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An Abstract of the Thesis of

Abed ALRahman Milad Al Makdah for Master of Engineering
Major: Mechanical Engineering

Title: Modeling and Control of a Hybrid Autonomous Underwater Vehicle

In this work a six degrees of freedom (6DOF) dynamic model of a Hybrid
Autonomous Underwater Vehicle (H-AUV) is developed. A new approach for de-
signing a simpli�ed control law is introduced to command the vehicle to track a
given three-dimensional trajectory.

To get a linear time variant (LTV) state space model, the 6 DOF dynamics
and kinematics models of the AUV are linearized about a given desired three-
dimensional trajectory. A linear quadratic regulator (LQR) is designed based on
the linearized model and is applied to the nonlinear model for validation purposes.
The designed control law is robust enough to autonomously switch modes between
propulsive and gliding dynamics to ensure minimal tracking error with respect to
the desired trajectory.

Simulation results show that the linear control law provides satisfactory results
when applied to the nonlinear model for tracking basic trajectory maneuvers: helix,
saw-tooth trajectory, and 3D Dubin's trajectory. The robustness of the designed
controller is investigated in the presence of underwater currents. Simulation shows
that the controller is robust enough to command the vehicle to track the desired
trajectory in the presence of underwater currents, in the case of thrust mode.

However, for the gliding mode, the designed controller gave unsatisfactory
tracking performance in the presence of underwater currents. To mitigate this,
a disturbance observer is designed based on the linearized model and is applied
along with the designed control law which improved the tracking performance.
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Chapter 1

Introduction

Rapid development in the �eld of marine robotics in the recent years provided
scientists with advanced tools for ocean explorations. For marine robots to be
able to roam the oceans freely and gather scienti�c information, the robots must
be equipped with control systems that accurately navigate them to the desired des-
tination. Therefore, considerable interest is concentrated on developing advanced
control systems for underwater vehicles in the areas of trajectory tracking, path
following, and point stabilization.
Trajectory tracking control allows the vehicle to track a certain parameterized
curve with respect to time. Path following requires the vehicle to follow a desired
path without any temporal constraints. Point stabilization control aims to steer
the vehicle to a �nal desired target and a desired orientation.
The control design for an autonomous underwater vehicles (AUV) is very challeng-
ing because the dynamic model of marine vehicles is highly nonlinear and highly
coupled, and the system is underactuated and nonholonomic.

In this work, a nonlinear six degrees of freedom dynamics model of a Hybrid
Autonomous Underwater Vehicle (H-AUV), designed and manufactured at the
American University of Beirut shown in Fig. 1.1, is derived. The H-AUV combines
the features of a propelled vehicle and those of an underwater glider. Propelled
AUV is a vehicle driven by a propeller that is attached to it. Examples of AUV's
can be seen in [3], [4], [5], and [6]. Underwater glider is an AUV that is driven by
controlling its buoyancy. The mass of the glider is changed by pumping water into
or out of the vehicle and thus changing its buoyancy. When high speed and high
maneuvering are required, the vehicle switches to the propeller mode, and when
conserving energy and extending the battery life are required, the vehicle switches
to the gliding mode. Examples of underwater gliders can be seen in [7], [8], [9], [10],
and [11]. The aim of this work is to design a single controller, for both modes of
operation, that commands the vehicle to track a trajectory in three dimensional
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Figure 1.1: CAD model for the H-AUV

space parameterized with respect to time in the presence of disturbance. Also,
the controller needs to decide when to use the propeller during gliding mode in
the presence of disturbance. To simplify the control design problem, the model is
linearized about a given optimal 3D Dubin's trajectory parameterized with respect
to time, and a multi-input multi-output (MIMO) linear time variant (LTV) state
space model is obtained. A linear quadratic regulator (LQR) is designed based on
this linearized model and is applied to the nonlinear model to control the vehicle
to track the given Dubin's trajectory.

One option to simplify the control design problem for the AUV, is to decouple
the nonlinear 6DOF model into three independent and non-interacting subsys-
tems: steering, diving, and speed control. Each subsystem can be linearized about
constant operating points, as was done in [12], where a control law for each single-
input multi-output (SIMO) subsystem was derived. However, these control laws
give unsatisfactory results when applied to the highly coupled nonlinear model.
Because decoupling the system assumes that the states related to the steering
plane do not a�ect the states related to the diving plane, the control inputs will be
con�icting. In this work, the 6DOF model is linearized about a given equilibrium
3D trajectory without decoupling. A single control law is derived taking into ac-
count the coupling between the states, and the con�ict between the control inputs
is avoided, while keeping the control design problem simpli�ed.
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The problem of trajectory tracking for underwater and air vehicles was intro-
duced in [13], where the authors used gain scheduled controllers to control the
vehicle to track the desired trajectory.
Another approach was based on the work in [14] where the authors solved the
problem of path following for wheeled land robots using Lyapunov based non-
linear techniques and taking into account only the kinematics equations. This
work was extended in [15] and [16] to deal with marine crafts, where a nonlin-
ear controller was developed based only on the kinematic level, and backstepping
techniques were used to extend the kinematic controller to include the dynamics
of the system. The work in [14], [15], and [16] assumes that the position of the
virtual vehicle to be tracked on the desired path is at the closest point present on
the desired track to the vehicle. However, this assumption creates a shortcoming
in the path following control strategy, that is the initial error of the position of the
vehicle must be smaller than the smallest radius of curvature in the path. This
shortcoming was solved for wheeled robots in [17], and this work was extended
for the control of marine vehicles in [18], where the controller took into account
only the kinematics. Later, the work in [18] was extended in [19] to include the
dynamics in the controller. See also [20].

Trajectory tracking control for a car-trailer system was addressed in [21], in
which the authors proposed a scheme consisting of three steps: generate a path
o� line, then use it to construct a trajectory by setting the velocity pro�le to the
maximum, after that linearize the kinematic model of the car about the generated
trajectory, and �nally apply a time varying linear quadratic regulator to track the
trajectory.

In [22] the authors linearized the dynamic model of an underwater glider about
two sets of operating points, that correspond to the case where the vehicle is div-
ing down and the case where the vehicle is �oating up. Then a linear quadratic
regulator is derived to control the depth of the vehicle, and to command it to move
in a saw-tooth path.

In this work, the control design for the trajectory tacking problem is simpli�ed,
where the 6DOF dynamics model of the AUV is linearized about a given optimal
3D trajectory, and a LQR controller is designed based on the linearized model.
Also, in this work the problem of the restriction of the initial position error of the
vehicle with respect to the trajectory is avoided, because the optimal trajectory
is generated given the initial and �nal position and orientation of the AUV using
the work in [23] and [24]. The control law is designed to be robust enough to
autonomously switch modes between propulsive and gliding dynamics to ensure
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minimal tracking error with respect to the desired trajectory. The robustness of
the designed controller is investigated in the presence of underwater currents

The organization of this document will be as follows. In chapter 2 the 6DOF
dynamic model of the AUV is derived. In chapter 3, a LTV state space model is
obtained by linearizing the 6DOF model about a given desired trajectory, and a
LQR is derived based on the LTV model and is applied to the nonlinear model. In
chapter 4, an open loop simulation of the nonlinear model is presented. And the
LTV model is then simulated and its response is compared with the response of
the nonlinear model. The performance of the LQR when applied to the nonlinear
model is analyzed in simulation, and its robustness is investigated in the presence
of unknown disturbance also in chapter 4. In chapter 5, a disturbance observer is
designed based on the LTV model and is applied along with the controller to the
nonlinear model, and its performance is investigated in simulation. Finally, the
document is concluded in chapter 6 and future research is discussed.

4



Chapter 2

AUV Model

In this chapter a model for the AUV is developed from the six degrees of
freedom equations of motion, and the inertial frames are de�ned.

2.1 Kinematics

2.1.1 Inertial frames

Two frames of reference are de�ned: the earth-�xed frame of reference {U}
and the body-�xed frame of reference {B}. The earth-�xed frame of reference
(OU , x, y, z) has a �xed origin at an arbitrary point at the surface of the ocean
with the z-axis pointing downwards. This frame of reference is used to describe
the orientation of the vehicle and the position of its center of mass The body-�xed
frame (OB,XB,YB,ZB) is attached to the vehicle's geometric center (which is the
same as the center of buoyancy) with the x-axis pointing towards the nose of the
vehicle. This reference frame is used to describe the vehicles's linear and angular
velocities. The SNAME (1950) notation is used to describe the general motion of
the vehicle in the six degrees of freedom as follows:

η = [ηT1 , η
T
2 ]T η1 = [x, y, z]T η2 = [φ, θ, ψ]T

ν = [νT1 , ν
T
2 ]T ν1 = [u, v, w]T ν2 = [p, q, r]T

(2.1)

where η denotes the position of the center of mass of the vehicle and its orientation
vector with respect to the earth-�xed coordinate reference, ν denotes the linear
and angular velocity vector of the vehicle with respect to the body-�xed coordinate
reference. The frames of reference are shown in Fig. 2.1
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Figure 2.1: AUV with local and global frames of reference

2.1.2 Transformation Between the Two Frames of Reference

The transformation of the velocities between the body-�xed frame and the
earth-�xed frame is performed by the given velocity transformation:

η̇ = J(η2)ν (2.2)

where J(η) is the transformation matrix that is a function of the Euler angles:
roll(φ), pitch(θ), and yaw(ψ).
The inverse transformation velocity can be written as follows:

ν = J−1(η2)η̇ (2.3)

The transformation matrix J can be written as follows:

J =

[
J1 03x3

03x3 J2

]
(2.4)

where J1 is the linear velocity transformation matrix, and J2 is the angular velocity
transformation matrix.

Linear Velocity Transformation:

η̇1 = J1(η2)ν1 (2.5)

The linear velocity transformation matrix as a function of the Euler angle (φ,θ,ψ)
is as follows:

6



J1 =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (2.6)

where s, c, and t denote sin, cos, and tan respectively.

Angular Velocity Transformation:

η̇2 = J2(η2)ν2 (2.7)

The angular velocity transformation matrix as a function of the Euler angle (φ,θ,ψ)
is as follows:

J2 =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2.8)

2.2 Vehicle Parameters and Speci�cations

The vehicle is equipped with a propeller, two wings, and four identical
control �ns placed at the rear.

2.2.1 Propeller and hull

The propeller, which is a high torque brushed DC motor, is attached at the
rear of the vehicle with a maximum thrust of about 272 N. The hull of the vehicle
is a cylinder made of aluminum 6061-T6 with a diameter of 8 inches (203.2 mm)
and 2 meters long. The hull parameters are shown in table 2.1.

2.2.2 Wings

The two wings are �xed at the middle of the vehicle with a zero degrees angle
of attack, and a span of 0.821 meters for each wing. The parameters of the wings
are shown in table 2.2.
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Table 2.1: Hull Parameters

Parameter Value Unit Description
ρ 1025 Kg/m3 Sea water density
r 0.1 m outer radius of the hull cylinder
L 2 m Length of the hull cylinder
Af 0.061 m2 Hull frontal area
Ap 0.4 m2 Hull projected area (xz plane)
∇ 0.0707 m3 Estimated hull volume

Table 2.2: Wing Parameters

Parameter Value Unit Description
bwing 0.821 m Span
awing 0.921 m Max wing height above centerline

xwing,rear -0.075 m x- position of the rear end of the wing
with respect to the body-�xed frame

xwing,front 0.075 m x- position of the rear end of the wing
with respect to the body-�xed frame

Swing 0.1275 m2 wing planform area

2.2.3 Fins

The four control �ns are mounted in a cruciform pattern at the rear of the
vehicle, two vertical �ns, the rudders are used to control the yaw angle of the
vehicle, and two horizontal �ns, the sterns are used to control the pitch angle of
the vehicle. Each �n has a span of 0.257 m and NACA 0015 cross-section. The
parameters of the �ns are shown in table 2.3.

Table 2.3: Fin Parameters

Parameter Value Unit Description
bfin 0.257 m Span
afin 0.357 m Max �n height above centerline

xfin,rear -0.76 m x- position of the rear end of the �n
with respect to the body-�xed frame

xfin,front -0.66 m x- position of the front end of the �n
with respect to the body-�xed frame

Sfin 0.0257 m2 �n planform area
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Table 2.4: Center of mass with respect to the body-�xed frame

Parameter Value Unit
xG -0.02<xG<0.02 m
yG 0 m
zG 0.05 m

2.2.4 Vehicle Weight and Buoyancy

The dry mass of the vehicle is 71.5 Kg when it is empty of water, and 73.5 Kg
when it is full. The vehicle is positively buoyant when empty, negatively buoyant
when full, and neutrally buoyant when half full.
The y and z components of the center of mass of the vehicle remains �xed with
respect to the body-�xed frame reference, however the x component changes as the
vehicle pumps water in or out. The x-component of the center of mass is zero when
the vehicle is neutrally buoyant, negative (towards the rear of the vehicle) when
the vehicle is positively buoyant, and positive (towards the front of the vehicle)
when the vehicle is negatively buoyant. Table 4.7b shows the position of the center
of mass with respect to the origin of the body-�xed frame.

2.3 Rigid Body Dynamics

In this section, Newton's second law is applied to generate the equations of
motion.

