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AN ABSTRACT OF THE THESIS OF

Zeinab Hassan Harajli for Master of Science
Major: Physics

Title: MODELING THE PHONON HEAT TRANSPORT IN SEMICONDUCTOR
SUPERLATTICES

Understanding the laws that govern the phonon heat transport at atomic
interfaces in crystalline superlattices has long been viewed as a key step toward efficient
thermal-management strategy for high-performance superlattice-based thermoelectric,
microelectronic, and optoelectronic devices. Therefore, several experimental studies on
the phonon thermal conductivity in superlattice structures have been carried out, and
many numerical techniques describing the phonon heat transport in multi-layer systems
have been developed. Experimental studies have demonstrated that, in some
circumstances, the phonons in a superlattice can propagate ballistically without being
scattered at the interfaces as if the superlattice is a bulk material with no interfaces. This
phonon mechanism is known as the coherent phonon transport mode, while the phonon
heat transport mode in which phonons experience scattering at the interfaces is known as
the incoherent phonon transport mode. Experiments have also demonstrated that when
the interfaces between the layers that form the superlattice contain low amounts of
irregularities, the superlattice cross-plane thermal conductivity presents a minimum
value for a particular period thickness. However, in the case of diffusive interfaces, the
cross-plane thermal conductivity increases monotonically with increasing the period
thickness. Most theories for the superlattice thermal conductivity either rely on the
solution of the Boltzmann transport equation that treats the phonons as particles or are
based on the assumption that the phonons are plane waves. The existing Boltzmann
models involve a rate at which particle-like phonons are scattered by interfaces. Thus,
according to all Boltzmann models, the superlattice cross-plane thermal conductivity
decreases monotonously as the interface density increases, which disagrees with the
experimental measurements that demonstrated a minimum in the curve describing the
cross-plane thermal conductivity versus the period thickness. On the other hand, by
invoking the interference of phonon plane waves within thin periods, the models that
consider the phonons as plane waves could describe the experimentally observed
cross-plane thermal conductivity trend only at a period thickness smaller than a few tens
of Angstroms. At relatively large period thickness, these models overestimate the
superlattice thermal conductivity. Thus, so far, the physics of the phonon heat transport
in superlattices could not be fully explained by a single model. Indeed, it is highly
desirable to have a wide scope model that can accurately predict the dependences of the
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period thickness and interface conditions on the thermal conductivity and phonon heat
transport mode in superlattices. With such a theoretical tool in hand, one can gain insight
into the physics of phonon heat transport across atomic interfaces and rationally design
superlattices for many technological applications. In this thesis, we intend to develop an
original approach for the determination of the phonon cross-plane thermal conductivity
and heat transport mode in superlattices. It will be based on the interpolation between
two Boltzmann models: an incoherent Boltzmann transport model assuming that the
cross-plane thermal conductivity of the superlattice is a weighted average of the thermal
conductivities of the two bulk materials that form the superlattice period with the
additional contribution of the interface thermal resistance, and a coherent Boltzmann
transport model based on the assumption that the superlattice is a bulk material, free of
interfaces, characterized by phonon dispersion relations determined by the Brillouin
zone folding effects of the superlattice. We will assess the reliability of the developed
approach with reference to reported experimental data.
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CHAPTER I

INTRODUCTION

Understanding the thermal conductivity and heat transfer processes in thin films

and superlattice structures of semiconductors is critical for the development of microelec-

tronic and optoelectronic devices as they constitute a crucial basis in these devices [1] as

well as in low-dimensional thermoelectric and thermionic devices [2]. The establishment

of measurements for the thermal conductivity of superlattices experimentally requires

understanding heat conduction in these systems. A theory describing superlattice heat

transfer presents a key step in improving the performance of devices. Although obtain-

ing a complete theory of lattice thermal conductivity is possible in principle, complicated

crystal vibration spectra and anharmonic forces in lattices and the approximations in solv-

ing the Boltzmann equation are formidable barriers to progress. Studies demonstrate that

the thermal conductivity of a superlattice could be much lower than that estimated from

the bulk values of its constituent materials, and even smaller than the thermal conductivity

values of the equivalent composition alloys. To establish a theoretical model that explains

thermal behavior in these structurea, models for the thermal conductivity of superlattices,

based on the Boltzmann transport equation [2], and phonon group velocity reduction [3],

have been developed.

A. Heat Transfer and the Change of Materials’ Properties in Nanoscale

Nanotechnology has become a major driver of information processing through

storing data and transmitting it using microelectronics and nanowires. But electronic pro-

cessors often generate heat that has to be controlled to maintain the standard temperatures

of devices above which their function becomes inefficient and they get threatened by cor-

1



ruption. As devices get smaller, heat generation becomes compacted to smaller volumes,

hence increasing density of heat generation and requiring better cooling processes[4]. For

example, an intel Pentium4 chip dissipated 60 watts of energy over an area of 1cm2.

To cool this chip and keep it at its maximum standard temperature of 120oC, a fan much

larger than the chip itself had to be used, which was a very unpractical cooling method that

made an obstacle in the overall device size. In nanoscales, understanding heat transport

always comes handy in improving efficiency of energy conversion, cooling and power

generation [5]. Studies of thermoelectric devices controlled by nanostructures showed

promising results in improving electrons energy and reduced heat loss [6]. Understand-

ing the theory of heat transfer in nanoscale has become crucial in order to minimize heat

formation and speed up heat conduction away from these devices [4]. It was for instance

observed that superlattices, which possessed periodic properties, have formed a super-

period, which was smaller than the original period in bulk sizes, and thus altered the

phonon dispersion relation and thermal conductivity values. The study of heat transport

has shown high dependence on the material’s size, shape, orientation, imperfection and

atomic content and placement. Heat transfer is basically due to coupled atomic vibration

in crystals, which start by a temperature gradient leading to their excitation. the quanti-

sation of these excitations leads to the concept of phonons. Phonons exist in two types:

acoustic and optical. Acoustic phonons have low frequencies but high group velocities,

while optical phonons have high frequencies, and generally they can’t contribute directly

to heat transfer. Moreover, heat transport by phonons at interfaces has shown two modes

depending on the phonons’ characteristics: Those with mean free path comparable to the

inter-atomic spaces demonstrated an incoherent propagation and experienced scattering

through their transfer, and those with a mean free path much larger than the lattice size

propagated ballistically and coherently like waves. These modes will be interpolated to-

gether to form the general description of heat transfer through the lattice and to show how

much each of these contributes to heat transfer in this thesis.

2



B. Generalities on the Terms Under Study

Before starting with the formalism of the problem this study addresses, it would

be best to present some basic definitions of the fundamental concepts addressed in this

thesis, just to keep best track of understanding the mathematics as things get complicated.

These fundamentals include the meaning of heat transfer, nanoscale properties, superlat-

tices and semiconductors.

• Heat Transfer The classical definition of heat energy transfer, as presented by Gang

Chen, is described as "The energy flow through a material due to a change in tem-

perature." [7]

• Nanotechnology National Nanotechnology Initiative defined nanotechnology as ma-

nipulation of materials of size between 1 to 100 nm. The sizes are much smaller

than biological cells. Due to their promising properties, governments provided high

funding on this domain of research.

• superlattices An important fabrication in nanoscale semiconductor systems is the

superlattice, which is an artificial fabrication of periodic layers of thin films of a

few nanometers thickness each. Superlattices presented excellent improvements

in the properties of their constituent materials; they provided 100 times stronger

shearing resistance, increased mechanical hardness, and higher thermal resistivity

[8]. A basic property of superlattices was that they demonstrated a dramatic drop

in thermal conductivity compared to similar bulk structures of same constituent

materials.

• Semiconductors When superlattice layers are made of semiconductors, many new

observations arise due to mismatch at interfaces and quantum size effects. Semi-

conductors form most of the materials used in superlattice fabrication, and represent

a favourite candidate because of their flexibility in acoustic and optical properties.

Accordingly, they will be the material under study in this thesis, and results will
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basically be illustrated through the example of Silicon and Germanium alloy sam-

ples. In fact, almost all microelectronics are formed of silicon,[9] mainly because

of its unique properties of mechanical stability, electrical isolation, and good ther-

mal conduction.

• Phonons "A phonon is the quantum of crystal vibrational energy" [10] the con-

cept of phonons is similar to the concept of photons which are the energy quanta

of electromagnetic waves. In a very similar approach, mechanical waves are also

quantized to phonons arising from the relative vibration of atoms. They conduct

sound, which results from vibrations of up to 1011Hz, as well as heat, which cor-

responds to vibrations above 1011Hz [11]. Understanding phonons is the basic key

to thermal management and controlling heat transport.

C. Desire for a Complete Theory of Heat Transfer at Nanoscales

The recent advance in nanotechnology has brought new demands on the control

of heat transfer at nanoscales. As devices get so minimal, reaching nanoscales,

their dimensions become comparable to the wavelength of energy carriers inside

them. This effect of size will have consequences on most of the laws governing

energy transfer in these devices. The main interest in this thesis is the drastic

drop in heat conduction leading to overheating when materials reach low dimen-

sions which caused failure in first microchips due to increased heat dissipation den-

sity because of the minimized surface area in these fabrications. For example, a

quantum cascade laser used in telecommunications and storing data was made of

a superlattice of InAs/AlSb layers. Due to an unexpected drop in thermal conduc-

tivity, these lasers were limited in their performance due to heating problems [7].

Thus a theoretical study to provide an explanation of this experimental observation

at low dimensions is required to maintain better control over fabrication of prod-
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ucts, increase their durability and efficiency, and prevent heat damage. In principle,

heat conduction takes place in a material when different energy carriers move be-

tween atoms. These energy carriers can be electrons, photons, or phonons [7]. This

study focuses on heat transfer by phonons, which will be the dominant heat carriers

in crystals of large band gaps where electrons cannot contribute to heat transfer.

Many theories where developed for describing heat transport, and to describe the

change in thermal conductivity at nanoscales. It was remarkably noticed that carri-

ers demonstrated spatial dependence which showed that macroscopic heat transfer

laws, which considered thermal conductivity to be just an intrinsic property of a

material, became invalid at these sizes. Therefore, a need for new mechanisms to

describe thermal properties aroused. Understanding the laws that control phonons

carrying heat across lattices in low dimensions will indeed provide knowledge on

the physics governing thermal conductivity of crystalline materials in nanoscale

[12]. The study of phonon dynamics which will lead to the equations governing

thermal resistivity starts with a Boltzmann distribution of the excited atoms inside

a lattice, the variation in the number of excited modes due to a temperature gradient

is then presented by Boltzmann’s equation. Solving this equation will provide a for-

mula for the number of excited modes, which, in addition to the frequency values

obtained from the dispersion relation of a superlattice, gives the thermal conductiv-

ity as a function of temperature and other parameters depending on the properties

of the material under study. A major factor that controls heat transfer is the phonon

scattering. Scattering occurs inside a crystal due to many processes taking place in

the lattice. Mainly, creation and annihilation of phonons is a major type of scatter-

ing resulting from the an-harmonic term in the potential existing between the crystal

atoms. The presence of impurities also results in scattering of phonons at the loca-

tion of these impurities, and finally, a major process that affects heat conduction at

nano-scale is the phonon scattering by boundaries. The interaction between surface

phonons and phonons inside the volume also causes a scattering to be accounted
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for.

D. Thesis Problem

Out of the above aspects of heat transfer at nano-scale, a lot of theoretical demands

as well as physical interest arise for explaining the new features in thermal conduc-

tivity in superlattices accurately. Hence, a new model for the derivation of thermal

conductivity formula across superlattices will be presented. Explanation of the re-

laxation time of phonons scattered at interfaces in a superlattice in addition to other

phonon processes will be demonstrated to determine the terms affecting their val-

ues. An approach to minimize thermal conduction across superlattices will be pro-

vided as a theoretical model that improves the efficiency of thermoelectric devices.

Effects of interface properties and period values need to be studied too to provide

insight on the physics governing phonon dynamics in nano-scale.

