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AN ABSTRACT OF THE THESIS OF

Hadi Samer Jomaa for Master of Engineering
Major: Artificial Intelligence

Title: Humanitarian Visual and Semantic Computing: Crisis-Related Image Tweets
Classification

When the public and first responders are flooding the internet with often annotated
images and texts during natural disasters, rescue teams are overwhelmed to prioritize
often scarce resources. Given that most of the efforts in such humanitarian situations
rely heavily on human labor and input, we propose in this research a novel approach
that leverages social media and uses machine learning and computer vision to help
automate humanitarian intervention. After all, “an ANNOTATED image is worth a
thousand words”. Our framework relies analyzing visually and semantically twitter
data. We merge low-level visual features that extract color, shape and texture with
semantic attributes extracted from annotated pictures posted on Twitter in disaster
times. These visual and textual features are trained and tested on a home-grown dataset
solely gathered from Twitter. The best accuracy obtained after crowdsource labeling the
data was when low-level visual features and semantic attributes were applied to the
different classification scenarios of support vector machines (SVM), Neural Networks
and Ensemble Learning-SVM with 5-Fold cross-validation. Since the data is organically
unsupervised, we proposed a structural neuronal modification to the cortical algorithms,
a deep learning algorithm inspired by the human visual cortex and tested it using the
previously proposed visual and semantic features. As expected, the proposed CA
showed better performance than regular CA, which motivates follow on research.
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CHAPTER I

INTRODUCTION

A Natural Disasters and Crisis

We live in a harsh world. Technocratic plates that hold earth’s crust are ever
shifting causing earthquakes, volcanos and tsunamis. Man caused pollution over the
past century had its toll on the global climate, leading to global warming. This change in
weather, as modeled by NASA, includes the risk of drought, floods, and increased
intensity of storms making hurricanes more intense (Riebeek 6). In the Annual Disaster
Statistical Review published in 2013 (Debarati, Hoyois and Below ), the average
amount of natural disasters triggered over the span of a decade from 2003 till 2012 is
estimated as 388 annually with an estimated average cost of economic damage of 156.7
billion US $. Looking ahead, the United States is up against 5 major disasters like
nothing that has ever passed. A geologist commenting on one of the expected events
says that: “There's no guarantee there would be any advance warning” (Gorman 1). The
case holds for almost all disasters. However, environmental organizations around the
world don’t just wait for the imminent to occur. The United Nations, Red Cross Red
Crescent, Engineers without borders, are examples of the leading organizations that
work on disaster relief. UNDAC, United Nations Disaster Assessment and

Coordination, an international response system, is placed on standby and can be
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deployed to any country within 48 hours ("United Nations Disaster Assessment and
Coordination."). UNISDR, United Nations International Strategy for Disaster
Reduction, is also part of the UN Secretariat and notably defined to serve as a system
that coordinates disaster reduction activities of UN systems and regional organizations
("The United Nations Office for Disaster Risk Reduction.").

In addition to this world being harsh, it is war-torn as well. Out of the 162
countries recognized by the Institute for Economics and Peace, only 11 countries were
not involved in any kind of conflict (Withnall ). Wars and riots cause immeasurable
damage that needs to be dealt with as well. In the recent riot that broke down in
Baltimore, an estimated 9 million USD in just 8 days (Toppa ). In December 2010, the
“Arab Spring” broke down and regimes started falling apart. Demonstrations and
protests were organized, leading to tension with the governments, fights with law
enforcement, and structural damage. This phenomena spreads over several Arabic
countries starting with Tunisia, going through Egypt, Sudan, Yemen, Bahrain, Libya,
and Morocco. According to an article published by Reuters News, HSBC bank
estimated the total damage worth 800 billion USD ("Arab Spring to cost Middle East

$800 bln, HSBC estimates."1).



Disasters’ damage, be it a result of Nature or Man, hence can’t be prevented,
but can be dealt with and anticipated intelligently, benefitting from recent advancement

in technology, and viral growth of social networking.

B Humanitarian Engineering and Computing

Humanitarian Engineering and Computing in general is the branch of
engineering and science that focuses on issues which limit opportunities and
development in communities. It is also not necessarily restricted to being a reaction to a
disaster or a crisis ("Humanitarian Engineering and Computing."), however in this
thesis; we highlight disaster related solutions. Numerous engineering applications and
solutions have been sought to reduce disaster effects. At UMass College of Engineering
("Engineering for Everyone Tackles Disaster Relief."1), a sustainable earthquake-
resistant hospital developed by team of students. Seven-foot dampers were introduced
in the design at every floor to absorb shock waves, along with horizontally flexible
material to decouple the structure from the ground. The Aid Necessities Transporter aka
A.N.T., developed by designer Bryan Lee serves the purpose of rapidly providing
damaged communities with supply pods and temporary shelter (Banks ). Taking
advantage of solar energy, LuminAID was created by a couple of students at Columbia

University ("LuminAid."). An inflatable waterproof LED, which provides light for up to



three years, can serve as a light source and a beacon in damaged areas where no
electricity as accessible. These and many more solutions can be labeled under
Humanitarian Engineering.