Center of gravity: The location of the center of gravity with respect to the
origin of the body �xed coordinate system is as follows:

rG =

xGyG
zG

 (2.9)

The location of the center of buoyancy is at the origin of the body-�xed coordinate
system.
Following the SNAME (1952) nomenclature [25], the 6DOF equations of motion,
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as derived in [26] can be written as follows:

m[u̇− vr + wq − xG(q2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] = X

m[v̇ − wp+ ur − yG(r2 + p2) + zG(qr − ṗ) + xG(qp+ ṙ)] = Y

m[ẇ − uq + vp− zG(p2 + q2) + xG(rp− q̇) + yG(rq + ṗ)] = Z

Ixṗ+ (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy
+m[yG(ẇ − uq + vp)− zG(v̇ − wp+ ur)] = K

Iy q̇ + (Ix − Iz)rp− (ṗ+ qr)Ixy + (p2 − r2)Izx + (qp− ṙ)Iyz
+m[zG(u̇− vr + wq)− xG(ẇ − uq + vp)] = M

Iz ṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx
+m[xG(v̇ − wp+ ur)− yG(u̇− vr + wq)] = N

(2.10)

where X, Y and Z are the external forces acting on the vehicle; and K, M and
N are the external moments acting on the vehicle; these forces and moments are
described with respect to the body-�xed frame; m is the dry mass of the vehicle;
Ix, Iy & Iz are the vehicle's moments of inertia about the X0, Y0 and Z0-axes and
Ixy=Iyx, Ixz=Izx, and Iyz=Izy are products of inertia de�ned as:

Ix =

∫
V

(y2 + z2)ρdV ; Ixy =

∫
V

xyρdV =

∫
V

yxρdV = Iyx

Iy =

∫
V

(x2 + z2)ρdV ; Ixz =

∫
V

xzρdV =

∫
V

zxρdV = Izx

Iz =

∫
V

(x2 + y2)ρdV ; Iyz =

∫
V

yzρdV =

∫
V

zyρdV = Izy

(2.11)

The �rst three equations in (2.10) describe the translational motion of the vehicle,
and the second three equations describe the rotational motion of the vehicle.
Note that the terms corresponding to the position of the center of buoyancy with
respect to the body-�xed frame are neglected and are set to zero, because it coin-
cides with the origin of the body-�xed frame.

The vehicle's inertia tensor, I0, with respect to the body-�xed frame can be written
as follows:

I0 =

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz

 (2.12)

Because the origin of the body-�xed frame is placed at the center of buoyancy of
the vehicle, and since the vehicle is symmetric with respect to the xy and the xz
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Table 2.5: Vehicle's moment of inertia about X0, Y0 and Z0-axes

Parameter Value Unit
Ix 1.08 Kg.m2

Iy 20.75 Kg.m2

Iz 21.32 Kg.m2

planes of the body �xed coordinate system, the values of the products of inertia
are very small compared to values of Ix, Iy, and Iz, and thus can be neglected. So,
the vehicle's inertia's tensor, I0, with respect to the body-�xed reference can be
reduced as follows:

I0 =

Ix 0 0
0 Iy 0
0 0 Iz

 (2.13)

The values of the moments of inertia about the axes of the body-�xed frame are
shown in table 2.5.
This simpli�es the equations of motion in (2.10):

m[u̇− vr + wq − xG(q2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] = X

m[v̇ − wp+ ur − yG(r2 + p2) + zG(qr − ṗ) + xG(qp+ ṙ)] = Y

m[ẇ − uq + vp− zG(p2 + q2) + xG(rp− q̇) + yG(rq + ṗ)] = Z

Ixṗ+ (Iz − Iy)qr +m[yG(ẇ − uq + vp)− zG(v̇ − wp+ ur)] = K

Iy q̇ + (Ix − Iz)rp+m[zG(u̇− vr + wq)− xG(ẇ − uq + vp)] = M

Iz ṙ + (Iy − Ix)pq +m[xG(v̇ − wp+ ur)− yG(u̇− vr + wq)] = N

(2.14)

Vectorial Representation: Equation (2.14) can be expressed in a vectorial
form, which is more compact, as:

MRB ν̇ + CRB(ν)ν = τRB + δd (2.15)

where ν = [u, v, w, p, q, r]T is the linear and angular velocity vector in the body
�xed frame as de�ned in (2.1), and τRB = [X, Y, Z,K,M,N ]T is a vector containing
the external forces and moments in the X0, Y0 and Z0 directions of the body-�xed
frame. MRB is the rigid-body inertia matrix, and CRB is the matrix containing
the Coriolis vector term and the centripetal vector term. And δd = [δdx, δdx, δdy,
δdz, δdk, δdm, δdn]T is a vector of length 6 which contains unknown disturbance
forces and moments expressed with respect to the body �xed frame.

11



The rigid-body inertia matrix can be written as follows:

MRB =


m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG −mxG 0
0 −mzG myG Ix 0 0

mzG 0 −mxG 0 Iy 0
−myG mxG 0 0 0 Iz

 (2.16)

The matrix containing the Coriolis and the centripetal terms can be written as
follows:

CRB =


0 0 0 m(yGq + zGr) −m(xGq − w) −m(xGr + v)
0 0 0 −m(yGp+ w) m(zGr + xGp) −m(yGr − u)
0 0 0 −m(zGp− v) −m(zGq + u) m(xGp+ yGq)

−m(yGq + zGr) m(yGp+ w) m(zGp− v) 0 Izr −Iyq
m(xGq − w) −m(zGr + xGp) m(zGq + u) −Izr 0 Ixp
m(xGr + v) m(yGr − u) −m(xGp+ yGq) Iyq −Ixp 0


(2.17)

2.4 External Forces and Moments

In this section, the external forces and moments acting on the vehicle, which
are the components on the RHS of the equations of motion in (2.14), with respect
to the body-�xed frame are introduced. The total external forces and moments
acting on the vehicle have the following components:

τext = τhydrostatic + τaddedmass + τdrag + τlift + τpropeller (2.18)

where τhydrostatic is the hydrostatic forces and moments, τaddedmass is the term
corresponding to the forces and moments generated by the added mass, τdrag are
the drag forces and moments due to skin friction, τlift are the lift forces and
moments, and τpropeller are the thrust force and moment generated by the propeller.

2.4.1 Hydrostatic Forces and Moments

The hydrostatic forces and moments are the combined e�ects of the vehicle's
weight and buoyancy forces. Let m be the mass of the vehicle, ∇ be the volume
of the vehicle, ρ be the density of the sea water, and g be the gravitational ac-
celeration, then the weight of the vehicle can be expressed as W = m.g, and the
buoyancy force is expressed as B = ρ∇g. It is desired to express these forces
with respect to the body-�xed frame. This can be done using the linear matrix
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transformation J1 from (2.6) as follows:

fW (η2) = J−11

 0
0
W

 fB(η2) = J−11

 0
0
B

 (2.19)

So the hydrostatic forces and moments acting on the vehicle can be expressed with
respect to the body-�xed frame as follows:

Fhydrostatic = fW − fB
Mhyrostatics = rG × fW − rB × fB

(2.20)

where rG and rB are the position vectors of the center of mass and the center
of buoyancy of the vehicle, respectively, with respect to the body �xed frame.
Equation (2.20) can be expanded to yield the following equations in the X0, Y0,
and Z0 directions of the body-�xed frame:

Xhydrostatic =− (W −B)sinθ

Yhydrostatic =(W −B)cosθsinφ

Zhydrostatic =(W −B)cosθcosφ

Khydrostatic =(yGW − yBB)cosθcosφ− (ZGW − zBB)cosθsinφ

Mhydrostatic =− (xGW − xBB)cosθcosφ− (zGW − zBB)sinθ

Nhydrostatic =(xGW − xBB)sinφcosθ + (yGW − yBB)sinθ

(2.21)

Since the origin of the body �xed frame is chosen to be at the center of buoyancy
of the vehicle, rB = [0, 0, 0]T . So the hydrostatic forces and moments in (2.21) can
be simpli�ed as follows:

Xhydrostatic =− (W −B)sinθ

Yhydrostatic =(W −B)cosθsinφ

Zhydrostatic =(W −B)cosθcosφ

Khydrostatic =yGWcosθcosφ− ZGWcosθsinφ

Mhydrostatic =− xGWcosθcosφ− zGWsinθ

Nhydrostatic =xGWcosφ+ yGWsinθ

(2.22)

2.4.2 Added Mass

Added mass, as de�ned in [26], is a force generated due to inertia added to
a body as it moves through a certain �uid. As a submerged body accelerates or
decelerates through a certain �uid, it moves some of the surrounding �uids. For
simplicity, it can be modeled as a mass of the �uid move with the body.
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The added mass forces and moments are separated to an added inertia matrix,
MA, and a matrix of hydrodynamic Coriolis and centripetal terms denoted CA.

τaddedmass = −MAν̇ − CA(ν)ν (2.23)

To derive the two matrices, the concept of �uid kinetic energy along with Kircho�'s
equation, which relates the �uid kinetic energy to the forces and moments acting
on the vehicle, are used as explained in [26]. The �uid kinetic energy can be
expressed in the following matrix form as a quadratic form of the vehicle axis
velocity vector components:

TA =
1

2
νTMAν (2.24)

where MA is a 6x6 added inertia matrix de�ned as:

MA =


Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

 (2.25)

The SNAME (1952) notation [25] is used to describe the added mass forces and
moments. For example, the hydrodynamic added mass force in the YB direction
of the body �xed frame {B} due to the acceleration u̇ in the XB direction of the
body �xed frame {B} is expressed as follows:

Yaddedmass = Yu̇u̇ where Yu̇ =
δY

δu̇
(2.26)

Since most of the time the vehicle will be completely submerged under water, it
is assumed that the mass coe�cients are constant. Also, from the �uid energy
equation in (2.24), it is seen that the matrix added inertia matrix MA is positive
de�nite. In addition, experience has shown that assuming MA to be a symmetric
matrix is a good approximation, see [26]. Hence:

MA = MT
A > 0 (2.27)

MA can be further simpli�ed because the vehicle is symmetric with respect to
the XBYB and the XBZB planes. Hence the simpli�ed added mass inertia can be
written as follows:

MA =


Xu̇ 0 0 0 0 0
0 Yv̇ 0 0 0 Yṙ
0 0 Zẇ 0 Zq̇ 0
0 0 0 Kṗ 0 0
0 0 Zq̇ 0 Mq̇ 0
0 Yṙ 0 0 0 Nṙ

 (2.28)
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Consider the Kirchho�'s equations in vector form for translational and rotational
motion:

d

dt
(
δT

δν1
) + ν2 ×

δT

δν1
= τ1

d

dt
(
δT

δν2
) + ν2 ×

δT

δν2
+ ν1 ×

δT

δν1
= τ2

(2.29)

where T is the kinetic energy, the equations in (2.29) are applied on the �uid
kinetic energy equation in (2.24) to get the added mass forces and moments. For
more details on the derivation of the added mass forces and moments, review [26].

Xadded mass =Xu̇u̇+ Zẇwq + Zq̇q
2 − Yv̇vr − Yṙr2

Yadded mass =Yv̇v̇ + Yṙṙ +Xu̇ur − Zẇwp− Zq̇pq
Zadded mass =Zẇẇ + Zq̇ q̇ −Xu̇uq + Yv̇vp+ Yṙrp

Kadded mass =Kṗṗ− (Yv̇ − Zẇ)vw − (Yṙ + Zq̇)wr + (Yṙ + Zq̇)vq − (Mq̇ −Nṙ)qr

Madded mass =Mq̇ q̇ + Zq̇ẇ − (Zẇ −Xu̇)wu− Yṙvp+ (Kṗ −Nṙ)rp

Nadded mass =Nṙṙ + Yṙv̇ − (Xu̇ − Yv̇)uv + Yṙur + Zq̇wp− (Kṗ −Mq̇)pq

(2.30)

The hydrodynamic matrix containing the Coriolis and centripital terms can be
written as follows. For more details about the derivation of the matrix, review [26].

CA =


0 0 0 0 −a3 a2
0 0 0 a3 0 −a1
0 0 0 −a2 a1 0
0 −a3 a2 0 −b3 b2
a3 0 −a1 b3 0 −b1
−a2 a1 0 −b2 b1 0

 (2.31)

where:

a1 =Xu̇u

a2 =Yv̇v + Yṙr

a3 =Zẇw + Zq̇q

b1 =Kṗp

b2 =Mq̇q

b3 =Yṙv +Nṙr

(2.32)

2.4.3 Drag Forces and Moments

The drag forces are mainly due skin friction between the �uid and the vehicle
as it moves through. The drag forces and moments can be written in a vectorial
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form as follows:

τdrag = D(ν)ν (2.33)

where D(ν) is a 6×6 matrix containing the drag coe�cients and it can be written
as follows:

D(ν) =


Xu|u| Xv|v| Xw|w| Xp|p| Xq|q| Xr|r|
Yu|u| Yv|v| Yw|w| Yp|p| Yq|q| Yr|r|
Zu|u| Zv|v| Zw|w| Zp|p| Zq|q| Zr|r|
Ku|u| Kv|v| Kw|w| Kp|p| Kq|q| Kr|r|
Mu|u| Mv|v| Mw|w| Mp|p| Mq|q| Mr|r|
Nu|u| Nv|v| Nw|w| Np|p| Nq|q| Nr|r|

 (2.34)

Since the vehicle is symmetric with respect to the X0Y0 and the X0Z0 planes of
the body-�xed frames, the damping matrix can be simpli�ed as follows:

D(ν) =


Xu|u||u| 0 0 0 0 0

0 Yv|v||v| 0 0 0 Yr|r||r|
0 0 Zw|w||w| 0 Zq|q||q| 0
0 0 0 Kp|p||p| 0 0
0 0 Mw|w||w| 0 Mq|q||q| 0
0 Nv|v||v| 0 0 0 Nr|r||r|

 (2.35)

Note that the damping matrix is not symmetric as the added mass inertia matrix.
The drag forces and moments acting on the vehicle in the X0, Y0, and Z0 directions
are expressed as follows:

Xdrag =Xu|u|u|u|
Ydrag =Yv|v|v|v|+ Yr|r|r|r|
Zdrag =Zw|w|w|w|+ Zq|q|q|q|
Kdrag =Kp|p|p|p|
Mdrag =Mq|q|q|q|+Mw|w|w|w|
Ndrag =Nr|r|r|r|+Nv|v|v|v|

(2.36)

2.4.4 Lift Forces and Moments

The lift forces and moments acting on the vehicle are the sum of the body lift
forces and moments and the �ns and wings forces and moments.

