma'/exp

adenocarcinoma*

large NEAR/1 cell AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplasm*)

squamous NEAR/1 cell AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplasm*)

'squamous cell carcinoma'/exp

'large cell carcinoma'/exp

#3 OR #4 OR #5 OR #6

(lung* OR pulmonary OR bronch* OR pleura*) NEAR/2 (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*)

'pleura cancer'/exp

'bronchus cancer'/exp

'lung tumor'/exp

'crossover procedure'/exp OR 'crossover procedure' OR 'double blind procedure'/exp OR 'double blind procedure' OR 'randomized controlled trial'/exp OR 'randomized controlled trial' OR 'single blind procedure'/exp OR 'single blind procedure' OR random* OR factorial* OR crossover* OR (cross AND over*) OR 'cross near/2 over' OR placebo* OR doubl* NEAR/1 blind* OR singl* NEAR/1 blind* OR assign* OR allocat* OR volunteer*

c. Database: PubMed
((((((randomized controlled trial[pt]) OR controlled clinical trial[pt]) OR randomized[tiab]) OR placebo[tiab]) OR drug therapy[sh]) OR randomly[tiab]) OR trial[tiab]) OR groups[tiab]) AND ((((Lung Neoplasms) OR (Carcinoma, Bronchogenic) OR (Bronchial Neoplasms) OR (Pleural Neoplasms) OR (((lung* OR pulmonary OR bronch* OR pleura*) AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*)))) OR (((lung* OR pulmonary OR bronch* OR pleura*) AND (randomly OR trial OR groups)))) OR (Carcinoma, Large Cell) OR (Adenocarcinoma) OR (Carcinoma, Squamous Cell) OR ((squamous AND cell AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*)))) OR (((lung* OR pulmonary OR bronch* OR pleura*) AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*)))) OR (Carcinoma, Non-Small-Cell Lung) OR (((non AND small) OR nonsmall) AND (lung* OR pulmonary OR bronch* OR pleura*) AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*))) NOT (((Carcinoma, Small Cell) OR (SCLC[tiab]) OR (((lung* OR pulmonary OR bronch* OR pleura*) AND (small AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*))))))) NOT (((Carcinoma, Small Cell) OR (SCLC[tiab]) OR (((lung* OR pulmonary OR bronch* OR pleura*) AND (small AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*))))))) NOT (((Carcinoma, Small Cell) OR (SCLC[tiab]) OR (((lung* OR pulmonary OR bronch* OR pleura*) AND (small AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*))))))) NOT (((Carcinoma, Large Cell) OR (Adenocarcinoma) OR (Carcinoma, Squamous Cell) OR (squamous AND cell AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*)))) OR (((large AND cell AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*)))) OR (adenocarcinoma*))) OR (NSCLC[tiab]) OR (Carcinoma, Non-Small-Cell Lung) OR (((non AND small) OR nonsmall) AND (lung* OR pulmonary OR bronch* OR pleura*) AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*))) AND (((lung* OR pulmonary OR bronch* OR pleura*) AND (Carcinoma, Large Cell) OR (Adenocarcinoma) OR (Carcinoma, Squamous Cell) OR (squamous AND cell AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*)))) OR (((lung* OR pulmonary OR bronch* OR pleura*) AND (carcinoma* OR cancer* OR tumor* OR tumour* OR neoplas*)))) OR (Cranial Irradiation) OR (pci[tiab]) OR (wbrt[tiab]) OR (((brain OR crani* OR head* OR skull*) AND (radiotherap* OR irradiat* OR radiat*))))
APPENDIX 3: FULL-TEXT SCREENING FORM

TITLE: Prophylactic cranial irradiation in patients with non-small-cell lung cancer: a systematic review and meta-analysis of randomized controlled trials

<table>
<thead>
<tr>
<th>Study ID:</th>
<th>First Author: Al Feghari</th>
<th>Year:</th>
<th>Screener Initials:</th>
</tr>
</thead>
</table>

1. Is study design: prospective randomized controlled trial?
   - No
   - Yes

2. Is study population: patients with non-small-cell lung cancer treated in a curative intent?
   - No
   - Yes

3. Is intervention: prophylactic cranial irradiation (PCI)?
   - No
   - Yes

4. Is comparison: no PCI?
   - No
   - Yes

Decision

- Include
- Exclude

Reason for exclusion (please check):
   1. Study design is not “prospective randomized controlled trial”
   2. Population is not “patients with non-small-cell lung cancer treated in a curative intent”
   3. Intervention is not “PCI”
   4. Comparison is not “no PCI”
   5. Other:
APPENDIX 4: DATA EXTRACTION FORM

Table 1: Characteristics of included studies

<table>
<thead>
<tr>
<th>Study Name (first author, year)</th>
<th>Study Design</th>
<th>Participants (N, age, gender, smoking status)</th>
<th>Median follow-up time</th>
<th>Type of NSCLC, stage, treatment modality used</th>
<th>Performance status</th>
<th>Inclusion/exclusion criteria</th>
<th>Intervention (Radiation therapy technique and total dose)</th>
<th>Control</th>
<th>Outcomes assessed (with outcome measures RR and HR and mean differences*)</th>
<th>Funding and conflicts of interest</th>
</tr>
</thead>
</table>

*Relative risks (RR) of mortality reduction and incidence of brain metastasis comparing prophylactic cranial irradiation to observation, hazard ratios (HR) of the time to death and the time to brain metastasis, and mean difference in quality of life scores

Table 2: Biases of included studies

<table>
<thead>
<tr>
<th>Study Name (author, year)</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding</th>
<th>Completeness of data</th>
<th>Intention to treat analysis</th>
<th>Selective outcome reporting</th>
<th>Other biases</th>
</tr>
</thead>
</table>
REFERENCES:


16 Gaspar LE, Scott C, Murray K, Curran W. Validation of the RTOG recursive


Russell AH, Pajak TE, Selim HM, et al. Prophylactic cranial irradiation for lung cancer patients at high risk for development of cerebral metastasis: Results of a
prospective randomized trial conducted by the radiation therapy oncology group. *Int J Radiat Oncol* 1991; **21**: 637–43.


54 Yuan H, Gaber MW, Boyd K, Wilson CM, Kiani MF, Merchant TE. Effects of fractionated radiation on the brain vasculature in a murine model: blood-brain barrier permeability, astrocyte proliferation, and ultrastructural changes. *Int J Radiat


63 Tsao MN, Li YQ, Lu G, Xu Y, Wong CS. Upregulation of vascular endothelial


71 Lishner M, Feld R, Payne DG, *et al.* Late neurological complications after


79 Brown PD, Pugh S, Laack NN, *et al.* Memantine for the prevention of cognitive


Parmar MKB, Torri V, Stewart L. Meta-Analyses of the Published Literature for. 1998; 2834.


Li N, Zeng ZF, Wang SY, et al. Randomized phase III trial of prophylactic cranial irradiation versus observation in patients with fully resected stage IIIA-N2 non-small-
cell lung cancer and high risk of cerebral metastases after adjuvant chemotherapy.


97 Jelicic Kadic A, Vucic K, Dosenovic S, Sapunar D, Puljak L. Extracting data from figures with software was faster, with higher interrater reliability than manual extraction. *J Clin Epidemiol* 2016; **74**: 119–23.


102 Dewit L. Combined treatment of radiation and cisdiamininedichloroplatinum (II): a


110 Guyatt GH, Oxman AD, Vist GE, *et al.* GRADE: an emerging consensus on rating