However, we exist in a digital world where anyone with internet connection
can tap into virtually anywhere and know virtually anything. Information easily travels
across continents, and knowledge is transferred among millions at viral rates. If the
saying:” Two minds are better than one” is true, then the internet, where millions are
connected is the best place to find solutions. Social media aids in alerting people and
spreading awareness, locating missing people, gathering donations, forming volunteer
groups, organizing public movements. We are beyond the times where the sole source
of information was the television and the radio. Governments also can build on social
media’s presence. Bruce R. Lindsay, an analyst in American National Government
notes that "if FEMA adopted social media use for recovery, the agency could provide
information concerning what types of individual assistance is available to individuals
and households, including how to apply for assistance ...” (Lindsay ). Smartphone
applications also exist for the purpose of disaster management and relief. Some of them
include EarShot, which gathers eyewitness reports from the scene and helps in
submitting service reports. Shelter View is an application that alerts people to the

nearest disaster facility. FEMA is the official app for the Federal Emergency



Management Agency, which include kits and checklists, along with other procedures in
case of an emergency. In short, the ever growing audience of social media users such as
Twitter, Facebook, Snapchat, etc..., have provided a huge online database of texts and
images readily available that can be directed towards developing humanitarian
applications (Castillo ). A twitter-based humanitarian application was recently
developed and can be considered at the core of humanitarian computing.

Humanitarian computing also spans over a large spectrum: it includes
applications that spread awareness and alerts about possible natural disasters. It also
includes information-processing methods that extract actionable information from social
media which aid in reducing disaster response time, such as the one proposed by (Imran
et al. ) and currently implemented on Artificial Intelligence for Disaster Response
(AIDR ) (Imran et al. 159-162). AIDR is an important application that can handle
overwhelming data transferred during a crisis, and results in an automatic real-time
classification of tweets. However, an image says a thousand words, which means that
images convey the required information clearer than any description. Depending on a
text alone in describing infrastructure damage, poverty, droughts, floods, etc... is not
sufficient. That is why image processing techniques and computer vision must be

integrated in such platforms.



The existing approaches ignore the images often attached with these messages,
which may contain even more valuable information than words. Strictly speaking, no
humanitarian computing applications were developed that leverage annotated images
that float abundantly on social media, where they solely focused on NLP and human

effort.

C Motivation

Damage caused by natural and man-made phenomena lead to loss of lives,
destruction of crops, floods, infrastructure dysfunction, and more. In order to mitigate
casualties resulting from the damages, several governmental and non-governmental
organizations around the world dispatch response teams and resources to places where
the disasters strike. This after-the-fact response can be slow and sometimes misdirected
as it relies on generally inaccurate information obtained by these organizations.

We also live in a world that is virtually connected through social media
websites scattered all over the internet: around 3.174 billion people were reported online
in 2015 by ("Internet Users."). Through social media applications and websites, images
and messages travel as fast as a click of a button. By making use of communicated
images, dedicated man power can be relieved from the tedious task of identifying the

damage type and severity caused in different places by natural disasters. Instead, their



focus can be redirected towards better management of the help and rescue missions by
initiating a better response and prioritized dispatch of units. It may also make the
response quicker and more efficient, since in times of crisis, infrastructure damage and
overwhelming use of telecommunication on the networks impedes proper
communication as the region grows into a state of chaos and panic. Images can be used
as a form of validation, making reports more descriptive and conveying a more
powerful message than words alone. This can be achieved by employing advanced
image processing analysis and scene understanding techniques to automatically
categorize and assess images containing depictions of damage. Over the past couple of
decades, scene understanding has been applied to identify moving objects in an image,
identifying visual attributes, enhancing segmentation, boundary detection, recognizing
visual phrases and several other objectives. Despite all the advancements in computer
vision, no single algorithm can describe an image on all semantic levels. For every set
of categories, a separate classifier can be trained. This leaves room for innovation and
contribution by creating classifiers for semantic categories and visual attributes that

have not yet been considered.