τlift = τlift, body + τlift, fins & wings (2.37)
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Body lift forces and moments

The body lift forces and moments are the result of the vehicle moving at a
certain angle of attack through the �uid, which will cause a �ow separation and
hence a pressure di�erence between the upper part and the lower part of the
vehicle. This pressure di�erence creates a lift force that act on the center of mass
and lift moments.

Body lift Forces
The body lift forces are calculated using the following empirical formula provided

in [27]:

Lbody = −1

2
ρApcydu

2 (2.38)

where ρ is the water density, Ap is the hull's projected area on the XBYB and the
XBZB planes of the body �xed frame, and cyd is the body lift coe�cient, which
Hoerner [27] expresses as follows:

cyd =
dcyd
dβ

β (2.39)

where β is the hull's angle of attack in radians expressed as follows:

tanβ =
w

u
=⇒ β ≈ w

u
(2.40)

The derivative term dcyd
dβ

in (2.39) can be calculated using the following relation
ship provided by Hoerner [27]:

dcoyd
dβo

= coydβ = (
l

d
)coyβ (2.41)

where l is the vehicle's length, and d is its outer diameter. Also, Hoerner stated
in [27] that:

for 6.7 ≤ l

d
≤ 10, coyβ = 0.003 (2.42)

The body lift slope
dcoyd
dβo calculated in (2.41) is in degrees and is converted to radians

as follows:

cydβ = coydβ(
180

π
) (2.43)
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After substituting cydβ from (2.43) and β from (2.40) into (2.38) the following body
lift forces are obtained:

Ylift,body = −1

2
ρApcydβuv

Zlift,body = −1

2
ρApcydβuw

(2.44)

The equations in (2.44) can be written as follows:

Ylift,body = Yuvluv

Zlift,body = Zuwluw
(2.45)

where Yuvl and Zuwl are the body lift coe�cients:

Yuvl = Zuwl = −1

2
ρApcydβ (2.46)

Body lift Moments
According to Hoerner [27], the body lift force acts on a point between 0.7 and

0.6 of the length of the body measured from its nose, so the moment arm can be
calcultaed as follows:

xcp = −0.65l − xzero (2.47)

where xzero is the position of the origin of the body-�xed frame with respect to
the nose of the vehicle. Hence, the body lift moments can be written as follows:

Mlift,body = −1

2
ρApcydβxcpuw

Nlift,body =
1

2
ρApcydβxcpuv

(2.48)

The equations in (2.48) can be written as follows:

Mlift,body = Muwluw

Nlift,body = Nuvluv
(2.49)

where Muwl and Nuvl are the body lift moments coe�cients:

Muwl = −Nuvl = −1

2
ρApcydβxcp (2.50)
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Fins and wings lift forces and moments

The vehicle's yaw and pitch can be controlled by changing the angle of vertical
and the horizontal �ns respectively. The wings are �xed and have zero angle of
attack. During the gliding mode when the vehicle's density is less or greater than
that of water, the wings allow the vehicle to glide forward while it is ascending or
descending. In gliding mode, without the wings, the vehicle would move upward
or downward in a vertical direction only and it will not glide forward.

Fins lift forces and moments
The empirical formula of the �n lift forces and moments as suggested in [28] can

be written as follows:

Lfin =
1

2
ρcLSfinδev

2
e

Mfin = xfinLfin

(2.51)

where cL is the �n lift coe�cient, δe is the �n e�ective angle in radians, ve is the
e�ective �n velocity, and xfin is the axial position of the �n post with respect to
the body-�xed frame.
The �n lift forces and moments as derived in [28] can be written as follows:

Ylift,fins =ρcLαSfin[u2δr − uv − xfin(ur)]

Zlift,fins =− ρcLαSfin[u2δs+ uw − xfin(uq)]

Mlift,fins =ρcLαSfinxfin[u2δs+ uw − xfin(uq)]

Nlift,fins =ρcLαSfinxfin[u2δr − uv − xfin(ur)]

(2.52)

where δr and δs are the rudder and stern angles of the �ns, and cLα is the �n lift
coe�cient. An empirical formula that expresses the �n lift coe�cient as a function
of the angle of attack α is given by:

cLα =
dcL
dα

= [
1

2ᾱπ
+

1

π(ARe)
]−1 (2.53)

where ᾱ is estimated by Hoerner [27] to be 0.9, and ARe is the e�ective �n aspect
ratio and that can be calculated as follows:

ARe = 2(AR) = 2(
bf in

2

Sf in
) (2.54)

where bf in is the span of the �n.
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2.4.5 Propeller Forces and Moments

The thrust force generated by the propeller is assumed to be constant in the
positive XB direction of the body �xed frame. Also, the propeller is assumed to
generate a constant moment in the roll (XB) direction of the body-�xed frame.

2.4.6 Disturbance Forces and Moments

The robustness of the linear controller to be designed in the later chapter
is investigated under the presence of an unknown disturbance, which is mainly
caused by underwater current. In order to investigate the e�ect of disturbance on
the performance of the controller, the unknown underwater current is modeled as
an unknown force �eld that acts on the center of mass of the vehicle. This force
�eld is expressed with respect to the global frame as follows:

δD =

δDx

δDy

δDz

 , (2.55)

where δDx, δDy, and δDz are disturbance forces along the x, y, and z axes of the
global frame, respectively. To include these forces in the 6DOF nonlinear model
in (2.15), they should be expressed with respect to the body-�xed frame. This can
be done using the linear matrix transformation J1 from (2.6) as follows:

fδD(η2) = J−11 .δD = J−11 .

δDx

δDy

δDz

 , (2.56)

The disturbance forces and moments acting on the vehicle's center of mass can be
expressed as follows:

FδD = fδD =

δdxδdy
δdz

 ,
MδD = rG × fδD =

δdkδdm
δdn

 ,
(2.57)

where rG is the position vector of the center of mass of the vehicle with respect
to the body �xed frame. δdx, δdy, and δdz are the disturbance forces along the
X0, Y0, and Z0 axes of the body �xed frame, respectively. δdk, δdm, and δdn are
the disturbance moments about the X0, Y0, and Z0 axes of the body �xed frame,
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respectively. Denote by:

δd =


δdx
δdy
δdz
δdk
δdm
δdn

 , (2.58)

to be the vector that contains the disturbance forces and moments that acts on
the vehicle's center of mass expressed with respect to the body �xed frame.

2.4.7 Full 6-DOF Equations of Motion with the Combined

External Forces and Moments

The full 6-DOF equations of motion with the combined external forces and
moments are expressed as follows:

m[u̇− vr + wq − xG(q2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] =− (W −B)sinθ

+Xu̇u̇+ Zẇwq + Zq̇q
2 − Yv̇vr − Yṙr2

+Xu|u|u|u|
+XThrust

+ δdx

(2.59)

m[v̇ − wp+ ur − yG(r2 + p2) + zG(qr − ṗ) + xG(qp+ ṙ)] =(W −B)cosθsinφ

+ Yv̇v̇ + Yṙṙ +Xu̇ur − Zẇwp− Zq̇pq
+ Yv|v|v|v|+ Yr|r|r|r|
+ Yuvluv

+ ρcLα,finSfin[u2δr − uv − xfin(ur)]

+ δdy

(2.60)

21



m[ẇ − uq + vp− zG(p2 + q2) + xG(rp− q̇) + yG(rq + ṗ)] =(W −B)cosθcosφ

+ Zẇẇ + Zq̇ q̇ −Xu̇uq + Yv̇vp+ Yṙrp

+ Zw|w|w|w|+ Zq|q|q|q|
+ Zuwluw

− 1

2
ρcLα,finSfin[u2δsright + uw − xfin(uq)]

− 1

2
ρcLα,finSfin[u2δsleft + uw − xfin(uq)]

− ρcLα,wingSwing[uw − xwing(uq)]
+ δdz

(2.61)

Ixṗ+ (Iz − Iy)qr +m[yG(ẇ − uq + vp)− zG(v̇ − wp+ ur)] =yGWcosθcosφ− ZGWcosθsinφ

+Kṗṗ− (Yv̇ − Zẇ)vw − (Yṙ + Zq̇)wr

+ (Yṙ + Zq̇)vq − (Mq̇ −Nṙ)qr

+Kp|p|p|p|
+Kpropeller

− 1

2
ρcLα,finSfinyfin,right[u

2δsright + uw − xfin(uq)]

− 1

2
ρcLα,finSfinyfin,left[u

2δsleft + uw − xfin(uq)]

+ δdk

(2.62)

Iy q̇ + (Ix − Iz)rp+m[zG(u̇− vr + wq)− xG(ẇ − uq + vp)] =− xGWcosθcosφ− zGWsinθ

+Mq̇ q̇ + Zq̇ẇ − (Zẇ −Xu̇)wu− Yṙvp+ (Kṗ −Nṙ)rp− Zq̇qu
+Mq|q|q|q|+Mw|w|w|w|
+Muwluw

+
1

2
ρcLα,finSfinxfin[u2δsright + uw − xfin(uq)]

+
1

2
ρcLα,finSfinxfin[u2δsleft + uw − xfin(uq)]

+ ρcLα,wingSwingxwing[uw − xwing(uq)]
+ δdm

(2.63)

Iz ṙ + (Iy − Ix)pq +m[xG(v̇ − wp+ ur)− yG(u̇− vr + wq)] =xGWcosφ+ yGWsinθ

+Nṙṙ + Yṙv̇ − (Xu̇ − Yv̇)uv
+ Yṙur + Zq̇wp− (Kṗ −Mq̇)pq

+Nr|r|r|r|+Nv|v|v|v|
+Nuvluv

+ ρcLα,finSfinxfin[u2δr − uv − xfin(ur)]

+ δdn

(2.64)
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2.5 Hydrodynamic Coe�cients

In this section, the added mass and the drag coe�cients for the forces and
moments acting on the vehicle are calculated.

2.5.1 Added Mass coe�cients

The added mass derivatives in the added mass inertia matrix in (2.28) are cal-
culated analytically. Calculating the added mass coe�cients in three dimensions
is di�cult, especially for geometries that have complex features. In this work, the
added mass coe�cients are calculated using the strip theory, in which the outer
geometry of the vehicle is divided into a number of strips. Then, 2-dimensional
hydrodynamic coe�cients for added mass are computed for each strip and inte-
grated over the length of the body to yield the 3-dimensional coe�cients. The

Table 2.6: Added Mass Coe�cients for Various Two-Dimentional Bodies, [1]

2-dimensional added mass coe�cients for various 2-dimensional bodies are shown
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in table 2.6, where sinα is expressed as follows:

sinα =
2ab

(a2 + b2)
and

π

2
< α < π (2.65)

In this work, the circle and the �nned circle are used from table 2.6, where a is the
radius of the cylinder, and b is the projected distance on the YBZB plane measured
from the centerline of the cylinder to the tip of the �n or the wing. The value of
b changes whether integrating over the �ns or over the wings.
Table 2.7 is similar to table 2.6, with the only di�erence is the numbering of

Table 2.7: Added Mass Coe�cients for circle and �nned circle

the axes which are chosen to be convenient with the body-�xed frame axes. The
direction of translation in the direction of the XB, YB and ZB is numbered 1, 2,
and 3 respectively, and the direction of rotation about the XB, YB, and ZB are
numbered 4, 5, and 6 respectively.
The 3-dimensional added mass coe�cients can be calculated by integrating the
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2-dimensional added mass coe�cients over the length of the vehicle, and the di-
agonal coe�cients of the added mass matrix can be calculated using the following
equations:

Xu̇ = −
∫ L/2

−L/2
m

(2D)
11 (y, z)dx (2.66)

Yv̇ = −
∫ L/2

−L/2
m

(2D)
22 (y, z)dx (2.67)

Zẇ = −
∫ L/2

−L/2
m

(2D)
33 (y, z)dx (2.68)

Kṗ = −
∫ L/2

−L/2
m

(2D)
44 (y, z)dx (2.69)

Mq̇ = −
∫ L/2

−L/2
m

(2D)
55 (y, z)dx (2.70)

Nṙ = −
∫ L/2

−L/2
m

(2D)
66 (y, z)dx (2.71)

Note that the coe�cients in (2.66), (2.70), and (2.71) can not be calculated using
table (2.7), and calculating the coe�cient in (2.69) is involving.

Diagonal added mass coe�cients

Axial added mass
Since it is di�cult to calculate the added mass coe�cient in (2.66). Blevins [2]

provided an empirical formula for calculating it:

Xu̇ = −4αρπ

3
(
l

2
)(
d

2
)2 (2.72)

Xu̇ = −4βρπ

3
(
d

2
)3 (2.73)

where α and β are empirical parameters measured by Blevins [2] and they depend
on the vehicle's length to diameter ratio. Table 2.8 shows the axial added mass
parameters for various length to diameter ratios:
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Table 2.8: Axial Added Mass Parameters, Blevins [2]

Cross Flow Added Mass
The cross �ow added mass coe�cients can be calculated using strip theory ex-

plained in combination with table (2.7) is used.
let:

ma = πρa2 for the hull

maf = πρ[a2fin +
(b2fin − a2fin)2

b2fin
] for the fins

maw = πρ[a2wing +
(b2wing − a2wing)2

b2wing
] for the wings

(2.74)

Using (2.67) and (2.68), the coe�cients Yv̇ and Zẇ can be computed as follows:

Yv̇ = −
∫ xfin,rear

−l/2
ma dx−

∫ xfin,front

xfin,rear

maf dx−
∫ l/2

xfin,front

ma dx (2.75)

Zẇ =−
∫ xfin,rear

−l/2
ma dx−

∫ xfin,front

xfin,rear

maf dx−
∫ xwing,rear

xfin,front

ma dx

−
∫ xwing,front

xwing,rear

maw dx−
∫ l/2

xwing,front

ma dx

(2.76)
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According to table 2.7, the coe�cients Mq̇ and Nṙ can be computed as suggested
in [28] as follows:

Mq̇ =−
∫ l/2

−l/2
x2m33 dx

=−
∫ xfin,rear

−l/2
x2ma dx−

∫ xfin,front

xfin,rear

x2maf dx−
∫ xwing,rear

xfin,front

x2ma dx

−
∫ xwing,front

xwing,rear

x2maw dx−
∫ l/2

xwing,front

x2ma dx

(2.77)

Nṙ =−
∫ l/2

−l/2
x2m22 dx

=−
∫ xfin,rear

−l/2
x2ma dx−

∫ xfin,front

xfin,rear

x2maf dx−
∫ xl/2

xfin,front

x2ma dx

(2.78)

Rolling Added Mass
During roll movement it is assumed that the vehicle's hull is smooth and does

not generate any added mass e�ect. The added mass e�ect during roll movement
is mainly due to the wings and �ns. The rolling added mass Kṗ is calculated using
the empirical formula provided by Blevins [2]:

Kṗ = −
∫ xfin,front

xfin,rear

2

π
ρb4findx−

∫ xwing,front

xwing,rear

2

π
ρb4wingdx (2.79)

where bfin and bwing are is the �n and wing heights above the vehicle centerline.

