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An Abstract of the Thesis of

Georges Antoine Chahine for Master of Engineering
Major: Mechanical Engineering

Title: Object Detection Constrained by Ontological Priors

The problem of object detection in Computer Vision is a difficult and
interesting problem which is far from being solved due in no small part to the
challenges of perception. Nevertheless, by introducing top-down priors such as
semantics, the problem of segmenting and detecting objects becomes traceable.
This paper proposes such an approach by relying on the ontological relationships
that make up parts of objects in order to enhance their detection.

The proposed method processes the point cloud of a scene and clusters
it into pools of potential objects. Hypotheses on the object identity is generated
using geometric and customized ontological definitions to generate probabilistic
models that would constitute the building blocks for the decision making process.
An object labeling scheme derived by minimizing an energy function is presented.
Finally, objects are replaced by matching them to generic CAD models.

To evaluate the proposed method, we run our experiments on three well-
known datasets and compare with results in the literature. Results show superi-
ority to the prior art in terms of both recall and precision.
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Chapter 1

Introduction

Scene understanding is an active field of research, spanning several chal-
lenging topics in computer vision, from segmentation, to object detection, and ob-
ject recognition. The central challenge facing these problem is that of perception,
where a scene may lend itself to different interpretations. Recent developments in
machine learning algorithms [3] showed good results; however, the methods require
enormous numbers of training samples and are found to be vulnerable to changes
in aspect ratio and occlusions.[4].

Alternatively, by taking advantage of top-down information, such as match-
ing to CAD models [5], the solution space for segmentation, detection, and recog-
nition becomes more constrained; thereby yielding systems that are more reliable
and more consistent. The use of ontology [6], has recently also seen its fair share
in computer vision, being used to analyze the relationship between different parts
of an object in order to identify the nature of that object. The concept of ontol-
ogy was first suggested by Parmenides in the sixth century BCE [7], whereby any
object can be described by its constituents, the geometric relationships between
them, as well as the interaction of that object with its environment.

In this paper, we make use of this definition to establish geometric and
topological relationships between parts of an object in order to produce strong
priors that help build parts of objects into complete units. Furthermore, the
concept of ontology in computer vision is formalized, for the first time, through
a probabilistic mathematical model. Subsequently, segmentation and detection is



Figure 1.1: The Clearpath Husky robot in our vision and robotics lab equipped
with a monocular camera is used during experimentation. The 2D lasers on the
robot were not used in the experiment.

performed by minimizing an energy (cost) problem. Thereafter, the final map is
generated by replacing detected objects with generic objects. This is done through
matching of point clouds with geometrical constraints, detailed in Chapter 3.

Our proposed system is capable of detecting and localizing objects regard-
less of the environment. The system includes a probabilistic ontological model and
takes as input a point cloud to generate object class for each cluster. Subsequently,
object selection is performed by minimizing an energy function.

To validate our work, experiments were performed on three datasets;
namely, the Furniture Recognition Dataset [5], and two other datasets extracted
from the Cornell-RGBD-Dataset [8] and used by [1]. In our experimental section
we benchmark our results to the prior art using these three datasets.

The innovation presented in this work consists of a probabilistic framework
for object detection using ontology, a scheme to predict the existence of an object
using statistics and machine learning, refined by minimizing a cost function.



The remainder of this thesis is structured as follows. Chapter 3 details the
specifics of our proposed system from the extraction of geometric primitives to the
interpretation of ontological definitions in objects, to the decision making process.
Experiments and results are presented in Chapter 4 and finally we conclude the
thesis in Chapter 5.



Chapter 2

Literature Review

Object detection is an old yet trending topic in Computer Vision. The
reason for that is the ever evolving needs for reliable techniques constantly out-
performed by newer and more reliable innovations. So far never perfected, object
detection has become a multi-disciplinary field attracting engineers and computer
scientists alike, by combining robotic intelligence with evolving algorithms and
technologies.

Being a well established perception problem, object detection has evolved
from simple color thresholding methods to the most recent active perception meth-
ods using semantic labeling and/or ontology [9].

2.1 Thresholding Methods

Thresholding segmentation [10] is the simplest form of image segmenta-
tion. For example, black and white segmentation is performed by directly mea-
suring pixel intensity against a threshold. Other forms of thresholding methods
include color segmentation, entropy segmentation to separate background from
foreground information, and histogram methods by detecting and analyzing data
peaks and curvatures. Smoothness constraints are often applied to improve clus-
tering quality.



2.2 Other Feature Based Methods

Feature Based methods heavily rely on feature extraction methods such
as color extraction or edge detection. The canny edge detector [11] is an example of
feature extraction methods, often conjunctively used with hough line transform to
detect object shape by drawing its contour. Feature extraction methods constitute
the building blocks of several Simultaneous Localization and Mapping (SLAM)
algorithms such as ORB SLAM [12].

Other types of feature extraction methods include SIFT and GIST [13]
descriptors, often labeled as low level segmentation systems, they are widely used
with machine learning algorithms to fill the gap between real world data and
computerized information.

2.3 Machine Learning

Machine learning, at its simplest form, has been used for decades in order
to plan daily life and to try to scientifically predict the future. For instance, facto-
ries monitor consumer behavioral patterns and try to predict demand by learning
and trying to predict future consumer behavior. Linear Regression, extrapola-
tion and other statistical models are all simple forms of computerized prediction
algorithms.

