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Title: On The Method Of Analytic discs

Initiated by Riemann and Hilbert, the method of analytic discs is a powerful technique
in Several Complex Variables. Such invariants are indeed particularly adapted to the study
of CR extension, boundary extension of biholomorphisms or polynomial convexity. Based
on a work of Alexander Tumanov, we propose to describe the techniques used to construct
analytic discs with boundaries in real submanifolds of the n dimensional complex space
and their application to the boundary extension of biholomorphisms.
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CHAPTER 1

INTRODUCTION

The Riemann mapping theorem states that if ∅ 6= D is a simply connected open proper

subset of C then D is biholomorphically equivalent to the unit disc ∆. In a series of papers,

O.D. Kellogg studied the boundary regularity of the Riemann mapping ([?], [?], [?]). In

particular, he proved that if the domain D has a C∞ boundary, then the Riemann mapping

and its inverse, extend C∞ smoothly up to the boundary. The equivalent smoothness

result in higher dimension is due to C. Fefferman [?] who proved that if F : D1 → D2 is a

biholomorphism between two C∞ bounded strictly pseudoconvex domains of Cn then F is

of class C∞ up to the boundary ∂D1. C. Fefferman’s original proof is rather technical and,

nowadays, there exist simpler proofs of his theorem.

The aim of the present thesis is to study the extension of biholomorphism with a more

geometrical approach. We propose to make use of some well-known invariants for real

smooth hypersurfaces, namely the stationary holomorphic discs, that is, discs glued to an

hypersurface and satisfying some differential condition at the boundary. These particular

holomorphic discs were first introduced by L. Lempert [?] (see also [?]) in strongly convex

domains of Cn. Based on this approach and on the global properties of stationary discs, L.

Lempert obtained a rather simple and elegant proof of Fefferman’s theorem. Later on,

A. Tumanov obtained an even simpler proof by using only local geometric properties of

stationary discs. We will follow his approach to prove Fefferman’s theorem.

In this thesis, we will focus our study on stationary discs and their importance in
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describing the geometry of the domains and their boundaries. In Section 1, we start

by introducing the necessary concepts and tools. We first focus on real hypersurfaces

and their local geometry. We also introduce totally real sets and their connection with

real hypersurface. We finally introduce our main tools, namely the stationary discs. In

Section 3, we explicitly describe all stationary discs attached to a Levi non-degenerate

hyperquadric in C2 and deduce an important geometric property they satisfy. The Section

4 is the core of the present thesis. We construct and describe stationary discs attached

to small deformations of an hyperquadric using the implicit function theorem in Banach

spaces. Finally in Section 5, we present A. Tumanov’s proof of Fefferman’s theorem.
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CHAPTER 2

DEFINITIONS

We start by fixing some notations. We denote by ∆ = {ζ ∈ C | ζζ̄ < 1} the unit disc in C.

The coordinates in Cn+1 are denoted by z = (z0, . . . , zn) and we write zα = (z1, . . . , zn)

and zj = xj + iyj for j = 0, . . . , n.

2.1 Real hypersurfaces

Definition 2.1.1. A smooth real hypersurface in CN is a subset Γ of CN such that for

every point p0 ∈ Γ, there is a neighborhood U and a smooth real valued function ρ such

that:

Γ ∩ U = {z ∈ U | ρ(z, z̄) = 0}

with dρ non-vanishing in U . Such function ρ is called local defining function for Γ near p0.

Example 2.1.2. Consider for instance

Γ = {(z0, z1) ∈ C2 | |z0|2 + |z1|2 = 1},

where ρ = |z0|2 + |z1|2 − 1. Note that in that case ρ is a global defining function.

Remark 2.1.3. Let Γ = {ρ = 0} be a smooth real hypersurface and let F : Cn 7→ Cn be
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a biholomorhism, that is a bijective holomorphic mapping. Then F (Γ) = {ρ ◦ F−1 = 0}.

Indeed, let F (z0, zα) ∈ F (Γ) then F (z0, zα) ∈ {ρ ◦ F−1 = 0} since ρ ◦ F−1(F (z0, zα)) =

ρ(z0, zα) = 0. Hence F (Γ) ⊂ {ρ◦F−1 = 0}. On the other hand, let (z0, zα) ∈ {ρ◦F−1 = 0}

which is the same as saying ρ ◦ F−1(z0, zα) = 0. Then F−1(z0, zα) ∈ Γ, hence (z0, zα) ∈

F (Γ). Therefore {ρ ◦ F−1 = 0} ⊂ F (Γ), hence we have equality.

Let Γ be a real hypersurface. Denote by TpΓ its real tangent space and define its

complex tangent space at p ∈ Γ by

TC
p Γ = TpΓ ∩ iTpΓ.

Definition 2.1.4. A smooth real hypersurface Γ is Levi non-degenerate at a point p ∈ Γ

if the restriction to TC
p Γ of the Hermitian form

∑
0≤i,j≤n

∂2ρ

∂z̄j∂zi
Z̄jZi

is non-degenerate.

Example 2.1.5. The hypersurfaces {|z0|2 + |z1|2 = 1} and {<ez0 = |z1|2} are Levi non-

degenerate while the hypersurfaces {<ez0 = 0} and {<ez0 = |z1|4} are Levi degenerate at

0.

Let us understand the local geometry of a smooth real hypersurface Γ near p ∈ Γ. Up

to a linear transformation,then using the implicit function theorem we can assume that

p = 0 and the tangent space to Γ at 0 is <ez0 = 0. Hence Γ is locally given by the equation

<ez0 = (real quadratic terms in y0, x1, . . . , yn) +O(|(y0, zα)|3),

more precisely

<ez0 =
n∑
j=1
<e(ajz2

j ) + tzαAzα + b0y
2
0 +

n∑
j=1

(bjzj + b̄j z̄j)y0 +O(|(y0, zα)|3).
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After the holomorphic change of coordinates (z0, zα) 7→ (z0 −
∑n
j=1 ajz

2
j , zα), the hypersur-

face Γ is given in a neighborhood of p = 0 by the defining function:

ρ(z) = <ez0 − tzαAzα + b0y
2
0 +

n∑
j=1

(bjzj + b̄j z̄j)y0 +O(|(y0, zα)|3). (2.1.1)

Note that this depends only on Γ and on the point p ∈ Γ. In case Γ = {ρ = 0} ⊂ C2,

ρ(z) = <ez0 − a|z1|2 + b0y
2
0 + (b1z1 + b̄1z̄1)y0 +O(|(y0, z1|3). (2.1.2)

It follows that in case ρ has the local expression (2.1.1), then Γ = {ρ = 0} is Levi

non-degenerate at p = 0 if and only if A is invertible; which reduces to a 6= 0 in complex

dimension two.

We now define the Levi form associated to a smooth real valued function.

Definition 2.1.6. Consider a smooth real valued function ρ defined on an open set

U ⊂ Cn+1. Its Levi form at p ∈ U and Z ∈ TpU = Cn+1 is given by:

Lρ(p, Z) =
n∑

i,j=0

∂2ρ(p)
∂zi∂z̄j

ZiZ̄j.