D Proposal

In this thesis, we propose a novel hybrid approach that merges semantic
attributes extracted from disaster-related messages with low-level features extracted
from the corresponding images to aid in humanitarian computing. While some of the
crisis-related topics suggested in (Imran and Castillo 1205-1210), such as “Donations
and Volunteering” or “Caution and Advice” may or may not typically include images
that can be properly exploited, topics such as “Infrastructure and Utilities” are more
commonly associated with images from which we can assess the existing type of natural
disaster damage. For this reason, we investigate the messages describing damage in this
thesis, and divide them into two classes: built-infrastructure and nature damage. (Mileti
) states that disaster losses, damage, are the result of interactions between the physical
environment, social demographics and the built environment. The losses to the physical
environment, as a result of hazardous events, is termed as nature damage, while the
losses to the built environment which includes buildings, bridges, roads, etc. is referred
to as built-infrastructure damage. The approach suggested in this paper is a two-step
hybrid classification scheme. At the first step, visual features and semantic features are
trained on separate classifiers. The scores of the outcome from semantic and low-level
classification are aggregated as a new feature vector, hybrid, which is further trained

and tested on a new classifier, two-step. An unsupervised clustering approach is also



proposed, by modifying the regular CA to become more biologically plausible. The
architecture is changed, by introducing recurrent connections, leading to more complex
activity and hence higher spikes. These unsupervised approaches, CA and the enhanced,
Strong CA are tested on the visual features that yielded the best supervised
classification results, and compared with raw pixel data. The proposed semantic
descriptors are also clustered and compared with the clustering of descriptors resulting

from raw semantic processing.

E Contribution

The key contributions in this paper are summarized as follows. We propose a
new class for image classification, types damage, which is, to the best of our
knowledge, unprecedented in the field of visual humanitarian computing. We validate
the authenticity of our work by creating a data set gathered solely from Twitter based on
keywords related to ‘damage’, in which the observations are presented as images and
their corresponding annotations. We demonstrate how a bag of words can be utilized to
create the semantic features, by processing the reoccurring words in the database as well
as their synsets (WordNet (Miller et al. )), in an iterative form to achieve coherent set of
words. Representing an image using visual features in an important step towards proper

learning and classification. We explore a set of inexpensive low-level visual features



that convey distinct aspects of an image, and assert that by combining these features,
classification improves. The proposed classification scheme relies on a new feature
vector that is made up from the score of the outcome achieved from semantic and visual
classifiers independently trained. Finally, a modified cortical algorithm network is
created for image and annotation clustering, based on the work done in (Hajj, Rizk and
Awad 327-334). The proposed Strong CA, is introduces recurrent connections for
stronger spike activity as well as a more anatomically accurate model of the neuron.

Throughout the rest of the thesis, we go into the technical details behind the
proposed approach in the Methodology Chapter, were we address the low-level features
used, the proposed semantic processing scheme which includes the bag-of-words
formation and the semantic descriptor processing, and the different learning approaches.
In the Database Chapter, we demonstrate how we developed the dataset based solely on
queried tweets and manual classification. The Experiments Chapter includes all the
results from the different learning approaches, were we do error analysis on the
classifier that achieved the best accuracy. Finally, a summary of the proposed approach
which highlights the results and the contribution of this thesis is presented in the

Conclusion Chapter.
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CHAPTER II

RELATED WORK

In our work, we represent an image via a combination of features that convey
different information about the image, i.e., shape, color, texture, and energy. The
annotations corresponding to the images are projected on a bag of words which results
in a binary semantic descriptor. The visual and the semantic features are trained
separately on different classifiers. The score of the decisions at the first stage are
aggregated together as a new feature vector in used to train the classifiers at the second
stage. This two-step hybrid approach asserts that by making use of image annotations,
the classification Accuracyis enhanced. This chapter describes some of the existing
scene understanding approaches and their applications. Although the presented methods
don’t directly relate to humanitarian computing, it is critical to understand the steps
behind image classification before developing humanitarian-oriented algorithms.
Strictly speaking, to the best of our knowledge, so far no humanitarian computing
applications have been developed that leverage annotated images found abundantly on

social media.
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A Natural Language Processing

Natural Language Processing (NLP) encompasses a wide range of fields in
literature, such as auto summarization, parsing, sentiment analysis, word
disambiguation, etc. However, in this section, we look into some of recent NLP
techniques adopted for short text classification, since tweets are limited to 140
characters, as well as a look on some applications developed for humanitarian
computing purposes.
1. Short Text Classification