Learning algorithms are roughly divided into three categories: Supervised,
Unsupervised and Reinforcement Learning [15]. The most trivial type of machine
learning is Supervised Learning, whereas a multi-variable classification function is
estimated. The variable are hence estimated by providing samples with known
ground truth. The amount of training data required depends on the minimum
acceptable accuracy therefore, the training phase is often completed on several
steps, with the classifier accuracy being tested after each training step is completed.
This process persists till the classifier reaches satisfactory prediction rates.

Unspervised leaning algorithms are mostly used in clustering methods. An
example of which is the K-means algorithm, taking as input the required number
of clusters and accordingly maps the data into the specified number of pools.



Figure 2.1: Regression, whether linear or not, is a example of learning a trend
from numerous amount of data. [14]

Reinforcement Leaning algorithms is resemblant to Supervised Learning,
with the exception that the training phase is automatic, mostly by trial and error.
The machine is therefore continuously exposed to an environment while learning
from past experiences in a closed loop fashion.

One interesting contribution by Pillai et al. [16] takes advantage of ma-
chine learning while feeding on monocular camera stream to develop a new SLAM-
aware object recognition system. The system takes advantage of different angles
and viewpoints along with a trained classifier in order to achieve an object recog-
nition system that is more reliable than doing so using a frame by frame approach,
the latter leading to more false positives.

2.4 Semantic Labeling and Ontology

Semantic Labeling and Ontology are often discussed im the same context
in field of object detection. Ontology is the easiest concept to understand since
it imitates the human way of thinking. For instance, a table could be identified
by 4 legs holding an horizontal plane: the logic used to identify the table is the
same one used by the human way of thinking, as well as the computerized version
of the same table. Another example is detecting the lower shelf of a three-story
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shelve: A human will identify the lower shelf by verifying the existence of 2 shelves
above the considered shelve. Same goes for the below code in OWL-DL standard,
to detect the lower shelf plane:

Shelf = LowShel f Planeand
(isBelowsome(MiddleShel f Planeand

(isBelowsomeHighShel f Plane)))

Therefore, it is hypothetically sound to say that any object that can be
recognized by humans can also be identified using ontology by following an equiv-
alent strategy to describe the existence of an object. This concept has also been
further pushed into detecting the ontology of an event, otherwise known as domain
ontology [17], an example of which is the automatic detection of a car crossing a
red light using video surveillance footage.

Semantic Labeling [18] is the process of assigning a label to an object by
evaluating the conformity of the object to the label requirement. This is usually
done through a cost optimization process, whereas the goal is to assign to an
object the label that incurs the lowest cost. Smoothness constraints are employed
to ensure homogeneous object labeling through pixels or voxels.

Selvatici et al. [6] [19] used semantic labels for objects with exactly known
identities along with structure from motion techniques in order to reconstruct from
a monocular camera the environment into a map of objects. Similarly, Mason et
al. [7] [20] presented another deterministic semantic approach to mapping; point
clouds are used for both plane fitting and for semantic feature extraction, leading
up to a semantic map at the level of objects. The algorithm is also able to detect
object position change. All these methods introduce interesting innovation but
do not afford uncertainty in their decision making process. The added value of
relying on a probabilistic framework is to account for uncertainties through a
tolerant decision making process, supported by an optimization step where the
resulting object detection is refined. All of this is confirmed through improved
results, as presented in Section III.

More closely related to our method is the recent work of Gnther et al.
[3] [5], where their system offers a method for building semantic object maps of
furniture, it can work on any point cloud and uses CAD models along with the
Iterative Closet Point (ICP) algorithm to build a map of objects. Koppula et al.
[8] [1] specializes in detecting objects in large cluttered rooms also using semantic
labels. Both papers use deterministic ontological methods for which we saw an



opportunity to improve by treating the problem from a probabilistic perspective.

Up so far and to the best of our knowledge, there has been no significant
contribution aimed at detecting objects using probabilistic ontology or similar
approach. We firmly believe that object can be greatly beneficial. For instance,
people with special needs can be guided by robots to an eligible seating place,
detected by the guiding robot. Other possible applications include mapping and
landmark identification, estimation of seating capacity for big rooms or outdoor
venues using an Unmanned Aerial Vehicle and with some code modifications it can
be used for identification of distinct geometrical shapes for military applications.

Salas-Moreno et al. [21] developed a new 3D SLAM algorithm also known
as SLAM++ that uses knowledge of commonly available objects inside an envi-
ronment to produce a map of objects. Similarly to [22], this method is however
limited to the availability of a depth map, usually through a Kinect camera.



Chapter 3

Object Detection System

3.1 Concerning Ontology

Detecting objects of a known nature brings several advantages to the re-
search problem, through the possibility of adding top-down information to the
problem. Object detection, as shown in Fig. 1, is where the hypotheses about the
nature of an object is generated using top-down probabilistic ontological priors
combined with bottom-up extracted geometrical information. Ontology, as previ-
ously introduced, is the systematic study of the existence of an object by analyzing
the parts that form it and the relationships between them. As a simple example
consider a chair made up as a seating area for one person, a back support for the
seated person, and a support for the seating area to the ground (i.e., legs).

