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Developing correct and reliable distributed systems is challenging mainly because
of the complex structures of the interactions between distributed processes. Interac-
tions can be modeled using either low-level primitives (e.g., MPI - Message Passing
Interface) or high-level synchronization-primitives (e.g., BIP - Behavior Interaction
Priority). Using the latter simplifies the development since it helps abstracting
away the implementation details and validating the model w.r.t. a particular set
of requirements. Nonetheless, abstraction reduces expressiveness of the interaction
model. Consequently, generating efficient distributed implementations becomes very
challenging due to the gap between the interaction model and the underlying plat-
form or libraries. In this thesis, we propose BIP-plus which is an extension of the
BIP framework to combine abstraction and expressiveness in a rigorous way. BIP is
a component based framework with a rigorous operational semantics and high-level
interaction model. We extend the interaction model by allowing both multi-party in-
teractions and direct send-receive interactions that could be directly mapped to the
underlying platform. Then, we define a correct (w.r.t. original model) and efficient
code generation. We present two non-trivial case studies that show the effective-
ness of our method: Two Phase Commit and distributed Support Vector Machines.
The experimental results show that, in both problems, the distributed implementa-
tion, obtained by our proposed model, outperforms its equivalent implementation
generated by the original BIP model.
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Chapter 1

INTRODUCTION

Contents

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Problem Definition

The need of parallel and distributed implementations is growing extremely fast, es-

pecially with High-performance computing (HPC), Big Data Analytics and Internet

of Things. However, Developing correct distributed systems is notoriously a diffi-

cult task. This is mainly due to their complex structures that consist of complex

interactions between distributed processes.

Although, different frameworks exist to model interactions between distributed pro-

cesses, building correct, reliable and scalable distributed systems is still a time-

consuming, error-prone and hardly predictive task.

Depending on the used framework, interactions can be modeled using either low-

level (e.g. MPI - Message Passing Interface) or high-level synchronization primitives

(e.g., BIP - Behavior Interaction Priority [1, 2, 3]).

Modeling interactions using low-level primitives allows obtaining an expressive and

efficient implementations. Nevertheless, the development process imposes much ef-

fort, burden and complication on programmers, and reliability verification of these

models is considered as a challenging task.

On the other hand, modeling interactions using high-level primitives drastically

simplifies the development process, as developers can abstract away implementa-

tion details and validate the model with respect to a set of intended requirements.

However, once the abstract model is validated, deriving correct and efficient imple-

mentation from it is always challenging, since adding implementation details involves

many subtleties that can potentially introduce errors into the resulting system [4].

Moreover, abstraction reduces expressiveness of the interaction model.
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Developing distributed systems and applications from high-level models is much

more desirable than getting involved into the development details of low-level

code [5]. This drives us, in this thesis, to choose and focus on a high-level model

from which distributed applications can be produced. Also, we will work towards

exploring this model’s limitations and trying to tackle them.

The high-level model that is utilized, discussed and enhanced is BIP.

BIP (Behavior, Interaction, Priority) framework [1, 2, 3] is a component-based

framework with formal operational semantics. Coordination between components

is achieved by using multiparty interactions and dynamic priorities for scheduling

interactions.

BIP allows the generation of correct-by-construction distributed implementations

from a high-level model [6, 5, 4]. The code generation is split into two phases: (1)

transform high-level model into asynchronous Send/Receive model; (2) generate

distributed implementation from asynchronous Send/Receive model.

Additionally, scalable distributed implementations are, also, supported by BIP.

This is due to the fact that BIP is a component-based framework consisting in

decomposing problems into smaller blocks/components. On the other hand, decom-

posing large and complex problems into smaller blocks is the one of the most rational

techniques to tackle these problems.

However, the proposed approach, BIP, has the following drawbacks: First, the

code generation does not take into account the execution platform. Second, the

high-level model provides only multiparty interactions. For instance, if process A

wants to asynchronously send a data or signal to process B, this requires to create

a buffer component to store the received message or signal, and hence the code

generation: (1) does not distinguish between this buffer component and a normal

component process, which introduces an overhead to the generated code; and (2)

does not use the execution platform or the underlying operating system that may

provide efficient communication primitives.

Therefore, a BIP model is a high-level model from which simple, correct-by-

construction and scalable distributed implementations and applications can be de-

rived. Nevertheless, this communication model is not expressive enough and does

not use the underlying platform making it not efficient as desired in some imple-

mentations, e.g., the case of asynchronous data transfer between processes.
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For this reason, we are driven to tackle the limitations of the BIP framework.

We aim to attain a communication primitive that makes it possible for programmers

to simply construct scalable, reliable and more efficient distributed system while

maintaining the model’s expressiveness which preserves the programmers’ ability to

control more the aspects of their implementation.

1.2 Our Approach

We target an extension of the BIP framework (BIP-plus) that combines both low-

level and high-level communication primitives. We aim at extending the BIP com-

munication primitives by combining the high-level model and a direct send-receive

model in an elegant way. This allows to use send and receive primitives at the

high-level model.

A send allows a process to send data or signals to another one and resumes

execution, i.e., it is an asynchronous send. On the other hand, receive allows a

process to wait until there is a message that can be received by this particular

process, i.e., it is asynchronous yet a blocking receive.

Our proposed direct send-receive communications (data transfer) are expressed,

in a BIP-plus model, through interactions. However, they are not multiparty in-

teractions. They do not impose synchronization between processes, they make use

of the underlying platform (e.g., system buffer), and they exactly express and are

generated to equivalent low-level asynchronous send and receive primitives when the

final code generation of the distributed implementation is obtained.

In order to obtain a rigorous communication model and to allow efficient code

generation, we separate the original high-level primitives from the new ones. That

is, at any execution point, a process may either call send and receive primitives or

high-level primitives, but not a combination of those at the same execution point

of one process. Moreover, a send can connect to one or more receives through

the same interaction allowing sending data from a specific process to one or more

processes (multicast). But, multiple sends are not allowed to participate in the

same interaction. On the other hand, a receive can be connected to multiple sends

through multiple interactions.

Combining high-level and direct send-receive primitives confers numerous advan-

tages. First, the code generation will be guided to take into account the underlying

platform. Second, the code generation produces a correct implementation, which

3



is semantically equivalent to the original model. Third, the communication model

becomes more expressive while maintaining the possibility of using abstract and

high-level primitives.

1.3 Thesis Organization

The thesis consists of 7 chapters. Chapter 1 presents the problem, introduces the

context, and gives an overview about our proposed approach. Chapter 2 intro-

duces some preliminaries related to the BIP framework and the 3-layer architecture

for distributed implementations of BIP models. Chapter 3 presents the BIP-plus

framework, the transformation from the BIP-plus model to its equivalent BIP model,

the derivation of distributed implementations from a BIP-plus model and the cor-

rectness proof of our proposed approach for obtaining distributed implementations.

Chapter 4 shows how the BIP-plus tool, responsible for generating distributed code

from a BIP+model, is implemented. Chapter 5 presents experimental results on two

non-trivial case studies. Chapter 6 presents the related works. Finally, Chapter 7

draws some conclusions and presents future works.
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Chapter 2

BEHAVIOR INTERACTION PRIORITY (BIP)

Contents

2.1 Behavior Interaction Protocol (BIP) Framework . . . . . . . . . . . . 5

2.1.1 Atomic Components . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Interactions and Composite Components . . . . . . . . . . . . 8

2.1.3 Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Engine Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 BIP Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Transformation of BIP Models to Distributed Implementations . . . . 13

2.2.1 Interactions Conflicts . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 3-Layer Send/Receive BIP Model . . . . . . . . . . . . . . . . 14

2.1 Behavior Interaction Protocol (BIP) Framework

Behavior Interaction Priority (BIP) framework [1, 2, 3] offers high-level synchro-

nization primitives that simplify the process of system development and allow the

generation of distributed implementation from high-level models.

This framework consists of three layers: Behavior, Interaction and Priority. Behavior

is expressed by Labeled Transition Systems (LTS) describing a set of atomic compo-

nents, identified by communication ports and extended with data and C functions.

Interaction is described by interaction/communication between atomic components

building-up composite components. Priority is specified by scheduling strategies on

interactions between atomic components.

2.1.1 Atomic Components

An atomic component B is an LTS associated with a set of local variables X. These

variables range over a particular domain Data. Interactions, including data trans-

fer/exchange and synchronization, take place between these components through

ports.
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Definition 1 (Port). A port p in B is defined by an identifier p and Xp which is a

set of local variables exported by this port such that Xp ⊆ X. Port p stands for the

tuple
〈
p,Xp

〉
.

Definition 2 (Atomic component). An atomic component B is defined by a tuple〈
P,L, T,X, {gτ}τ∈T , {fτ}τ∈T

〉
, such that:

• 〈P,L, T 〉 is an LTS over a set of ports P in B : L is a set of control locations,

and T ⊆ L× P × L is a set of transitions,

• X is a finite set of variables,

• For every transition τ ∈ T , there are gτ which is the guard of τ , a boolean

condition or a predicate over X, and a function fτ ∈ {x := fx(X) | x ∈ X}∗

which is a computation, triggered by this particular transition τ , that updates

or reassigns variables in X.

A transition τ =
〈
l, p, l′

〉
∈ T is defined by l ∈ L being the source of this

transition, by l′ ∈ L being the destination of this transition and p which is a port

responsible for the interaction with another component. Also, the transition can

be associated with a guard gτ , and a function fτ making τ =
〈
l, p, gτ , fτ , l

′〉. Such

transitions are only executed if gτ is true.

The set of all transitions T=
{
τj
}
j∈J with J = [1,m].

Moreover, there is a set of variables utilized in a transition defined as var(fτ ) =

{x ∈ X | x := fx(X) ∈ fτ}.

Definition 3 (Semantics of atomic components). The semantics of atomic component

B = 〈P,L, T,X, {gτ}τ∈T , {fτ}τ∈T 〉 is defined by a LTS Sb = 〈Q,P, T0〉, where:

1. Q = L× [X → Data]× (P ∪ {null}),

2. T0 = {
〈
〈l, v, p〉 , p′(vp′),

〈
l′, v′, p′

〉〉
∈ Q × P × Q | ∃τ =

〈
l, p′, l′

〉
∈ T :

gτ (v) ∧ v′ = fτ (v/vp′)}, where vp′ ∈ [Xp′ → Data],

A configuration is a triple 〈l, v, p〉 ∈ Q where l ∈ L, v ∈ [X → Data] is a

valuation of variables in X, and p ∈ P is the port of the last-executed transition (or

null otherwise). The evolution 〈l, v, p〉
p′(vp′)→

〈
l′, v′, p′

〉
, where vp′ is a valuation of
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the variables in Xp′ , is possible if there exists a transition
〈
l, p′, gτ , fτ , l′

〉
, s.t. p′ is

enabled or gτ (v) = true. Valuation v is modified to v′ = fτ (v/vp′).

In other words, for every transition executed from a particular source to a desti-

nation location, the atomic components have some of their variables values changed.

This means that at a certain location l, there is a valuation v of some local variables

in X. This valuation is previously got by executing a transition to location l as its

destination through a port p. Thus, at each location, the atomic components have

updated values for their list of variables. A transition from l, as a source location,

to another location l′, as destination, through port p′ can only execute if its guard

over the variables valuation obtained at l holds. upon execution of this transition in

case the guard is true, a new valuation v′ is obtained after receiving new data for the

variables exported by port p′ (valuation v′p of X ′p) by the corresponding interaction

executed (defined in definition 4) and applying the computation of this executed

transition through p′ on some variables in X. The resultant valuation of variable in

X on l′ is v′ = fτ (v/vp′).

l0

l1l2

p1

t < 0

p0
[t = t− y]

x < y

p2
[x = x+ y]

y > x

p3

p0 p3p1 p2

x z y

t

B1

Figure 2.1: Atomic Component Example

Example 1 (Atomic Component). Figure 2.1 represents an atomic component B.

B has four ports {p0, p1, p2, p2} and four local variables {x, y, z, t}. Port p1 exports

variable x, p2 exports z, and p3 exports y. In addition, B has a set of three locations

`0, `1 and `2 with the initial location `0. Each transition between locations has a

guard, a port and an update function or the computation to be applied. For example,
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the transition whose source location is `1, destination location is `2 and labeled by

port p2, its guard is x < y and its function to be applied is (x = x + y) when the

transition is executed. When x < y is true, i.e., the guard holds for this particular

transition, p2 is said to be enabled, thus this transition can be executed. Supposing

this transition is chosen to perform, z the variable exported by p2, will be equal to its

valuation received through p2. Then, moving from the source `1 to `2, the function

x = x+ y will be executed.

2.1.2 Interactions and Composite Components

Given a set of distinct atomic components {Bi}i∈I with I ⊆ [1, n], such that for

i ∈ I, Bi =
〈
Pi, Li, Ti, Xi, {gτ}τ∈T i , {fτ}τ∈T i

〉
, we have, for all i ∈ I and j ∈ I

such that i 6= j, Li ∩ Lj = ∅, Pi ∩ Pj = ∅ and Xi ∩ Xj = ∅. We denote the

set of all ports of a composite component as P =
⋃
i∈I Pi, the set of all locations

as L =
⋃
i∈I Li and the set of variables as X =

⋃
i∈I Xi. The atomic components

B1, ..., Bn collaborate through interactions as they are able to synchronize with each

other or exchange data.

Given an atomic component Bi for some i ∈ I, we can, also, use dot notation

or the index i as a superscript to point to the elements of this component. For

instance, we can refer to its set of ports Pi as Bi.P or P i, its set of locations Li as

Bi.L or Li and the set of local variables Xi as Bi.X or Xi.