E. Literature Review

The study of thermal conductivity of materials has been an interesting topic for

physicists in order to distinguish good conductors from good insulators, and to

provide important tools for industry applications. As such, experimental and theo-

retical studies were carried out in order to describe heat conduction and the factors

involved in its variation. The first theoretical studies of thermal conductivity fo-

cused on solving the Boltzmann equation for phonons transport. Two approaches

were known; the variational method and the relaxation time approximation where

each presented certain limitations. In the relaxation time approximation, phonon

scattering was described through the relaxation time of each process. results were

basically established by the work of Casimir in studying boundary scattering [13],

Klemens gave an expression for isotope scattering and studied the dependence of
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the Umklapp scattering on phonon vibrational spectrum, then Herrings studied nor-

mal processes relaxation times[14]. Debye and Peierls[15] predicted that thermal

conductivity increases as a function of temperature until it reaches a maximum

before it drops again. Carruthers[16] provided a thorough discussion of some of

the processes and theories behind thermal conductivity of solids. Callaway was the

first to give a complete theory describing thermal conductivity from solving a Boltz-

mann equation with relaxation time assumption. Although this model was based on

rough approximations and contained many fitting parameters, it provided good fits

with measurements at low temperatures. Further refinements were added through

the work of Holland, Asen-Palmer et al. and Morelli et al. until the full theoretical

description with no fitting parameters came to light. This improved model agreed

to a large extent with experimental measurements of the lattice thermal conductiv-

ity for bulk materials and proved to be the most consistent model that can cover a

large range of temperature. So far, the discussion summarizes the previous work

concerning the lattice thermal conductivity of bulk semiconductor of simple crystal

structure. With the advance in technology and industry, in addition to the need of

miniaturization of devices and the emergence of semiconductors in various fields,

bulk materials of more complex crystal structures along with new structures were

fabricated such as thin-films, superlattices and nano-wires. The role of size and

boundaries in reducing thermal conductivity were also treated thoroughly. Thermal

properties of thin-films and superlattices have drawn increasing attention due to the

demand of thermal management in the rapidly growing industries. Thermal man-

agement becomes more challenging as the power density and speed of integrated

circuits keep increasing. As such, thermal conductivity of constituent thin-films

becomes more important in the device design. Thin-films of high thermal conduc-

tivity are used in microelectronic and photonic devices in order to dissipate heat to

avoid overheating of the device, whereas thermoelectric devices call for low thermal

conductivity thin-films.Experimental measurements of thermal conductivity across
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Figure 1: Temperature dependence of the thermal conductivity of undoped Si/Ge
superlattices as well as SiGe alloy film[17]

superlattices have shown a drop of values of K(T) in materials which initially pos-

sessed higher values at bulk scales. Figure 1 presents an experimental measurement

done on Si/Ge superlattices for the values of thermal conductivity as function of

temperature, with a plot of thermal conductivity of the bulk silicon/Germanium al-

loy film. Experiments also showed that a decrease in heat conduction takes place as

the period of a superlattice increases. Doping also appeared to lower thermal con-

ductivity [15]. Measurements of thermal conductivity in superlattices started with

Lee and co-workers [18] who measured the thermal conductivity of fully-strained

Si/Ge superlattices. It was proven that all superlattices demonstrated lower ther-

mal conductivity than their constituent bulks. Theoretically, three models were

provided to describe phonon transport in semiconductor superlattices [10]. The

first treats the phonons as totally incoherent particles and thus employs Boltzmann

transport equation with appropriate boundary conditions [19]. This model gives

good agreement with experimental data but fails for periods below 5 unit cells. The

second model treats phonons as purely coherent waves [20]. Under this assump-

tion, thermal conductivity in superlattices is calculated from the phonon dispersion

curves. Predictions from this model for the very thin period limit agrees with the

corresponding experimental data but deviations are strong for thick superlattices.

The third group involves lattice dynamics which results in a temperature depen-
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dent thermal conductivity similar to that of bulk materials as opposed to most of

the experimental results. An analytical expression for the thermal conductivity of

superlattices was derived by Alvarez and co-workers [21]. The authors proposed

a simple expression that can predict in-plane and cross-plane values of the thermal

conductivity of superlattices from an expansion of the Boltzmann equation with a

combination of the acoustic mismatch and diffuse mismatch model for the thermal

boundary resistance. Interpolation between the acoustic mismatch model and the

diffuse mismatch model was done by including an adjustable specularity parameter

p. A reasonable fit to the experimental values was provided by this model.

F. Roadmap

As a start, generalities on heat transfer in bulk semiconductors will be discussed,

then an attempt to obtain an expression for thermal conductivity as a function of

temperature is demonstrated starting with Boltzmann’s transport equation of statis-

tical behaviour of perturbed thermodynamic systems. An equation including ther-

mal conductivity as a function of relaxation time of different phonon scattering

processes will also be derived. The second step would be to obtain expressions for

these relaxation times of each phonon scattering processes due to different inter-

actions. Introducing temperature dependent heat capacity as well as temperature

dependent Gruneisen parameter will be included in the study instead of the clas-

sical parameters. T-dependent parameters have shown great improvement on the

accuracy of theoretical values of thermal conductivity. Finally, A computational

code is used to plot the obtained values of this expression across a full temperature

range (0-1000K) in order to match these values with experimental measurements.

Then, a detailed study of heat transfer in superlattices will be demonstrated. An

expression of thermal conductivity obtained from a modified Boltzmann equation

that accounts for interfaces is first presented. then a detailed study of the approach
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of finding a dispersion curve from the continuum theory of phonons in superlattices

is done. Once the generalities on superlattices are demonstrated, heat transfer in

these structures will be studied by two models. the first model suggests a coherent

phonon transport in the superlattice while the second model presents an incoherent

mode of phonon transport. Finally, a detailed interpolation is provided to account

for both effects. After presenting the theoretical details, a representation of the ob-

tained results will be discussed and matched with experimental measurements to

prove the reliability of this model. In the last section a mesh of thermal conductivi-

ties of SiGe/SiGe superlattices of variable alloy compositions is presented to obtain

the minimal thermal conductivity superlattice that can be ideal in thermoelectric

applications.
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CHAPTER II

GENERAL THEORY OF LATTICE THERMAL

CONDUCTIVITY

Thermal conductivity is a fundamental transport parameter that is commonly used

to characterize a broad range of materials and systems. A predictive theoretical ap-

proach to calculate the lattice thermal conductivity in these materials is of tremen-

dous importance for modern science and technology. It would facilitate under-

standing of heat dissipation in microelectronics and nanoelectronics [22] as well as

assist in material design for efficient thermoelectric refrigeration and power gener-

ation [23].

The study of the thermal properties of nano-materials requires understanding how

energy propagates in this type of industrial system to optimize their properties.

Many technological applications have emerged during the past two years to handle

the heat at the atomic scale in numerous approaches of study. In semiconductors

and insulators, heat is carried by the vibrating lattice. Above a few tens of Kelvin

the behaviour of the lattice thermal conductivity of semiconductors is usually dom-

inated by phonon-phonon scattering, which arises because of the anharmonicity of

the interatomic potential. Considering phonons in semiconductors, three main ap-

proaches are provided to study phonon dynamics through crystal structures which

lead to obtaining the dispersion relation controlling the energy of phonons. In or-

der to find the dispersion relation, either a semi-classical approach can be consid-

ered, a quantum approach, or usage of molecular dynamics simulations. However,

the quantum approach, known as the ab-initio treatment, requires extremely heavy

calculation and Super computers for calculations [10]. And since the molecular
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dynamics study doesn’t provide physical insight nor describes theories, the study

will proceed for the lattice dynamics by approaching phonons in the semi-classical

treatment based on the elasticity theory. In this chapter, we start with generalities

on crystal properties, then proceed to study crystal vibrations to derive the phonon

energy and the Hamiltonian controlling their behaviour. Then we describe phonon

propagation by the Boltzmann equation, which presents a model for the spatial and

temporal variations of the distribution function of phonons. The variations are con-

trolled by the relaxation times of different phonon scattering processes. These will

be derived from the study of the processes phonons undergo during their propa-

gation in the crystal. Finally, we can derive the thermal conductivity formula in

terms of the solution obtained from solving the Boltzmann equation. In the follow-

ing section we introduce phonons, their properties and transport mechanisms as an

introduction to the details of calculating rates of heat transfer by these carriers.

A. Quantum Treatment of Phonons

Phonons are present in crystalline materials which have a periodicity in their struc-

ture. Materials that do not have a translational symmetry, such as amorphous solids

or soft matter, will not present phonon properties and are rather studied by the clas-

sical conduction phenomena. In general, phonons are defined as the quanta of the

vibrational energy of the crystal lattice. This was mathematically deduced by a sim-

ilar study of photons, in which we take into account creation and annihilation oper-

ators of phonons. Phonons will present the normal modes of vibrations, and will be

subject to classical mechanics’ laws. They will propagate from the heat source to

the heat sink as vibrational waves carrying thermal energy inside the crystal lattice.

Phonons will contribute to heat flow over a wide frequency range by undergoing

collisions due to different interactions altering the heat transfer. These collisions

are known as phonon scattering processes. The average time between phonon scat-
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Figure 2: thermal conductivity as a function of size in Graphene monolayers[24]

terings will be defined as the relaxation time of the corresponding scattering pro-

cesses, and will be critical for evaluating the thermal conduction in crystals. When

a vibration has a close characteristic time to the relaxation time, Fourier’s law is

no longer valid to describe heat transfer, and Boltzmann’s equation that describes

the evolution of a system after applying a temperature gradient will be considered

instead so as to account for the temporal evolution of phonons. The same problem

arises when the size of the system becomes comparable to the mean free path of the

phonons, which is defined as the average distance travelled by phonons before they

scatter.

At low dimensions, phonons will become dependent on geometry, as illustrated in

figure 2 which represents the thermal conductivity as a function of size in Graphene

layers [24]. Indeed, the mean free path in bulk Graphene was much higher before

the length became in nanoscale, which justifies the logarithmic dependence of the

curve. Before we focus on the characteristics of phonons, it is important to start

with a derivation of the quantization of lattice vibrations which lead to the presen-

tation of phonons as the fundamental heat carriers.

13



The concept of phonons arises from the quantum mechanical model of lattice vi-

brations as a quantum mechanical harmonic oscillator. We present the quantum

treatment of lattice vibrations in semiconductor crystals by starting with a linear

chain of N atoms. The atoms are located at a distance x1,x2, .. from equilibrium

positions, and the potential energy of the lattice is essentially dependent on the po-

sition of the atoms of the lattice. Taking lattice vibrations to be a small increase

in energy which can thus be found from a Taylor expansion of the potential energy

around equilibrium in terms of atomic displacements

φ = φ0 +∑
lkα

φα(lk)uα(lk)+
1
2 ∑

lkα,l′k′β
φα,β (lk, l

′k′)uβ (l
′k′)+ .. (1)

where u(lk) is the displacement of the kth atom found in the lth unit cell. α is the

direction in Cartesian coordinates. The first term of the expansion is the equilibrium

value of the energy. The second term is taken to be zero in order to get a minimum in

potential energy at equilibrium. The physical interpretation of φα(lk) is that it is the

negative of the force acting in the α direction on a specific atom in the equilibrium

configuration. However, in the equilibrium configuration the force on any particle

must vanish, and so we have the result above in the equilibrium configuration.

The third term is quadratic and called the harmonic term, where a crystal is ideally

considered as atoms connected by springs obeying Hooks law. Since this term is

dominant, the anharmonic terms are taken to be just perturbations on the harmonic

term. These perturbation terms are important in the study of heat transfer because

they represent the major contribution to obtaining a finite thermal conductivity. If

we consider the harmonic approximation, the Hamiltonian of the lattice vibrations

can be written as:

H = φ0 +
1
2 ∑

lkα

Mku̇2
α(lk)+

1
2 ∑

lkα,l′k′β
φαβ (lk, l

′k′)uβ (l
′k′)+ ... (2)
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Where the second term is the kinetic energy, the other terms are taken from the

Taylor expansion of the potential energy. α and β are the Cartesian coordinates..

The equation of motion can then be written as:

Mküα(lk) =−
∂φ

∂uα(lk)
(3)

Mküα(lk) =− ∑
l′k′β

φαβ (lk, l
′k′)uβ (l

′k′) (4)

where φαβ (lk, l′k′) is the second derivatives of potential energy with respect to dis-

placement, evaluated at equilibrium. These terms will be related to elastic constants

[25] The solution can be suggested based on the periodicity of the lattice:

uα(lk) = (Mk)
− 1

2 uα(k)exp[−iwt + ik.x(l)] (5)

k is the wavevector and x is position vector. It can be noticed that due to periodicity

u is independent of l. Substituting this solution in the equation of motion we find

the dispersion relation, which is transformed to Fourier space.

w2uα(k) = ∑
k′β

Dαβ (kk′|k)uβ (k
′) (6)

Where the Fourier transformed dynamical matrix is such that:

Dαβ (kk′|k) = (MkM′k)
−1
2 ∑

l′
φαβ (lk; l′k′)exp[−ik.(x(l)−x(l′))] (7)

Where M represents the corresponding atomic mass. The equation above reduces

the problem from solving an infinite set of equations to solving 3r equations where

r is the number of atoms. For the dynamical matrix to give a non-trivial solution

we have:

|Dαβ (kk′|k)−w2
δαβ δkk′|= 0 (8)

15



Which is an equation of degree 3r in w2, there will be 3r solutions w2
j(k) for each

value of k, with j=1,2,..,3r. Now we make a coordinate transformation which si-

multaneously diagonalizes all the terms of the Hamiltonian. We generate the trans-

formation by the wave expansion:

uα(lk) = (NMk)
−1
2 ∑

k j
eα(k|k j)Q(k j)exp[i[k.x(l)]] (9)

N is the number of lattices in the crystal and e is a vector of the solutions of the

dispersion relation. The Hamiltonian then becomes:

H =
1
2 ∑

k j
Q̇∗(k j)Q̇(k j)+w2

j(k)Q
∗(k j)Q(k j) (10)

The equation of motion will be:

Q̈(k j)+w2
j(k)Q(k j) = 0 (11)

Each of these normal coordinates is a periodic function of one of the frequencies

w j(k). Hence they describe an independent crystal vibration mode of one fre-

quency. The normal mode will be equal in number to the degrees of freedom in

the crystal (3rN). Now, in order to describe Q(k j) in terms of real normal coordi-

nates, we take:

Q(k j) =
1√
2
[q1(k j)+ iq2(k j)] (12)

with q real. The Hamiltonian will become:

H =
1
2 ∑

k j
q̇2(k j)+w2

j(k)q
2(k j) (13)

Now substitute the property:

q̇(k j) = p(k j) =−ih(
∂

∂q(k j)
) (14)
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to finally obtain Schrodinger equation for lattice vibrations:

1
2 ∑

k j

{
−h̄2 ∂ 2

∂q2(k j)
+w2

j(k j)q2(k j)
}

ψ = Eψ (15)

The wavefunction ψ is the product of the wavefunctions corresponding to each

particle. (since H is the sum of independent particles). The total energy will also be

the sum over all modes of energy:

En = ∑
k j

En j(k) (16)

The energy levels will have the form:

En j(k) =
[
n j(k)+

1
2
]
h̄w j(k) (17)

With n j(k) any integer.

