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Sara Ahmad Jalaleddine for Master of Engineering
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Title: Decision Theory Under“Quantized Filtering”

Convolution is an important operation in signal processing and analysis. It is
a mathematical operation on two input functions which results in a third function
that is typically viewed as a transformed version of one of the original functions.
Convolution is used in several contexts that include probability, statistics, com-
puter vision, image and signal processing, electrical engineering, and differential
equations. In the context of communication system design, one of the initial
tasks of a receiver is to detect the presence of a packet through filtering and
hence convolution: The convolution is between the received signal and typically
a matched filter, used to detect the presence of a training sequence or synchro-
nizing sequence. This process is computationally intensive and usually runs for a
long duration. For this reason, several methods have been proposed and imple-
mented to alleviate this computational burden.

In our work, we aim to decrease the required number of multiplications
through quantizing the matched filter, without increasing the amount of input
to output latency. This of course comes at the expense of “performance”. With
a view toward detection application, the selection of the quantized filter is done
through applying decision theory techniques and corresponding quality measures.
Cases of several stochastic noise models are studied and analysed. The perfor-
mance of the proposed scheme was measured through plotting the Operating
Characteristic curve, and also through the rates of exponential decay using large
deviation theory. It is found that in all studied cases, the design of the subopti-
mal structure was immune to Signal-to-Noise Ratio values and also typically to
the various quality measures and operating points that were considered.
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Chapter 1

Introduction

Convolution is an important operation in signal processing and analysis. Through
convolution, one can construct the output of a system using the original input
signal and the impulse response. In other words, convolution is a mathemati-
cal operation on two input functions (such as f and Y ), that produces a third
function that is typically viewed as a transformed version of one of the origi-
nal functions. Convolution is used in several contexts that include probability,
statistics, computer vision, image and signal processing, electrical engineering,
and differential equations.

In discrete systems [1], the convolution of two functions is given by,

(f ∗ Y )[k] =
∞∑

i=−∞

f [i]Y [k − i]. (1.1)

For two finite discrete sequences of length N each, the linear or aperiodic convolu-
tion will result in an output of length 2N−1. However, calculating the convolution
of two functions is computationally intensive. Direct application of equation (1)
using a tapped delay line architecture requires an order of O(N2)multiplications.
For example, in a typical audio signal, a three second impulse response sampled
at 44.1 kHz will require of the order of (3× 44, 100)2 or 35 billion operations to
convolve with another input of the same length.

For this reason, several methods have been proposed and implemented to over-
come this computational problem. One approach is to find the convolution of
two signals by multiplying the Fourier transform of the input signals, followed by
computing inverse Fourier transform of their product,

F−1[F [f ]F [Y ]] = f ∗ Y. (1.2)

However, the approach of using the frequency domain introduces significant in-
put to output latency. The input signals should be initially buffered and then
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transformed into the frequency domain. After that, the output will be inversely
transformed into the time domain. All of this buffering will result in a minimum
of 2×N samples latency.

Other convolution methods were proposed, which aim to decrease the required
number of computations. Some of these techniques include block convolution.

A similar operation to convolution is correlation, where it uses equation (1) but
with no time reversal. So equation (1) becomes,

(f ∗ Y )[k] =
∞∑

i=−∞

f [i]Y [i− k].

The above equation is also known as a sliding dot product or sliding inner-
product. We use correlation to measure the similarity between two series. Thus,
it is widely used in packet detection.

1.1 Packet Detection

In the context of communication system design, one of the initial tasks of a
receiver is to detect the presence of a packet, especially in multi-user system.
Classical Decision theory results dictate the use of a correlator or a ”Matched
Filter” to detect the presence of a training sequence/ synchronising sequence.

In our work, we aim to decrease the required number of multiplications, without
increasing the amount of input to output latency. This of course comes at the
expense of “performance”. Our quality measures naturally related to those of the
detection problem:

i) If the maximum amplitude is greater than a certain threshold.

ii) If the location of the maximum amplitude is within a certain range.

The aim is to prove that up to a certain number of quantization levels of the
filter, the filter was so close in performance to the original filter and thus was
able to detect the desired sequence up to close percentage to the original one.

With a view toward detection application, the choice of the quantization points
will be based on applying Decision Theory concepts, section 4.2 explains it in
more details. Moreover, Probability Theory tools such as large deviation theory,
which deals with the behaviour at which probabilities of events’ tails of certain dis-
tributions decay asymptotically, are used in our study to find the optimal points.
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More precisely, the Gärtner-Ellis theorem will be used, followed by applying the
Frenchel-Legendre transform to find an optimized result through increasing the
efficiency of the quantizer used. This idea will be elaborated in more details in
Section 4.3. In addition to both techniques, Kmeans quantization method is also
applied in our study to find the optimal points.

Cases of several stochastic noise models are studied and analysed. Different
types of signal packets with one or more noises of diverse nature having differ-
ent Signal-to-Noise (SNR) are considered, in order to produce numerous outputs
when convolved/ correlated with various quantized version of the original filter.
Each scenario will be studied and analysed in a different chapter. The perfor-
mance of the proposed scheme was measured through plotting the Operating
Characteristic curve, and also through the rates of exponential decay using large
deviation theory. It is found that in all studied cases, the design of the subopti-
mal structure was immune to Signal-to-Noise Ratio values and also typically to
the various quality measures and operating points that were considered.

The thesis is organized as follows. In chapter 2, we review the previous work
which is deemed relevant, that aims to decrease the computations required to
calculate convolution. In chapter 3, the proposed design is introduced. Chapter
4 explains in details the techniques used to optimize the filter. Chapter 5 through
chapter 8, study models with different stochastic noise. Conclusion is discussed
in chapter 9.
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Chapter 2

Literature Review

As stated in chapter 1, several approaches were adopted to overcome the amount
of input to output latency without changing the expected output when computing
correlation/ convolution. Section 2.1 explains the FFT technique, while section
2.2 talks about the block convolution method.

2.1 Computing Convolution using FFT

One of the approaches used in discrete cases, is multiplication in the frequency
domain or also known as “Fast Convolution [2], which translates to circular con-
volution in the time domain (Rabiner and Gold, 1975). The length of the output
of this convolution is equal to the length of the longest sequence. This is given
by,

R[k] = IDFT (R[w]) = IDFT (Y [w].f [w]), (2.1)

where w represents the discrete frequency variable, Y the signal and f the filter.

The result of the above equation will yield the required linear convolution re-
sult only if Y [n] and f [n] are padded with zeros prior to the DFT (Discrete
Fourier Transform). By this, their respective lengths will become 2N − 1. This
has been known as “fast” convolution because the DFT is computed with the
Fast Fourier Transform (FFT) and its inverse (IFFT) (Rabiner and Gold, 1975).
However, this method excludes the implementation of a real-time input without
special consideration for the lengths of the signals.

Comparing this method to the traditional time domain convolution, it is much
more efficient. This is because, the number of operations required for the given
inputs is around 2(2N − 1)× log2(2N − 1) operations for the FFTs, 2× (2N − 1)
operations for the complex multiplication of Y [k] and f [k], and another (2N −
1)× log2(2N − 1) operations for the IDFT. This means this approach results in
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a notable decrease in the number of calculation required. Therefore the total
number for multiplication using FFT is O(N × log2N)

However, this method is limited to cases where the input signal’s length is fi-
nite and completely defined. Alternative methods which allow the convolution to
be performed in consecutive sections, allowing very long or indeterminate signals
to be convolved with the desired impulse response are known as block convolu-
tions.

2.2 Block Convolution using the Overlap Add

Method

The overlap add method is an efficient way used to find the discrete convolution
with a very long signal with a finite impulse response (FIR) filter. It is based on
the concept of dividing the signal into multiple convolutions of f [k] with short
“j” segments of Y [k] of length L, where L is the segment length and j is the
number of broken segments. Therefore, R[k] can be represented as a sum of
short convolutions. In other words, to find the result of R[k], first the original
signal is partitioned into non-overlapping “j” sequences, followed by calculating
the discrete Fourier transforms of the sequences through multiplying the FFT of
Y [i] with the FFT of f [k]. After that, we recover R[k] by calculating inverse FFT
of each Rj[w], then the resulting output signal is reconstructed by overlapping
and adding the Rj[k]. The overlap arises from the fact that a linear convolution
is always longer than the original sequences.

2.3 Fast Wavelet Transform

For a stationary signal, Fourier transform is sufficient to analyse the signal. How-
ever, in many applications, a signal may have transitory or nonstationary aspects.
Fourier analysis is unable to detect such events and therefore not suitable to de-
scribe them. To overcome this limitation, that is to gain information in both time
and frequency domain, another type of transform called wavelet transform [3]
can be used. This technique is used in engineering and computer science for
data compression and signal processing. Similar to FFT, there exists a technique
that efficiently computes the wavelet transform much faster, which is called the
Fast Wavelet Transform (FWT). The number of computations in the convolution
process depends on the wavelet basis function being used.
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Chapter 3

Our Proposed Approach

In this thesis, we propose a new idea to detect a sequence in the packet received
Y, which is based on quantizing the amplitude of the filter before the convolution
process between the packet and the filter. The classical optimal detection proce-
dure was to use a filter that is equal to the sequence and perform convolution,
this is known as the matched filter. This is equivalent to use a filter f that is con-
jugated time-reversed version of the sequence, which performs convolution with
the packet. By quantizing the filter f , we will be able to decrease the required
number of multiplications required for the convolution process. For example, let
f̂ denotes the quantized version of the filter, then:

1) if f̂ is constant for all i

〈
Y, f̂

〉
=

N−1∑
i=0

f̂ [i]Y [k − i] → f̂
∑

Y → 1 Multiplication

2) if f̂ consists of 2 quantization points

〈
Y, f̂

〉
=

N−1∑
i=0

f̂ [i]Y [k − i] → 2 Multiplications

This chapter will be as follows: Section 3.1 discusses how the quantization process
will be applied. The Receiver’s Model and detection process will be introduced
in section 3.2. Finally, section 3.3 introduces all models to be studied.

3.1 Quantization Process

As it is known, the main function of a quantizer is to change a signal into a
“quantized signal” [4], which is then communicated through a digital communi-
cation system. In other words, it is a process that transforms a possible analog
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Figure 3.1: A Quantized Filter used to detect Barker convolved with a Sinc
Sequence

sequence into a sequence of discrete finite values. However, performing quanti-
zation to a signal results in a loss in the amplitude information. In our research
we adopted signal quantization and applied it to quantize the original detection
filter. Figure 3.1 is an example of quantizing a filter that is used to detect a
Barker convolved with a Sinc Sequence. The blue discrete points are the original
filter points. While the red ones are the quantized version of the filter, where five
points were used to design it.

Moreover, to find the “Best Quantizer”, we will perform several simulations using
Matlab through testing different techniques proposed and find which one results
in minimal error. Chapter 4 discusses the several ways used to find the quanti-
zation points and the comparison process used.

3.2 The Receiver’s Model and the Detection Pro-

cess

Figure 3.2 represents the model of the receiver. Y is the sequence being received
of length L, which consists of either:

1) The desired signal f , located at location I and of length N , to be detected in
the presence of additive stochastic noise.

2) Noise only

f̂ is the filter used to detect the presence of sequence f . It is the quatized version
of the desired conjugated time-reversed version of the signal f . At the receiver,

7



Figure 3.2: Model at the Receiver

the discrete signal Y convolves with f̂ . The result of this convolution Y will
have a peak. Two different scenarios will be considered:

1) We assume this peak should be located at K, where K = I + N − 1. Y [K]
will be normalized and checked if it is greater than the threshold r. If this
was the case, the signal f is present in the packet, else f is not present.

2) The location K is unknown to the detector. In this case, maximum peak
resulting from the convolution process will be checked if it is greater than r.
Since we know originally where the packet is located, our detection analysis
will be based on checking if:

• It is at location K.

• It is greater than a certain threshold.