Definition 4 (Interaction). Given the set of atomic components {Bi}i∈I with I ⊆
[1, n], an interaction between them is defined by a = 〈Pa, Ga, Fa〉, where:

• Pa is a non-empty set such that Pa ⊆ P , and, for every i ∈ I |Pi ∩ Pa| ≤ 1,

meaning that an interaction a consists of at most one port of every atomic

component in B,

• Ga is a guard over valuation of Xa such that the interaction can take place if

this guard is true.

• Fa is an update function over the valuation of Xa.

We denote the ports associated in an interaction a as Pa = {pi}i∈I where i

is the identification index of the atomic component because at most one port of

every atomic component can be included in the same interaction. Moreover, an
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interaction can include variables that are denoted as Xa =
⋃
p∈Pa Xp. The updated

value of Xpi , transferred to Bi as an interaction outcome, after projecting the update

function Fa is denoted as Fai .

Definition 5 (Composite component). A composite component C is built up of a

set of distinct atomic components {Bi}i∈I with I ⊆ [1, n] and by applying a set of

interactions γ to this set of atomic components. Therefore, a composite component

C is defined as γ({Bi}i∈I)

For I = [1, n], C = γ({B1, . . . , Bn}).
Figure 2.2 shows an example of a composite component B={B1, B2, B3} where

B1, B2 and B3 are atomic components.

Definition 6 (Semantics of composite components). A state q of composite compo-

nent C = γ({B1, . . . , Bn}) is an n-tuple 〈q1, . . . , qn〉 where qi =〈li, vi, pi〉 is a state

of Bi. The semantics of C is an LTS Sc = 〈Q, γ,−→〉, where:

• Q = B1.Q× . . .×Bn.Q,

• γ is the set of all possible interactions,

• −→ is the least set of transitions satisfying the following rule:

∃a ∈ γ : a =
〈
{pi}i∈I , Ga, Fa

〉
Ga(v(Xa))

∀i ∈ I : qi
pi(vi)−→ i q

′
i ∧ vi = Fai(v(Xa)) ∀i 6∈ I : qi = q′i

〈q1, . . . , qn〉
a−→
〈
q′1, . . . , q

′
n

〉
Xa is the set of variables attached to the ports of a, v is the global valuation.

Fai is the projection of F to the variables of pi yielding to the valuation vpi of

the variables in Xi exported by pi.

Whenever all the ports included in an interaction a are enabled (i.e., their guards

hold), and the guard corresponding to a, (Ga(v(Xa))) holds, a can be launched. Ac-

cordingly, the state of the components whose ports are involved in the interaction

a changes. This change in state of these components is due to the new valuation of

variables exported by their ports involved in a in addition to applying the functions

of transitions labelled by these ports. On the other hand, the state of components

which are not involved in this interaction remain unchanged. Although many inter-

actions may be ready to start at the same time, only one interaction is possible at

a time selected by a centralized engine.
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Figure 2.2: Composite Component Example

Example 2 (Composite Component). Figure 2.2 represents a composite component

C made up of three components atomic = {atomic1, atomic2, atomic3} by applying a

set of five interactions γ = {a1, a2, a3, a4, a5}. For instance, interaction a1 is enabled

when all of its involved ports, i.e., p0, p1 and p2, are enabled and its corresponding

guard g1 holds. But, in this example, the ports are not associated with guards which

means that by default all ports are enabled. Assuming that guard of a1 holds, this

interaction is said to be enabled. In case it is selected to execute, its function f1 is

also applied upon its execution. Furthermore, upon the execution of a1, transitions

〈B1.l0,B1.p0,B1.l1〉, 〈B2.l0,B2.p0,B2.l1〉, 〈B3.l0,B3.p0,B3.l1〉 will, also, execute for

their ports are involved in a1.

2.1.3 Priorities

There is a possibility to have multiple interactions enabled at the same time. In

this case, we may prefer to have some certain interactions deterministically selected

rather than other enabled interactions to execute. For this sake, a priority model

was proposed to order the enabled interactions given priority values. Eventu-

ally, the model selects the enabled interaction having the greatest priority to execute.

However, we are not going to explore further the notion of priority for it is not
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taken into account in our study. We assume that all enabled interactions have equal

probability to execute (without a specified priority), and that selection decision is

made non-deterministically.

2.1.4 Engine Protocol

There is a centralized engine whose role is to sequentially execute the interactions

and transitions in the BIP model achieving a correct execution of the composite

component according to the global operational semantics [6].

The engine and the atomic components of the model interact together as follows:

1. In every component, guards corresponding to transitions outgoing from a lo-

cation reached at last are evaluated.

2. components send their enabled ports, those whose guards are true, to the

engine.

3. The engine computes the set of all interaction whose execution is possible i.e.,

their guards hold and their involved ports are enabled.

4. The engine selects non-deterministically one interactions among the enabled

ones and executes it along with its update function which might allow data

exchange between the involved components.

5. The Engine executes in a sequential fashion all the transitions whose ports

participate in the executed interaction along with the transition’s function.

2.1.5 BIP Toolchain

The BIP tool-chain is made up of many tools that are responsible for modeling,

executing and validating the BIP models [1, 7]. Figure 2.3 displays the relationships

between those tools. Mainly, the tool-chain consists of the following.

Front-end. The front-end includes editor in addition to a compiler, whose role is

to describe a system in BIP language. Given the BIP description source, the BIP

model is generated by the compiler. The BIP model complies with BIP meta-model

built on top of the Eclipse Modeling Framework [8].
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Figure 2.3: BIP Tool-Chain

Middle-end. The middle-end allows source-to-source transformations transform-

ing either a BIP model to another BIP model for optimization goals, or a language

different than BIP (e.g.,C, Simulink... etc) to an equivalent BIP model.

Back-end. The back-end consists of many code generators that generate both

sequential implementations (e.g.,serial C++ code) and distributed implementations

(e.g.,multi-threaded C++ implementation, C++ code employing MPI or Sockets

implementation) given a particular BIP model.

Validation. The validation module attain compositional verification by making

use of DFinder [9]. This makes possible, for example, to check, for a particular BIP

model, its deadlock-freedom and invariants. Additionally, statistical models can be

derived, by utilizing the validation module, in order to examine BIP models.
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2.2 Transformation of BIP Models to Distributed Implementations

The high-level BIP model can be transformed into a distributed implementation to

achieve parallelism. In order to obtain an efficient distributed setting of a given

model or composite component, interactions between components must be executed

concurrently [6]. However, parallelism between components and interactions must

respect the global state semantics of the model [5, 4].

2.2.1 Interactions Conflicts

Simultaneous execution of interactions can violate the global semantics of the initial

model because of conflicts that take place between interactions [4].

Definition 7 (Conflict). Consider the composite component C = γ({Bi}i∈I) for I ⊆
[1, n]. The two interactions, in C, a1 =

〈
Pa1 , Ga1 , Fa1

〉
and a2 =

〈
Pa2 , Ga2 , Fa2

〉
,

with a1, a2 ∈ γ, are conflicting iff:

• Pa1 ∩ Pa2 6= ∅, or

• there exists some component Bi for some i ∈ I and two transitions, having

the same source location, τ1 =
〈
l, p1, l

′〉 and τ2 = 〈l, p2, l”〉 such that p1 ∈ Pa1
and p2 ∈ Pa2 and l, l′, l” ∈ L, for p1, p2 ∈ Bi.P .

In other words, interactions are said to be conflicting iff there is a common

port involved in all of them, or if they all include ports belonging to the same

component such that these ports label transitions outgoing from the same source

location.

Example 3 (Conflicting Interactions Example). Figures 2.4 and 2.5 represent com-

posite components that include conflicting interactions. In Figure 2.4 the composite

component is made up of a set of three atomic components {B1,B2,B3} and two

interactions {a1, a2} such that there is a conflict between a1 and a2. They are con-

flicting because the port p in B2 participates in both of a1 and a2.

Similarly, the model in Figure 2.5 consists of three atomic components {B1,B2,B3}
one which a set of two interactions {a1, a2} is applied. a1 and a2 are conflict-

ing because B2.p1 ∈ a1 and B2.p2 ∈ a2 are both ports of B2 labeling transitions

τ1 =〈`0, p1, `1〉 and τ2 =〈`0, p2, `2〉. In these two examples, if a1 and a2 are to be
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Figure 2.5: Conflicting Interactions Example

executed concurrently, the global state semantics of these models will be violated.

Therefore, in both examples, we can either execute a1 only, or a2 although we are

targeting a distributed implementation.

2.2.2 3-Layer Send/Receive BIP Model

In a BIP model, conflicts between interactions are handled in a centralized engine.

However, in distributed implementations, resolving such conflicts is complicated

which requires preserving atomic components, maintaining interaction behavior and

handling these conflicts with a distributed approach. These requirements are fulfilled

by three layers building up the transformed BIP model for distributed implementa-

tion [6, 5, 4]. Moreover, the components of the three layers interact with each other

using asynchronous send and receive communication primitives. Thus, the obtained

model after transformation is called a Send/Receive (SR) 3-layer BIP model. This

3-layer BIP model is an intermediate model from which, finally, distributed code

is to be generated. The generated distributed code is a C++ code that uses TCP

sockets of MPI [10].
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The 3-layer architecture consists of the following layers:

1. Components Layer (CL). This layer includes the atomic components of

the initial BIP model after adding, to each of them, more ports and modifying

their transitions. Given the BIP composite component C = γ {Bi}i∈I , for

every i ∈ I, the atomic component, corresponding to Bi, to be placed in the

first layer in distributed implementation, is BSRi , known as a Send/Receive

atomic component.

Every component BSRi includes an offer-port oi which is responsible for

sending the list of enabled ports, in the component, to the upper layer. As

for the original set of ports Pi, every p ∈ Pi, waits to be triggered and receive

a response from the upper layer to execute the transition labeled by p.

As for transitions, for every location l ∈ Li in Bi, a new transition, 〈l, oi,⊥l〉,
is introduced, to BSRi , called offer transition. This transition has l as the

source and location ⊥l, corresponding to l, as the destination. It is executed

by the offer port of BSRi . Moreover, every transition τ =
〈
l, p, l′

〉
, in Bi, with

l, l′ ∈ Li and p ∈ Pi, is replaced by
〈
⊥l, p, l′

〉
, in BSRi . Therefore, given a

transition
〈
l, p, l′

〉
in Bi, it is equivalent to 〈l, o,⊥l〉 followed by

〈
⊥l, p, l′

〉
in

BSRi .

l0
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p1 p2
p3

p4

l0

⊥l0

l1

⊥l1

l2

⊥l2

o

p1 p2

o o

p3

p4
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(b)

Figure 2.6: BIP Transitions Transformation in 3-Layer Model Example
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Example 4 (BIP Transitions Transformation in 3-Layer Mode). Figure 2.6

presents an example, in (a), of an LTS in a BIP model, and shows, in (b), how

it becomes after transforming the atomic component to an S/R component.

These modifications make it possible to utilize asynchronous communication

primitives to transfer offers and responses between the CL and the upper layer.

2. Interaction Protocol Layer (IPL). This layer is built up by a set of

atomic components to which interactions are assigned according to a partic-

ular partition. These components are responsible for interactions execution.

The conflicts between the interactions assigned to one atomic component, are

handled by this atomic component locally. However, conflicts between interac-

tions that cannot be executed by the same component are to be resolved by an

upper layer by sending a request to it for the conflicting interaction belonging

to it. The IPL is in charge of guard evaluation and function execution of the

interaction whose execution is permitted. This layer communicates with the

Atomic components by receiving offers and sending responses corresponding

to the selected interaction.

3. Reservation Protocol Layer (RPL). This layer allows to handle external

conflicts between interactions, i.e., conflicting interactions handled by different

components in the IPL. It can be implemented either using a (1) centralized

implementation, (2) token-ring based implementation, (3) dining-philosopher

based implementation, or (3) any distributed implementation of the commit-

tee coordination problem. This layer receives requests from the IPL about

the externally conflicting interactions. Then, it responds back either: (1) by

an ”ok” message to the corresponding layer below for the interaction whose

execution is allowed; or (2) by a ”fail” message to the other components in

which the interactions whose execution is not allowed at the moment.

The components of IPL and RPL communicate using asynchronous send-

receive communication primitives.

Example 5 (3-Layer S/R BIP Model). Figure 2.7 shows the transformation of the

composite component previously presented in figure 2.2 to its 3-layer S/R model.

the CL consists of the S/R version of components of the initial BIP model, BSR1 ,
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Figure 2.7: 3-Layer S/R BIP Model

BSR2 and BSR3 . The IPL consists of two components IP1 and IP2 such that interac-

tions a1, a2 and a3 are assigned to IP1 and a4 and a5 are assigned to IP2. Every

one of these IP components must solve the conflicts that occur between the interac-

tions that are local to it. That is, IP2 is only responsible for handling conflicts that

may occur between a4 and a5 while IP1 is only responsible for handling conflicts

between a1, a2 and a3. In case there is a conflict between interactions belonging to

different IP components, the RPL resolves it. For instance, in this example, there is

a conflict between a2 and a4 (recheck figure 2.2), then both of the IP components to

which they belong to must send a request to the upper layer, i.e., IP1 sends request

req2 corresponding to a2, and IP2 sends req4 corresponding to a4. In turn, RPL

picks one interaction to execute, by utilizing its algorithm, and responds back by ok2

to IP1 and fail4 to IP2 if the execution of a2 is allowed, otherwise it responds with

ok4 to IP2 and fail2 to IP1.

Finally, this intermediate model of distributed implementation can be either

transformed to a C/C++ code employing either MPI or TCP sockets for communi-

cation.
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3.1 Overview

BIP-plus (BIP+) is an extension of the BIP framework that makes use of, in ad-

dition to high communication primitives, send-receive low-primitives for modeling

interactions.