(Sahami and Heilman 377-386)classify documents based on a Kernel approach
which compares the similarity of short text snippets. Snippets are utilized as a query for
a search engine and then by computing the TFIDF (Term Frequency—Inverse Document
Frequency), are used to model the document. (Yih and Meek 1489-1494) use the
relevance weighted inner-product of term occurrences to model the document.
(Zelikovitz and Hirsh 1183-1190) develop an approach that relies on WHIRL (Liu and
Singh 211-226), a tool that can search and retrieve text information under specific
conditions, to find short text similarity. (Phan, Nguyen and Horiguchi 91-100) employ
external information gathered from universal dataset to classify short text. The dataset is
analyzed via Latent Dirichlet Allocation (LDA), followed by Gibbs sampling for topic

inference. Classification is done by a Maximum Entropy classifier. (Chen, Jin and Shen
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1776-1781) predefine the topics and using a multi-granularity topics space approach,
and train a regular SVM classifier. Short text classification is also useful in web page
classification, as suggested in (Charalampopoulos and Anagnostopoulos 235-239), who
used Weka tool (Holmes, Donkin and Witten 357-361) for clustering and classification
of synthesized data representing web documents.
2. NLP-Based Humanitarian Computing applications

Humanitarian computing approaches so far have been only addressed through
the use of natural language processing (NLP) as well as human effort (Imran et al. 67;
Imran et al. ; Cresci et al. 1195-1200). (Imran et al. 67), detail in this survey the existing
approaches that deal with natural disaster responses through the use of social media.
Some of these systems do not particularly address the needs of emergency responders,
but are framed as a way to process social media information. (Imran et al. ), Imran et al
develop a platform, AIDR, that uses the manual effort provided by microblog streams as
the training set for classification of crisis-related messages. A similar platform, called
Crisis Mapping (Okolloh 65-70)which employs digital volunteers also emerged to help
collect, classify and geotag information. This tool was first developed as a website
platform were people would send out an SMS to a local number, and the text then
synchronizes with the platform before showing up on the website. This tool later made

reporting on a disaster easier by facilitating reports through mobile phones with internet
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accessibility. Crisis Mapping, as the name suggest, presents users with a map displaying
possible crisis based on public reports. However, it is not automated. Twitcident (Abel
et al. 285-294) is another web-based platform which aims to extract relevant
information from regarding incidents from social web streams, particularly Twitter. The
proposed framework detects incidents from emergency broadcasting services and starts
to profile the incident based on several variables including the time and type of the
reported incident. The profiled incident undergoes then semantic enrichment. This step
includes gathering messages from the streaming API of Twitter, followed by name
entity recognition, classification based on hand-crafted rules, calculates a facet-value
pair from the links in the tweets and finally extracts meta-data regarding the tweet itself.
Observations that are not related to the incident are filtered out using a thresholding
formula that depends on the enriched tweet and the facet-value pairs. Twitris (Purohit
and Sheth ) is an analytics platform that is constantly collecting tweets. These tweets are
then analyzed in three different manners, Spatio-temporal-thematic in which
observations are clustered based on the location, time and topic of the tweet; People-
Context-Network analysis that identifies contextually important people to be addressed
in the community; Sentiment-Emotion-Subjectivity analysis where the emotion
presented in the tweet is investigated towards understanding an event-oriented

community. Tweedr (Ashktorab et al. ) on the other hand is not a web-based platform,
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but rather a Twitter-mining tool that aims to extract actionable information from tweets
for disaster relief. Tweets are represented in as a standard unigram feature vector and
several classifiers are tested including KNN and logistic regression. Extraction is done
on the positive examples, using a conditional random field trained on five different
disaster datasets. EMERSE (Caragea et al. ) is an iPhone application that collects and
classifies tweets and was developed to the Haiti earthquake response. The designed
Twitter crawler gathers the most relevant tweets for specific keywords. Each
observation is first represented by a feature vector using the bag-of-words approach.
Features are then filtered using feature abstraction, in order to reduce the feature

dimension and get rid of redundant information, feature selection.

B Scene Understanding

In general, scene modeling approaches may be divided into two categories. The
first is based on traditional pipeline of object detection; where features include
appearance, motion, tracking of the detections. The second uses appearance features
directly and requires supervised training. Features and approaches vary across methods,
and depend highly on the application. Following is an overview of some scene

understanding techniques categorized into 3 groups. In Figure 1, we present an
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overview chart which depicts the types of classifiers used vs the type of classification

investigated.
Classifiers
= 10 years ago
Chou 2003 5-10 years ago
NN T < 5 years ago
UM Vogel 2001 Wang 2005 Duan 2012
plsa T Van De Weijer
Gaussian | Saleemi 2010 Wang 2013
Distribution
MAP/EM Vailaya 2001 Ferrari 2007 _i:mper. Yanai 2005
2009 Tsai 2012
Vailaya 1998 Huang 1998
KNN T Bosch 2006 L
Classification
|

Scene
Understanding

City v
Land
Vacation
Corel Dataset
Smear types
Recognition
Colar
Trajectory
Attribute —
Ground-
Wall
Layout
Visualness —