Example 2.1.7. In case ρ has the local expression (2.1.2), then

Lρ(0, Z) =
n∑

i,j=0

∂2ρ(0)
∂zi∂z̄j

ZiZ̄j = −a|Z1|2.

Definition 2.1.8. An hypersurface Γ = {ρ = 0} is a strictly pseudoconvex at p ∈ Γ if

the levi form of ρ satisfies Lρ(p, Z) > 0 for all Z ∈ TC
p Γ \ {0}.

Remark 2.1.9. Notice that in case ρ is written as (2.1.1), then Γ = {ρ = 0} is strictly

pseudoconvex at 0 if and only if A is positive definite.

Definition 2.1.10. Consider a smooth hypersurface Γ, define by Lρ(p, Z) its Levi form,we

say that Γ is plurisubharmonic if its Levi form is positive definite, i.e Lρ(p, Z) > 0, for all
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Z ∈ C2 \ {0}.

Remark 2.1.11. If Γ = {ρ = 0} is globally defined by a strictly plurisubharmonic function

then Γ is strictly pseudoconvex.

Example 2.1.12. The hypersurfaces {|z0|2 + |z1|2 = 1} and {<ez0 = |z1|2} are strictly

pseudoconvex while the hypersurfaces {<ez0 = 0}, {<ez0 = −|z1|2} or {<ez0 = |z1|4} are

not. Moreover {|z0|2 + |z1|2 = 1} is globally defined by a strictly plurisubharmonic function.

2.2 Totally real submanifolds

Definition 2.2.1. A submanifold M in C2n+2 of real dimension 2n + 2 is totally real if

its complex tangent space at each point p ∈ Γ is trivial, i.e

TC
p Γ = TpΓ ∩ iTpΓ = {0}.

Example 2.2.2. The real subspace

M = {x0 = x1 = x2 = x3 = 0} = R× {0} × R× {0} × R× {0} × R× {0} ⊂ C4

is totally real. Indeed let X = (X0, Y0, X1, Y1, X2, Y2, X3, Y3) ∈ TC
p M = TpM ∩ iTpM.

Since X ∈ TpM then X0 = X1 = X2 = X3 = 0. On the other hand, X ∈ iTpM implies

that iX = (−Y0 ,X0 ,−Y1 ,X1 ,−Y2 ,X2 ,−Y3 ,X3 ) ∈ TpM and so Y0 = Y1 = Y2 = Y3 = 0.

Hence X = 0.

Example 2.2.3. The real subspace

M = {x0 = y0 = x1 = y1 = 0} = C2 × {0} × {0} ⊂ C4

is not totally real. Indeed the vector X = (0, 0, 0, 0, 0, 0, 1, 2) is a non zero vector in

TC
p M = TpM ∩ iTpM .
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We now introduce a real submanifold of C2n+2 that will play an important role in our

study:

Definition 2.2.4. Let Γ = {ρ = 0} be a smooth real hypersurface of Cn+1. For p ∈ Γ, we

define the conormal fiber at p to be the real line generated by ∂ρ(p) =
(
∂ρ
∂z0

(p), . . . , ∂ρ
∂zn

(p)
)
,

that is

N∗pΓ = spanR{∂ρ(p)} ⊂ T ∗pCn+1 = Cn+1.

The conormal bundle N∗Γ of Γ is the bundle over Γ whose fiber at p ∈ Γ is N∗pΓ, namely

N∗Γ =
⋃
p∈Γ

N∗pΓ.

Notice that N∗Γ is a real submanifold of dimension 2n + 1 + 1 = 2n + 2 of

T ∗Cn+1 = ⋃
p∈Cn+1 T ∗pCn+1 = C2n+2.

Example 2.2.5. Consider the hyperquadric Q = {<ez0− |z1|2 = 0}. Let p = (z0, z1) ∈ Q.

We have ∂r(p) =
(1

2 ,−z̄1

)
. It follows that N∗pQ = spanR

{(1
2 , z̄1

)}
. It is convenient

to describe the conormal bundle using equations. Set r(z) = <ez0 − |z1|2. Note that

(z, w) = (z0, z1, w0, w1) ∈ N∗Q ⊂ C4 if and only if r(z) = 0 and w = c∂r(z) = c
(1

2 ,−z̄1

)
.

Therefore (z, w) ∈ N∗Q if and only if r(z) = 0, w0 ∈ R and w1 = −2w0z̄1. Therefore

N∗Q = {r1 = r2 = r3 = r4 = 0}
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with 

r1(z, w) = <ez0 − |z1|2 = 0

r2(z, w) = 1
i
(w0 − w̄0) = 0

r3(z, w) = w1 + 2w0z̄1 + w1 + 2w0z̄1 = 0

r4(z, w) = i(w1 + 2w0z̄1)− i(w1 + 2w0z̄1) = 0

or equivalently 

r1 = x0 − x2
1 − y2

1 = 0

r2 = y2 = 0

r3 = x3 + 2x1x2 + 2y1y2 = 0

r4 = −y3 − 2x1y2 + 2x2y1 = 0

We will need the following essential result due to S. Webster [?]

Theorem 2.2.6 ([?]). Let Γ ⊂ Cn+1 be a smooth real hypersurface. Then Γ is Levi

non-degenerate if and only if its conormal bundle N∗Γ ⊂ C2n+2 is totally real.

Example 2.2.7. Consider the non-degenerate hyperquadric Q = {<ez0− |z1|2 = 0} ⊂ C2.

Let us check that N∗Q is indeed totally real, namely its complex tangent spaces are trivial

TC
p Q = TpQ ∩ iTpQ = {0}.

Let (z, w) ∈ N∗Q and let X = (X0, Y0, X1, Y1, X2, Y2, X3, Y3) ∈ T(z,w)N
∗Q ∩ iT(z,w)N

∗Q.

The gradient of each function is

∇r1 = (1, 0,−2x1,−2y1, 0, 0, 0, 0)
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∇r2 = (0, 0, 0, 0, 0, 1, 0, 0)

∇r3 = (0, 0, 2x2, 2y2, 2x1, 2y1, 1, 0, )

∇r4 = (0, 0,−2y2, 2x2, 2y1,−2x1, 0,−1).

Now that we have the gradients, we construct the system of equations as follows:



X0 − 2x1X1 − 2y1Y1 = 0

Y 2 = 0

2x2X1 + 2y2Y1 + 2x1X2 + 2y1Y2 +X3 = 0

−2y2X1 + 2x2Y1 + 2y1X2 − 2x1Y2 − Y3 = 0

−Y0 + 2x1Y1 − 2y1X1 = 0

X2 = 0

−2x2Y1 + 2y2X1 − 2x1Y2 + 2y1X2 − Y3 = 0

2y2Y1 + 2x2X1 − 2y1Y2 − 2x1X2X3 = 0

Note that r2 = y2 = 0 Hence the equations are reduced to the following:



X0 − 2x1X1 − 2y1Y1 = 0

Y 2 = 0

2x2X1 + 2x1X2 + 2y1Y2 +X3 = 0

2x2Y1 + 2y1X2 − 2x1Y2 − Y3 = 0

−Y0 + 2x1Y1 − 2y1X1 = 0

X2 = 0

−2x2Y1 − 2x1Y2 + 2y1X2 − Y3 = 0

2x2X1 − 2y1Y2 − 2x1X2 −X3 = 0
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Using the fact that Y2 = X2 = 0 we get:



X0 − 2x1X1 − 2y1Y1 = 0

2x2X1 +X3 = 0

2x2Y1 − Y3 = 0

−Y0 + 2x1Y1 − 2y1X1 = 0

−2x2Y1 − Y3 = 0

2x2X1 −X3 = 0

Notice that 
2x2Y1 − Y3 = 0

−2x2Y1 − Y3 = 0

Which implies that Y3 = 0.Which gives us from the same equation that Y1 = 0. Using these

two equations combined together


−2x2Y1 − Y3 = 0

2x2X1 −X3 = 0

We get that X3 = 0 Therefore X1 = 0.Which will lead to X0 = Y0 = 0. Hence we are left

with X0 = Y0 = X1 = Y1 = X2 = Y2 = 0.