BIP-plus can be defined as a component-based framework held by a mix of high level

multi-party interactions for component synchronization purposes and direct send-

receive interactions responsible for asynchronous data transfer between components

making use of send receive primitives. The components composing the BIP+model

are known as partially asynchronous (PA) atomic components.

3.2 Syntax

3.2.1 Partially Asynchronous Atomic Components

A PA atomic component B? is an LTS associated with a set of local variables

X. These variables range over a particular domain Data. Interactions, including

asynchronous data transfer/exchange and synchronization, take place between these

components through ports. Ports are of three types: ordinary, direct send and direct

receive.

Definition 8 (Partially Asynchronous Atomic component). A PA atomic component

B? is defined by the tuple 〈B, t〉 where:

• B is an atomic component,

• t : P → {ordinary, send, receive} is a function that maps ports to their types

which helps distinguishing between three types of ports: ordinary, direct send

and direct receive ports,

If, for some port p ∈ P , t(p) = ordinary, then p is the same as a port in BIP,

and it is called ordinary port. If t(p) = send, then is is a direct send port, and if

t(p) = receive, then it is a direct receive port.

The set of ordinary ports is defined by Po = {p | p ∈ P ∧ t(p) = ordinary}, that of

send ports is defined by Ps = {p | p ∈ P ∧ t(p) = send}, and that of receive ports
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is defined by Pr = {p | p ∈ P ∧ t(p) = receive} such that Po ∪ Ps ∪ Pr = P and

Po ∩ Ps ∩ Pr = ∅.

The PA atomic component B? must satisfy the following constraints concerning

transitions:

Consider the set of transitions T =
{
τj
}
j∈J with J ⊆ [1,m] and τj =

〈
lj , pj , l

′
j

〉
for

all j ∈ J .

For all j ∈ J and i ∈ J such that i 6= j, if li = lj , the associated ports to these

transitions, can be only either ordinary, direct send, direct receive, or a mix of direct

send and receive ports.

l0

l1l2

ps1

t < 0

p0
[t = t− y]

x < y

ps2
[x = x+ y]

y > x

pr

p0 prps1 ps2

x z y

t

B?

Figure 3.1: PA Atomic Component Example

Example 6 (PA Atomic Component). Figure 3.1 depicts a PA atomic component

B?. B? has four ports
{
p0, ps1 , ps2 , pr

}
and four local variables {x, y, z, t}. Port p1

exports x, p2 exports z and p3 exports y. In addition, B has three locations `0, `1 and

`2 with initial location `0. To differentiate between the three types of ports, ordinary,

direct send and direct receive, ports are represented by black, blue and red bullets,

respectively. Thus, in this example, we have p0 as an ordinary port, ps1 and ps2 as

direct send ports and, finally, pr as a direct receive port.

In this example, the transitions requirements are satisfied. Starting from a spe-

cific location, all the outgoing transitions have either only ordinary labelling ports or

non-ordinary labelling ports (direct send and direct receive) e.g., from `1, the tran-
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sitions to `0 and `2 are both labelled by the send ports ps1 and ps2. Furthermore,

the restrictions on transitions would be respected if we had any of the ports of these

two transitions as a direct receive port.

3.2.2 Partially Asynchronous Composite Components

Consider the set of distinct PA atomic components {B?i }i∈I with I ⊆ [1, n] and

∀i ∈ I, B?i = 〈Bi, ti〉. For this set of PA atomic components, we have:

• Po =
⋃
i∈I B

?
i .Po is the set of all ordinary ports,

• Ps =
⋃
i∈I B

?
i .Ps is the set of all send ports,

• Pr =
⋃
i∈I B

?
i .Pr is the set of all receive ports,

• P the set of all ports, such that P = Po ∪ Ps ∪ Pr.

Also, in order to refer to elements, of some PA atomic component, B?i for some

i ∈ I, we can use the dot notation.

Definition 9 (Ordinary Interaction). Given a set of PA atomic components {B?i }i∈I ,

an ordinary interaction a is defined by the tuple 〈Pa, Ga, Fa〉 where:

• Pa ⊆ P is a non-empty set such that Pa ⊆ Po and, ∀i ∈ I, |B?i .P ∩ Pa| ≤ 1.

• Ga and Fa are the guard and the function of the ordinary interaction, the same

as the ones defined in the BIP interaction.

The set of ports of an interaction a is denoted as Pa = {pi}i∈I ⊆ P such that

I ⊆ [1, n] where i is the identification index of the PA atomic component because

one port at most of each PA atomic component can be included in a.

Definition 10 (Direct Send-Receive (DSR) Interaction). Given a set of PA atomic

components {B?i }i∈I , a DSR interaction a is defined by 〈Pa〉 where:

• Pa ⊆ P , with |Pa| > 1, is a set such that |Pa ∩ Ps| = 1, |Pa ∩ Po| = 0,

|Pa∩Pr| > 0 and, ∀i ∈ I, |Pi∩Pa| ≤ 1. In other words, in a DSR interaction,

the set of ports must include at most one port of every PA atomic component.

Also, one included port must be a direct send port and the rest are direct receive

ports.
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• All p ∈ Pa, has the same type of the exported set of variables; that is the

variables attached to one port, participating in the interaction a, must have

the same types of the variables attached to every other port, in a, and in the

same order

• The guard is excluded from its definition because the interaction must be always

enabled when the direct send port is enabled. The DSR interactions is sender

triggered.

• The function is excluded because, through this interaction, the values of vari-

ables exported by the send port are always copied to the values of variables

exported by the receive ports participating in the same interaction; i.e., the

function of DSR interaction is to send the values of variables from send port

to receive port allowing data transfer between components.

The DSR interactions in said to be sender triggered. As in the ordinary inter-

action, the set of ports of a DSR interaction is Pa = {pi}i∈I ⊆ P where i is the

identification index of the PA atomic component of the included port.

An interaction can either be an ordinary interaction or send-receive interaction.

A direct send port can only participate in one DSR interactions i.e., ∀a1 =〈
Pa1
〉
, a2 =

〈
Pa2
〉
∈ γ?, such that a1 6= a2, Pa1 ∩ Ps 6= Pa2 ∩ Ps. On the contrary,

a direct receive port can involve in multiple interactions.

Definition 11 (Partially Asynchronous Composite Component). A composite com-

ponent, C?, is built up of a set of distinct PA atomic components
{
B?i
}
i∈I with

I ⊆ [1, n] after applying a set of ordinary and send receive interactions γ? to this

set of components. We denote the composite component C?as γ?({B?i }i∈I)

Given a PA composite component C?=γ?(
{
B?i
}
i∈I) with I ⊆ [1, n] and B?i =

〈Bi, ti〉 for all i ∈ I, we define:

• type : γ? → {ordinary, sendreceive} is a function that maps interactions to

their types. if a ∈ γ? is an ordinary interaction, then type(a) = ordinary, and

if a ∈ γ? is a DSR interaction, then type(a) = sendreceive.

• γo = {a | a ∈ γ? ∧ type(a) = ordinary} the set of all ordinary interactions.

• γsr = {a | a ∈ γ? ∧ type(a) = sendreceive} the set of all DSR interactions.
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We have γ? = γo ∪ γsr and γo ∩ γsr = ∅.

The composite component C? consisting of B?1 , ..., B
?
n and the set of interactions

γ?is noted γ?(
{
B?1 , . . . , B

?
n

}
).

l0

l1

p0p1

p0

p1

x

y

B?
1

l0

l1 l2

p0

p1

p2

p3

p0

p1 p2 p3

x

B?
2

l0

l1

p0
p1

p2

p0

p1 p2

x

y

B?
3

a1

a2 a4a3 a5

Figure 3.2: PA Composite Component Example

Example 7 (PA Composite Component). Figure 3.2 represents a PA composite

component C? made up of a set of three PA components B? =
{
B?1 , B

?
2 , B

?
3

}
by

applying a set of five interactions γ? = {a1, a2, a3, a4, a5}. We have a1 only as a

DSR interaction while the rest (a2, a3, a4 and a5) are all ordinary interactions.

a1 is a DSR interaction because it consists of a direct send port B?2 .p0 and the

receive ports B?1 .p0 and B?2 .p0. a1 is said to be a valid DSR interaction because it

does not include any ordinary port. Moreover, B?2 .p0 cannot participate in further

interactions.

In order to define the semantics of a composite component in BIP+, we present its

equivalent BIP model through a transformation process illustrated in the following

section.

3.3 Semantics: Transformation from BIP-Plus to BIP

We define the operational semantics of BIP+by transforming it to ordinary model.

However, building the latter with such a behavior needs adding implementation
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details including many subtleties that can potentially introduce errors into the re-

sulting system.

In the following section, we define the operational semantics of BIP+by transforming

it to BIP ordinary model.

3.3.1 Buffer Components

For every receive port p ∈
⋃
i∈I B

?
i .P r with I ⊆ [1, n], we introduce a corresponding

buffer Buip where i is the identification index of the PA atomic component to which

the receive port p belongs and p is the port identifier. A buffer Bu is an atomic

component where:

1. Bu.X = Xs ∪Xr ∪D where,

• D is variable of type queue

• Xs = {xs|x ∈ p.X} that are the set of received variables that correspond

to the variable of the port p;

• Xr = {xr|x ∈ p.X} that are the set of send variables that correspond to

the variables of the port p

2. Bu.P ={send, receive}. Port send exports the set of variables Xs, and port

receive exports the set Xr.

3. Bu.L ={l0, l1}, where l0 is the initial location

4. Bu.T ={τ1, τ2, τ3, τ4} such that τ1=〈l0, receive, l1〉, τ2= 〈l1, receive, l1〉,
τ3=〈l1, send, l1〉 and τ4= 〈l1, send, l0〉. These transitions are extended with

guards and functions as follows:

• The guards of transitions are predicates over the queue D and its size.

Assuming the queue size can be denoted as D.size, guard g1 of τ1 is

D.size = 0, g2 of τ2 is queue.size > 0, g3 of τ3 is queue.size > 1, and,

finally, g4 of τ4 is queue.size = 1. Yet, the size of the queue is not

determined by the size of the message received, but by the number of

messages received.

• The functions, on transitions including the port receive, from l0 to l1,

involve adding the values of Xr (as one list) to the list D and updating
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the values of Xs to that of Xr, whereas, from l1 to l1, the values of Xr

are only added to D.

• Initially, in τ1, Xs is updated to values of the first received message.

Thus, the functions, on transitions including the port send, from l1 to l1,

involve removing data from the list D first, then updating the values of

Xs to be the oldest list of values received and pushed to D. On the other

hand, from l1 to l0, only the last list of values in D is removed emptying

D.

The set of all buffers for all receive ports in C?is denoted as BU =
⋃
i∈I{Buip |

p ∈ B?i .P ∧ ti(p) = receive}. We can, also, refer to the buffer of a receive port as

buffer(B?i .p) and use dot notation to refer to its contents.

Given a buffer component included in a composite component, where:

• its port receive is involved in an interaction a, having its guard as true by

default, with a port p of another component such that interaction allows data

transfer from p to receive.

• its port send is involved in an interaction a′, having its guard as true by

default, with a port p′ of another component such that this interaction allows

data transfer from port send to p′

The buffer component will behave as follows:

1. Initially, the buffer component is at l0 and D is empty satisfying g1 of τ1

labelled by ”receive. Then, port receive in enabled, where ”send” is not.

2. If p is enabled, then a can execute since receive is also enabled. However, if p′

is enabled, a′ cannot execute for send is not to prevent data sending from the

buffer component to the other interacting one in case there are no messages

previously received.

3. in case a is selected to execute, the transition τ1 in the buffer is executed and

it moved to location l1.
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4. At this stage at l1, there is only one message saved in D and the data exported

by port send is updated to have the values of the received message. Since D

is not empty then port receive is enabled for the guard of transition (loop),

from l1 to l1, through this port holds. In addition, since the size of D is 1,

i.e., only one message, in total , is received by the buffer, port send is also

enabled in transition from l1 to l0. Thus, in case p and p′ are enabled, any of

the two interactions, a and a′, can execute, along with the transitions whose

guards enable the buffer’s ports, τ2 and τ4. However, in case p in enabled and

p′ is not, then only a can execute, and in case p′ is enabled and p is not, only

a′ can execute.

5. In case τ4, from l1 to l0, is executed then the buffer reaches the initial state

again, and all the previous steps may be repeated.

6. In case τ2, the loop from l1 to l1, is executed, there will be more than a one

message in D. Thus, both send and receive will be enabled. send is enabled

because the guard of τ3 holds. Eventually, in case p and p′ are enabled, any of

the two interactions, a and a′, can execute, along with the transitions whose

guards enable the buffer’s ports, i.e., τ2 and τ3.

7. Then, at l1, the buffer is willing to keep receiving messages through receive

labeling τ2 and adding them to D, and send messages through send labeling

τ3, popping the sent messages put from D, until only one message is left. If

one one message left, the steps starting step 4 will be repeated.

One important notice is that the port ”receive” of the buffer is always enabled

at any time. On the other hand, port ”send” can only be enabled whenever there

are messages to be sent, i.e., the internal queue is not empty.