Object

Figure 1 Scene Understanding Related Work Overview

1. Hierarchical Classification

(Vailaya, Jain and Zhang 1921-1935) tackles City/Landscape image
classification through developing a hierarchical classifier that utilizes KNN. Based on a
proposed feature saliency method, they resort to edge direction coherence vector for
City/Landscape separation and color histogram to separate natural images. In (Vailaya
et al. 117-130), Vailaya further extends his work to photos taken by users on holidays.
This problem is addressed by modeling the class-conditional probability density
functions based on Bayes’ theory and classification is accomplished via MAP

estimation. Features used include HSV and LUV color information along with MSAR
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texture features (Mao and Jain 173-188). A modified MDL criterion is implemented to
reduce the dimensionality of the feature space. (Huang, Kumar and Zabih 219-228)use
banded color correlograms as features, which describe how the spatial correlation of
colors changes with distances. The RGB color space is quantized into 512 colors and
singular value decomposition is applied to reduce/eliminate the noise. Classification is
done using the nearest-neighbor method (with the closest one dropped). Then
normalized cuts are applied to split the sub-classes in a way that maximized intra-class
association and minimize inter-class association. The proposed approach was tested on
11 classes from the Corel collections and showed that Correlograms performed better
than regular RGB features. (Chou and Shapiro 150-168) use clustering as an
intermediate step for feature processing before classification. Component classifiers are
trained to learn the subclasses (clusters), which serve as a non-linear kernel on the
original features. The combined outputs are then trained on a neural network for pap
smear prescreening. (Bosch, Zisserman and Mufioz 517-530)use probabilistic latent
semantic analysis to fit the training images. Four dense descriptors are investigated
where the images are concatenated into visual words created by K-means clustering.
Topics are learned by fitting a pLSA model. The document specific mixing coefficients
are computed and classification is accomplished through KNN. (Vogel and Schiele 133-

157) incorporate the 9 local semantic descriptions proposed in (Mojsilovi¢, Gomes and
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Rogowitz 79-107) to recognize natural images. SVM concept classifiers are trained on
the sub-blocks of the images, and the outputs are augmented in a concept-occurrence
vector. Extracted features included HSI color histogram, edge direction histogram, and
the 24-features of the gray level matrix in four principal directions; contrast, energy,
entropy, homogeneity, correlation and inverse difference moments. SVM was used for
training and compared with the Prototype approach.
2. Learning through Afttributes

(Wang and Forsyth 537-544)learn to locate an object/attribute pair.
Corresponding saliency maps are generated for every image, and classification is done
by a multiple-instance SVM over window sets in the training images, where every
window gets an average value depending on the pixel saliency value. Homogeneity is
included to detect objet boundaries. This results in two optimization problems coupled
by instance labels. Joint and separate learning are tested using features that include
color, coarse histogram oriented gradients, HOG (Dalal and Triggs 886-893), and
texton-features. (Van de Weijer, Schmid and Verbeek 1-8) assign color names to
regions from real-world images. Images are collected in the SRGB format and are
gamma corrected. The images are changed to the LAB space, and pixel values are
assigned to location on a 3D grid. They train a pLSA to recognize 11 basic colors. The

method is evaluated on three datasets gathered from Google, Ebay and the Chip-based

18



color name set. (Ferrari and Zisserman 433-440)that learn colors and patterns of
segments by learning likelihoods of attributes of the labeled images. The basic units for
the generative model are the segments extracted by the approach devised in
(Felzenszwalb and Huttenlocher 167-181), which undergo a preprocessing phase prior
to learning. Pixels are assigned to patch types, and their types are aggregated in a
histogram, normalized over the segments. Segment histograms are clustered to form an
appearance codebook, and segments are assigned to the nearest bin. Geometric
properties related to pairs of segments are also investigated. In the training phase, the
location of the attribute is not provided, only its existence. Learning is done iteratively
and exhaustively. (Lampert, Nickisch and Harmeling 951-958) introduce attribute-based
classification, where attributes are learned through low-level features, and are then able
to predict unknown classes. The problem is formulated as learning with disjoint training
and test classes. Two attribute-based classifiers are devised, direct attribute prediction
(DAP) where a layer of attribute variables is added to decouple images from the layer of
labels, and indirect attribute prediction (IAP), where the attributes form a connecting
layer between known classes of the training phase and unknown classes of the test
phase. (Yanai and Barnard 419-422) study the visualness of attributes, by calculating
entropy and locate attributes using EM. Image features, i.e. color, texture and shape are