2.3 Stationary discs

A holomorphic disc h is a holomorphic function h : ∆ → Cn+1 defined on the unit disc

∆ ∈ C. We say that a holomorphic disc h is attached to a submanifold M ⊂ Cn+1 if h is

continuous up to the boundary ∂∆ and maps ∂∆ to M , that is h(∂∆) ⊂M . To a given real

smooth hypersurface, the family of attached disc is invariant by biholomorphism. These

discs were studied by many authors such as E. Bishop [?] or A. Tumanov [?]. However,

it is important to note that there are usually too many discs attached to a real smooth
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hypersurface. In 1981, Lempert [?] defined the notion of stationary discs, that is discs

attached to an hypersurface and satisfying some differential condition at the boundary.

Definition 2.3.1. A holomorphic disc h attached to a the real hypersurface Γ is stationary

for Γ if there exists a holomorphic lift h = (h, g) : ∆ → T ∗Cn+1 of h to the cotangent

bundle T ∗Cn+1, continuous up to the boundary and such that for all ζ ∈ ∂∆

h(ζ) ∈ N Γ(ζ)

where

N Γ(ζ) = {(z, ζw) | z ∈ Γ, w ∈ N∗zΓ \ {0}}.

The set

N Γ =
⋃
ζ∈∆

N Γ(ζ)

is called the conormal fibration. Moreover, the set of these lifted discs h = (h, g), with h

non-constant, is denoted by S(Γ).

In case Γ = {ρ = 0}, Definition 2.3.1 is equivalent to the existence of a continuous

function c : ∂∆ → R \ {0} such that g(ζ) = ζc(ζ)∂ρ(h(ζ)) on the boundary ∂∆ and

extends holomorphically to the unit disk ∆.

Stationary discs attached to a real hypersurface Γ ⊂ Cn+1 are of a big importance since

they form a biholomorphic invariant family and are characterized by a finite number of

parameters. More precisely if F : Cn+1 → Cn+1 a biholomorphism and if h is a stationary

disc for Γ = {ρ = 0}, then F ◦h is a stationary disc for F (Γ) = {ρ◦F−1 = 0}. Indeed since

h is a stationary disc attached to Γ, then there exists a continuous function c : ∂∆ 7→ R∗

such that h = (h, g) where g(ζ) = ζc(ζ)dρ(h(ζ)). Hence ζc(ζ)d(ρ ◦ F−1)(F ◦ h)(ζ) =

ζc(ζ)dρ(h(ζ))(dF (h(ζ)))−1 extends holomorphically to the unit disc.

Due to Theorem 2.2.6 and to the regularity of holomorphic discs attached to a totally

real submanifold [?] (see also the classical Schwarz reflection principle [?]), stationary discs
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inherit the smoothness of the hypersurface they are attached to. More precisely if Γ is C4

Levi non-degenerate, then N∗Γ is a C3 totally real submanifold. According to [?], the lifts

h of stationary discs are of class C2,α(∆̄, T ∗Cn+1) or, equivalently, h|∂∆ ∈ C2,α(∂∆, T ∗Cn+1)

for any 0 < α < 1. The spaces Ck,α(∂∆), 0 < α < 1, k ∈ N are equipped with their usual

norm:

‖h‖Ck,α(∂∆) =
k∑
l=0
‖h(l)‖∞ + sup

ζ 6=η∈∂∆

‖h(k)(ζ)− h(k)(η)‖
|ζ − η|α

,

where ‖h(l)‖∞ := max
∂∆
‖h(l)‖.

12



CHAPTER 3

STATIONARY DISCS ATTACHED TO NON-DEGENERATE

HYPERQUADRIC

Stationary discs attached to a non-degenerate hyperquadric Q are explicitly known. We

first describe them in C2 and then deduce an important geometric property.

3.1 Description of stationary discs attached to a non-

degenerate hyperquadric

Consider the hyperquadric Q ∈ C2 defined by:

r(z) = <ez0 − |z1|2 = 0.

Proposition 3.1.1 (Proposition 2.1 [?]). The stationary discs attached to Q are exactly

of the form:

h(ζ) =
(
|v|2 + 2v̄w ζ

1− aζ + |w|2

1− |a|2
1 + aζ

1− aζ + iy0, v + w
ζ

1− aζ

)

with a ∈ ∆, v ∈ C, w ∈ C \ {0}, y0 ∈ R. Moreoever h∗ is a regular lift of h if and only if
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there exists b ∈ R \ {0} such that for all ζ ∈ ∆ \ {0}

h∗(ζ) = b

ζ

(
−ā

1 + |a|2 + ζ − a

1 + |a|2 ζ
2
)
×
(1

2 ,−h1

)

Note that lift of stationary discs are parametrized by 8 real parameters a, v, w, y0 and

b.

Proof. Suppose h has a regular lift h∗ then, by definition, there exists a continuous function

c : ∂∆→ R \ {0} such that for ζ ∈ ∂∆ we have:

h∗(ζ) = c(ζ)∂r
∂z

(h(ζ)).

Let h be a lift of h. The disc h = (h, g) is continuous up to the boundary ∂∆ and

moreover h(ζ) ∈ N Q(ζ) for all ζ ∈ ∂∆. Therefore all ζ ∈ ∂∆ we have h(ζ) ∈ Q and
g

ζ
∈ N∗h(ζ)Q \ {0} with g = ζh∗ where h∗ is the regular lift. Hence we have for all ζ ∈ ∂∆:

h∗(ζ) = c(ζ)∂r
∂z

(h(ζ)) = c(ζ)
(1

2 ,−h̄1

)

where c : ∂∆ 7→ R \ {0} is continuous and ζ
c(ζ)

2 extends holomorphically to ∆. We now

have

g0 = ζh∗0(ζ) = ζ
c(ζ)

2

and

g1 = ζh∗1ζ = −ζc(ζ)h̄1.