That is,
P(max = K & Y [K] > r)

3.3 The Models to be Studied

As stated in the beginning of this chapter, detection is based on performing
correlation/convolution between the filter and the received packet, which in our
study “quantized filter” and the received packet. In addition, in section 3.2,
we stated that received packet Y is subjected to additive stochastic noise. The
different stochastic noise cases that we will study are:

• Additive Gaussian Noise
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• Rayleigh Fading

• Laplacian Noise

• Exponentially Distributed Noise

Each case will be studied in a different chapter, were all applicable optimizing
Filter techniques will be analysed and compared. Chapter 5 studies the Additive
Gaussian Noise case. Chapter 6 has the Rayleigh Fading Case. Laplacian Noise
is considered in chapter 7. Finally, Exponentially Distributed Noise is in chapter
8.
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Chapter 4

Used Techniques

Several methods and techniques will be used in order to develop an efficient
quantizer with minimal error. In general, to measure the overall performance of
a quantizer one can calculate the distortion error, so we may say a quantizer is
a “good scalar quantizer” if the distortion’s error is of a small value. However,
in our case, our main goal is to increase the probability of detection PD (that is
minimising the probability of a miss PM) and minimize the probability of false
alarm PF .

In general, to design a quantizer, two things should be found (a) the Code words
or Representation points” and (b) the Cells or Quantization Regions. To do
that, it is assumed that the amplitude distribution of the quantizer of the input
is known. There are several methods used to find (a) and (b) which we will look at
and test. One of those techniques is by adapting the idea of “Kmeans” clustering
for every model designed. Another is to optimize our quantizer through applying
the “Gärtner-Ellis theorem. These and other techniques will be elaborated more
in the coming subsections.

For all adopted criteria, we find the best quantizing points using Matlab to solve
constrained nonlinear multivariable optimization problem (Fmincon) [5,6],which
uses sequential quadratic programming (SQP). In each of this method’s iterations,
the function solves a quadratic programming (QP) sub problem. Later, after each
iteration, it updates the estimate of the Hessian, which is the second derivative of
the Lagrangian, using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
Moreover, this technique depends on the initial values given. For this reason, we
have tested the techniques using two different initial quantization points:

1) Way 1: The quantized points chosen are equally spaced between the “mini-
mum” and “maximum points” of the original filter points.
For example if the filter f has the points: 1 2 5 6 7 and 3 points are required.
The initial points selected will be: 1 4 7

10



2) Way 2: The quantized points are chosen based on the idea of selecting, from
the original filter points, the points that are farthest from the rest.
For example if the filter f has the points: 1 2 5 6 7 and 3 points are required.
The initial points selected will be: 1 5 7, since those three points in the
sequence are the points that are farthest from each other.

Based on the initial results we got, the more appropriate initial values were ob-
tained using the Fmincon approach using Way 2.

The comparison process between all techniques will be done through produc-
ing an Operating Characteristic (OC) curve through simulations using Matlab.
This curve is a plot of Probability of Detection and Probability of False Alarm
(PD vs PF ), where those values are produced through changing the threshold in
the LRT. During the simulation process in Matlab, a specific random seed was
set to all simulations to make the comparison more reliable.

4.1 Quantizer Optimization Using Kmeans Ap-

proach

The method of kmeans clustering, discussed in [7–10], can be used to optimize
the quantizer, for the purpose of minimising the Mean Squared Error (MSE).

Kmeans is a method of vector quantization that uses cluster analysis. It aims
to partition a given data into k clusters, where each observation belongs to the
cluster with the nearest approximate value. By this the data space is partitioned
into Voronoi cells. In our search, we created two different codes using Matlab that
uses the idea of Kmeans clustering. One of them splits the clusters with the max-
imum distortion, while the other splits clusters with the greatest number of data.
It was found that the latter case resulted in a better performance. Despite that
difference, both are created to comply with any required distortion, not just MSE.

The different distortion measures that were studied are:

1. MSE: |fi − f̂c|2 , which is the distortion originally used by kmeans

2. - |fi − f̂c|

3. |fi − f̂c|4

4. Maximum Absolute Error (MAE): max |fi − f̂c|

5. |fi − f̂c|1.8
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6. |fi − f̂c|2.2

where fi denotes the different points of the original filter and f̂c are the
quantization points used to represent the filter.

The reason behind using different distortions is that each will result in different
quantization points and it is not clear which one yields better results in a decision
theory setting. In other words, finding when

∑
x∈δj

d(x, α) is minimum depends on

the function d(x, α), which is the distortion measure. For example:
1- Mean square d(x, α) = (x − α)2 will result in α∗= (1/N)

∑
x, which is the

mean.
2- However, if we took the case when d(x, α) = |x − α|, then it will result in α∗

being the median.

After comparing initial results from the above listed distortions, it was found
that the OC curves generated for several models of different signals were really
close in performance. As a result, the Kmeans with its original idea was adopted
to be studied and compared in all models to all other techniques. In other words,
the MSE distortion will be used to cluster data by splitting the ones with the
greatest amount.

4.2 Quantizer Optimization Using Neyman-Pearson

Approach

Decision theory tools are widely used in designing communication systems, biomed-
ical tools, radar and sonar implementations, etc. Since our design deals with
signal detection, decision theory tools seems a suitable approach to be used in
the designing process.

In general, one may have several hypothesis, which may be represented as: H0,
H1, ..., HN this is called hypothesis testing problem. In other words, let Y be
the result of a random experiment which belongs to set Y . There exists a device
that decides based on the value of Y which will be the “best” out of those N
hypothesis. However, in this thesis, a binary problem is considered that is only
two hypothesis will be studied: The first is H0 which only contains noise, while
the second hypothesis will be H1 which consists of a combination of the desired
signal and noise. This binary problem is called Binary Hypothesis Testing.
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Bayes’ Risk Formulation

For an optimal design three basic things should be considered. First, it is assumed
that each hypothesis has an apriori, denoted by:

Pr[H = H0] = P0

Pr[H = H1] = P1

where H denotes the true hypothesis.

Second, a measurement model should be adopted. To get the measurement
model, the relationship between the hypothesis and observations is defined by a
probabilistic model through two likelihood functions: pY |H(y|H0) and pY |H(y|H1).

Third, cost cij of deciding on Hi when Hj is true should be studied in order
to minimize the average cost of the design.

Thus for an optimal design that minimizes the average cost, all above listed
requirements are combined to form:

pY |H(Y |H1)

pY |H(Y |H0)

H1

>
<
H0

c10 − c00

c01 − c11

P0

P1

= η, (4.1)

where c10 > c00 and c01 > c11, i.e the cost of making the incorrect decision is
greater than the cost of making the correct one.

The ratio of the left-hand side of the above equation is the Likelihood Ratio
Test (LRT), which we will represent by:

L(Y ) =
pY |H(Y |H1)

pY |H(Y |H0)

For performance specifications, Probability of Detection (PD) and Probability of
False Alarm (PF ) are found through

PD = Pr(Ĥ = H1|H = H1) =

∫
Y1
pY |H(y|H1)dy, (4.2)

and

PF = Pr(Ĥ = H1|H = H0) =

∫
Y1
pY |H(y|H0)dy, (4.3)

where Y1 is he decision region of H1:

Y1 = {y ∈ Y , Ĥ(y) = H1},
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and Ĥ is the decided decision, which is either H0 and H1 . Thus the region of
H0 which is Y0 will be

Y0 = Y \ Y1 = {y ∈ Y , Ĥ(y) = H0}

The Probability of a Miss (PM) can be defined as:

PM = 1− PD = Pr(Ĥ = H0|H = H1) =

∫
Y0
pY |H(y|H1)dy (4.4)

A special case from the Binary Hypothesis Testing will be considered, which is
the Maximum Likelihood (ML) rule.

Maximum Likelihood Rule

In the ML rule we set the cost assignments to be as follows:

cij = 1− δij =

{
1 if i 6= j
0 if i = j

, (4.5)

and assume the apriories are equal. That is

P0 = P1 =
1

2
.

Therefore, in equation (4.1), using ML rule, η equals to 1 :

pY |H1

pY |H0

H1

>
<
H0

1. (4.6)

This rule is useful in cases where no costs and apriori are assigned, which is
useful in our design process. By this we mean that no hypothesis is favored over
another.

Neyman-Pearson

The Neyman-Pearson Approach Found to be suitable when the costs and apriori
are unknown and setting η = 1, as in the ML rule, is unreasonable. A quality
criterion which depends on the probabilities of detection and that of false alarm
seems more appropriate in such scenario. Since, for any detection process, there
are always a probability of detection and a probability of false alarm associated
with it. Below is the objective from using of the Neyman-Pearson Approach:

max
PF6α

PD.
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This means that we need to maximize the probability of detection while the prob-
ability of false alarm is bounded.

The solution for this maximization will be formulated through

max
PF6α

PD = min
PF6α

(1− PD) = min
PF6α

1−
∫
Y1
pY |H(y|H1)dy = min

PF6α

∫
Y0
pY |H(y|H1)dy,

and the constraint is

PF 6 α ⇐⇒
∫
Y1
pY |H(y|H0)dy 6 α.

In general, the LRT solution for this approach is

pY |H(Y |H1)

pY |H(Y |H0)

H1

>
<
H0

ζ, (4.7)

where ζ is selected such that PF (ζ) = α.

4.3 Optimization Using the Large Deviation Ap-

proach

Large deviations deal with the behaviour at which tails of probabilities of events
of certain distributions decay asymptotically. It is widely used in topics, such
as probability, statistics, queueing theory, communication theory and statistical
mechanics. Since our quality measures are probability quantities, large deviation
concepts seem adequate whenever the problem in the question decrease asymp-
totically.

4.3.1 The Gärtner-Ellis theorem

Since arbitrary random sequences {Y [n]} are studied in our work, the Gärtner-
Ellis theorem [11] will be possibly useful along with the Frenchel-Legendre trans-
form. The Gärtner-Ellis theorem is an (nonconvex) extension formula produced
by twisting the conventional large deviation rate function around a continuous
functional. The OC of the LRT’s is a plot of how PF and PD vary as a function
of a threshold r. Therefore, the Gärtner-Ellis theorem will be applied for min-
imizing probability of miss (PM) and probability of false alarm (PF ). We state
the theorem below:
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Theorem Let X = Rd be a complete separable space for each n ∈ N, hav-
ing a norming constant {an, n ∈ N} which are a sequence of positive numbers
tending to ∞, {(Ωn,Fn, Pn), n ∈ N} is the probability space and a random vec-
tor Wn which maps Ωn into X . Assuming the limit Λ(θ) exists and is finite for
θ ∈ Rd defined to be

Λ(θ) = lim
n→∞

1

an
Λn(anθ), (4.8)

define
Λn(θ) = ln ΦWn(θ), (4.9)

where ΦWn(θ), the moment generating function of Wn is given by

ΦWn(θ) = E[e<θ,Wn>]. (4.10)

The Fenchel-Legendre transform of Λ(θ) is:

Λ∗(x) = sup
θ∈Rd

(< θ,x > −Λ(θ)). (4.11)

Then

i) For every closed subset F :

lim
n→∞

sup
1

an
logPn{Wn ∈ F} 6 −Λ∗(F ) = − inf

x∈F
Λ∗(x) (4.12)

ii) For every open subset G:

lim
n→∞

inf
1

an
logPn{Wn ∈ G} > −Λ∗(G) = − inf

x∈G
Λ∗(x). (4.13)

Here the norming constant an = n which is the filter’s length, and the sets are
typically G = {Y[n] < r} and F = Ḡ.

Special Case:

In the scalar case, let G be the set (−∞, r)

Λ∗(G) = inf
x∈(−∞,r)

{
sup
θ

(θx− Λ(θ))

}

= inf
x∈(−∞,0)

{
sup
θ

(θx+ θr − Λ(θ))

} (4.14)

Let x∗ be an optimal solution and θ∗(x∗) be the corresponding optimal θ.
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1) If x∗ < 0 and θ∗(x∗) > 0,
we claim that there exists a solution x0 and θ(x0) where x0 is smaller.
Take x = x∗ − ε; for θ > 0,

sup
θ>0

(θ(x∗ − ε) + θr − Λ(θ)) < sup
θ>0

(θx∗ + θr − Λ(θ)) 6 (θ∗x∗ + θ∗r − Λ(θ∗)) .

Assuming continuity of θ∗, θ∗(x∗ − ε) will yield a supremum value that is
smaller or equal. Since x∗ is the solution, the values of sup will be equal but
x0 = x∗ − ε < x∗, which is a contradiction.