Figure 3.3 shows the buffer component, that corresponds to a port p[X] (Port

p exporting a set of variables X), and its constituents as presented previously in the

beginning of this section.
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Figure 3.3: The Buffer Component

3.3.2 Transforming Partially Asynchronous Composite Component to

a Composite Component

The partially synchronous composite component C?=γ?(
{
B?i
}
i∈I), in BIP+, with

I ⊆ [1, n] and B?i = 〈Bi, hi〉 for all i ∈ I, its semantics is defined as the semantics of

the composite component C, in ordinary BIP, such that C = γ(AC ∪BU) where:

• AC is a set of the atomic components

• BU is a set of buffers such that each buffer corresponds to a receive port in

C?,

• γ is the set of interactions applied to the set of atomic components AC ∪BU
such that γ = γo ∪ γs ∪ γr where:

– γo is the set of all ordinary interactions in C?,

– RBu = {buffer(B?i .p).receive | B
?
i .p ∈ Pa ∧ ti(p) = receive ∧ i ∈ I} for

some interaction a ∈ γsr, the set of receive ports of buffers, corresponding

to the receive ports included in interaction a.
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– γs=
⋃
a∈γsr{{B

?
i .p}∪RBu | B

?
i .p ∈ Pa∧ti(p) = send∧i ∈ I} is the set of

interactions between each direct send port in interaction a and the ports

names receive of buffers corresponding to the receive ports, belonging

to the same interaction a in C?. Each of these interactions must allow

copying values from the port, whose type was direct send in C?, to port

receive of every buffer component participating in the same interaction.

Also, the guards of these interactions must always hold.

– γr=
⋃
a∈γsr{{B

?
i .p, buffer(B

?
i .p).send} | B

?
i .p ∈ Pa∧ti(p) = receive∧i ∈

I} is the set of interactions between each receive port, included in an

interaction, in C?and the send port of the corresponding buffer. Each of

these interactions must allow copying values from the port ”send” of the

buffer to the port, whose type was direct receive in C?participating in

the same interactions. Also, the guards of these interactions must always

hold.

In other words, to convert a BIP+model to its equivalent BIP model, the PA

atomic components must be replaced by their matching atomic components. More-

over, buffer components corresponding to the direct receive ports of the BIP+model

must be added.

To glue these components together, ordinary interactions between PA atomic com-

ponents of the BIP+model remain unchanged; i.e., they are all included in the BIP

model such that they involve the same ports of the matching atomic components.

As for the DSR interactions, they are intervened by the buffer components. Pre-

cisely, every DSR interaction a between two PA components is replaced by:(1) an

interaction between the port, being the direct-send port in the BIP+model involved

in a, and the port receive of the buffer corresponding to each direct receive port,

also, involved in a, and (2) interactions between each port, being the direct receive

port in the BIP+model participating in a, and the port send of the corresponding

buffer.

The interactions in the composite component replacing DSR interactions of the PA

composite component must allow data transfer and must have its guard set to true

by default.

Definition 12 (Semantics of composite components). A composite component, in
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BIP+, can be transformed to an equivalent component, in BIP, by adding the buffer

components corresponding to every receive port and modifying the existing DSR in-

teractions. Therefore, The operational semantics of a BIP+composite component is

the same as semantics of its equivalent converted version in BIP. In order to get a

deeper inside, recheck the semantics of composite components as defined in definition

6.

l0

l1

p0p1

p0

p1

x

y

B1

l0

l1 l2

p0

p1

p2

p3

p0

p1 p2 p3

x

B2

l0

l1

p0
p1

p2

p0

p1 p2

x

y

B3

l0 l1
Receive

Receive

Send
Send

Receive

Send

d1 d2 ... dn

mrms

Buffer1

l0 l1
Receive

Receive

Send
Send

Receive

Send

d1 d2 ... dn

mr ms

Buffer2

Figure 3.4: Transformation from BIP+to BIP Model Example

Example 8. Transformation from BIP+to BIP Example Figure 3.4 shows how the

BIP+model presented in Figure 3.2 is transformed to its equivalent BIP model. All

the PA atomic components B?1 ,B?2 and B?3 are transformed to their equivalent BIP

versions (ignoring ports types) B1, B2 and B3 respectively. For every direct receive

port (B?1 .p0, B?3 .p0) we added a corresponding buffer component in the BIP model.

Then, the DSR interaction, in the BIP+model, from the send port B?2 .p0 to B?1 .p0

and B?3 .p0 is replaced by an interaction involving B2.p0 and the port ”receive” of

each of the buffer components corresponding to the receive ports of the BIP+model.

Additionally, DSR replacement includes adding other interactions involving the port

”send” of every buffer component and its corresponding previous receive port. For

this example, we included two interactions: (1) involving B1.p0 and Buffer1.send,
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(2) B3.p0 and Buffer2.send.

3.4 Distributed Implementations from BIP-Plus

We aim to derive correct and efficient distributed implementation given the high-

level BIP+model.

One obvious approach to derive distributed implementation from a particular

BIP+model is to:

1. transform it to a BIP equivalent model including the buffer components, and

2. get the 3-layer S/R model for the latter.

Although this approach simplifies the development process defining primitives

to avoid explicitly implementing the buffer, it drastically affect the efficiency of the

generated implementation due to the following reasons:

• We need to create one process/thread for each buffer

• Communication would not benefit from already existing system buffers

Consequently, another approach, to be adopted for the same purpose, is to trans-

form directly the BIP+model to its 3-layer S/R model by proposing a new transfor-

mation method.

In the following, we give a detailed description of the two implementations.

3.4.1 Distributed Implementation through the Intermediate Buffered-

BIP Model

By following this approach, a BIP+model must be converted to its equivalent BIP

model with buffers, which can be named as the buffered-BIP Model. Then, this

resultant model is transformed to a 3-layer S/R Model to derive correct distributed

implementations for the initial high-level BIP+Model. This approach can be referred

to as: BIP+Model → Buffered−BIP Model → 3−Layer SR Buffered−BIP
Model.

Given the PA composite component C? = γ?
{
B?i
}
i∈I where, for all i ∈ I, B?i =

Bi, t. Its corresponding composite component is C = γ
{
AC

⋃
i∈I BU

}
such that

AC = {Bi}i∈I and BU is the set of buffers corresponding the receive ports in C?.
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Formally, the transformation of C?, to its distributed implementations, is defined

by 〈C,Pt, A〉 where:

• The components of C are transformed to S/R atomic components to be set in

the CL, i.e., for all i ∈ I, Bi ∈ AC it modified to be BSRi .

• Pt is a partition of interactions in C in IPL, such that Pt ⊆ 2γ and for all

α1, α2 ∈ Pt, α1 ∩ α2 = ∅ and
⋃
α∈Pt α = γ.

• A, it is an algorithm, specified in RPL, for solving the committee coordination

problem, dining philosophers or circulation tokens.

.

Because of the first conversion, i.e., from the BIP+to buffered-BIP model, new

components, the buffer components, are added to the system along with new in-

teractions, to preserve equivalence between the two models. However, this induces

overhead in the distributed implementation (3-layer S/R model), especially in bigger

models where there are too many receive ports, as a result of adding more compo-

nents (as many as the number of receive ports in the BIP+model) to the CL and

more interactions to the IPL. This overhead, in turn, prevents this implementation

from being as efficient as desired.

This means, following this appeal may not be the best to acquire distributed appli-

cations from our proposed high-level model.

Example 9 (3-Layer S/R Buffered-BIP Model). Figure 3.5 presents the 3-layer S/R

BIP Model corresponding to the buffered-BIP model in Figure 3.4 . This 3-layer

Model, consequently, corresponds to the initial BIP+composite component displayed

in Figure 3.2 . In addition to the S/R version of the atomic components of the initial

BIP+model, BSR1 , BSR2 and BSR2 , there are three new S/R components, Bu1
SR
0 and

Bu2
SR
0 , added to the CL corresponding to the buffer components of every receive

port of the initial BIP+model. Furthermore, the IPL includes more interactions

than those of the initial BIP+model.

3.4.2 Direct Distributed Implementation from a BIP-Plus Model

We propose, in this section, our approach to procure distributed implementations

directly from the BIP+model which is intended to be more efficient than the pre-
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Figure 3.5: 3-Layer S/R Buffered-BIP Model Example

viously explored approach. This approach can be referred to as: BIP+ Model →
3− layer SR BIP+Model.

Given a transition τ =
〈
l, p, l′

〉
in a PA atomic component B?=〈

P,L, T,X, {gτ}τ∈T , {fτ}τ∈T , t
〉
, with l, l′ ∈ L and p ∈ P , we denote l, the source

of τ as τ.src, l′, the destination of τ , as τ.dest and p as τ.port.

Definition 13 (Transformation from B?to B?SR). An S/R atomic component B?SR,

of B?, is defined by the tuple
〈
P ′, L′, T ′, X ′, {gτ}τ∈T ′ , {fτ}τ∈T ′

〉
, such that:

• L′ = LDSR ∪ L⊥ ∪ LSR is the set of locations, where:

– LDSR is the set of locations such that each one of these locations is a

source of a transition labeled by a send port or receive port. We have

LDSR = {l | ∃τ ∈ T ∧ (t(τ.port) = send ∨ t(τ.port) = receive)}.

– LSR is the set of locations such that each one is a source of a transition

labeled by an ordinary port LSR = {l | ∃τ ∈ T ∧ τ.src = l ∧ (τ.port) =

ordinary}

– L⊥ is the set of locations introduced to every location l in LSR. We have,

L⊥ = {⊥l | ∃l ∈ LSR}
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• X ′ = X ∪
{
xp
}
p∈P ∪ n where xp is a new boolean variable associated to every

ordinary port p ∈ Po and n is called a participation number.

• P ′ = P ∪ o where o is an offer port.

• T ′ = TDSR ∪ To ∪ TSR is the set of transitions where:

– TDSR is the set of direct send or receive transitions; i.e., labeled by a send

or receive port in B?. TDSR = {τ | τ ∈ T∧(t(τ.port) = send∨t(τ.port) =

receive)}.

– To is the set of transitions introduced to every location l ∈ LSR labeled

by the offer port. We have To = {〈l, o,⊥l〉 | ∃τ ∈ T ∧ ∧τ.src = l ∧
t(τ.port) = ordinary}. The guard of each of transition τ ∈ To is true

and its function is the identity function.

– TSR is the set of response transitions, corresponding to transitions in

B?, labeled by ordinary ports. However, for every tranisiton τ ∈ TSR,

its source location belongs to Lo. We have, TSR = {
〈
⊥l, p, l′

〉
| ∃τ ∈

T ∧ τ.dest = l′ ∧ t(τ.port) = ordinary}. The guard and the function of

τ ∈ TSR are the same as those of the original transition. These tran-

sitions, when executed, apply the function, followed by incrementing the

participation number n followed by updating the boolean variable of the

associated port.

Example 10 (3-Layer S/R BIP+Model). Figure 3.6 presents an example, in (a), of

an LTS in a BIP+model, and shows, in (b), how it becomes after transforming the

PA atomic component to an S/R PA component. We have p1 and p2 as ordinary

ports, ps as a send port and pr as a receive port. It is well noticed that a new

location ⊥l0 is only added for the location l0 whose outgoing transitions are labelled

with ordinary ports. The transition between ⊥l0 and l0 is labeled with offer port.

The other transitions are kept the same.

Definition 14 (Transformation from BIP+to SR BIP+). Our proposed approach, as

previously mentioned, is achieved by the direct transformation from the BIP+model

to an equivalent 3-layer S/R BIP+model.
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Figure 3.6: BIP+Transitions Transformation in 3-Layer Model

The transformation, of a PA composite component C?=γ?
{
B?i
}
i∈I , is defined

by the tuple 〈C?, P t, A〉, where:

• All PA atomic components, of C?are transformed to S/R PA atomic compo-

nents, i.e., for all i ∈ I, B?i is transformed to B?SRi .

• Pt is a partition of the ordinary interactions of C?

• A is the algorithm, specified in RPL, for solving the committee coordination

problem, dining philosophers or circulation tokens.

• All DSR interactions are kept direct between the S/R PA atomic components

corresponding to the PA components of C?

Consequently, the CL of the model is composed of S/R PA atomic components

with their DSR interactions, IPL includes the partition of the ordinary interac-

tions only, and, finally, the algorithm is chosen at RPL obtaining the 3-layer S/R

BIP+model.

Example 11 (3-Layer S/R BIP+Model). Figure 3.7 represents the 3-layer S/R

BIP+model corresponding to the model displayed in Figure 3.1 . It shows that the

components layer is only composed of the S/R PA components corresponding to the

PA components initially composing the model in Figure 3.1 . As for the IPL, there

34



B?SR
1

o

p0

p1

B?SR
2

p3p2p1

p0

o

B?SR
3

p2p1

p0

o

IP1a2 a3 IP2a4 a5

RP

o1 p11 o2 p21 p22 o2 p23 o3 p31 p32

req2 ok2 fail2 req4 ok4 fail4

req2 ok2 fail2 req4 ok4 fail4

a1

Figure 3.7: 3-Layer S/R BIP+Model Example

are two components IP1 and IP2. IP1 is responsible for, locally, resolving conflicts

of the ordinary interactions a2 and a3 where IP2 is responsible for handling conflicts

of a4 and a5. As for RPL, it will resolve conflicts that may occur between either

a2 and a4, a2 and a5, a3 and a4, or a3 and a5. Moreover, it shows that the DSR

interaction a1 is not assigned to any of the IPL components. a1 is still a direct

interaction between the components in CL.

This approach must guarantee efficient and correct distributed implementations

of a high-level BIP+model.

As mentioned before, the offer and response are implemented using asynchronous

low level send and receive primitives. As for direct send and receive ports, they will

be, also, implemented using the same asynchronous low-level primitives for we are

targeting asynchronous direct data transfer between components. For this reason,

to implement all of them, we must utilize low level communication primitives that

make use of tags to differentiate between the many responses or messages received

in a S/R BIP+model to avoid any confusion and faulty data exchange.

Furthermore, since we target a sender triggered communication such that a mes-

sage must be sent to the receiver when the sender is ready whether the receiver is
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ready or not, the message must be preserved at the receiver side, so the receiver gets

access to the message when the receiver is ready. For this purpose, the messages

sent are stored in the system buffer to which the receive must access. To make

this possible, the communication primitives implementing our approach must also

support access to the underlying platform.