To find h0, h1, g0 and g1, we first find c(ζ). Since both g0 and c are continuous on the

boundary of ∆ they admit a Fourier expansion on ∂∆. We have

g0(ζ) = a0 + a1ζ + a2ζ
2 + . . .
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since g0 is holomorphic on ∆ and

c(ζ) = . . .+ c̄2ζ̄2 + c̄1ζ̄ + c0 + c1ζ + c2ζ
2 + . . .

since c is real. Therefore

ζc(ζ) = . . .+ c̄2ζ̄ + c̄1 + c0ζ + c1ζ
2 + c2ζ

3 + . . .

and since ζc(ζ) extends holomorphically on ∆ it follows that ζc(ζ) = c̄1 +c0ζ+c1ζ
2. Hence

c(ζ) = c̄1ζ̄ + c0 + c1ζ.

and

g0(ζ) = 1
2 × {c̄1 + c0ζ + c1ζ

2}.

We now turn on determining h0, h1 and g1. We have

g1(ζ) = −ζc(ζ)h̄1 = −(c̄1 + c0ζ + c1ζ
2)h̄1

and

h̄1 = b̄0 + b̄1ζ̄ + b̄2ζ̄
2 + . . .

since h1 is continuous on ∂D and holomorphic on ∆. We distinguish two cases:

First case: c1 = 0. Then g1(ζ) = −c0ζh̄1 and so ζh̄1 holomorphic, i.e ζ(b̄0 + b̄1ζ̄+ b̄2ζ̄
2 + . . .)

is holomorphic. Hence

b̄0ζ + b̄1 + b̄2ζ̄ + b̄3ζ̄2 + . . .

is holomorphic. Therefore b2 = b3 = . . . = 0 and so

h1(ζ) = b0 + b1ζ

15



is linear and

g1(ζ) = −c0b̄0ζ − c0b̄1.

Finally

1
2(h0(ζ) + h̄0(ζ)) = |h1|2

= h1h̄1 = (b0 + b1ζ)(b0 + b1ζ)

= |b0|2 + b0b̄1ζ̄ + b̄0b1ζ + |b1|2ζζ̄

= ēζ̄ + d+ eζ

with d ∈ R. Write

∑
n≥1

(h̄0)n
2 ζ̄n + <e(ĥn)0 +

∑
n≥1

(ĥ0)n
2 ζn = ēζ̄ + d+ eζ

where h(ζ) = ∑
n≥0(ĥ0)nζn. By comparison, we have that (h0)n = 0 for n ≥ 2 and so h0 is

affine up to to a pure imaginary additive constant.

Second case: c1 6= 0. Denote by α1, α2 the roots of c1 + c0ζ + c̄1ζ
2 and assume |α1| ≤ |α2|.

Note that α1 and α2 are not of modulus 1 since g(ζ) = ζh∗(ζ) and h∗ does not vanish

on ∂∆. Moreover |α1α2| = | c1
c̄1
| = 1 then 0 < |α1| < 1 < |α2|. The map ζh∗ extends

holomorphically to ∆ if and only if (c̄1 + c0ζ + c1ζ
2)h̄1(ζ) extends holomorphically to ∆.
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Using Fourier expansion again we have:

(c̄1 + c0ζ + c1ζ
2)h̄1(ζ) = (c̄1 + c0ζ + c1ζ

2)
∞∑
k=0

b̄kζ
−k

=
∞∑
k=0

(c̄1b̄k + c0b̄k+1 + c1b̄k+2)ζ−k + (c0b̄0 + c1b̄1)ζ + c1b̄0ζ
2.

which extends holomorphically to ∆ if and only if

c̄1b̄k + c0b̄k+1 + c1b̄k+2 = 0.

This is a linear recurrence of order 2 of which the caracteristic equation has two distinct

roots which are exactly α1 and α2. There exists v1, w1 ∈ C independent of b1 and b2 such

that for all k ≥ 1

bk = ᾱ1
k−1v1 + ᾱ2

k−1w1.

The function h1 is holomorphic on ∆ and so the series

∑
(v1ᾱ1

k−1 + w1ᾱ2
k−1)ζk

converges in ∆, and hence has a radius of convergence greater than or equal to 1. Setting

d1
k = v1ᾱ1

k−1 + w1ᾱ2
k−1, we have

d1
k+2
d1
k+1

= v1ᾱ1
k+1 + w1ᾱ2

k+1

v1ᾱ1
k + w1ᾱ2

k

with 0 < |α1| < 1 < |α2|. If w1 6= 0, then limK→∞
d1
k+2
dk+1

1
is ≈ ᾱ2. . Then the radius of

convergence is equal to 1
|α2| < 1 which is impossible. It follows that w1 = 0. If v1 6= 0 then

d1
k+2
d1
k+1

= ᾱ1 and the series has a radius of convergence equal to 1
|α1| > 1; if v1 = 0 the series
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has an infinite radius of convergence. Hence b0 = h1(0), b1 = h′1(0) and

h1(ζ) = b0 + b1 × ζ
∞∑
k=0

(ᾱ1ζ)k.

We still have to express c1 using α1:

α1 =
−1 + i

√
4|c1|2 − 1

2c1

and

α2 =
−1− i

√
4|c1|2 − 1

2c1
.

and if 1 − 4|c1|2 = 0 the equation has a double root. In both cases |α1| = |α2| which is

impossible. Therefore we have 1− 4|c1|2 > 0 and

α1 =
−1 +

√
1− 4|c1|2

2|c1|
eiθ =

1−
√

1− 4|c1|2

2|c1|
ei(θ+π).

Then Arg(c̄1) = Arg(α1)− π and |α1| =
1−
√

1−4|c1|2
2|c1| which gives

1−2|c1||α1| =
√

1− 4|c1|2. This is equivalent to |c1| < 1
2|α1| and 1−4|c1||α1|+4|c1|2|α1|2 =

1− 4|c1|2. Since c1 6= 0 and 0 < |α1| < 1 then |c1| = |α1|
1+|α1|2 . Finally

c1 = |c1||eiθ| =
|α1|

1 + |α1|2
−α1

|α1|
= −α1

1 + |α1|2
.

Now that we have c1, we can write

c(ζ) = −α1

1 + |α1|2
ζ̄ + c0 −

−ᾱ1

1 + |α1|2
.

Therefore

h∗(ζ) = c0

ζ

(
−ā

1 + |a|2 + ζ − a

1 + |a|2 ζ
2
)
×
(1

2 ,−h1

)
.

We are left to find h0(ζ):
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1
2(h0(ζ) + h̄0(ζ)) = |h1|2

= h1h̄1 = (b0 + b1 × ζ
∞∑
k=0

(ᾱ1ζ)k)× (b̄0 + b̄1 × ζ̄
∞∑
k=0

(ᾱ1ζ)k)

= b0b̄0 + |b1ζ|2

(1− α1ζ̄)(1− ᾱ1ζ)
+ b0b̄1ζ̄

1− α1ζ̄
+ b̄0b1ζ

1− ᾱ1ζ

If we let b0 = v, b1 = w, ᾱ1 = a we get that

h0(ζ) = |v|2 + 2v̄w ζ

1− aζ + |w|2

1− |a|2
1 + aζ

1− aζ + iy0.

We impose further restrictions on the set of lift of stationary discs and define S∗(Q):

S∗(Q) = {h = (h, g) ∈ S(Q) | h(1) = (0, 0), g(1) = (1, 0)}.

