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AN ABSTRACT OF THE THESIS OF 
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Title: Generating Feasible University Student Schedules via Graph Theory Concepts 
 
 
 
 

This thesis aims to provide an effective method that helps university students 
in registering several classes having multiple sections each.  With many classes to 
register (reaching 6 or 7 classes) and several sections per class (reaching 8 or 9 sections) 
this becomes a scheduling problem that is tedious to solve. The difficulty stems from 
finding available options (schedules) that comply to a mixture of hard constraints 
imposed by the university and soft constraints related to student’s preferences. This 
thesis describes the design and implementation of a constraint-based personal student 
course scheduler that utilizes graph theory. 

A special graph is constructed which consists of special vertices (referred to as 
super nodes) that represent the courses offered by the university. Each super node has 
sub-nodes representing sections of the class. The connectivity is defined among super 
nodes. Two super nodes are connected by an arc if they have no time conflict.  Sub-
nodes (sections) that belong to connected super-nodes can be part of the student 
schedule. This graph theory methodology allows generating all possible schedules for a 
student accounting for various constraints. We apply our method to generate student 
course schedules based on the course offerings of the American University of Beirut 
(AUB). This is developed using a user-friendly PHP application which runs online, and 
can be easily connected to a university student information system. 
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CHAPTER I.  

INTRODUCTION & BACKGROUND 
 

Recent years have seen an increased application of graph theory and 

mathematics Chachra, Vinod et al, (1979). The former has proven to be particularly 

useful to a large number of rather diverse fields. The exciting and rapidly growing area 

of graph theory is rich in theoretical results as well as applications to real-world 

problems. 

The problem of students registration in university is an increasingly complex 

process, due to the growing flexibility of course schedules and the interest in including a 

wide set of constraints and objectives. Any university usually has multiple faculties or 

schools that are responsible for the academic organization of classes. At the time of 

registration, the university makes the complete course offerings schedule available to all 

students, with the information on all courses of each faculty. The students use this 

information to make their course selection, which is basically a set of compulsory and 

optional courses from among those offered by their faculty and some other courses from 

the other faculties (“elective” courses). 

In this thesis we present an approach that enables the students to enter their 

course selection with their own preferences in a user-friendly web-application that uses 

an algorithm based on graph theory. 

The origins of graph theory can be traced back to puzzles that were designed to 

amuse mathematicians and test their ingenuity. The classic puzzle concerned the bridges 

of Königsberg, a town in Prussia, which surrounded an island in the River Pregel (the 
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town is now known as Kliningrad on the Pregolya River). Graph theory is considered to 

have begun in 1736 with the publication of Leonard Euler’s solution to the Königsberg 

bridge problem. 

Many real-life situations can be described by means of a diagram consisting of 

a set of points with lines joining certain pairs of points. Loosely speaking, such a 

diagram is what we mean by a graph. Graphs lend themselves naturally as models for a 

variety of situations. Instances of graphs abound: for example, the points might 

represent cities with lines representing direct flights between certain pairs of these cities 

in some airline system, or perhaps the lines represent pipelines between certain pairs of 

these cities in an oil network. On the other hand, the points might represent factories 

with lines representing communication links between them. Electrical networks, 

multiprocessor computers or switching circuits may clearly be represented by graphs. 

A. Statement of the Problem  

Scheduling student individual courses is usually made by each student at the 

start of a semester when choosing what courses to register. Manually created schedule is 

known to contain a lot of conflicts and problems despite the great effort required to 

form such a schedule. 

The process of identifying of the best schedule that meet the hard constrains of 

the university and the soft constrains based on student preferences can be a very tedious 

job. Therefore, providing a requisite schedule that meet these constrains will minimize 

the student dissatisfaction, and saves the student time. 
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B. Objective of the Study 

The purpose of this thesis work is to apply graph theory concepts to generate 

efficient and conflict free student's personal courses schedule. The work in this research 

seeks to produce a set of options for each student from which a student can choose the 

best option to opt-in or register in. 

C. General Introduction about graph theory and networks 

 History of Graph Theory 

The theory of graphs is based on the problem of the Seven Bridges of 

Königsberg which was firstly formulated by the Swiss mathematician Leonard Euler 

(1707-1783) the father of graph theory. Königsberg1 is located at both sides of the river 

Pregel and includes two large islands, connected to the rest of the city through seven 

bridges (Fig.1).  

 

 
Figure 1 the seven bridges of Königsberg (A view of Königsberg as it was in Euler's day) 

 

                                                 
1 During World War II Königsberg was conquered by the soviet Red Army and then integrated into the Soviet Union 
but its name has been changed to Kaliningrad. 
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The idea of the problem is to find a path through the city on which each bridge 

is crossed once and only once. Euler found out, that the key problem to be solved is, to 

find the sequence of bridges crossed. This enabled him to reshape the problem into a 

mathematical structure of a graph. Here the different land masses represent the vertices 

of the graph and the bridges are edges between the vertices (Fig.2). 

 

 
Figure 2 the seven bridges of Königsberg as a graph problem  

 
Euler pointed out that, during any walk, whenever one enters a land mass 

through a bridge, one has to leave it again over another bridge (since every bridge shall 

be crossed only once). This means that, if every bridge is crossed only once, the number 

of bridges touching a land mass has to be even (except for the land masses one defines 

to be start or finish of the walk). Since all four land masses are touched by an odd 

number of bridges, this leads to a contradiction. In other words, Euler proved that such a 

walk (later called a Eularian walk in his honor) exists, if and only if (a) the graph is 

connected and (b) there exist exactly two or zero vertices with odd degree2. By stating 

and solving this problem, Euler laid down the principles of modern graph theory. 