2) If x∗ < 0 and θ∗(x∗) < 0,
we claim that there exists a solution x0 and θ(x0) where x0 is larger.
Take x = x∗ + ε; for θ < 0,

sup
θ<0

(θ(x∗ + ε) + θr − Λ(θ)) < sup
θ<0

(θx∗ + θr − Λ(θ)) 6 (θ∗x∗ + θ∗r − Λ(θ∗)) .

Assuming continuity of θ∗, θ∗(x∗ + ε) will yield a supremum value that is
smaller or equal. Since x∗ is the solution, the values of sup will be equal but
x0 = x∗ + ε < x∗, which is a contradiction.

3) if θ∗(x∗) = 0,

Λ∗(G) = −Λ(0),

so we get the value of −Λ(0).

4) x∗ = 0,
Λ∗(G) = sup

θ
(θr − Λ(θ))

i) θ∗(x∗) > δ,
Take x = −ε; for θ > δ,

sup
θ>δ

(θ(−ε) + θr − Λ(θ)) < sup
θ>δ

(θr − Λ(θ)) 6 θ∗r − Λ(θ∗).

Assuming continuity of θ∗, θ∗(−ε) will yield a supremum value that is
smaller or equal. Since x∗ is the solution, the values of sup will be equal
but x0 = −ε < x∗, which is a contradiction.

In conclusion x∗ =0 and θ∗(x∗) 6 0 s the solution.

The Gärtner-Ellis theorem becomes for the scalar case:

P (Y [n] < r) ∼= e−nΛ∗(r) (4.15)
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lim
n→∞

1

n
logP (Y [n] < r) = −Λ∗(r)

where the rate Λ∗(r) is the Fenchel-Legendre transform of Λ(θ), i.e.

Λ∗(r) = sup
θ<0

(〈θ, r〉 − Λ(θ)) (4.16)

where Λ(θ) is the cumulant generating function Y [n]

Λ(θ) = lim
n→∞

1

n
Λn(nθ), (4.17)

and
Λn(θ) = ln ΦYn(θ), (4.18)

and
ΦYn(θ) = E[e〈θ,Y [n]〉]. (4.19)

Here we introduced the Gärtner-Ellis theorem which states in layman terms that
when the scaled cumulant generating function Λ(θ) of Y [n] is differentiable, then
Y [n] obeys a large deviation principle with a rate function Λ∗(r) which is the
Legendre-Fenchel transform of Λ(θ).

In what follows, for each model we study, the Gärtner-Ellis theorem will be used
in order to find the best quantization points of the filter to increase its proba-
bility of detection (PD), i.e decrease its probability of miss (PM) and minimize
probability of false alarm (PF ).
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Chapter 5

Model 1: The Received Signal is
Subject to Additive Gaussian
Noise

We assume the received signal is subject to Additive Gaussian Noise. The model
description is explained in section 5.1. Ways to optimize the receiver’s device are
applied using Neyman Pearson in section 5.3, Maximum Likelihood in section 5.4
and Large Deviations in section 5.5. Likelihood Ratio Test is discussed section
5.2.

5.1 Model Description

Figure 5.1: Model 1 at the Receiver

Lets consider the above model, signal X[k] is subject to a White Gaussian
Additive Noise W [k] with W [k] ∼ N (0, σ2). The received signal Y [k] is convolved
by filter f̂ . After sampling at t = K, this will produce
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1) H0: Y = Z where,

Z =
1

N

∞∑
i=−∞

f̂ [i]W [K − i] (5.1)

and Z ∼ N (0, σ
2
∑
|f̂ [i]|2

N2 ).

therefore,

Y ∼ N

(
0,
σ2
∑
|f̂ [i]|2

N2

)
.

which we will represent as
Y ∼ N

(
0, σ2

1

)
.

2) H1 : Y = R + Z where,

R =
1

N

∞∑
i=−∞

f̂ [i]x[K − i] (5.2)

and

Z =
1

N

∞∑
i=−∞

f̂ [i]W [K − i]

therefore,

Y ∼ N

(∑
f̂ [i]x[K − i]

N
,
σ2
∑
|f̂ [i]|2

N2

)
.

which we will represent it as

Y ∼ N
(
µK , σ

2
1

)
.

In section 3.2, we stated two different scenarios, which we will study in this
chapter. Section 5.3 to section 5.5 will use scenario 1 to optimize the filter’s
performance. Scenario 2 will be analysed in section 5.6.
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5.2 The Likelihood Ratio Test

The Likelihood Ratio Test (LRT) parametrized by ζ is

pY |H1

pY |H0

H1

>
<
H0

ζ, ζ > 0.

We will discuss two cases, the real case signal in section 5.2.1, and the complex

case signal in section 5.2.2. In both cases we set 1
N

N−1∑
i=0

|f̂ [i]|2 = 1, i.e f̂ [i] has a

unit power, and σ2
1 = σ2

N
.

5.2.1 Real Case

Assuming real quantities, for µ > 0 the LRT is,

1√
2πσ1

e
−(Y−µK )2

2σ21

1√
2πσ1

e
−Y 2

2σ21

H1

>
<
H0

ζ, (5.3)

or equivalently,

Y 2 − (Y − µK)2

H1

>
<
H0

2σ2
1 ln ζ, (5.4)

Y

H1

>
<
H0

2σ2
1 ln ζ + µ2

K

2µK
=̂η. (5.5)

5.2.2 Complex Case

Assuming complex quantities,

1
2πσ2

1
e
−|Y−µK |

2

2σ21

1
2πσ2

1
e
−|Y |2
2σ21

H1

>
<
H0

ζ, (5.6)

equivalent to

|Y |2 − |Y − µK |2
H1

>
<
H0

2σ2
1 ln ζ, (5.7)
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<(Y e−jθµK )

H1

>
<
H0

2σ2
1 ln ζ + |µK |2

2|µK |
=̂η. (5.8)

5.3 Neyman-Pearson Approach

Neyman-Pearson will be studied for real signal case in section 5.3.1 and complex
signal case 5.3.2.

5.3.1 Real Case

For µ > 0 , using η defined in equation (5.5),

The Probability of a Miss (PM):

PM = 1− PD = P (Ĥ = H0 | H1) =

∫ η

−∞

1√
2πσ1

e
−(Y−µK )2

2σ21 dY. (5.9)

Setting U = Y−µK
σ1

, so equation (5.9) becomes

PM = 1− PD = P (Ĥ = H0 | H1) =

∫ η−µK
σ1

−∞

1√
2π
e
−U2

2 dU. (5.10)

If one were to minimize PM then one should minimize η−µ
σ1

.

Now we will consider the case of a probability of a false alarm (PF ):

PF = P (Ĥ = H1 | H0) =

∫ ∞
η

1√
2πσ1

e
−Y 2

2σ21 dY. (5.11)

Let U = Y
σ1

, so equation (5.11) will change to

PF = P (Ĥ = H1 | H0) =

∫ ∞
η
σ1

1√
2π
e
−U2

2 dU (5.12)

and one should maximise η
σ1

to minimize the probability of false Alarm.
Using the Neyman-Pearson approach, we upper bound PF by α and maximize
PD.

” arg max
PF6α

PD”⇔ arg maxPD + λ(PF − α) (5.13)

where λ is the Lagrange multiplier of the constraint.
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Note that for µK < 0, PM will be 1−PM and PF will be 1−PF found above, that
is maximize η−µ

σ1
is equivalent to minimize −η+µ

σ1
, and the problems are equivalent.

Figure 5.2: PD vs PF for optimized theoretical quantization points, starting from
2 quantization points to 15 quantization points of Barker with Sinc sequence
detection, for SNR= 4 dB. The performance with no quantization is shown using
solid line.

Numerical Results

For the real case, best f̂ was searched in Matlab using fmincon. For each number
of quantization points, PF was set to be at most to α, and the value of α ranged
from 0.001 to 0.99. While changing the value of α, it was found that the quan-
tization points were equal, see table 5.1. We conjecture that optimal f̂ is not
dependant on α (for a given SNR). In addition, the value of the noise variance
was varied from 10 to 10000. The difference between f̂ values was found to be
also equal, refer to table 5.1 and table 5.2 to compare the quantization points
for SNR=4 db and SNR=−2.9287dB. Based on the above, for a given number
of quantization points, we propose using one quantized filter f̂ for all operating
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points and SNRs. Figure 5.2 is one sample from the produced results of PD vs
PF = α for SNR= 4 dB during the search process of finding the quantization
points. Figure 5.3 shows a similar results for SNR= 9.2898 dB. We conclude
from both graphs, starting at three quantization points the filter’s performance
is “close” to the original one. Figure 5.4 is a comparison between the theoretical
plot given five quantization points and the simulation of 100000 packets using
the same filter f̂ produced from the fmincon search process for SNR=4dB, which
validates our theoretical analysis.

Figure 5.3: PD vs PF for optimized theoretical quantization points, starting
from 2 quantization points to 15 quantization points of Barker with Sinc sequence
detection, SNR= 9.2898dB. The performance with no quantization is shown using
solid line.
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Figure 5.4: PD vs PF for five quantization points, a comparison between the
optimized theoretical quantization points results with the simulation results of
100000 packets using the same produced filter f̂ of Barker with Sinc, for SNR= 4
dB.

5.3.2 Complex Case

Using η defined in equation (5.8), the Probability of a Miss (PM) is:

PM = 1− PD = P (Ĥ = H0 | H1) =

∫
<(Y e−jθµK )<η

1

2πσ2
1

e
−|Y−µK |

2

2σ21 dY, (5.14)

Let V = (Y e−jθµK ),

PM = 1−PD = P (Ĥ = H0 | H1) =

∫
<(V )6η

1

2πσ2
1

e
−|V ejθµK −µK |

2

2σ21 dV =

∫
<(V )6η

1

2πσ2
1

e
−|V−µ1e

−jθµK |2

2σ21 dV,

(5.15)

Set U = V−|µK |
σ1

, so equation (5.15) becomes

PM = 1− PD = P (Ĥ = H0 | H1) =

∫
<(U)6

η−|µK |
σ1

1

2π
e
−|U|2

2 dU. (5.16)
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PF=α First Quantization Point Second Quantization Point
1.0 x e−05 0.039983292683474 -0.999682864612971

0.05 0.039983292683474 -0.999682864612971
0.15 0.039983292683474 - 0.999682864612971
0.2 0.039983292683474 -0.999682864612971
0.4 0.039983292683474 - 0.999682864612971
0.5 0.039983292683474 - 0.999682864612971
0.6 0.039983292683474 - 0.999682864612971
0.7 0.039983292683474 -0.999682864612971
0.8 0.039983292683474 - 0.999682864612971
0.9 0.039983292683474 -0.999682864612971
0.99 0.039983292683474 - 0.999682864612971

Table 5.1: The produced two quantization points to create the optimal filter f̂
of Barker with Sinc for SNR=4 dB.

PF=α First Quantization Point Second Quantization Point
1.0 x e−05 0.039983292683474 -0.999682864612971

0.05 0.039983292683474 -0.999682864612971
0.15 0.039983292683474 -0.999682864612971
0.2 0.039983292683474 -0.999682864612971
0.4 0.039983292683474 -0.999682864612971
0.5 0.039983292683474 -0.999682864612971
0.6 0.039983292683474 -0.999682864612971
0.7 0.039983292683474 - 0.999682864612971
0.8 0.039983292683474 -0.999682864612971
0.9 0.039983292683474 - 0.999682864612971
0.99 0.039983292683474 -0.999682864612971

Table 5.2: The produced two quantization points to create the optimal filter f̂
of Barker with Sinc for SNR=−2.9287 dB.
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Figure 5.5: PD vs PF for optimized theoretical quantization points, starting
from 2 quantization points to 15 quantization points of Zaddoff Chu sequence
detection, SNR= 4.9136dB. The performance with no quantization is shown using
solid line of 16 quantization points.

Thus one should minimize η−|µK |√
σ1

if one were to minimize (PM).

