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AN ABSTRACT OF THE THESIS OF

Ibrahim Jamal Elshar for Master of Engineering Management
Major: Engineering Management

Title: Continuous (s,S) Inventory Policy with Non-Stationary Stochastic Demand

We consider a single-item inventory model with non-stationary stochastic de-
mand. Non-stationary stochastic demand is applicable to a large number of real
world supply chain systems. Dynamically changing (st, St) policies are shown to
be optimal in the existing literature, Song and Zipkin (1993).

In this thesis, we present relatively a new approach to model the non-stationary
stochastic demand and inventory position processes. Our analytical model consid-
ers both a general phase-type (Pht) distribution and a special two-level mixture
of Erlangs of common order (2-MECO) Pht distribution to serve as an approx-
imation of the demand process. The approximate Pht distribution allows us to
compute the expectation and variance of the demand, inventory position, net
inventory and number of orders in function of time.

We then propose an optimization heuristic to compute the dynamic time de-
pendent reorder and order up-to levels (st, St) that minimizes the total expected
cost. Finally, we test our findings using numerical examples.
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Chapter 1

INTRODUCTION

Most recent studies on inventory management focused on incorporating more

realistic assumptions in their inventory models in order to reduce the gap between

theory and practice. A realistic assumption is related to the demand and its

non-stationary (time varying) vs. stationary (steady) nature. Non-stationary

Figure 1.1: Various demand processes, Choudhary and Shankar (2015)

.

stochastic demand is a pattern in which demand is random, uncertain and not

constant for each time frame but varies due to seasonality, trend or other factors.
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Demand mean and variance are not constant. Figure 1.1, clearly illustrates the

difference between no-stationary stochastic demand and other demand processes.

Inventory models that take into consideration the non-stationary nature of the

demand is rather limited in the literature especially when compared to the body

of work involving stationary demand. In practice, most real world applications

of inventory management involve non-stationary demands, Silver (2008).

Non-stationarities in the demand may arise from factors like: short product life

cycles, example: the life cycle for a Hewlett-Packard (HP) personal computer is

often only 3 months! Neale and Willems (2009). On the other hand, the life cycle

of an HP inkjet printer shows a lot of non-stationarity as the demand changes

tremendously from the launch, ramp, peak and end of the product life-cycle , see

Figure 1.2.

Figure 1.2: The figure shows the non-stationary demand of an HP inkjet printer.
Neale and Willems (2009)

Another factor that causes non-stationary demand is the demand seasonality,

example: Microsoft Xbox (Figure 1.3), Dell, Coca Cola, Kraft foods have reported

seasonal demands that can be due to holidays, weather, back-to-school,. . . etc.
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Figure 1.3: The figure shows Microsofts Xbox highly seasonal demand, where demand
peaks in the weeks leading up to Christmas. Neale and Willems (2009)

Sales-force incentives and customer buying behavior are also factors that cause

non-stationary demand, Figure 1.4.

Figure 1.4: The figure shows Dell’s projector end-of-month and end-of quarter de-
mand peaks. The timeline covers one quarter with months ending in weeks 4, 8, and
13. Neale and Willems (2009)

Few authors have discussed the inventory problem with non-stationary de-

mand from which we mention: Silver (1978), Bookbinder and Tan (1988), Bol-

lapragada and Morton (1999) and Tarim and Kingsman (2006). Silver (1978)

considered the stochastic time-varying demand by assuming normally distributed

forecast errors. Bookbinder and Tan extended Silver’s work by considering a
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rolling horizon with updated demand information. Bollapragada and Morton

(1999) modeled the non-stationarity of the demand by describing the mean de-

mand for a period as a product of a normal random variable and a seasonal

factor or a geometric growth factor. They were able to compute the dynamic

(sn, Sn) by comparison with the stationary solution (s,S) of the problem. To

the best of our knowledge, no one has studied the non-stationary demand by

approximating it with a phase-type process. In this paper, our analytical model

is similar to the one used by Nasr and Maddah (2015) but instead of using a

stationary Markov Modulated Poisson Process (MMPP) correlated demand we

first use a general time-dependent phase-type process and then a two-level mix-

ture of Erlangs of common order (2-MECO) phase-type process to serve as an

approximation of the non-stationary demand process. The 2-MECO phase-type

distribution is adopted from Nasr and Taaffe (2012) which is utilized to fit the

Pht/Mt/s/c time-dependent departure process. We implement the fitting ap-

proach presented in Nasr and Taaffe (2012) to fit the time-dependent demand

process to a 2-MECO. An efficient heuristic is then proposed to compute the

optimal reorder and order up-to levels (st, St) at each period. Since its introduc-

tion by Richard Bellman especially after the release of his 1957 book, dynamic

programming (DP) was ideal for inventory management problems. The value

of the DP approach is in formulating models for inventory management. How-

ever, solving these models is most of the time difficult due to the dimensionality

curse encountered when solving the recursive equations of the DP. For this, a

heuristic optimization can be developed where the DP model comes to use in

evaluating and verifying that this heuristic optimization is close to optimal. This

is called policy iteration and it was first made popular by Howard (1960) in his

paper about dynamic programming and Markov processes. Yet, a dynamic pro-
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gramming approach requires the demand data for the entire time horizon which

is practically not available. Thus, the demand data will need to be obtained

by forecasts that typically updates every period starting from the last period

and moving backward, forcing the re-computation of all parameters every single

period. Nonetheless, the computation for the dynamic programming will be pro-

hibitively expensive especially when lead time is not zero, which complicates the

dynamic process. For the above reasons we will not use dynamic programming

to evaluate our heuristic and for that line-search heuristic will be used instead.

The rest of the thesis is structured as follows: Chapter 2 reviews the related

literature. In Chapter 3, a background on phase-type processes is introduced. In

Chapter 4, we present our analytical model. In Chapter 5, we propose a heuris-

tic to compute the replenishment policy that minimizes expected cost. Chapter

6 contains some numerical examples. Finally, we conclude in Chapter 7 and

propose some ideas for future work.

1.1 Statement of the Problem

Reducing the gap between theory and practice in inventory management prob-

lems is a challenge for researchers and practitioners. A good practical model

should include all realistic assumptions essentially non-stationary stochastic de-

mand. In this work demand is time-varying and stochastic, i.e., the distribution

of the demand count occurred in a time interval depends on the length and po-

sition of the interval. Unfortunately, it is because of the analytical complexity

of the problem that not much work has been done taking in to consideration

the non-stationary condition of the demand. It is worth mentioning that all of

the existing research does not focus their analytical study on the demand and
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inventory process itself but on the optimization or on the performance evaluation

of the proposed policies. This does not provide a good analytical understanding

of the problem on hand and thus does not open the door for more development

in this field. A contribution of this work is in quantifying the impact of the

time-dependent parameters and in illustrating the behavior and evolution of the

inventory parameters and variables (inventory position, net inventory position,

number of orders,. . . ,etc.) all as a function of time. This will result in better deci-

sion making policies and improve our understanding of such problems, especially

from a managerial perspective.

1.2 Statement of Purpose

The purpose of this research is threefold: to capture and investigate the non-

stationary stochastic demand count process using the phase-type distribution

approximation which is relatively a new approach to the literature, to find the

system state probabilities of the inventory position, net inventory levels and num-

ber of orders in function of time relative to the (st, St) policy parameters and to

propose a simple yet efficient heuristic to find the optimal (st, St) policy param-

eters.
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Chapter 2

LITERATURE REVIEW

In this section, we review the literature related to our subject. We divide this

section into three subsections. In section 2.1, we review the (s, S) policy litera-

ture; in section 2.2, we review the Markovian modulated demand literature; and

finally in section 2.3 we review the literature about non-stationary demand.

2.1 (s,S) Policy Literature

Classical papers by Karlin (1958), Karlin and Scarf (1958), Bellman et al. (1955),

Gaver Jr (1959, 1961) and Karlin (1960) have studied independent stochastic de-

mands of a single product, periodic review with no fixed setup cost and success-

fully showed the optimality of a base-stock policy which is a special case of the

(s,S) policy when s=S. Later work by Arrow et al. (1951), Dvoretzky et al. (1953),

Karlin (1958), Scarf (1960), Veinott (1966) studied the optimality of the (s,S) pol-

icy of the same problem but with fixed ordering cost and backlogs. Scarf (1960)

was able to prove the optimality of the (s,S) policy for a finite horizon station-

ary multi-period problem with certain conditions of the problem (assumed hold-
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ing/backlog cost to be convex) by developing the K-convexity concept. Scarf’s

(1960) proof immediately extends to non-stationary costs and demand distribu-

tions. On the other hand, Veinott (1966) showed its optimality by showing that

the negative of the expected cost is a unimodal function of the initial inventory

level. In 1963, Iglehart proved the optimality of the (s,S)-type policy for a sta-

tionary infinite horizon model. Not until Veinott (1966), Shreve (1976), followed

by Bensoussan et al. (1983) and Cheng and Sethi (1999), that lost sales have been

considered. This is most probably because the lost sales model is much harder

than that of the backlog model. Shreve (1976) and Bensoussan et al. (1983) used

the concept of K-convexity to prove the optimality of the (s,S) policy. Veinott’s

(1966) approach was general for handling both lost sales and backlogs. It is worth

to mention that all these results does not extend to the case at which the lead

time is different from zero.