                                                 
2 Euler stated that this condition is a necessary for a Eularian walk.  
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 Graph Theory Definitions  

a. Graph  

A graph G consists of a collection V of vertices and a collection edges E, for 

which we write G = (V, E) Chachra, Vinod et al, (1979). Each edge v ∈ E is said to join 

two vertices, which are called its end points. If e joins u, v ∈ V, we write e = (u, v). 

Vertex u and v in this case are said to be adjacent.  

The order of a graph is the number of vertices in it, usually denoted |V| or |G|. 

The size of a graph is the number of edges in it, denoted |E| or ||G||. If |V| = 0 and |E| = 

0 the graph is called empty or null. If |V| = 1 and |E| = 0, the graph is trivial. If |V| >= 

1 and |E| = 0 the graph is called discrete. 

b. Directed Graph 

A directed graph or digraph is an ordered pair D = (V, A) with V a set whose 

elements are called vertices or nodes, and A a set of ordered pairs of vertices, called 

arcs, directed edges, or arrows. An arc a = (x, y) is considered to be directed from x to 

y; y is called the head and x is called the tail of the arc; y is said to be a direct successor 

of x, and x is said to be a direct predecessor of y Chachra, Vinod et al, (1979). 

 

Figure 3 Directed Graph 

c. Undirected Graph 

An undirected graph is one in which edges have no orientation. The edge (a, b) 

is identical to the edge (b, a), i.e., they are not ordered pairs, but sets {u, v} (or 2-
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multisets) of vertices. In this thesis we are interested in undirected graphs more than in 

directed ones Chachra, Vinod et al, (1979). 

 

Figure 4 Undirected Graph 

 Graph Theory Basics 

Graph theory is the study of graphs, whereas graphs are, at the lowest level of 

abstraction, simple data structures comprised of a set of points that are connected 

arbitrarily by a set of lines. 

A graph is a mathematical structure consisting of two sets V and E. The 

elements of V are called vertices and the elements of E are called edges. Each edge is 

identified with a pair of vertices. If the edges of a graph G are identified with ordered 

pairs of vertices, then G is called a directed graph. Otherwise G is called an undirected 

graph. Our discussions in this thesis are concerned with undirected graphs. 

The number of vertices in V (G) is called the order of the graph, the number of 

edges in E (G) is called the size (M) and the number of edges connecting a vertex v to 

other vertices is called the degree of v, Kv. In practice, graphs can be used to model all 

kinds of networks. Here, vertices represent network elements (such as people, 

computers, cities, and courses) and edges represent relationships between these network 

elements (such as friendship bonds, Ethernet connections, railroad connections, and 

registration without conflict). 
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 Metrics of Graph 

An adjacency matrix M (G) is a n × n matrix (with n being the order of the 

graph) in which Mi;j  is either 1 (if vertex i is connected to vertex j) or 0 (if otherwise) 

Chachra, Vinod et al, (1979). This matrix tends to be very sparse what makes it easy to 

store it quite efficiently in computer memory. The adjacency list is a simple list of all 

vertices of the graph with all vertices to which they are connected next to them. In other 

words, in a graph adjacency list, the adjacency lists of all vertices are stored. The size of 

vertex v's adjacency list is equal to its degree . 

D. Special Graph super node and sub-nodes 

 

Figure 5 Special Graph Super Node and Sub-Node 
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E. Adjacency Matrix 

Let VG= {v1… vn} be ordered. The adjacency matrix of G is the n × n matrix M 

with entries Mij = 1 or Mij = 0 according to whether vivj ∈ G or vivj ∉ G. 

 For instance, the graph in Figure 6 has an adjacency matrix in Table 1. Notice 

that the adjacency matrix is always symmetric (with respect to its diagonal consisting of 

zeroes). 

 

 

 

 

 

A graph has usually many different adjacency matrices, one for each ordering 

of its set VG of vertices. The above result is obvious from the definitions. 

In our case we can represent the courses sections as nodes and the adjacency 

matrix entries is 1 if two sections can be registered together without time conflict, else it 

is 0 if there any time conflict between the two sections. 

F. Sub graphs 

A graph H is a sub graph of a graph G, denoted by H⊆G, if VH⊆VG and 

EH⊆EG.  

 a b c d 

a 0 1 1 1 

b 1 0 0 0 

c 1 0 0 1 

d 1 0 1 0 

Table 1 Adjacency Matrix of Graph G 

c 

a 

d 

b 

Figure 6 Graph G 
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G. Complete Sub graph (clique) 

A Complete Sub graph (clique), C in an undirected graph G = (V, E) is a subset 

of the vertices, C ⊆ V, such that every two distinct vertices are adjacent Chachra, Vinod 

et al, (1979). This is equivalent to the condition that the sub graph of G induced 

by C is complete. 

 Maximum Clique 

A maximum clique is a clique of the largest possible size in a given graph. 

Figure 9 present an example of a maximum clique. 

 

Figure 9 Maximum Clique 

c 

a 

d 

b 

c 

a 

d 

 

Figure 8 Graph G Figure 7 Sub-Graph of G 
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 Maximal Clique 

A maximal clique is a clique that cannot be extended by including one more 

adjacent vertex. Figure 10 shows an example of this clique. 