Cross terms added mass coe�cients (o�-diagonal coe�cients)
According to table 2.7, the coe�cients Zq̇ and Yṙ can be computed as suggested

in [28] as follows:

Zq̇ =−
∫ l/2

−l/2
xm33dx

=−
∫ xfin,rear

−l/2
xma dx−

∫ xfin,front

xfin,rear

xmaf dx−
∫ xwing,rear

xfin,front

xma dx

−
∫ xwing,front

xwing,rear

xmaw dx−
∫ l/2

xwing,front

xma dx

(2.80)
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Yṙ =−
∫ l/2

−l/2
xm22 dx

=−
∫ xfin,rear

−l/2
xma dx−

∫ xfin,front

xfin,rear

xmaf dx−
∫ xl/2

xfin,front

xma dx

(2.81)

Table 2.9 shows the values of the added mass coe�cients:

Table 2.9: Added mass coe�cients

Coe�cient Value Unit Description
Xu̇ -1.14 Kg Axial added mass
Yv̇ -99.253 Kg Cross-�ow added mass
Zẇ -499.687 Kg Cross-�ow added mass
Kṗ -72.6019 Kg.m/rad2 Rolling added mass
Mq̇ -39.815 Kg.m/rad2 Cross-�ow added mass
Nṙ -39.065 Kg.m/rad2 Cross-�ow added mass
Yṙ -24.746 Kg.m/rad Cross term added mass
Zq̇ 24.747 Kg.m/rad Cross term added mass

2.5.2 Drag coe�cients

The drag coe�cients in (2.35) are calculated analytically.

Axial drag coe�cient
The axial drag coe�cient can be calculated using the empirical formula presented

in [28]:

Xu|u| = −
1

2
ρcdAf (2.82)

where Af is the frontal area of the vehicle (see table 2.1), and cd is the axial
drag coe�cient of the vehicle. Triantafyllou [29] provided an empirical formula to
calculate cd:

cd =
cssπAp
Af

[1 + 60(
d

l
)3 + 0.0025(

l

d
)] (2.83)

where css is the Schoenherr's value for skin friction of a �at plate estimated to be
3.397× 10−3 in [30], and Ap = ld is the vehicle's planform area.
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Cross �ow drag coe�cients
The method used to calculate the cross �ow drag coe�cients is similar to the

strip theory used to calculate the added mass coe�cients. The cross �ow drag
coe�cients of the vehicle is the sum of the drag coe�cients over the cylinder plus
the drag coe�cients over the �ns and the wings.
Let:

γ =
1

2
ρCdc

νf =
1

2
ρSfinCdf

νw =
1

2
ρSwingCdw

(2.84)

where Cdc is the drag coe�cient of a cylinder, which Hoerner [27] estimates it to
be 1.1, Sfin and Swing are the planform areas of the �n and the wing (see table
2.1), Cdf and Cdw are the cross �ow drag coe�cients of �ns and wings, that are
derived using the formula developed by Whicker and Fehlner [31]:

Cdf = 0.1 + 0.7tfin

Cdw = 0.1 + 0.7twing
(2.85)

where tfin and twing are the ratios of the width of the top and the bottom of the
�ns and the wings, respectively
The drag coe�cients Yv|v|, Zw|w|, Mq|q| and Nr|r| are calculated as follows:

Yv|v| = −γ
∫ l/2

−l/2
2r dx− 2νf

Zw|w| = −γ
∫ l/2

−l/2
2r dx− 2νf − 2νw

Mq|q| = −γ
∫ l/2

−l/2
2x3r dx− 2x3finνf − 2x3wingνw

Nr|r| = −γ
∫ l/2

−l/2
2x3r dx− 2x3finνf

(2.86)

Rolling Drag
Prestero [28] approximated the rolling drag of the vehicle to be generated because

of the �ns and wings component of the cross �ow drag coe�ecient (Yv|v|). The roll
drag force can be calculated according to [28] as follows:

F = (Yvv,finrmean,fin)r2mean,finp|p|+ (Yvv,wingrmean,wing)r
2
mean,wingp|p| (2.87)
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Table 2.10: Drag coe�cients

Coe�cient Value Unit Description
Xu|u| -4.593 Kg/m Axial drag
Yv|v| -246.574 Kg/m Cross-�ow drag
Zw|w| -351.124 Kg/m Cross-�ow drag
Kp|p| -10.33 Kg.m2/rad2 Rolling drag
Mq|q| -9.295 Kg.m2/rad2 Cross-�ow drag
Nr|r| -9.25 Kg.m2/rad2 Cross-�ow drag
Yr|r| 12.172 Kg.m/rad2 Cross term drag
Zq|q| -12.76 Kg.m/rad2 Cross term drag
Mw|w| 23.857 Kg Cross term drag
Nv|v| -16.016 Kg Cross term drag

where Yvv,fin and Yvv,wing are the �ns and wings components of the vehicle cross-
�ow drag coe�cient, respectively, rmean,fin and rmean,wing are the mean �n and
wing height above the centerline of the vehicle, respectively. The rolling drag
coe�cient is expressed as follows:

Kp|p| = (Yvv,finrmean,fin)r2mean,fin + (Yvv,wingrmean,wing)r
2
mean,wing (2.88)

Cross terms drag coe�cients
According to [28] the coe�cients Zq|q|, Yr|r|, Mw|w| & Nv|v| can be computed as

follows:

Yr|r| = −γ
∫ l/2

−l/2
2x|x|r dx− 2xfin|xfin|.νf

Zq|q| = γ

∫ l/2

−l/2
2x|x|r dx+ 2xfin|xfin|.νf + 2xwing|xwing|.νw

Mw|w| = γ

∫ l/2

−l/2
2xr dx− 2xfin.νf − 2xwing.νw

Nv|v| = −γ
∫ l/2

−l/2
2xr dx+ 2xfin.νf

(2.89)

Table 2.10 shows the values of the drag coe�cients that are used in the model:
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Chapter 3

Linear Model, Linearization, and
Control Design

In this chapter the nonlinear model in (2.15) and (2.2) is linearized about
a given three-dimensional trajectory parameterized with respect to time, to get
a linear time variant (LTV) state space model. A linear quadratic regulator is
designed based on the linearized model, and the derived control law is applied
to the nonlinear model. Also in this chapter, the robustness of the controller is
investigated in the presence of disturbance.

3.1 Linear Model and Linearization about a Dessired

Trajectory

In this section, the nonlinear model in (2.15) and (2.2) is linearized about a
given 3D trajectory parametrized with respect to time: γ(t) = {xeq(t), yeq(t), zeq(t)}.
This trajectory represents the desired position of the vehicle with respect to {U}
at each instant of time. By setting the mass to be constant for the thrust mode,
and variable between mmin and mmax for the gliding mode, the model in (2.15)
is used to represent both modes of operation. Based on the given trajectory it is
decided which mode of operation is used, and whether to use constant or variable
mass in the nonlinear model before linearizing it about the given trajectory.
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3.1.1 Nonlinear State Space Form

The nonlinear model in (2.15) and (2.2) can be written in the state space form
as:

χ̇ = F (χ, U,m) + ∆d ,

where ∆d =

[
M−1

inertia.δd
06×1

]
,

(3.1)

which includes the 6 dynamic equations of motion of the vehicle in (2.15), and
the 6 kinematic equations from the transformation between {U} and {B} in (2.2).
χ = [ν, η]T is the state vector of length 12, U = [Xthrust , δr , δs,right , δs,left]

T is the
vector containing the inputs of length 4, and m is the mass of the vehicle. Minertia

is the inertia matrix of the vehicle that include the added mass inertia matrix (MA)
calculated in (2.28). δd is the vector containing the unknown disturbance forces
and moments. The vector of zeros corresponds to the six kinematic equations that
are included in the nonlinear state space form.
Since ∆d is unknown, it is not considered in the linearization and control design.
The nonlinear state space model which is used for linearization and control design
can be written as follows:

χ̇ = F (χ, U,m), (3.2)

In thrust mode the mass of the vehicle is set to a constant value, which makes the
vehicle neutrally buoyant, so the nonlinear state space form for the thrust mode
is written as:

χ̇ = F (χ, U,mneutral) , (3.3)

where mneutral is the mass of the vehicle when it is half full of sea water (neutrally
buoyant). In the gliding mode the mass of the vehicle is considered to be variable
between two values mmin and mmax, where mmin is the mass of the vehicle when
it is empty of sea water (the vehicle is positively buoyant), and mmax is the mass
of the vehicle when it is full of sea water (the vehicle is negatively buoyant).
However, keeping the mass variable in (3.2) makes the linearization very di�cult
and challenging. Therefore, to simplify the linearization process in gliding mode,
the mass of the vehicle is set to be constant to mmin when it is �oating up, and
to mmax when it is diving down. So, the nonlinear state space form for the gliding
mode is written as:

χ̇ = F (χ, U,mmin) when the vehicle is �oating up,

χ̇ = F (χ, U,mmax) when the vehicle is diving down.
(3.4)
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Thus, before linearizing the nonlinear model about the given 3D trajectory, the
desired mass of the vehicle should be determined in order simplify the linearization
process. The mass of the vehicle is determined based on the given trajectory, which
will be explained in more detail in the following sections.

3.1.2 Calculating the Equilibrium States and Deciding which

Mode of Operation to Use Based on the Equilibrium

Trajectory

In order to linearize the model in (3.2) about the equilibrium trajectory, the
desired mode of operation should be determined �rst, so that the corresponding
value of the vehicle's mass is identi�ed and substituted in (3.2). The desired mode
of operation is determined based on the velocity pro�le of the given trajectory.
Also, in the gliding mode, the desired mass used for the vehicle is determined
based on the equilibrium pitch angle of the trajectory, so if the equilibrium pitch
angle is positive, the vehicle should �oat up to follow the desired trajectory, and
therefore the desired mass is equal to mmin. Whereas, if the equilibrium pitch
angle is negative, the vehicle should dive down to track the desired trajectory, and
therefore the desired mass should be equal to mmax.
The equilibrium states

(
χeq(t)

)
and inputs

(
Ueq(t)

)
that satisfy the desired tra-

jectory
(
γ(t)

)
must be known, which will be varying with respect to time. Of the

equilibrium states, only the position of the vehicle with respect to {U} is given
as a function of time η1,eq = [xeq(t), yeq(t), zeq(t)]

T . The rest of the equilibrium
states need to be calculated.
In order to calculate the desired orientation of vehicle along the trajectory η2,eq(t) =
[φeq(t), θeq(t), ψeq(t)]

T , consider the Frenet-Seret {FS} frame associated with each
point on the path at each instant of time with its unit vectors: T (tangent to the
path), N (normal to the path and pointing towards the center of curvature of
the path), and B = T × N , as shown in Fig. 3.1. The position of the origin of
the Frenet-Seret frame, OFS, with respect to {U} is the desired position of the
vehicle

(
η1,eq = [xeq(t), yeq(t), zeq(t)]

T
)
. The desired orientation (Euler angles)

parametrizes the rotation matrix from the {FS} frame to the {U} frame, as shown
in (3.5):

R
{U}
{FS} =

[
T (t){U} N(t){U} B(t){U}

]
=

cψeqcθeq −sψeqcφeq + cψeqsθeqsφeq sψeqsφeq + cψeqcφeqsθeq
sψeqcθeq cψeqcφeq + sφeqsθeqsψeq −cψeqsφeq + sθeqsψeqcφeq
−sθeq cθeqsφeq cθeqcφeq


(3.5)

where the vectors T {U}, N{U}, B{U} are the unit vectors of the {FS} expressed
with respect to {U}. This notation is consistent with the notation introduced
in [32]. To calculate the coordinates of the unit vectors of {FS} with respect to
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Figure 3.1: AUV Tracking a 3D trajectory

{U}, the given 3D trajectory γ(t) is reparametrized with respect to the arc length
to get α(s) = {xeq(s), yeq(s), zeq(s)}. The arc-length is de�ned as:

s =

∫
γ

|γ̇(t)|dt , (3.6)

where γ̇(t) is the �rst time derivative of γ(t), and |γ̇(t)| is the absolute velocity of
the curve with respect to {U}. The coordinates of the unit vectors T (s) and N(s)
with respect to {U} are calculated by di�erentiating α(s) with respect to s once and
twice, respectively, and B(s) = T (s)×N(s). The vectors are then reparametrized
with respect to time. For more details about Frenet frames, see [33]. Equation
(3.5) is solved to get the desired equilibrium Euler angles (η2,eq(t)). Using similar
approach as in [32], the equilibrium pitch angle (θeq) is �rst calculated using the
�rst element of the third row of the transformation matrix in (3.5) as follows:

θeq = −sin−1
(
Tz(t)

{U}
)
, (3.7)

where Tz(t){U} is the z-coordinate of the vector T (t){U} with respect to {U}. Since
the pitch angle is desired to be zero degrees, the �rst solution from (3.7) is chosen.
Then the equilibrium roll angle (φeq) is calculated using the second element of the
third row of the transformation matrix in (3.5) as follows:

φeq = sin−1
(
sec(θeq).Nz(t)

{U}
)
, (3.8)
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where Nz(t)
{U} is the z component of the vector N(t){U} with respect to {U}.