Next, we define the momentum operator

P(k j) = Q̇(k j) (18)

And we will express Q and P in terms of the creation and annihilation operators

defined by:

Q(k j) =
( h̄

2w j(k)
)1/2[a+−k j +ak j

]
(19)

The operators as usual obey the commutation relations:

[ak j,a+k′ j′] =4(k−k′)δ j j′ (20)

[ak j,ak′ j′] = [a+k j,a
+
k′ j′] = 0 (21)
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By this transformation, the Hamiltonian takes the simple form:

H = ∑
k j

h̄w j(k)[a+k j,ak′ j′+
1
2
] (22)

Knowing that the creation and annihilation operators commute then we deduce that

all Hamiltonians of particles can be simultaneously diagonalized. The creation op-

erator will increase the number of phonons in a known state by one, whereas the

destruction operator decreases the phonons by one. It can be also seen that the en-

ergy levels of the lattice vibrations are equally spaced by an energy difference }w.

The above derivation was made for the harmonic approximation of H. However we

can make a transformation for the anharmonic perturbation by similar steps, and we

obtain:
H(3) =

1
3! ∑

kk′k′′, j j′ j′′
δG,k+k′+k′′V(3)(k j,k′ j′,k′′ j′′)

×(a+k j−a−k j)(a+k′ j′−a−k′ j′)(a
+
k′′ j′′−a−k′′ j′′)

(23)

V(3) is the cubic anharmonicity coefficient. We notice that the anharmonic term is

not diagonalized which is expected by the nature of anharmonicity which makes a

connection between oscillators which were taken to be independent by the harmonic

study. Physically, the description of phonons number and energy is obtained by the

harmonic study while the phonons interactions are derived from the anharmonic

term.

B. The Contribution of Each High-Symmetry Direction to the Total Thermal
Conductivity

Finally, after studying phonon propagation in the crystal, one can describe thermal

conductivity using the properties of these heat carriers.

Initially, thermal conductivity is defined as the ratio of heat current density over the
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temperature gradient.

κ(T ) =
−1
A

JQ

∇T
(24)

summing over all phonon wavevectors and polarizations,

κ(T ) = ∑
j
∑
k

h̄w j(k)Ñ j,k
v j,k

∇T
(25)

where w j(k) and v j,k are phonon frequency and group velocity corresponding

to wavevector k and polarization j, and Ñ j,k is the deviation of the phonon distri-

bution from equilibrium in the state k. Ñ j,k is defined as the difference between

the phonon distribution out of equilibrium N j,k and the Plank phonon distribution

at equilibrium N̄ j,k.

In order to evaluate κ(T ), it is more convenient to deal with the frequency distri-

bution function with the sum over these modes. The total frequency distribution

function is defined as

g(w) =
(

2w
3rNc

∑
j
∑
k

δ (w2−w2
j(k))

)
(26)

where r is the number of atoms per unit-cell and Nc is the number of cells in the

crystal. It follows that the frequency distribution function of the jth phonon branch

can be expressed as

g j(w) =
(

2w
3r(2π)3

)
v−1

B

∫
δ
(
w2−w2

j(k)
)
d3k (27)

where vB is the volume of the first Brillouin zone, w j(k) are the roots of the distri-

bution function and the integral is carried out through the first Brillouin zone. Now,

if we change to spherical polar coordinates (k,θ ,φ), and use the relation

δ ( f (x)) = ∑
i

δ (x− xi)

| f ′(xi)|
(28)
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where xi are simple zeros of f (x), Equation 28 is transformed into

g j(w) =
1

3r(2π)3vB

∫
π

0
sinθdθ

∫ 2π

0
dφk2

j(w,θ ,φ)
dk j(w,θ ,φ)

dw
(29)

where k j(w,θ ,φ) is the solution to w = w j(k,θ ,φ). This means that the quantity

1
3r(2π)3vB

k2
j(w,θ ,φ)dk j(w,θ ,φ) is the frequency distribution function per unit solid

angle for the jth branch of the total phonon spectrum. Let us denote this quantity

by g j(w,θ ,φ). The idea behind this transformation is as follows. The function

g j(w,θ ,φ) has cubic symmetry in θ and φ because the normal mode frequencies

are invariant against any real orthogonal transformation of axes which takes the

crystal to itself. This means that g j(w,θ ,φ) can be expanded in terms of cubic

harmonics, Km , which have the symmetry of the lattice,

g j(w,θ ,φ) =
∞

∑
m=0

a′m(w)Km(θ ,φ) (30)

where K0 = 1 and the prime on the summation means that the term corresponding to

m = 1 is to be omitted from the summation. The Km terms satisfy the orthogonality

condition ∫
π

0
sinθdθ

∫ 2π

0
dφKm(θ ,φ)Kn(θ ,φ) = 4πγmδmn (31)

where γm is a normalization constant and δmn is the usual Kronecker symbol. The

method for generating γm and the cubic harmonics are reported in reference [26].

The first three γm are γ0 = 1,γ1 = 0,γ2 =
16

3.5.5.7 , and the first three cubic harmonics

are K0 = 1,K1 = 0,K2 = x4+y4+ z4−3/5ρ4, where ρ2 = x2+y2+ z2 . Now, if we

substitute Equation 30 into Equation 29 and make use of Equation 31, we obtain

g j(w) = 4πa0(w) (32)

The coefficient a0(w) can be obtained by following Huston’s procedures. It can be

considered that there exist directions in reciprocal space along which the cubic crys-
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tal dynamical matrix factors into equations of low degree in w2 which can be solved

exactly for w as a function of the wavevector k. These directions are high symme-

try directions such as (100), (110), and (111) directions. Along these directions

the equation w = w j(k,θ ,φ) can be expressed as w = w j(ks,θs,φs) . Since these

equations can be inverted exactly to obtain for simple enough models, it follows

that g j(ws,θs,φs) can be exactly obtained for these special directions. If we then

retain as many terms in Equation 30 as the number of directions (θs,φs), the am(w)

in Equation 30 are given as the solution of a set of simultaneous linear equations

whose coefficients are the values of g j(w,θ ,φ) along the direction (θs,φs). In par-

ticular, it follows from Equation 30, 31, and 32 that the total frequency distribution

function for the jth branch can be expressed in terms of the frequency distribution

functions along the (100), (110), and (111) directions (which in principal can be

obtained with satisfactory accuracy)

g j(w) =
4π

35

[
10.g(A)j (w)+16g(B)j (w)+9g(C)

j (w)
]

(33)

where the superscripts A, B, and C on g signify (100), (110), and (111) respectively.

The evaluation of g(A)j , g(B)j and g(C)
j (w) can be simplified by noting that Huston’s

method illustrated above can be used for the approximate evaluation of any integral

of the form

J =
∫

π

0
sinθdθ

∫ 2π

0
dφ I(θ ,φ) (34)

provided that I(θ ,φ) has cubic symmetry. In fact, from the general form of a three-

dimensional dynamical matrix one can find that the leading term in the expansion of

w2
j(k) is of O(k2), and since the long wavelength acoustic phonons have the major

contribution to the lattice thermal conductivity, we can consider only small values

of k. In that limit, we must have

w2
j(k) =C2

j (θ ,φ)k
2 +D2

j(θ ,φ)k
4 + ... (35)
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where the coefficients C j and D j have the symmetry of the lattice. Upon inverting

Equation 35, we find the frequency distribution function per unit solid angle for the

jth branch of the spectrum

g j(w,θ ,φ) =
1

3rvB

1
(2π)3

[
w2

C3
j (θ ,φ)

− 5
2

D2
j(θ ,φ)

C7
j (θ ,φ)

w4 + ...

]
(36)

On the other hand, for small values of w , the phonon spectrum of a three-dimensional

crystal has the expansion

g(w) = a2w2 +a4w4 + ... (37)

Thus, from Equation 29, Equation 36, and Equation 37 we find that

a2 =
1

3rvB

1
(2π)3 ∑

j

∫
π

0

∫ 2π

0

sinθdθdφ

C3
j (θ ,φ)

(38)

and

a4 =−
5
2

1
3rva

1
(2π)3 ∑

j

∫
π

0

∫ 2π

0

D2
j(θ ,φ)sinθdθdφ

C7
j (θ ,φ)

(39)

It is clear from Equation 35 that the coefficients C j(θ ,φ) are the phonon group

velocities for a given direction (θ ,φ) of propagation. Thus, by applying Huston’s

method to the evaluation of the integral in Equation 38, we find that the coefficients

of the low frequency end of the phonon spectrum can be expressed in terms of

directional phonon group velocities as

a2 =
1

3rvB

1
(2π)3

4π

35 ∑
j

[
10

v3
j(100)

16
v3

j(110)
+

9
v3

j(111)

]
(40)

where j(hkl) is the group velocity of the phonon of the jth branch along the high-

symmetry direction [hkl] . Hence, in view of Equation 37, and assuming a Debye-
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like dispersion relations, the phonon spectrum can be approximated by

g(w) =
1

3rvs

1
(2π)3

4π

35 ∑
j

[
10

v3
j(100)

16
v3

j(110)
+

9
v3

j(111)

]
w2 (41)

The total phonon frequency distribution function g(w) can thus be approximated by

the sum of three terms, and each term is a function of the frequency distribution in

a high-symmetry direction. In view of Equation 24, Equation 40, and Equation 41,

we can express the lattice thermal conductivity as

κ(T ) =
1

rvBπ2 ∑
j

[
1

21

∫ wD, j(100)

0
h̄w j(k)Ñ j,k100

v j(100)

|∇T |
cosψ100

w2
j(k)

v3
j(100)

dw

+
8

105

∫ wD, j(110)

0
h̄w j(k)Ñ j,k110

v j(110)

|∇T |
cosψ110

w2
j(k)

v3
j(110)

dw

+
3

70

∫ wD, j(111)

0
h̄w j(k)Ñ j,k111

v j(111)

|∇T |
cosψ111

w2
j(k)

v3
j(111)

dw

] (42)

where the integrals upper limits wD, j(hkl) are artificial limiting frequencies leading

to correct normalization of g(A)j (w), g(B)j (w) and g(C)
j (w). khkl denotes a wavevector

in high-symmetry direction [hkl], and ψhkl is the angle between the high-symmetry

direction [hkl] and the temperature gradient.

C. Evaluation of the Deviation of the Phonon Distribution Function From
Spatial-Dependent Boltzmann Equation

After obtaining the final formula for the thermal conductivity as a function of high-

symmetry weights of the frequency distribution we need to evaluate the different

parameters of the formula. In order to evaluate the displaced phonon distribution

function, the Boltzmann equation is used for the classical study of phonons since

we are studying the atomic vibrations which are described by Bose-Einstein’s dis-

tribution, knowing that phonons are Bosons. The Boltzmann equation describes the

total rate of change in the phonon distribution due to a disturbance by a temperature
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gradient. The expression of thermal conductivity will be derived from the solution

of this equation.

At equilibrium, N̄ = 1
exp( hw

KBT )−1
. Due to a temperature gradient applied to bulk crys-

tals, the phonon distribution function diverges from its equilibrium value. Boltz-

mann’s equation describes the change in the distribution function in this case by:

−ν .∇N +
∂N
∂ t

= 0 (43)

ν is the speed of sound in the crystal. The first term in the equation represents the

variation in number of modes due to temperature gradient while the second term

gives the variation due to different phonon modes.

The first term can be written as :

ν .∇N = ν .∇T
dN
dT

(44)

In the second term, using the relaxation time approximation provided by Callaway

[27], and knowing that phonon processes are two types, normal processes (which

tend to deviate phonons from equilibrium) and resistive processes (which tend to

bring the deviation back to equilibrium), we get an expression for the second term.

(
∂N
∂ t

)c =
Ñ−N

τN
+

N̄−N
τu+I

(45)

N̄ is the phonon distribution function at equilibrium, N is the phonon distribution at

a given q, and

Ñ =

[
exp(

hw−λ .k
KB.T

)

]−1

(46)

is the displaced phonon distribution, which is stationary in the state khkl for the

normal processes, τN is the relaxation time for normal processes while τR is the

relaxation time for resistive processes. The relaxation time associated with the
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resistive processes is defined by:

τ
−1
U+I = τ

−1
U + τ

−1
I (47)

where τ
−1
U and τ

−1
I are relaxation times associated with Umklapp processes and

phonon scattering by localized mass-difference. Klemen’s theory can be used to

calculate τ
−1
I , and the conventional Fermi’s golden rule formula based on the cubic

harmonic part of the crystal Hamiltonian as perturbation can be used to calculate

τ
−1
N and τ

−1
U . With this approximation the difference between the physical na-

ture of the phonon normal processes, which tend to displace the phonon distribution

function, and that of the resistive processes, which tend to restore the distribution

function back to its equilibrium value is taken into account. Now, if we consider a

finite crystal (a crystal with borders) in which the resistive processes dominate the

normal ones, and if we assume that the temperature gradient is along the z-direction

and too weak to significantly displace the distribution function and have effect in

the x and y directions, the spatial-dependent Boltzmann equation describing the rate

of change in the phonon distribution takes the form:

vz
dN̄
dT

∂T
∂ z

+ vx
∂ Ñ
∂x

+ vy
∂ Ñ
∂y

+
Ñ
τ
= 0 (48)

With that form of Boltzmann equation it can be seen that the phonon distribution

function has an explicit x and y dependence, with an implicit dependence on z

through the temperature gradient. The solution of Equation 48 can be found if we

realize that in the very vicinity of the sample border, parallel to the heat current,

phonons are either at thermal equilibrium with the border or out of equilibrium due

to interaction with surface phonons. At the opposite border, all the phonons of

wavevector k are absorbed then re-emitted or reflected with momentum and equi-

librium distribution. With these considerations, the solution of Equation 48 takes
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the form

Ñ =
RτU

2

[(
1− exp

( −x(y)
τU+Ivx

))
+

(
1− exp

( −y(x)
τU+Ivy

))]
+σzexp

( −x(y)
τU+Ivx

)
+σzexp

( −y(x)
τU+Ivy

) (49)

where R is given by the negative of phonons rate per unit volume of reciprocal

space:

R =−vz
dN̄
dT

∂T
∂ z

(50)

x(y) is the y-dependent distance from the boundary parallel to the x-axis and y(x)

is the x-dependent distance from the boundary parallel to the y-axis. both distances

are measured perpendicular to the direction of the temperature gradient. σz is the

phonon distribution deviation by surface phonons due to interactions with phonons

in the volume.