 

Figure 10 Maximal Cliques 

H. Degrees of vertices 

Let v ∈ G be a vertex in a graph G. The neighborhood of v is the set NG(v) = 

{u∈G | vu∈G} . The degree of v is the number of its neighbors or the number of edges 

that come out from a vertex: (v) = |NG(v)| . If dG(v) = 0, then v is said to be isolated in 

G, and if dG(v) = 1, then v is a leaf of the graph. The minimum degree and the 

maximum degree of G are defined as min {dG(v) | v∈G} and max {dG(v) | v∈G}. 
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CHAPTER III 

LITERATURE REVIEW 
 

Timetabling in educational systems is a broad research topic with a very strong 

relation to graph theory which plays a major role in timetabling problems Schroeder, 

Roger, (1973). The construction of timetabling is one of the main research area that 

management science addresses in educational systems which has three main categories: 

University Courses Timetabling, Exam Timetabling, and Student Sectioning White, 

Gregory, (1987). A significant amount of research effort has developed powerful 

methods that utilize graph theory to solve the problem regarding University Course 

Timetabling and Exam Timetabling. However, the Students Sectioning problem has 

received the least attention, since it is regarded as a sub problem of timetabling. 

 Wren, Anthony, (1995) defines: "Timetabling is the allocation, subject to 

constraints, of given resources to objects being placed in space time, in such way as to 

satisfy as nearly as possible a set of desirable objectives." 

A. University Course Timetabling  

University Course Timetabling problem is the process of assigning course’s 

lectures to time slots, rooms, teachers and other resources, subject to multiple 

constraints. The large scale of universities usually makes solving such problem so 

complicated that it is solved by many experts from different faculties and departments 

coming from all over the university. Because of the complexity of this problem, it is 

common for the universities to use the previous year solution when solving the problem. 
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University Course Timetabling has two major approach to solve it: Post Enrolment 

Course Timetabling and Curriculum-based Course Timetabling. The former utilizes the 

student enrollment data for each student to determine the course timetable in such a way 

that allows all student to attend all their registered courses without time clashes Lewis, 

Rhydian et al, (2007). 

The second approach is the Curriculum-based Timetabling that assign courses 

lectures to time slots based on curriculum which states that a combination of courses are 

required to satisfy a degree in a given major. This approach constructs the weekly 

classes’ timetable where conflict between courses are based on the curriculum approved 

by the educational institute Di Gaspero, (2007) Carter, Michael, (2000).  

University course timetabling is subject to multiple constraints that are 

categorized in two main types: hard constraints and soft constraints. A list of some of 

the most common constraints is: 

Hard constraints:  

1) No student or teacher can be in two different places at the same time. 

2) Only one class can occupy a room in any time slot. 

3) Any room must satisfy all class requirements. 

Soft constraints: 

1) The preferences of time. 

2) The preferences of room. 

3) Students schedule compactness. 
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Many works uses a two steps method to solve the University course 

timetabling. The first step for creating the timetable and the second step is to improve 

the constructed timetable. Azlan, et al, (2013) the focus was on the first step to produce 

a good initial solution to start from, and the initial solutions were generated by 

implementing graph coloring heuristic to the Curriculum-based course timetabling 

problem. 

B. Exam Timetabling  

Exam Timetabling is the process of assigning a number of exams to a limited 

number of time slots, where each course has one event represented by the exam. The 

main goal of the exam timetabling is to avoid conflict in each student's exam timetable 

and to make sure that each student has enough time to prepare for each exam Schaerf, 

Andrea, (1999) Qu, R. Burke, (2009). Although, there are many similarity between 

university course timetabling and exam timetabling, but the main difference between the 

two is that university course timetabling aim to generate a compact schedule, whereas 

exam timetabling tend to provide more spread timetable to allow students to have 

sufficient time to prepare for the exam. Also, there is only one exam per course, and it is 

possible to have more than one exam in a single room. Following are some of the 

common constraints used in Exam Timetabling: 

Hard constraints: 

1) No student or teacher can be in two different places at the same time. 

2) There must be enough room capacity for each examination period. 

Soft constraints: 
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1) Spreading examination period for student examination schedule. 

2) The preferences of time (early, late...). 

3) Consecutive exams for any student to be minimum (Back to Back). 

4) Dividing the exam on multiple rooms.  

Many research utilize graph based methods to address the exam timetabling 

problem. Rahman, Syariza Abdul, (2014). Two graph coloring heuristics with an 

adaptive linear combination of heuristics for solving exam timetabling problems. 

C. Student Sectioning  

Student sectioning is the process of assigning students to sections Feldman, 

Ronen et al, (1989). In the previous timetabling problems we can see that we are 

assigning lectures or exam to a time slot, whereas in the problem of student sectioning 

we assign students to sections. A section is a course instance i.e. a copy of the same 

course but each section of a given course has its own room, teacher, and time. Student 

sectioning problem respects the individual student’s preferences while assigning 

students to course sections Kingston, Jeffrey, (2013). A list of the common student 

sectioning constraints are: 

Hard constraints: 

1) No student can attend two courses having a time conflict. 

2) Each section has limitation on size. 

Soft constraints: 

1) Keeping the number of course section minimum. 
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2) Balancing course sections. 

Most of the research studies concerning student sectioning address this 

problem as sub-problem of University courses timetabling and not a dedicated problem. 

Many technique were used to overcome this problem Carter, Michael, (2000) Carter 

describes a demand driven timetabling in which student preference of courses are used 

to construct a timetabling which satisfies as many student preferences as possible.  

Sönmez, Tayfun et al, (2010) Introduce a bidding system where students make 

bids on the courses they want to register in. Based on the bids created by the students a 

class is assigned to room that has the enough capacity to hold the students requesting to 

register in a given course. 

Müller, et al, (2010) solve the student sectioning problem as part of university 

timetable by applying it in two phases the first is during the constructing of the 

university course timetabling, and the second is after the university course timetabling is 

created. 