extracted from images labeled with concepts (X). Independent Gaussian mixture models
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are learnt via EM on equal numbers of segments from X images and non-X images.
Two models are formed, one for the concept and the other for the non-concept and
applied to the image segment. This iterative method incorporates regions to enhance the
X-model and probability value. Knowing the region of the concept allows the
calculation of the entropy. (Torresani, Szummer and Fitzgibbon 776-789) develop a
new descriptor for object recognition, through training classifiers on known categories,
and concatenating real-valued outputs of these base classifiers, called classemes, when
applied to a new image to form the new descriptor. The approach presented is divided
into classeme learning and any object-related category learning. (Berg, Berg and Shih
663-676) used MILBoost to generate a probability map which locates the specified
attribute. Potential attributes are collected based on occurrence frequency in the text
describing the images, and distributed into separate datasets. Visualness is computed
based on the average labeling precision of the respective classifier. To prevent the use
of redundant attributes, a visual synset is built that contains synonyms of the attributes,
and classifiers with significant mutual information are joined. Visual features are
created using SIFT, HSV, and texture descriptors.
3. Probabilistic Approaches

(Saleemi, Hartung and Shah 2069-2076)focus on statistically modeling

trajectories obtained from surveillance footage a hierarchical unsupervised approach.
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The optical flow, modeled through pixel location (2-elements), magnitude and direction
of the optical flow, is taken as a variable and modeled in a probability function of
motion patterns. The 4D distribution is modeled as a mixture of Gaussian components,
and observations of the optical flows are clustered in each dimension, to compute the
likelihood of pixel and optical flow being part of a motion pattern. (Tsai et al. 121-128)
present a real-time approach that locates ground-wall boundaries. This is done by
utilizing motion cues to compute likelihoods of hypotheses. These hypotheses are
modeled as a Bayesian posterior probability distribution which is identified and updated
from the video information. This geometric method is applied to get 3D structural data
about the image, governed by surrounding assumptions a set of logical constraints. KLT
(Shi and Tomasi 593-600) is employed to track point features across frames. The
likelihood for every hypothesis is computed at every frame, and by applying a Bayesian
filter, the likelihoods are aggregated across the frames. (Wang, Gould and Roller 92-99)
retrieve room geometry and furniture layout. The inconsistency between decorations
and layout is addressed by adding latent variables to account for clutter. Inference is
done without hand-labelling the clutter. Three vanishing points are detected in indoor
scenes, whereas long lines are detected and clustered into three dominant groups. Super-
pixels are utilized after over-segmentations and are added to the vanishing points to

form the appearance model. The box layout is estimated by fitting a multivariate
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Gaussian with diagonal covariance training. (Duan et al. 3474-3481) investigate local
attributes that contain both discriminative and semantically meaningful value in the
image. Images are annotated by a class label, corresponding to the species of the animal
and an object bounding box, whereas attribute name and location are unknown. This
task can be configured as an inference problem on a latent conditional random field.
Finding a region containing the attribute is formulated as minimization of an energy
function containing the preference of a classifier and pairwise relationships. An SVM is
trained on latent regions from both positive and negative images. Resulting weights are

utilized in the energy function.

C Feature Fusion

Fusing textual and visual clues to boost the performance of classification is a
concept used often in machine learning. (Deschacht, Moens and Robeyns 133-144)
employ WordNet (Miller et al. ) to form synsets of salient words in annotations. Based
on a salience measure and measure of visualness inspired by (Kamps et al. ), a
probabilistic algorithm that asserts the present of the entities within the image. (Feng
and Lapata 272-280) train a continuous relevance image annotation model, which learns
the join probability distribution of words and image regions. The words’ presence of

absence is obtained from a Multiple-Bernoulli distribution that takes into account not
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only the associated annotations of the image, but rather the whole document for context.
(Alghtani, Luo and Regan )aggregate semantic descriptors, created from bag of words
using TFIDF, with a set of texture and color visual features. They use KNN for
classification, and prove that fusing these features enhances the performance. (Poria et
al. 50-59)go one step further by fusing audio features with both visual and textual
information for multimodal sentiment analysis. To get effective results, the information
extracted is merged on a feature-level and on decision-level. In an attempt to improve
image clustering, (Ma et al. 1555-1557)model the observations by adding two semantic
features, one collected from the documents gathered from Wikipedia, Wisdom of
Crowds documents, and the other on the text documents that form the corpus, and visual
features extracted from the image in matrix format. Non-negative matrix factorization is
employed for clustering. Latent Dirichlet Allocation is then employed to model the

topics of each document.
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CHAPTER III