Now we will consider the case of a probability of a false alarm (PF ):

PF = P (Ĥ = H1 | H0) =

∫
<(Y e−jθµK )>η

1

2πσ2
1

e
−|Y |2

2σ21 dY (5.17)

Let V = (Y e−jθµK ) ,

PF = P (Ĥ = H1 | H0) =

∫
<(V )>η

1

2πσ2
1

e
−|V |2

2σ21 dV =

∫
<(U)> η

σ1

1

2π
e
−|U|2

2 dU (5.18)

Thus we should maximise η
σ1

to minimize the probability of false Alarm.
The Neyman-Pearson probabiity is hence

” arg max
PF6α

PD”⇔ arg maxPD + λ(PF − α) (5.19)
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Numerical Results

Similar procedure was applied as in real case and the results were found to be
identical to the real case results, refer to table 5.3 and table 5.4. Thus same
conclusion is made and one quantized filterf̂ maybe used for all operating points
and SNRs. The small difference in the values of quantization points when SNR
is changed to due to numerical precision. Figure 5.5 is a sample case from the
produced results of PD vs PF = α for SNR=4.9136 dB obtained by the search
process of finding the quantization points. Figure 5.6 shows a similar results for
SNR= 0.14248 dB. We conclude from both figures, starting from three quantiza-
tion points the performance of the filter is close to the original one. Figure 5.7 is
a comparison between the theoretical plot given four quantization points and the
simulation of 100000 packets using the same filterf̂ produced from the fmincon
search process for SNR=4.9136dB, which validates our theoretical analysis.

Figure 5.6: PD vs PF for optimized theoretical quantization points, starting
from 2 quantization points to 15 quantization points of Zaddoff Chu sequence
detection, SNR= 0.1424dB. The performance with no quantization is shown using
solid line of 16 quantization points.
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PF=α First Quantization Point Second Quantization Point
1.0 x e−05 0.99390989982605 + 0.46477139217882i -0.91599532894826 - 0.14714914075528i

0.05 0.94823359967661 + 0.46828407660848i -0.94357658477569 - 0.15532369871884i
0.15 0.94823359967661 + 0.46828407660848i -0.94357658477569 - 0.15532369871884i
0.2 0.94823359967661 + 0.46828407660848i -0.94357658477569 - 0.15532369871884i
0.4 0.94823359967661 + 0.46828407660848i -0.94357658477569 - 0.15532369871884i
0.5 0.94823359967661 + 0.46828407660848i -0.94357658477569 - 0.15532369871884i
0.6 0.94823359967661 + 0.46828407660848i -0.94357658477569 - 0.15532369871884i
0.7 0.94823359967661 + 0.46828407660848i -0.94357658477569 - 0.15532369871884i
0.8 0.94823359967661 + 0.46828407660848i -0.94357658477569 - 0.15532369871884i
0.9 0.94823359967661 + 0.46828407660848i -0.94357658477569 - 0.15532369871884i
0.99 0.94823359967661 + 0.46828407660848i -0.94357658477569 - 0.15532369871884i

Table 5.3: The produced two quantization points to create the optimal filter f̂
of Zadoff Chu, for SNR=4.9136 dB.

PF=α First Quantization Point Second Quantization Point
1.0 x e−05 0.99649426948682 + 0.46388104997698i -0.90860769404907 - 0.15516409372289i

0.05 0.95363673856140 + 0.45914657952403i -0.94458800741223 - 0.14462309677832i
0.15 0.95363673856140 + 0.45914657952403i -0.94458800741223 - 0.14462309677832i
0.2 0.95363673856140 + 0.45914657952403i -0.94458800741223 - 0.14462309677832i
0.4 0.95363673856140 + 0.45914657952403i -0.94458800741223 - 0.14462309677832i
0.5 0.95363673856140 + 0.45914657952403i -0.94458800741223 - 0.14462309677832i
0.6 0.95363673856140 + 0.45914657952403i -0.94458800741223 - 0.14462309677832i
0.7 0.95363673856140 + 0.45914657952403i -0.94458800741223 - 0.14462309677832i
0.8 0.95363673856140 + 0.45914657952403i -0.94458800741223 - 0.14462309677832i
0.9 0.95363673856140 + 0.45914657952403i -0.94458800741223 - 0.14462309677832i
0.99 0.95363673856140 + 0.45914657952403i -0.94458800741223 - 0.14462309677832i

Table 5.4: The produced two quantization points to create the optimal filter f̂
of Zadoff Chu, for SNR=0.1424 dB.
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Figure 5.7: PD vs PF for five quantization points, a comparison between the
optimized theoretical quantization points results with the simulation results of
100000 packets using the same produced filter f̂ of Zadoff Chu, for SNR=4.9136
dB.

5.4 Maximum Likelihood Rule

The ML device is a LRT parameter (1) and is a min distance device,

pY |H1

pY |H0

H1

>
<
H0

1

For Real quantities, the decision rule for µ > 0

Y

H1

>
<
H0

µK
2

(5.20)
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and the probability of error Q( µK
2σ1

). Hence one should we should maximise µK
σ1

,
i.e.

arg max
f

(
µK
σ1

)
= arg max

f̂ : 1
N

N−1∑
i=0

f̂ [i]f̂ [i]=1

∞∑
i=−∞

f̂ [i]x[K − i]

Nσ1

= arg max
f̂ : 1
N

N−1∑
i=0

f̂ [i]f̂ [i]=1

=
∞∑

i=−∞

f̂ [i]x[K−i]

(5.21)

From equation (5.21), it is concluded that we should maximise
∞∑

i=−∞
f̂ [i]x[K − i]

Now if µK < 0 the opposite case will be required that is minimize µK
σ1

to minimize
error.
Note we need to maximise |µK | in both cases.

For Complex Case, the ML device used will be

1
2πσ2

1
e
−|Y−µK |

2

2σ21

1
2πσ2

1
e
−|Y |2
2σ21

H1

>
<
H0

1 (5.22)

equivalent to,

<(Y µ∗K)

H1

>
<
H0

µKµ
∗
K

2
(5.23)

with probability of error is Q( |µK |
2σ1

) and we should maximise |µK |
σ1

which is as in
the real case,

arg max
f

(
|µK |
σ1

)
= arg max

f̂ : 1
N

N−1∑
i=0
||f̂ [i]||2=1

∞∑
i=−∞

|f̂ [i]x∗[K − i]|

Nσ1

= arg max
f̂ : 1
N

N−1∑
i=0
||f̂ [i]||2=1

∞∑
i=−∞

|f̂ [i]x∗[K−i]|

(5.24)

5.5 Minimising Error Rate using Large Devia-

tions

As stated in section 3.2 the amplitude at location K of the signal will first be
checked. If it is less than a threshold r it will be an error. Using the Gärtner-Ellis
theorem introduced in section 4.3, we minimize both the probability of a miss
(PM) and probability of false alarm (PF ) in the experiments. Each case will be
studied for both real (section 5.5.1) and complex (section 5.5.2 ) signals.
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5.5.1 For Real Signal Cases

The Probability of a Miss (PM)

Given hypothesis H1, the output signal Y = R + Z, as discussed in section 5.1,
Y is distributed as

Y ∼ N


N−1∑
i=0

f̂ [i]X[K − i]

N
,

σ2
N−1∑
i=0

f̂ [i]f̂ [i]

N2


Then, starting from equation (4.19),

ΦYN (θ) = eθ

N−1∑
i=0

f̂ [i] X[K−i]

N
+ θ2

2

σ2
N−1∑
i=0

f̂ [i]f̂ [i]

N2 (5.25)

then

ΛN(Nθ) = θ
N−1∑
i=0

f̂ [i]X[K − i] + σ2 θ
2

2

N−1∑
i=0

f̂ [i]f̂ [i] (5.26)

Now take

lim
N→∞

1

N
ΛN(Nθ) = lim

N→∞
θ

N−1∑
i=0

f̂ [i]X[K − i]

N
+ σ2 θ

2

2
lim
N→∞

N−1∑
i=0

f̂ [i]f̂ [i]

N
(5.27)

denoting µ = limN→∞

N−1∑
i=0

f [i]X[K−i]

N
, equation (5.27) becomes,

lim
N→∞

1

N
ΛN(Nθ) = θµ+ σ2 θ

2

2
lim
N→∞

N−1∑
i=0

f̂ [i]f̂ [i]

N
(5.28)

If we set limN→∞

N−1∑
i=0

f̂ [i]f̂ [i]

N
= 1, i.e f̂ has a “unit power”,

lim
N→∞

1

N
ΛN(Nθ) = θµ+ σ2 θ

2

2
(5.29)

Therefore, equation (4.17), which represents the Fenchel-Legendre transform, can
be written as,

Λ∗(τ) = sup
θ<0

(
θ(τ − µ)− θ2

2
σ2

)
(5.30)

Calculate the derivative and set it to zero,

∂
(
θ(τ − µ)− θ2

2
σ2
)

∂θ
= 0 (5.31)
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and hence, the optimal θ is

θ =


(τ−µ)
σ2 Acceptable if τ − µ 6 0

i.e τ 6 µ

0 o.w

(5.32)

substitute θ in Λ∗(τ) in a given f̂ :

Λ∗(τ) =

{
(τ−µ)2

2σ2 if τ 6 µ

0 o.w

Next we find the maximum of Λ∗(τ) over f̂ : 1
N

N−1∑
i=0

f̂ [i]f̂ [i] = 1

arg max
f̂ : 1

N

N−1∑
i=0

f̂ [i]f̂ [i] = 1

τ 6 µ

(
(τ − µ)2

2σ2

)
= arg max

f̂ : 1
N

N−1∑
i=0

f̂ [i]f̂ [i] = 1

τ 6 µ

(µ−τ)2 = arg max
f̂ : 1

N

N−1∑
i=0

f̂ [i]f̂ [i] = 1

τ 6 µ

µ

Therefore, after optimizing over f̂

Λ∗(τ) =


1

2σ2 max
f̂ : 1
N

N−1∑
i=0

f̂ [i]f̂ [i]=1

(µ− τ)2 τ 6 µ

0 o.w.

(5.33)

Figures 5.8 and 5.9 plot the term Λ∗(τ) (green line), Λ(θ) (red line) and θτ
for µ = 0.5244 in Figure 5.8 and µ = 1.0489 in Figure 5.9.The parameter τ was
equal to 0.2622 in both figures. Figure 5.9 resulted in a higher peak of Λ∗(τ)
since its mean µ is higher which confirms our analysis.

The Probability of False Alarm (PF )

Consider hypothesis H0, the output signal Y = Z, as discussed in Section 5.1, Y
is distributed as

Y ∼ N

0,

σ2
L−1∑
i=0

f̂ [i]f̂ [i]

N2


Then, starting from equation (4.19),

ΦRN (θ) = e
θ2

2

σ2
N−1∑
i=0

f̂ [i]f̂ [i]

N2 (5.34)
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Figure 5.8: plot the results of Λ∗(τ), Λ(θ) and θτ for µ = 0.5244

Figure 5.9: plot the results of Λ∗(τ), Λ(θ) and θτ for µ = 1.0489

then

ΛN(Nθ) = σ2 θ
2

2

N−1∑
i=0

f̂ [i]f̂ [i] (5.35)

Now take

lim
N→∞

1

N
ΛN(Nθ) = σ2 θ

2

2
lim
N→∞

N−1∑
i=0

f̂ [i]f̂ [i]

N
(5.36)

setting limN→∞

N−1∑
i=0

f̂ [i]f̂ [i]

N
= 1, i.e f̂ is a unit power,

lim
N→∞

1

N
ΛN(Nθ) = σ2 θ

2

2
(5.37)
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Therefore, equation (4.17), which represents Fenchel-Legendre transform, can be
written as,

Λ∗(τ) = sup
θ>0

(
θτ − θ2

2
σ2

)
(5.38)

Calculate the derivative and set it to zero,

∂
(
θτ − θ2

2
σ2
)

∂θ
= 0 (5.39)

since τ > 0, we will get,

θ =
( τ
σ2

)
(5.40)

substitute θ in equation (5.38)

Λ∗(τ) =

(
τ 2

2σ2

)
.