Feldman and Golumbic (1990) introduce priorities on constraints in the student 

sectioning problem indicating which schedules are preferred over others by the student. 

A number of algorithms are then presented for finding the best schedule minimizing 

violation of student priorities. Sampson and Weiss (1995) furthered the idea of 

accommodating student preferences in both the timetabling and sectioning problems by 

introducing a heuristic approach based on each student's priority ordering of the courses 

and sections they wished to enroll in. 

As mentioned above we notice that student preferences has the least attention, 

and it’s not addressed as specific problem by itself. Even though, students are the 
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largest in number in any educational institute. Also any of the previous solutions require 

significant modification, or changing the current university course timetabling solution 

completely to take into consideration the student preferences.  

In this thesis, we utilize graph theory concepts to represent university courses 

and course’s sections as a special graph, which enable us to provide an add-on to any 

current university course timetabling solution to take into account student’s preferences 

and help them in easing the process of registering their desired courses without the 

hassle of constructing their personal course schedule every semester. 
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CHAPTER II. 

METHODOLOGY  
 

In order to solve the student personal course schedule problem, a student needs 

to identify the desired courses first then to check each course sections for conflict while 

trying to take into account their personal preferences while keeping a conflict free 

schedule all that in a manual fashion. 

This kind of schedule problem revolves about allocation of resources in an 

effective way for the student. 

Graph theory techniques were used in generating all the possible options for a 

student. A special graph was constructed which consists of special vertices (referred to 

as super nodes) that represent the courses offered by the university (see chapter 1). Each 

super node has sub-nodes representing sections of the class. The connectivity is defined 

among sub nodes if two sub nodes are connected by an edge (they have no time 

conflict). Sub-nodes (sections) that have no time conflict can be taken by the student. 

This graph theory methodology allows generating all possible schedules for a student 

accounting for various constraints. 

Because the student personal course schedule problem constraints analysis is 

very important in solving this problem. During the requirements analysis several 

constraints were identified. After analyzing those constraints, it was divided into two 

groups according to the effect of those constraints to the final possible solutions. 

Violating of some constraints will affect the solution directly and violating of some 
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other constraints will be affecting the quality of the possible solutions (based on 

student’s preferences). 

Similar to other studies which were carried out to solve scheduling problem, 

the two groups of constraints were named as hard constraints and soft constraints. Hard 

constraints are the constraints, which must be satisfied to get feasible solution for use in 

practice and soft constraints are used to evaluate the quality of the solution. So soft 

constraints are not compulsory but are desired to be satisfied as much as possible. 

The main objective is to find a conflict-free timetable for each student. Some 

students are considered part-time students because they can only attend classes in the 

morning or only in the afternoon, mainly due to work commitments. In this case, there 

is a virtual course constructed to prevent selecting classes in non-available periods. The 

rest of the students are full-time. As most of them would like to attend classes in the 

morning so a virtual course can be assigned to the afternoon periods to prevent selecting 

classes in the non-preferred periods. 

For any student we know the course offerings provided by the university, and 

we want to build a set of section assignments producing the best possible personal 

schedules, according to the constraints chosen by the student. 

The construction of the available set of personal schedule for any student may 

be described as follows: 

1. Building a non-directed special graph G = (V, E) which consists 

of special vertices V (referred to as super nodes) that represent the courses 

offered by the university. Each super node has sub-nodes representing sections 

of the class. The connectivity E is defined among sub nodes. Two sub nodes are 
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connected by an edge if they have no time conflict. Sub-nodes (sections) that 

have no time conflict can be taken by the student. The preferences of the student 

can be considered when building their graph G by including virtual courses as 

super nodes to prevent having schedule with these non-preferred periods. 

2. Using the algorithm of Bron and Kerbosh (1973) to enumerative over the 

student special graph to generate independent sets (schedules) from graph G. 

These sets (schedules) are feasible. Section assigned to a schedule where at most 

one section (sub-node) of each course (super-node) with no time conflicts 

between sections. The original algorithm is modified to look only for maximum 

degree of complete and independent schedule, that is, sets containing exactly 

one section of each course. In the enumerative process store at each time only 

those sets of the maximum degree obtained so far. 

3. At the end of Step 2 we have a set of solutions that contains all 

the possible personal schedule for a given student. 

 

…  
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A. The Algorithm 

 The Bron–Kerbosch Algorithm 

The Bron–Kerbosch algorithm (1973) is a widely used algorithm for finding all 

maximal cliques in a graph. It is a recursive backtracking algorithm which is easy to 

understand, and has been shown to work well in practice. A recursive call to the Bron–

Kerbosch algorithm provides three disjoint sets of vertices R, P, and X as arguments, 

where R is a (possibly non-maximal) clique and P∪X = N(R) are the vertices that are 

adjacent to every vertex in R. The vertices in P will be considered for inclusion in clique 

R, while those in X must be excluded from the clique; thus, within the recursive call, the 

algorithm lists all cliques in P∪R that are maximal within the sub-graph induced by 

P∪R∪X. The algorithm chooses a candidate v in P to add to the clique R, and makes a 

recursive call in which v has been moved from R to P; in this recursive call, it restricts X 

to the neighbors of v, since non-neighbors cannot affect the maximality of the resulting 

cliques.  

When the recursive call returns, v is moved to X to eliminate redundant work 

by further calls to the algorithm. When the recursion reaches a level at which P and X 

are empty, R is a maximal clique and is reported. To list all maximal cliques in the 

graph, this recursive algorithm is called with P equal to the set of all vertices in the 

graph and with R and X empty. The algorithm is presented next. 