Examples of relationships between these parts (as shown in Fig. 2) include
proprioceptive ones such as the adjacency of the seating area to both the back
support and the legs, and the approximately normal angle between the seating
area and these supports. Relationships could also be of an exteroceptive nature
such as the height of the seating area above ground, and the contact of the legs
with the ground plane.

In this paper the proposed system detects objects by relying on such on-
tological relationships, while accounting for measurement inaccuracies and shape



inconsistencies, through a probabilistic model taking as input both point cloud
and ontological constraints, and generating probabilistic inference on the nature
of an object.

3.2 Point Cloud Generation

Different sensors can be used to extract a 3D points cloud from a scene.
Options include LiDARS, Kinect sensors, and stereo cameras. In addition, monoc-
ular cameras can also being used for the same purpose by performing Simultaneous
Localization and Mapping (SLAM), although the resulting maps, which are ob-
tained are to an unknown scale. There are various different flavors of Visual SLAM
implementations, each possessing different advantages and disadvantages in terms
of tracking and point cloud quality [23]. Of the available systems proposed in the
literature, LSD SLAM typically produces the most dense point clouds; for this
advantage it is favorable to segmentation methods applied to point clouds.

Since the maps resulting from monocular SLAM are to an unknown scale,
several options are available to recover this information; for instance, it is typical
to pair the monocular camera with an Inertial Measurement Unit (IMU), or equiv-
alently as in our case, recovering the ego motion of the camera by fusing robot
supported encoder measurements, and use the corresponding differential scaled
motion to correct the map of the SLAM map [24]: X ¢ = kX, , where X, is the
input point cloud, k, the scale inferred from encoder feedback and X,c the scaled
point cloud. ks = D./Ds, and D.,D; represent the distances traveled according to
the encoders and monocular feedback, respectively.

3.3 Filtering, Reconstruction, Clustering and Plane

Segmentation

Filtering is applied early to each point cloud in order to remove noise. This
step includes both de-noising and the removal of far outliers caused by measure-
ment errors. Subsequently, voxelization is performed whereas points are presented
as voxels with a finite volume, in order to reduce point cloud size and significantly
reduce the processing power required in subsequent steps. Meshing through sur-
face reconstruction as well as several graph optimization runs are subsequently

10
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Figure 3.1: System overview.

performed to attain smoother surfaces and reduce scattering through plane fit-
ting, subject to smoothness constraints. Clustering, blobbing or object extraction
is the process of extracting candidate object clusters, which are subsequently an-
alyzed to identify their identity. This is done by grouping neighboring points into
candidate clusters. To end with, Planes are extracted from clustered objects us-
ing the M-estimator Sample Consensus algorithm (MSAC) [25], a variant of the
Random Sample Consensus (RANSAC) [26].

3.4 Probabilistic Framework for Object Detec-
tion

We present the below probabilistic ontological framework for the proposed
system:

Pobj/ont X PobjPont/obj (31)

Where P,y;/0niis the maximized hypotheses probability generated over the
identity of the object, Py /0; is modeled as a product of independent Gaussian
distributions, thereby allowing the expression of the total conditional probability

11
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Figure 3.2: Sample constraints extracted from the ontology of a chair

as a product:

Pont/obj - HPdef (32)

Ppeyis the normal distribution [27] N(u, 0?) inferred from our ontological
definitions:

Here, x is the information extracted from the point cloud such as plane
orientation, the mean and the variance are set according to the ontological priors.
The constituents are therefore presented as follows:

Pdef = PP’I‘POT‘PDSPHe (33)

Pp,..the prior probability relating to the geometrical relationship of a plane
with the surrounding planes in the same cluster including constraints on plane
size. A cluster containing planes of the correct size and forming the correct angles
between them will score higher values for this probability.

Po,, the prior related to a part orientation; for example, in the case of
a chair, it could be the relative orientation between seating area and back sup-
port, set using ergonomic standards [28]. The constraints governing this prior will

12
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Figure 3.3: The combination of top-down information along with information ex-
tracted from the point cloud is fed into a probabilistic decision making process.

usually favor planes with orientations favorable to those of a known object.

Ppe, is the prior related to point cloud density i.e., the existence of a
plane. Even though extremely small clusters are being disregarded at the start,
false positives are recurrently associated with lack of information in the point
cloud. Adding this probability will account for poorly represented clusters in the
probabilistic model.

Py, the probability prior related to part height or position inside the
point cloud; in the case of a chair, it can be set using ergonomic standards [28].
This prior provides qualitative value to the model by constraining one or more
variables related to cluster location, i.e., objects found at a certain altitude from
the Ground or other objects more likely to be found in corners such as in the case
of garbage bins.

P,; is the general existence of an object and is closely related to the choice
of the detected subject for instance, a chair in a given scene or point cloud is
more abundant indoors than outdoors. The below breakdown of F,; into indoors
and outdoors is attributed to the chair example presented in Section III. At a
performance cost, P,,; can be altogether eliminated whenever it is not possible to
estimate the variable (such is the case when the likelihood of finding an object is
equal everywhere) by setting its value equal to 1.