3.5 Proof of Correctness of BIP-Plus Distributed Implementation

After we define the BIP+framework in this chapter, we illustrate how a BIP+model

can be transformed to a BIP model, or, equivalently speaking, how a BIP+model

can be constructed as a BIP Model. This transformation allows obtaining dis-

tributed implementation of a particular BIP+model by transforming the equivalent

BIP model to its 3-layer S/R model.

A BIP model is equivalent to its corresponding 3-layer S/R model by weak bisim-

ulation. Therefore, obtaining the distributed implementation for a BIP+model

through this way (BIP+→ BIP with buffers → 3-layer S/R BIP ) is, also, proved

to be correct. However, the main reason we do not go this way is the overhead

delivered by adding buffers to the components layer (CL) and their associated

interactions to the interaction protocol layer (IPL). For this reason, we propose

another approach for generating distributed implementations of a BIP+model

through a direct derivation of the 3-layer S/R model from it (BIP+→ 3-layer S/R

BIP+).

In this section, our aim is to prove that the obtained 3-layer S/R BIP+model is

equivalent to its relevant 3-layer S/R buffered-BIP model. As a result of proving

them equivalent, the correctness of our proposed approach for deriving distributed

implementations is guaranteed.

The proof consists of 3 independent steps. Consider the derivation of distributed

implementations of a particular BIP+model utilizing both approaches illustrated

in chapter 4 section 3.4. As a result we obtain two models: (1) the 3-layer S/R

buffered-BIP model, and (2) 3-layer S/R BIP+model. Given the resultant 3-layer

S/R buffered-BIP model, the first step proves that the role of buffers is preserved

in the relevant 3-layer S/R BIP+model. As for the second one, it proves that
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execution of interactions in which the buffer components are involved do not need

to be managed by the upper layers. Finally, given a 3-layer S/R BIP+model, the

third step proves how the existing conflicts are handled, or, otherwise, do not violate

the global semantics.

For illustration purposes, we present an example, in Figure 3.8 , of a BIP+model

that includes many interactions possibilities sufficient to support our proof steps.

Figure 3.9 is the equivalent BIP transformation of the model presented in Figure

3.8 .

In addition, we show both of the 3-layer S/R models as (1) derived directly from the

BIP+composite component of figure 3.8 and (2) derived from the equivalent BIP

model of figure 3.9 in compiledfigures 3.10 and 3.11 respectively.
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Figure 3.8: BIP+Model Example
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Figure 3.9: BIP with Buffers Model Equivalent to that of Figure 3.8

Example 12. For the BIP+model in Figure 3.8 , we assume that B?1 .p, B?2 .p, B?3 .p

and B?4 .p are ordinary ports (black bullets). On the other hand, B?1 .r1. B?3 .r1 and

B?3 .r2 are direct receive ports (blue bullets), where B?2 .s1, B?4 .s1 and B?4 .s2 are direct
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Figure 3.11: 3-Layer S/R BIP Model of 3.11

send ports (red). As for its equivalent BIP model with buffers, in Figure 3.9 , the

buffer components are the light gray components for more emphasis.

As for the S/R BIP+model in Figure 3.10 , the ordinary interactions a1 and

a2 are assigned to the only component in IPL, IP1. On the other hand, the DSR

interactions a3, a4 and a5 are all kept direct between the components of CL.

As for the S/R BIP model in Figure 3.10 , all interactions are assigned to the

only component of IPL, IP1. In both examples, we use one component in the IPL to

simplify them. Having one component in the IPL, delivers a 2-layer model instead of

a 3-layer one. In IP1, non-offer ports superscript refers to the corresponding com-

ponent’s ID where the components’ IDs are the subscripts of their names. similarly

for offer ports corresponding to non-buffer components As for the rest offer ports,

o5, o6 and o7 correspond to Bu1SR1, Bu3SR1 and Bu3SR2 respectively.
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3.5.1 Preservation of Buffer Components Role

In this section, we start with the first step of our proof. We prove that the buffer

components’ role in 3-layer S/R buffered-BIP model is preserved in the 3-layer

BIP+model.

The transformation from a BIP+model to its corresponding BIP model requires

adding the buffer components. However, these buffer components are not added

from nowhere. We assume that they resemble system buffers and behave identically

i.e.,they receives messages from a sender in order and sends them to a receiver, in

the same order in which they have been previously received, when the receiver is

willing to receive a message.

Furthermore, practically, the BIP+model makes use of implicit buffers, the system

buffers. In other words, the DSR interactions of the BIP+composite components

are intervened by system buffers at the level of every receive port, and they can be

thought of as two interactions combined: (1) an interaction between the sending

component and the system buffer, (2) an interaction between the system buffer and

the receiving component.

In spite of having system buffers and buffer components equivalent, we have avoided

using the latter and made use of the system buffers in order to reduce the overhead

that buffer components create to the model and in order to utilize the underly-

ing platform. Utilizing the underlying platform helps obtaining more efficient dis-

tributed implementations.

Consequently, we have proved that the buffer components role of the 3-Layer S/R

model with buffers is preserved in the distributed implementation of the BIP+model.
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Figure 3.12: BIP+Model with System Buffers Example
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Figure 3.13: 3-Layer S/R BIP+Model with System Buffers Example

Example 13. Figure 3.12 shows the BIP+model example, of figure 3.8, including the

system buffers. If any components send a message, through the direct send port,

to another component receiving this message through a particular direct receive port

such that these ports participate in the same DSR interaction, the message send will

be stored in the system buffer accessible by the receiving component. For instance,

when s2 in B?4 is enabled, B?4 sends data through a5 to r2 B
?
3 , the sent data will be

stored in the system buffer until B?3 .r2 is enabled so it receives the messages from the

system buffer. For more illustration we show the 3-Layer S/R model for it Figure

3.13 .

3.5.2 Preservation of IP Role for Buffers’ Interactions Selection

In this section we discuss our second proof step. We prove that the role of the IP

in selecting possible interactions to execute is preserved for interactions in which

the buffer components’ ports are involved without even passing through the upper

layer.

For this purpose, we have to tackle two possibilities:

1. Executing interactions in which the buffer’s receive is participating such that

these interactions bypass the upper layer, and
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2. Executing interactions in which the buffer’s send is involved where these in-

teractions bypass the upper layer.

3.5.2.1 Execution of Buffer’s ”receive” Interactions

Given the BIP model equivalent to BIP+, in the buffer component, the port

”receive” is always enabled, i.e the buffer is always ready to receive messages.

For this reason, the buffer component’s port ”receive” does not really affect the

execution of interactions in which it is involved, but the other components involved

ports do. This is because an interaction’s execution is possible when all of its ports

are enabled. Nevertheless , if we can assure that one of the ports is always enabled,

we can avoid checking if it is activated every time, and it is enough to only check if

the other participating ports are.

Additionally, the interactions in which the buffer component port ”receive” is

involved usually consist of:

• the buffer’s port ”receive”, in addition to some other buffers’ ports named

”receive” in case of a DSR interaction involving multiple receivers, and

• a sending port of a certain non-buffer component.

Then, only if the involved port of the sending component is enabled, the interaction

can be executed.

Hence, the execution of an interaction, involving a buffer’s ”receive”, can be de-

termined by one only involved port, the sending port, the one of the non-buffer

component. To decrease the useless overhead in upper layer, the decision for ex-

ecuting such interactions can be taken at the level of the non-buffer participating

component itself.

3.5.2.2 Execution of Buffer’s ”send” Interactions

The port ”send” of the buffer is enabled when there is a message in its internal

queue. As long as the queue of the buffer is not empty, the buffer component is

willing to send its stored messages to another components that is willing to receive.

The interactions that include the buffer’s port ”send”, consist of:
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• the buffer’s port ”send” and only one receiving port of a certain non-buffer

component

So, these interactions are executed if both ”send” and the other receiving port

are enabled which requires to make use of the upper layer that checks if all the

ports of interactions are enabled. Fortunately, assuming that the buffer component

resembles the system buffer, in the receiving component at the port involved in a

DSR interaction, there is an access (through probing for instance) to the system

buffer and there can be a local direct check if there is a message waiting to be

received by this port. Therefore, the execution of these interactions does not need

the upper layer for it can be decided, locally, at the receiving component’s side.

Finally, as discussed in step 1, assuming that buffer components in the BIP

model resemble system buffers utilized in BIP+models, we prove, in step 2, that

DSR interactions do not need to pass through the upper layers and they are kept

direct between the participating components and execution of these interactions

can be determined at the level of the components.

Yet, we need to enforce our proof with a third step about conflict handling. This

is due to the fact that not only is the upper layer an engine to get information

about enabled ports of components and execute the enabled interactions, but also a

conflict handler. We cannot avoid the upper layer without taking into consideration

conflicts between interactions.

3.5.3 Conflicts Handling

Finally, we present the third step of our proof tackling the issue of conflicts. Con-

flicts may occur between interactions, in our proposed 3-layer architecture for the

BIP+model, for we choose to keep DSR interactions direct between components and

not passing through the upper layer that resolves conflicts.

In order to prove that bypassing the upper layer by the DSR interactions do not

violate the global semantics of the model, we are going to discuss conflict handling

for all the following cases:

• Conflicts between only ordinary interactions

• Conflicts between ordinary and DSR interactions

• Conflicts between only DSR interactions
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3.5.3.1 Conflicts Between Ordinary Interactions

The conflicts between the ordinary ports of a BIP+model are resolved by the inter-

action protocol layer and the reservation protocol layers.

Example 14 (ordinary Interactions Conflict Handling). The ordinary interactions,

in the model of figure 3.10, a1 and a2, are assigned to the component IP1 of the IPL

that resolves the conflicts between them.

3.5.3.2 Conflicts Between Ordinary and DSR Interactions

Ordinary interactions do not conflict with DSR interactions. Back to the definition 8

of PA-atomic components in BIP+in chapter 4, the outgoing ports from a particular

state can only be either ordinary ports or direct send and receive ports.

Then, there exit no two interactions such that they both involve ports labeling

transitions having the same source location where one of these ports is ordinary and

the the other is direct send or direct receive. Therefore, it is guaranteed that DSR

interactions do not have conflicts with any of the ordinary interactions.

3.5.3.3 Conflicts Between DSR Interactions

Conflicting DSR interactions are interactions that either:

• involve a common direct receive ports, or

• involve ports that label transitions outgoing from the same source location

One note is that a direct send port cannot participate in more than one interaction in

the whole PA composite component, so there is no way that conflicting interactions

include a common receive port.

One Direct Receive Port in Multiple interactions In BIP+, executing con-

currently multiple DSR interaction having a common receive port does not violate

the global semantics.

To begin with the proof, we shall mention that, practically in BIP+, a receiving

port, participating in many DSR interactions, gets the messages sent to it one at a

time at each execution of a transition labeled by this port (completion of each of

these interactions execution). Also, they are received in the same order in which

they are saved at the system buffer even if senders sent them simultaneously.
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When a BIP+model with such a conflict is converted to its BIP model, the

interactions that used to share a common receive port (causing the conflict) will,

eventually, share the port ”receive” of the buffer corresponding to the initial receive

port involved in these conflicting interactions. Besides, the initial receive port will

only be involved in one interaction with the port ”send” of that buffer. Thus, the

conflict, now, is because the buffer port ”receive” is involved in several interactions.

Example 15 (Buffers port ”receive” Conflicts). In Figure 3.8 , a3 and a4 have port

B3.r1 in common. When the model is transformed to the BIP version, we get,

instead, a4 and a6 sharing the port ”receive” of the buffer corresponding to B3.r1

So, we are going to prove that the way these conflicts are handled by the upper

layer in the 3-layer S/R BIP model with buffers is preserved in the 3-layer BIP+S/R

model although the upper layer is bypassed.

If interactions sharing the same port ”receive” of a buffer are assigned to the

Interaction Protocol Layer, the latter would wait until any of them is ready so it

can be executed. But, when all of the interactions sharing the same port ”receive”

are ready, the upper layer must only pick one interaction out of them to be executed.

No matter which interaction is picked at a moment, the information about the

non-executed interaction will be re-taken into consideration, in the upper layer, for

another selection. Fortunately, since the buffer’s port ”receive” is always enabled,

any one of the non-executed interactions can be selected and executed as long as

there are ready interactions involving ”receive”. Until all these interactions are

executed, the selection process by the upper layer will be repeated (since the buffer

is always available for receiving messages), thus, all messages sent to the buffer will

be received by it and saved in its internal queue in order.

This means that if multiple components are ready to send messages to a buffer, all

of the messages are being sent successfully and received by the buffer one after the

other, in a random order according to the selection of the upper layer.

Example 16 (Buffer port ”receive” Conflicts Handling). Figure 3.14 shows an ex-

ample of a buffer component interacting with two other components. This example
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Figure 3.14: Many Senders and one Receiver Conflict Example

shows a conflict between the two interactions a1 and a2 for they share the port

”receive” of the same buffer component. If this BIP model is transformed to its

distributed implementation, the upper layer will receive information about ports of

a1 and a2, which are B1.s, B2.s and ”receive”, (knowing that the latter does not

affect the availability of the interactions as mentioned in step 1 for buffer is always

available to receive messages). As shown in the figure, there are no guards labeling

transitions through B1.s and B2.s, so the ports are enabled and the interaction in-

cluding them is, also, enabled. But, only one will be picked, either a1 or a2.

If a2 is selected by the upper layer, B2.s is no longer enabled, but B1 is still in

the same state and its port s is still enabled. Since the buffer is always ready to re-

ceive, a1 is ready to be executed and, since there are no more conflicting interactions

assigned to the upper layer, it is surely selected.

In comparison with the BIP+model, if multiple senders are sending to only one

receiver consequently, their messages are all received by the system buffer in the

order they arrived with. So, we maintained the upper layer’s behavior to these

conflicting interactions without really going through it.