Now maximizing over f̂

Λ∗(τ) = max
f̂ : 1

N

N−1∑
i=0

f̂ [i]f̂ [i] = 1

(
τ 2

2σ2

)
=

τ 2

2σ2

Numerical Results

For the real case, best f̂ was searched in Matlab using fmincon, starting with the
points obtained using Neyman Pearson Approach. It was found that the optimal
f̂ points were equal to the points from Neyman Pearson Approach. Based on the
above, same conclusions are made as in section 5.3.1. After that, Λ∗(τ) for PM and
PF were found and plotted. Figure 5.10 is one sample from the produced results
of Λ∗(τ) for PM vs Λ∗(τ) for PF for SNR= 9.2898 dB during the search process
of finding the quantization points. It is clear that there is better performance
when the number of quantization points increases, which is logical. Figure 5.11
is another plot of Λ∗(τ) for PM vs Λ∗(τ) for PF for SNR= 17.0713 dB during the
search process of finding the quantization points. Since it has a higher SNR than
figure 5.10, figure 5.11 shows better performance.
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Figure 5.10: Λ∗(τ) for PM vs Λ∗(τ) for PF for optimized theoretical quantization
points, starting from 2 quantization points to 15 quantization points of Barker
with Sinc sequence detection, for SNR= 9.2898 dB. The performance with no
quantization is shown using ‘*’ line.

5.5.2 For complex Signal Cases

The Probability of a Miss (PM)

To minimize PM , consider hypothesis H1 having the ouput signal Y = R + Z as
discussed in the Model Description Section. It follows

Y ∼ N


N−1∑
i=0

f̂ [i]X[K − i]

N
,

σ2
L−1∑
i=0

f̂ [i]f̂ [i]

N2



However, for complex signal analysis using the Gärtner-Ellis theorem, it is more
practical to deal with it as a 2D variable. That is, Y ’s mean mY and ΛY

covariance matrix are represented as a vector quantity consisting of its real and
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Figure 5.11: Λ∗(τ) for PM vs Λ∗(τ) for PF for optimized theoretical quantization
points, starting from 2 quantization points to 15 quantization points of Barker
with Sinc sequence detection, for SNR= 17.0713 dB. The performance with no
quantization is shown using ‘*’ line.

imaginary parts such that

mY =


N−1∑
i=0

f̂R[i]XR[K−i]−f̂I [i]XI [K−i]

N
N−1∑
i=0

f̂R[i]XI [K−i]+f̂I [i]XR[K−i]

N

 =

[
mR

mI

]
(5.41)

ΛY =


σ2

L−1∑
i=0

f̂R[i]f̂R[i]+f̂I [i]f̂I [i]

N2 0

0
σ2

L−1∑
i=0

f̂R[i]f̂R[i]+f̂I [i]f̂I [i]]

N2

 = σ2 ||f̂ ||2

N2
I (5.42)

Thus,

Y ∼ N (mY,ΛY )

Here θ and r are two dimensional, denoted as

θ =

[
θ1

θ2

]
r =

[
τ1

τ2

]
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Thus, starting from equation (4.19) ,

ΦRN (θ) = eθ1m1+θ2m2+ 1
2
θT ΛY θ, (5.43)

and

ΛN(Nθ) = Nθ1m1 +Nθ2m2 + N2

2
θTΛY θ

= θ1

N−1∑
i=0

(f̂R[i]XR[K − i]− f̂I [i]XI [K − i]) + θ2

N−1∑
i=0

(f̂R[i]XI [K − i] + f̂I [i]XR[K − i])

+1
2
σ2||f̂ ||2θT Iθ

(5.44)
Now take

lim
N→∞

1

N
ΛN(Nθ) = lim

N→∞
θ1

N−1∑
i=0

f̂R[i]XR[K − i]

N
+ lim
N→∞

θ2

N−1∑
i=0

f̂I [i]XI [K − i]

N
+σ2 1

2
lim
N→∞

||f̂ ||2θT Iθ
N

(5.45)

let µ = [µK µ2] where µ = limN→∞

N−1∑
i=0

f [i]X[K−i]

N
, so equation (5.45) becomes,

lim
N→∞

1

N
ΛN(Nθ) = θ1µK + θ2µ2 + σ2 1

2
lim
N→∞

||f̂ ||2θT Iθ
N

(5.46)

Setting limN→∞

N−1∑
i=0

f̂R[i]f̂R[i]+f̂I [i]f̂I [i]

N
= 1, i.e f̂ [i] is unit-power. Thus limN→∞

1
N

ΛN(Nθ)
will equal to,

lim
N→∞

1

N
ΛN(Nθ) = θ1µK + θ2µ2 +

σ2

2
(θ2

1 + θ2
2) (5.47)

Therefore, equation (4.17), which represents Fenchel-Legendre transform, can be
written as,

Λ∗(r) = sup
θ∈R2

(
< θ, r > − < θ, µ > −θ

Tθ

2
σ2

)
(5.48)

This means find the maximum of Λ∗(τ)

over f̂ : 1
N

N−1∑
i=0

||f̂ [i]||2 = 1

Calculate the derivatives and set them to zero,

∂
(
< θ, r > − < θ, µ > −θT θ

2
σ2
)

∂θi
= 0 (5.49)

for i = 1, 2,

∀i θi =


(τi−µi)
σ2 if τi − µi 6 0

i.e τi 6 µi

0 o.w

(5.50)
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Now substitute θ in Λ∗(r) for a given f̂ :

Λ∗(r) =


(τi−µi)2

2σ2 if τi 6 µi

i = 1, 2

0 o.w

Since we are interested in minimizing the probability of a miss,based on equation
(5.8), this means we need to compute

1

2σ2
inf
r∈R
||r− µ||2, where R :

{
<(re−jθµK ) 6 η

}
which is equal

1

2σ2
inf
r∈R
||re−jθµK − ||µ||||2 =

1

2σ2
inf

r∈R′={<(r)6η}
||r− ||µ||||2 (5.51)

Λ∗(r) =

{
(||µ||−η)2

2σ2 if ||µ|| > η

0 if ||µ|| 6 η

Next we optimize over f̂ ,

Λ∗(r) =


1

2σ2 max
f̂ : 1
N

N−1∑
i=0
||f̂ ||2=1

(||µ|| − η)2 ||µ|| > η

0 ||µ|| 6 η

(5.52)

The Probability of False Alarm (PF )

Given hypothesis H0, the output signal Y as discussed in Section 5.1 and is
distributed as

Y ∼ N

(
0,
σ2
∑
|f̂ [i]|2

N2

)
Using 2D representation, covariance matrix ΛY

ΛY =
σ2
∑
|f̂ [i]|2

N2

[
1 0
0 1

]
=
σ2
∑
|f̂ [i]|2

N2
I (5.53)

Thus,
Y ∼ N (0,ΛY ) .

Now,
ΦYN (θ) = e

1
2
θT ΛY θ, (5.54)

and
ΛN(Nθ) = N2

2
θTΛY θ

= N2

2
σ2

∑
|f̂ [i]|2

N2 θT Iθ

(5.55)
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Now take

lim
N→∞

1

N
ΛN(Nθ) =

1

2
lim
N→∞

σ2
∑
|f̂ [i]|2||θ||2

N
(5.56)

and setting limN→∞

N−1∑
i=0

f̂R[i]f̂R[i]+f̂I [i]f̂I [i]

N
= 1,

lim
N→∞

1

N
ΛN(Nθ) =

1

2
lim
N→∞

σ2(θ2
1 + θ2

2) (5.57)

Therefore, equation (4.17), which represents Fenchel-Legendre transform, can be
written as,

Λ∗(r) = sup
θ∈R2

(
〈θ, r〉 − σ2θ

Tθ

2

)
(5.58)

Calculate the derivative of each θi, for i = 1, 2, and set it to zero,

∂
(
〈θ, r〉 − σ2 θT θ

2

)
∂θi

= 0 (5.59)

we will get

∀i θi =
( τi
σ2

)
(5.60)

substitute θ in

Λ∗(r) =
2∑
i=1

(
τ 2
i

2σ2

)
= inf

r/∈R

||re−jθµK ||2

2σ2
=

1

2σ2
inf

r/∈R′
||r||2

since this is independent of f̂ , the optimal rate of decay for PF is

Λ∗(r) =

{
η2

2σ2 if η > 0

0 if η 6 0
(5.61)

Numerical Results

Similar procedure was applied as in real case and the results were found to be
identical to the real case results. Figure 5.12 is one sample from the produced
results of Λ∗(τ) for PM vs Λ∗(τ) for PF for SNR= 4.9136 dB during the search
process of finding the quantization points. Therefore, same conclusions are made
as in the real case.
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Figure 5.12: Λ∗(τ) for PM vs Λ∗(τ) for PF for optimized theoretical quantization
points, starting from 2 quantization points to 15 quantization points of Barker
with Sinc sequence detection, for SNR= 4.9136 dB. The performance with no
quantization is shown using solid line.

5.6 Unknown Location

In this section, the second scenario stated in section 3.2 will be studied. Thus,
the Probability of Detection (PD) will be,

PD = P(max = K & Y [K] > r)

The resulted sequence after convolution is distributed as a Multivariate Normal
Distribution. The amplitude of each point, starting from point t = N and ending
at point t = L, will be considered. Thus, the total length of the Multivariate
Normal Distribution is T = N −L+ 1. The points in the T -dimensional random
vector have the following distribution, refer to figure 5.1,

1) H1 at each point t:

Z[t] =
1

N

∞∑
i=−∞

f̂ [i]W [t− i]
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therefore,

Y [t] ∼ N

(
0,
σ2
∑
|f̂ [i]|2

N2

)
.

2) H1 at each point t:

R[t] =
1

N

∞∑
i=−∞

f̂ [i]x[t− i] (5.62)

and

Z[t] =
1

N

∞∑
i=−∞

f̂ [i]W [t− i]

therefore,

Y [t] ∼ N

(∑
f̂ [i]x[t− i]
N

,
σ2
∑
|f̂ [i]|2

N2

)
.

In which we will represent it as

Y [t] ∼ N
(
µt, σ

2
1

)
where µt is the the mean at each point t and the variance σ2

1 is constant at all
points. Finally, the multivariate normal distribution of a T -dimensional random
vector Y = [YN , ..., YL] can be written using a vector notation:

1) H0 : 1
N
AW = Y .

2) H1 : 1
N
Ax+ 1

N
AW = Y

Y ∼ N
(

1

N
Ax,

1

N2
AΛWA

H

)
,

denoted by,
Y ∼ N (µ,Σ) . (5.63)

with T -dimensional mean vector

µ = [µN , . . . , µL]

and T × T covariance matrix

Σ =


σ2

1 σ2
N,N+1 σN,N+2 . . . σN,L

σN+1,N σ2
1 σN+1,N+2 . . . σN+1,L

...
...

...
. . .

...
σL,N σL,N+1 σL,N+2 . . . σ2

1

 ,

where σt,j =
σ2

N∑
i=1

f̂ [i]f̂ [i+(j−t)]

N2 .
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The probability density function of it is represented by

py(YN , . . . , YL) =
1√

(2π)T |Σ|
e−

1
2

(y−µ)TΣ−1(y−µ) (5.64)

To find the probability that the maximum point is located at t = K, first we will
consider a Bivariate case, that is Y = [Y1 Y2]. It has a mean vector of

µ = [µ1 µ2]

and a 2× 2 variance matrix

Σ =

[
σ2

1 0
0 σ2

1

]
.

The probability that Y2 is maximum∫∞
r

∫ Y2
−∞ pY (Y1, Y2)dY1dY2 =

∫∞
r

1√
2πσ1

e
− (Y2−µ2)

2

2σ21

∫ Y2
−∞

1√
2πσ1

e
− (Y1−µ1)

2

2σ21 dY1dY2

=
∫∞
r

1√
2πσ1

e
− (Y2−µ2)

2

2σ21 (
∫∞
−∞

1√
2πσ1

e
− (Y1−µ1)

2

2σ21

−
∫∞
Y2

1√
2πσ1

e
− (Y1−µ1)

2

2σ21 )dY1dY2

=
∫∞
r

1√
2πσ1

e
− (Y2−µ2)

2

2σ21

(
1−

∫∞
Y2

1√
2πσ1

e
− (Y1−µ1)

2

2σ21

)
dY1dY2

= Q
(
r−µ2
σ1

)
−
∫∞
r

1√
2πσ1

e
− (Y2−µ2)

2

2σ21 Q
(
Y2−µ2
σ1

)
dY2.

(5.65)
The right integral of equation (5.65) will be express through approximation. Fig-
ure 5.13 is an example of the pdf of a bivariate case. The red arrows are pointing
to the region when Y2 is maximum. Using equation (5.65), it was found that
PD = P(max = K & Y [K] > r) = 0.977.