2.2 Markovian Modulated Demand Literature

More realistic inventory models that consider demand as a random variable that

is dependent on environmental factors other than time was given by Karlin and

Fabens (1960). The authors used a Markovian demand model that is unlike most

classical inventory models depends on the state-of-the-world in each period. This

takes into consideration the effects of the randomly changing environmental fac-

tors like the fluctuating economic and the uncertain market conditions on the

demand which in turn affects the cost functions. The demand is modulated as

a random variable having a distribution function that depends on the demand

state in each period. Iglehart and Karlin (1962) used a discrete Markov processes

to model dependent demand with no setup costs and managed to prove the opti-
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mality of a state-dependent base-stock policy. Song and Zipkin (1993) show that

for a continuous review, state-dependent, Markov-modulated, Poisson distributed

demand having linear costs, fixed order cost and backlogging in inventory, the

optimality of a (s,S)-type policy. Zipkin (1989), Aviv and Federgruen (1997) and

Kapuściński and Tayur (1998) investigated cyclical demand models. Beyer and

Sethi (1997), Sethi and Cheng (1997) proved the optimality of (s,S)-type policy

for a generalized Markovian demand distribution and a periodic review inventory

model. Cheng and Sethi (1999) made an extension to their results by considering

lost sales for unsatisfied demand. All proofs were given assuming a zero lead time

distribution. Chen and Song (2001) studied the optimal policies for multistage

inventory problems with non-stationary Markov-modulated Poisson demand pro-

cess at which the demand process is governed by a discrete time Markov chain.

An effective algorithm for the determination of the optimal base-stock is pro-

vided. Abhyankar and Graves (2001) studied a two-stage serial supply chain

with a two-state Markov-modulated Poisson demand and were able to develop

an optimization model to determine where it is best to hedge inventory. Nasr and

Maddah (2015) utilized a Markov Modulated Poisson Process (MMPP) to model

stochastic demand that is dependent on the state of the environment and has a

fixed lead time. They were able to compute and provide an efficient optimization

heuristic to derive the dynamic changing (sn, Sn) policy for a single item, contin-

uous and infinite horizon inventory problems. They studied and quantified the

impact of autocorrelation of the MMPP demand-count process that is causing

the variability in the demand. Their results show that when the demand is highly

correlated the dynamically changing (sn, Sn) policy significantly outperforms the

common static heuristically computed replenishment (s, S) policies.

9



2.3 Non-Stationary Demand Literature

The literature on stochastic time-dependent demand in the context of inventory

systems is scarce in comparison to stationary demand. Non-stationary demand

can be due to seasonality or can be represented by a time varying function.

Though the demand pattern may be stationary, the fact that the demand is

stochastic makes the future demand unknown. However, most studies on the

dynamic lot-sizing assume that future demand is known, Grewal et al. (2015).

At the present time as the product life cycles are becoming shorter and a large

variety of products are being introduced to the market and thus affecting cus-

tomers order stability, the demands faced tend to be more non-stationary. The

reason behind the small number of papers that deal with non-stationary demand

relative to the large number of papers that deal with stationary demand is that

non-stationary demand models are hard to compute because of their irregular

structure. The literature on the non-stationary demand can be categorized in

to two categories: papers that focus on the optimization and papers that fo-

cus on the performance evaluation of the proposed policies. Even though the

(s,S) policy has been shown optimal for inventory problems with stationary and

non-stationary demand, Karlin and Scarf (1958), Karlin (1960), Scarf (1960),

not much work has been done for computing non-stationary (s,S) policies. The

inventory problem with non-stationary demand was discussed by Silver (1978),

Bookbinder and Tan (1988) and Tarim and Kingsman (2006) by using alternative

policies such as the (Rn, Sn) policy. Silver (1978) considered the stochastic time-

varying demand by assuming normally distributed forecast errors. A procedure

involving sequential optimization is used then to find the periods in which to place

orders, the number of periods of the horizon that has to be included in the next
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order and the size of the order, with the uncertainty of demands in these periods

are given. This research is extended by Bookbinder and Tan (1988) by consid-

ering a rolling horizon with updated demand information. Tarim and Kingsman

(2006) improved Bookbinder and Tan (1988) heuristic by making further im-

provements. Other heuristics used to compute near optimal (s,S) parameters, is

by Bollapragada and Morton (1999). Bollapragada and Morton (1999) were able

to compute optimal (sn, Sn) levels for a single stage inventory problem facing a

general non-stationary demand with proportional backorder and holding costs.

They proposed a new myopic heuristic that is based on approximating part of

the initial non-stationary problem with a stationary one and involves computing

the static (s, S) policy replenishment values for different demand parameters from

which the dynamic replenishment (st, St) policy of the non-stationary problem for

period t is approximated by restricting the state space of the inventory position

at the beginning of each time period to integer values. The main development

behind this research is computing the upper and lower bounds of the optimal

policy efficiently. Ettl et al. (2000) worked on minimizing the total expected

inventory capital and on approximating the replenishment lead-times in a mul-

tistage inventory system. They modeled non-stationary demand by making the

assumption that the horizon is made up of a set of stationary phases which form

a rolling-horizon and then finding the optimal policy for each phase. Finally, it

can be seen that the amount literature taking non-stationary demand into con-

sideration is increasing. Tunc et al. (2011) studied the cost of using stationary

inventory policies when demand is non-stationary. They took the (s,S) policy as

a frame of reference, and they compared the optimal non-stationary (s,S) policy

with the best possible stationary (s,S) policy in terms of cost performance. They

showed that the cost of neglecting the non-stationarity of demand is significantly

11



high for the majority of cases. There numerical study reveals that, the magni-

tude of the sub-optimality of stationary policies depends heavily on the variation

of the demand pattern, i.e. the non-stationarity of demand, among other fac-

tors, such as, the stochasticity of demand, and cost parameters. Amaruchkul

and Auwatanamongkol (2012) consider a periodic review inventory model with

non-stationary stochastic demand under a dynamic (s, S) replenishment policy.

They used genetic algorithm to compute the reorder and order-up-to levels which

minimizes the expected total cost.

12



Chapter 3

PHASE-TYPE BACKGROUND

Phase-type (Pht) distributions were first introduced by Neuts (1975). Since then,

they have been used in various stochastic modeling applications, from which we

mention: Fackrell (2009) showed how and where Pht distributions have been used

in the healthcare industry. Aalen (1995) studied the use of phase-type distribu-

tion in a series of survival analysis problems, one of which is the modification

of an existing AIDS incubation model while preserving the properties and con-

ditions of the original model. Faddy and McClean (1999) applied phase-type

distribution to analyze some data on lengths of stay of hospital patients. Bladt

(2005) showed the usage of Pht distribution in risk theory. Fazekas et al. (2002)

involved phase-type distribution in their model of broadband cellular networks.

Nasr and Taaffe (2012) utilized Pht distribution to fit time-dependent departure

process in tandem queueing networks. Neuts (1975) defines a phase-type random

variable as the time taken to progress through the states of a finite-state Markov

chain until absorption. Phase-type distributions in stochastic models keep the

Markovian structure in the models though they replace the well-known exponen-

tial distribution. Pht distributions are known for their great flexibility and their

13



ability to replace exponential and non-exponential distributions while at the same

time provide computational control to the model. The exponential distributions

was first extended by Erlang (1917), with his method of stages, where he defines

a non-negative random variable as the time needed to propagate through a fixed

number of states, spending at each state an exponentially distributed amount

of time. Distributions defined in this manner are now referred to as Erlang dis-

tribution. Erlang’s extension opened the way for distributions that employ the

well-known exponential distribution. The distribution where an exponentially

distributed random variable is probabilistically chosen from a set of exponential

distributions with different parameters is called the hyper-exponential distribu-

tion. The coxian distribution is similar to the Erlang distribution but in addition

at each stage there is a possibility of jumping to the absorbing state directly.

For a better understanding of the Pht distribution parameters, we refer the reader

to section 4.3 where we define clearly the parameters of the general Pht distri-

bution.

Phase-type distribution classes: the most important distinction is into: Acyclic

and General Pht distributions.

Figure 3.1: CTMC representations for cyclic and acyclic phase-type distributions
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Most approaches in fitting and application of Pht distribution focus on the

acyclic class, as this class offers better tractability than the general Pht class.

Within acyclic Pht distribution, we distinguish the below sub-classes:

11Exponential Distribution:
λ(t)

11 2 . . . mErlang Distribution:
λ(t) λ(t) λ(t) λ(t)

11 2 . . . m

Hypo-exponential

Distribution:

λ1(t) λ2(t) λm−1(t) λm(t)

1α1(t)

.

.

.

mαm(t)

Hyper-exponential

Distribution:

λ
1 (t)

λm
(t)

α1(t)

.

.

.

. . .

. . .αm(t)

Hyper-Erlang

Distribution:

λ1(t) λ1(t) λ1(t)
λ
1 (t)

λm(t) λm(t) λm(t)
λm

(t)

The Erlang distribution is considered an acyclic phase-type distribution with

low-variance. On the other hand, the hyper-exponential distribution is considered

an acyclic phase-type distribution with high-variance since the Markov process

can start from any phase. The structure of the hyper-Erlang distribution allows

this distribution to have the flexibility to match high and low variability processes.

Fitting phase-type distribution to empirical data is extensively studied in liter-

ature. Approaches for fitting PH distributions to data include moment-matching,

non-linear optimization and expectation maximization (EM) algorithms. A lot

of work have been done towards fitting stationary Pht distributions. On the con-

trary the literature on fitting time-dependent Pht distributions is scarce due to
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its complexity. In this work, we use the fitting algorithm presented by Nasr and

Taaffe (2012), that is based on moment-matching method, to fit time-dependent

phase-type distributions.

Phase-type distributions are accredited for their great flexibility to capture

moments or distribution shape and for their mathematical simplicity. The system

to solve is lead back algorithmically to a Markovian system. Hence one only

has to deal with systems of differential equations which is a field that has been

extensively studied in the past and for which a lot of numerical solvers have

already been made available.
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Chapter 4

MODEL

The objective of this study is to model the non-stationary stochastic demand

process and to determine the optimal reorder and order up-to levels (st, St).

We present an approach to identify and capture the key characteristics of the

demand process by fitting an approximate phase-type distribution to the demand

process resulting in a demand forecast for the finite planning horizon. Inventory

replenishment policies are investigated for the (st, St) continuous case for the

finite horizon model. A Markovian representation of the system is presented along

with the differential equations that model the behavior of the system over time.