Similarly as the pitch angle, the �rst solution is chosen for the equilibrium roll
angle. The yaw angle is calculated using the �rst and second elements of the �rst
column of the transformation matrix in (3.5) as follows:

ψeq = Tan−1
(
Ty(t)

{U}

Tx(t){U}

)
+Kπ K ∈ N (3.9)

where Tx(t){U} and Ty(t){U} are the x and the y components of the vector T (t){U}

with respect to {U}, respectively. The equilibrium yaw angle is not bounded be-
tween [−π, π].

The rest of the equilibrium states νeq(t), which represent the equilibrium linear
and angular velocities with respect to {U} expressed in {FS}, are the equilibrium
velocities that satisfy the given equilibrium trajectory γ(t) and are calculated as
follows:

νeq(t) =
(
R
{U}
{FS}

)−1
.η̇eq(t), (3.10)

where
(
R
{U}
{FS}

)−1
is the inverse of the transformation matrix R{U}{FS} from (3.5), and

it is parametrized with respect to the equilibrium Euler angles (φeq, θeq & ψeq),
and η̇eq(t) is the time derivative of ηeq(t).
The desired mode of operation can be determined based on the equilibrium forward
velocity (ueq); if ueq is around 1.5 m/sec, then the vehicle switches to thrust mode
and the mass of the vehicle is equal to mneutral. However, if ueq is around 0.2
m/sec, then the vehicle switches to the gliding mode and the mass of the vehicle
is equal to mmin or mmax. In gliding mode, the value of the mass is determined
based on the equilibrium pitch angle according to the following equation:

m = tanh

(
−θeq(t)

ε

)
+mneutral, (3.11)

where the function tanh is used to avoid the discontinuity between mmin and
mmax, when the equilibrium pitch angle changes from positive to negative. The
constant ε is used to control the rate of the transition between mmin and mmax.
The x-position of the vehicle's center of gravity with respect to the body �xed
frame {B} (xG) is coupled with the mass of the vehicle, so when the mass of the
vehicle changes between mmin and mmax, xG changes between -0.02m and 0.02m
respectively according to the following relation:

xG = 0.02× (m−mneutral), (3.12)

35



where m is calculated from(3.11). In thrust mode, m is constant and equal to
mneutral, so xG is zero.
In gliding mode, the vehicle is driven by the hydro-static forces (buoyancy and
weight) which act around the center of the vehicle; in this case, when �oating
up or diving down, the x-axis of the body �xed frame will not be tangent to the
desired 3D trajectory while tracking it, as in thrust mode. So, the forward and
the vertical velocities (u(t) and w(t)) will be di�erent than the equilibrium values
calculated from (3.10), similarly, the vehicle's pitch angle will not be equal to the
equilibrium pitch angle (θeq) calculated from (3.7). To track these equilibrium
values, the vehicle will have to exert more e�ort and consume more energy, which
will defeat the purpose of the gliding mode, that is to conserve energy. And
since in gliding mode the desired trajectory to be tracked is a saw-tooth path,
the nonlinear model is linearized about constant operating points for the pitch
angle θ, the forward velocity u, and the vertical velocity w, and the rest of the
variable equilibrium states that are calculated from (3.5) and (3.10). The gliding
mode is divided into two phases, diving phase and �oating phase. In each phase,
the equilibrium values for the pitch angle and the vertical velocity are considered
constant and di�erent from the other phase. The equilibrium forward velocity is
assumed to be constant and �xed for both phases. The constant equilibrium states
are calculated as follows:

u∗eq = 0.2m/s,

w∗eq(t) = 0.0402× tanh
(
−θeq(t)

ε

)
m/sec,

θ∗eq(t) = 0.2796× tanh
(
θeq(t)

ε

)
rad,

(3.13)

where the function tanh is used to avoid the discrete transition between the two
values of the equilibrium pitch (θ∗eq) and the equilibrium vertical velocity (w∗eq),

which occurs when the vehicle switches between the two phases
(
when θeq(t) cal-

culated in (3.7) changes sign
)
. Similarly as in (3.11), the constant ε is used to

control the rate of the transition between the values of θ∗eq and w
∗
eq that correspond

to each phase. The ∗ is used to distinguish between the constant equilibrium for-
ward velocity, vertical velocity, and pitch angle used for gliding mode instead of
the variable equilibrium forward velocity, vertical velocity, and pitch angle that
are calculated in (3.10) and (3.7). The values 0.2, 0.0402, and 0.2796 in (3.13)
are determined from the open loop simulation for the case of moving forward in
a saw-tooth path. Table (3.1) summarizes the equilibrium states that are used to
linearize the nonlinear model after determining the mode of operation.
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Table 3.1: Equilibrium states and desired mass

Equilibrium
states
and desired
mass

Thrust mode Gliding mode
(Diving)

Gliding mode
(Floating)

xeq given from γ(t) given from γ(t) given from γ(t)
yeq given from γ(t) given from γ(t) given from γ(t)
zeq given from γ(t) given from γ(t) given from γ(t)
φeq calculated from (3.8) calculated from (3.8) calculated from (3.8)
θeq calculated from (3.7) −0.2796 rad 0.2796 rad
ψeq calculated from (3.9) calculated from (3.9) calculated from (3.9)
ueq calculated from (3.10) 0.2 m/sec 0.2 m/sec
veq calculated from (3.10) calculated from (3.10) calculated from (3.10)
weq calculated from (3.10) 0.0402 m/sec −0.0402 m/sec
peq calculated from (3.10) calculated from (3.10) calculated from (3.10)
qeq calculated from (3.10) calculated from (3.10) calculated from (3.10)
req calculated from (3.10) calculated from (3.10) calculated from (3.10)

Desired mass mneutral = 72.5 Kg mmax = 73.5 Kg mmin = 71.5 Kg

3.1.3 Calculating the Equilibrium Inputs that Satisfy the

Equilibrium Trajectory

The equilibrium inputs (Ueq) that satisfy the equilibrium trajectory
(
γ(t)

)
need

to be calculated to linearize the system about them. The equilibrium inputs can
be calculated from (3.2) evaluated at the equilibrium trajectory:

χ̇eq = F (χeq, Ueq,mdesired). (3.14)

However, the inputs do not appear in the kinematic equations, which are included
in (3.2) and (3.14); therefore, only the six dynamic equations from (3.14) are
needed to calculate the equilibrium inputs. The six dynamic equations from (2.15),
evaluated at the equilibrium states, can be written in the following form:

ν̇eq = f1(νeq, φeq, θeq, Ueq,mdesired). (3.15)

ν̇eq, νeq, φeq, θeq, and mdesired in (3.15) are known, and only the equilibrium inputs
vector Ueq is unknown and need to be solved for. The value of mdesired in (3.14)
and (3.15) is constant. Equation (3.15) can be simpli�ed into the following linear
form with respect to the unknown equilibrium inputs vector:

N.Ueq = b, (3.16)
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where N is a 6 × 4 matrix and b is a vector of length 6, and both are known.
The system of equations in (3.16) is overdetermined, since there are only four
unknowns, equilibrium inputs (Xthrust, δr, δs,right and δs,left), and six equations.
Therefore, a solution for Ueq that satis�es the six equations does not exist. The
solution for Ueq is one that minimizes error e = N.Ueq− b in the least mean square
sense, and it can be found to be:

Ueq =
(
NTN

)−1
NT b. (3.17)

3.1.4 Linear Time Variant State Space Model

Now that the equilibrium states
(
χeq(t)

)
, the equilibrium inputs

(
Ueq(t)

)
, and

the desired mass of the vehicle (mdesired) are calculated using the desired trajectory(
γ(t)

)
, equation (3.2) can be linearized and written in the following LTV state

space form:

˙̃χ(t) = A(t)χ̃(t) +B(t)Ũ(t) (3.18)

where χ̃ = χ−χeq and Ũ = U −Ueq. A(t) is a 12× 12 matrix and B(t) is a 12× 4
matrix, and they are calculated from equation (3.2) as follows [34]:

A(t) =
∂F

∂χ

∣∣∣∣∣χ=χ̃eq(t)

U=Ũeq(t)

B(t) =
∂F

∂U

∣∣∣∣∣χ=χ̃eq(t)

U=Ũeq(t)

(3.19)

The output equation of the state space model in (3.18) is written as follows:

y(t) = Cχ̃(t) +DŨ(t) (3.20)

C is a 12 × 12 matrix and D is a 12 × 4 matrix. The system is assumed to be
fully observable and all states are available for measuring at each instant of time,
so matrices C and D are assumed to be:

C = I12×12 D = 012×4 (3.21)

where I12×12 is a 12×12 identity matrix. The steps for linearization about a given
trajectory are summarized in Algorithm (1).

3.2 Control Design

In this section, a linear quadratic regulator is designed based on the linearized
model, and the derived control law is applied to the nonlinear model.
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Consider the linear time variant state space model in equation (3.18), the feedback
LQR control law is written as follows:

U(t) = −k(t)χ̃(t) , (3.22)

where U(t) is the vector of the feedback control inputs of length 4, χ̃(t) = χ(t)−
χeq(t) is state error vector of length 12, and k(t) is a 4 × 12 matrix containing
the control gains, which vary with time. The control gains of the LQR control
law are calculated such that the control law in (3.22) minimizes the following cost
function:

H =
1

2

∫ (
χTQχ+ UTRU

)
dt , (3.23)

where Q is a 12 × 12 weighing matrix for the states, R is 4 × 4 weighing matrix
for the inputs, and both matrices are positive semi-de�nite.

The control gains k that minimize the cost function H are calculated as follows:

k(t) = −R−1B(t)TP (t) , (3.24)

where P (t) is a 12×12 matrix and is calculated by solving the following di�erential
algebraic Reccati equation:

A(t)TP (t) + P (t)A(t) +Q− P (t)B(t)R−1B(t)TP (t) = −Ṗ (t) , (3.25)

which is solved numerically at each time step.
The weighing matrices are chosen by tuning, and they change depending on the
type of trajectory. In this work three trajectories are used for simulation: Helix
with constant pitch and three dimensional Dubin's trajectory for the thrust mode;
and a saw-tooth trajectory for the gliding mode. The R matrix is chosen to be
identity matrix of size 4× 4 for all the trajectory cases:

R =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3.26)

The Q matrix is chosen di�erently for each trajectory case, and after tuning the
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following values are chosen for each trajectory case:

QHelix =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 106 0 0 0 0 0
0 0 0 0 0 0 0 106 0 0 0 0
0 0 0 0 0 0 0 0 106 0 0 0
0 0 0 0 0 0 0 0 0 106 0 0
0 0 0 0 0 0 0 0 0 0 106 0
0 0 0 0 0 0 0 0 0 0 0 106



,

QDubin =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 104 0 0 0 0 0
0 0 0 0 0 0 0 104 0 0 0 0
0 0 0 0 0 0 0 0 104 0 0 0
0 0 0 0 0 0 0 0 0 104 0 0
0 0 0 0 0 0 0 0 0 0 104 0
0 0 0 0 0 0 0 0 0 0 0 104



,

QSaw−tooth =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



,

(3.27)
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As observed for the helix and the 3D Dubin's trajectory cases, more weights are
put on the position and orientation of the vehicle, since the main objective is for
the vehicle to follow the desired trajectory with minimum error in the vehicle's
position and orientation. In saw-tooth case (gliding mode), all the states are given
the same weight, because if more weights are put on the position and orientation,
the vehicle will have to use more e�ort and energy to minimize the error for its
position and orientation, which will defeat the purpose of the gliding mode.
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Algorithm 1 Linearization about a given trajectory
Given:

1: Nonlinear Model: χ̇ = F (χ, U,m)
2: Trajectory: γ(t){U} = {xeq(t), yeq(t), zeq(t)} with respect to the global frame
{U}

Calculating Equilibrium States:
3: De�ne: Frenet-Sertet Frames {FS} at each point on γ(t).
4: Calculate: The coordinates of the unit vectors of {FS}
T (t){U}, N(t){U} & B(t){U} with respect to {U}

5: Calculate: The equilibrium Euler angles η{U}2eq (t) = [φeq(t), θeq(t), ψeq(t)]
T

using equation (3.5)
6: Calculate: The equilibrium velocities νeq(t) = [ueq(t), veq(t), weq(t), peq(t),
qeq(t), req(t)]T using equation (3.10)

Setting the Mass of the Vehicle:
7: Check: The value of the equilibrium forward velocity (ueq)
8: if ueq = 1.5 m/sec then
9: Switch: to Thrust mode

10: Set: mdesired to be mneutral

11: else if ueq = 0.2 m/sec then
12: Switch: to Gliding mode
13: Substitute: θeq, ueq, and weq calculated in steps 5 and 6, with θ∗eq, u

∗
eq,

and w∗eq that are calculated from (3.13)
14: if θeq < 0 then
15: Set: mdesired to be mmax (Diving down)
16: else if θeq > 0 then
17: Set: mdesired to be mmin (Floating up)
18: end if
19: end if

Calculating the Equilibrium Inputs:
20: Substitute: ηeq(t), νeq(t), and mdesired in the nonlinear dynamic equations

ν̇eq(t) = f1
(
νeq(t), φeq(t), θeq(t), Ueq(t), mdesired

)
21: Rewrite: The overdetermined system ν̇eq(t) = f1

(
νeq(t), φeq(t), θeq(t), Ueq(t),

mdesired

)
as a linear algebraic form with respect to Ueq(t), N.Ueq = b

22: Solve: The overdetermined system N.Ueq = b for Ueq(t) by minimizing least
mean square error Ueq =

(
NTN

)−1
GT b

23: Linearize: The nonlinear model χ̇ = F (χ, U,m), about χeq(t) =
[ηeq(t), νeq(t)]

T & Ueq(t) to get the linear time variant system ˙̃χ(t) =
A(t)χ̃(t) +B(t)Ũ(t)
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Chapter 4

Simulations

In this chapter, the derived nonlinear model is simulated when applying open
loop control inputs. Also, the linear model is simulated when applying open loop
inputs to it, and the results are compared to the results of the nonlinear model,
when applying the same inputs that are applied to the linearized model. Simulation
results for the controlled linear and nonlinear systems to track three-dimensional
trajectory with and without disturbance are also presented in this chapter.