In case of T–dimensional random vector Y = [YN , ..., YK , ..., YL] equation (5.65)
becomes

PD = P(max = K & Y [K] > r) =

∫ ∞
−∞

∫ YK

ηN

...

∫ YK

−∞
py(YN , . . . , YL)dYL..dYL.

(5.66)

5.6.1 Numerical Results

Figure 5.14 is the produced theoretical result for several quantization points using
the analysis in this section for size T = 3. Figure 5.15 and figure 5.15 are a
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Figure 5.13: pY for a bivariate normal distribution with mean of [−1 1] and
variance 0.5

comparison between the simulation results and theoretical of PD = P(max =
K & Y [K] > r) for SNR= 4 for size T = 3, which proves equation (5.65).
The slight difference in the plots in figure 5.15 is due numerical precision of the
tolerance used to find the Cumulative Distribution Function (CDF) using Matlab.
Figure 5.17 is a comparison between the simulation results and theoretical of a
packet length of 542 and SNR=4 dB. This figure shows that as the packet length
increases, the probability of detection decrease. Figure 5.18 is a comparison
between the simulation results and theoretical of a packet length of 542 and
SNR=31.05076 dB. Note : Matlab could not handle more than a multivariate
variable of size 25 to find its Cumulative Distribution Function (CDF), since it
was the function used for equation (5.65).
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Figure 5.14: PD vs PF for optimized theoretical quantization points, starting for
selected number of quantization points of Barker with Sinc sequence detection,
SNR= 4dB. The performance with no quantization is shown using dotted line.
Here maximum peak was studied in a packet having a total length L = 535 and
packet is located at index I=2.

Figure 5.15: PD vs PF for two quantization points, a comparison between the
optimized theoretical quantization points results with the simulation results of
50000 packets using the same produced filter f̂ of Barker with Sinc, for SNR=4
dB . Here maximum peak was studied in a packet having a total length L = 535
and packet is located at index I=2.
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Figure 5.16: PD vs PF for No quantization, a comparison between the optimized
theoretical quantization points results with the simulation results of 50000 pack-
ets using the same produced filter f̂ of Barker with Sinc, for SNR=4 dB. Here
maximum peak was studied in a packet having a total length L = 535 and the
packet is located at I=2

Figure 5.17: PD vs PF for no quantization, a comparison between the optimized
theoretical quantization points results with the simulation results of 50000 pack-
ets using the same produced filter f̂ of Barker with Sinc, for SNR=4 dB. Here
maximum peak was studied in a packet having a total length L = 542 and the
packet is located at I=2
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Figure 5.18: PD vs PF for No quantization, a comparison between the optimized
theoretical quantization points results with the simulation results of 50000 packets
using the same produced filter f̂ of Barker with Sinc, for SNR=SNR = 17.0713
dB. Here maximum peak was studied in a packet having a total length L = 557
and the packet is located at I=10
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Chapter 6

Model 2: Signal with Rayleigh
Fading

We assume that the received signal was subject to Rayleigh scattering and ad-
ditive noise. The model description is in section 6.1. Likelihood Ratio Test is
derived in section 6.2. Ways to optimize the filter using Large Deviation is studied
in section 6.3, and using Decision Theory Tools in section 6.4.

6.1 Model Description

Figure 6.1: Model 2 at the Receiver

Lets consider the above model, X[k] is subject to with A[k] ∼ N (0, σ2
R) and

W [k] is Gaussian IID W [k] ∼ N (0, σ2). The received signal Y [k] is convolved by
filter f̂ , where f̂ is the quantized version of the signal f required to be detected.
After sampling at t=K, this will produce

1) H0: Y = Z where,

Z =
1

N

∞∑
i=−∞

f̂ [i]W [K − i] (6.1)
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and Z ∼ N (0, σ
2
∑
|f̂ [i]|2

N2 ).

2) H1 : Y = R + Z where,

R =
1

N

∞∑
i=−∞

f̂ [i]x[K − i]A[K − i] (6.2)

and,

Z =
1

N

∞∑
i=−∞

f̂ [i]W [K − i]

where R ∼ N (0,
σ2
R

∑
|f̂ [i]x[K−i]|2
N2 ) and Z ∼ N (0, σ

2
∑
|f̂ [i]|2

N2 )

For each case, H1 and H0,

1) For H1 case:

H1 : Y ∼ N

(
0,
σ2
R|
∑
f̂ [i]x[k − i]|2 + σ2

∑
|f̂ [i]|2

N2

)
.

which we will represent it as

H1 : Y ∼ N
(
0, 2σ2

1

)
.

and

2) For H0 case:

H0 : Y ∼ N

(
0,
σ2
∑
|f̂ [i]|2

N2

)
.

which we will represent it as

H0 : Y ∼ N
(
0, 2σ2

0

)
.

Initially, we assume the location K of the output is known, and an error is made
if at this location a test fails.

6.2 Likelihood Ratio Test

The LRT device used to detect this signal will be based on the following equation:

1

σ2
1

e
−|Y |2

2σ21

H1

>
<
H0

1

σ2
0

e
−|Y |2

2σ20 ζ (6.3)
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After simplifications, equation (26) becomes,

|Y |2

2σ2
0

− |Y |
2

2σ2
1

+ 2 ln(
σ0

σ1

)

H1

>
<
H0

ln ζ (6.4)

which is equal to

|Y |2
(

1

σ2
0

− 1

σ2
1

) H1

>
<
H0

2 ln ζ + 4 ln(
σ1

σ0

) = 2 ln(ζ
σ2

1

σ2
0

) (6.5)

For ζ 6 σ2
1

σ2
0
, decide always on H1. Otherwise, the decision will be base on,

|Y |

H1

>
<
H0

√√√√2 ln(ζ
σ2
1

σ2
0
)σ2

1σ
2
0

σ2
1 − σ2

0

= η (6.6)

Therefore,

Y1 = {Y, such that|Y| > η}
Y0 = {Y, such that|Y| < η}

}
either Y ∈ R2

or Y ∈ C

6.3 Minimising Error Rate using Large Devia-

tions

Rayleigh is a random complex number whose real and imaginary components are
independently and identically distributed Gaussian. For this reason, in complex
signal analysis using the Gärtner-Ellis theorem, it is more practical to deal with
it as a 2D variable.

6.3.1 The Probability of a Miss (PM)

Given hypothesis H1, the ouput signal Y = R+Z as discussed in Section 6.1 and
is distributed as

Y ∼ N

(
0,
σ2
R|
∑
f̂ [i]x[k − i]|2 + σ2

∑
|f̂ [i]|2

N2

)

50



Note that Y is a complex variable, equivalently a 2D vector

Y ∼ N (mY,ΛY ) .

with a mean

mY =

[
0
0

]
=

[
mR

mI

]
(6.7)

and covariance matrix ΛY

ΛY =
σ2
R|
∑
f̂ [i]x[K − i]|2 + σ2

∑
|f̂ [i]|2

2N2

[
1 0
0 1

]
=
σ2
R|
∑
f̂ [i]x[K − i]|2 + σ2

∑
|f̂ [i]|2

2N2
I

(6.8)
Let θ and r be

θ =

[
θ1

θ2

]
r =

[
τ1

τ2

]
.

Then, starting from equation (4.19),

ΦYN (θ) = e
1
2
θT ΛY θ (6.9)

then
ΛN(Nθ) = N2

2
θTΛY θ

= N2

2

σ2
R|

∑
f̂ [i]x[K−i]|2+σ2

∑
|f̂ [i]|2

2N2 θT Iθ

(6.10)

Now take

lim
N→∞

1

N
ΛN(Nθ) =

1

4
lim
N→∞

(σ2
R|
∑
f̂ [i]x[K − i]|2 + σ2

∑
|f̂ [i]|2)||θ||2

N
(6.11)

If we set limN→∞

N−1∑
i=0

f̂R[i]f̂R[i]+f̂I [i]f̂I [i]

N
= 1, i.e f̂ is a “unit power”

lim
N→∞

1

N
ΛN(Nθ) =

1

4

 lim
N→∞

σ2
R

N−1∑
i=0

|f̂ [i]x[K − i]|2

N
+ σ2

 (θ2
1 + θ2

2) (6.12)

denoting µ = limN→∞

N−1∑
i=0
|
∑
f̂ [i]x[K−i]|2

N
then equation (6.23) becomes,

lim
N→∞

1

N
ΛN(Nθ) =

1

4

(
σ2
Rµ+ σ2

)
(θ2

1 + θ2
2) (6.13)

Therefore, equation (4.17), which represents Fenchel-Legendre transform, can be
written as,

Λ∗(r) = sup
θ∈R2

(
〈θ, r〉 −

(
σ2
Rµ+ σ2

) θTθ
4

)
(6.14)
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Calculate the derivatives of each θi, for i = 1, 2, and set it to zero,

∂
(
〈θ, r〉 − (σ2

Rµ+ σ2) θ
T θ
4

)
∂θi

= 0 (6.15)

we will get

∀i θi =

(
2τi

σ2
Rµ+ σ2

)
(6.16)

substitute θ in

Λ∗(r) =
2∑
i=1

(
τ 2
i

(σ2
Rµ+ σ2)

)
=

||r||2

(σ2
Rµ+ σ2)

lim
N→∞

1

N
logPM(Y[n] ∈ Y0) 6 − inf

r ∈ Y0

||r||2

(σ2
Rµ+ σ2)

= 0 (6.17)

Which indicates that PM does not decay exponentially to zero with N.

6.3.2 The Probability of False Alarm (PF)

Given hypothesis H0, the output signal Y as discussed in Section 6.1 and is
distributed as

Y ∼ N

(
0,
σ2
∑
|f̂ [i]|2

N2

)
equivalently,

Y ∼ N (mY,ΛY ) .

with a mean

mY =

[
0
0

]
=

[
mR

mI

]
(6.18)

and covariance matrix ΛY

ΛY =
σ2
∑
|f̂ [i]|2

2N2

[
1 0
0 1

]
=
σ2
∑
|f̂ [i]|2

2N2
I. (6.19)

Let θ and r be

θ =

[
θ1

θ2

]
r =

[
τ1

τ2

]
.

Then, starting from equation (4.19),

ΦYN (θ) = e
1
2
θT ΛY θ (6.20)

then
ΛN(Nθ) = N2

2
θTΛY θ

= N2

4
σ2

∑
|f̂ [i]|2

N2 θT Iθ

(6.21)
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Now take

lim
N→∞

1

N
ΛN(Nθ) =

1

4
lim
N→∞

σ2
∑
|f̂ [i]|2||θ||2

N
(6.22)

If we set limN→∞

N−1∑
i=0

f̂R[i]f̂R[i]+f̂I [i]f̂I [i]

N
= 1, i.e f̂ is a “unit power”

lim
N→∞

1

N
ΛN(Nθ) =

1

4
lim
N→∞

σ2(θ2
1 + θ2

2) (6.23)

Using equation (4.17),

Λ∗(r) = sup
θ∈R2

(
〈θ, r〉 − σ2θ

Tθ

4

)
(6.24)

Calculate the derivative of each θi, for i = 1, 2, and set it to zero,

∂
(
〈θ, r〉 − σ2 θT θ

4

)
∂θi

= 0 (6.25)

we will get

∀i θi =

(
2τi
σ2

)
(6.26)

substitute θ in

Λ∗(r) =
2∑
i=1

(
τ 2
i

σ2

)
=
||r||2

σ2

Finally

lim
N→∞

1

N
logPF (Y[n] ∈ Y1) > − inf

r ∈ Y1

||r||2

σ2
=
η2

σ2
(6.27)

6.4 Minimising Error Rate through Decision The-

ory

LRT device for Neayman-Pearson was found to be in equation (6.6)

|Y |

H1

>
<
H0

√√√√2 ln(ζ
σ2
1

σ2
0
)σ2

1σ
2
0

σ2
1 − σ2

0

.