An algorithmic approach is presented to numerically solve the corresponding

differential equations to calculate the performance measures of the system over

time. Finally, We use line search optimization to compute the dynamic time-

dependent reorder and order up-to levels (st, St).

To meet these objectives, the following steps will be followed:

1. Approximate the non-stationary demand process using:

a) a general phase-type process.

b) a two-level mixture of Erlangs of common order (2-MECO) phase-type

17



process that will be used later on for the numerical example.

2. Write the set of differential equations (Kolmogorov Forward Equations,

KFEs) that governs the approximated demand count process in a) and b).

3. Find the expected demand in function of time by numerically solving the

KFEs.

4. Similarly, for a given dynamic reorder policy (st, St), write the inventory

position KFEs for the general and 2-MECO phase-type processes.

5. Find the expected inventory position for a given dynamic reorder policy

(st, St) by numerically solving the inventory position KFEs.

6. Find the expected net inventory position taking into consideration the lead-

time.

7. Find the expected number of reorders.

8. Compute the expected inventory system costs.

9. Propose a heuristic policy that is based on line search to find the reorder

and order up-to levels (st, St) that minimizes the expected costs.

4.1 Assumptions

We assume a single location, single-item and continuous review inventory control

model. The demand faced is stochastic (i.e., uncertain) and non-stationary (i.e.,

time-dependent). Non-stationary demand is approximated with a phase-type

process. The time that elapses from the time an order is placed until it arrives

(lead time) is assumed fixed. Unmet demand is back-ordered. Our study is over

a finite horizon. The inventory costs are the set-up cost each time an order is

placed at $ω per order, the unit order cost at $c for each unit ordered, holding
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at $h per unit held per unit time and penalty cost of $b per unit of backordered

demand.

4.2 Notation

4.2.1 Phase-Type Parameters

General Pht Parameters

• m: Total number of phases

• λ(t): (m×m) matrix containing the transition rates between the phases

• µ(t): (m× 1) vector containing the absorption rates

• α(t): A vector containing the initial probabilities of starting at the phases

2-MECO Pht Parameters

• m1: Number of phases in level 1

• m2: Number of phases in level 2

• m = m1 +m2: Total number of phases

• α(t): The probability of starting in phase 1

• (1− α(t)): The probability of starting in phase (m1 + 1)

• m1λ1(t): Represent the transition rate from phases 1,. . . , m1

• m2λ2(t): Represent the transition rate from phases m1 + 1, . . . ,m1 +m2

4.2.2 Cost Parameters

• ω: Fixed ordering cost
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• h: Holding cost

• b: Backorder cost

4.2.3 Inventory Characteristics

• IP (t): Inventory position at time t

• NI(t): Net inventory at time t

• I(t): On-hand inventory at time t

• B(t): Backorder amount at time t

• O(t): Number of orders placed within the time interval [0, t]

4.2.4 Policy Parameters

• st: Reorder level at time t

• St: Order-up-to level at time t

• u: Upper limit on IP

• `: lower limit on IP

4.3 Demand Process as Phase-Type:(Time De-

pendent)

In this section, we present an algorithm for computing the non-stationary de-

mand distribution over the lead time by deriving the demand-count distribution

conditional on the phase-type process being in a given state at the beginning of

the lead time, and the related conditional moments at time t. This algorithm is

based on numerically solving a set of differential equations (Kolmogorov Forward
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Equations, KFEs). First, we define our demand model using the general phase-

type process then we introduce the two-level mixture of Erlangs of common order

(2-MECO) as defined by Nasr and Taaffe (2012) in their paper about fitting the

Pht/Mt/s/c time-dependent departure process for use in tandem queueing net-

works. The 2-MECO demand model will be used later for our numerical example.

The General Pht Demand-Count Process

In general, we define the phase-type process consisting of m transient states

ST = {1, 2, . . . ,m} and a single absorbing state SA = {m + 1}. We write the

infinitesimal generator matrix Q(t) at time t ≥ 0 and the probability row vector

α(t) of the phase-type process as

Q(t)
(m+1,m+1)

=

λ(t)(m×m)

µ(t)
(m×1)

0
(1×m)

0

 and α(t) = [α1(t), . . . , αm(t), αm+1(t)]

Where λ(t) is a (m×m) sub-matrix containing the transition rates at time t ≥ 0

describing the transitions between the transient states.

λ(t)
(m×m)

=



λ1,1(t) λ1,2(t) λ1,3(t) . . . λ1,m(t)

λ2,1(t) λ2,2(t) λ2,3(t) . . . λ2,m(t)

... . . .
. . . . . .

...

... . . . . . . λm−1,m−1(t)
...

λm,1(t) . . . . . . . . . λm,m(t)



where λi,i(t) = −λi(t) and λi(t) =
m∑
j=1
j 6=i

λi,j(t) + µi(t) for all i = 1, . . . ,m.

The (m× 1) vector µ(t) contains the transition rates µi(t) for i = 1, . . . ,m and
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t ≥ 0 from the transient states to the absorbing state. It is evident that the

values of λi,i(t), λi,j(t) and µi(t) are dependent on the time t ≥ 0 from which we

intend to exploit the time-dependency in our phase-type model. The row vector

0 is a vector consisting entirely of zeros since no transitions are allowed from the

absorbing state to the transient states. The last element of the matrix is 0 which

represents the transition rate out of the absorbing state. The row vector α(t)

contains the initial probabilities that the embedded CTMC starts initially at a

time t in transient state i = 1, . . . ,m or directly starts in the absorbing state

m+ 1. We set αm+1(t) = 0 so the sum
∑m

i=1 αi(t) = 1 for all t ≥ 0.

We first write the KFE of finding the general Pht process at state {A(t) = n} at

time t ≥ 0 and n = 1, . . . ,m.

P′(A(t) = n) =
m∑

w=1

(
λw,n(t) + αn(t)µw(t)

)
P(A(t) = w) (4.1)

To calculate the probability P(A(t) = n) of finding the general Pht process at

state {A(t) = n} for n = 1, . . . ,m at time t ≥ 0, we solve the differential equation

in (4.1) with the following initial condition, P(A(0) = n) = αn(0).

Let {D0(t) = k : 0 ≤ t ≤ L} be the demand-count over the time interval

[0, L] and {Dt−L(τ) = k : t − L > 0, τ > 0} be the demand-count over the

time interval [t − L, t − L + τ ] where k = 0, 1, 2, 3, . . . ,∞ and L is the fixed

lead time. We augment the demand-count process with the state of the Pht

process, {A(t), t ≥ 0}, and we define the state space of the demand-count and

arrival-phase at time t for 0 ≤ t ≤ L and t − L + τ for t − L > 0 by {D0(t) =

k,A(t) = i} and {Dt−L(τ) = k,A(t− L+ τ) = i} respectively. The KFEs of the

augmented state space are presented below where the derivative is with respect
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to t in equation (eq.) (4.2) and τ in eq. (4.3).

For 0 ≤ t < L, k = 0, 1, 2, . . . ,∞ and all i = 1, 2, ...,m,

P′(D0(t) = k,A(t) = i) =
m∑

w=1

λw,i(t) P(D0(t) = k,A(t) = w)

+
m∑

w=1

αi(t)µw(t) P(D0(t) = k − 1, A(t) = w) I(k>0).

(4.2)

For t ≥ L, k = 0, 1, 2, . . . ,∞ and all i = 1, 2, ...,m,

let ts = t− L,

P′(Dts(τ) = k,A(ts + τ) = i) =
m∑

w=1

λw,i(ts + τ)P(Dts(τ) = k,A(ts + τ) = w)

+
m∑

w=1

αi(ts + τ)µw(ts + τ) P(Dts(τ) = k − 1, A(ts + τ) = w) I(k>0)

(4.3)

where I(k>0) is an indicator function such that, I(k>0) =


1 when k > 0,

0 otherwise.

The 2-MECO Demand-Count Process

The motivation behind adopting the 2-MECO phase-type process lies in its flexi-

bility to match high and low variability processes over any time interval [t, t+ τ ],

Nasr and Taaffe (2012). A count process Dt(τ) is said to have a high/low vari-

ability over an interval [t, t+τ ] if V ar(Dt(τ))(> / <)E[Dt(τ)], where V ar(Dt(τ))

is the variance of Dt(τ). Now we present the 2-MECO process in Figure 4.1 and

its properties as defined by Nasr and Taaffe (2012).
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1 2 . . . . . . . . . m1 Absorbing
state

m1 +m2. . . . . . . . .m1 + 2m1 + 1

α m1λ1 m1λ1 m1λ1

1− α m2λ2 m2λ2 m2λ2

m1λ1

m2λ2

Figure 4.1: Balanced 2-MECO Phase-type Process

The 2-MECO phase-type process consists of two Erlang branches. The number

of states in level 1 and 2 is m1 and m2, respectively. Thus, we have a total of

m = m1 + m2 transient states ST = {1, 2, . . . ,m1 + m2} and a single absorbing

state represented by the shaded box in Figure 4.1. α and 1−α are the probabilities

of starting at phase 1 and m1 + 1, respectively. The transition rates between the

states of the 1st and 2nd Erlang branch is m1λ1 and m2λ2, respectively. We write

the infinitesimal generator matrix Q(t) at time t ≥ 0 and the probability row

vector α(t) of the 2-MECO phase-type process as

Q(t)
(m1+m2+1,m1+m2+1)

=

 Q1(t)
(m1×m1)

0

0 Q2(t)
(m2×m2)


α(t) = [α(t), 0, . . . , 0, (1− α(t)), 0, . . . , 0]

Where matrix Qi(t) for i = 1, 2 represents the infinitesimal matrix of the ith
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Erlang branch. We write the form of Qi(t) for i = 1, 2 as

Qi(t)
(mi×mi)

=



−miλi(t) miλi(t) 0 . . . 0 0

0 −miλi(t) miλi(t) . . . 0 0

... . . .
. . . . . .