Now, substituting this solution in the Boltzmann equation obtained before, we get:

R =−( 1
τB,x

+
1

τB,y
+

1
τ
)〈Ñ〉 (51)

where
1

τβ ,α
=

∫
α

∂ Ñ
∂α

dxdy∫ ∫
Ñdxdy

(52)

α = x,y and

〈Ñ〉=
∫ ∫

Ñdxdy∫ ∫
dxdy

(53)

Thus, the effect of the samples borders is to add resistance to the phonons. The

rate at which the phonons scatter by the borders can be found by substituting Equa-

tion 49 in Equation 52, and noting that the term 2σz
τU+IR

that appears in the resulting

equation is nothing but the specularity factor, which is usually approximated by

P = exp(−16π2h2w2

v2 ), where h is the root mean square (rms) roughness at the sample

borders. The advantage of Equation 52 on Casimir formula, which is widely used
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to evaluate the phonon-boundary scattering rate, is that it describes the rate at which

phonons are scattered by the sample borders in the presence of intrinsic scattering

processes. The boundary scattering rate expressed in equation 52 decreases as the

intrinsic scattering rate increases. This can be fully understood if we realize that

when the intrinsic scattering increases the probability that the phonons reach the

sample borders decreases, so the phonon-boundary scattering rate decreases.Such

interplay between phonon intrinsic scattering and phonon-boundary scattering is

not taken into account with the conventional Casimir theory. Hence, for finite crys-

tals, the original Boltzmann equation takes the form

vz
dN̄
dT

∂T
∂ z

+
Nu−N

τN
+

N̄−N
τR

= 0 (54)

where 1
τR

= 1
τB,x

+ 1
τB,y

+ 1
τI
+ 1

τU
is the overall resistive scattering rate. The displaced

Plank distribution for a random crystallographic direction [hkl] is defined as

Nu = N̄ +
u[hkl]kz

kBT

exp( h̄w
kBT )

(exp( h̄w
kBT )−1)2

(55)

where kz is a wavevector in the z-direction. Upon using Equation 55 in Equation

54, the original Boltzmann equation takes the form

h̄w
kBT 2

exp( h̄w
kBT )

(exp( h̄w
kBT )−1)2

vZ
∂T
∂ z

+
u[hkl]kz

kBT τN

exp( h̄w
kBT )

(exp( h̄w
kBT )−1)2

− Ñ(
1

τN
+

1
τR

) = 0 (56)

Following the reasoning by Callaway, we introduce a combined relaxation time τC

defined as
1
τC

=
1

τN
+

1
τR

(57)

and express Ñ as

u = N− N̄ = α(k)vz
∂T
∂ z

h̄w
kBT 2

exp( h̄w
kBT )

(exp( h̄w
kBT )−1)2

(58)
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where α(k) has the dimension of time. Upon substituting Equation 58 in Equation

56 we find

− h̄w
T τC

α(k)vz
∂T
∂ z

+
u[hkl]kz

τN
=− h̄w

T
vz

∂T
∂ z

(59)

Since u[hkl] is a vector that has the dimension of energy times length and points in

the direction of the temperature gradient (z-direction), we can express it as

u[hkl] =
h̄
T

β[hkl]v
2
z

∂T
∂ z

ẑ (60)

where ẑ is a unit vector in the z-direction and β[hkl] is a parameter having the di-

mension of a relaxation time. It follows that within the approximation of linearised

dispersion relations, i.e., kz =
w
vz

ẑ, Equation 59 reduces to

α(k) = τC(1+
β[hkl]

τN
) (61)

To find β[hk] in the high-symmetry directions, we can take advantage of the fact that

the normal processes conserve the total crystal momentum. This can be expressed

as

∑
j
∑
k

(
∂N
∂ t

)
N

k = ∑
j
∑
k

Nu−N
τN

k = 0 (62)

upon using equations 55-58 and kz =
w
vz

ẑ in Equation 62 we find

∑
j
∑
k

exp( h̄w
kBT )

(exp( h̄w
kBT )−1)2

h̄w
kBT 2 (α(k)−β[hkl])

k
τN

= 0 (63)

The use of the phonon spectrum expressed in Equation 41 allows writing Equation
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63 in the form

∑
j

[
1

21

∫ wD, j(100)

0

exp
( h̄w

kBT

)(
exp
( h̄w

kBT

)
−1
)2

h̄w4

kBT 2v4
j(100)

(α(k100)−β[100])
1

τN,(100)
dwî100

+
8

105

∫ wD, j(110)

0

exp
( h̄w

kBT

)(
exp
( h̄w

kBT

)
−1
)2

h̄w4

kBT 2v4
j(110)

(
α(k110)−β[110]

)
1

τN,(110)
dwî110

+
3

70

∫ wD, j(111)

0

exp
( h̄w

kBT

)(
exp
( h̄w

kBT

)
−1
)2

h̄w4

kBT 2v4
j(111)

(
α(k111)−β[111]

)
1

τN,(111)
dwî111

]
= 0

(64)

where îhkl is a unit vector in the direction, τN,(hkl) is the relaxation time associated

with the normal processes of the modes in the [hkl] direction, α(khkl) is the relax-

ation time defined in Equation 58 for the wavevectors in the [hkl] direction, and

β[hkl] is the relaxation time defined in Equation 60 for the [hkl] direction. Since the

vector u[hkl] defined in Equation 60 is a constant vector in the [hkl] direction, should

be independent of the frequency in the direction. This allows using Equation 64 to

evaluate for the high-symmetry directions of a cubic crystal. Since we consider

that the temperature gradient is along the z-direction and has no effect in the other

directions, the obtained form of κ(T ) is

κ(T ) =
1
Ω

vzkB

rvBπ2 (
kBT

h̄
)3

∑
j

∑
[hkl]

χ
cosψhkl

v2
j(hkl)

[∫
θD,l(hkl)/T

0
τC, j(hkl)x

4 exp(x)
(exp(x)−1)2 dx

+β[hkl]

∫
θD,l(hkl)/T

0

τC, j(hkl)

τN, j(hkl)
τC, j(hkl)x

4 exp(x)
(exp(x)−1)2 dx

]
(65)

where the summation ∑[hkl] runs over all the high-symmetry directions, χ100 =

1/21, χ110 = 8/105, χ111 = 3/70 and νz is the phonon group velocity in the

direction of the temperature gradient averaged over all phonon polarizations. At

this point, we are able to weigh the contribution of each phonon mode to the ther-

mal conductivity along all directions and account for the effects of the material
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shape and size on the thermal conductivity.

D. Calculating Relaxation Times of Phonon Processes

An important variable in the Boltzmann equation is the relaxation time of phonon

scattering processes. As phonons propagate throughout the lattice, they undergo

various physical processes which might alter their propagation. The scattering pro-

cesses are the reason behind obtaining a finite thermal conductivity. Otherwise

phonons would propagate infinitely throughout the crystal and will be transporting

heat perfectly from side to side because their propagation is uniform. The scatter-

ing of phonons can be due to colliding with other propagating phonons, reaching

a boundary, or colliding to structural obstacles such as impurities or atomic dis-

locations... To account for these scatterings which limit the thermal conductivity,

we study the different relaxation times of these processes. Phonon relaxation times

represent the time through which a phonon propagates before it scatters due to a

certain phonon process. In this section, a description of different phonon processes

is presented as well as the relaxation time for each phonon process.

1. Relaxation Time for Three-Phonon Scattering

The study of phonon modes and their properties briefed earlier were based on the

assumption that phonons interacted harmonically. However, in this idealization,

there will be no resistance to heat flow and the result will be an infinite thermal

conductivity for any perturbation. Trivially, measurements show limited thermal

conductivity that varies with different properties which affect the phonon scattering

processes inside the crystal through their propagation. Hence accounting for anhar-

monic terms is required to demonstrate correct thermal conductivity calculations.

The main process contributing to phonon scattering is the phonon- phonon scat-
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Figure 3: (a) An inelastic phonon-phonon scattering corresponding to phonon
annihilation, and (b) Inelastic phonon-phonon scattering by creation[7]

tering due to anharmonic interactions between phonons. The anharmonic interac-

tion results from the third term in the expanded interatomic potential which was

neglected in the harmonic approximation. This term is now considered as a pertur-

bation on the Hamiltonian derived for the harmonic modes. Using Fermi’s golden

rule, it was shown by Ziman that the anharmonic term acted on phonons either by

creation or by annihilation mechanisms [28]. These scattering processes are known

as three-phonon scatterings. In Figure 3, the three-phonon scattering modes are

presented, where scattering either causes two phonons to merge into one phonon of

higher energy or one phonon to split into two phonons of lower energy.

In the case of phonon annihilation, conservation of phonon energy gives:

hν1 +hν2 = hν3 (66)

While momentum conservation has a special formula,

k1 + k2 + k3 = G (67)

If the emerging phonon falls inside the Brillouin zone, the reciprocal lattice vector

G will be zero. But if the emerging phonon is outside the Brillouin zone, then G

will be non-zero so as it returns the emerging phonon back into the Brillouin Zone

so that the phonon wavelength remains greater than the lattice constant. Figure 4

shows the two types of three-phonon scatterings: If G = 0, the scattering process

will be called the normal scattering process, where the emerging phonon(s) will

31



Figure 4: three-phonon scattering processes

preserve the energy and direction of the scattered phonon(s), thus favouring thermal

conductivity in the lattice. On the other hand, for G 6= 0, the scattering process will

be known as the resistive phonon scattering, where the non-zero reciprocal lattice

vector will change the phonon propagation direction and thus the emergent phonon

will resist heat conduction across the lattice by producing an opposing flow.

Due to the energy selection rules, it is expected that two acoustic phonons can

merge to create an optical phonon, while two optical phonons can’t form an acous-

tic phonon. Similarly, an acoustic phonon can merge with an optical phonon and

give an optical phonon but can’t give an acoustic phonon because it has a lower

energy than the sum of the two annihilated phonons’ energies. The lifetime of

phonon scattering is essential for calculating the thermal conductivity of the crys-

tal, this relaxation time can give the mean free path which is the distance a phonon

would travel before it undergoes scattering. Evaluating the relaxation time due to

three-phonon scattering was derived by approximations of scattering integrals by

Klemens in 1958, and the formula obtained had the form:

τ
−1
N,L = BN,Lw2T 3 (68)

for longitudinal phonons, and:

τ
−1
N,T = BN,T wT 4 (69)
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for transverse phonons. Where B is a constant obtained from comparing with exper-

imental measurements, and θD is the Debye temperature. For resistive processes,

the relaxation time will have the form:

τ
−1
u,L = Bu,Lw2Texp(

−θD,L

3T
) (70)

for longitudinal phonons, and:

τ
−1
U,T = BU,T w2Texp(

−θD,T

3T
) (71)

for transverse phonons.

2. Relaxation Time Due to Phonon Point Defect Scattering

The isotopic composition of a crystal affects the phonon transport since the iso-

topes are observed by phonons as point defects on which they scatter. Analytical

expressions for the relaxation time can be obtained from a model presenting point

defects in a perfect lattice [10] . The obtained expression by Klemens depends on

the branch under study:

τ
−1
I, j =

V σ

4πv3 w4 (72)

V is the volume per atom σ is a parameter describing the mass fluctuation-phonon

scattering:

σ =
∑i(ciMi)

2− (∑i ciMi)
2

(∑i ciMi)2 (73)

ci represents the concentration of the isotope Mi represents the mass of the isotope.
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3. Effect of Alloys

The thermal conductivity of a single crystal alloy is found to be lower than the

average thermal conductivity of the constituent material of this alloy. To obtain

relaxation time for scattering by the alloys we consider that the crystal virtually has

ordered alloys, and the actual disorder in alloys is considered a perturbation [29].

An average atomic weight of this crystal will have the form M̄ = ∑i fiMi where

Mi and fi are the atomic mass and concentration of the ith component of the alloy.

Then similar to the process of impurity scattering, we consider that an atom of the

virtual crystal is replaced by an atom from the alloy, which then becomes a virtual

impurity of mass defect 4Mi = Mi− M̄. Since virtual impurities have different

masses, then different coupling forces exist at this location and phonons will then

undergo scattering. By similar treatment to point defect scattering, the obtained

relaxation time will be proportional to w4.

E. Experimental Measurements of Thermal Conductivity

Measurements of thermal conductivity in crystals showed a general trend as shown

in figure5. At low temperatures, thermal conductivity increases with temperature

in a cubic form, and through this region heat transfer is highly dependent on lattice

size and shape. Then a maximum of thermal conductivity is obtained at T = 0.05θD

where heat transfer is dependent on isotopic composition and sensitive to imperfec-

tions. Afterwards, thermal conductivity decreases due to the increase of scattering

by normal processes. When the temperature becomes more than 0.1θD, thermal

conductivity decreases due to Umklapp processes.
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Figure 5: thermal conductivity of Bulk Silicon as a Function of Temperature.[30]

F. Suggested Model with Temperature Dependent Vibrational Parameters

Although they give somewhat reasonable fit to the experimental data, all previ-

ously developed models involve free adjustable parameters. Consequently, they

can be used somehow as analysis models but not as predictive models for the lat-

tice thermal conductivity. Using the solution obtained from the Boltzmann equa-

tion, together with approximate lattice dynamical matrix, this section will provide

a predictive model for the lattice thermal conductivity with temperature dependent

parameters related to the lattice dynamics. The result will be a full description of

thermal conductivity in semiconductors without any fitting parameters. Velocity

of sound in the crystal is weighty in the calculation of thermal conductivity as it

appears in the expression giving the heat current density, in the constants multiply-

ing the relaxation times as well as in the calculation of heat capacity. In our model,

sound velocity values were obtained from their dependence on elastic constants and

density of the material that stems from Green-Christoffel equation in elasticity the-

ory which is valid for small wave vectors. Assuming that the theory works within

the temperature range that we are considering in our work, T < 400k , we calculate

sound velocity from Green-Christoffel equation. In principle, the developed model

can account for the thermal conductivity of finite crystals of any geometrical shape.