If ζ is set to 1, this becomes a special case which is the ML Device. That is, the
ML device used to detect this signal will be based on the following equation:

1

σ2
1

e
−|Y |2

2σ21

H1

>
<
H0

1

σ2
0

e
−|Y |2

2σ20 (6.28)
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and the final decision will be based on

|Y |

H1

>
<
H0

√
4 ln(σ1

σ0
)σ2

1σ
2
0

σ2
1 − σ2

0

. (6.29)

Based on the choice of ζ the following will be applied to minimize PM and PF :

6.4.1 The Probability of a miss (PM)

P (Error) : PM = 1− PD = P (Ĥ = H0 | H1) =

∫ η

0

Y

σ2
1

e
−Y 2

2σ21 dY (6.30)

Let U = Y
σ1

and dU = dY
σ1

, so equation (6.30) will change to

P (Error) : PM = 1− PD = P (Ĥ = H0 | H1) =

∫ η
σ1

0

Ue
−U2

2 dU = 1− e
− η2

2σ21

(6.31)
Thus we should minimize η√

σ1
to minimize (PM).

6.4.2 The Probability of False Alarm (PF )

PF = P (Ĥ = H1 | H0) =

∫ ∞
η

Y

σ2
0

e
−Y 2

2σ20 dY (6.32)

Let U = Y
σ0

and dU = dY
σ0

, so equation (6.32) will change to

PF = P (Ĥ = H1 | H0) =

∫ ∞
η
σ0

Ue
−U2

2 dU = e
− η2

2σ20 (6.33)

Thus we should maximise η
σ0

to minimize the probability of false Alarm. As con-
cluded from before we should minimize η

σ1
and maximise η

σ0
. This can be proved

as follows:

The relation between PD and PF was found to be

PD = e
− η2

2σ21

PF = e
− η2

2σ20

}
PD = P

σ20
σ21
F (6.34)
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Therefore maximize PD,
σ2
0

σ2
1

should be minimized, since 0 <
σ2
0

σ2
1
< 1, so

min
σ2
0

σ2
1

= arg max
σ2
1

σ2
0

= arg maxf
σ2
R|

∑
f̂ [i]x[k−i]|2+σ2

∑
|f̂ [i]|2

σ2
∑
|f̂ [i]|2 =

arg maxf
σ2
R|

∑
f̂ [i]x[k−i]|2

σ2
∑
|f̂ [i]|2 + 1 = arg maxf

σ2
R|

∑
f̂ [i]x[k−i]|2

σ2
∑
|f̂ [i]|2

(6.35)

Figure 6.2 shows the result from minimizing the ratio
σ2
0

σ2
1
. It is clear that the

slope increased when
σ2
0

σ2
1

was minimized.

Figure 6.2: PD vs PF for
σ2
0

σ2
1

= 1 and
σ2
0

σ2
1

= 0.1

6.4.3 Numerical Results

For the real case signal that was subject to Rayleigh scattering and additive noise,
best f̂ was searched in Matlab using fmincon. For each number of quantization
points, PF was set to be at most to α, and the value of α ranged from 0.001 to 0.99.
Similar to Chapter 5 results, as the value of α varied, the produced quantization
points were equal, see table 6.1. In addition, the value of the noise variance was
varied to produce several SNRs. The difference between f̂ was found to be also
small and less than 0.01 difference, refer to table 6.1 and table 6.2 to compare the
quantization points for SNR=4 db and SNR=−2.9287dB. Based on the above,
same conclusion is made as in Chapter 5 and one quantized filterf̂ maybe used
for all operating points and SNRs. Figure 6.3 is one sample from the produced
results of PD vs PF = α for SNR= 4 dB during the search process of finding
the quantization points. Figure 6.4 shows a similar results for SNR= 9.2898
dB. From both figures, we conclude starting from three quantization points the
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Figure 6.3: PD vs PF for optimized theoretical quantization points, starting from
2 quantization points to 15 quantization points of Barker with Sinc sequence
detection, for SNR= 4 dB. The performance with no quantization is shown using
* line.

performance of the filter is so close to the performance to the original one. Figure
6.5 is a comparison between the theoretical plot given two quantization points
and the simulation of 100000 packets using the same filterf̂ produced from the
fmincon search process for SNR=4dB, which validates our theoretical analysis.
Also a signal with complex values was tested. Similar procedure was applied as
in real case and the results were found to be identical to the real case results,
refer to table 6.3 and table 6.4. Thus same conclusion is made and one quantized
filterf̂ maybe used for all operating points and SNRs. Figure 6.6 is a sample
case from the produced results of PD vs PF = α for SNR=0.1424 dB obtained by
the search process of finding the quantization points. Figure 6.7 shows a similar
results for SNR= 4.9136 dB. From both figures, we conclude starting from three
quantization points the performance of the filter is so close in performance to the
original one. Figure 6.8 is a comparison between the theoretical plot given two
quantization points and the simulation of 100000 packets using the same filterf̂
produced from the fmincon search process for SNR=0.1424dB, which validates
our theoretical analysis.
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PF=α First Quantization Point Second Quantization Point
1.0 x e−05 0.0399263801533052 -0.9982560548344744

0.05 0.0399263801533052 -0.9982560548344744
0.15 0.0399263801533052 -0.9982560548344744
0.2 0.0399263801533052 -0.9982560548344744
0.4 0.0399263801533052 -0.9982560548344744
0.5 0.0399263801533052 -0.9982560548344744
0.6 0.0399263801533052 -0.9982560548344744
0.7 0.0399263801533052 -0.9982560548344744
0.8 0.0399263801533052 -0.9982560548344744
0.9 0.0399263801533052 -0.9982560548344744
0.99 0.0399263801533052 -0.9982560548344744

Table 6.1: The produced two quantization points to create the optimal filter f̂
of Barker with Sinc for SNR=4 dB.

PF=α First Quantization Point Second Quantization Point
1.0 x e−05 0.0399926053219320 -0.999991460896565

0.05 0.0399926053219320 -0.999991460896565
0.15 0.0399926053219320 -0.999991460896565
0.2 0.0399926053219320 -0.999991460896565
0.4 0.0399926053219320 -0.999991460896565
0.5 0.0399926053219320 -0.999991460896565
0.6 0.0399926053219320 -0.999991460896565
0.7 0.0399926053219320 -0.999991460896565
0.8 0.0399926053219320 -0.999991460896565
0.9 0.0399926053219320 -0.999991460896565
0.99 0.0399926053219320 -0.999991460896565

Table 6.2: The produced two quantization points to create the optimal filter f̂
of Barker with Sinc for SNR=−2.9287 dB.
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PF=α First Quantization Point Second Quantization Point
1.0 x e−05 1.00000000+ 0.258163735993003i -0.75093096409019 + 0.0002636497994105i

0.05 1.00000000 + 0.2581637359930i -0.75093096409019 + 0.00026364979941051i
0.15 1.00000000+ 0.2581637359930i -0.75093096409019 + 0.00026364979941051i
0.2 1.00000000+ 0.2581637359930i -0.75093096409019 + 0.00026364979941051i
0.4 1.00000000+ 0.2581637359930i -0.75093096409019 + 0.00026364979941051i
0.5 1.00000000+ 0.2581637359930i -0.75093096409019 + 0.00026364979941051i
0.6 1.00000000 + 0.2581637359930i -0.75093096409019 + 0.00026364979941051i
0.7 1.00000000 + 0.2581637359930i -0.75093096409019 + 0.00026364979941051i
0.8 1.00000000 + 0.2581637359930i -0.75093096409019 + 0.00026364979941051i
0.9 1.00000000+ 0.2581637359930i -0.75093096409019 + 0.00026364979941051i
0.99 1.00000000 + 0.2581637359930i -0.75093096409019 + 0.00026364979941051i

Table 6.3: The produced two quantization points to create the optimal filter f̂
of Zadoff Chu for SNR=4.9136 dB.

PF=α First Quantization Point Second Quantization Point
1.0 x e−05 0.9998796634043 + 0.2673225535602i -0.7525033118705 - 0.0061791377514439i

0.05 0.9998796634043 + 0.2673225535602i -0.7525033118705 - 0.0061791377514439i
0.15 0.9998796634043 + 0.2673225535602i -0.7525033118705 - 0.0061791377514439i
0.2 0.9998796634043 + 0.2673225535602i -0.7525033118705 - 0.0061791377514439i
0.4 0.9998796634043 + 0.2673225535602i -0.7525033118705 - 0.0061791377514439i
0.5 0.9998796634043 + 0.2673225535602i -0.7525033118705 - 0.0061791377514439i
0.6 0.9998796634043 + 0.2673225535602i -0.7525033118705 - 0.0061791377514439i
0.7 0.9998796634043 + 0.2673225535602i -0.7525033118705 - 0.0061791377514439i
0.8 0.9998796634043 + 0.2673225535602i -0.7525033118705 - 0.0061791377514439i
0.9 0.9998796634043 + 0.2673225535602i -0.7525033118705 - 0.0061791377514439i
0.99 0.9998796634043 + 0.2673225535602i -0.7525033118705 - 0.0061791377514439i

Table 6.4: The produced two quantization points to create the optimal filter f̂
of Zadoff Chu for SNR=0.1424 dB.
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Figure 6.4: PD vs PF for optimized theoretical quantization points, starting
from 2 quantization points to 15 quantization points of Barker with Sinc sequence
detection, SNR= 9.2898dB. The performance with no quantization is shown using
* line.
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Figure 6.5: PD vs PF for two quantization points, a comparison between the
optimized theoretical quantization points results with the simulation results of
100000 packets using the same produced filter f̂ of Barker with Sinc, for SNR= 4
dB.

Figure 6.6: PD vs PF for optimized theoretical quantization points, starting from
2 quantization points to 15 quantization points of Zadoff Chu sequence detection,
SNR= 0.1424dB. The performance with no quantization is shown using solid line
of 16 quantization points.
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Figure 6.7: PD vs PF for optimized theoretical quantization points, starting from
2 quantization points to 15 quantization points of Zadoff Chu sequence detection,
SNR= 4.9136dB. The performance with no quantization is shown using solid line
of 16 quantization points.

Figure 6.8: PD vs PF for two quantization points, a comparison between the
optimized theoretical quantization points results with the simulation results of
100000 packets using the same produced filter f̂ of Zadoff Chu sequence, for
SNR=0.1424 dB.
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Chapter 7

Model 3: Signal Subject to Noise
having a Laplace Distribution

In this section we consider the signal being received is exposed to noise having a
Laplace Distribution. We optimize the filter through Large Deviations.

7.1 Model Description

Figure 7.1: Model 3 at the Receiver

Signal X[k] is subject to a Laplacian Noise W [k] with W [k] ∼ Laplace(0, b).
After filtering and sampling at t=K, it was found

1) H0: Y = Z where,

Z =
1

N

∞∑
i=−∞

f̂ [i]W [K − i] (7.1)

with mean 0 and variance 2b2
∑
|f̂ [i]|2

N2
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2) H1 : Y = R + Z where,

R =
1

N

∞∑
i=−∞

f̂ [i]x[K − i] (7.2)

and,

Z =
1

N

∞∑
i=−∞

f̂ [i]W [K − i]

with mean
∑
|f̂ [i]x[K−i]|

N
and variance 2b2

∑
|f̂ [i]|2

N2

Initially, we assume the location K of the output is known, and an error is made
if at this location a test fails.

7.2 Likelihood Ratio Test

The distribution of Y under H1 or H0 is difficult to work with [12]. We instead
work with the characteristic function below.

7.3 Minimising Error Rate using Large Devia-

tions

As stated in section 3.2 the amplitude at location K of the signal will first be
checked. If it is less than a threshold r it will be an error. Using this concept, the
technique of Gärtner-Ellis theorem introduced in section 4.3 will be applied on
cases such that we minimize both the probability of a miss (PM) and probability
of false alarm (PF ).Only real signals will be studied in this chapter.

7.3.1 For Real Signal Cases

The Probability of a Miss (PM)

Since finding the distribution of Y is complex, it is wise to work with it through
its moment generating function. Then, starting from equation (4.19),

ΦYN (θ) = E[eθY ] =
N∏
i=1

e
|f̂ [i]x[K−i]|

N
θ

1− b2|f̂ [i]|2
N2 θ2

=
e
∑N
i=1

|f̂ [i]x[K−i]|
N

θ∏N
i=1

(
1− b2|f̂ [i]|2

N2 θ2
) , where |θ| < N

bmax |f̂ [i]|
(7.3)

then

ΛN(Nθ) =
∑N

i=1

(
|f̂ [i]x[K − i]|θ

)
− ln

∏N
i=1

(
1− b2|f̂ [i]|2θ2

)
=
∑N

i=1

(
|f̂ [i]x[K − i]|θ

)
−
∑N

i=1 ln
(

1− b2|f̂ [i]|2θ2
) (7.4)
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Now

limN→∞
1
N

ΛN(Nθ) = limN→∞

∑N
i=1(|f̂ [i]x[K−i]|)

N
θ − limN→∞

∑N
i=1 ln(1−b2|f̂ [i]|2θ2)

N

= θµ− limN→∞
1
N

∑N
i=1 ln

(
1− b2|f̂ [i]|2θ2

)
,

(7.5)

where µ = limN→∞

∑N
i=1(|f̂ [i]x[K−i]|)

N
.