...
...

... . . . . . . −miλi(t) miλi(t) 0

0 . . . . . . . . . −miλi(t) miλi(t)

0 . . . . . . . . . 0 0


Pi being the steady state probability, i.e., Pi = lim

t→∞
Pji(t) ∀ i, j ∈ {1, . . . ,m1 +

m2}, the 2-MECO is said to be balanced if αλ−1
1 = (1− α)λ−1

2 which results in

m1∑
i=1

Pi =

m1+m2∑
i=m1+1

Pi =
1

2
=⇒ Pi =


1

2m1
for i = 1, . . . ,m1,

1
2m2

for i = m1 + 1, . . . ,m1 +m2.

Now, we write the KFEs of finding the 2-MECO Pht process at state {A(t) = n}

at time t ≥ 0, for n = 1, . . . ,m1,

P′(A(t) = n) = −m1λ1(t) P(A(t) = n) +m1λ1(t) P(A(t) = n− 1)(1− I(n=1))

+ α(t)
(
m1λ1(t) P(A(t) = m1) +m2λ2(t)P(A(t) = m1 +m2)

)
I(n=1),

(4.4)

and for n = m1 + 1, . . . ,m1 +m2,

P′(A(t) = n) = −m2λ2(t) P(A(t) = n) +m2λ2(t) P(A(t) = n− 1)(1− I(n=m+1))

+ (1− α(t))
(
m1λ1(t) P(A(t) = m1) +m2λ2(t) P(A(t) = m1 +m2)

)
In=(m1+1)

(4.5)
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where I(i=j) is an indicator function such that ∀ i, j, I(i=j) =


1 when i = j,

0 otherwise.

To calculate the probability P(A(t) = n) of finding the 2-MECO Pht process at

state {A(t) = n} for n = 1, . . . ,m, where m = m1 + m2 at time t ≥ 0, we solve

the differential equation in (4.4) and (4.5) with the following initial condition,

P(A(0) = n) = αn(0).

The 2-MECO demand-count KFEs of the augmented state space are presented

below where the derivative is with respect to t in equations (4.6) and (4.7), and

τ in (4.8) and (4.9). For 0 ≤ t < L, k = 0, 1, 2, . . . ,∞, and i = 1, . . . ,m1,

P′(D0(t) = k,A(t) = i) = −m1λ1(t) P(D0(t) = k,A(t) = i)

+m1λ1(t) P(D0(t) = k,A(t) = i− 1) (1− I(i=1))

+ α(t)
(
m1λ1(t) P(D0(t) = k − 1, A(t) = m1)

+ m2λ2(t) P(D0(t) = k − 1, A(t) = m1 +m2)
)

I(k>0).

(4.6)

For 0 ≤ t < L, k = 0, 1, 2, . . . ,∞, and i = m1 + 1, . . . ,m1 +m2,

P′(D0(t) = k,A(t) = i) = −m2λ2(t) P(D0(t) = k,A(t) = i)

+m2λ2(t) P(D0(t) = k,A(t) = i− 1) (1− I(i=m1+1))

+ (1− α(t))
(
m1λ1(t) P(D0(t) = k − 1, A(t) = m1)

+ m2λ2(t) P(D0(t) = k − 1, A(t) = m1 +m2)
)

I(k>0).

(4.7)
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For t ≥ L, k = 0, 1, 2, . . . ,∞, ts = t− L, and i = 1, ...,m1,

P′(Dts(τ) = k,A(ts + τ) = i) = −m1λ1(ts + τ) P(Dts(τ) = k,A(ts + τ) = i)

+m1λ1(ts + τ) P(Dts(τ) = k,A(ts + τ) = i− 1) (1− I(i=1))

+ α(ts + τ)
(
m1λ1(ts + τ) P(Dts(τ) = k − 1, A(ts + τ) = m1)

+m2λ2(ts + τ) P(Dts(τ) = k − 1, A(ts + τ) = m1 +m2)
)

I(k>0).

(4.8)

For t ≥ L, k = 0, 1, 2, . . . ,∞, ts = t− L, and i = m1 + 1, ...,m1 +m2,

P′(Dts(τ) = k,A(ts + τ) = i) = −m2λ2(ts + τ) P(Dts(τ) = k,A(ts + τ) = i)

+m2λ2(ts + τ) P(Dts(τ) = k,A(ts + τ) = i− 1) (1− I(i=m1+1))

+ (1− α(ts + τ))
(
m1λ1(ts + τ) P(Dts(τ) = k − 1, A(ts + τ) = m1)

+m2λ2(ts + τ) P(Dts(τ) = k − 1, A(ts + τ) = m1 +m2)
)

I(k>0).

(4.9)

The probability distribution of the Conditional Demand-Count (CDC) process

can be calculated from the KFEs in (4.2) and (4.3) for the general Pht distribu-

tion and from the KFEs in (4.6),(4.7),(4.8) and (4.9) for the 2-MECO distribution

by conditioning on the state of the Pht process at time t ∈ [0, T ]. After which

we can find the distribution of the demand-count process by applying the total

probability theorem. Thus, in order to find the probability P (D0(t) = k) of hav-

ing a demand count equal to k = 0, 1, 2, . . . ,∞ over the time interval 0 ≤ t ≤ L,

we first find the probabilities P(D0(t) = k|A(0) = n) of having a demand equal

to k = 0, 1, 2, . . . ,∞ over the interval 0 ≤ t ≤ L, conditioned on being at all

possible phases at time t = 0, i.e., for all n = 1, . . . ,m. Note that in the general
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Pht distribution m in the number of transient states which is also the case in the

2-MECO distribution where m = m1 +m2. Hence, P(D0(t) = k) will be equal to

the sum
m∑

n=1

(
P(D0(t) = k|A(0) = n)× P(A(0) = n)

)
.

Similarly, to find the probability P(Dts(L) = k), with ts = t − L, of hav-

ing a demand count equal to k = 0, 1, 2, . . . ,∞ over the time interval [ts, t]

such that ts ≥ 0, we first find the probabilities P(Dts(L) = k|A(ts) = n)

of having a demand equal to k = 0, 1, 2, . . . ,∞ over the interval [ts, t] con-

ditioned on being at all possible phases at the beginning of the lead time ts,

i.e., for all n = 1, . . . ,m. Hence, P(Dts(L) = k) will be equal to the sum
m∑

n=1

(
P(Dts(L) = k|A(ts) = n)× P(A(ts) = n)

)
.

To facilitate the computation later on in our model, specifically when computing

the net inventory probabilities at time t ≥ 0 at which we need to compute proba-

bilities for all the possible conditional demand-count values over the lead time, we

limit the demand-count to an upper limit dmax. The upper bound dmax is chosen

such that it satisfies P(X > dmax) = ε where X is a Poisson random variable

having a mean λ = max(λi,j(t)) for all i = 1, . . . ,m and t ∈ [0, T ], where ε is a

sufficiently small number. Note that for the 2-MECO, λi,j(t) is either m1λ1(t) or

m2λ2(t). It is worth to mention that this approach for selecting dmax preserves

the independence of the CDC and Demand-count with the reorder policy.

Accordingly, we establish an algorithm to compute the probability distribution

of the demand count process for a time interval [0, T ].

Demand-Count Distribution Algorithm

For 0 ≤ t < L and ∀ k ∈ {0, 1, · · · , dmax},

Step 1. Set n = 1 and i = 1.

28



Step 2. Numerically solve equations (4.2), (4.6) and (4.7) from 0 to t, t < L

with the following initial condition, P(D0(0) = 0, A(0) = n) = P(A(0) =

n), to obtain P(D0(t) = k,A(t) = i|A(0) = n).

Step 3. If i < m, set i = i+ 1 and go to Step 2.

Step 4. Set P(D0(t) = k|A(0) = n) =
m∑
i=1

P(D0(t) = k,A(t) = i|A(0) = n).

Step 5. If n < m, set n = n+ 1 and i = 1 and go to Step 2.

Step 6. Set P(D0(t) = k) =
m∑

n=1

(
P(D0(t) = k|A(0) = n)× P(A(0) = n)

)
.

For t ≥ L and ∀ k ∈ {0, 1, . . . , dmax},

Step 1. Set n = 1 and i = 1.

Step 2. Numerically solve equations (4.3),(4.8) and (4.9) from ts = t− L to t,

t ≥ L with the following initial condition, P(Dts(0) = 0, A(ts) = n) =

P(A(ts) = n), to obtain P(Dts(L) = k,A(t) = i|A(ts) = n).

Step 3. If i < m, set i = i+ 1 and go to Step 2.

Step 4. Set P(Dts(L) = k|A(ts) = n) =
m∑
i=1

P(Dts(L) = k,A(t) = i|A(ts) = n).

Step 5. If n < m, set n = n+ 1 and i = 1 and go to Step 2.

Step 6. Set P(Dts(L) = k) =
m∑

n=1

(
P(Dts(L) = k|A(ts) = n)× P(A(ts) = n)

)
.

Next, we discuss finding the moments of the demand over the lead time. The

expected demand-count over the interval [0, t] where t < L can be calculated by

E[D0(t)] =
dmax∑
k=1

k P(D0(t) = k) (4.10)
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and over an interval [ts, t] for ts = t− L, ts ≥ 0 by

E[Dts(L)] =
dmax∑
k=1

k P(Dts(L) = k). (4.11)

Similarly the rth moment of the demand-count distribution over the interval [0, t]

where t < L can be found by

E[Dr
0(t)] =

dmax∑
k=1

kr P(D0(t) = k) (4.12)

and over an interval [ts, t] for ts = t− L, ts ≥ 0 by

E[Dr
ts(L)] =

dmax∑
k=1

kr P(Dts(L) = k). (4.13)

In the next section, we will present the analytical model of the inventory charac-

teristics for a given (s̄, S̄) replenishment policy.