4.1 Open Loop Simulations for the Nonlinear Model

The model derived in the previous section is simulated on MATLAB Simulink.
As mentioned before, there are two modes of operation, thrust mode and gliding
mode. For the thrust mode there are 5 inputs: thrust force (XThrust) , two rudder
�ns (δr), which are assumed to be coupled for simplicity, and two stern �ns (δs,right
and δs,left). For the gliding mode there are also 5 inputs: mass of the vehicle (m) ,
two rudder �ns (δr), which are assumed to be coupled for simplicity, and two stern
�ns (δs,right and δs,left).
The desired outputs are the 12 states of the system, which are the linear and
angular velocities (ν) expressed with respect to the body �xed frame, and the
position and orientation of the vehicle (η) with respect to the inertial frame of
reference.

4.1.1 Thrust Mode

In this section, the basic motion paths (horizontal straight line, circle, diving
up and diving down) for the thrust mode are simulated. The vehicle starts from
the origin of the inertial frame, and its initial orientation is taken when the body
�xed frame has the same orientation as the inertial frame. The vehicle accelerates
from zero linear and angular velocities. The simulation time is 200 seconds.
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Moving in a straight line

To move in a straight line only one input is needed, which is the thrust force
(Xthrust). The applied thrust force at time zero is 150 N. Fig. 4.1 shows the
position and the orientation of the vehicle with respect to the inertial frame, and
the linear and angular velocities expressed in the body �xed frame.
At the beginning, the vehicle dives down a few centimeters then stabilizes to move
in a straight line. The reason is that the line of action of the thrust force is
along the axis that pass through the center of buoyancy, which is 5 cm above the
center of gravity of the vehicle. Since the center of gravity is placed 5 cm below
the center of buoyancy, self correcting moments are generated from the restoring
forces (buoyancy and weight), so if the vehicle is pitching up or down, the self
correcting moment will tend to return it to the zero pitch orientation. Therefore,
the pitch angle goes to zero after a few seconds given the self correcting moments
and the lift moments generated by the lift forces acting on the �ns.

Moving in circles

The inputs needed for the vehicle to move in a circular motion are: thrust force
(XThrust) and rudder angle (δr). 150 N thrust force and -5 degrees rudder angle
are applied at time zero. The initial position and orientation of the vehicle with
respect to the inertial frame are η0 = [0 0 0 0 0 0]T and the initial velocity of
the vehicle expressed in the body �xed frame is ν0 = [0 0 0 0 0 0]T . The model
is simulated for 200 seconds. Fig. 4.2 shows the position and the orientation of
the vehicle with respect to the inertial frame, and the linear and angular velocities
expressed in the body �xed frame.
Although in this mode (thrust mode) the vehicle is neutrally buoyant, it is observed
that the vehicle dives down and traces a helix. This is due to banking e�ect since
the center of gravity is positioned below the geometric center. The roll angle (φ),
also called the banking angle is plotted as a function of the simulation time in Fig.
4.2d. As observed, the roll angle is about 2 degrees, which results in pitching the
vehicle downwards by about 1 degree.
To avoid banking while moving in circles, input stern angles are applied to both the
left and right stern �ns to reduce the roll angle to zero. Angles of 1.86 degrees and
-1.86 degrees are applied to the right and left stern �n, respectively, to eliminate
diving due to banking. The results of the simulation are shown in Fig. 4.3. As
observed from Fig. 4.3a the vehicle moves in circles without diving, and no banking
occurs because the roll angle (φ) is reduced to zero as shown in Fig. 4.3d. It is
also observed that the vehicle dives at the beginning then the pitch angle reduces
to zero (Fig. 4.3d). This is because of the same reason discussed in the "moving
in a straight line" case.
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(a) Position with respect to the

global frame of reference

(b) Orientation with respect to

the global frame of reference

(c) Linear velocity expressed in

the body �xed

frame

(d) Angular velocity expressed

in the body �xed frame

Figure 4.1: Position and orientation with respect to the inertial frame and linear and angular velocity
expressed in the body-�xed frame for the moving in straight line case
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(a) Position with respect to the

global frame of reference

(b) Position with respect to the

global frame of reference (XY

plane

(c) Orientation with respect to

the global frame of reference

(d) Roll and pitch angles with

respect to the global frame of

reference

(e) Linear velocity expressed in

the body �xed frame

(f) Angular velocity expressed in

the body �xed frame

Figure 4.2: Position and orientation with respect to the inertial frame and linear and angular velocity
expressed in the body-�xed frame for moving in circles case with banking
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(a) Position with respect to the

global frame of reference

(b) Position with respect to the

global frame of reference (XY

plane)

(c) Orientation with respect to

the global frame of reference

(d) Roll and pitch angles with

respect to the global frame of

reference

(e) Linear velocity expressed in

the body �xed frame

(f) Angular velocity expressed in

the body �xed frame

Figure 4.3: Position and orientation with respect to the inertial frame and linear and angular velocity
expressed in the body-�xed frame for moving in circles case without banking
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Floating up and diving down

To �oat up or dive down, only the thrust force (XThrust) and the stern angles
of the right and left stern �ns (δs,right and δs,left) are needed as inputs. 150 N
thrust force and -5 degrees (+5 degrees) stern angle are applied at time zero in
order to �oat up (dive down). The initial position and orientation of the vehicle
with respect to the inertial frame are η0 = [0 0 0 0 0 0]T and the initial velocity of
the vehicle expressed in the body �xed frame is ν = [0 0 0 0 0 0]T . The model is
simulated for 200 seconds. The results for the �oating up case are shown in Fig.
4.4.

4.1.2 Gliding Mode

In this mode, no thrust is applied and the propeller is turned o�. The buoyancy
of the vehicle is varied by pumping sea water in and out of the vehicle. The mass of
the vehicle (M) becomes an input to the vehicle. Three cases are simulated: �oat-
ing up (diving down) when the vehicle is positively (negatively) buoyant, �oating
up (diving down) with rudder angle, and moving forward in a saw-tooth shape
path.

Floating up (diving down)

To �oat up (dive down) the mass (M) of the vehicle is set to be 71.5 Kg
(73.5 Kg) at time zero, the center of mass of the vehicle is shifted to the back
(front) in the x-direction, which cause the vehicle to pitch up (down). The initial
position and orientation of the vehicle with respect to the inertial frame are η0 =
[0 0 0 0 0 0]T and the initial velocity of the vehicle expressed in the body �xed
frame is ν0 = [0 0 0 0 0 0]T . The model is simulated for 200 seconds. The results
for the �oating up case are shown in Fig. 4.5.

Floating up (diving down) with rudder angle

In this case, there are two inputs, the mass of the vehicle (M) and the rudder
angle (δr). To �oat up (dive down) while moving in circles, the mass (M) of the
vehicle is set to be 71.5 Kg (73.5 Kg) and a -5 degrees rudder angle is applied to
the rudder �ns at time zero. The initial position and orientation of the vehicle
with respect to the inertial frame are η0 = [0 0 0 0 0 0]T and the initial velocity of
the vehicle expressed in the body �xed frame is ν0 = [0 0 0 0 0 0]T . The model is
simulated for 1000 seconds. The results for the �oating up case are shown in Fig.
4.6. Note that the results in Fig. 4.6 are di�erent than the results in Fig. 4.2,
since in the case of Fig.4.6 the propeller is o� and the vehicle's forward velocity
(0.2m/sec) is slower than that in the case of Fig. 4.2 in which the propeller is on
and the vehicle's forward velocity is 1.5m/sec.
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(a) Position with respect to the

global frame of reference (XZ

plane)

(b) Orientation with respect to

the global frame of reference

(c) Linear velocity expressed in

the body �xed

frame

(d) Angular velocity expressed

in the body �xed frame

Figure 4.4: Position and orientation with respect to the inertial frame and linear and angular velocity
expressed in the body-�xed frame for the �oating up case
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(a) Position with respect to the

global frame of reference (XZ

plane)

(b) Orientation with respect to

the global frame of reference

(c) Linear velocity expressed in

the body �xed frame

(d) Angular velocity expressed

in the body �xed frame

Figure 4.5: Position and orientation with respect to the inertial frame and linear and angular velocity
expressed in the body-�xed frame for the �oating up case in gliding mode
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(a) Position with respect to the

global frame of reference

(b) Position with respect to the

global frame of reference (XY

plane)

(c) Orientation with respect to

the global frame of reference

(d) Roll and pitch angles with

respect to the global frame of

reference

(e) Linear velocity expressed in

the body �xed frame

(f) Angular velocity expressed in

the body �xed frame

Figure 4.6: Position and orientation with respect to the inertial frame and linear and angular velocity
expressed in the body-�xed frame for the �oating up while moving in circles case
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(a) Mass of the vehicle with

respect to time

(b) x-position of the center of

mass of the vehicle with

respect to time

(c) Position with respect to

the global frame of reference

(XY plane)

(d) Orientation with respect

to the global frame of

reference

(e) Linear velocity expressed

in the body �xed

frame

(f) Angular velocity

expressed in the body �xed

frame

Figure 4.7: Moving in a saw-tooth path
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Moving forward in a saw-tooth path

In this case, the only one input to the system is the mass (M) of the vehicle.
In order to move in a saw tooth path, the mass of the vehicle is changed in a
sinusoidal wave fashion o�setted at 72.5 Kg and varies between 71.5 Kg and 73.5
Kg. The position of the center of gravity in the x-direction of the body �xed
frame is related to the mass of the vehicle and it is also changed in a sinusoidal
wave fashion and varies between -2 cm and 2 cm from its position at 0 cm when
the vehicle is neutrally buoyant. The mass of the vehicle and the x-position of
its center of mass with respect to time are shown in Fig. 4.7a and Fig. 4.7b,
respectively. The simulation time is 1000 seconds, and the results are shown in
Fig. 4.7.

4.2 Simulation of the Linear Model and Compar-

ing it with the Nonlinear Model

The nonlinear model is given certain known inputs, and the resultant trajectory
(η1(t) = [x(t), y(t), z(t)]T ) is recorded and used to linearize the model about it.
Then, the same inputs that are applied to the nonlinear model, are applied to the
linearized model, and the results of both models are compared. Three cases are
considered: moving in a straight line, diving down, and moving in circles.
As observed in Fig. 4.8a, 4.9a, 4.10a, and 4.10b, the linear model follows the
desired trajectory generated by applying known inputs to the nonlinear model,
with a small error occurring at the beginning of the simulation. The error does
not disappear, because the inputs are not controlled. Fig. 4.8b, 4.8c, 4.9b, and
4.9c show the pitch angle and the pitch rate of the vehicle for the moving in a
straight line and the diving cases. Fig. 4.10c, and 4.10d show the pitch and the
yaw angles of the vehicle for the moving in circles case.
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Figure 4.8: Comparing the open loop
simulation of the nonlinear model with
the linear model for the moving in
a straight line case.
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Figure 4.9: Comparing the open loop
simulation of the nonlinear model with
the linear model for the diving case.
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Figure 4.10: Comparing the open loop simulation of the nonlinear model with the linear model for
the moving in circles case.
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4.3 Closed Loop Simulation

The main target of this work is to command the AUV to track optimal 3D Du-
bin's trajectory generated using the method in [23] in thrust mode, which mainly
consists of �ve parts in the following order: constant pitch helix, variable pitch
helix, straight line, helix with a variable pitch, and then a helix with a constant
pitch; and to track a saw-tooth trajectory with curved tips. To test the linear con-
troller, three trajectories are used for the simulation: constant pitch helix, which
resembles the �rst and the last portion of the 3D Dubin's trajectory; the entire
3D Dubin's trajectory, which are used to check the controller in the thrust mode;
and a saw-tooth path, which corresponds to the gliding mode. In each case, the
desired trajectory is considered as an input for Algorithm (1) and the nonlinear
system in (3.2) is linearized about it. A LQR control law is designed based on
the linearized system and is applied to the nonlinear model in (3.2) to track the
desired trajectory. To validate the linear controller, a helix trajectory is recorded

Figure 4.11: Helix Trajectory following

from open loop simulation of the nonlinear model when applying known inputs to
it. This recorded trajectory of the helix is considered the desired trajectory. The
open loop inputs, which are used to generate the helix trajectory from the nonlin-
ear model, are compared to the LQR control inputs obtained from the linearized
system about the helix trajectory.
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tual Euler angles (Helix trajectory
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Figure 4.13: Open loop and closed
loop inputs (Helix trajectory fol-
lowing)

The 3D Dubin's trajectory is generated using the method in [23]. The saw-
tooth path is chosen arbitrarily to be a curve in the diving plane that has a shape
of saw teeth but with curved tips. This curve consists of straight lines, and variable
pitch portions. The simulation of the linear and the nonlinear models tracking the
helix, the 3D Dubin, and the saw-tooth trajectories are shown in Fig. 4.11, 4.14,
and 4.17, respectively.

Since in [23] the optimal trajectory is generated given the initial and �nal po-
sition and orientation of the vehicle, the initial position of the vehicle is set at
the starting point of the desired curve and oriented along the {FS} of the desired
trajectory at time to zero in the three simulation cases.