13



Pobj = Pobjﬁin + Pobjﬂout (34)

Developing the above equation yields:

Pobj = ]Dinpobj/in + Poutpobj/out (35)

where P;, and P,,; represent the probabilities of being indoors and out-
doors, respectively. Py /in O Poyj/ou is the general probability of finding a given
object indoors or outdoors, respectively. A valid estimation of the environment
(P;, and P,,;) was achieved using a Support Vector Machine (SVM). The pseudo
code of the implementation is shown in Algorithm 1.

Algorithm 1 Probabilistic Ontology
Input: Point Cloud M
Output: Detected Clusters
: Denoise M
Reconstruct M
Voxelize M
Downsample M
for every point (z,y,z) in M do
Compute Normals
Cluster Nearby Points
Fit Planes using MSAC
end for

10: for every plane i in cluster j do

11: Apply Ontological Constraints Ppey—;
12: Pi_j = PuyjllPpes_;

13: end for

14: for every cluster j do

15: P; = max(P,_;)

16: if p; > threshold then return Cluster
17: end if

18: end for

14



3.5 Energy Function Optimization

As we obtain the hypotheses for object class from probabilistic ontology
(Algorithm 1), we build an energy function given object class and formulate the
energy function E as follows:

E=> Ulsil,z) (3.6)

where the goal is to assign a label I; = [i,[5.l to each cluster ¢;. U
represents both the costs of assigning class s; to cluster ¢; as well as the cost of
assigning label [; to class s;. Using the probabilities generated in (2), we develop
the term U as follows:

U=1-8/(1+e7P)—y/(1+ e Ftd) (3.7)

where [ and « are weights to balance the cost of assigning an object class
to the cost of assigning a label such that 5 4+ v = 1. The first term is directly
inferred from the previous ontological relationships, whereas the second term is
a discriminatory term that penalizes label assignment according to labeling con-
straints. The function f(c;, s;,1;) is modeled as a product of independent Gaussian
distributions taking as input object class and cluster information to measure con-
formity of each label to the assigned cluster:

f(ciu lZ) = Hﬁ::l‘chI‘lem”z (38>

where F; and F,, are Gaussians as shown previously in (4), related to
object color and plane size, respectively. For a given label [;, Fyy;, ), is calculated
for every plane Aj inside the cluster ¢;.

15



3.6 Developing the General Probability Related

to the Existence of an Object

In the previous section we have shown how the breakdown of Py, can help the
system identify an object. In this section, we furthermore explore the possibilities
associated with the variable Fp;.

It is believed that P, can play a bigger role, more like a wild card in the
decision making process. We previously broke F,,; into indoors and outdoors in the
example of a chair. We now present a generalized proposal for indoor estimation
of Py,

Poyj = Popinn, + Povjone + Povinng + o + Popjnng, (3.9)

Pobj = PNlpobj/Nl + PNQPObj/NQ + PN3Pobj/N3 + ...+ PN24Pobj/N24 (310)

Hence we have assumed that the indoor world is divided into twenty-four
categories, enlisted from the MIT places205 dataset in Table 3.1.

Povj /Ny Pobj/Ngs > Povj/no, are estimated using Stratified Sampling.

Py, Py,, ..., Pn,, are estimated using a support vector classifier machine
(CSVM). The latter methodology is furthermore discussed in Chapter 4.

In contrast to dividing the environment into indoors and outdoors, we have
presented a generalized method for the estimation of P,,;. The only disadvantage
presented with this estimation is the effort required to determine, through stratified
sampling, the environments for which the object is mostly to be found: This
implicit step is essential especially if the robot is expected to navigate through
different rooms. The final product of the above equations will directly affect the
cost of assigning a given label to the object. Since the decision making process is
done through cost minimization, the variable Py, will play a discriminatory role
by increasing the cost of having an object in an unfavorable environment.

16



Table 3.1: Type of Environment

Variable | Reference Available Data
Ny Airport Terminal 15100
Ny Auditorium 15100
N3 Cafeteria 5184
Ny Classroom 15100
Ny Conference Room 9154
Ng Corridor 15100
Ny Dining Room 15000
Ng Dorm Room 6202
Ny Food Court 7361
Ny Home Office 13942
N Hotel Room 15100
Ny Kindergarden Classroom | 6395
Nis Kitchen 15100
Niy Kitchenette 15100
Nys Living Room 15100
Nig Lobby 15100
Ny Museum 7919
Nig Music Studio 15100
Nig Office 15120
Nog Reception 7311
Noy Shoe Shop 5184
Ny Staircase 15100
Nos Television Studio 5940
Noy Waiting Roomy 7 5921




3.7 Generic CAD Model Replacement

At this stage, objects along with appropriate labels are identified however,
it would be beneficial to be able to visualize detected objects in a generic form.
Since ontology imitates the human way of thinking, we decided to proceed with
generic CAD models, whereas the purpose here is attempting to imitate human
visual memory. For instance, most people would not remember the exact shape
of objects after visiting a room for the first time, especially color variations and
curvatures. Even-though CAD model replacement has been considered before in
the prior art, it usually consisted of acquiring the exact models of detected objects
by scanning, drawing or contacting the manufacturing company. Overcoming the
challenges of generic model replacement holds therefore an important advantage
in terms of convenience. After reviewing methods used in history, we discuss the
challenges and present our own approach to the research problem.