4.4 System Prob. - Inventory Characteristics

In order to obtain a better control over the inventory, it is typically classified into

different types. From the operational perspective, inventories may be classified

based on their availability. As a matter of fact, at time t inventory can be either

ordered, but not yet delivered (inventory on order, IO(t) ) or it is physically

on the shelf and immediately available to satisfy demand (on-hand inventory,

I(t)). Silver et al. (1998) point out that sometimes even the physical on the shelf

inventory might not be available since it could be already committed, for example,

due to unmet demands from previous periods, so called backorders, B(t). The

remaining quantity that is not backordered is referred to as net inventory, NI(t)
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or inventory level, IL(t), and it holds that

net inventory︸ ︷︷ ︸
NI(t)

= on-hand inventory - backorders︸ ︷︷ ︸
I(t)−B(t)

Since at time t, we can have backorders only whenever the on-hand inventory

is zero, it does not make sense in single-customer setting to hold both, on-hand

inventory and backorders. Thus, the positive net inventory is the on-hand in-

ventory. When the net inventory is negative, the demand is backordered until

inventory on-order is delivered. Thus, the amount by which the net inventory is

negative is the backorder. That is,

on-hand inventory︸ ︷︷ ︸
I(t)

= amount of positive net inventory︸ ︷︷ ︸
NI(t)+

(4.14)

backorders︸ ︷︷ ︸
B(t)

= amount of negative net inventory︸ ︷︷ ︸
NI(t)−

. (4.15)

Let IP (t) denotes the inventory position, which is defined by Silver et al. (1998)

as

inventory position

= on-hand inventory + inventory on-order - backorders

= net inventory + inventory on-order.

Moreover, having Dt(t + L) refer to the amount of demand that takes place in

the interval [t, t + L] and all the inventory that was on order at time t will be

delivered at t+ L, we can write,

NI(t+ L) = NI(t) + IO(t)−Dt(t+ L)

= IP (t)−Dt(t+ L).

(4.16)
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4.4.1 Inventory Position

The replenishment policy for a planning horizon of length T having N periods

is (s̄, S̄) where, s̄ = {s1, s2, . . . , sN} and S̄ = {S1, S2, . . . , SN}, Figure 4.2. The

dynamic ordering policy at any time t ∈ [0, T ] is defined by the reorder level sn

and the order up-to level Sn where n = ceil( tN
T

) ≡
⌈
tN
T

⌉
.

For a given dynamic reorder policy, (s̄, S̄), the state of the dynamic inventory

position at time t ∈ [0, T ] is represented by the value of the inventory position

and the state of the phase-type process at time t ∈ [0, T ].

The inventory position at time t ∈ [0, T ] is IP(t) ∈ {`, . . . , u}, where ` is the

lowest achievable inventory position level such that ` = min
t∈[0,T]

(st) + 1 and u is the

inventory position upper limit such that u = max
t∈[0,T]

(St).

Figure 4.2: Inventory Position under dynamic (s, S) policy.

We augment the states of the Pht demand count process A(t) ∈ {1, 2, · · · ,m}

with the inventory position level IP(t) at time t ≥ 0.

Let Pi,n(t) = P(IP(t) = i, A(t) = n) for i = `, . . . , u and n = 1, . . . ,m, be the

resulting Markovian process state probabilities. Recall that m is the total number

of transient states in the general Pht distribution and the 2-MECO distribution
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where m = m1 +m2. Similar to the demand-count process the inventory position

level can be defined by a general and a 2-MECO Pht processes. The resulting

inventory position Kolmogorov Forward Equations (IP-KFEs) for the general Pht

and 2-MECO processes are presented in equations (4.17) to (4.24).

The General Pht IP Process KFEs

For t ≥ 0, n = 1, . . . ,m and i > s(t),

P′i,n(t) =
m∑

w=1

λw,n(t) Pi,w(t)

+αn(t)
( m∑

w=1

µw(t) Pi+1,w(t)
)

(1− I(i=u))

+αn(t)
( m∑

w=1

s(t)+1∑
q=`

µn(t) Pq,n(t)
)

I(i=S(t)).

(4.17)

For t ≥ 0, n = 1, . . . ,m and i ≤ s(t),

P′i,n(t) =
m∑

w=1

λw,n(t) Pi,w(t). (4.18)

The 2-MECO Pht IP Process KFEs

For t ≥ 0, n = 2, . . . ,m1 and ` ≤ i ≤ u,

P′i,n(t) = −m1 λ1(t) Pi,n(t) +m1 λ1(t) Pi,n−1(t). (4.19)

For t ≥ 0, n = m1 + 2, . . . ,m1 +m2 and ` ≤ i ≤ u,

P′i,n(t) = −m2 λ2(t) Pi,n(t) +m2 λ2(t) Pi,n−1(t). (4.20)
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For t ≥ 0, n = 1 and i > s(t),

P′i,1(t) = −m1 λ1(t) Pi,1(t)

+ α(t)
(
m1 λ1(t) Pi+1,m1(t) + m2 λ2(t) Pi+1,m1+m2(t)

)
(1− I(i=u))

+ α(t)
( s(t)+1∑

w=`

(m1 λ1(t) Pw,m1(t) + m2 λ2(t) Pw,m1+m2(t))
)

I(i=S(t)).

(4.21)

For t ≥ 0, n = m1 + 1 and i > s(t),

P′i,m1+1(t) = −m2 λ2(t) Pi,m1+1(t)

+ (1− α(t))
(
m1 λ1(t) Pi+1,m1(t) +m2 λ2(t) Pi+1,m1+m2(t)

)
(1− I(i=u))

+ (1− α(t))
( s(t)+1∑

w=`

(m1 λ1(t) Pw,m1(t) +m2 λ2(t) Pw,m1+m2(t))
)

I(i=S(t)).

(4.22)

For t ≥ 0, n = 1 and i ≤ s(t),

P′i,1(t) = −m1 λ1(t) Pi,1(t). (4.23)

For t ≥ 0, n = m1 + 1 and i ≤ s(t),

P′i,m1+1(t) = −m2 λ2(t) Pi,m1+1(t). (4.24)

where, Ii=n =


1 when i = n,

0 otherwise.

The KFEs in (4.17) and (4.18) for the general Pht distribution and the KFEs

in (4.19) to (4.24) for the 2-MECO Pht distribution allow us to compute the
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joint probability distribution of the inventory position and the Pht state at time

t ≥ 0. After which the distribution of the inventory position at time t ≥ 0 can

be found by the sum of the joint probability distribution for all phases. Thus,

in order to find the probability P(IP (t) = i) of having an inventory position

equal to i = `, . . . , u at time t ≥ 0, we first find the probabilities P(IP (t) =

i, A(t) = n) of having an inventory position equal to i = `, . . . , u and being in

phase n = 1, . . . ,m at time t ≥ 0. Then, the P(IP (t) = i) will be equal to the

sum
∑m

n=1 P(IP (t) = i, A(t) = n).

IP Distribution Algorithm

For t ≥ 0 and ∀ i ∈ {`, . . . , u},

Step 1. Set n = 1.

Step 2. Numerically solve the differential equations in (4.17) to (4.24) over

the time interval [0, T ] with the following initial condition, P(IP (0) =

i0, A(0) = n) = 1, where i0 is the initial inventory at time t = 0, to

obtain P(IP (t) = i, A(t) = n).

Step 3. If n < m, set n = n+ 1 and go to Step 2.

Step 4. Set P(IP (t) = i) =
∑m

n=1 P(IP (t) = i, A(t) = n).

Finally, the expected inventory position at time t ≥ 0 can be calculated by

E[IP (t)] =
u∑

i=`

iP(IP (t) = i) (4.25)

Similarly the rth moment of the inventory position at time t ≥ 0 can be found by

E[IP r(t)] =
u∑

i=`

ir P(IP (t) = i) (4.26)
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Next, we will find the net inventory position probabilities and its moments.

4.4.2 Net Inventory Position

Now, we present the equations which allow us to find the distribution of the

net inventory position at time t ≥ 0. As we have demonstrated in section 4.4

equation (4.16) and as thoroughly discussed in Maddah et al. (2004), it can be

seen that

NI(t) = IP (0)−D0(t) for 0 ≤ t ≤ L, (4.27)

NI(t) = IP (t− L)−Dt−L(L) for t > L. (4.28)

Which allows us to write,

for 0 ≤ t ≤ L and `− dmax ≤ i ≤ u,

P (NI(t) = i) =
u∑

y=`

P (IP (0) = y,D0(t) = y − i), (4.29)

for t > L and `− dmax ≤ i ≤ u,

P (NI(t) = i) =
u∑

y=`

P (IP (t− L) = y,Dt−L(L) = y − i). (4.30)

By conditioning equations (4.29) and (4.30) on the Pht system state n = {1, . . . ,m}

we obtain: for 0 ≤ t ≤ L and `− dmax ≤ i ≤ u,

P (NI(t) = i|A(0) = n) =
u∑

y=`

(
P (IP (0) = y|A(0) = n)

× P (D0(t) = y − i|A(0) = n)
)
,

(4.31)
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for t > L and `− dmax ≤ i ≤ u,

P (NI(t) = i|A(t− L) = n) =
u∑

y=`

(
P (IP (t− L) = y|A(t− L) = n)

× P (Dt−L(L) = y − i|A(t− L) = n)
)
.

(4.32)

Which can be written as,

for 0 ≤ t ≤ L and `− dmax ≤ i ≤ u,

P (NI(t) = i, A(0) = n) =
u∑

y=`

(
P (IP (0) = y, A(0) = n)

× P (D0(t) = y − i|A(0) = n)
)
,

(4.33)

for t > L and `− dmax ≤ i ≤ u,

P (NI(t) = i, A(t− L) = n) =
u∑

y=`

(
P (IP (t− L) = y, A(t− L) = n)

× P (Dt−L(L) = y − i|A(t− L) = n)
)
.