However, we will consider here the simple case of a finite three-dimensional crystal
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having the shape of a parallelepiped of dimensions l1, l2 and l3. If we consider the

crystal as a continuum medium and ignore interference effects between incident and

reflected acoustic waves, the acoustic phonon dispersion relations can be written as

ρw2u(0)α = ∑
β

∑
γλ

cαγβλ kγkλ u(0)
β

(74)

where ρ is the density of the crystal, cαγβλ are the elements of the (6x6) matrix

where the subscripts correspond to the coordinates, w is the frequency of vibrations

of the crystal and uα is the displacement vector. kα and kλ are the components

of the wave vectors along the direction under consideration. For the two sides of

equation 74 to be equal for any vector uα , the determinant of the following matrix

should be set to zero:

|Iw2(k)−Aαβ (k)|= 0 (75)

where

Aαβ =
1
ρ

∑
γλ

cαγβλ k
λ (76)

For a given frequency we can get the velocity of the phonon of a known wavevector,

with the assumption of a linear dispersion relation. Sound velocity will be variable

with respect to the direction of the propagation of phonons in the crystal, waves

propagating along [001] direction will have sound velocity that differs if the waves

were along [110] direction. Equation 75 is cubic in v2 and the result will be three

roots that correspond to one longitudinal and two transverse phonons. Generally,

the three of them are all distinct. Previous models which proposed a theoretical

calculation of thermal conductivity for bulk materials assumed a constant Debye

temperature and Gruneisen parameter. We mentioned that actually, these two pa-

rameters depend appreciably on temperature. With this dependence taken into ac-

count, the range of temperature within which our model works accurately would be

extended.
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1. Temperature Dependent Specific Heat

Typically, if we compare the exact frequency spectrum of a given material with the

corresponding linear spectrum, we see that they coincide up to a frequency such

that h̄w = 0.1kBθ
(0)
D where θ

(0)
D is material Debye temperature at 0K. Moreover,

the Debye temperature remains constants only for a few degrees above 0K [5] [31].

Therefore, the consideration of a linear spectrum approximation with a constant

Debye temperature can accurately describe the temperature dependence of phonon

related properties only in the temperature range.

In the Debye approximation, the velocity of sound is taken to be constant for each

phonon mode. The phonon dispersion relation is taken to be linearly dependent on

the phonon wave vector, where the speed of sound is the proportionality constant:

w = ck. This assumption works well near the center of the Brillouin zone, for small

k, and may deviate on the edges. If N is the number of primitive cells in a given

specimen, then we expect to have N acoustic phonon modes. A cut off frequency

is thus set by the maximum number of modes. This maximum frequency defines a

characteristic temperature known as the Debye temperature which determines the

temperature of the highest normal mode of vibration. Debye temperature is a main

parameter in our calculations. Relaxation time of Umklapp processes depends di-

rectly on the Debye temperature through its constant. It also sets the integration

limit of all the integrals involved in calculating k(T). Debye temperature is always

assumed to be a constant, an approximation which is not valid since reported ex-

perimental measurements of θD revealed a strong dependence on temperature[6].

In order to be able to compute θD as a function of temperature, we need to start

from modelling phonons in a crystal by quantum oscillators. In a crystal containing

N atoms, there are 3N springs. The Hamiltonian corresponding to the problem of

a vibrating crystal up to harmonic terms is stated in Equation 10. From the corre-

sponding energy levels in Equation 17, one can calculate the partition function of
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the vibrating crystal:

Z = ∑
nk, j

exp(−βEnk, j) = ∏
k, j

exp(−βhw j(k)
2 )

1− exp(−βhw j(k))
(77)

where β = 1
kBT The internal energy follows immediately as the logarithmic deriva-

tive of the partition function.

E =
−∂ lnZ

∂β
(78)

The heat capacity at constant volume is the derivative with respect to temperature

of the internal energy:

Cv = (
∂E
∂T

)V = kB ∑
k, j

(hwi(k)
2kBT )2

sinh(hw j(k)
2kBT )

(79)

The sum is carried over different wave vectors k and different polarizations j. For

a given phonon mode, the only term of the summation that depends on k is the

frequency of the phonons. Finding the frequency spectrum can be approximated

by Ortavy method which assumes an isotropic elastic parallelepiped of dimensions

l1, l2 and l3. The equations of motion of the solid in terms of the displacement

vector U(u,v,w) of an atom in the solid are expressed in terms of ρ the density of

the solid and (λ ,µ) the Lame constants:

ρ
∂ 2U
∂ t2 = µ∇

2 +(λ +µ)∇(∇.U) (80)

The boundary conditions involved express the physical realizable situation that

shear stresses are zero on the boundary and that the motion perpendicular to the
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boundary is zero. Solving the differential equation for the elements of U, we get:

u = Asin(
n1

l1
)cos(

n2πy
l2

)cos(
n3πz

l3
)exp[−iwt]

v = Bcos(
n1

l1
)sin(

n2πy
l2

)cos(
n3πz

l3
)exp[−iwt]

w = Acos(
n1πx

l1
)cos(

n2πy
l2

)sin(
n3πz

l3
)exp[−iwt]

(81)

In order to find the frequency, we substitute the solution into Equation 80 we obtain:

w2
l = c2

l π
2(

n2
1

l2
1
+

n2
2

l2
2
+

n2
3

l2
3
)

ω
2
t1 = c2

t1π
2(

n2
1

l2
1
+

n2
2

l2
2
+

n2
3

l2
3
)

ω
2
t2 = c2

t2π
2(

n2
1

l2
1
+

n2
2

l2
2
+

n2
3

l2
3
)

(82)

where

cl = (
2µ +λ

ρ
)

1
2 and ct = (

µ

ρ
)

1
2 (83)

n1, n2 and n3 are positive integers. However, the integers n can not run to infinity,

their limiting value is set by the maximum number of atoms, i.e. the number of

modes, of the crystal into consideration. At this point, all the components of Equa-

tion 114 are found, so the theoretical calculation of the heat capacity at a given

temperature is made possible.

Another approach for finding the heat capacity is also provided by statistical me-

chanics. Starting with the same approximation of phonons by quantum oscillators,

the thermal equilibrium average occupation number of phonons of wave vector k

and polarization j is given by Plank distribution:

< nq,s >=
1

exp( h̄ωs(q)
kBT )−1

(84)
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The energy of a collection of oscillators of frequencies ω j(k) using Plank distribu-

tion is obtained from:

U = ∑
q

∑
s

h̄ωq(s)

exp( h̄ωq(s)
kBT )−1

(85)

The summation over q can be replaced by an integral using the density of states:

U = ∑
s

∫
Ds(ωq(s))

h̄ωq(s)

exp( h̄ωq(s)
kBT )−1

dω (86)

Differentiating the internal energy with respect to temperature, we get the heat ca-

pacity:

Cv =
∂U
∂T

= kB ∑
s

∫
Ds(ωq(s))

(
h̄ωq(s)

kBT )2exp( h̄ωq(s)
kBT )

(exp( h̄ωs(q)
kBT )−1)2

dω (87)

The central problem here is to calculate the phonon density of states, i.e. Ds(ωq(s)).

To start with, we consider calculating the density of states in the one dimensional

case and then the model can be extended to include three dimensions. A one dimen-

sional line of length L carrying N atoms at separation a is restricted to vibrate with

fixed ends boundaries. The first and the last atoms in the chain are fixed. Assuming

that the vibrational normal modes of polarization j exhibit the standing wave pat-

tern, the wave vector q will be restricted to take discrete values: q = nπ

L where n is

a positive integer. The density of states is defined as the number of modes per unit

frequency range for a given polarization. Thus:

Ds(ω)dω =
L
π

dω

dω/dk
(88)

Generalizing the calculation to three dimensions, we obtain:

D(ω) =
dN
dω

=
V k2

2π2
dk
dω

(89)

Specifically, by considering the Debye approximation for the dispersion relation,
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the density of states becomes:

D(ω) =
V ω2

2π2v3 (90)

The presence of N primitive cells in the specimen under consideration would set a

maximum cut off frequency ωD given by:

ω
3
D =

6π2v3N
V

(91)

After finding D(ω), the expression for the energy reduces to :

U =
∫

ωD

0

(
V ω2

2π2v3

)(
h̄ω

e
h̄ω

kBT −1

)
dω (92)

Defining the dimensionless variable x = h̄ω

kBT , we obtain:

U =
3V kB

4T 4

2π2v3h̄3

∫ xD

0

x3

ex−1
dx (93)

We introduce the Debye temperature in terms of the cut off frequency ωD by:

θD =
h̄ω

kB
(
6π2N

V
)

1
3 (94)

The heat capacity as a function of temperature can now be written as[32]:

Cv =
3V h̄2

2π2v3kBT 2

∫
ωD

0

ω4e
h̄ω

kBT

(e
h̄ω

kBT −1)2
dω = 9NkB(

T
θD

)3
∫ xD

0

x4ex

(ex−1)2 dx (95)

Comparing the two Equations 114 and 95 that give the heat capacity as a function

of temperature, we find that the first one can be calculated easily once the num-

ber of atoms and the dimensions of the specimen are given, whereas the second one

contains the variable of interest, that is, θD. Thus, the dependence of Debye temper-

ature on temperature can be found once the summation over different wave vectors
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k in equation (82) is calculated. The next step would be to solve the non-linear

equation:

Cv = 9NkB(
T
θD

)3
∫ xD

0

x4ex

(ex−1)2 dx (96)

for a given temperature T, the root in this case turns out to be the Debye tempera-

ture.

2. Temperature Dependent Gruneisen Parameter

After finding θD as a function of T, there remains another parameter which was

assumed constant and is indeed a strong function of temperature especially at low T.

The Gruneissen parameter is also taken as a temperature dependent. This parameter

describes the effect of temperature variation on the dynamics of the crystal. Its

mathematical presentation is[33]:

γs =
−V
ωs

∂ωi

∂V
(97)

Another indication that clarifies the dependence of both parameters comes from the

idea of density of states. The idea of density of states comes to prove the depen-

dence of the Debye parameter on temperature. The work starts from determining

the density of states of phonons inside a volume, with the heat capacity (Cv) as a

function of Debye parameter. As a result of dependence of both parameters on tem-

perature, the range for calculating the thermal conductivity is widened. Therefore,

this modification enhances the model and makes it more reliable.
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CHAPTER III

MODELLING THE THERMAL CONDUCTIVITY IN

SUPERLATTICES

Great interest in research on thermal conductivity of crystals in low dimensions

has arised due to the development of experiments which allowed growth of crys-

tals at nano-scales as well as experiments facilitating measurements in low dimen-

sions such as Raman scattering, infrared absorption and electron diffraction at low-

energy. At nano-scale, classical and quantum size effects exist because the mean

free path of phonons becomes comparable to the size of the material. Heat con-

duction deviates significantly from classical bulk prediction values. Thermal con-

ductivity becomes size dependent. Also by quantum predictions, size can influence

conduction by affecting waves, and forming standing waves instead under the con-

dition nλ/2 = D [7].

Phonons obey Bose-Einstein distributions while molecules obey Boltzmann distri-

bution, except at absolute temperature where we should consider Bose- Einstein

distribution again. In nanoscale energy becomes discontinuous, and is found by

SchrÃűdinger equation of phonons derived in chapter one. and since dimensions

are low, then thermal conductivity can no longer be taken to be independent of

position as in the case of bulks. The Boltzmann equation will hence contain an ad-

ditional term contributing to a finite size in which we will have a spatial dependent

distribution function.

In this chapter a discussion of phonon behaviour in nanoscales, first generally, then

precisely in superlattices, will be done. I will then make an approach to calculate

thermal conductivity in these systems using the obtained dispersion curves as well

as my interpolation model describing phonons at interfaces.
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A. Phonons in Superlattices

Superlattices are defined to be periodic layers of two types of crystals having small

thickness (less than 50nm). They are grown using molecular beam epitaxy and

metal-organic chemical vapour deposition which grow Superlattices of any desired

thickness [34]. A major cause of the dramatic drop in thermal conductivity in su-

perlattices compared to their bulk constituents was basically attributed to the pres-

ence of the numerous interfaces that phonons face during their propagation across

the repeated layers of the superlattice. The interfaces between the layers formed a

boundary that resisted propagating phonons and even scattered them due to the mis-

match between the two different layers at this interface. This resulted in the limited

heat dissipation in superlattices. The study of Superlattices is done by the study

based on the elasticity theory. In the continuum theory, the phonons are considered

to be propagating through the lattice and across boundary conditions from which

we can obtain the dispersion relations.

The study of thermal conductivity across superlattices has gained great interest re-

cently in hopes of achieving an efficient thermal management for microelectronic

devices [35] [22]. Therefore, several models for describing thermal conductivity in

superlattices have been demonstrated, and experimental measurements were done

for the study of heat transport to obtain numerical data for different systems.