The challenges that lay behind generic CAD model replacement differ
from one class of objects to another. The below example are sample challenges
associated with object class "seating area”:

e Variations in color

e Different seating plane size

e Absence or Presence of arm rests

e Different configurations chair support, such as legs.
e Inconsistency of captured point clouds

e Similarity in color for closely spaced objects
Below are some of the proposed solutions for the same challenges above:

e Removal of color information from the decision making process

e This can be overcome by including several options for generic CAD models.
The chosen CAD model is the one holding the highest match percentage or
the smallest RMS error. Future work might include generating a generic
CAD model that fits the detected object’s dimensions.
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e Include CAD generic arm rests with limited thickness to reduce the chance of
false association with other parts of the model./

e Same as above.
e Use of Grid-Average down-sampling methods.

e Use of other clustering techniques, such as region-growing

CAD model fitting is achieved by finding the transformation matrix that
best fits the model to the detected object. To do so, we used the Iterative Clos-
est Point algorithm (ICP) to retrieve the affine transformation. Subsequently, the
transformation is applied to the chosen CAD model according to object label.
Color information is finally restored by taking the average object color and ap-
plying it to transformed CAD models. The final map is the collection of all the
transformed CAD models grouped into a single point cloud.

By taking the assumption that all objects are standing still on the ground
in their upright position, we can constrain all movement in the vertical direction, as
well as constraining both roll and tilt angles. Even-though using a two-dimensional
version of ICP was considered, it would incur a valuable loss of information in
the vertical direction therefore, we chose to recover the yaw angle through the
recovery of the Euler angles from the three-dimensional rotation matrix given
through ICP. Consequently, the resulting model only allows CAD models to move
while connected to the ground at all times, with flexible orientation.
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Chapter 4

EXPERIMENTS AND RESULTS

4.1 Setup and Datasets

In order to assess the proposed system, we set and customize our onto-
logical priors to match those of a seating area. We will also assign three possible
labels [1,l5 and I3 to the class seating place, namely regular chair, sofa, and table,
respectively. As most false positives consisted of tables, the third label was added
to the class since the ontologies of tables and chairs have overlapping constituents,
such as legs and horizontal planes that can be seated on.

Measurements higher than 1.4 meters above Ground level were disregarded
in order to reduce chances of false positives, as no seat or table could exist at
such height. Points near each other will be clustered together through density
based clustering [29]. As for surface reconstruction and voxelization, we use the
Las Vegas Reconstruction (LVR) toolkits marching cubes algorithm for both its
reliability and its proven superiority in literature as shown in [5] [30] and [31]. The
full list of parameters for our system is shown in Table 4.1.

The proposed system is first tested in one of our labs and then bench-
marked against the state of the art using three well-known datasets. For the first
experiment, held at our VRL lab, we used a Clearpath Husky robot (shown in Fig.
1.1), equipped with a Point Grey monocular camera. Using the encoder feedback
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for the mobile robot, along with the correct transformation from robot frame to
camera frame, monocular SLAM is initialized with correct scale. The computer in
use is a regular fourth generation Intel Core i7, equipped with 10 GB of RAM and
an Nvidia graphics card. The main code is written in Matlab, with the exception
of data capture using ORB SLAM, surface reconstruction and 6D SLAM: these
were on Ubuntu 14 Trusty, with ROS indigo installed.

The first dataset from literature is the seminar room used by Gnther et
al. [5] The dataset consists of over 378 RGBD point clouds registered using 3DTK
format. We stitch the map using 3DTKs 6DSLAM [32] and experiment with our
system in ten consecutive runs. Surface reconstruction, voxelization and several
runs of optimization were performed using the Las Vegas Reconstruction Toolkit
(31].

The second [1] and third datasets [8] consisted of 28 and 24 home and
office scenes. The stereo point clouds were found to be of good quality as they
have been already stitched and aligned, reducing the need of preprocessing. All
point clouds were denoised and downsampled to approximately twenty five percent
of their original size. Voxel size was set to two centimeters; the maximum inlier
distance for RANSAC was set to 1 ¢cm, and clusters with a density less than 900
points were rejected to avoid false detection of noise.

4.2 Results and Discussion

The proposed system was able to achieve successful detection of chairs,
sofas and tables as shown in sample results spanning in Fig. 4.1 to Fig. 4.3 and
Tables 4.1 to 4.8.

The results are successful even in cases of partial occlusions, mainly due
to the fact that ontological constraints can still be applied even if small sections of
parts are occluded. There was no change in system parameters when experimenting
through different datasets, with the exception of parameters related to clustering
or down-sampling rates. This is due to non-uniform point cloud densities and
cluttered objects, as well as to reduce required computational power.

21



Seating Area

|
/ﬁa T 1sa \isa

Seating plane

w isa

[ Horzontal plane L ™ isAbove™ isBelow

-

—

™ 1sPerpendicular

[ Vertical plane ]

isa

[ Back rest plane ]

Figure 4.1: Sample ontology flow chart for a seating area. (Figure reproduced
from [19]
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Figure 4.2: Scene from the vision and robotics lab showing a chair being detected
by probabilisitc ontology.