(4.34)

Accordingly, we establish the following equations of the net inventory probability

distribution,

for 0 ≤ t ≤ L and `− dmax ≤ i ≤ u,

P (NI(t) = i) =
m∑

n=1

P (NI(t) = i, A(0) = n) (4.35)
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for t > L and `− dmax ≤ i ≤ u,

P (NI(t) = i) =
m∑

n=1

P (NI(t) = i, A(t− L) = n) (4.36)

Finally, the expected net inventory position at time t ≥ 0 can be calculated by

E[NI(t)] =
u∑

i=`−dmax

i P (NI(t) = i) (4.37)

Similarly the rth moment of the net inventory position at time t ≥ 0 can be found

by

E[NIr(t)] =
u∑

i=`−dmax

ir P (NI(t) = i) (4.38)

4.4.3 On-hand Inventory

As discussed earlier in section 4.4 the on-hand inventory I(t) is the inventory on

the shelf that is available for sale or use at a particular time t. Now, we present

the equations which allow us to find the distribution of the on-hand inventory at

time t ≥ 0. Based on equations (4.14), (4.27) and (4.28), we can write

I(t) = NI(t)+ =
(
IP (0)−D0(t)

)+

for 0 ≤ t ≤ L, (4.39)

I(t) = NI(t)+ =
(
IP (t− L)−Dt−L(L)

)+

for t > L. (4.40)

Hence, for t ≥ 0,

P(I(t) = i) =


P(NI(t) = i) for i = 1, . . . , u,

0∑
j=`−dmax

P(NI(t) = j) for i = 0.

(4.41)
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Therefore, the expected on-hand inventory at time t ≥ 0 can be calculated by

E[I(t)] =
u∑

i=0

i P (I(t) = i) (4.42)

Similarly the rth moment of the on-hand inventory at time t ≥ 0 can be found by

E[Ir(t)] =
u∑

i=0

ir P (I(t) = i) (4.43)

4.4.4 Backorders

As we’ve seen earlier in section 4.4 the backorders also called backlogs, denoted

B(t), is the inventory on the shelf that is already committed due to unmet de-

mands from previous periods. In this section, we present the equations which

allow us to find the distribution of the backorders at time t ≥ 0. Based on

equations (4.15), (4.27) and (4.28), we can write

B(t) = NI(t)− = (IP (0)−D0(t))− = (D0(t)− IP (0))+ for 0 ≤ t ≤ L, (4.44)

B(t) = NI(t)− = (IP (t−L)−Dt−L(L))− = (Dt−L(L)− IP (t−L))+ for t > L.

(4.45)

Hence, for t ≥ 0,

P(B(t) = i) =


P(NI(t) = −i) for i = 1, . . . , (dmax − `),
u∑

j=0

P(NI(t) = j) for i = 0.

(4.46)
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Therefore, the expected backorders at time t ≥ 0 can be calculated by

E[B(t)] =
dmax−`∑

i=0

i P (B(t) = i) (4.47)

Similarly the rth moment of the backorders at time t ≥ 0 can be found by

E[Br(t)] =
dmax−`∑

i=0

(i)r P (B(t) = i) (4.48)
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4.4.5 Number of Orders

In this section, we find the expected number of orders placed in an interval

of length [0, t]. Let R(t) be the number of orders placed up-to time t ≥ 0. Let

Γr,i,n(t) = P(R(t) = r, IP(t) = i, A(t) = n) be the probability of having R(t) = r,

IP(t) = i and A(t) = n at time t ≥ 0 for r ≥ 0, i = `, . . . , u and n = 1, . . . ,m.

We present the below KFEs where the derivative is with respect to t.

The General Pht Number of Orders KFEs

For t ≥ 0, n = 1, . . . ,m, s(t) < i ≤ u, and r > 0,

Γ′r,i,n(t) =
∑m

w=1 λw,n(t)Γr,i,w(t)

+αn(t)
(∑m

w=1 µw(t) Γr,i+1,w(t)
)

(1− Ii=u)

+αn(t)
(∑m

w=1

∑s(t)+1
q=` µn(t) Γr−1,q,n(t)

)
Ii=S(t)I(r>0)

(4.49)

and for n = 1, . . . ,m, ` ≤ i ≤ s(t) and r ≥ 0,

Γ′r,i,n(t) =
∑m

w=1 λw,n(t)Γr,i,w(t). (4.50)

The 2-MECO Pht Number of Orders KFEs

For t ≥ 0, n = 2, . . . ,m1, ` ≤ i ≤ u and r ≥ 0,

Γ′r,i,n(t) = −m1 λ1(t) Γr,i,n(t) +m1 λ1(t) Γr,i,n−1(t). (4.51)

For t ≥ 0, n = m1 + 2, . . . ,m1 +m2, ` ≤ i ≤ u and r ≥ 0,

Γ′r,i,n(t) = −m2 λ2(t) Γr,i,n(t) +m2 λ2(t) Γr,i,n−1(t). (4.52)
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For t ≥ 0, n = 1, i > s(t) and r ≥ 0,

Γ′r,i,1(t) = −m1 λ1(t) Γr,i,1(t)

+α(t)
(
m1 λ1(t) Γr,i+1,m1(t)

+m2 λ2(t) Γr,i+1,m1+m2(t)
)

(1− Ii=u)

+α(t)
(∑s(t)+1

w=` (m1 λ1(t) Γr−1,w,m1(t)

+m2 λ2(t) Γr−1,w,m1+m2(t))
)
Ii=S(t) Ir>0.

(4.53)

For t ≥ 0, n = m1 + 1, i > s(t) and r ≥ 0,

Γ′r,i,m1+1(t) = −m2 λ2(t) Γr,i,m1+1(t)

+(1− α(t))
(
m1 λ1(t) Γr,i+1,m1(t)

+m2 λ2(t) Γr,i+1,m1+m2(t)
)

(1− Ii=u)

+(1− α(t))
(∑s(t)+1

w=` (m1 λ1(t) Γr−1,w,m1(t)

+m2 λ2(t) Γr−1,w,m1+m2(t))
)
Ii=S(t) Ir>0.

(4.54)

For t ≥ 0, n = 1, i ≤ s(t) and r ≥ 0,

Γ′r,i,1(t) = −m1 λ1(t) Γr,i,1(t). (4.55)

For t ≥ 0, n = m1 + 1 and i ≤ s(t) and r ≥ 0,

Γ′r,i,m1+1(t) = −m2 λ2(t) Γr,i,m1+1(t). (4.56)

To compute the probabilities Γr,i,n we can numerically solve the differential equa-

tions in (4.49) and (4.50) for the general Pht distribution and equations (4.51),

(4.52), (4.53), (4.54), (4.55) and (4.56) for the 2-MECO distribution. But since

r = 0, 1, . . . ,∞ this approach requires setting an upper bound (rmax) on the
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number of orders such that P(R(T ) > rmax) is sufficiently small. An alternate

method for the computation of the expected number of orders is to derive a finite

set of moment differential equations to calculate the moments. Next, we write

the general and 2-MECO Pht distributions differential equations for the first two

moments of the reorder count process.

The General Pht kth Moment of the Number of Orders

For n = 1, . . . ,m, s(t) < i ≤ u and r > 0,

E′[Rk(t); i, n] =
∞∑
r=0

rk Γ′r,i,n(t)

=
m∑
v=1

λv,n(t) E[Rk(t); i, v]

+ αn(t)
( m∑

v=1

µv(t) E[Rk(t); i+ 1, v]
)

I(i 6=u)

+ αn(t)
( m∑

v=1

s(t)+1∑
j=`

µv(t)
( k∑

z=1

(
k

z

)
E[R z(t); j, v] + Pj,v(t)

))
I(i=S(t)).

(4.57)

For n = 1, . . . ,m, ` ≤ i ≤ s(t) and r ≥ 0,

E′[Rk(t); i, n] =
m∑
v=1

λv,n(t) E[Rk(t); i, v]. (4.58)

Setting k = 1, 2 in Equation 4.57 and 4.58, the first and second moment differ-

ential equations for n = 1, . . . ,m,
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E′[R(t); i, n] =
m∑
v=1

λv,n(t) E[R(t); i, v] + αn(t)
( m∑

v=1

µv(t) E[R(t); i+ 1, v]
)

I(i 6=u)

+αn(t)
( m∑

v=1

s(t)+1∑
j=`

µv(t)
(

E[R(t); j, v] + Pj,v(t)
))

I(i=S(t)).

(4.59)

E′[R2(t); i, n] =
m∑
v=1

λv,n(t) E[R2(t); i, v] + αn(t)
( m∑

v=1

µv(t) E[R2(t); i+ 1, v]
)

I(i 6=u)

+αn(t)
( m∑

v=1

s(t)+1∑
j=`

µv(t)
(

E[R2(t); j, v] + 2 E[R(t); j, v] + Pj,v(t)
))

I(i=S(t)).

(4.60)

For n = 1, . . . ,m, and ` ≤ i ≤ st,

E′[R(t); i, n] =
m∑
v=1

λv,n(t) E[R(t); i, v]. (4.61)

E′[R2(t); i, n] =
m∑
v=1

λv,n(t) E[R2(t); i, v]. (4.62)

The 2-MECO Pht kth Moment of the Number of Orders

For t ≥ 0, n = 2, . . . ,m1, ` ≤ i ≤ u and r ≥ 0,

E′[Rk(t); i, n] =
∞∑
r=0

rk Γ′r,i,n(t)

= −m1 λ1(t) E[Rk(t); i, n] +m1 λ1(t) E[Rk(t); i, n− 1].