Therefore, this conflict, if not handled by the upper layer, does not violate the

global semantics of the model.

Conflicts between Ports of same Source Location Another conflict may

exist, in a BIP+model, between DSR interactions, when some interactions include

ports label transitions having the same source location, such that these ports are

either:

1. send ports

2. receive ports
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3. send and receive ports

For the first case i.e the ports are of type send, we take as an example interactions

a4 and a5 in figure 3.8, where the behavior of B3 and B4 enforces this conflict. For

more illustration we present example of B3 and B4 where a4 and a5 are conflicting

in figure 3.15 (ignoring the other model details that are out of interest for this case).
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Figure 3.15: Conflicting Interactions Involving Direct Send Ports

When the model with this conflict is converted to its BIP implementation, these

conflicts are not caused by the interactions including the receive ports of the receiving

component anymore. Otherwise, they include the initial send ports of the sending

component and the port ”receive” of the buffer corresponding to the receiving ports,

e.g a6 and a7 in figure 3.9. After getting the distributed implementation of this

model, these conflicts are resolved by the upper layer.

However, in BIP+model, we do not need to include these conflicting interactions in

the upper layer. A PA-component can send a message through its sending port to the

system buffer when this port is enabled at any time. Then, in case we have many

send ports from a given state, and they are all enabled, in turn, the interactions

involving these ports can be executed which causes the conflict. For this reason, we

implement the function of the upper layer at the level of the state, in the component,

from which several transitions labeled by send ports are outgoing. Now, from a given

state, only one interaction involving one of its outgoing transitions’ enabled ports

is allowed to be executed. The decision of the interactions (between sending PA-

component and system buffer) to be executed is randomly taken. For example, in

figure 3.15, we have all ports of a4 and a5 enabled at state B4.l0, but either only a4

or a5 can be executed.

For the second case of conflicting interactions (i.e including receive ports), we

take another example for the behavior of B4 and B5 as shown in figure 3.16.
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Figure 3.16: Conflicting Interactions Involving Direct Receive Ports

On the other hand, in this case, transforming the BIP+model to its BIP version,

this conflict becomes between interactions including the receive ports of the receiving

components and the port ”send” of their corresponding buffer (e.g a5 and a8). The

upper layer checks which of these interactions are ready for execution and selects

only one to handle conflicts.

Nevertheless, in BIP+, we can avoid passing through the upper layer in this

case. This is because in a PA-component as a particular state, we have access to

the system buffer and can check if there is a message waiting to be received by a

specific port. So, there is no need for the upper layer to check if the interaction is

ready, as proved in step (2), as this can be done locally in the PA-component. As for

conflict handling- somehow similar to case (1)- we implement the role of the upper

layer inside the PA-component. For a given state, we check all the enabled receive

ports and, then, check if there is a message waiting to be received, by each of these

ports, in the system buffer. Finally, only one message is selected to be received by

an enabled receiving port (only one interaction between system buffer and receiving

port is executed). This way, we can say the role of the upper layer is implemented

local to the component and precisely at the state level in which there are receiving

ports. Therefore, these interactions (between system buffer and receiving port) do

not need to pass through upper layer to handle the conflicts.

Finally, as for the third case, i.e the ports are a mix of send and receive ports,

the conflict is tackled by giving a priority to the interaction involving the send port.

In the PA-component at the state level (whose transitions’ ports are involved in

the conflicting interactions), as long as there is at least one send port, the random

selection implemented for case (1) is processed. Otherwise, the selection process for

case (2) is adopted.

Consequently, all conflicts between DSR interactions are tackled in the 3-layer
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S/R BIP+model without the need to utilize the IP and RP layers of the 3-layer S/R

BIP model.

To sum up this chapter, We prove that our proposal for the 3-layer S/R

BIP+model is equivalent to 3-layer BIP model with buffers by preserving the be-

havior of the buffer components and upper layer although they are not explicitly

used in our suggested model.
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Chapter 4

BIP-PLUS TOOL IMPLEMENTATION

Contents

4.1 BIP-Plus Tool Implementation From the BIP tool . . . . . . . . . . . 49

4.2 Middle-End Modifications . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Back-End Modification . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 BIP-Plus Tool Implementation From the BIP tool

We have implemented the BIP+tool by making use of the existing BIP tool applying

modifications to integrate our proposed extension.

We modified two parts in the BIP tool, the middle-end and back-end. In the

BIP tool, the middle-end, is responsible for generating a send/receive BIP model

from the bip file. On the other hand, the back-end is responsible for generating

C++ code with MPI, C++ serial code or sockets. In the back-end of the BIP+tool,

our only aim is to generate C++ code with MPI, so the part responsible for this

generation, in the BIP tool, will be altered.

4.2 Middle-End Modifications

The middle-end of the BIP+tool takes a BIP+file as an input. After the user parti-

tions ordinary interactions between components over the interaction protocol layer

and specifies the scheduling algorithm to be adopted by the reservation protocol

layer, the tool parses this file and generates the corresponding SR BIP+file.

The code of this part has been modified to satisfy the theory mentioned earlier.

In effect, the states whose outgoing transitions are labeled with non-ordinary ports

(direct send or direct receive) must stay unchanged. As for the states with outgoing

transitions labeled by ordinary ports, the corresponding busy states must be added

and new transitions between these states must be created including the one labeled

by the offer port. For this sake, we distinguish between 3 types of states. A state

whose all outgoing transitions are labeled by ordinary ports is said to be an ordinary

state, and the one whose all outgoing transitions are labelled by direct send ports
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is called a send state, else it is said to be a receive state. The main modification

applied to the BIP tool here is to check the type for every state before adding any

new states or transitions. In case the state is not ordinary, the part responsible for

creating new states and transitions and other details ( at state level ) relevant to a

SR BIP model is skipped.

In addition, a DSR interaction must also be kept direct between components

in the components layer unlike ordinary interactions that become intercepted by

components from the interaction protocol layer according to the specified partition.

For this reason, interactions checks are also made, in case a connector is a direct-send

receive, it is kept as it is.

Furthermore, at this stage, the states and interactions are checked if they are

valid (i.e a send port is used once in all DSR interactions, one send port is used in a

DSR interaction, all transitions from a particular are enabled by ports of the same

type).

The generated output, includes all the port, connector (interaction), atom and

compound types of both the BIP+and the SR BIP+models. To prepare the input of

the back-end part of the tool, the user must remove the atom and compound types

of the old BIP+model and keep the rest especially the connector(interaction) type

of the DSR interactions.

4.3 Back-End Modification

The back-end part of the BIP+tool takes, as an input, the output of the middle-end

and generate C++ with MPI. In addition to the SR BIP+file, it takes another one

that includes the data types of exported variables/data by ports and their equivalent

MPI type along with the size of this data. At this stage, all the interactions between

components of layer are generated to an asynchronous (MPI) send receive primitives.

The transferred messages between a sender and the corresponding receiver must have

a matching tag. For the tag to be unique within a compound, the ports are given

an identification number and the tag of the message is set to the ID of the receiver.

As for the DSR interaction, it is generated as also asynchronous send and re-

ceive MPI messages. The use of unique tag for each message helps eliminating any

confusion between messages exchanged within the same component.

Many DSR interactions can be executed concurrently. However, from a given

send state, if more than one send port are enabled, only one interaction involving
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those enabled ports can be executed. Since there is no engine to handle this, a

random selection of those port is implemented.

Although asynchronous primitives are used, the receiving party must wait until

a message can be received through an enabled port at a certain state. Also, in case

many receive ports are enabled at a receive state, and if there are messages ready

to be received at some of them, random selection of a one receive port is made at

this level. This ensures that only one message can be received by an enabled receive

port.
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Chapter 5

BENCHMARKS
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To highlight the optimization that BIP+introduces, this chapter presents two

applications that use buffering to carry-out asynchronous data transfer operations.

Section 5.1 implements Two Phase Commit to solve the transaction commit problem,

and section 5.2 implements Support Vector Machines to solve handwritten digit

recognition. Since BIP+allows for PA send/receive, we start by providing a BIP

design and implementation and then transform it to a more efficient model using

BIP+PA send/receive primitives in order to make the comparison between BIP and

BIP+.

The transformation is performed in the same way for both case studies presented.

The starting BIP models conventionally follow these properties by construction:

• Buffering components used match the design specified in chapter 4 section 3.3.

• Each send port of a buffer is connected to exactly one interaction.

• Each receive port of a buffer is connected to at least one interaction.

• Each interaction connecting a buffer has exactly two ports

• No buffer component is connected to another buffer component
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Part (a) of Figure 5.1 illustrates a BIP composite component that satisfies the

aforementioned properties.

Following this convention, any buffered BIP model can be transformed to an

equivalent BIP+one by performing the following steps. The transformation is illus-

trated in Figure 5.1, where the starting BIP model is shown in (a), and the resulting

BIP+model is shown in (b):

• For each buffer component Bu let {a1, a2, . . . , an} be the set of interac-

tions connected to the port called receive of Bu, and {S1, S2, . . . , Sn} be

the atomic components respectively connected to these interactions via ports

{S1.p, S2.p, . . . , Sn.p}. Then let ar be the only interaction connected to the

port called send of Bu, and R be the atomic component connected to this

interaction through port R.p.

• Construct a BIP+model matching the design of the BIP one, but with every

port made ordinary.

• Remove every interaction ai for i ∈ [1, n] and transform each port Si.p into a

send port

• Remove the interaction ar and make port R.p a receive port

• Remove Bu, and connect each port Si.p to R.p using a send/receive interaction

a∗i

5.1 Two Phase Commit (2PC)

Transaction commit [11] is a consensus problem where different nodes, called re-

source managers {rm1, rm2, ..., rmn} spanning a distributed system, have to reach

consensus on a binary decision of whether to commit/abort a transaction. Each

resource manager has the ability to locally commit/abort a transaction based on

a local decision. In a fault-free system, the problem requires the global system to

commit as a whole if each rm has locally committed, and that it aborts as a whole if

any of the rm′s has locally aborted [11]. In case of global abort, locally-committed

rm′s may perform roll-back steps to undo the effect of the last transaction [12]. To

allow for this roll-back, resource managers keep necessary information in a log while

they locally-commit the transaction.

53



r sBupS2

pS1

pSn

. . .

p R

a1

a2

an

ar

pS∗
2

pS∗
1

pS∗
n

. . .

p R∗

a∗1

a∗2

a∗n

(a)

(b)

Figure 5.1: Benchmarks transformation.

54



Two phase commit protocol is a solution proposed by [13] to solve the transac-

tion commit problem. It uses a transaction manager tm that coordinates between

resource managers to ensure they all reach one global (final) decision regarding a

particular transaction. The global decision, although made by the tm, is made upon

the feedback it gets from resource managers after each of which has made its own

local decision.

The protocol, running on a transaction tj , uses a client c, a transaction man-

ager tm and a non-empty set of resource managers {rm1, rm2, ..., rmn} which are

the active participants of transaction tj . The protocol starts when c sends remote

procedure calls rpc′s to all the participating rm′s. Then each rmi makes its local

decision dij →{true, false} regarding transaction tj based on local criteria.

• dij = true iff rmi can locally-commit transaction tj

• dij = false iff rmi cannot locally-commit transaction tj

The resource manager then resides in a state that represents the decision it made.

After all local decisions have been made and reported to tm, the latter makes a global

decision Dj = (d1j ∧ d2j ∧ . . . dnj) that all the system will agree upon. When Dj

evaluates to true, the system will globally-commit as a whole, and it will abort as a

whole when Dj evaluates to false.

In this implementation, the systems is assumed to be non-faulty, where all the

nodes are expected to function correctly without any errors. Network connections

between nodes are also assumed to be reliable and ensure the deliverance of non-

duplicated messages within a bounded time limit. The network is not subject to

be partitioned, and all storage devices (to hold the commit log) are stable and non-

faulty. For the purpose of the benchmark, the system is implemented to do multiple

transactions in a row, and all transactions have the same number and identity of

participants.

5.1.1 BIP Implementation of 2PC Protocol

Each subsystem {c, tm, rm1, rm2, ..., rmn} is represented by an atomic component in

a BIP model where only strong synchronization(rendezvous) is used. Extra buffering

components follow the design provided in Figure 3.3. The following describes the

design of each atomic component:
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Figure 5.2: Client.

Figure 5.2 shows the client component c which initiates a transaction by sending

remote procedure calls (rpc1, rpc2, ..., rpcn) accompanied with the current transac-

tion number j to (rm1, rm2, ..., rmn) respectively. It then commits to tm notifying

it of the number of participants in the current transaction (n) and waits for the

reception of the global decision which will be later made by tm.

As shown in Figure 5.3, each rm starts the transaction by getting a remote

procedure call from the client. The rm then makes a randomly generated decision

based on a probability to locally-abort the current transaction. It then updates

its local decision variable and notifies the tm accordingly. It stays in wait location

until it hears back from tm whether to perform a global commit/abort for the current

transaction.

Figure 5.4 shows the transaction manger. It gets triggered by the client to start

coordinating a transaction. After receiving the number of participants, it waits to

get the feedback from all rm′s updating its local variables according to each dij it

receives. Upon receiving n local decisions, it evaluates Dj , and globally commits the

transaction if all rm′s have locally-committed, or globally-aborts otherwise. This

step is performed in synchrony with the transaction manager and every participating

resource manager, which where all waiting for the global decision

Figure 5.5 shows the composite component which contains one instance of

client component, one instance of transaction manager component, and n instances
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Figure 5.5: Composite Component.

of resource manager component. There are also n + 3 buffers, n of which are

{Bu1, Bu2, . . . , Bun} where Bui receives data from c.rpci, and sends it to rmi.rpci.