Table 4.1: System Parameters

Parameters Unit Min | Max
Plane Size cm 25 150
Plane Inlier Distance cm 0.5 | 1.5
Cluster Density points | 990 | -
Height of Seating Plane cm 35 75
Inclination Angle of Seating Plane degrees | -6 6
Length of Cluster (in any direction) cm 30 | 200
Downsampling Rate — 20 25
Altitude cut-off cm - 140
Number of Planes in a Cluster — 2 -
Threshold for Probabilistic Decision (%) - 15 |-
Neiborhood Radius for Density Based Clustering | cm 2 D
Voxel Size cm - 2

The training data for the SVM, used to estimate P, and P,, consisted
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Figure 4.3: Home scene from the dataset of Koppula et al. [1] showing successful
detection of a sofa.

L e P
S A

Figure 4.4: Office scene from the dataset of Koppula et al. [1] showing successful
detection of a partially occluded chair and a false positive consisting of table desk.

of the MITs places205 [33] dataset, containing over 2 million images grouped into
indoor and outdoor scenes. Combined with the GIST [34] descriptor, the trained
classifier yielded a classification rate of 84.1%.

The general probability of having an object indoors or outdoors was eval-
uated using Stratified Sampling [35], whereas the values of Pyy; i, and Poyj/ou wWere
successfully estimated by manual random query of indoor and outdoor images con-
taining seating areas in the places205 dataset. After sampling of 235 indoor images
and 201 outdoor images, a margin of error of five percent and a confidence level
of 90% was achieved. A portion of the sampling data is shown in Figure 4.5 and
Figure 4.6.

The ontology of a chair is so distinctive that our system produced very
few false negatives. Tables, especially small ones are candidate objects that might
be confused with chairs, however lacking a back support. After the effect of the
optimization step, the proposed system has successfully assigned the label table.
This is caused by the fact that most chairs and tables have four legs and both
table and seating planes can sometimes be of near height however, as shown in
Table 4.2, detected tables are often associated with lower probabilities then chairs,
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given no or similar occlusions for both chair and table. The system is also found
to be very sensitive to the quality of clustering. The authors have experimented
with other clustering techniques such as region growing and supervoxels but could
not yield better results than density based clustering. Clustering of point clouds
remains an open research problem.
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Figure 4.5: Statistical measure of the prevalence of seating areas in urban outdoors.
The figure shows robust stabilization as of sample 78. The horizontal axis reflect
the number of processed while the vertical axis shows the value of Py;/ou
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Figure 4.6: Statistical measure of the prevalence of seating areas found indoors
in a random scene. The figure shows robust stabilization as of sample 49. The
horizontal axis reflect the number of processed while the vertical axis shows the
value of Py in

Table IT shows the generated cluster probabilities for one office scene from
dataset 2. The falsely detected table has a lower probability then the detected
chair, mainly because the seating plane of the table is higher and larger than
common seating areas and it is lacking a back support. The cost of assigning the
label [3=table turned out however to be the lowest of the three labels, as shown in
table III. A comparison between single frame and full scene point clouds showed,
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in contrast to precision rates, improved recall rates in full scene point clouds,
and whereas single frame maps yielded improved precision rates. This is due to
the fact that single frame scenes are more susceptible to partial exclusions at the
boundaries, thus affecting the recall of objects, whereas full scene point clouds are
more challenging to cluster. Precision data showed that our constraints are well
balanced as shown in Tables 4.14, 4.15 and 4.16.

Table 4.2: Sample Cluster Probabilities of Fig. 4.4, Office Scene

Reference | Ground Truth | Probability
Cluster 1 | Wall 6.6 x 1072°%
Cluster 2 | Table 29.4%
Cluster 3 | Chair 60.4%
Cluster 4 | Closet 1.2%10718%

The presented system outperformed all but the second dataset whereas
precision slightly dropped below competition however, with better recall rates in
office scenes. It is also noticeable that testing with home scenes yielded the worst
results in both literature and current work. This is often due to closely packed
objects in home scenes resulting in less accurate clustering. The addition of op-
timization improved precision by 4.5% on average, as some tables were identified
and accordingly labeled. There were no improvements in recall rates after opti-
mization.

Table 4.3: Comparison with Literature, Seminar Room Dataset

Reference Precision | Recall
Gnther et al. [1] 81.0% 53.1%
Probabilistic Ontology | 89.7% 69.2%
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Table 4.4: Comparison with Literature, Office Scenes Dataset

Reference Precision | Recall
Koppula et al. [8] 80.5% 72.6%
Probabilistic Ontology | 71.4% 83.3%

Table 4.5: Comparison with Literature, Home Scenes Dataset

Reference Precision | Recall
Koppula et al. [§] 57.8% 53.6%
Probabilistic Ontology | 65.0% 61.1%

The below tables show improved results after energy function optimiza-
tion. By using energy minimization for the decision making process, we are able
to combine multiple factors into a single equation. Another advantage is the abil-
ity to add additional constraints to the problem: this is achieved by adding an
additional term to the energy function. In this experiment, we used the latter
advantage in order to discriminate between tables and chairs.