The initial treatment of superlattices as systems in which heat propagates in the

form of phonons which transfer incoherently across the alternating layers have

demonstrated poor resemblance to experimental expectations as will be shown in

the following section of incoherent modelling of phonons in superlattices. On the

contrary, some observations have found possibilities for a coherent heat transport

through the lattice as if it were a bulk with no interfaces, this resulted from high

wavelengths of some phonons in which periods became too small to be observed

by the propagating phonon.
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Our study of heat transfer starts with solving Boltzmann’s equation for obtaining

the phonons distribution function throughout the lattice at different temperatures

and positions. Two models were suggested, where the first considers particle-like

behaviour of phonons which can scatter during propagation and the second consid-

ers plane wave-like propagation in which waves transmit or reflect instead of scat-

tering. The first model has shown a fail due to the monotonous decrease with period

thickness of the superlattice, while the second approach failed at all periods above

a few tens of angstroms and overestimated the expected thermal conductivity trend.

An interpolation model is suggested by Latour et al.[36] where a phonon coherence

length was defined as a spatial correlation of the change of atomic displacement at

equilibrium due to existing phonons at a given frequency. The resulting Ic(w) pre-

dicted coherent transport of phonons when the superlattice period was smaller than

this correlation factor. Hence phonons will propagate in a homogeneous material

with a folded Brillouin zone. And when Ic(w) becomes smaller than the period, the

criterion of transfer is expected to be incoherent. Though this model shows good

theory, it hasn’t been validated by experiments.

Our study presents an original approach for a theoretical model that demonstrates

the heat transfer mechanism across superlattices by presenting an intermediate be-

haviour for phonons in between the coherent and incoherent propagation expected

for phonons in superlattices. The coherent transport suggests that phonons trans-

port through the superlattice assuming the material is a bulk with a folded Brillouin

zone. On the other hand, the incoherent model suggests that phonons transport

through the two different layers of a superlattice as if the superlattice is formed of

two bulks separated by an interface. This type of interpolation was already sug-

gested in molecular dynamics study of phonons [2]. Our interpolation is based on

the multiplication of a probability factor for each type of transport. The probabil-

ity is derived from considering that the phonon wavelength affects its behaviour
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at the interface, a phonon with low wavelength comparable to the lattice period

would undergo interface scattering whereas a phonon of high wavelength will not

feel the interface as it propagates. So in general the derived model will depend

on a probability that is dependent on the phonon wavelengths, the lattice period,

and the root mean square irregularity of the interface in the considered superlattice.

The developed model will present its results with comparison to the experimental

expectations.

B. Thermal Conductivity Calculation

A major cause of the dramatic drop in thermal conductivity in superlattices com-

pared to their bulk constituents was basically attributed to the presence of the nu-

merous interfaces that phonons face during their propagation across the repeated

layers of the superlattice. The interfaces between the layers formed a boundary that

resisted propagating phonons and even scattered them due to the mismatch between

the two different layers at this interface. This resulted in the limited heat dissipation

in superlattices. Understanding the phonon behaviour causing this change in heat

transfer will lead to modelling the thermal conductivity in these structures. Initially

it was expected that the modelling of the layers as bulks separated by interfaces that

are studied and included in the bulk model would give the expected results in ther-

mal conductivity values. However, the pattern of propagation of phonons across

crystals might present two modes, an incoherent transport mode, where as expected

phonons scatter at interfaces and the classical study would describe heat propaga-

tion in this case, and a coherent transport mode, where phonons do not observe the

interfaces but propagate through the superlattice as if it were a bulk with a folded

Brillouin zone.

In the following sections we will describe both suggested models and show that

phonons might propagate in either way depending on a minimal and a maximal
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wavelength of the phonons.

C. The Incoherent Mode of Transport

In the incoherent propagation, phonons transmit through the first layer, then through

the interface and into the second layer. The main difference between superlattices

and bulks in this case is now only in accounting for the interface between each two

layers. The study of phonons behaviour at the interface will be the subject of the

next section.

1. Interface Thermal Conductance

Thermal conductivity was defined earlier to be the ratio of the heat current with

respect to the temperature gradient [37]. The heat current is found by:

Q1→2 =
1
2 ∑

j
∑
q

hw( j,q)n(w,T )|v( j,q)N|α1→2(w, i, j) (98)

Where we have summed over all phonons incident per unit area and time. }w( j,q)

is the phonon energy and n(w,T ) = 1
e}w/kBT−1

is the Bose-Einstein occupation factor

and α1→2 is the transmission probability of the phonon of frequency w to transmit

from the first material to the second. The summation is done over all polarization

directions j and phonon wavevectors q. v( j,k) is the speed of phonons of polari-

sation j and wavevector k. N is the normal to the interface directed from the first

material to the second. Now, we will write the summation as:

∑
K

=
Ω

(2π)3

∫ qD

0
4πk2dk (99)
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Where qD is the Debye wavevector. We have that the number of modes in a sphere

of radius k in the Fourier space is

ν =
Ω

(2π)3 (
4
3

πk3) (100)

and we know that the density of states is given by

D(w) =
dν

dw
=

dνdk
dkdw

(101)

which becomes

D(w)dw =
Ω

(2π)3 4πk2 (102)

Finding the heat current we can now write the thermal conductivity as:

TC =
1
2 ∑

j
∑

i

∫ wD, j,i

0

1
kBT 2 (hw)2.|v(w, i, j).N|

.
exp( hw

kBT )

[exp( hw
kBT )−1]2

α1→2(w, i, j)Di, j(w)dw

(103)

Where j denotes one phonon polarization and i denotes a given orientation of the

crystal. When the density of states and the phonon velocity is known, we need to

compute the transmission probability to be able to obtain the interface boundary

conductance as a function of T.

In order to get this probability at interface, two extreme models were proposed to

describe the phonon modes. The first is the acoustic mismatch model (AMM), and

the second is the diffuse mismatch model (DMM). The first model assumes that

phonons observe the interface as a continuum surface of incidence, on which they

either reflect or refract. This model works in the Brillouin zone center where we

have long wavelength phonons [22]. The second corresponds to short wavelength

phonons which observe the interface as a rough surface which scatters incident
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phonons diffusively and phonons lose memory of their previous acoustic proper-

ties. [22] the DMM assumption hence predicts non-conservative momentum. Thus,

both models present limitations on their predictions. An intermediate solution is

thus necessary to describe phonons behaviour at interface. Kazan, M. et al. [22,

..] have suggested a complete model of interpolation between DMM and AMM in

which they showed calculations depending on the characteristics of phonons and

surfaces. Also, this model presented a more accurate study by considering the de-

tailed phonon dispersion relations instead of the limited linear Debye approxima-

tions considered in the previous models. This has improved thermal conductivity

resemblance to experimental measurements. In the following section we provide a

thorough description of phonons at interfaces, first as derived by each of the extreme

models, then the interpolating model will be discussed.

a. The Acoustic Mismatch Model

In the acoustic mismatch model, phonons are treated as waves propagating in a

continuous medium. This is valid when their wavelengths are much larger than

the interface asperities. Hence, when a phonon reaches an interface between two

crystalline materials, the case would be a case of a wave incident on an interface of

two mediums. Therefore, it is expected of this wave to either reflect or refract into

the second material. Reflection can be specular or with polarization conversion.

Refraction may convert polarization too. Thus the phonon here will be governed by

Snell’s law. Starting with the case of no polarization conversion, if θ1 is the angle

between the wavevector and the normal to the interface, then the wave will refract

into the second medium such that it satisfies the following law:

sinθ2 =
v2(w, i, j)
v1(w, i, j)

sinθ1 (104)
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where v2(w, i, j) is the wave speed in the second material. The interface is assumed

to be a perfectly smooth surface. Now, if the incident wave has an angle larger than

the critical angle, the wave will undergo reflection. The transmission critical angle

is found by the formula:

θ1,max = v1(w, i, j)/v2(w, i, j) (105)

Phonons having an angle less than this limiting angle will transmit with a transmis-

sion probability of:

α1→2(AMM)(w, i, j) =
4Z1Z2µ1µ2

(Z1µ1 +Z2µ2)2 (106)

Where µ = cosθ and Z is the acoustic impedance which is the phonon speed multi-

plied by the density of the material: Z = ρv(w, i, j). For phonon incident at an angle

larger than the limiting angle, the probability of transmission or refraction will be

zero. The probability of reflection can then be written as:

R1→2(AMM)(w, i, j) = 1−α1→2(AMM) = |
Z1µ1−Z2µ2

Z1µ1 +Z2µ2
| (107)

Assuming the AMM, the interface is treated as a perfectly smooth plane. This

assumption is thus valid only when the wavelengths of the phonon plane waves are

much greater than the interface asperities.

b. The Diffuse Mismatch Model

In the DMM, the acoustic correlations at the interface are assumed to be completely

destroyed by elastic diffuse scattering, so that the only determinants of the transmis-

sion probability are the phonon densities of states of the materials in contact [38].

The probability of transmission is nonetheless determined by a mismatch between
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densities of state. The transmission probability from side 1 to side 2 of the interface

can be written in the DMM as

α1→2(DMM)(w, i, j) =
∑i, j ν2(w, i, j).D2(w, i, j)

∑i, j ν2(w, i, j).D2(w, i, j)+∑i, j ν1(w, i, j)+D1(w, i, j)
(108)

This equation is derived from the principle of detailed balance [38]. The maximum

transmission probability for a phonon from side 1 to side 2 when the phonon densi-

ties of states at both sides of the interface match with each other. However, if an in-

terface is considered between two solids with identical acoustic phonon properties,

the transmission probability according to AMM is unity, whereas the transmission

probability in the DMM is exactly 0.5. We can deduce then that the DMM gives a

prediction of a finite thermal resistance at an imaginary interface in the material.

c. The Interpolation Model

The phonon transmission coefficients appeared to come very close to those pre-

dicted by the AMM, at least for phonons with large wavelengths, or alternatively,

low frequencies (less than 300 GHz). In the particular case of solid/solid interface,

the thermal conductance of the interface was actually lower than that predicted by

the AMM. The most thoroughly studied interfaces were those between sapphire

and indium [39][40]. In these experiments, the measured interface thermal con-

ductance for different samples varied significantly, depending on the details of the

sample preparation. The temperature dependence was also not as expected from

the AMM. However, measurements of the thermal conductance between sapphire

and Aluminium showed a close agreement with the AMM [39]. The occasional dis-

agreement with the AMM was attributed to an imperfect physical contact between

the materials. In both AMM and DMM the thermal conductance contained large

contributions from the phonon scattering, and transmission at the interfaces could
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not be deduced accurately. This suggests that the interface thermal conductance can

be described accurately by the AMM only at low enough temperatures. It was found

from phonon reflectivity experiments that phonons in the frequency range above a

few hundred GHz are strongly scattered at all but the most carefully prepared sur-

faces. All these experimental observations suggest that at low temperatures, when

the incident phonons are of wavelengths larger than the interface asperities, the

phonon scattering at the interface is unlikely and the AMM fails to describe the

interface thermal conductance. However, at high temperatures where phonons from

the Brillouin zone carry the heat, the DMM is more appropriate than the AMM to

describe the interface thermal conductivity. Nevertheless, at intermediate tempera-

tures, where both specular and diffuse transmission are expected, neither the AMM

nor the DMM can describe accurately the interface thermal conductance. Thus,

a model that takes into account the interface conditions and interpolates between

the AMM and the DMM is certainly needed to describe quantitatively the interface

thermal conductance in the full temperature range. Likely, neither the AMM nor the

DMM can describe accurately the interface thermal conductance. Thus, a model

that takes into account the interface conditions and interpolates between the AMM

and the DMM is certainly needed to describe quantitatively the interface thermal

conductance in the full temperature range. Phonon dispersion relationship is usu-

ally approximated by a linear relationship (the Debye approximation). However,

the Debye approximation is justified only for wavevectors close to the Brillouin

zone center, because away from the BZ center there is a significant deviation be-

tween the real phonon dispersion relationship and the phonon dispersion obtained

from the Debye approximation. Therefore, below the Debye temperature, where

only phonons of small wavevectors carry the heat, the Debye approximation is rea-

sonable. In fact, it has been demonstrated that the Debye approximation causes a

large error in the calculation of the interface TC [41].