In Fig. 4.11, the nonlinear model perfectly follows the helix trajectory (the
paths of the linear and nonlinear models are on top of the desired path) with
a small error at the beginning of the trajectory. This is because the actual roll
angle deviates from the desired value, see Fig. 4.12, which a�ects the actual pitch
angle (since the model is coupled) and causes a small error in the pitch angle of
the vehicle in the �rst �ve seconds of the simulation. However, the pitch angle
converges to the desired value, and the vehicle tracks the desired trajectory as
shown in Fig. 4.11. The roll angle does not converge to its desired value because
the center of mass of the vehicle is designed to be lower than the geometric center
of the vehicle by 5 cm. When steering, the vehicle is forced to bank due to the
centrifugal forces acting on the center of mass, which creates a roll moment about
the longitudinal axis of the vehicle. However, this error does not a�ect the tracking
of the trajectory, because the feedback control inputs, shown in Fig. 4.13, correct
the pitch and yaw angles after their deviation from the desired value. Unlike the
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Figure 4.14: 3D Dubin's Trajectory tracking

results of the decoupled model in [12], the feedback controller in this work avoids
con�icting control inputs, which can be observed in Fig. 4.13 where the right and
the left stern angles are symmetric to each other with respect to 0.015 rad. The
stern �ns control the roll angle to be approximately zero (desired roll angle) while
pitching the vehicle to the desired pitch angle. The input control signals applied to
the nonlinear model converge to the open loop inputs used to generate the desired
helix trajectory from open loop simulation. These simulation results show that the
feedback control law derived from the linearized model, results in a satisfactory
performance when applied to the nonlinear model.

In the case of tracking the 3D Dubin's trajectory, shown in Fig. 4.14, similar
e�ects as in the �rst case occurs at the helix portion. The pitch and roll angles de-
viate from the desired values because of banking during steering. The actual pitch
angle converges to the desired value after about 3 seconds since the beginning of
the simulation, as shown in Fig. 4.15. Another deviation from the desired values
for the Euler angles occurs at the transition between the helix and the straight line
portions, as shown in Fig. 4.15 at time 4 seconds and 42 seconds. In Fig. 4.16, the
control input angles of the �ns change abruptly after each transition between the
�ve portions of the Dubin's curve, in order to correct the deviation in the actual
Euler angles from their desired values.

In Fig. 4.17 the nonlinear model follows the �rst straight line portion of the
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Figure 4.15: Equilibrium and actual Euler angles (3D Dubin's Trajectory tracking)
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Figure 4.16: Control inputs (3D Dubin's Trajectory tracking)

Initial Position

x (meter)

Non-Linear

Equilibrium

Linear

20 40 60 80

-12

-10

-8

-6

-4

-2

-z (meter)

Figure 4.17: Saw-tooth Trajectory tracking
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Figure 4.19: Control inputs (Saw-tooth Trajectory tracking)
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Figure 4.20: Mass of the vehicle

saw-tooth path, then it deviates from the desired trajectory after crossing the
curved tip, where the desired pitch angle changes, as shown in Fig. 4.18. However,
the actual position and pitch angle of the vehicle converge to the desired values
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Figure 4.21: XThrust input

about 40 seconds after the deviation, which occurs when the desired trajectory
changes from a straight line to a curve at each tip. The control angles of the
stern �ns change abruptly at each transition between a straight line and a curve,
as shown in Fig. 4.19, in order to correct the pitch angle to follow the rapidly
changing desired pitch. Fig. 4.20 shows the mass of the vehicle as a function of
time. Fig. 4.21 shows the thrust force exerted by the propeller, as observed the
force is almost zero, which validates the robustness of the controller on deciding
autonomously which mode of operation to use based on the given trajectory.

4.4 Closed Loop Simulation with Disturbance

The trajectories that are used in the simulation are the same trajectories that
are used in the previous simulation, which are: helix with a constant pitch and a
3D Dubin curve for thrust mode, and saw-tooth trajectory for the gliding mode.
In each case, the desired trajectory is considered an input for Algorithm (1) and
the nonlinear system in (3.2) is linearized about it. A LQR control law is designed
based on the linearized model and is applied to the nonlinear model with distur-
bance in (3.1) to investigate the robustness of the controller in the presence of
disturbance.

4.4.1 Tracking a Helix with constant pitch

The same helix trajectory used in the previous simulation is used again. Fig.
4.22 shows the tracking of the helix in the presence of a force �eld in the y-
direction of the global frame {U}, where δD = [0, 225N , 0]T . The disturbance
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starts 15 seconds after the beginning of the simulation. Fig. 4.22 shows that
when the disturbance is applied, the vehicle deviates by a small distance from
the equilibrium trajectory then converges to the desired trajectory. However, it

Figure 4.22: Helix Trajectory tracking in the presence of underwater current in
the y direction with respect to the global frame {U}
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Figure 4.23: Equilibrium and actual Euler angles (Helix with disturbance in the
y-direction)
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Figure 4.24: Helix Trajectory tracking (steering plane) along with the inputs
(Thrust force, rudder and stern angles) as a function of time in the presence of
constant underwater �ow in the y-direction with respect to the global frame {U}

is observed that the vehicle is struggling when it moves upstream the current,
it almost diverges from the equilibrium trajectory, but then it converges when it
travels downstream the underwater current. The same can be observed for the
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Euler angles in Fig.4.23. Fig. 4.24 shows the tracking of the trajectory in the
steering plane, and the inputs of the vehicle (thrust force, and the rudder and the
stern angles) as a function of time. As observed, the thrust force goes to maximum
when the vehicle is traveling upstream the underwater current to counter it and

Figure 4.25: Helix Trajectory tracking in the presence of variable underwater
current
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Figure 4.26: Equilibrium and actual Euler angles (Helix with variable disturbance)
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Figure 4.27: Helix Trajectory tracking (steering plane) along with the inputs
(Thrust force, rudder and stern angles) as a function of time in the presence of
variable underwater current

to maintain the desired velocity, and when the vehicle is traveling downstream
the underwater current, it turns o� the propeller to be driven by the underwater
current. The rudder and the stern angles in Fig. 4.24 �uctuate rapidly when the
vehicle is moving against the underwater current in order to maintain the desired

65



orientation and position of the vehicle.
Fig. 4.25 shows the tracking of the helix trajectory in the presence of a variable
force �eld that varies in magnitude and direction with time, where δD = [160 ×
sin(0.02t), 160×sin(0.01t), 160×sin(0.05t+ π

2
)]T . The disturbance starts at time

zero. It is observed in Fig. 4.25 that the vehicle tracks the desired trajectory. In
Fig. 4.26 it is shown that the actual Euler angles converge to the desired values.
Fig. 4.27 shows the tracking of the trajectory in the steering plane along with the
inputs of the vehicle as a function of time.

4.4.2 Tracking 3D Dubins Trajectory

The same Dubin curve used in the previous simulation is used again. Fig. 4.28
shows the tracking of the Dubin curve in the presence of a constant force �eld in
the x, y, and z directions of the global frame {U}, where δD = [−110N , −80N ,
−110N ]T . The disturbance starts 15 seconds after the beginning of the simulation.
As observed in Fig. 4.28, the vehicle converge to the desired path with small errors
that occur upon the transition between the �ve portions of the 3D Dubin curve
(constant pitch helix, variable pitch helix, straight line, variable pitch helix, and
constant pitch helix). These errors can also be observed in Fig. 4.29 which

Figure 4.28: Dubin Trajectory tracking in the presence of underwater current in
the x, y, and z directions with respect to the global frame {U}
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Figure 4.29: Equilibrium and actual Euler angles for Dubin trajectory tracking
with constant disturbance in the x, y, and z directions with respect to the global
frame {U}
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Figure 4.30: Thrust force for Dubin trajectory tracking with constant disturbance
in the x, y, and z directions with respect to the global frame {U}

represents the actual and the desired Euler angles. After the vehicle deviates from
the equilibrium trajectory it converges again after few seconds. This deviation
occurs because the instant transition between the portions of the 3D Dubin curve
requires in�nite control signal for the �ns, which is impossible to achieve. The
control signals are presented in Fig. 4.30, 4.31, and 4.32 which correspond to the
thrust force, stern angles, and the rudder angle, respectively. In order to prevent
the control inputs from going to unrealistic values, saturation limits are imposed
on the input signals. When the disturbance is applied the actual Euler angles
deviates from the desired values, and keep a small o�set from the desired values,
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Figure 4.31: Stern angles for Dubin trajectory tracking with constant disturbance
in the x, y, and z directions with respect to the global frame {U}
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Figure 4.32: Rudder angle for Dubin trajectory tracking with constant disturbance
in the x, y, and z directions with respect to the global frame {U}

also upon the transition from one portion of the Dubin curve to the other, the
actual Euler angles deviates more and the desired angles and the o�set increases.
In Fig. 4.28 the vehicle does not reach the �nal destination and orientation at
the end of simulation, which is because when the vehicle crosses the straight line
portion to the variable pitch helix portion of the Dubin curve, it deviates from the
desired path and spends some time trying to converge, which creates a delay in
the tracking. This delay is depicted in Fig. 4.29, where the actual pitch and yaw
angles, after 44 seconds from the beginning of the simulation, have a certain o�set
from their desired values, which creates a delay in the tracking performance.
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4.4.3 Saw-tooth trajectory

The saw tooth trajectory corresponds to the gliding mode, and the same tra-
jectory used in the previous section is used again. Fig. 4.33 shows the tracking of
the saw-tooth trajectory, that corresponds to the gliding mode, in the presence of
a constant force �eld in the y-direction of the global frame {U}, where δD = [0,
25N , 0]T . Fig. 4.34 shows the trajectory tracking of the saw-tooth trajectory in
the diving plane. As observed from both �gures, when the disturbance is applied,
the vehicle starts a sequence of deviating then converging to the desired trajectory,
where the disturbance pushes the vehicle away from the desired trajectory, which
causes the propeller to be turned on, as shown in Fig. 4.37, in order to correct
the vehicle to the desired track. When the vehicle converges to the desired trajec-
tory, the vehicle turns o� the propeller and continue with the gliding mode.
However after the propeller is turned o�, the current pushes the vehicle away from
the track, then the propeller turns on again in order to counter the disturbance.

Figure 4.33: Saw-Tooth Trajectory tracking in the presence of underwater current
in the y-directions with respect to the global frame {U}

Initial Position

Disturbance starts

x (meter)

Non-Linear

Equilibrium

20 40 60 80

-10

-5

-z (meter)

Figure 4.34: Saw-Tooth Trajectory tracking (Diving Plane) in the presence of
underwater current in the y-directions with respect to the global frame {U}

69



Time (sec)

50 100 150 200 250

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5
angle (rad)

ϕ_NonLinear

ϕ_eq

θ_Nonlinear

θ_eq

ψ_Nonlinear

ψ_eq

Figure 4.35: Equilibrium and actual Euler angles for saw-tooth trajectory tracking
with constant disturbance in the y-directions with respect to the global frame {U}
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Figure 4.36: Mass of the vehicle (Saw-tooth trajectory tracking with constant
disturbance in the y-direction with respect to the global frame {U})

This sequence is continued until the vehicle crosses the �rst curved tip of the saw-
tooth trajectory, where an o�set between the vehicle and the desired trajectory is
observed and the vehicle begins to converge to an o�setted trajectory. Fig. 4.35
shows the actual and the desired Euler angles, as observed in the �gure, the con-
troller gave unsatisfactory results in the presence of small disturbance (25N) for
the gliding mode. The Euler angles shown in Fig. 4.35 are for the �rst 250 sec.
Fig. 4.36 presents the mass of the vehicle as a function of time. The stern angles
shown in Fig. 4.38 �uctuates in very rapidly between the saturation limits, in
order to maintain the desired pitch and roll angles. The rudder angle shown in
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Figure 4.37: Thrust force (Saw-tooth trajectory tracking with constant disturbance
in the y-direction with respect to the global frame {U})
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Figure 4.38: Stern angles (Saw-tooth trajectory tracking with constant disturbance
in the y-direction with respect to the global frame {U})

Fig. 4.39 saturates when the vehicle deviates from the desired trajectory and the
propeller is turned on, in order to control the vehicle to converge to the desired
trajectory.
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Figure 4.39: Rudder angle (Saw-tooth trajectory tracking with constant distur-
bance in the y-direction with respect to the global frame {U})

The above results show that designed LQR can be considered robust enough in
the presence of underwater currents in the case of the thrust mode only. However,
it is shown that the designed LQR has a poor performance in the presence of small
disturbance (25 N) when the vehicle is operating in the gliding mode.
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Chapter 5

Disturbance Observer (Gliding
Mode)

In this chapter, a disturbance observer is designed in order to enhance the
robustness of the LQR in the presence of disturbance when the vehicle is operating
in the gliding mode.

5.1 Observer Design

Consider the linear time variant state space model in (3.18) with the distur-
bance vector from (3.1):

˙̃χ(t) = A(t)χ̃(t) +B(t)Ũ(t) + ∆d

Y = Cχ

Where ∆d =



∆dx
∆dy
∆dz
∆dk
∆dm
∆dn
06×1


(5.1)

The idea behind the disturbance observer, is to model the disturbance as an un-
known states to be estimated. In other words, the state space model in (5.1) is
augmented by including the disturbance vector ∆d in the states space vector χ.
The augmented states space vector and the augmented state space model become
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as follows:

Z = [χ, ∆dx, ∆dy, ∆dz, ∆dk, ∆dm, ∆dn]T ,

Ż − Żeq = AZ(t)(Z − Zeq) +BZ(t)(U − Ueq),
Y = CZZ,

(5.2)

where Z is the augmented state space vector of length 18. The matrices AZ , BZ ,
and CZ are the augmented matrices of A, B, and C in (3.18), respectively. The
augmented matrices can be written as follows:

AZ =

[
A12×12 I6×6
06×12 012×6

]
, BZ =

[
B12×4
06×4

]
,

CZ =
[
C12×12, 012×6

]
.