Recall that S(Q) denotes the set of lifts of stationary discs for the hyperquadric Q. We

have that h = (h, g) ∈ S∗(Q) if and only if



h(ζ) =
(

2|v|2 (1− a)(1− ζ)
(1− aζ)(1− |a|2) , v

(1− ζ)
(1− aζ)

)

ζh∗(ζ) = g(ζ) = 2
|1− a|2

(
(ζ − ā)(1− aζ)

2 , (1− ζ)(1− aζ)v̄
) (3.1.1)
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where a ∈ ∆ and v ∈ C2 \ {0}. Indeed, since h(1) = (0, 0) we have then:

w = −v(1− a)

and

iy0 = |v|2
(

1− (1− ā)(1 + a)
1− |a|2

)
.

Replacing these terms in 3.1.1, we get:

h(ζ) = |v|2
(

2− 2ζ(1− a)
1− aζ + |1− a|2(1 + aζ)

(1− |a|2)(1− aζ) −
(1− a)(1 + a)

1− |a|2 , v
(1− ζ)
1− aζ)

)
.

Hence

h(ζ) =
(

2|v|2 (1− a)(1− ζ)
(1− aζ)(1− |a|2) , v

(1− ζ)
(1− aζ)

)
.

On the other hand, the condition g(1) = (1, 0) implies that c0 = 2
|1− a|2 . Therefore,

replacing c0 in 3.1.1 we get that

ζh∗(ζ) = g(ζ) = 2
|1− a|2

(
(ζ − ā)(1− aζ)

2 , (1− ζ)(1− aζ)v̄
)
.

Note that the lifts in S∗(Q) are parametrized by 4 real parameters a and v, or equivalently

a and w.

3.2 A geometric property

We now state a geometric property satisfied by stationary discs that will be used to prove

Theorem 5.0.7 (Fefferman’s theorem) in Section 4.
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Proposition 3.2.1. The set of directions

{
dh

dθ
|θ=0 | h = (h, g) ∈ S∗(Q)

}

fills an open set in T(0,0)Q.

The proof essentially relies on the explicit expression of stationary discs that we have

obtained in Proposition 3.1.1.

Proof. The stationary discs attached to Q = {<ez0 − |z1|2 = 0} are exactly of the form:

h(ζ) =
(
|v|2 + 2v̄w ζ

1− aζ + |w|2

1− |a|2
1 + aζ

1− aζ + iy0, v + w
ζ

1− aζ

)

Then

h(eiθ) =
(
|v|2 + 2v̄w eiθ

1− aeiθ + |w|2

1− |a|2
1 + aeiθ

1− aeiθ + iy0, v + w
eiθ

1− aeiθ

)

and
dh

dθ
|θ=0 =

(
−2i |w|2

|1− a2|(1− |a|2) ,
wi

(1− a)2

)
.

Moreover if h(1) = 0 then v = −w
1− a and 2|w|2

(1− a)2(1− |a|2) = y0. Note that the real

tangent space at (0, 0) is

T(0,0)Q = {<ez0 = 0} = {(X0, Y0, X1, Y1) ∈ R4 | X0 = 0}.

Let (0, Y0, X1, Y1) ∈ T0Q. Our aim is to find a, w such that:



X0 + iY0 = i
w

(1− a)2

Y1 = −2|w|2
(1− a)3(1 + a) .
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Replacing w by α + iβ we get:



X0 + iY0 = iα− β
(1− a)2

Y1 = −2(α2 + β2)
(1− a)3(1 + a) .

Hence by comparison we obtain X0 = −β
(1−a)2 and Y0 = α

(1−a)2 . Then:


β2 = X2

0 (1− a)2

α2 = Y 2
0 (1− a)2.

Hence
α2 + β2

(1− a)3(1 + a) = (X2
0 + Y 2

0 )1− a
1 + a

= −Y1

2 .

Consider the change of variable

1− a
1 + a

= − Y1

2(X2
0 + Y 2

0 ) = γ.

We get a = 1−γ
1+γ . Now that we have a we can find w:

w = −i(X0 + iY0)(1− a)2 = −i(X0 + iY0)
(

2γ
1 + γ

)
.

It follows that the set of directions

{
dh

dθ
|θ=0 | h ∈ S∗(Q)

}

fills an open set in T(0,0)Q.
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Remark 3.2.2. Define the map ψ : ∆× C \ {0} → {<ez0 = 0} by

ψ(a, w) = dh

dθ
|θ=0 =

(
−2i|w|2

|1− a2|(1− |a|2) ,
iw

(1− a)2

)
,

where h is the unique stationary disc parametrized by a and w. Then a direct computation

shows that the rank of its Jacobian dψ is 3.
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CHAPTER 4

DISCS ATTACHED TO A SMALL PERTURBATION OF A

NON-DGENERATE HYPERQUADRIC

In this section we construct stationary discs attached to small deformations of the non-

degenerate hyperquadric Q = {r = 0} ⊂ C2, where

r(z) = <ez0 − |z1|2.

Our main tool is the usual implicit function theorem in Banach spaces. The existence of

nearby discs, as well as the number of real number parametrizing the perturbed discs is

completely determined by some integers, namely the partial indices and the Maslov index.

4.1 The implicit function theorem

We first recall the usual implicit function theorem in Banach spaces (see [?] for instance).

Theorem 4.1.1 ([?]). Let X, Y, Z be banach spaces, let U an open subset of X × Y , and

let F : U 7→ Z be a C1 map. Let (a, b) ∈ U and suppose that

F(a, b) = 0.

Assume that the partial derivative in the second variable dYF(a, b) : Y → Z is an
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isomorphism from Y to Z. Then there exist an open neighborhood V ⊂ U of (a, b), an

open neighborhood W of a and a C1 map g : W → Y such that

(x, y) ∈ V and F(x, y) = 0

if and only if

x ∈ W and y = g(x).

We will use the following variation (see [?] for instance) which is a direct application

of the standard implicit mapping theorem:

Theorem 4.1.2 ([?]). Let X, Y, Z be banach spaces, let U an open neighbourhood of 0 in

X×Y , and let F : U 7→ Z be a C1 map such that F(0) = 0. Assume that dYF(0) : Y → Z

is onto and that kerdYF(0) is complemented in Y , namely Y = kerdYF(0)⊕H where H

is a closed subspace of Y . Identify X × Y with X ×KerdYF(0, 0)×H in the canonical

way. Then there are neighborhoods V1 of 0 in X, V2 of 0 in KerdYF(0), V3 of 0 in H and

a C1 map g : V1 × V2 7→ V3 such that

(x1, x2, x3) ∈ P and F(x1, x2, x3) = 0

if and only if

(x1, x2) ∈ P1 × P2 and x3 = g(x1, x2).

In particular the set {x ∈ V1 × V2 7→ V3 | F(x) = 0} is a C1 submanifold of V1 × V2 × V3

and for each x1 ∈ V1 the set {(x2, x3) ∈ V2 × V3 | F(x1, x2, x3) = 0} is a C1 submanifold

of V2 × V3.