Algorithm 1: Bron-Kerbosch algorithm 

BronKerbosch(P, R, X) 

1: if P∪X = /0 then 

2: report R as a maximal clique 
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3: end if 

4: for each vertex v ∈ P do 

5: BronKerbosch(P∩ N(v), R∪ {v}, X ∩ N(v)) 

6: P ← P\ {v} 

7: X ← X ∪ {v} 

8: end for 
 

On the first call R and X are set to ∅, and P contains all the vertexes the graph. 

R is the temporary result, P the set of the possible candidates and X the excluded set. 

N(v) indicates the neighbors of the vertex v.  

The algorithm can be described as following: Pick a vertex v from P to expand. 

Add v to R and remove its non-neighbors from P and X. Then pick another vertex from 

the new P set and repeat the process. Continue until P is empty. Once P is empty, if X is 

empty then report the content of R as a new maximal clique (if it is not then R contains a 

subset of an already found clique). Now backtrack to the last vertex picked and restore 

P,R and X as they were before the choice, remove the vertex from P and add it to X, 

then expand the next vertex. If there are no more verses in P then backtrack to the 

superior level. 

 Modification of Bron-Kerbosch Algorithm 

This modified version of Bron-Kerbosch algorithm is more efficient since it 

help reduce the number of recursive calls made hence having less time to generate all 

maximal cliques in a given undirected graph G (E, V). In this approach the algorithm 

will use the nodes which have a degree of at least (k-1) and k is the desired number of 

vertices in any maximal clique found. And this happen when the algorithm iterate over 
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the only the set of vertices in set P which have a degree of at least (k-1), and will be 

removed from set P if any node has a degree less than (k-1). 

Using this modified version of the Bron-Kerbosch algorithm we can set the 

number of the desired degree of each vertex and traverse over the vertices that will most 

likely will be in a maximal clique. 

The modified algorithm can be described as following: Pick a vertex v that has 

a degree at least (k-1) from P to expand else remove this vertex from P and continue the 

loop. Add v to R and remove its non-neighbors from P and X. Then pick another vertex 

from the new P set but that only has a degree at least equal to (k-1) else remove this 

vertex from the new P and repeat the process. Continue until P is empty. Once P is 

empty, if X is empty then report the content of R as a new maximal clique (if it’s not 

then R contains a subset of an already found clique). Now backtrack to the last vertex 

picked and restore P,R and X as they were before the choice, remove the vertex from P 

and add it to X, then expand the next vertex. If there are no more vertexes in P then 

backtrack to the superior level. The modified algorithm is presented next. 

Algorithm 2: Modified Bron-Kerbosch algorithm 

MBronKerbosch(P, R, X) 

1: if P∪X = /0 then 

2: report R as a maximal clique 

3: end if 

4: for each vertex v ∈ P do 

5: if v’s degree ≥ k-1 then 

6: MBronKerbosch(P∩ N(v), R∪ {v}, X ∩ N(v)) 

7: P ← P\ {v} 

8: X ← X ∪ {v} 
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9: else  

10: P ← P\ {v} 

11: end if 

12: end for 

 

 Modified Version Efficiency Demonstration 

Our modification of the Bron-Kerbosch algorithm has helped us reduce the 

time complexity required to find all maximal cliques in a given undirected graph G(E,V) 

by reducing the recursive calls needed to find all maximal cliques. In the following 

example we illustrate how the modified version minimize the required recursive calls 

compared to the original Bron-Kerbosch algorithm. 

In this example we have a simple undirected graph G (E, V) that consist of four 

nodes {1, 2, 3, 4}. 

 

Figure 11 Undirected Graph G (E, V) 

First we will show the recursive calls made using the original Bron-Kerbosch 

algorithm that will call from now on Algorithm 1, after that we will present our 

modified version of Bron-Kerbosch algorithm and we will refer to it as Algorithm 2. 
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a. Algorithm 1 Bron-Kerbosch Recursive Calls 

• Start with  

• R = {}, P = {1, 2, 3, 4}, X = {} 

• BK ({}, {1,2,3,4}, {}) 

• v = {1} 

• BK ({1}, {2,3}, {}) 

• v = {2} 

• BK ({1,2}, {3}, {}) 

• v = {3} 

• BK ({1,2,3}, {}, {}) 

• Maximal Clique Found {1,2,3} 

• v = {3} 

• BK ({1,3}, {}, {2}) 

• Duplicate 

• v = {2} 

• BK ({2}, {3,4}, {1}) 

• v = {3} 

• BK ({2,3}, {}, {1}) 

• Duplicate 

• v = {4} 

• BK ({2,4}, {}, {}) 

• Maximal Clique Found {2,4} 

• v = {3} 
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• BK ({3}, {}, {1,2}) 

• Duplicate 

• v = {4} 

• BK ({4}, {}, {2}) 

• Duplicate 

 

By observing the number of the recursive calls made by Algorithm 1 indicated 

by the underlined BK() calls we can see that for such small graph the Algorithm 1 is 

making 10 recursive calls to find two maximal cliques the first is clique {1,2,3} and the 

second is clique {2,4}. 

b. Algorithm 2 Modified Bron-Kerbosch Recursive Calls 

First we set the desired degree value which for this example will be (k = 3). 