The Fenchel-Legendre transform in equation (4.17), can be written as,

Λ∗(τ) = sup −1

bmax |f̂ [i]|
<θ<0

(
θτ − θµ+ limN→∞

1
N

∑N
i=1 ln

(
1− b2|f̂ [i]|2θ2

))
= sup −1

max |f̂ [i]|
<θ<0

(
θ τ
b
− θµ

b
+ g(θ)

)
,

(7.6)

where g(x) = limN→∞
1
N

∑N
i=1 ln

(
1− |f̂ [i]|2x2

)
, defined on |x| < 1

max |f̂ [i]|

The Probability of False Alarm (PF )

Starting from equation (4.19),

ΦYN (θ) = E[eθY ] =
N∏
i=1

1

1− b2|f̂ [i]|2
N2 θ2

=
1∏N

i=1

(
1− b2|f̂ [i]|2

N2 θ2
) , where |θ| < N

bmax |f̂ [i]|
(7.7)

then

ΛN(Nθ) = − ln
∏N

i=1

(
1− b2|f̂ [i]|2θ2

)
, |θ| < N

bmax |f̂ [i]|

= −
∑N

i=1 ln
(

1− b2|f̂ [i]|2θ2
) (7.8)

Now

lim
N→∞

1

N
ΛN(Nθ) = − lim

N→∞

∑N
i=1 ln

(
1− b2|f̂ [i]|2θ2

)
N

(7.9)

Therefore, equation 4.17, which represents Fenchel-Legendre transform, can be
written as,

Λ∗(τ) = sup
0<θ< 1

bmax |f̂ [i]|

(
θτ + lim

N→∞

1

N

N∑
i=1

ln
(

1− b2|f̂ [i]|2θ2
))

(7.10)
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Numerical Results

We compute for every f̂ the function g(x) (where N is large enough) by evaluation
of a fine grid between 1

max f̂
and 0 and use linear approximation in between. For

each number of quantization points, ranges of τ was studied, where τ ranged from
0 to µ. While changing the value of τ , it was found that the quantization points
were so close in value, see table 7.1 and difference was less than 0.01 which may
be considered small, and maybe due numerical precision. We conjecture that
optimal f̂ is not dependant on τ (for a given b). In addition, several values of the
b was considered. The difference between f̂ , for different values of b, was found to
be also small and less than 0.01, refer to table 7.1 and table 7.2 to compare the
quantization points for b = 2 and b = 10. Based on the above, for a given number
of quantization points, we propose using one quantized filterf̂ for all operating
points and SNRs. Λ∗(τ) for PM and PF were found and plotted. Figure 7.2 is
one sample from the produced results of Λ∗(τ) for PM vs Λ∗(τ) for PF for b = 2
during the search process of finding the quantization points. It is clear that there
is better performance when the number of quantization points increases, which
is logical. Figure 7.3 is another result when b set to 10. Comparing both figures,
figure 7.2 resulted in a better performance which is reasonable. We conclude from
both figures, starting from three quantization points the performance of the filter
“approximately” is so close to the performance to the original one
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Figure 7.2: Λ∗(τ) for PM vs Λ∗(τ) for PF for optimized theoretical quantization
points, starting from 2 quantization points to 15 quantization points of Barker
with Sinc sequence detection, for b = 2. The performance with no quantization
is shown using ‘*’ line.

τ First Quantization Point Second Quantization Point
0.001 0.0415646212712 -0.999682864612971
0.003 0.041964242618645 -1
0.005 0.04211558721833 - 1
0.025 0.04586362683160 -1
0.04 0.04586362683160 - 1
0.05 0.04586362683160 - 1
0.06 0.04586362683160 - 1
0.07 0.04586362683160 -1
0.073 0.04586362683160 - 1

Table 7.1: The produced two quantization points to create the optimal filter f̂
of Barker with Sinc for b = 2.
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Figure 7.3: Λ∗(τ) for PM vs Λ∗(τ) for PF for optimized theoretical quantization
points, starting from 2 quantization points to 15 quantization points of Barker
with Sinc sequence detection, for b = 10. The performance with no quantization
is shown using ‘*’ line.

τ First Quantization Point Second Quantization Point
0.001 0.04093252341851 -0.999682864612971
0.003 0.04093238551205 -1
0.005 0.04093234105777 - 1
0.025 0.04095146135136 -1
0.04 0.04095146135136 - 1
0.05 0.04095146135136 - 1
0.06 0.04095146135136 - 1
0.07 0.04095146135136 -1
0.073 0.04095146135136 - 1

Table 7.2: The produced two quantization points to create the optimal filter f̂
of Barker with Sinc for b = 10 .
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Chapter 8

Model 4: Signal Subject to Noise
having an Exponential
Distribution

In this section we consider the signal being received to be exposed to noise having
an Exponential Distribution. We take the Large Deviations in what follows.

8.1 Model Description

Figure 8.1: Model 4 at the Receiver

Signal X[k] is subject to a Noise W [k] with W [k] ∼ EXP(λ) . After filtering and
sampling at t=K,

1) H0: Y = Z where,

Z =
1

N

∞∑
i=−∞

f̂ [i]W [K − i] (8.1)

with mean
∑
f̂ [i]
Nλ

and variance
∑
|f̂ [i]|2
λ2N2
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2) H1 : Y = R + Z where,

R =
1

N

∞∑
i=−∞

f̂ [i]x[K − i] (8.2)

and,

Z =
1

N

∞∑
i=−∞

f̂ [i]W [K − i]

with mean
∑
f̂ [i]x[K−i]
N

+
∑
f̂ [i]
λN

and variance
∑
|f̂ [i]|2
λ2N2

Initially, we assume the location K of the output is known, and an error is made
if at this location a test fails.

8.2 Likelihood Ratio Test

The distribution of Y under H1 or H0 is difficult to work with [12]. We instead
work with the characteristic function below.

8.3 Minimising Error Rate using Large Devia-

tions

As stated in section 3.2 the amplitude at location K of the signal will first be
checked. If it is less than a threshold r it will be an error. The technique of
Gärtner-Ellis theorem introduced in section 4.3 will be applied on cases such
that we minimize both the probability of a miss (PM) and probability of false
alarm (PF ). Only real signals will be studied in this chapter.

8.3.1 For Real Signal Cases

The Probability of a Miss (PM)

Starting from equation (4.19),

ΦYN (θ) = E[eθY ] = eθRE[eθZ ] = e
θ 1
N

N∑
i=1

f̂ [i]x[K−i] N∏
i=1

λ

λ− f̂ [i]
N
θ
, where

θ < Nλ

max f̂ [i]
, if max f̂ [i] > 0

θ > Nλ

min f̂ [i]
, if min f̂ [i] < 0

then

ΛN(Nθ) =
∑N

i=1

(
f̂ [i]x[K − i]θ

)
+ ln

∏N
i=1

(
λ

λ−f̂ [i]θ

)
=
∑N

i=1

(
f̂ [i]x[K − i]θ

)
+N lnλ−

∑N
i=1 ln

(
λ− f̂ [i]θ

)
.
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Now

limN→∞
1
N

ΛN(Nθ) = limN→∞

∑N
i=1(f̂ [i]x[K−i])

N
θ + lnλ− limN→∞

∑N
i=1 ln(λ−f̂ [i]θ)

N

= θµ+ lnλ− limN→∞
1
N

∑N
i=1 ln

(
λ− f̂ [i]θ

)
.

whereµ = limN→∞

∑N
i=1(|f̂ [i]x[K−i]|)

N

Therefore, equation 4.17, which represents Fenchel-Legendre transform, can be
written as,

Λ∗(τ) = sup −λ
min f̂ [i]

<θ<0

(
θτ − θµ− lnλ+ limN→∞

1
N

∑N
i=1 ln

(
λ− f̂ [i]θ

))
= sup −λ

min f̂ [i]
<θ<0 (θτ − θµ− lnλ+ g(θ)) ,

where g(x) = limN→∞
1
N

∑N
i=1 ln

(
λ− f̂ [i]x

)
, defined on λ

min f̂ [i]
< x < λ

max f̂ [i]

The Probability of False Alarm (PF )

Starting from equation (4.19),

ΦYN (θ) = E[eθY ] =
N∏
i=1

λ

λ− f̂ [i]
N
θ
, , where

θ < Nλ

max f̂ [i]
, if max f̂ [i] > 0

θ > Nλ

min f̂ [i]
, if min f̂ [i] < 0

then
ΛN(Nθ) = ln

∏N
i=1

(
λ

λ−f̂ [i]θ

)
= N lnλ−

∑N
i=1 ln

(
λ− f̂ [i]θ

)
.

Now

limN→∞
1
N

ΛN(Nθ) = lnλ− limN→∞

∑N
i=1 ln(λ−f̂ [i]θ)

N

Therefore, equation (4.17), which represents Fenchel-Legendre transform, can be
written as,

Λ∗(τ) = sup0<θ< λ

max f̂ [i]

(
θτ − lnλ+ limN→∞

1
N

∑N
i=1 ln

(
λ− f̂ [i]θ

))
= sup0<θ< λ

max f̂ [i]

(θτ − lnλ+ g(θ)) ,
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Chapter 9

Conclusion

In this work, we reduce the computational complexity of the correlation/convolution
operation through quantizing the amplitude of one of the functions; this could be
the impulse response of a receive filter. The number of multiplications has been
hence noticeably decreased. With a view toward detection application, the selec-
tion of the quantized points is done through applying decision theory techniques
and corresponding quality measures. Different models of stochastic noises are
studied in different chapters, and theoretical analysis is validated through Mat-
lab simulations. The performance of the proposed schemes is measured through
plotting the Operating Characteristic curve, as well as through the rates of expo-
nential decay using large deviation theory. Examining the performance in various
scenarios of quantized versions of the filter, it is clear from our analysis that the
total number of required quantization points, in order for the quantized filter to
have close performance to the original one, is less than log2 of the number of the
total points forming the sequence. As a conclusion, we are able to create a filter
that is “close” in performance to the original one but with reduced complexity
in the number of multiplications during correlation/convolution process.
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Appendix A

Different Stochastic Distributions

This section includes the distributions of different stochastic noise used in this
thesis.

A.1 Gaussian Distribution

The probability density function of the gaussian distribution:

p(x) =
1√

2σ2π
e
−(x−µ)2

2σ2 , (A.1)

where µ is the mean and σ2 is the variance.
Its moment Generating function:

M(t) = e(µt+ 1
2
σ2t2). (A.2)

A.2 Complex Gaussian Distribution

The probability density function of a i.i.d complex gaussian distribution

p(x) =
1

2πσ2
e
−|x−µ|2

2σ (A.3)

where µ is the mean and σ2 is the variance.
Its moment Generating function:

M(t) = e
1
2
σ2|t|2 . (A.4)

A.3 Laplace Distribution

The probability density function of the Laplace distribution:

1

2b
e
−|x−µ|

b (A.5)
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where µ is the mean and 2b2 is the variance.
Its moment Generating function:

eµt

1− b2t2
(A.6)

A.4 Exponential Distribution

The probability density function of the exponential distribution:

λe−λx, (A.7)

where the mean is λ−1 and variace λ−2 Its moment Generating function:

λ

λ− t
, for t < λ (A.8)
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Appendix B

Abbreviations

AWGN Additive White Gaussian Noise
DFT Discrete Fourier Transform
CDF Cumulative Distribution Function
FFT Fast Fourier Transform
FWT Fast Wavelet Transform
LRT Likelihood Ratio Test
MGF Moment Generating Function
OP Operating Characteristic
PD Probability of Detection
PF Probability of False Alarm
PM Probabiliy of a Miss
QP Quadratic Programing
SNR Signal-to-Noise Ratio
SQP Sequential Quadratic Programing
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