These buffers hold data coming from different clients (in cases where there are

more than one client) and prepare it for the resource managers to fetch when they

are ready to do so. Three other buffers are connected to the transaction man-

ager, one is Bun+1 which is connected to tm.commit, it keeps the commit requests

from multiple clients, and two other buffers Bun+2, Bun+3 which are connected to

tm.getCommit, tm.getAbort respectively, to queue the local decisions made by the

rm′s and hold the data from being lost until tm is ready to process it.

5.1.2 BIP-Plus Implementation of 2PC Protocol

The PA send/receive primitives remove the need for the extra buffering components

since each receive port comes equipped with a built-in system buffer. The BIP

model presented above gets transformed to its equivalent BIP+one by undergoing the

transformations steps stated at the begging of section 6. The resulting BIP+model

has the following description:

Figure 5.6 shows c∗, the client PA atomic component as it is modelled in BIP+.

Ports {rpc1, rpc2, rpc3, . . . , rpcn} are changed into send ports exporting the trans-
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Figure 5.6: Client∗.

action number j to deliver it to each corresponding rm. The commit port is also

transformed into a send port with the variable n exported. All other ports are kept

ordinary.

The Resource Manager from Figure 5.7 is transformed to BIP+in the same way as

before. Ports localCommit, localAbort are made send ports, rpci is made a receive

port, with decide, globalCommit, and globalAbort kept ordinary.

The transaction manager goes through the same transformation with Ps = φ,

Pr ={commit, localCommit, localAbort}, and Po ={globalCommit, globalAbort} to

give tm∗. It is important to notice that wait is the source of 4 different transitions

which ports are of two different types. t(localCommit) = t(localAbort) = send,

and t(globalCommit) = t(globalAbort) = ordianry. This is not a violation of

BIP+operational semantics since each set of transition type is guarded, and the two

guards, governing the two sets, are mutually exclusive, which means they can never

evaluate to true at the same time as the expression, (nb < n) ∧ (nb = n) = false,

always holds.

The composite component, Figure 5.9, can now do without the extra buffering

atomic components, and the send ports can be directly connected to the correspond-

ing receive ports using send/receive interactions. Beside the obvious optimization

gained by removing the buffers (and their propagating overhead to the top of the

3-layer send/receive model), there is an extra major performance spike gained from

59



idle start working wait
rpci

decide

[decision = random()]

decision = true

localCommit

decision = false

localAbort

globalCommit

globalAbort

rpci decide localCommit localAbort

globalCommit globalAbort

j
id

ResourceManager∗i

Figure 5.7: Resource Manager∗i .

start wait

commit

[nb := 0][abortF lag := false]

nb < n

localCommit

[nb++]

nb < n

localAbort

[nb++][abortF lag := true]

nb = n ∧ abortFlag = false

globalCommit

nb = n ∧ abortFlag = true

globalAbort

commit localCommit localAbort

globalCommit globalAbort

n id

TransactionManager∗

Figure 5.8: Transaction Manager∗.

60



rpc1

rpc2
...

rpcn

commit

globalCommit

globalAbort

n

j

Client∗

commit

localCommit

localAbort

globalCommit

globalAbort

n

callerID

TransactionManager∗

rpc1

localCommit

localAbort

globalCommit

globalAbort

decide

ID

j

RM∗
1

rpc2

localCommit

localAbort

globalCommit

globalAbort

decide

ID

j

RM∗
2

rpcn

localCommit

localAbort

globalCommit

globalAbort

decide

ID

j

RM∗
n

tr
a
n
sa
ct
io
n
M

a
n
a
g
er
.n

=
cl
ie
n
t.
n

d1

d2

dn

GlobalCommitConnector

G
lo
ba
lA

bo
rt
C
on

n
ec
to
r

TwoPhaseCommit∗

Figure 5.9: Composite Component∗.

61



stating different kind of interactions. Since different types of ports have transi-

tions that are, by construction, known to never be conflicting (either by starting

from different locations or by having mutually exclusive guards), interaction proto-

col and reservation protocol can now focus on resolving conflicts between ordinary

interactions, and the resulting BIP ∗SR model can now benefit from direct source-

to-destination conflict-free send/receive interactions.

5.1.2.1 Experimental Results

Here, we present the performance results of BIP with buffers and BIP+models for

the previously defined problem, Two phase commit. For all the scenarios of this

benchmark, all the interactions of the model are assigned to only one component in

the interaction protocol layer. Also, all the runs are done by making use of a cluster

of 4 machines, each of which is an 8-core machine. For this benchmark, we have

tested 4 different scenarios to show, in different cases, how the performance of both

the BIP (with buffers) and BIP+model is affected.

The first two scenarios are problem dependant. They are done by changing or

fixing some problem parameters on only one machine to get the corresponding run

time.

The first scenario is to get the processing time variation of both BIP and

BIP+implementations as the number of transactions change. For this case, the

number of resource managers is fixed to be 10 while the number of transactions

varies from 20,000 to 200,000 by a step of 20,000. The results of this scenario are

presented in the graph in figure 5.10.

It is well shown in the graph that the processing time of both implementations

(BIP with buffers and BIP+) increases as the number of transactions increases (al-

most linearly). However, in a BIP model with buffers, more time is needed to decide

on a certain number of transactions than that in a BIP+model proving that the

communication in the BIP model with buffers is more expensive. Moreover, the

time difference between the two implementations, as in the graph, increases as the

number of transactions increases. This is because, in addition to the overhead in-

duced by communication in BIP, the more there are transactions, the more there

are client requests and decisions to be made by the resource managers and sent to

the transaction managers which increases the overall use of communication. Pre-

cisely, the global decision making process will be done as many times as the number
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Figure 5.10: 2PC Time Performance with Respect to Number of Transactions .

of transactions which, in turns, increases overhead and time consumption. On the

other hand, the increase of time, in both models, is linear because the cost of com-

munication increased is always constant. For the same number of resource managers

and for the same number of transactions added, the same tasks are done and same

interactions are executed.

The second scenario is to get the processing time variation of both BIP and

BIP+implementations as the number of resource managers change. For this case, the

number of transactions is fixed to be 10,000 while the number of resource managers

change from 2 to 20 by a step of 2. The results of this scenario are presented in the

graph in figure 5.11.

The results show that both run times of BIP and BIP+models increase as number

of RMs increases. This is because the more there are RMs, the more voters there are

which adds more interactions and in turn more communication between components.

Also, these results show, for one more time, that the performance of

BIP+implementations is much better than that of BIP implementation and that
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a direct send-receive communication helps getting rid of overhead and expensive-

ness of the buffers in BIP (more components, more interactions in the interaction

protocol layer). The reason behind having a such noticeable time gap between the

2 implementations is that when new resource managers are added to the model, the

corresponding buffer components to their receive ports are also added along with

the interactions. This rises the load of the interaction protocol layer. However, this

is not the case in the BIP+model as only the RMs are added. This also cause the

difference between the two curves to become much greater as the number of RMs

increase.

The last two scenarios test the two implementations on different number of

machines.

In the third Scenario, the run time of both models (BIP and BIP+) is tested

on 1,2,3 and 4 machines of the cluster. For this case all the parameters of the

problem are fixed such that the number of resource managers is 10 and the number

of transactions is 20,000. The components of the two models are distributed in a

round-robin fashion. The results of this scenario are presented in the graph of figure

5.12.

The 2PC problem is not a suitable problem to be parallelized over multiple ma-

chines because there are much more communication than computation (communi-

cation time much more expensive than computation) affecting negatively the whole

run time of the problem if is executed on multiple machines. This can be noticed by

the results we have got as the run time increases when components are distributed

over multiple machines.

Although distribution of components over multiple machines is not convenient

for this problem particularly, this scenario is still a great proof that BIP+can, also,

perform better than BIP with buffers on multiple machines since as seen in the

graph the processing time of BIP+implementations stay less than that of BIP (with

buffers).

Finally, in the last scenario, we try to have a selective distribution of compo-

nents among the different machines on which the implementations to be tested. By

keeping the problem parameters fixed and changing the number of machines (1 to 4)

on which the problem is parallelized, we do not distribute the components by only

using a round-robin algorithm. In the BIP model with buffers, the client, resource

managers and transaction managers are distributed using round-robin algorithm
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Figure 5.12: 2PC Time Performance with Respect to Number of Machines .

over machines. However, the buffer components corresponding to a particular (re-

ceive port of ) component are put on the same machine on which the corresponding

component is. Also, the interaction protocol is chosen to be set with the transaction

manager. In addition, we tried to have equal loads on all machines, so in excep-

tional cases, we changed the initial round-robin distribution. As for BIP+model, the

components were distributed among machines in a round-robin fashion without the

interaction protocol. The latter was put on the machine on which the transaction

manager is.

The results of this scenario are presented in graph figure 5.13.

The main notice of these results is that there is a main advancement of per-

formance of both (Buffered-BIP and BIP+) models in comparison to the results of

the previous scenario. This imposes new questions about the distribution process

of components among machines and how it should be. In addition to the great en-

hancement obtained in comparison with the third scenario, we still have BIP+with a

better performance than buffered-BIP. The graph in 5.14 shows clearly the difference

in results of both of the third and fourth scenarios.
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5.2 Support Vector Machines (SVM)

Handwritten Digit Recognition has become a classic application of machine learn-

ing with very good results in terms of accuracy. For the purpose of this paper,

we implement a distributed supervised learning model that predicts the classes of

handwritten digits using support vector machines (SVM) classifier.

Using different machine learning techniques, handwritten digit recognition using

SVM classifier has achieved very high accuracy levels, above %99 [14], but still

requires expensive computations and suffers from inefficient runtime [15], so it was

proposed by [16] to distribute the model to multiple SVMs, each has a smaller

local dataset to deal with, hence can perform faster, and to train these SVMs in

parallel. This approach showed significant enhancement of runtime [7,8], at the cost

of possible insignificant decrease in accuracy [15].

With n being the level of distribution, and starting with a training and a testing

sets of images, the distributed SVM model applied here undergoes three major

phases:

1. Preprocessing: The training set gets randomly divided into n disjoint and

equally-sized subsets, called local training sets, ready to be distributed over

n components. n preprocessing units, {pre1, pre2, . . . , pren}, work in parallel,

each extracting feature vectors out of images in its local training set. The

features extracted in our case are the intensity of each individual pixel.

2. Training: n units, called weak learners {wl1, wl2, . . . , wln}, collect the prepro-

cessed feature vectors acquired from phase 1, with each wli receiving data only

from prei. wli then compiles the vectors to perform a 1-step SVM training

resulting in a local hypothesis hi, which is a trained model ready to make

predictions.

3. Testing: Finally the results of all weak learners get aggregated in one machine

called strong learner sl, which constructs a final hypothesis hf , which, in

turn, handles predicting the testing set or the unlabelled data to calculate

the in-sample accuracy of the final hypothesis. The problem of combining

several hypothesises into one is solved by Bagging (bootstrap aggregating), a

technique proposed by [17]. This paper implements a very well-known bagging

method called majority voting. The strong learner, in possession of the testing
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set, extracts feature vectors from this set, sending each vector (resembling one

testing image) to each weak learner to predict its class. The strong learner

collects n votes, and makes the final prediction by choosing the class with the

higher votes resolving ties by random selection. This final prediction, then,

gets compared against the correct labels (previously known) to calculate the

accuracy of the model in the current testing set.

The advantage gained by the distribution is that as n increases, the size of local

training subsets decrease, along with which decreases the computation time taken

by each preprocessor and weak learner, and better speed-up results are obtained.

This example uses the MNIST dataset [18] to train and test the model with

60,000 training, and 10,000 testing gray-scale images. Each image has a resolution

of 26 * 26 pixels. The dataset is provided in a special format, so we transform it to

jpg format using a script to highlight the role of the preprocessor, and to simulate

a more convenient scenario in which other features might be extracted to achieve

higher accuracy.

For the purpose of this case study, we use the C++ implementation of opencv

3.0.0 [19] for both image manipulation, and SVM training and prediction routines.

A polynomial kernel is used with a polynomial function of the third degree and a

termination criteria set to 800,000 iterations.

5.2.1 BIP Implementation of (SVM)

The preprocessor model, shown in Figure 5.15, starts by performing initialization

steps that include determining the size of its training sample. It then synchronizes

with the week learners as it moves from location l0 to location l1 to post the size of

the data sample. the preprocessor, then, enters a loop with as many iterations as its

local sample size. As transitioning from l1 to l2 it processes one labelled image by

loading it and extracting its feature vector. Then, as moving from l2 back to l1, it

sends the feature vector accompanied with the pre-known label to the week learner

via a buffer connecting the two components.

Figure 5.16 shows the BIP implementation of the weak learner. It starts by

getting the size of the local training sample from the buffer connected to the port

get sampleSizei, and it performs some further initialization steps. The weak learner

then enters a loop getting the labelled feature vectors from the buffer coming from
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the preprocessor attached to it and adding these to the support vector machine

matrix. It then trains the model to generate its local hypothesis hi and reaches

state l1 where it synchronizes with the strong learner to start receiving the testing

sample. In each iteration, as it loop between l1 and l2, it receives a feature vector

fvtest, predicts its class and sends this prediction to a buffer connected to the strong

learner.

In Figure 5.17, we show the BIP implementation of the strong learner. After

initialization, which includes determining the size of the testing set, it enters a loop

where in each iteration it loads a testing image, extracts a feature vector out of it,

and waits until it synchronizes with each of the weak learners components to post

the feature vector as it moves from l1 to l2. It stays in l2 until it gets n votes,

each of which is one weak learner’s prediction of the feature vector in hand. After

receiving all the votes, and as the component moves from l2 back to l0 it calculates

the votes and makes a final decision labelling that feature vector, and resolving ties

by random selection. When all the testing vectors get processed, the component

exits the loop and terminates.