Table 4.6: Comparison with Literature, Seminar Room Dataset

Reference Precision | Recall
Gnther et al. [1] 81.0% 53.1%
Probabilistic Ontology | 89.9% 69.2%
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Table 4.7: Comparison with Literature, Office Scenes Dataset

Re ference Precision | Recall
Koppula et al. [§] 80.5% 72.6%
Probabilistic Ontology | 73.6% 83.3%

Table 4.8: Comparison with Literature, Home Scenes Dataset

Reference Precision | Recall
Koppula et al. [8] 57.8% 53.6%
Probabilistic Ontology | 70.1% 61.1%

Table 4.9: Cost of Assigning a label [ to a Cluster Consisting of a Table

Reference | Cost
{{=Chair 1
l,=Sofa 1
{3=Table 0.7

Table 4.10 shows the results produced by manual sampling, in order to
determine the likelihood of finding a seating area in a given environment. This done
by randomly selecting over four-thousand images. For that purpose, Microsoft
Excel has been used to input data and calculate the probabilities related to each
environment. Figure 4.7 shows a sample of the generated curves using Excel,
showing the probability evolution as we sample more images. A margin of error
of five percent and a confidence level of 90% was achieved.

Tables 4.11, 4.12 and 4.13 show classification results for chosen scenes
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from each dataset. This is done by running several images through 24 classifiers,
then taking the mean score for each category.
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Table 4.10: Probability of Finding a Seating Area

Variable | Reference Available Data | Py,;/n
M Airport Terminal 15100 27.0%
N, Auditorium 15100 64.7%
Ns Cafeteria 5184 74.8%
N, Classroom 15100 55.5%
N5y Conference Room 9154 89.7%
Ng Corridor 15100 5.0%

N7 Dining Room 15000 91.9%
Ng Dorm Room 6202 15.5%
Ny Food Court 7361 34.0%
N Home Office 13942 55.4%
Nyp Hotel Room 15100 33.0%
Nis Kindergarden Classroom | 6395 20.5%
Nis Kitchen 15100 19.6%
Ny Kitchenette 15100 26.0%
Nis Living Room 15100 98.7%
Nig Lobby 15100 53.5%
N7 Museum 7919 4.38%
Nig Music Studio 15100 7.2%

Nig Office 15120 58.0%
Ny Reception 7311 16.7%
Ny Shoe Shop 5184 4.8%

Ny Staircase 15100 4.0%

Nos Television Studio 5940 36.6%
Ny Waiting Room 3 5921 91.7%




Table 4.11: Environment Classification Py for Office Scenes

Variable | Reference Available Data | Py
N, Airport Terminal 15100 4.2%
N, Auditorium 15100 8.3%
N3 Cafeteria 5184 8.4%
N, Classroom 15100 9.2%
N5 Conference Room 9154 3.8%
Ns Corridor 15100 3.1%
N Dining Room 15000 10.7%
Ny Dorm Room 6202 8.2%
Ny Food Court 7361 6.4%
Nig Home Office 13942 76.8%
Ni Hotel Room 15100 1.5%
N Kindergarden Classroom | 6395 9.5%
Ni3 Kitchen 15100 10.4%
Ny Kitchenette 15100 8.7%
Nis Living Room 15100 10.1%
Nig Lobby 15100 9.4%
N7 Museum 7919 3.3%
Nig Music Studio 15100 7.1%
Nig Office 15120 82.5%
Ny Reception 7311 1.6%
Ny Shoe Shop 5184 0.6%
Ny, Staircase 15100 0.0%
Nos Television Studio 5940 4.8%
Noy Waiting Room 31 5921 1.8%




Table 4.12: Environment Classification Py for Home Scenes

Variable | Reference Available Data | Py
M Airport Terminal 15100 6.7%
N, Auditorium 15100 1.9%
Ns Cafeteria 5184 7.4%
N, Classroom 15100 4.9%
Ns Conference Room 9154 6.4%
Ns Corridor 15100 5.9%
N; Dining Room 15000 8.4%
Ny Dorm Room 6202 6.6%
Ny Food Court 7361 1.9%
Nio Home Office 13942 6.7%
Niy Hotel Room 15100 4.6%
Ny Kindergarden Classroom | 6395 1.7%
Ni3 Kitchen 15100 5.9%
Niy Kitchenette 15100 9.4%
Nis Living Room 15100 92.1%
Nig Lobby 15100 6.4%
Ni7 Museum 7919 1.9%
Nig Music Studio 15100 2.7%
Nig Office 15120 6.4%
Ny Reception 7311 2.6%
Ny Shoe Shop 5184 0.9%
Ny Staircase 15100 0.5%
Nos Television Studio 5940 2.7%
Ny Waiting Room 39 5921 6.7%




Table 4.13: Environment Classification Py for Seminar Rooms

Variable | Reference Available Data | Py
N, Airport Terminal 15100 5.3%
N, Auditorium 15100 7.1%
N3 Cafeteria 5184 6.4%
N, Classroom 15100 10.1%
N5 Conference Room 9154 84.3%
Ns Corridor 15100 2.7%
N Dining Room 15000 2.9%
Ny Dorm Room 6202 2.8%
Ny Food Court 7361 3.7%
Nig Home Office 13942 6.7%
Ni Hotel Room 15100 4.9%
N Kindergarden Classroom | 6395 2.2%
Ni3 Kitchen 15100 3.8%
Ny Kitchenette 15100 1.9%
Nis Living Room 15100 1.8%
Nig Lobby 15100 8.6%
N7 Museum 7919 2.7%
Nig Music Studio 15100 1.8%
Nig Office 15120 8.9%
Ny Reception 7311 2.9%
Ny Shoe Shop 5184 0.9%
Ny, Staircase 15100 0.0%
Nos Television Studio 5940 2.8%
Noy Waiting Room 33 5921 4.8%
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Figure 4.7: Sample Data Sampling for 4 out of 24 indoor categories. The horizon-
tal axis represent the number of samples, whereas the vertical axis represent the
probability of finding a seating place, on a scale from 0 to 1.