Note that in particular if the kernel kerdYF(0) has finite dimension N then kerdYF(0)

is complemented in Y and therefore {(x2, x3) ∈ V2 × V3 | F(x1, x2, x3) = 0} is a C1

submanifold of finite dimension N .
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4.2 Birkhoff factorization and indices

Denote by GLN (C) the group of invertible N ×N matrices with complex entries. Consider

a map G : ∂∆→ GLN(C) and define for all ζ ∈ ∂∆

B(ζ) = −G(ζ)−1
G(ζ).

One can find a Birkhoff factorization of B, namely two continuous functions B+ : ∆̄→

GLN(C) and B− : (C ∪∞) \∆→ GLN(C) such that for all ζ ∈ ∂∆

B(ζ) = B+(ζ)Λ(ζ)B−(ζ)

where

Λ(ζ) =


ζκ1 (0)

. . .

(0) ζκN

 (4.2.1)

where B+ and B− are holomorphic on ∆ and C\∆ respectively. The integers κ1 ≥ . . . ≥ κN

do not depend on this factorization and are called the partial indices of B. The Maslov index

of B is their sum ∑N
j=1 κj. Although computing the partial indices is rather challenging,

the Maslov index is simply given by a winding number (see [?] for instance):

Lemma 4.2.1 ([?]). Assume that the determinant detB is of class C1 on ∂∆. Then the

Maslov index of B is given by

InddetB(∂∆)(0) = 1
2πi

∫
∂∆

(detB)′(ζ)
detB(ζ) dζ.

Proof. Suppose ζ is on the unit disc, i.e suppose the partial indices are given by the
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following decomposition (4.2.1), for all θ

B(eiθ) = B+(eiθ)


eiκ0θ (0)

. . .

(0) eiκ2nθ

B
−(eiθ)

where B+ can be holomorphically extended to ∆ by an invertible matrix, and B− can be

anti-holomorphically extended to ∆ by an invertible matrix, which is equivalent to the

existence of B̃−, that is holomorphic in ∆ such that B−(ζ) = B̃−
(

1
ζ

)
for all ζ ∈ Ĉ \∆.

Consider 0 < r < 1 and let

b+
r (θ) = det(B+(reiθ)),

b−r (θ) = det(B̃−(reiθ)) = det(B̃−(re−iθ))

and

βr(θ) = b+
r (θ)rκeiκθb−r (θ).

Since the curve γr = βr([0, 2π]) does not pass by 0, because βr(θ) is not 0 on [0, 2π], we

can then define the index:

2πiIndγr(0) =
∫
γr

dζ

ζ
=
∫ 2π

0

b+′
r (θ)
b+
r (θ) dθ +

∫ 2π

0
iκdθ +

∫ 2π

0

b−
′

r (θ)
b−r (θ) dθ.

The integral ∫ 2π

0

b+′
r (θ)
b+
r (θ) dθ =

∫
r∂∆

det(B+(ζ))′
det(B+(ζ)) dζ

is equal by Cauchy’s argument principle to {number of zeros - number of poles} of the

holomorphic function det(B+) in r∆̄, which is equal to 0 since B+ is invertible. Similarly

∫ 2π

0

b−
′

r (θ)
b−r (θ) dθ = 0.
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Hence we get for all 0 < r < 1

Indγr(0) = κ.

Now since the compact set {βr(θ) | r ∈ [1/2, 1], θ ∈ [0, 2π]} does not contain 0, it is then

contained in an open set Ω that does not contain 0. The closed curves γ1/2 and γ1 are of

class C1 and homotopic in Ω by the application

(t, θ) 7→ β(1−t)/(2+t)(θ).

Since any two homotopic curves have the same index, we get:

Indγ1/2(0) = κ = Indγ1(0) = 1
2πi

∫ 2π

0

β′1(θ)
β1(θ)dθ.

and β1(θ) = det(B(eiθ)).

Note that a consequence of 4.2.1 is that the Maslov index is invariant under homotopy.

This fact will play a major role in constructing stationary discs in Section 4.4.

4.3 Equations of the conormal fibration N Γ

Let Q be the hyperquadric in C2 defined by

r(z) = <ez0 − |z1|2.

Recall that for ζ ∈ ∂∆

N Q(ζ) = {(z, ζw) | z ∈ Γ, w ∈ N∗zQ \ {0}}.

In Example 2.2.5 we have described the equations of the conormal bundle N∗Q. In

this section we find the defining equations for the conormal fibration N Q. Although
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the computation is essentially the same as in Example 2.2.5 we include it for seek of

completeness.

We have ∂r(z) =
(1

2 ,−z̄1

)
, from which it follows that the conormal fiber is

N∗zQ = spanR

{(1
2 , z̄1

)}
.

Note that (z, w) = (z0, z1, w0, w1) ∈ N Q ⊂ C4 if and only if r(z) = 0 and w = cζ∂r(z) =

cζ
(1

2 ,−z̄1

)
. Therefore (z, w) ∈ N Q if and only if r = 0, w0

ζ
∈ R and w1 = −2w0z̄1.

Therefore we obtain the following defining equations:



r̃0(ζ)(z, w) = z0 + z0

2 − z̄1 = 0,

r̃1(ζ)(z, w) = i
wo
ζ
− iζw0 = 0,

r̃2(ζ)(z, w) = (w1 + 2w0z̄1) + (w1 + 2w0z̄1) = 0,

r̃3(ζ)(z, w) = i (w1 + 2w0z̄1)− i (w1 + 2w0z̄1) = 0,

(4.3.1)

and (z, w) ∈ N Q if and only if

r̃0(ζ)(z, w) = r̃1(ζ)(z, w) = r̃2(ζ)(z, w) = r̃3(ζ)(z, w) = 0.

Similarly if Γ = {ρ = 0} ⊂ C2 is a real smooth non-degenerate hypersurface the

conormal fibration N Γ is also described by four real valued equations

ρ̃0(ζ)(z, w) = ρ̃1(ζ)(z, w) = ρ̃2(ζ)(z, w) = ρ̃3(ζ)(z, w) = 0.
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We set

ρ̃(ζ)(z, w) = (ρ̃0(ζ)(z, w), ρ̃1(ζ)(z, w), ρ̃2(ζ)(z, w), ρ̃3(ζ)(z, w)) .

We can now investigate how these defining equations may help us in finding stationary

discs. Recall that a holomorphic disc h attached to Γ is stationary if there exists a

holomorphic lift h = (h, g) : ∆→ T ∗Cn+1 of h to the cotangent bundle T ∗Cn+1, continuous

up to the boundary and such that for all ζ ∈ ∂∆, h(ζ) ∈ N Γ(ζ). Therefore h is stationary

for Γ if and only if for all ζ ∈ ∂∆

ρ̃(ζ)(h(ζ)) = 0. (4.3.2)

This boundary value problem (4.3.2) is generally called a non linear Riemann-Hilbert

problem. Its solution is proposed in the next section.

4.4 Construction of stationary discs

Let Q be the hyperquadric in C2 defined by

r(z) = <ez0 − |z1|2.

In Section 2, we have described all stationary for Q. Our goal is to construct stationary

discs for small enough perturbations of Q using the implicit function theorem 4.1.2. We

need to define the corresponding Banach spaces X, Y, Z and the mapping F .

We first introduce, for 0 < α < 1,

X = C1,α(∂∆, C3(C4,R4)).