(4.63)

For t ≥ 0, n = m1 + 2, . . . ,m1 +m2, ` ≤ i ≤ u and r ≥ 0,

E′[Rk(t); i, n] = −m2 λ2(t) E[Rk(t); i, n] +m2 λ2(t) E[Rk(t); i, n− 1]. (4.64)

44



For t ≥ 0, n = 1, i > s(t) and r > 0,

E′[Rk(t); i, 1] = −m1 λ1(t) E[Rk(t); i, 1]

+α(t)
(
m1 λ1(t) E[Rk(t); i+ 1,m1]

+m2 λ2(t) E[Rk(t); i+ 1,m1 +m2]
)

(1− Ii=u)

+α(t)
(∑s(t)+1

w=` (m1 λ1(t) (
∑k

z=1

(
k
z

)
E[Rk(t);w,m1] + Pw,m1)

+m2 λ2(t) (
∑k

z=1

(
k
z

)
E[Rk(t);w,m1 +m2] + Pw,m1+m2)

)
Ii=S(t).

(4.65)

For t ≥ 0, n = m1 + 1, i > s(t) and r > 0,

E′[Rk(t); i,m1 + 1] = −m2 λ2(t) E[Rk(t); i,m1 + 1]

+(1− α(t))
(
m1 λ1(t) E[Rk(t); i+ 1,m1]

+m2 λ2(t) E[Rk(t); i+ 1,m1 +m2]
)

(1− Ii=u)

+(1− α(t))
(∑s(t)+1

w=` (m1 λ1(t) (
∑k

z=1

(
k
z

)
E[Rk(t);w,m1] + Pw,m1)

+m2 λ2(t) (
∑k

z=1

(
k
z

)
E[Rk(t);w,m1 +m2] + Pw,m1+m2)

)
Ii=S(t).

(4.66)

For t ≥ 0, n = 1, i ≤ s(t) and r ≥ 0,

E′[Rk(t); i, 1] = −m1 λ1(t) E[Rk(t); i, 1]. (4.67)

For t ≥ 0, n = m1 + 1 and i ≤ s(t) and r ≥ 0,

E′[Rk(t); i,m1 + 1] = −m2 λ2(t) E[Rk(t); i,m1 + 1]. (4.68)

Setting k = 1, 2 in equations 4.63 and 4.68, the first and second moment differ-

ential equations for t ≥ 0, n = 2, . . . ,m1, ` ≤ i ≤ u and r ≥ 0,
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E′[R(t); i, n] =
∞∑
r=0

r Γ′r,i,n(t)

= −m1 λ1(t) E[R(t); i, n] +m1 λ1(t) E[R(t); i, n− 1].

(4.69)

E′[R2(t); i, n] =
∞∑
r=0

r2 Γ′r,i,n(t)

= −m1 λ1(t) E[R2(t); i, n] +m1 λ1(t) E[R2(t); i, n− 1].

(4.70)

For t ≥ 0, n = m1 + 2, . . . ,m1 +m2, ` ≤ i ≤ u and r ≥ 0,

E′[R(t); i, n] = −m2 λ2(t) E[R(t); i, n] +m2 λ2(t) E[R(t); i, n− 1]. (4.71)

E′[R2(t); i, n] = −m2 λ2(t) E[R2(t); i, n] +m2 λ2(t) E[R2(t); i, n− 1]. (4.72)

For t ≥ 0, n = 1, i > s(t) and r > 0,

E′[R(t); i, 1] = −m1 λ1(t) E[R(t); i, 1]

+α(t)
(
m1 λ1(t) E[R(t); i+ 1,m1]

+m2 λ2(t) E[R(t); i+ 1,m1 +m2]
)

(1− Ii=u)

+α(t)
(∑s(t)+1

w=` (m1 λ1(t) (E[R(t);w,m1] + Pw,m1)

+m2 λ2(t) (E[R(t);w,m1 +m2] + Pw,m1+m2)
)
Ii=S(t).

(4.73)

E′[R2(t); i, 1] = −m1 λ1(t) E[R2(t); i, 1]

+α(t)
(
m1 λ1(t) E[R2(t); i+ 1,m1]

+m2 λ2(t) E[R2(t); i+ 1,m1 +m2]
)

(1− Ii=u)

+α(t)
(∑s(t)+1

w=` (m1 λ1(t) (E[R2(t);w,m1] + 2E[R(t);w,m1] + Pw,m1)

+m2 λ2(t) (E[R2(t);w,m1 +m2] + 2E[R(t);w,m1 +m2] + Pw,m1+m2)
)
Ii=S(t).

(4.74)
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For t ≥ 0, n = m1 + 1, i > s(t) and r > 0,

E′[R(t); i,m1 + 1] = −m2 λ2(t) E[R(t); i,m1 + 1]

+(1− α(t))
(
m1 λ1(t) E[R(t); i+ 1,m1]

+m2 λ2(t) E[R(t); i+ 1,m1 +m2]
)

(1− Ii=u)

+(1− α(t))
(∑s(t)+1

w=` (m1 λ1(t) (E[R(t);w,m1] + Pw,m1)

+m2 λ2(t) (E[R(t);w,m1 +m2] + Pw,m1+m2)
)
Ii=S(t).

(4.75)

E′[R2(t); i,m1 + 1] = −m2 λ2(t) E[R2(t); i,m1 + 1]

+(1− α(t))
(
m1 λ1(t) E[R2(t); i+ 1,m1]

+m2 λ2(t) E[R2(t); i+ 1,m1 +m2]
)

(1− Ii=u)

+(1− α(t))
(∑s(t)+1

w=` (m1 λ1(t) (E[R2(t);w,m1] + 2E[R(t);w,m1] + Pw,m1)

+m2 λ2(t) (E[R2(t);w,m1 +m2] + 2E[R(t);w,m1 +m2] + Pw,m1+m2)
)
Ii=S(t).

(4.76)

For t ≥ 0, n = 1, i ≤ s(t) and r ≥ 0,

E′[R(t); i, 1] = −m1 λ1(t) E[R(t); i, 1]. (4.77)

E′[R2(t); i, 1] = −m1 λ1(t) E[R2(t); i, 1]. (4.78)

For t ≥ 0, n = m1 + 1 and i ≤ s(t) and r ≥ 0,

E′[R(t); i,m1 + 1] = −m2 λ2(t) E[R(t); i,m1 + 1]. (4.79)

E′[R2(t); i,m1 + 1] = −m2 λ2(t) E[R2(t); i,m1 + 1]. (4.80)

Therefore, for t ≥ 0, n = 1, . . . ,m, ` ≤ i ≤ u and r ≥ 0 the expected number of

orders is

E[R(t)] =
u∑

i=`

m∑
n=1

E[R(t); i, n] (4.81)

47



and the second moment

E[R2(t)] =
u∑

i=`

m∑
n=1

E[R2(t); i, n]. (4.82)

4.4.6 Inventory Total Cost

In this section, we find the expected total cost for a given reorder policy (s̄, S̄).

The expected total cost includes the expected holding, back-ordering and number

of orders costs. Total expected costs up-to time t ≥ 0,

Φ(s̄,S̄)(t) = H

∫ t

0

E[I(t)] dt+ P

∫ t

0

E[B(t)] dt+K E[R(t)] (4.83)

Total expected cost for a given replenishment (s̄, S̄) t ≥ 0 policy at the end of

the planning horizon,

Φ(s̄,S̄)(T ) = h

∫ T

0

E[I(t)] dt+ b

∫ T

0

E[B(t)] dt+ ωE[R(T )] (4.84)

The below algorithm summarizes the computation of the expected cost for a given

reorder policy (s̄, S̄).

Total Expected Cost Algorithm

For t ≥ 0; ts = t− L; d = 0, 1, . . . , dmax; i = `, . . . , u and n = 1, . . . ,m

Step 1. Follow the demand-count distribution algorithm in §4.3 in order to

find P(D0(t) = d|A(0) = n) and P(Dts(L) = d|A(ts) = n)

Step 2. Follow the IP distribution algorithm in §4.4.1 in order to find P(IP (t) =

i, A(t) = n).
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Step 3. Use equations (4.33) and (4.34) to find P (NI(t) = i, A(0) = n) and

P (NI(t) = i, A(ts) = n) and then equations (4.35) and (4.36) to

compute P (NI(t) = i).

Step 4. Use equation (4.41) to compute P (I(t) = i).

Set E[I(t)] =
u∑

i=0

i P (I(t) = i), eq. (4.42).

Step 5. Use equation (4.46) to compute P (B(t) = i).

Set E[B(t)] =
dmax−`∑

i=0

i P (B(t) = i), eq. (4.47)

Step 6. Solve equations (4.59), (4.61), (4.69), (4.71), (4.73), (4.75), (4.77) and

(4.79) to find E[R(t); i, n]

Set E[R(t)] =
u∑

i=`

m∑
n=1

E[R(t); i, n], eq. (4.81)

Step 7. Set Φ(s̄,S̄)(T ) = h

∫ T

0

E[I(t)] dt+ b

∫ T

0

E[B(t)] dt+ ωE[R(T )],

eq. (4.84).
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Chapter 5

HEURISTIC

In this chapter, we propose a heuristic optimization that utilizes line-search al-

gorithm to minimize the cost function that was demonstrated in §4.4.6. The

proposed heuristic initiates the line-search from the solution of the static order-

ing policy which is presented in some operations management textbooks; see e.g.,

Silver et al. (1998), Simchi-Levi et al. (1999) and Nahmias and Cheng (2009). We

first introduce the static ordering policy in section 5.1 after which the line-search

heuristic is presented in section 5.2.

5.1 Static Ordering Policy

The static ordering policy is a simple heuristic that could be easily implemented

in practice to approximate the (s, S) values that minimizes costs. This approx-

imation is based on the assumption that the demand during lead time D(L) is

normally distributed. In period n, the reorder and order-up-to levels, rounded to
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the nearest integer values, are computed using equation (5.1).

sn = E[D(L)] + z Stdv(D(L))

Sn = sn +Q

(5.1)

where z is the solution to the equation,

Gu(z) =
Q

Stdv(D(L))

( h

b+ h

)
=

∫ ∞
z

(u− z)
1√
2π
e−u

2/2du

Gu(z) is the expected value of backordered units per order cycle.