METHODOLOGY

In this paper we suggest a two-step hybrid approach that utilizes the decision
and score from low-level feature classification extracted from images, as well as the
decision and score of semantic descriptor classification, extracted from their
corresponding annotations, and trains the new feature vector to classify the types of
damage resulting from natural disasters. Visual and semantic feature aggregation is also
investigated. Representing an image via proper low-level features is one of the most
challenging steps in scene classification. In the following we define the suggested
semantic attribute descriptor, which is created by projecting the description on a bag of
words, as well as some common color, shape, and texture features used in scene
understanding. These low-level and semantic features are trained independently on an
SVM classifier with linear and Gaussian kernel, using cross validation to choose the
parameters, as well as Ensemble learning and Neural Networks, for comparison. The
workflow of the proposed methodology is presented in Figure 2, while the off-page
references are shown in Figures 11, 12 and 13. An unsupervised clustering algorithm is
also described. Strong CAis a modified version of the regular CA where we change the
model of the basic computational unit, the neuron, and introduce recurrent connections

rendering the more human-brain-like. Unlike regular CA which is employed for
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supervised learning, Strong CA deals with the output from the architecture as a new

representation, subsequently used for clustering. Unsupervised clustering is tested on

the visual features that achieved the best accuracy and its results are compared with

clustering of raw pixel data. The proposed semantic descriptor is also clustered and its

results compared with those obtained from clustering descriptors from raw semantic

processing.

v NLP Scheme

Start

Retrigve Twaat

'

©et Imags

Extract Low-Level
Features

Festure AZEregation

Get short Text

|
Y

score and Decision
Fusion

Visual Classification

Classification

Semantic
Classification

SCOME Leaming Majority Vote
Two SCore Learning Two Decision Fusion
and Multiple Score and Multiple
Leaming Decision Fusion

25

Score and Decision
Fusion

- |

Figure 2 Workflow of the Approach



A Low-level Features

Table 1 Feature Information

Feature Type Vector Size | Time

RGB Color Histogram Color 768 0.148
HIS Histogram Color 84 0.135
Histogram of Image Gradient Directions Shape 720 1.104
Gray Level Co-Occurrence Matrix Texture 168 0.448
Gabor Energy 30 0.253
GIST Energy 512 0.437

The features in Table 1 are chosen to encompass distinct aspects of the image,
specifically color through the Red-Green-Blue (RGB) histogram, and Hue-Saturation-
Intensity (HSI) histogram, shape (Histogram of Image Gradient Direction), texture
(Gray Co-Occurrence Matrix, GLCM), and energy through GIST and Gabor feature
vectors. In addition, these features are computationally inexpensive, dense, and well
used in the field of scene understanding. The features are extracted from 256 X 256
images using MATLAB R2015b on a computer with Intel(R) Core(TM) 17-4700MQ
and 2.4GHz CPU. The time is in milliseconds.

1. Color

a. RGB Color Histogram

The 1-Dimensional histogram is based on the R, G and B color channels. The
bin sizes can vary, however we the regular 256 bins per channel, and aggregated the

features together. An example of the different color channels is presented in Figure 3.
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Figure 3 RGB Color Channels Example

b. Hue-Saturation-Intensity

The Hue-Saturation-Intensity (HSI), used interchangeably with HSV, feature
vector is an 84-bin histogram, 36 for hue, 32 for saturation and 16 for intensity. Hue and
saturation are scale and shift-invariant with respect to light intensity. Figure 4 represents
the HSI color channels.

Saturation Intensity
: ]

Figure 4 HIS Color Channels Example
2. Shape Features

a. Histogram of Image Gradient Directions

Based on the assumption that urban scenery contains more edges than natural

images, vertical and horizontal that may form due to the presence of objects such as
27



buildings and so forth, it could be of benefit to study the distribution of gradient
direction of pixels in the image. The gradient histogram is divided into variable bin size.
In the proposed approach, we set the number of bin sizes to 720, which corresponds to
gradients of 0.5 degrees of resolution, to capture the fine gradients in the image. In
Figure 5, the image shows scaled values of the gradient direction at every pixel. At the
boundaries of the building and the rubble one can notice that the gradient direction

value is of similar color.

Gradient Direction

Figure 5 Gradient Directions Example

3. Texture Features

a. Gray-Level Co-Occurrence Matrix

GLCM, is a statistical method that calculates information about the texture of
the image using spatial relationships between pairs of gray-value intensity pixels. The
statistics include correlation, contrast, homogeneity, energy and entropy for specified

displacements, i.e. offsets, in the image, which dictate the nature of the spatial
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relationships between every pair of pixels. Figure 6 shows the value of the feature

vector on every pair of pixels at specified offsets.
Gray Co-Occurrence Matrix

x10%

Original Image
i 15

0 20

Figure 6 Gray Level Co-Occurrence Matrix Example
4. Energy Features

a. Gabor

The Gabor feature vector captures the energy of the image using FFT and gets
the response of an image at various scales and orientations. This helps capture object

patterns and edges at varying frequencies and orientations, such as Figure 7.
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Figure 7 Gabor Feature Example

b. GIST

GIST (Oliva and Torralba 145-175)summarizes the gradient information
(scales and orientations) for different parts of an image, which provides a rough
description (the gist) of the scene. The description is based on a set of perpetual
dimensions, mainly naturalness, openness, roughness, expansion and ruggedness. Figure