(5.3)

The observability matrix of the augmented state space model in (5.2) is full rank
and the system is observable. So, the unknown states, which represent the dis-
turbance, can be estimated. Before designing the controller using the method
described in chapter 5, a state observer must be designed in order to estimate the
states that can not be measured. The augmented state space model with states
observer (Luenberger observer) can be written as follows:

˙̂
Z − Żeq = AZ(t)(Ẑ − Zeq) +BZ(t)(U − Ueq) + L(t)(CZ − CẐ) (5.4)

where Ẑ denote the estimated states, and L is an 18 × 12 matrix that contains
the observer gains which is time variant. The observer gain matrix is chosen such
that the error between the actual and the measured states

eest = Z − Ẑ (5.5)

is minimum, so the derivative of the error in (5.5) should be driven to zero:

ėest = Ż − ˙̂
Z

= AZ(t)Z +BZ(t)U − AZ(t)Ẑ −BZ(t)U − L(t)
(
CZ − CẐ

)
=
(
AZ(t)− LC

)(
Z − Ẑ

) (5.6)

The observer gain can be chosen by pole placement, such that the Eigen values
of the closed loop observer matrix Aco =

(
AZ(t)− LC

)
are at least 5 times faster

than Eige values of the closed loop controller matrix Acc =
(
AZ − BZK

)
. In this

work, the observer matrix L is be found in an optimal method, in a similar way
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as the controller gains were calculated in chapter 5. The observer matrix can be
calculated as follows:

L(t) = PZ(t)CT
ZR
−
Z1, (5.7)

where CZ is the observer matrix in (5.3), RZ is a 12 × 12 weighing matrix, and
PZ is a 12× 12 matrix which can be solved for by solving the following algebraic
di�erential equation:

AZ(t)PZ(t) + PZ(t)A(t)T +QZ − PZ(t)CT
ZR
−1
Z CZPZ(t) = −ṖZ(t) , (5.8)

where QZ is an 18 × 18 weighing matrix. For more details about state observer
design refer to [?]. Now that the state observer is designed, a LQR is designed
based on the augmented state space model in(5.2) and (5.4) and the control law
is written as follows:

U = −KZ(t)
(
Ẑ − Zeq

)
, (5.9)

where KZ is the control gain matrix of size 4 × 18 that corresponds to the aug-
mented model, it can be calculated as explained in chapter 5.

5.2 Simulation

The designed observer and the designed control law are applied to the actual
6DOF nonlinear model with the unknown disturbance in (3.1). The same saw-
tooth trajectory that corresponds to the gliding mode is used again. Fig. 5.1
shows the tracking of the saw-tooth trajectory, where same disturbance as in the
simulation in chapter 6 is applied (deltaD = [0, 25N , 0]T ). Fig. 5.2 shows the
trajectory tracking of the saw-tooth trajectory in the diving plane. As observed
from both �gures, the tracking performance is improved versus the case where
no disturbance observer is used, Fig. 4.33 and 4.34. Also, it is observed that
no o�set from the desired trajectory occurs after crossing the curved tips of the
saw-tooth trajectory. However, the same e�ect as before still occurs after applying
the disturbance observer, which is the continuous deviation and conversion from
and to the desired trajectory, where the current pushes the vehicle away from
the desired trajectory, which causes the propeller to be turned on, as shown in
Fig. 5.4, in order to correct the vehicle to the desired track. When the vehicle
converges to the desired trajectory, the vehicle turns o� the propeller and continues
with the gliding mode. However after the propeller is turned o�, the current
pushes the vehicle away from the track, then the propeller turns on again in order
to counter the disturbance. It is noticed that when applying the disturbance
observer more thrust force is used, Fig. 5.4, than without disturbance observer,
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Figure 5.1: Saw-Tooth Trajectory tracking in the presence of underwater current
in the y-directions with respect to the global frame {U} with disturbance observer
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Figure 5.2: Saw-Tooth Trajectory tracking (Diving Plane) in the presence of un-
derwater current in the y-directions with respect to the global frame {U} with
disturbance observer

Fig. 4.37. Fig. 5.3 shows the actual and the desired Euler angles, in comparison
with the case where observer was not applied, Fig. 4.35, it is shown that applying
disturbance observer enhances the results, however the tracking performance is still
unsatisfactory in the presence of small disturbance (25N) for the gliding mode, as
the �uctuation between converging and diverging from the trajectory still exists.
The stern angles shown in Fig. 5.5 �uctuates rapidly between the saturation limits,
in order to maintain the desired pitch and roll angles. The rudder angle shown in
Fig. 5.6 saturates when the vehicle deviates from the desired trajectory and the
propeller is turned on, in order to control the vehicle to converge to the desired
trajectory.

76



Time (sec)
50 100 150 200 250

-3

-2

-1

0

1

2
angle (rad)

ϕ_NonLinear

ϕ_eq

θ_Nonlinear

θ_eq

ψ_Nonlinear

ψ_eq

Figure 5.3: Equilibrium and actual Euler angles for saw-tooth trajectory tracking
with constant disturbance in the y-directions with respect to the global frame {U}
with disturbance observer
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Figure 5.4: Thrust force (Saw-tooth trajectory tracking with constant disturbance
in the y-direction with respect to the global frame {U} with disturbance observer
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Figure 5.5: Stern angles (Saw-tooth trajectory tracking with constant disturbance
in the y-direction with respect to the global frame {U} with disturbance observer
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Figure 5.6: Rudder angle (Saw-tooth trajectory tracking with constant disturbance
in the y-direction with respect to the global frame {U} with disturbance observer
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Chapter 6

Conclusion

In this work, a 6DOF dynamics and kinematics model of a H-AUV is derived
and simulated. The control design for the trajectory tracking problem is simpli�ed
by linearizing the 6DOF dynamics and kinematics model of the H-AUV about a
given optimal 3D trajectory. A feedback LQR control law, which includes multi-
ple inputs, is designed based on the linearized model and applied to the nonlinear
model. The designed controller is able to decide autonomously which mode of
operation to use depending on the type of trajectory. The closed loop nonlinear
system is simulated to track basic trajectory maneuvers: helix and 3D Dubin's
curve for the thrust mode, and saw-tooth trajectory for the gliding mode. The
linear feedback controller shows satisfactory results when applied to the nonlin-
ear model. The robustness of the designed controller is investigated by injecting
an unknown disturbance to the nonlinear model. Simulation shows satisfactory
tracking performance in the presence of disturbance for the thrust mode. How-
ever, the tracking performance in gliding mode was poor. A disturbance observer
is designed and applied to the nonlinear model in order to enhance the tracking
performance in gliding mode. Although the tracking performance of the controller
is improved.
In the future work, the control law need to be enhanced to give better tracking
performance for the gliding mode in the presence of disturbance. Also in this work,
the dynamics of the propeller and the �ns were not included, so in the future the
dynamics of the actuators should be included. And �nally, test the controller on
the actual prototype when it is complete.

79



Bibliography

[1] J. N. Newman, Marine hydrodynamics. MIT press, 1977.

[2] R. D. Blevins, Formulas for natural frequency and mode shape. Van Nostrand
Reinhold Co., 1979.

[3] T. T. J. Prestero, Veri�cation of a six-degree of freedom simulation model
for the REMUS autonomous underwater vehicle. PhD thesis, Massachusetts
institute of technology, 2001.

[4] D. R. Yoerger, M. Jakuba, A. M. Bradley, and B. Bingham, �Techniques for
deep sea near bottom survey using an autonomous underwater vehicle,� The
International Journal of Robotics Research, vol. 26, no. 1, pp. 41�54, 2007.

[5] P. E. Hagen, N. Størkersen, B.-E. Marthinsen, G. Sten, and K. Vest-
gård, �Rapid environmental assessment with autonomous underwater vehi-
clesâ��examples from hugin operations,� Journal of Marine Systems, vol. 69,
no. 1, pp. 137�145, 2008.

[6] B.-H. Jun, J.-Y. Park, F.-Y. Lee, P.-M. Lee, C.-M. Lee, K. Kim, Y.-K. Lim,
and J.-H. Oh, �Development of the auv 'isimi' and a free running test in an
ocean engineering basin,� Ocean engineering, vol. 36, no. 1, pp. 2�14, 2009.

[7] A. Alvarez, �Redesigning the slocum glider for torpedo tube launching,� IEEE
Journal of Oceanic Engineering, vol. 35, no. 4, pp. 984�991, 2010.

[8] D. C. Webb, P. J. Simonetti, and C. P. Jones, �Slocum: An underwater glider
propelled by environmental energy,� IEEE Journal of Oceanic Engineering,
vol. 26, no. 4, pp. 447�452, 2001.

[9] C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin,
J. W. Ballard, and A. M. Chiodi, �Seaglider: A long-range autonomous un-
derwater vehicle for oceanographic research,� IEEE Journal of oceanic Engi-
neering, vol. 26, no. 4, pp. 424�436, 2001.

80



[10] J. Sherman, R. E. Davis, W. Owens, and J. Valdes, �The autonomous under-
water glider" spray",� IEEE Journal of oceanic Engineering, vol. 26, no. 4,
pp. 437�446, 2001.

[11] W. P. Barker, An Analysis of Undersea Glider Architectures and an Assess-
ment of Undersea Glider Integration into Undersea Applications. PhD thesis,
Monterey, California. Naval Postgraduate School, 2012.

[12] A. J. Healey and D. Lienard, �Multivariable sliding mode control for au-
tonomous diving and steering of unmanned underwater vehicles,� Oceanic
Engineering, IEEE Journal of, vol. 18, no. 3, pp. 327�339, 1993.

[13] D. Fryxell, �Modeling, identi�cation, guidance and control of an autonomous
underwater vehicle,� Master's thesis. Department of Electrical Engineering,
Instituto Superior Tecnico. Lisboa, Portugal, 1994.

[14] C. Samson, �Path following and time-varying feedback stabilization of a
wheeled mobile robot,� in Proceedings of ICARV, pp. RO�13.1, 1992.

[15] P. Encarnaçao, A. Pascoal, and M. Arcak, �Path following for marine vehicles
in the presence of unknown currents,� in Proceedings of SYROCO, vol. 2,
pp. 469�474, 2000.

[16] P. Encarnacao and A. Pascoal, �3d path following for autonomous underwa-
ter vehicle,� in Decision and Control, 2000. Proceedings of the 39th IEEE
Conference on, vol. 3, pp. 2977�2982 vol.3, 2000.

[17] G. Casalino, M. Aicardi, A. Bicchi, and A. Balestrino, �Closed loop steering
and path following for unicycle-like vehicles: a simple lyapunov function based
approach,� IEEE Robotics and Automation Magazine, vol. 2, no. 1, pp. 27�35,
1995.

[18] M. Aicardi, G. Casalino, G. Indiveri, A. Aguiar, P. Encarnaçao, and A. Pas-
coal, �A planar path following controller for underactuated marine vehi-
cles,� in Ninth IEEE Mediterranean Conference on Control and Automation,
Dubrovnik, Croatia, 2001.

[19] L. Lapierre and D. Soetanto, �Nonlinear path-following control of an auv,�
Ocean engineering, vol. 34, no. 11, pp. 1734�1744, 2007.

[20] T. I. Fossen, Handbook of marine craft hydrodynamics and motion control.
John Wiley & Sons, 2011.

81



[21] A. W. Divelbiss and J. T. Wen, �Trajectory tracking control of a car-trailer
system,� IEEE Transactions on Control Systems Technology, vol. 5, no. 3,
pp. 269�278, 1997.

[22] M. G. Joo and Z. Qu, �An autonomous underwater vehicle as an underwater
glider and its depth control,� International Journal of Control, Automation
and Systems, vol. 13, no. 5, pp. 1212�1220, 2015.

[23] B. Wehbe, E. Shammas, and D. Asmar, �A novel method to generate three-
dimensional paths for vehicles with bounded pitch and yaw,� in Advanced
Intelligent Mechatronics (AIM), 2015 IEEE International Conference on,
pp. 1701�1706, IEEE, 2015.

[24] B. Wehbe, E. Shammas, J. Zeaiter, and D. Asmar, �Dynamic modeling and
path planning of a hybrid autonomous underwater vehicle,� in Robotics and
Biomimetics (ROBIO), 2014 IEEE International Conference on, pp. 729�734,
IEEE, 2014.

[25] E. SNAM, �Nomenclature for treating the motion of a submerged body
through a �uid jr,� New York: Technical and Research Bulletin, pp. 1�5,
1952.

[26] T. I. Fossen, Guidance and control of ocean vehicles. John Wiley & Sons Inc,
1994.

[27] S. F. Hoerner and H. V. Borst, Fluid-dynamic lift: practical information on
aerodynamic and hydrodynamic lift. Hoerner Fluid Dynamics Brick Town,
NJ, 1985.

[28] T. Prestero, Veri�cation of a Six-Degree of Freedom Simulation Model for
the REMUS Autonomous Underwater Vehicle. PhD thesis, Massachusetts
Institute of Technology and Woods Hole Oceanographic Institution, 2001.

[29] M. S. Triantafyllou, �Maneuvering and control of surface and underwater ve-
hicles,� 2004.

[30] E. V. Lewis, Principles of naval architecture. Society of Naval Architects and
Marine Engineers, 1988.

[31] L. F. Whicker and L. F. Fehlner, �Free-stream characteristics of a family of
low-aspect-ratio, all-movable control surfaces for application to ship design,�
tech. rep., DTIC Document, 1958.

[32] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control.
John Wiley & Sons, 2006.

82



[33] M. P. Do Carmo and M. P. Do Carmo, Di�erential geometry of curves and
surfaces, vol. 2. Prentice-hall Englewood Cli�s, 1976.

[34] M. C. de Oliveira, Fundamentals of Linear Control. preprint, 2015,
http://control.ucsd.edu/mauricio/.

83