• Start with  

• R = {}, P = {1, 2, 3, 4}, X = {} 

• BK ({}, {1,2,3,4}, {}) 

• v = {1} 

• BK ({1}, {2,3}, {}) 

• v = {2} 

• BK ({1,2}, {3}, {}) 

• v = {3} 

• BK ({1,2,3}, {}, {}) 

• Maximal Clique Found {1,2,3} 

• v = {3} 
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• BK ({1,3}, {}, {2}) 

• Duplicate 

• v = {2} 

• BK ({2}, {3,4}, {1}) 

• v = {3} 

• BK ({2,3}, {}, {1}) 

• Duplicate 

• v = {3} 

• BK ({3}, {}, {1,2}) 

• Duplicate 

 

By setting k equal to 3, we can see that the number of the recursive calls made 

by Algorithm 2 indicated by the underlined BK() calls using the same graph used by 

Algorithm 1 the Algorithm 2 is making 8 recursive calls to find one maximal cliques 

that is clique {1,2,3}. That is less recursive calls and therefore less complexity time. 

Applying this algorithm on a larger undirected graph will have huge complexity 

reduction compared to Algorithm 1. 

 Applying Modified Bron-Kerbosch Algorithm on Student Course Schedule 

Finding all maximal Cliques of size K (all complete sub graphs) in an 

undirected graph using the algorithm 457 by Bron and Kerbosch (1973). Using graph 

theory concepts to represent the selected courses as graph where the courses are its 

vertices and the availability to register two courses without conflict is the edge between 

these two vertices. The availability of two course to be registered in the same schedule 
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can be represented using the adjacency matrix. In this case the adjacency matrix will 

denote the adjacent courses sections i.e. two courses sections are adjacent if the two 

courses (nodes of the graph) are connected. In other words, both courses sections can be 

registered without time conflict in the same schedule. 

Then, finding all possible courses schedules by detecting all complete sub-

graphs ("cliques") of size k Bron, and Kerbosch, (1973) from the original graph as 

shown in Figure 1. 

 

 

Figure 12 Sub-graphs (cliques) example 

In the Figure 12 example we can see three complete sub-graphs (cliques) 

colored as (red {a1, b1, c1}, green {a2, b2, c2}, and blue {a1, b2, c3}) where each of 

the sub-graph is of size k (k=3 in this example). 
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In order to find the best student personal courses schedule for a given set of 

courses. The method has to list all K-size sub-graph (K-clique), where every complete 

sub-graph (clique) has two properties that every two vertices in a sub-graph is 

connected (adjacent), and number of vertices in the sub-graph is equal to K. 

B. Super Graph 

A super graph G consists of a collection (V) of vertices super node where each 

have one or more sub-nodes (v) and a collection edges E, for which we write G =(V, E). 

Each edge e ∈ E is said to join two vertices, which are called its end points. If e joins vi, 

vj ∈ V, we write e = (vi, vj). Vertex (sub-node) vi and vj in this case are said to be 

adjacent. 

Example of super graph as shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

A 

 

A1 A2 

B 

 

B2 B1 

Sub-graph 1 

Sub-graph 2

Sub-graph 3 

 

 
C1 C3 

C2 

C

Figure 13 Super Graph
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 Super Node 

A super node is the vertices in super graph that contain at least one or more 

sub-node. From the example above we have three super node {A, B, and C}. 

 Sub-Node 

A sub-node is a vertices contained in a super node of a super graph. From the 

above example we have two sub-nodes is super node A that are {A1, A2}, likewise in 

super node B we have two sub-nodes {B1, B2}, and in super node C we have three sub-

nodes {C1, C2, and C3}. 

 Connections in Super Graph 

Two super node V1, V2 with sub-nodes vi ∈ V1, vj ∈ V2 are said to be connected 

if there are at least one connection between their sub-nodes (vi, vj) we write e = (vi, vj). 

 Types of Node’s Degrees    

 Degree of super node: the number of edges coming out of a super node. 

 Degree of sub-node: the number of edges coming out of a sub-node. 

 Degree of sub-node with other super nodes: the number of edges connecting a 

sub-node to other super nodes. The value range between zero and the number of 

sub-nodes in the connected super node where zero means no connecting between 

the sub-node and the super node. 

The relations between different types of degrees are as follows. 
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Degree of super node  =    -   
 ∈   

For example, in Figure 13 we have: 

Degree of super node =    -   
-   

Degree of super node =    -  1 +   -  2 

Degree of super node =  4 + 2 = 6 

C. Super Graph Adjacency Matrix 

Super Graph Adjacency Matrix: Let VG = {v1… vn} be graph. The adjacency 

matrix of Super Graph G is the n × k matrix where k number of all super nodes and n 

number of all sup-nodes in all super nodes M with entries with entries Mij = Degree of 

sub-node with other super nodes or Mij = (-) i.e. (undefined).. 

For instance, the Super Graph below has a Super Graph Adjacency matrix next 

to it. 
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Super 
Node 

Sub-
node 

A B C D Degree of sub-
node 

Degree of Super 
node 

A 
A1 - 2 1 1 4 

5 
A2 - 1 0 0 1 

B 
B1 1 - 0 0 1 

5 
B2 2 - 1 1 4 

C 
C1 1 1 - 1 3 

3 
C2 0 0 - 0 0 

D D1 1 1 1 - 3 3 
Table 2 Super Graph Adjacency Matrix of Super Graph G 

 

From the above example we have k = 4 (k number of all super nodes {A, B, C, 

D}) and n = 7 (n number of all sup-nodes in all super nodes {A1, A2, B1, B2, C1, C2, 

D1}). 

A Super Graph G has many different adjacency matrices, one for its sub-nodes 

vertices which is called (sub-nodes adjacency matrix), and another for the adjacency 

between sub-nodes and super nodes that is (Super Graph Adjacency Matrix). 

B2 B1 B 

A2 A1 A 

D1 D 

C2 C1 C 

Figure 14 Super Graph G
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The difference between the two adjacency matrixes is that the (Super Graph 

Adjacency Matrix) can reduce the preprocessing time needed be reducing the number of 

sub-nodes that will go into the (sub-nodes adjacency matrix). 