Roughly speaking, X is the set of equations of possible conormal fibrations. The smoothness
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assumption is of purely technical nature. Define now

Y = A1,α(∆,C4)

to be the set of holomorphic discs valued in C4 of class C1,α up to the boundary ∂∆. We

set

Z = C1,α(∂∆,R4).

Recall that the conormal fibration of Q is given by r̃ = 0 (see Equation (4.3.1)). Let U be

a neighborhood of r̃ in X. Consider h0 a lift of a stationary disc in S∗(Q) and let V be a

neighborhood of h0 in Y . Inspired by (4.3.2), we define the map

F : U × V → Z

by

F(ρ̃,h) = ρ̃(.)(h).

Note that, by the chain rule, the map is well defined. An important and technical result

due to [?] states that F is C1. Moreoever if Γ = {ρ = 0} is a non-degenerate hypersurface

in C2 then F(ρ̃,h) = 0 if and only if h is a lift of a stationary disc for Γ. In particular we

have F(r̃,h0) = 0. In order to apply Theorem 4.1.2, we need to show that dYF(r̃,h0) is

onto, prove that its kernel has finite dimension and compute its dimension.

It derivative in the space Y is given by

dYF(r̃,h0)(h) = 2<e
(
Gh

)

where G : ∂∆→ GL4(C) is the following 4× 4 matrix map
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G(ζ) =
(
∂r̃

∂z̄
(h0(ζ)), ∂r̃

∂w̄
(h0(ζ))

)
=



1/2 −z1(ζ) 0 0

0 0 −iζ 0

0 2w0(ζ) 2z1(ζ) 1

0 2iw0(ζ) −2iz1(ζ) −i


where

z1(ζ) = 2|v|2 (1− a)(1− ζ)
(1− aζ)(1− |a|2)

w0(ζ) = bζ|1− aζ|2
2

since h0 is the lift of a stationary discs in S∗(Q) (see Equation (3.1.1)). It is important

to point out that the fact that G(ζ) is invertible for all ζ follows from the fact the

conormal fibration of the hyperquadric Q is totally real; which in turn follows from the non

degeneracy of Q. In order to prove that dYF(r̃,h0) is onto and to compute the dimension

its kernel we use a result of Globevnik [?, ?], namely that dYF(r̃,h0) is onto if and only

if the partial indices are greater than or equal to −1 and in that case the dimension of its

kernel is equal to the Maslov index. Therefore, we need to compute the partial indices

and the Maslov index of

B(ζ) = −G(ζ)−1
G(ζ).

To achieve this goal we perform operation on G(ζ). Right multiplication by the constant

matrix

 2 0

0 I3

 does not change the partial indices and gives us the matrix



1 −2z1(ζ) 0 0

0 0 −iζ 0

0 2w0(ζ) 2z1(ζ) 1

0 2iw0(ζ) −2iz1(ζ) −i


.

After permuting the rows, we get:
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1 −2z1(ζ) 0 0

0 2w0(ζ) 2z1(ζ) 1

0 2iw0(ζ) −2iz1(ζ) −i

0 0 −iζ 0


Now we permute the columns and get a triangular by block matrix:



1 −2z1(ζ) 0 0

0 2w0(ζ) 1 2z1(ζ)

0 2iw0(ζ) −i −2iz1(ζ)

0 0 0 −iζ


with (z, w) = h(ζ), ζ ∈ ∂∆. By multiplying the second column by 1

b(1−āζ̄) and the third

column by 1− āζ̄, we do not change the partial indices and the resulting matrix is of the

form:

G1(ζ) =


1 (∗)

P

(0) −iζ


where

P =

 ζ(1− aζ) 1− āζ̄

iζ(1− aζ) −i(1− āζ̄)


and so

P−1 =

 1
2ζ̄(1−āζ̄)

i
2ζ̄(1−āζ̄)

1
2(1−aζ)

−i
2(1−aζ)

 .
It follows that we are reduced to compute the partial indices of the matrix
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B1(ζ) = −G1(ζ)−1G1(ζ) = −



1 (∗)

P−1P

(0) −ζ2


= −



1 (∗)

R

(0) −ζ2



where R =

 0 ζ

ζ 0

. In order to find the partial indices of G1(ζ), we use the following

lemma:

Lemma 4.4.1 ([?]). Let A : ∂∆ → GL2n+2(C) of class Cα (0 < α < 1), and denote by

κ1 ≥ . . . ≥ κ2n+2 the partial indices of the map ζ 7→ A(ζ)A(ζ)−1. Then there exists a map

Θ : ∆̄→ GL2n+2(C) of class Cα, holomorphic on ∆, such that for all ζ ∈ ∂∆

Θ(ζ)A(ζ)A(ζ)−1 =


ζκ1 (0)

. . .

(0) ζκ2n+2

Θ(ζ).

By applying this lemma to the matrix A = iG1(ζ)−1, we obtain a continuous map

Θ : ∆̄→ GL4(C), holomorphic on ∆ such that for all ζ ∈ ∂∆:

Θ(ζ)B1(ζ) =


ζκ1 (0)

. . .

(0) ζκ4

Θ(ζ).

Denote by l = (l1, . . . , l4) the last row of the matrix Θ. It follows that for all ζ ∈ ∂∆

l(ζ)B1(ζ) = ζκ4l(ζ). (4.4.1)

• If l1 6≡ 0 then (4.4.1) gives −l1(ζ) = ζκ4l1(ζ) and by holomorphy of Θ we get κ4 ≥ 0.
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• If l1 ≡ 0 then (4.4.1) gives two equations −ζl3(ζ) = ζκ4l2(ζ) and −ζl2(ζ) = ζκ4l3(ζ).

– If l2 6≡ 0 then l3 6≡ 0 we obtain κ4 ≥ 1 by holomorphy.

– If l2 ≡ 0 then l3 ≡ 0 then since the matrix Θ(ζ) is invertible l4 6≡ 0. In that

case (4.4.1) gives ζ2l4(ζ) = ζκ4l4(ζ) and by holomorphy of Θ we get κ4 ≥ 2.

Since κ1 ≥ . . . ≥ κ4, we have proved that the partial indices of B(ζ) = −G(ζ)−1
G(ζ) are

nonnegative. Therefore by a result of Globevnik [?, ?], the linear map dYF(r̃,h0) is onto.

Furthermore, by Lemma 4.2.1 its Maslov index is equal

κ = 1
2πi

∫
∂∆

(detB)′(ζ)
detB(ζ) dζ = 1

2πi

∫
∂∆

(detB1)′(ζ)
detB1(ζ) dζ = 4

since det(B1(ζ)) = ζ4. It follows from [?, ?] that the kernel of dYF(r̃,h0) has dimension

κ+ dimC(C4) = 4 + 4 = 8. By applying Theorem 4.1.2, we finally obtain

Theorem 4.4.2. There are neighborhoods V1 of r̃ in X and V2 of h0 in Y such that for

each ρ̃ ∈ V1, the set

{h ∈ V2 | F(ρ̃,h) = 0}

is a C1 submanifold of X of real dimension 8.