According to a statistical model by Ziman a plane wave incident on a rough surface
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reflects as a plane wave in the direction of specular reflection and a contribution with

a finite angular spread about that direction. The result is an average flux density in

a given direction with the formula:

< |F(α,β ,γ)|2 >AV= exp(−γ
2 < φ

2 >)δ (α)δ (β )

+B[
L2

4π
exp(−γ

2 < φ
2 >)

∞

∑
n=1

(γ2 < φ 2 >)n

n!n

.exp[−(L2

4n
(α2 +β

2)]

(109)

where,

φ(x,y) =
2π

λ
z(x,y)

α(Ω0,Ω) = (
2π

λ
).(sinθ0cosφ0− sinθcosφ)

β (Ω0,Ω) = (
2π

λ
).(sinθ0sinφ0− cosθcosφ)

γ(θ0,θ) = cosθ0 + cosθ

(110)

with Ω0 = (θ0,φ0) and Ω = (θ ,φ) referring to the directions of the incident and

emerging wavevectors, respectively, and φ(x,y) being the one way phase shift

caused by deviation from the plane z=0. In addition to an average roughness, the

surface is described here by a tangential correlation length (L). The proportionality

constant B, determined from the flux conservation condition, is found to be

B(Ω0) =
ε(Ω0)[1− ps(θ0)]

c(Ω0)
(111)

with
ε(Ω0) =

∫
dΩδ (α)

δ (β ) = (
λ

2π
)2sec(θ0)

ps(θ0) = exp(−4 < φ
2 > cos2

θ0)

c(Ω0) =
∫

dΩc(Ω0,Ω)

(112)

The average flux density in its actual form can be seen as the sum of a specular part
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p(θ0,θ) and the diffusive c(Ω0,Ω). Thus, for simplicity one can write the equation

of the average flux density as:

< |F(α,β ,γ)|2 >AV=

[
p(θ0,θ).δ (β )+B(Ω).c(Ω0,Ω)

]
(113)

2. Calculating the Probability of Transition at Interfaces

Let P(Ω0,Ω) now be the transition probability of the phonon plane wave per unit

solid angle from Ω0 to Ω. With

P =
∫

P(Ω0,Ω)dΩ0 (114)

and since P(Ω0,Ω) is by definition the average flux density normalized to unity,

then it can be expressed by:

P(Ω0,Ω) = [
1

ε(Ω0)
]p(θ0,θ)δ (α)δ (β )+ ε(Ω0)[

1− ps(θ0)

c(Ω0)
]c(Ω0,Ω) (115)

We insert this expression of P(Ω0,Ω) in the integral, equation 114, to get the fol-

lowing expression for P at the z = 0 surface

p =
∫

P(Ω0,Ω)dΩ = ps(θ0)+
∫
[1− ps(θ0)][

c(Ω0,Ω)

c(w0)
]dΩ0 (116)

Take ∆(Ω0,Ω) =
∫ [

1− ps(θ0)
][c(Ω0,Ω)

c(w0)

]
dΩ0 then equation 116 can be written as

P = ps(θ0)+∆(Ω0,Ω) (117)

The probability for a specular reflectivity is determined by ps(θ0) whereas the prob-

ability for diffuse reflectivity is given by ∆(Ω0,Ω) . From equation 116, we can

recover the limiting cases: when L goes to zero, the term ∆(Ω0,Ω) becomes neg-
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ligible and thus specular reflectivity is the dominant mechanism. However, for a

completely correlated interface,

c(Ω0,Ω)→ [1− p(θ0,θ)]δ (α)δ (β ) (118)

which yields B(Ω0) = 1 and ∆(Ω0,Ω) = 1− ps(θ0). Physically, that is the situation

when locally the surface becomes practically a plane resulting in the merge of dif-

fuse part of the emerging flux with the specular part. From Equation 117, we can

express the directional dependence of the probability of reflection at the interface as

the weighted average of the reflection probability derived from acoustic mismatch

model and diffuse mismatch model.

rt = ps(θ0)Rsp +∆(Ω0,Ω)Rd (119)

Rsp represents the specular reflectivity and Rd the diffuse reflectivity. Finally, we

reach an expression giving the transition probability which is the quantity of interest

in the calculation of thermal conductance at the interface between two solids:

α1→2(w, i, j) = 1− rt(w, i, j) (120)

At this level, calculation of thermal conductance becomes a matter of computing

transmission probability between the two interfaces as described above and then

replacing its expression in the main integral expression of thermal conductance.

3. Incoherent Thermal Conductivity Calculation

For the case of superlattices, phonons were expected to propagate incoherently

through the crystal, due to the repeated interface. The thermal conductivity is con-

sidered to be a weighted average of the thermal conductivity in each layer including
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the effect of boundary resistance. If d1 and d2 are the thicknesses and κ1 and κ2 are

the thermal conductivities of the first and second layer respectively,

κinc =
dSL

( d1
κ1
+ d2

κ2
)+2RB

(121)

where dSL = d1 +d2 and RB = RB(1→2)+RB(2→1)
2 RB(1→ 2) is the interface thermal

resistance of phonons at the interface [42]. The boundary scattering at the interface

between the layers will have a relaxation time given by [41]:

RB(x→ y) =

[
1
2 ∑
[hkl]

∑
j
∑
q

1
kBT 2 h̄2w2

j(qhkl)v j(qhkl)
exp( h̄w j(qhkl)

kBT[
exp( h̄w j(qhkl)

kBT −1
]2 σ j(qhkl)

]−1

(122)

σ j(qhkl) is the transmission probability of the phonons of polarization j and wavevec-

tors qhkl . This transmission probability is calculated from an interpolation between

two models: the acoustic mismatch model and the diffuse mismatch model [43].

Having calculated all the needed variables, the values for the thermal conductivity

at different temperatures can be obtained.

In figure 6, it can be seen that plotting the obtained results of calculation provide

a logical trend but do not fit the experimental measurements. The modelling of

phonon propagation by a purely incoherent model is hence not accurate.

Figure 6: Thermal conductivity of Si/Si0.7Ge0.3 superlattices as predicted by the study of
the incoherent transport of phonons
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D. The Coherent Mode of Transport

Although the assumptions given for the incoherent modelling are realistic for super-

lattices, the resulting calculations give poor fitting with the real values of thermal

conductivity in superlattices. This means that the incoherent propagation is not in

complete control of phonons propagation. In this section, we will adapt the previ-

ous results of the Boltzmann equation for modelling a coherent phonon transport in

superlattices.

1. Continuum Model of Phonons in Superlattices

When the acoustic phonons in a crystal have a wavelength greater than the lattice

atomic scales, the atomic displacement is taken to be a continuous displacement.

And thus phonons will be treated as elastic waves. These waves will be propagating

in the crystal anisotropic media. We consider two media, which will constitute the

layers of the superlattice. They are characterized by densities 1 and 2, and elastic

constants Ω1 and Ω2, and the waves are taken to be propagating in the z-direction

chosen to be also the direction of the growth of the superlattice. To study the wave

propagation in this case, we start with the general equation of motion:

ρ1,2
∂ 2u
∂ t2 =

∂σ1,2

∂ z
(123)

where σ1,2 represents the stress tensor of the form:

σ1,2 = Λ1,2
∂u1,2

∂ z
(124)

then the equation of motion becomes:

ρ
∂ 2u
∂ t2 =

∂

∂ z
(Λ

∂u
∂ z

) (125)
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For a monochromatic elastic wave, one can seek a solution from the boundary con-

ditions:

1. Stress is continuous at interfaces:

Λ1
∂u1

∂ z
= Λ2

∂u2

∂ z
(126)

2. Displacement is continuous at interfaces,

u1 = u2 (127)

3. Displacement is represented by a Bloch wave:

u(z+d) = u(z)eiqd (128)

Where the periodicity is given by d = d1 + d2 ; with d1 and d2 the periodicities in

the first and second materials respectively. The relation between w and q is obtained

from applying the above conditions on the equation of motion:

(ρ1,2w2−Λ1,2q2)u1,2 = 0 (129)

Which is a cubic equation in frequency. The roots of this equation give the fre-

quency as a function of the wavevector q:

w =

√
Λ1,2

ρ1,2
q1,2 (130)

Where q1,2 are the wavevectors in the superlattice, found from the relation with the

wavevectors of bulks:
q

q1,2
=

d1,2

d
(131)
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To solve the equation of motion, we use the trial solutions:

u1(z) = (Aeiq1z +Beiq1z)e−iwt (132)

And

u2(z) = (Ceiq2z +De−iq2zeiwt) (133)

Substituting these solutions into the boundary conditions we get the following con-

ditions on A, B, C and D: At z=0:

A+B =C+D (134)

which gives:

(A−B)Λ1q1 = (C−D)Λ2q2 (135)

and at z = d2:

Ceiq2d2 +De−iq2d2 = (Ae−iq1d1 +Beiq1d1eiqd) (136)

which gives:

Λ2q2(Ceiq2d2−Deiq2d2) = Λ1q1(Ae−iq1d1−Beiq1d1)eiqd (137)

For −d1 ≤ z≤ 0:

u1 =(Λ1q1sin(q2d2))cos(q1z)−(Λ2q2cos(q2d2))sin(q1z)+(Λ2q2eiqd)sin(q1(q1(z+d1))

(138)

and for 0≤ z≤ d2

u2 =(Λ1q1eiqdcos(q1d1))sin(q2z)+(Λ2q2eiqd)sin(q1d1))cos(q2z)−Λ1d1sin(q2(z−d2))

(139)
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And we also obtain the dispersion curve for phonons:

cos(qd) = cos(q1d1)cos(q2d2)−
Λ1ρ1 +Λ2ρ2

2
√

Λ1ρ1Λ2ρ2
sin(q1d1)sin(q2d2) (140)

The obtained equation can be also written in the form:

cos(qd) = cos(w(
d1

v1
+

d2

v2
))− ε2

2
sin(

wd1

v1
)sin(

wd2

v2
) (141)

Where ε is a constant that measures the mismatch of the acoustic impedance of the

two lattices corresponding to each of the materials 1 and 2 and it has the value of:

ε =
Λ1ρ1−Λ2ρ2

Λ1ρ1 +Λ2ρ2
(142)

Taking the special case of long wavelengths, where q and w approach zero, the

dispersion relation takes again the linear Debye form w=qv, where

v = d[(
d1

v1
+

d2

v2
)2− ε

2(
d2

v2
)(

d1

v1
)]−

1
2 (143)

When ε is small, the second term in the general dispersion curve splits the fre-

quency values, at the center and edges of the Brillouin zone. So we get at the center

new optical modes which have an acoustic nature. A representation of the folded

acoustic curve of the superlattice is shown in Figure 7 obtained from the above con-

tinuum theory. As can be seen, the dispersion curve represents small splitting at the

zone center and edges. In the figure, a dashed curve is represented to show the curve

of a bulk of similar materials and of thickness d̄(1,2). Ian 1979, Narayanamurti et al.

observed the folding of the Brillouin zone and the creation of minigaps and verified

them experimentally by acoustic transmission of superconducting tunnel junctions.

Later Colvard et al. (1980) and Jusser and et al. (1987) also obtained the same

results by Raman Scattering.
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Figure 7: The folded dispersion curve of a superlattice obtained by the continuum
theory. Dashed curve corresponds to a dispersion curve a similar bulk structure

The obtained plot of the dispersion relation will be used in calculating the phonons

velocity in the coherent model to obtain thermal conductivity from the coherent

phonon propagation.

2. Coherent Thermal Conductivity Calculations

Then this model will be interpolated with the incoherent model to obtain a corrected

formula for thermal conductivity in superlattices. The coherent model assumes

the superlattice as an interface-free bulk restricted by the folded Brillouin zone

of superlattices. We will apply this assumption on superlattices and obtain a new

formula for thermal conductivity. By plotting the obtained dispersion relation in

the study of superlattices, we can calculate the group velocity of phonons from

the slopes of the branches of the obtained curve. Now the calculation of thermal

conductivity in the coherent model can be obtained. The resulting values of thermal

conductivity are presented in figure 8. It is clear that the coherent model provides

a logical match of the thermal conductivity measurements only at low periods and

low temperature as in the the case of a period of 4.5 nm at temperatures below 200,

and they present close values at higher temperatures in this thickness.
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Figure 8: Thermal conductivity of Si/Si0.7Ge0.3 superlattices as predicted by the study of
the coherent transport of phonons
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CHAPTER IV

RESULTS

A. Modelling Thermal Conductivity With Temperature Dependent Vibrational
Parameters

In chapter two we presented a general formalism for describing thermal conductiv-

ity in bulk structures with distinguishing normal and Umklapp phonon processes as

well as including the effect of all high symmetry directions in the lattice. then we

modified the model adapted by Callaway to include temperature dependent Debye

temperature and Gruneisen parameter. The resulting formula is then plotted to show

the improvement in the fitting of thermal conductivity values with the experimental

measurement.

Demonstration of our model is presented in Figure 9. Thermal conductivity is cal-

culated by our model for various bulks as well as in thin film samples. Excellent

fitting is observed between the measured values and our expectations. Our model

can be hence used for also predicting thermal conductivity values in low or high

temperatures were measurements values aren’t available yet. The code used will

also be expected to give correct calculations for finding thermal conductivity pre-

dicted by the incoherent model.
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Figure 9: calculation of thermal conductivity as a function of temperature in bulks,
polycrystals and thin films of different thicknesses. Experimental values are from

reference [44] for polycrystals,[45] for thin films and [46] for bulks.

B. Modelling Thermal Conductivity in SiGe Superlattices

The obtained formula of thermal conductivity is applied on Si/Si0.7Ge0.3 and

Si0.84Ge0.16/Si0.76Ge0.24 superlattices and the plots reproduced the experimental

measurements. Then this paper focused on developing a predictive model that pro-

vides a tool to optimize a superlattice structure of minimal thermal conductivity.

Deposition and characterization of the optimized structures represent a challenging

experimental task in materials engineering due to the emergence and serious need

of high efficient thermoelectric devices in various technological domains. So after

demonstrating the accuracy of this model a mesh of thermal conductivities of su-

perlattices of varying compositions is demonstrated to suggest a composition which

gives a minimal thermal conductivity at 300k and 700k. The results show that su-
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perlattices can be a potential material for a new generation of high-efficiency high

temperature thermoelectric devices suitable for applications which require thermal

insulation in nanoscales such as aerospace engineering microelectronics, optical

communications, and semiconductor processing equipment. In order to show the

precision of the resulting model for superlattices, the obtained thermal conductivity

is evaluated for Si/Si0.7Ge0.3 and Si0.84Ge0.16/Si0.76Ge0.24 superlattices of differ-

ent periods as a function of temperature and the resulting values were compared

to the known experimental observations. As seen before, plotting the thermal con-

ductivity obtained from the incoherent transport of phonons, Figure 6, shows poor

resemblance to the reported experimental curves [40]. As the temperature and pe-

riod increase, the discrepancy between experimental and incoherent modelling de-

creases as in the case of Si/Si0.7Ge0.3 for a thickness of 30 nm and a temperature

above 200k. In this case we get a satisfactory agreement in the results. For the co-

herent transport, Figure 8, thickness does not make a noticeable effect on the values

of thermal conductivity due to neglecting boundaries in this model.

An investigation of phonon behaviour suggests that heat transport is actually the

result of a mixed transportation mode. The thermal energy kBT that excites the

phonons at energy levels smaller or equal to kBT . So at temperature T, the excited

phonons are characterized by a frequency w satisfying :

w =
2πv
λ
≤ kBT (144)

for a phonon at a specific temperature and of frequency w.