For that we need to define a new type of sub-node degree the (degree of sub-

node with other super nodes). By finding the (degree of sub-nodes with other super 

nodes) we can remove the sub-nodes with the degree of zero from the (sub-nodes 

adjacency matrix) which in turn reduces the dimensions of the sub-node adjacency 

matrix resulting in less processing time for finding solutions.   

 Advantage of Using Super Graph Adjacency Matrix 

The previous example will act as the explaining vehicle to illustrate the benefit 

of using the super graph adjacency matrix. 

The sub-node adjacency matrix for the above example can be constructed as  

n × n matrix where (n number of all sup-nodes in all super nodes) M with entries Mij = 

1, Mij = 0 or Mij = (-) i.e. (undefined) according to whether vivj∈ Super Graph G or 

vivj∉G. 

 A1 A2 B1 B2 C1 C2 D1 
A1 - - 1 1 1 0 1 
A2 - - 0 1 0 0 0 
B1 1 0 - - 0 0 0 
B2 1 1 - - 1 0 1 
C1 1 0 0 1 - - 1 
C2 0 0 0 0 - - 0 
D1 1 0 0 1 1 0 - 

Table 3 Sub-Node Adjacency Matrix 

Now using the previous Super Graph Adjacency matrix we can exclude the 

sub-nodes with one or more zero occurrence in there degree with other super nodes. 
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From the super graph adjacency matrix we find that the following sub-nodes should be 

deleted from the sub-node adjacency matrix which are {A2, B1, and C2} because all of 

them has at least one zero degree in their super graph adjacency matrix. 

The resulted sub-node adjacency matrix will be as follow: 

 A1 B2 C1 D1 
A1 - 1 1 1 
B2 1 - 1 1 
C1 1 1 - 1 
D1 1 1 1 - 

Table 4 Reduced Sub-Node Adjacency Matrix 

The new sub-node adjacency matrix has reduced in dimension which reduce 

the search time required to find all the solutions.  
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CHAPTER IV 

RESULTS 
 

We applied our algorithm on the course offerings data provided form (AUB). 

Using the super graph and the super node adjacency matrix concepts we have developed 

a web based application that can be used by students or teachers to generate personal 

courses schedules tailored to their preferences. Also this application can be integrated 

with any web based student information system in most university very easily. 

The data that was used in the test phase was a real course offering data 

provided by the registrar office in AUB.  

A. Modified Vs Original Versions of Bron-Kerbosch Algorithm 

Due to the relatively small number of selected courses (between 4-8 courses). 

And the increasing performance of today’s computational power. We cannot see a huge 

difference between the modified and the original versions of Bron-Kerbosch algorithm. 

Although, we did a comparison that shows an enhancement in performance for the 

modified version over the original version of Bron-Kerbosch algorithm. 

We have compared our modified version against the original one using the 

time required to generate all maximal cliques given the same date set. Although the 

difference is very small, but the modified version shows an enhancement over the 

original version of Bron-Kerbosch algorithm. 

For example, we have tested the required time for generating all possible 

schedule given the same number of courses to both versions of the Bron-Kerbosch 
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algorithm and we recorded the needed time which was in millisecond (ms) in the 

following table we show the result of the performance comparison while processing 2, 

3, 4, 5, 6, 7 courses. Then we show the process time for each type of algorithm. 

Number of 
Courses 

Original Algorithm 
Time (ms)

Modified Algorithm 
Time (ms) Number of Solutions 

2 194 185 4

3 229 216 8

4 357 346 25

5 368 358 48

6 574 521 72

7 596 552 24
Table 5 Modified vs Original version of Bron-Kerbosch Algorithm 

Figure 15 shows the results graphically. In Figure 15 we notice that both 

algorithms have a small difference when the number of input courses is small, when the 

number of courses used as input increases we can see the difference is increasing. 

 

Figure 15 Modified vs Original version of Bron-Kerbosch Algorithm 
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B. Test Data 

We have used real courses offerings data that was provided by the registrar 

office in AUB to guarantee the effectiveness of the proposed method and the speed of 

the algorithm in face of a huge real data. 

 Course Offerings Data 

The provided test data was exported as an Excel file that contains 2515 record 

of course offerings that has the following columns: 

 Course CRN which is a unique combination of characters and numbers 

that identifies a particular course and section offered for the term. 

 Beginning Time (BT) which is the class start time of the course section 

that has a specific CRN.  

 End Time (ET) which is the class end time of the course section that 

has a specific CRN. 

 Week days which are the days that the class of the course section is 

giving on each week throughout the semester. 

A sample of the course offerings data is showing in Table 6: 
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Table 6 Course Offerings Data Sample 

 Validation Data 

The test data provided from AUB has also a validation data sample of about 

100 case of real student course schedules without providing any personal information 

and after changing the student ID to different combination of numbers to keep the 

student identity anonymous. 

The structure of the validation data excel file is as follow: 

 ID which is the encrypted student ID for student identity protection. 

 Course which is the CRN of the class of the course section that the 

student is registered in a given semester. 
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A sample of the validation data is shown in Table 7: 

 

Table 7 Validation Data Sample 

C. Hard Constraints 

In the proposed method for generating courses schedules, the course schedule 

needs to meet some constraints in order to be a possible solution for a user inquiry. 