In other words

Theorem 4.4.3. Let Q = {r = 0} where r(z) = <ez0 − |z1|2. Fix h0 ∈ S∗(Q) and

0 < α < 1. There exist δ1, δ2 > 0, both depending on Q and h0, such that if ‖ρ− r‖C4 < δ1

(with ρ in normal form (2.1.2)), the set

Sδ2(Γ) = {h = (h, g) ∈ S(Γ) | ‖h− h0‖C1,α(∂∆) < δ2}

forms a 8 real parameter family, where Γ = {ρ = 0}.

Moreover since this family is obtained by a deformation argument, the geometric

property stated in Proposition 3.2.1 remains true:
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Proposition 4.4.4. Let Q = {r = 0} where r(z) = <ez0 − |z1|2. Fix h0 ∈ S∗(Q) and

0 < α < 1. There exists δ1, δ2 > 0 such that if ‖ρ− r‖C4 < δ1 then the set of directions

{
dh

dθ
|θ=0 | h = (h, g) ∈ Sδ2(Γ) ∩ S∗(Γ)

}

fills an open set in T(0,0)Γ.

Proof. The implicit Theorem 4.4.2 gives a neighborhood V1 of r̃ and a neighborhood U of

the origin in R8 and a parametrization map of stationary discs

H : V1 × U → A1,α(∆,C4)

of class C1 with

i. H(r, 0) = h0,

ii. for all ρ ∈ V2, the map H(ρ, ·) : U → Sδ2(Γ) is bijective. Here Γ = {ρ = 0}.

Now consider the C1 map ψ : V1 × U → {0} × R3 defined by

ψ(ρ, t) = d(π ◦ H(ρ, t))
dθ

|θ=0

where π is the canonical projection onto the first 2 components. According to Remark

3.2.2, ∂
∂t
ψ(r, 0) has rank 3 and more precisely the submatrix of ∂

∂t
ψ(r, 0) formed by the

derivatives in the direction of a and w is of rank 3. Hence for ρ sufficiently close to r, we

still get that the submatrix of ∂
∂t
ψ(r, 0) formed by the derivatives in the direction of a and

w is of rank 3 and the result follows.
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CHAPTER 5

EXTENSION OF BIHOLOMORPHISM

First we recall the classical Riemann mapping theorem (see [?] for instance):

Theorem 5.0.5 ([?]). Let U be a non empty open subset of C not equal to C with U

simply connected, then there exists a biholomorphic mapping f from U onto the open unit

disk ∆.

O.D. Kellogg studied the boundary regularity of the Riemann mapping ([?], [?],

[?]). However, Kellogg’s original theorem and its proof do not provide sharp regularity.

Nowadays, there are several methods to obtain the exact regularity for Riemann mappings

for a fixed domain; for instance, see the monography of G.M. Goluzin [?] p. 426.

Theorem 5.0.6 (Kellogg’s theorem [?] p. 426). Let U be a non empty open subset of

C not equal to C with U simply connected. Suppose U has a Ck,α boundary. Then the

Riemann mapping and its inverse extend as Ck,α up to the boundary.

In particular if the domain U ∈ C has a C∞ boundary, then the Riemann mapping

and its inverse, extend C∞ smoothly to the boundary. The equivalent smoothness result

in higher dimension is due to C. Fefferman [?]:

Theorem 5.0.7 (Fefferman [?]). Let D1, D2 ⊂ C2 be two C∞ smoothly bounded strictly

pseudoconvex domains and let F : D1 → D2 be a biholomorphic mapping. Then F is of

class C∞ up to the boundary ∂D1.

37



Note that the original proof by Fefferman, based on estimates on the Bergman metric,

is rather technical. Simpler proofs were later provided by Bell and Ligocka [?], Lempert

[?, ?], Pinchuk and Khasanov [?] or Forstnerič [?]. We propose to follow the approach of A.

Tumanov [?] based on the local theory of stationary discs. His method is very similar to

the one of L. Lempert, but instead of using the difficult global theory of [?], A. Tumanov’s

approach uses local results. In particular we will use a separate smoothness result due to

A. Tumanov [?]

Proposition 5.0.8 (Proposition 3.1 [?]). Let k be a nonnegative integer and let 0 < α < 1.

Let Fj, 1 ≤ j ≤ n, be Ck+1,α smooth foliations of a domain Ω ⊂ Rn such that for every

point p ∈ Ω the tangent vectors to the curves γj ∈ Fj passing through p are linearly

independent. Let f be a function on Ω such that the restrictions f |γ, γ ∈ Fj, 1 ≤ j ≤ n

are of class Ck,α and are uniformly bounded in the Ck,α norm. Then f is Ck,α smooth.

By a Ck,α smooth foliation, we mean a family of curves that cover all of a domain

Ω ∈ Rn, and that, after a change of coordinates, they become parallel lines.

Remark 5.0.9. The uniform smoothness assumption in 5.0.8 is essential as illustrated

by the following example:

f(x, y) =


2xy

x2 + y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Indeed, the restriction of f to each line parallel to either the x-axis or the y-axis is C∞.

However, the function f is discontinuous at the origin since on the line y = x we have

f(x, x) = 1. Note that on the lines Ln : y = 1
n

the norms

sup
(x,y)∈Ln

∥∥∥∥∥∂f∂x (x, y)
∥∥∥∥∥ = sup

∥∥∥∥∥2n− 2n3x2

(1 + n2x2)2

∥∥∥∥∥
blow up as n→∞.
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We are now able to prove Theorem 5.0.7

Proof. We first point out that F extends as a C 1
2 homeomorphism from ∂D1 to ∂D2 (see [?]

for instance); this step is rather classical and since it does not use the theory of stationary

disc we will omit its proof.

Let p ∈ ∂D1. Assume that p = 0 ∈ ∂D1 and that ∂D1 has the local definition function

(2.1.2):

ρ(z) = <ez0 + |z1|2 + b0y
2
0 + (b1z1 + b̄1z̄1)y0 +O(|(y0, z1|3).

Since ∂D1 is strictly pseudoconvex. Consider a small enough neighborhood U of the origin

p = 0 such that ρ is close enough to r+ = <ez0 + |z1|2 in the C4 topology in order to

obtain, by Proposition 4.4.4, that the set

{
dh

dθ
|θ=0 | h = (h, g) ∈ Sδ2(Γ) ∩ S∗(Γ)

}

for some δ2 > 0, fills an open set in Tp∂D1. Therefore the directions of boundaries of

stationary discs span all directions in T∂D1. Please note that Proposition 4.4.4 was

obtained for small perturbations of <ez0 − |z1|2 but remains true when considering small

perturbations of <ez0 + |z1|2.

Since F : ∂D1 → ∂D2 is of class C 1
2 , F maps stationary discs to stationary discs. Recall

also that stationary discs inherit the smoothness of the hypersurface they are attached

to (see Section 2.3). Therefore F maps smooth boundaries of stationary discs to smooth

boundaries of stationary discs. Moreover since the lifts of stationary discs are attached to

a totally real submanifold, their Ck norms, for any k, is controlled by their Cα norm which

in turn are uniformly bounded. Therefore, the separate smoothness principle allows to

conclude that F is smooth up to ∂D1.
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