The composite component, shown in Figure 5.18, has n preprocessors that in-

teracts with n weak learners in a direct strong synchronization connector to send
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the size of the training set, and via a buffer to send labelled feature vectors. Weak

learners synchronize with the strong learner to get the feature vector to predict.

And each of them, then, sends its prediction to get queued in a buffer connected to

strong learner’s get vote port, for in some cases, a plurality might be reached before

receiving all the votes, in which case the strong learner would be able to make a

final prediction.

5.2.2 BIP-Plus Implementation of (SVM)

As in two phase commit, BIP+removes the need for explicit buffering while preserv-

ing asynchronous data communication. The following describes how to construct

BIP+atomic components starting with the previously described BIP components.

The preprocessor∗, Figure 5.19, has Ps = {send data} every other port is

made ordinary. In Figure 5.20, the weak learner has PS = {send pred} and

Pr = {recv data}, the rest are all ordinary. The strong learner, shown in Figure

5.21, has Pr = {recv vote}, every other port is ordinary. The ports recv vote and
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Figure 5.20: Weak Learner∗ .
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Figure 5.21: Strong Learner∗ .
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Figure 5.22: Composite Component∗.

decision are of types receive and ordinary respectively, and their associating tran-

sitions are outgoing the same location (l2). Again, this is not a violation to the

operational semantics as the two guards (v < n) and (v = n) guarding the two

transitions, are mutually exclusive and are never true at the same time.

As done before, to construct the composite component, and since every receive

port has a built-in buffer, all buffering components get removed and send ports get

directly connected to receive ports as it is illustrated in Figure 5.22.

5.2.2.1 Experimental Results

Here, we present the performance results of BIP with buffers and BIP+models for

the handwritten digit recognition( using SVM) problem. For all the scenarios of this

benchmark, all the interactions of the model are assigned to only one component

in the interaction protocol layer. Also, all the runs are done by making use of a
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cluster of 4 machines, each of which is an 8-core machine.

For this benchmark, we only tested 2 scenarios to show how different the

performances of both models is.

The first scenario is to get the variation of processing time of the 2 models with

respect to the increase of number of preprocessors and weak learners (i.e variation of

n) on a single machine. The expectation is that the processing time must decrease

as n increases. One problem is that there is a bottleneck for increasing n given a

particular training set/ testing set. In other words, for the particular size of training

and testing sets in this problem, we can only increase n to a limit after which

adding more preprocessors/weak learner will no longer improve the performance of

the problem. Here, for training set = 60,000 and testing set = 10,000, the best

performance we can get is for n=6 any value greater or less than n=6 is expected

to give a worse performance. In order to extend this limit and be able to increase n

more, we can either increase the size of data set, decrease the size of the testing set

or change both. We aim to do 10 different runs to get the performance of models for

10 different n’s, so we decrease both the size of sets (training set size=6000, testing

set size=50). The results of this scenario are presented in figure 5.23.

As expected, the performance of both implementations decreases as n increases.

Moreover, the test results show that BIP+performs better than BIP model with

buffers.

Although the cost of communication increases with the increase of number of pre-

processor and weak learners, this does not widen the gap between the two curves.

This is due to the fact that there is much more computation in the problem than

communication, and, as we increase the number of components and weak learners,

computation is distributed over all of them. This helps enhancing the overall per-

formance of the problem as we add more weak learners/preprocessors because the

improvement got by distributing data over components is much more the overhead

got by increasing more components.

The second scenario is to get the performance of both implementations on 1,2,3

and 4 machines. For this case, the parameters for the problem (size of training

set, testing set and number of preprocessors and weak learners (n)) are fixed. The
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Figure 5.23: SVM Time Performance with Respect to Number of Preprocessors and
Weak Learners.
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Figure 5.24: SVM Time Performance with Respect to Number of Preprocessors and
Weak Learners.

training set size is set to be 60,000 and the testing set size is set to be 50, so we

can set n to 30. By setting n to 30, we guarantee the need of 4 machines knowing

that this problem is suitable for being parallelized over multiple machines on the

cluster for it includes much more computation than communication. The results of

this scenario are presented in graph in figure 5.24.

As noticed, we have achieved more performance of both implementations as their

components are distributed over more machines. Nevertheless, BIP+implementation

still performs better than BIP.
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Several platforms, tools, design flows and programming languages have been

proposed to facilitate building efficient, scalable and reliable distributed implemen-

tations. In this chapter, we present some of these works in the scope of distributed

computing.

6.1 Session Types

Session types [20, 21, 22, 23, 24] have been proposed to model interactions between

distributed processes. Session type is based on the following methodology:

1. Interactions are described as a global protocol between processes;

2. Local protocols which are the projection of global protocol are automatically

synthesized according to processes;

3. A team of programmers develop the code of processes;

4. Processes are statically type-checked with respect to local protocols.
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The design methodology of session type has major drawbacks. First, there is a gap

between design and implementation. Second, the design flow includes redundancy

(global protocol, local protocol, process implementation). Third, there is no clear

separation between communication and computation in local processes.

6.2 Grid Component Model (GCM)

6.2.1 Fractal

Fractal [25, 26, 27] is a component-based model, developed at France Telecom R&D

and INRIA France. Fractal is a general component-based model for implementing,

deploying and managing complex software systems. It is composed of:

• software components, such that a component consists of a membrane which

can be composed of many components (sub-components)

• interfaces (similar to ports in other component models)

• explicit connections (bindings) between them

.

6.2.2 GCM

In a moderately different application domains from BIP, based on the Fractal com-

ponent model, GCM [28] has been proposed in the CoreGrid Network of Excellence.

It tackles large-scale distributed grid computing and inherits from fractal:

• its hierarchical structure

• the enforcement of separation between functional and non-functional concerns

• its extensibility, and the separation between interfaces and implementation

Additionally, it includes some further extensions which are:

• supporting collective communications

• supporting autonomic aspects and a stricter separation between functional and

non-functional concerns
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6.2.3 ProActive/GCM

The GCM component model has been implemented as the ProActive/GCM during

the GridComp European project. ProActive/GCM is an extension of proActive.

ProActive (Proactive Parallel Suite) [29] is a Java library (Source code under AGPL

license) for parallel, distributed, and concurrent computing, also featuring mobility

and security in a uniform framework. It provides an API to facilitate the develop-

ment of applications distributed over a LAN, Clusters, grids and Cloud stations. It

is based on the notion of active objects.

6.3 Correct-by-construction model for asynchronously communicating

systems

This approach [30] uses the labelled transition systems as a model for choreography

or conversation protocol (CP) and its corresponding distributed systems. It pro-

poses, utilizing proof-based methods such as the B method, a correct-by-construction

model in order to develop asynchronous distributed applications in which chore-

ographies are realised. The asynchronous communications among the peers or the

distributed systems is achieved by making use of FIFO buffers which is similar to

our proposal for the BIP+framework. The distributed systems are obtained by a

refinement-based approach, consisting of two refinement steps:

1. synchronous model projection, i.e.,projection from the CP model to a syn-

chronous distributed system in which CP is realised

2. asynchronous model projection i.e.,projection the synchronous composition to

its asynchronous version where FIFO queues are augmented at every peer in

the system.

It is an approach to be applied to construct many real-world scalable, efficient and re-

liable distributed applications, where communication is asynchronous without buffer

size restrictions, e.g: service choreographies, singularity, channels contracts and Er-

lang contracts. Yet, it still does not support collective primitives such as a multi-

casting which is mentioned to be part of their future work.
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6.4 LASP

LASP [31] is a programming model that is designed to facilitate and simplify correct,

large-scale distributed computing utilizing synchronization as little as possible. It

combines ideas from deterministic dataflow programming and conflict free replicated

data types (CRDT) in order to provide powerful primitives for composing CRDTs

into larger computations that observe the Strong Eventual Consistency (SEC). This

makes LASP support distributed applications of non-monotonic behavior in a mono-

tonic framework by defining data structures and some operations to be performed

on them. LASP’s only motivation is to be used for large-scale computation over

replicated data, and it is still not a general purpose language. Furthermore, LASP

is implemented as an Erlang Library, on the Top of Riak Core distributed systems

framework. Erlang [32](the library on which LASP is built) is considered as a general

purpose programming language that is mainly utilized in large telecommunications

systems and internet applications and not in problems in which performance is a

main requirement. In contrast, MPI (as generated from our BIP+and BIP models)

is well suited for hard problems that require high-performance [33].

6.5 AzureBOT

AzureBot [34] is a simple and user-friendly framework that is designed to accelerate

and facilitate building scalable bag-of-tasks distributed applications only. Addition-

ally, this framework only supports cloud platforms, mainly the Azure cloud platform.

It is based on an object-oriented principle and consists of four classes:(1) the Task

class that holds input data and the work to be done, (2) the Result class that pre-

serves the output obtained by the system, (3) the BagOfTasks class that holds all

the tasks of the system, and finally (4) the TaskExec class that communicates with

the elements executing in the system to distribute available work and obtain the re-

sulting output. However, it is mentioned that synchronization cannot be expressed

explicitly when required in this framework which is considered as a limitation to be

tackled. Moreover, it supports only applications written in C# and hosted in the

Azure cloud platform.
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6.6 FlowPools

FlowPools is a fundamental dataflow collections abstraction which is backed up by

deterministic, lock free and composable data structures, implemented for Scala lan-

guage. They are utilized to build large and complex deterministic parallel dataflow

programs. However, FlowPools does not support building distributed systems. On

the contrary, it is designed for multi-threaded programs only.
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Chapter 7

CONCLUSION AND FUTURE WORKS

Contents

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1 Conclusion

Developing reliable, efficient and scalable distributed applications is considered as a

hard task for it is hardly predictive, error-prone and time consuming although many

high-level and low-level frameworks exist for this development process. Moreover,

the need of such systems is rapidly rising nowadays. For these reasons, in this thesis,

we try to propose a model that is capable of addressing the issues to construct such

applications i.e.,to simplify and facilitate developing correct, efficient and scalable

systems.

High-level models are more desirable to use for building distributed applications

for they abstract away the implementation details in comparison to the low-level

models. As a result, we are driven to choose the BIP framework, which produces

correct-by construction, scalable and efficient distributed implementations from a

high-level model, as the focus of this thesis. Unfortunately, abstraction of com-

munication primitives, in a BIP model, reduces its expressiveness, and, in addition,

induces overhead in some implementations (e.g.,asynchronous data transfer between

processes) weakening their performance.

Accordingly, we have proposed an extension of the BIP framework, BIP+, that com-

bines both of the high-level primitives and low-level send-receive primitives which

intensifies the expressiveness of BIP. In a BIP+model, the asynchronous send and

receive primitives are expressed by direct send and direct receive ports and a com-

plete send-receive communication is possible through a DSR interaction which is

not an ordinary multiparty interaction.

Inclusion of these low-level primitives in the high-level model has made it possi-

ble to guide the code generation to use the underlying platform (e.g.,using system

buffers). This helps getting rid of the overhead that can be caused, in an equivalent
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BIP model , due to the implementation details (e.g.,buffer components) that need

to be added to mimic the behavior of an asynchronous send-receive communication.

Moreover, we have proposed our 3-layer architecture to derive distributed im-

plementations directly from a particular BIP+model and proved that our proposed

3-layer model is correct. In other words, it is guaranteed that the code genera-

tion, from a BIP+model, produces a correct implementation, which is semantically

equivalent to the original model.

Hopefully, we have succeeded to satisfy our concerns, i.e.,achieve more expres-

siveness and efficiency in the BIP+model than that of its equivalent BIP model. We

have shown that a BIP+model outperforms its equivalent BIP model.

To sum up, the proposed extension makes the BIP communication model more

expressive while preserving the possibility to utilize abstract and high-level primi-

tives. In addition, the obtained model still supports the development of correct-by-

construction and scalable distributed systems. Furthermore, since the code genera-

tion, from the proposed model, uses the underlying platform, more efficient imple-

mentations for distributed applications, that make use of asynchronous communi-

cations, have been obtained.

7.2 Future Works

Our future work comprises the following:

• Transforming session types to BIP+. This is targeted by defining a novel

design methodology for developing correct distributed softwares, given a global

session type we automatically:

1. generate its equivalent BIP+ model that mimics the same interaction

structure;

2. inject computations to local components;

3. automatically generate efficient distributed implementations.

• Combining collective low-level primitives with the BIP+framework. For in-

stance, we tend to extend the BIP+framework with the direct broadcast/multi-

cast primitives. Although, in BIP+, we can express a broadcast or multi-cast

by having a DSR interaction between one direct send and multiple receives, a

direct broadcast/multi-cast can be more efficient and is expected to perform
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better. This is due to the fact that a DSR interaction of one send and multi-

ple receives is, finally, generated as a sender sending messages asynchronously

and sequentially, one after the other, to all of the receivers participating in this

interaction. On the other hand, utilizing a broadcast primitive, instead, opti-

mizes the communication patterns as the implementations of these primitives,

for example, can make use of a tree-based algorithm, such as splitted-binary

tree algorithm, to minimize the messages traffic among processes and attain a

better performance [35].

• Acquiring C++ code generations with TCP sockets for distributed implemen-

tations of BIP+models. BIP distributed implementations are generated to

C++ code using either TCP sockets or MPI implementing the send-receive

primitives between components. Yet, for now, our BIP+tool only supports

automatic generation of C++ code employing MPI. Similar to MPI, in which

the asynchronous communication primitives make use of the system buffer

to preserve data sent until it is received by the receiving party, TCP buffers

the received messages until the receiving application is ready to consume this

data. This means that our BIP+model, that is a combination of both multi-

party and asynchronous send-receive interactions (using buffering), after being

transformed to its 3-layer SR BIP+model, can also generate a C++ code em-

ploying TCP sockets with the least overhead possible.
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