Meeting these constraints result in a schedules where can be used in real world. These 

type of constraints guarantee a safe logic of the output of the proposed method. The 

hard constraints that are followed in our method are: 

 No student can attend two courses having a time conflict 

 Each section has a limitation on size 

 No student can attend two sections of the same course 
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D. User Constraints (Soft Constraints) 

The main advantage of our proposed method is providing user (student, 

teacher) the ability of finding the best course schedule that best fit their preferences. Our 

proposed method try to do that by creating virtual courses that have all the student 

preferences then trying to find the schedules that meet these choices. 

 Virtual Course 

A virtual course is a constraint where user can set to reflect its preferences on 

the final result schedules. When a user prefer to put a constraints on something like day 

for instance we make a temporary class section which has the user preferences of the 

day and time and we add it to the pool of selected courses and then the algorithm would 

not generate any schedule that has any conflict between the real courses and the virtual 

ones which result in a conflict free schedules while meeting the user desired preferences 

at the same time. 

Finally, all the virtual courses that are set by the user after generating the set of 

possible schedule will be removed i.e. these constraints (virtual courses) are user based. 

a. Virtual Course Structure 

Each virtual course must have the following items in it that must be set in order 

to be a valid virtual course: 

 Virtual course name: it act as an identification ID for user to distinguish 

virtual courses if there are multiple ones. 

 Virtual course days: it is the days of the week that this instance of 

virtual course will be held or active.  
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 Virtual course time: it is the time of the day in which the virtual course 

instance will be active. 

An example for the virtual course is presented in Figure 16: 

 

Figure 16 Virtual Course Structure 

 Examples on Method Validity 

a. Example 1 

From the validation data in Table 7. We have used the registered courses by 

student number 2857 the registered courses are {ENHL 300 1, EPHD 300 2, EPHD 310 

2, PBHL 310 2}. We only need the CRN without the section number which is the last 

number in the CRN. To validate the proposed method the results should contain one 

schedule that matched the schedule of student number 2857. 
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After selecting the desired courses in the Search Course screen we generate the 

result schedules and we have 18 possible solutions where the schedule number 4 is the 

same as student number 2857 schedule shown in the following screenshot. 

 

Figure 17 Example 1 Schedule 

 

b. Example 2 

From validation data in Table 7. We have used the registered courses by 

student number 2683 the registered courses are {HMPD 251 2, EPHD 300 2, HPCH 

310 2, HMPD 300 2}. To validate the proposed method the results should contain one 

schedule that matched the schedule of student number 2683. 

After selecting the desired courses in the Search Course screen we generate the 

result schedules and we have 8 possible solutions where the schedule number 8 is the 

same as student number 2683 schedule shown in the following screenshot. 
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Figure 18 Example 2 Schedule 

 

c. Example 3 

From validation data in Table 7. We have used the registered courses by 

student number 2279 the registered courses are {EPHD 300 1, HPCH 310 1, HPCH 315 

1, HMPD 300 2, PBHL 310 3}. To validate the proposed method the results should 

contain one schedule that matched the schedule of student number 2279. 

After selecting the desired courses in the Search Course screen we generate the 

result schedules and we have 48 possible solutions where the schedule number 6 is the 

same as student number 2279 schedule shown in the following screenshot. 
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Figure 19 Example 3 Schedule 
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CHAPTER V 

CONCLUSION & FUTURE WORK 
 

A. Conclusion 

In this work a practical, real-word problem of student personal schedule has 

been addressed. Most of the students in each university manually go through hard time 

preparing their personal course schedule every semester. Instead of wasting time in 

creating the course schedule, students can spend more time and effort on something 

else. Solving the student personal schedule problem the hard constraints were not the 

only constraints considered. All soft constraints were also considered. Results therefore 

shows a feasible solution to the problem that can be used in real life.  

B. Future Work 

 Addressing the issue of having consecutive courses in the resulted schedules as a 

soft constraint. 

 Enable the student of defining number of courses per day in the generated 

schedules. 

 Integrating our application with existing student management systems like the 

Banner in AUB. 

 Enable the student to register the selected schedule automatically to save time. 
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 Enhancing the algorithm so it provides the first n-feasible solutions only without 

traversing over all solutions to save time if a student prefers. 

  



46 
 

CHAPTER VI 

APPENDIXE 
 

A. Application Usage Steps 

 Step 1 Application Dashboard 

In Figure 20 a student can choose to search for courses (Search Courses) or to 

edit already build schedules (Build Schedule). 

 

Figure 20 Application Dashboard 

 Step 2 Application Search Screen (Subject Selection) 

In Figure 21 a student can choose the required course subject or the course 

department. 
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Figure 21 Application Search Screen (Subject Selection) 

 Step 3 Application Search Screen (Courses Selection) 

In Figure 22 a student can select any course of the previously subject. 

 

Figure 22 Application Search Screen (Course Selection) 
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 Step 4 Application Search Screen (Adding Selected Course) 

In Figure 23 a student can add the previously selected course to its set of 

selected courses. 

 

Figure 23 Application Search Screen (Adding Selected Course) 

 Step 5 Application Search Screen (Virtual Course) 

In Figure 24 a student can (optionally) create his preferences as a virtual course 

where he need to input a name, beginning time, end time, and days for the desired 

virtual course. In Figure 25 we can see a created virtual course named (work morning) 

with beginning time (09:00 AM) and end time (11:00 AM), and days (Su, Tu, Th). 
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Figure 24 Application Search Screen (Creating Virtual Course) 

 

 

Figure 25 Application Search Screen (Adding Virtual Course) 
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 Step 6 Application Result Screen 

In Figure 26 a student can choose one of the alternative schedules to register 

in. For example, in Figure 26 we see 9 possible schedules that a student can choose 

from. 

 

Figure 26 Application Result Screen 
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