Thus, at temperature T, the shortest excited wavelength is related to T according

to λmin ≈ 2π h̄v
kBT and the longest excited wavelength is given by λmax =

2π

qmin
where

−qmin = 2π/l1 The result is that if the superlattice period and the rms irregularity

are smaller than the minimum wavelength, then the phonons will behave as if they
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see all the interfaces simultaneously and hence will propagate coherently along spe-

cific paths decided by the folded dispersion curve in a perfect harmonic way. This

is the case when the period and the temperature are low. The incoherent trans-

port will dominate if on the contrary the period and the rms irregularity h exceed

the maximum wavelength because the phonons will scatter due to the boundaries.

Short wavelength phonons can’t observe all interfaces and hence will interact with

each interface separately according to the boundary resistance study. This is the

case when the temperature and period increase. We can then expect the transport

to be intermediate between these two cases and the weight of each mode will be

determined by the temperature, period and rms irregularity h since these are the

variables between each of the extreme models. Therefore, the probability of the co-

herent phonon heat transport increases as λmin increases and the period decreases.

Since λmin is inversely proportional to T, the coherent phonon heat transport be-

comes more likely as both T and dSL decrease. On the contrary the incoherent

phonon heat transport becomes more favorable as both T and dSL increase. There-

fore, the phonon heat transport mode in a superlattice can be reasonably considered

as a mixed transport mode ensured by both coherent and incoherent phonons and

the contribution of each is determined by the temperature T, the rms irregularity h

at the interface, and the period thickness. The obtained mixed thermal conductivity

will then have the form:

κ = κcoh

[
1− exp

(−λ 2
min

dSLh

)]
+κinc

[
1− exp

(−dSL

λmax

)]
(145)

The coherent model of thermal conductivity is represented by κcoh , whereas the in-

coherent model is represented by κinc. It is obvious that for low periods κcoh domi-

nates while κinc dominates for periods much higher than the maximum wavelength.

Without any loss of generality, we consider here that h is always smaller than dSL.

With this form of κ , it can be seen that in the limit where λmin is much larger than
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dSL and h, κ reduces to κcoh, whereas in the limit where λmax is much smaller than

dSL, κ reduces to κinc. Using the dispersion relation and the formulas of minimum

and maximum wavelengths, we can write the mixed thermal conductivity as

κ = κcoh

[
1− exp

(−4π2h̄2v2

k2
BT 2dSLh

)]
+κinc

[
1− exp(−2)

]
(146)

The reduced form shows that the incoherent transform will always be constant in

the transport while the coherent transport will depend on temperature, period, rms

irregularity and the phonon group velocity. So the incoherent transport is always

included in the phonon transport while the coherent transport can never dominate.

Using this obtained formula, a plot of the thermal conductivity of superlattices of

variable thicknesses of Si/Si0.7Ge0.3 and Si0.84Ge0.16/Si0.76Ge0.24 is presented in

Figures 10 and 11 with a comparison to experimental values. The surface roughness

is used as an adjustable parameter. The resulting plots show excellent match to the

expected values, which indicates that indeed the phonon propagation is not purely

incoherent but obeys the mixed model presented in this paper.

Figure 10: Thermal conductivity in Si/Si0.7Ge0.3 superlattices resulting from the mixed
transport of phonons in comparison with experimental measurements
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Figure 11: Thermal conductivity in Si0.84Ge0.16/Si0.76Ge0.24 superlattices resulting from
the mixed transport of phonons in comparison with experimental measurements

C. Optimization of a Superlattice with Minimal Thermal Conductivity for
Thermoelectric Applications

The requirements of low thermal conductivity for low dimensional materials have

shown to be unsatisfied by the simple bulk semiconductors, and the proposed so-

lution was the design of a superlattice of crystalline layers of different materials.

These artificial materials have demonstrated a strongly reduced thermal conduc-

tivity that improved the performance of thermoelectronics as well as other ap-

plications. In this section, we will use this model to optimize a superlattice of

SixGe1−x/SiyGe1−y of minimal thermal conductivity which can be a satisfactory

material for thermoelectric applications. Si and Ge are always favourable elements

in semiconductor industry for their excellent performance and simple acknowledge-

ment of all of their properties. Having verified the accuracy of this model of mixed

transport, we can suggest an expectation of the best period and superlattice compo-

sition that possesses a minimal thermal conductivity. A detailed calculation of ther-
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mal conductivities of superlattices as a function of varying compositions is done

at temperatures of 300k and 700k for different thicknesses in order to observe a

minimal thermal conductivity. The resulting mesh is presented in Figure 12. the

compositions of the Superlattices of SixGe1−x/SiyGe1−y are varied from x=0 to

x=1 with a step of 0.1 for the first layer, where x represents the relative composition

of germanium in the first layer and from y=0 to y=1 with a step of 0.1 for the second

layer, where y represents the relative composition of germanium in the second layer

of the SixGe1−x/SiyGe1−y superlattice. Hence the calculations are done over eleven

different compositions in the first layer as well as eleven different compositions of

the second layer. The result will be a calculation of thermal conductivities of 121

different superlattices. The calculations will be done at three different temperatures

300ok, 700ok and 1300oK and 3 different thicknesses of 30, 15 and 7.5nm.

The meshes obtained represent the values of thermal conductivity. At the upper left

and lower right corners, one can see that the case corresponds to bulks of Si (x=y=0)

and Ge (x=y=1) respectively. And hence the thermal conductivity for these two

compositions will be much higher than the other cases which will be the cases of

superlattices. Similarly, the upper right corner and lower left correspond to Si/Ge

superlattices which also demonstrate higher thermal conductivities than superlat-

tices made of alloys due to the jump in relaxation time because of scattering by mass

defect in alloys which are represented by the blue squares of the given meshes. It

can be seen from the meshes that in general as the compositions get higher than 0.5,

the thermal conductivities get smaller. The diagonal elements demonstrate layers

of same compositions so it is expected that they should hold approximately similar

heat propagation as that in bulks with the same composition since no interface will

be existing, as long as the surface roughness is the same. The Lower temperature,

300k, as expected also gives higher thermal conductivity.
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Figure 12: calculation of superlattice thermal conductivity as a function of alloy
compositions for different thicknesses and temperatures

Figure 13: calculation of bulk thermal conductivity as a function of alloy compositions
for different thicknesses and temperatures[47]

We first started with a mesh of SixGe1−x/SiyGe1−y as a function of x and y and for

a thickness of 30nm and at temperature of 300k, the minimum is found to be at x=

0.7 and y= 0.1 with a value of 4.7. This minimum drops to 2.5 at T=700k and it

occurs at x, y= 0.6. in all the cases under study, the lowest possible value of thermal
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conductivity occurs at D=15 nm, with a value of 2.5 for the thermal conductivity

occurring at x=y= 0.6 at T=700k. This minimum however corresponds to a bulk and

not a superlattice since the compositions are identical, hence we can expect that the

effect of alloys is the only reason behind the low thermal conductivity here. For

T=300k the minimal thermal conductivity that can be attained is at D=7.5nm with

x=0.7 and y=0.1, with TC(min)=4.7, which demonstrates the effect of the interface

in lowering the thermal conductivity since for the bulk case of composition 0.1 or

0.7 the thermal conductivity ranges between 7-10 W.k−1m−1 for T=300k. Now,

in order to observe these minima and check whether superlattices and the impact

of their interfaces has an effect on lowering thermal conductivity, we can compare

the obtained values with the plot of thermal conductivity of bulks as a function of

variable compositions, Figure 13. It can be seen from the plot that the minimal ther-

mal conductivity for 300k is 6W.k−1m−1 for a composition of 0.8, whereas in the

usage of a superlattice the thermal conductivity can drop as far as 4.77 for compo-

sitions of 0.7 in the first layer and 0.1 in the second. This is expected since at high

temperature the effect of compositions increases. Whence the superlattice with its

interface effect has achieved a decrease by 20% in the thermal conductivity values.

Consequently, 7.5nm thick Si0.3Ge0.7/Si0.9/Ge0.1 superlattice at 300k can be con-

sidered as a potential PGEC material for SiGe-based high-efficiency thermoelectric

devices operating at high temperatures.

D. Applications

Our study provides a useful tool for many applications in nanoscale. we mention

some domains of industry where a thermal conductivity model of superlattices is

useful:

1. In the nanoelectronics of processors, heating problems have led manufacturers

to slow down the miniaturisation trend by switching to multi-unit structures in
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which several computing units are integrated into the same chip.

2. Data storage will for its part be heat-assisted. Heating can activate or inhibit

magnetisation reversal. It can also change the phase or the geometry of a

storage medium, and this over nanoscale areas.

3. Thermoelectric energy conversion is currently undergoing a revolution through

manipulation of the thermophysical properties of nanostructured materials. In

2002, certain superlattice alloys were able to produce an intrinsic performance

coefficient twice as high as had ever been measured for a bulk solid material.

This breakthrough was achieved by improving thermal properties. In all these

fields of application, our understanding of the relevant heat mechanisms and

the associated modelling tools remains poor or at best imperfect.
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CHAPTER V

SUMMARY AND FUTURE WORK

In this thesis, a thorough study of thermal conductivity in superlattices has been es-

tablished, starting first with a deriving the general formula of thermal conductivity

across bulks by solving Boltzmann’s equation for phonon propagation in crystals.

then since the resulting formula is a function of phonon scattering relaxation times

the scattering mechanisms were investigated to find the relaxation time of each

possible phonon process. afterwards an explanation of the contribution of thermal

conductivity from each of the high symmetry directions is presented. the model

we adopt was developed by Callaway who reasonably solves Boltzmann equation

for phonons with taking into account the physical difference between the normal

nature of the normal processes, which tend to displace Plank’s distribution function

from equilibrium, and the resistive nature of other processes, which tend to restore it

back. Nevertheless, Callaway’s model presents serious deficiencies that limit its ap-

plicability: a) it ignores possible differences between the two transverse velocities,

b) it ignores the anisotropic nature of the phonon eigenfrequencies in the Brillouin

zone that indicates a directional-dependent c) it uses Debye-like phonon dispersion

relations that are reliable at very low temperatures only, and d) it uses inaccurate

expressions for intrinsic phonon relaxation times with free adjustable parameters.

We then apply some adjustments to the vibrational parameters to show their depen-

dence on temperature to establish better accuracy. The obtained model definitely

presents excellent improvement in the match between the curve obtained by cal-

culations and the expected experimental values. The previous study by Callaway’s

model for the calculation of the lattice thermal conductivity (κ) has shown to be

correct but at low temperatures only. The use of temperature dependent variables

fixes the deviations in the thermal conductivity curve at high temperatures. On the
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basis of the adiabatic bond charge dynamical matrix, we derived directional and

temperature-dependent phonon group velocities and lattice vibration parameters,

and relaxation times associated with the intrinsic phonon decay mechanisms, with

adopting Callaway’s solution to Boltzmann equation. The modified Callaway’s

model is applied to describe the observed effects of crystallographic orientation

and isotope composition on κ of Germanium. Satisfactory agreement is obtained

between theory and experiment in the full temperature range demonstrating the

importance of the modifications we have made in Callaway’s model. With these

modifications, the model accounts for the physical natures of the various phonon

processes involved in the heat transport and describe the directional dependent κ in

the full temperature range in a predictive fashion.

This thesis has also demonstrated a new model for thermal conductivity in super-

lattices using a mixed mode of transport of phonons across these superlattices. An

interplay between a coherent and an incoherent transport is used as well as usage of

temperature dependent parameters in the thermal conductivity formula. Relaxation

times of different processes including mainly phonon boundary scattering as well as

phonon-phonon scatterings are calculated and plugged in the thermal conductivity

formula. Assuming that the phonon heat transport through the superlattice inter-

faces is either purely incoherent or purely coherent. A comparison between the

derived theoretical curves and previously reported experimental data showed that

both assumptions cannot reproduce the experimental measurements in the full tem-

perature range. The assumption that the phonon heat transport is purely incoherent

is appropriate to describe only high temperature cross-plane thermal conductivities

of superlattices of period thicknesses not smaller than 30 nm, whereas the assump-

tion that the phonon heat transport is purely coherent is expedient for the prediction

of only low temperature cross-plane thermal conductivities of superlattices of very

small periods. Then, we have developed a model based on the assumption that the
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overall phonon heat transport is a mixture of coherent and incoherent phonon trans-

port modes. We have demonstrated the accuracy and wide scope of the developed

model with reference to experimental data regarding the effects of the period thick-

ness and temperature on the cross-plane thermal conductivities of Si/Si0.7Ge0.3 and

Si0.84Ge0.16/Si0.76Ge0.3 superlattices. The reported experimental measurements,

for all cases could be well reproduced by the developed model in the full temper-

ature range. We could also demonstrate that the phonon heat transport in a super-

lattice can be purely incoherent at sufficiently high temperatures, but never purely

coherent.

Despite the accomplishments done in this thesis in providing a well-fit theoretical

model for thermal conductivity in superlattices, many parts of the study still require

detailed investigations. Although the results presented excellent fits at periods of 7.5

and 15nm, a problem arouse at higher thicknesses where fittings started to become

poor, which is probably due to some non-accurate theories in the used parameters.

For instance, it is necessary to establish a theoretical technique for calculating the

elastic and anharmonic interactions of the phonons at the two sides of an interface

between two materials in order to get the contribution of phonon -phonon interac-

tion in each material. In addition, how to set up an atomistic transport theory by

incorporating non linearity in the quantum regime is still a challenge. The precise

calculation of the surface phonon characteristics and their contribution to the ther-

modynamic function of a crystal having a size of a few tens of nano-meters is also a

challenge. The problem of atomistic simulation of the interaction of phonons with

other elementary excitations and the consequent effect on the lattice thermal con-

ductivity also deserves further systematic theoretical investigations. The relaxation

time approximation also presents different limitations for varying distributions of

phonons.
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