We now test our system for the third time using all three datasets, and
we publish our results in the tables below:

Table 4.14: Comparison with Literature, Seminar Room Dataset

Reference Precision | Recall
Gnther et al. [1] 81.0% 53.1%
Probabilistic Ontology | 90.1% 68.2%

Table 4.15: Comparison with Literature, Office Scenes Dataset

Reference Precision | Recall
Koppula et al. [§] 80.5% 72.6%
Probabilistic Ontology | 79.1% 83.9%
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Table 4.16: Comparison with Literature, Home Scenes Dataset

Reference Precision | Recall
Koppula et al. [§] 57.8% 53.6%
Probabilistic Ontology | 76.4% 62.1%

The advantage of knowing the environment substantially reduced false
positives, mainly due to the fact that chairs found in unlikely environments held
a higher cost for label assignment. Consequently, better values for precision were
reached, in contrast to slightly varying recall rates.

For the purpose of generic CAD model matching, we a chose a fourth
dataset consisting of my own living room. Therefore, generic CAD models were
roughly drawn using Solidworks then exported in STL format. Uniform mesh
resampling was subsequently applied to the STL file using MeshLab, and exported
as a point cloud in polygon file format.

The dataset was retrieved by capturing a 4 minutes video using a regular
cell phones. Subsequently, over 850 frames were exported from the video. Using
these images, the point cloud was generated using Structure from Motion ” Visual
SFM”. The point cloud was subsequently manually scaled by comparison with
ground truth information.

It has been found that generic object replacement is very sensitive to
downsampling parameters. It is crucial to reduce the input point cloud inconsis-
tency by using a grid based down-sampling method. For this experiment, a grid
size of 0.5¢cm?3 was used for both source point cloud and the meshed CAD models.
We also found that CAD models will match better and quicker if they are slightly
smaller than the detected objects. To prevent erroneous CAD model replacement,
objects with very low probabilities are replaced with blank models, even if they
are correctly labeled.

One unexpected challenge faced during matching is that surfaces detected
by the capture device usually have a very thin thickness. This is due to the fact that
the capturing sensors rarely has the opportunity to go into narrow places in order to
capture the other side of some surfaces. In our example, this is true for most seating
planes, since the camera did not travel (nor is it expected to do so) underneath the

35



Figure 4.8: Left to right, the figure shows the original scene consisting of my own
living room, followed by the captured point cloud using Visual SFM [2]. The
second row features a map of detected objects by the same map, overlapped with
CAD models. The bottom row features the final generic map, followed by the
same map with color information restored according to the original point cloud
colors.
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Figure 4.9: Skeleton of a chair, used to match with the point cloud of the detected
chair.

Figure 4.10: The transformation found by matching the skeleton to the object is
then applied to the model in the figure above.
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chair. We therefore obtain a thin profile for many surfaces. This challenge came
to our attention in the experimental phase. To solve this problem, generic models
were redrawn with very thin profiles. The modified models were then used for
the purpose of finding the transformation matrix using ICP only. Subsequently,
and since getting a map of thin objects is not as rewarding as getting a map of
fully drawn objects, the transformation found earlier was thereafter applied to the
generic objects drawn earlier, for visualization purposes. The figures below present
examples of thin and non-thin profile generic CAD models. Finally, it has been
found that constraining generic objects to the ground, and forcing both roll and
tilt angles to zero will often improve the location and attitude of CAD models,
even if they were not properly matched in their unconstrained versions.
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Chapter 5

Conclusion

We have presented a novel framework for object based detection using
probabilistic and ontological concepts, whereas an object is detected by constrain-
ing scene variables through ontological priors. Our method showed superiority in
both precision and recall by comparison with relevant literature. Combining both
ontology and probability holds promising ground for future work such as:

e Generate proposals for object class, rendering recognition a far easier task

e Build a map of semantic labels, then combining semantic information through
a probabilistic ontological framework

e Build a map of generic objects that can be used for localization. Up so far, this
work only addressed the perception problem through mapping of objects.
An interesting contribution would include such a model in a Simultaneous
Localization and Mapping (SLAM) algorithm. This is achieved through the
use of transformed generic CAD models as landmarks for position correction.

Finally, lot of work can be done to transform decade old deterministic
methods into better performing probabilistic models. This mostly due to the fact
that Computer Vision is often associated with accounting for measurement errors
and inaccuracies, which makes probabilistic approaches better fitting.
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Appendix A

Abbreviations

SLAM Simultaneous Localization and Mapping
RGBD Red Green Blue and Depth
RANSAC Random Consensus Algorithm
LSD SLAM Large Scale Direct SLAM

URB University Research Board

AUB American University of Beirut
VRL Vision and Robotics Lab

LVR Las Vegas Reconstruction toolkit
CAD Computer Aided Design

ICP Iterative Closet Point Algorithm
IMU Inertial Measurement Unit

PDF Probability Density Function
RMS Root-Mean-Square
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