E[D(L)] and Stdv(D(L)) are the mean and standard deviation of the demand-

count over lead time. Q is the order quantity based on the Economic Order

Quantity (EOQ) model,

Q =

√
2ωDe

h

where De is the effective demand rate, De = E[D(τ)]/τ.

Thus, the reorder point, sn, is the sum of the average demand and the safety

stock, which is the safety factor z times the standard deviation of demand. The

order-up-to level, St, is the sum of st and the economic order quantity Q.

5.2 Line Search Heuristic

To find the replenishment (s̄, S̄) policy of this heuristic a one-way line search

algorithm is utilized. The (sn, Sn) values obtained from the static ordering policy

in eq. (5.1) for each period n, is used as a starting point for the line search. In

each period n, take E[D(L)] (Stdv(D(L)) as the average value of all E[Dt(L)]

(Stdv(Dt(L))) ∀ t ∈ Periodn and De = E[D(L)]/L. A line search is done on

the sn values to find the best sn ∈ {1, . . . , Sn − 1} value that minimize cost
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in period n while keeping the Sn values fixed. After finding the best sn values

in each period, another line search is done on the Sn values to find the best

Sn ∈ {sn + 1, . . . , Smax} for each period while keeping the sn values previously

found fixed. Smax represents the upper bound of the order-up-to level and should

be large enough, like the double of the total demand quantity, Smax = 2× dmax.

The algorithm is repeated again with the resulting (s̄, S̄) ordering policy as a

starting point until no further improvement is possible.

The below algorithm summarizes the computation reorder policy (s̄p, S̄p) that

minimizes the total expected costs.

Heuristics: Optimization by Line Search - Algorithm

Algorithm 5.1: Proposed Heuristic Policy

Input : Cost function Φ(s̄,S̄)(T )
Output: Optimal ordering policy (s̄, S̄)

1 Initialization: solve eq.(5.1) to find the static ordering policy (s̄i, S̄i) values;

2 Set (s̄p, S̄p) = (s̄i, S̄i);
3 repeat
4 for n = 1 to N do
5 Set stn = argmin

s
Φ(s̄p,S̄p)(T ) ;

6 Set spn = stn ;

7 end
8 for n = 1 to N do
9 Set St

n = argmin
S

Φ(s̄p,S̄p)(T ) ;

10 Set Sp
n = St

n ;

11 end

12 if (s̄p, S̄p) 6= (s̄i, S̄i) then
13 Set (s̄i, S̄i) = (s̄p, S̄p) ;
14 end

15 until (s̄p, S̄p) = (s̄i, S̄i);
16 return (s̄p, S̄p);
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Chapter 6

ANALYSIS

6.1 Numerical Example 1

Consider a single-location inventory control problem of a single product where

demand is stochastic and time-dependent. The inventory cost parameters are the

fixed setup cost ω = $200/order incurred every time we make an order, the hold-

ing cost h = $1/unit/unit time and the back-ordering cost b = $10/unit/unit time.

The lead time until orders are received is L = 4 time units. Let T = [0, 40] be

the planning horizon. We divide the planning horizon T into 4 periods such that

each period has a length of 10 time units. Each period is then divided into 100

sub-intervals of length equals to 0.1 time units. The period intervals are used to

approximate the demand-count 2nd moment and the sub-intervals in each period

are used to approximate the demand-count 1st moment. The 1st and 2nd moments

of the demand-count are shown in Table 6.1.

Period: 1 2 3 4
1st moment: 20 40 10 50
2nd moment: 490 1707 140 2600

Table 6.1: First and second moment demand count
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For simplicity, the demand-count 1st moment is held constant over the sub-

intervals of each period. This is reflected by the instantaneous demand rate r(t)

that is constant through out each period as it can be seen in Figure 6.1.

Figure 6.1: Instantaneous Demand Rate.

We fit a two-level mixture of Erlangs of common order (2-MECO) phase-type

distribution with m1 = 2 and m2 = 3 to the demand-count moments.

1α(t) 2

5431− α(t)

m1λ1(t) m
1λ

1(t)

m2λ2(t) m2λ2(t)
m2λ2(t

)

Figure 6.2: 2-MECO Structure

The fitting is done by utilizing the time-dependent fitting algorithm presented

by Nasr and Taaffe (2012). Figure 6.3 shows the output of Nasr-Taaffe fitting

algorithm which contains the time-dependent 2-MECO parameters λ1(t), λ2(t)

and α(t). These parameters are then used to find the demand count distribution

over [0, T ] using the demand-count distribution algorithms presented in §4.3.

From the distribution of the demand-count during lead time, we find the mean
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Figure 6.3: 2-MECO Time-dependent Parameters.

and standard deviation of the demand over lead time, Figure 6.4.

Figure 6.4: Mean and Standard Deviation of the Demand over Lead Time.
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Now, for a given dynamic reorder policy, (s̄, S̄) where s̄ = {7, 14, 3, 17} and

S̄ = {36, 54, 23, 62}, the inventory position distribution is found following the

algorithm proposed in §4.4.1. The resulting mean and standard deviation of the

inventory position level at any time t, IP (t), are shown in Figure 6.5.

Figure 6.5: IP(t) Mean and Standard Deviation.

The NI(t) distribution can be found by solving equations (4.33), (4.34), (4.35)

and (4.36). The resulting mean and standard deviation of the net inventory level

at any time t, NI(t), are shown in Figure 6.6.
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Figure 6.6: NI(t) Mean and Standard Deviation.

Using equation (4.41) we find the on-hand inventory distribution. The mean

and standard deviation of the on-hand inventory levels I(t) are shown below in

Figure 6.7.
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Figure 6.7: I(t) Mean and Standard Deviation.

Similarly, using equation (4.46) we find the backordered inventory distribu-

tion. The mean and standard deviation of the backorders, B(t), are shown below

in Figure 6.8.
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Figure 6.8: B(t) Mean and Standard Deviation.

Figure 6.9 shows the evolution of all inventory measures over time.
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Figure 6.9: Evolution of Inventory Measures Over Time.

The mean and standard deviation of the number of orders is found by solving

equations (4.69) to (4.82).

Figure 6.10: R(t) Mean and Standard Deviation.
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Using equation (4.84) we find the inventory expected costs at any time t for

our replenishment policy s̄ = {7, 14, 3, 17} and S̄ = {36, 54, 23, 62}.

Figure 6.11: Inventory Expected Costs.

To find the (s̄, S̄) policy the minimizes the expected cost we first compute the

static ordering policy:

sn = E[D(L)] + z Stdv(D(L))

Sn = sn +Q




s̄i = {7 14 3 17}

S̄i = {36 54 23 62}

Then following Algorithm 5.1 the optimal heuristic policy is obtained:

s̄∗ = {8 10 5 12}

S̄∗ = {34 49 51 66}

Figure 6.12 shows the expected inventory costs at any time t for the optimal

heuristic policy.
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Figure 6.12: Inventory Expected Costs.

Now, we study the option of incorporating a service level constraint (SL=0.9)

and accordingly recompute the optimal heuristic policy. The results are shown

below in Figure 6.13.

Figure 6.13: Probability of shortage
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6.2 Numerical Example 2

Consider Numerical Example 1 but in this example we illustrate the case where

the demand rate is continuous and follows the following function:

r(t) = 1 +
t

10
+ 0.75× sin(0.2 π t)

Figure 6.14: Instantaneous Demand Rate.

The output of Nasr-Taaffe fitting algorithm, Figure 6.15, contains the time-

dependent 2-MECO parameters λ1(t), λ2(t) and α(t).

Figure 6.15: 2-MECO Time-dependent Parameters.

These parameters are then used to find the demand count distribution over
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the planning horizon [0, T ].

The resulting mean and standard deviation of the demand-count over lead time

is shown in Figure 6.16.

Figure 6.16: Mean and Standard Deviation of the Demand over Lead Time.
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Chapter 7

CONCLUSION AND FUTURE

WORK

Due to the complicated nature of time-dependent demand models not much work

have been done dealing with non-stationary stochastic demand.

In this work we quantify the impact of time-dependent parameters and il-

lustrate the behavior and evolution of the inventory measures over time. This

results in a better decision making policies and improve our understanding of

such problems, especially from the managerial perspective.

To the best of our knowledge, we are the first to utilize time-dependent phase-

type distribution to model non-stationary stochastic demand and inventory char-

acteristics.

Our results show the feasibility of approximating non-stationary demand-

count distribution with time-dependent Pht distributions in inventory manage-

ment problems. Moreover, we present computationally efficient numerical al-

gorithms to compute all expected inventory measures values over time. The

resulting inventory measures at any point in time allow for sensitivity analysis
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study which provides great insights for what-if analysis.

In addition to stochastic time-dependent demand future work could include

models that incorporates correlated demand. In this case, demand will be uncer-

tain, time-varying and depends on the environment factors. Thus, incorporating

the utter most case that could be encountered in practice. This thesis consid-

ers fixed lead time. Future work could extend this assumption to the case of a

stochastic lead time that could be modeled also using phase-type distribution,

see Song and Zipkin (1993). It would be also nice to study the effect of sudden

changes (such as a sudden increase or decrease) that could happen in the demand

pattern on the inventory costs and number of backorders for a given replenish-

ment policy. Future work could utilize alternate ordering policies such as the

batch ordering policy (R, nQ). In addition, the inventory costs in this research

could be extended to include discounted costs. Finally, future work could include

models that deal with the end of horizon effect because of the fact that cost ac-

counting continues beyond the last decision period due to lead time. Thus, for

instance to deal with this problem, excess inventory at the end of horizon could

have a salvage value which could be subtracted from the total costs.
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