8 represents the gist of the image at different parameters.
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Input image

Figure 8 GIST Feature Example

5. Feature Combinations

In order to study the effect of multiple features on classification, different
subsets of features are combined together, by concatenating the corresponding
normalized feature vector into one. The features are primarily tested individually and
used as a baseline for comparison against augmented features. The results of this step

are addressed in Experiments Section.

B Semantic Descriptors

In this subsection, the steps that lead to creating the bag of words, which serves
as basis for the semantic descriptors, are detailed. The formation and processing of the
semantic descriptors are also addressed.

1. Bag of Words
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a. Obtaining the Synonyms

In the established dataset, every entry (tweet) is associated with a set of words
as provided by Twitter users. The first step is creating a list of the distinct words,
referred to as Terms, available to establish a certain background on the words mostly
used in describing damage images. Some of the most frequent Terms are shown in
Table 2. An intermediate filtering step is used to get rid of redundant words, leaving
only the distinct terms. The synonyms of these distinct Terms are gathered via WordNet
(Miller et al. ), a large lexical database of English. Nouns, verbs, adjectives and adverbs
which are grouped into sets of cognitive synonyms (Synsets), each expressing a distinct
concept, similar to (Wang and Domeniconi 713-721), (Hu et al. 179-186) and
(Elberrichi, Rahmoun and Bentaallah 16-24). Synsets are interlinked by means of
conceptual-semantic and lexical relations. The main relation among words in WordNet
is synonymy, as between the words shut and close or car and automobile. However, the
most frequently encoded relation among Synsets is lexical relations, super-subordinate
relations, meronymy, and antonymy. Hence, the number of Synsets to which a words
belongs to differs from one to another. In total, 50 Synsets were studied. We stopped at
50 since no change in the Synsets occurred between levels 49 and 50 based on the words
in our dataset. Throughout the rest of this paper, semantic levels and Synsets are used

interchangeably. Identifying related distinct terms is the next objective, and hence the
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synonyms of the distinct terms that occur at least 3 times are gathered on the

corresponding available semantic levels. The result is a set of Terms with their

respective synonyms at different levels such as those presented in Table 2.

Table 2 Sample Base Words and Synonyms

Terms Frequency | 1% Synset 5" Synset 10" Synset

earthquake | 609 quake, temblor, seism empty empty

damage 387 harm, impairment harm, hurt, empty
scathe

quake 370 earthquake, temblor, seism | tremor empty

help 78 aid, assist, assistance help, assist, aid help

death 160 decease, expiry empty empty

hits 157 hit hit hit, strike

Storm 70 violent storm force empty

b. Creating the Bag of Words

At every semantic level, a bag of words is created through the following steps.
First the synonyms of every Term are compared to all other synonyms belonging to the
other Terms. When a mutual synonymy(s) is found, for example the word ‘temblor’, in
common between Terms ‘earthquake’ and ‘quake’, both groups of words (the Terms
and their synonyms) are concatenated together and filtered from redundant synonyms,
which in this example results in the Term ‘earthquake’ having ‘quake, temblor, and
seismt’ as synonyms, and the Term ‘quake’ removed from the list of Terms. After every
combination, new mutual synonyms may emerge, hence this step is repeated for every

Termuntil no mutual synonyms exist between the Terms. Every entry of the bag of
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words ends up containing a set of Terms and their synonyms that are related to each

other through at least one synonym. An example is shown in Figure 9.

cocoo

Figure 9 Combined Words (orange) and Joining Words (blue)

This however, leads to Terms connected to each other through unrelated
synonyms. Considering Figure 9, the Term ‘give’ is not highly related to ‘breaking’ but
still connected to it since a synonym of the word give’ may be present in the synonyms
of the word ‘breaking’. In order to keep the list of combined Terms diverse, yet
relevant, an additional step is devised. The synonyms that connect the Terms, called
‘Joining Words’, are explored. Every set of combined Terms that shares at least 1
synonym are grouped together, and separated from the set previously established, this
leads to new Terms and new synonyms. The set of Combined Words in Figure 9, is
hence divided into 2 distinct sets. The first set corresponds to the Term ’breaking’ and
its Combined Words’ synonyms, presented in Figure 10, whereas the Term ‘give’ is
excluded from both the Combined Words and its synonyms removed from the separate

set.
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Figure 10 Filtered Combined Words
Some of the resulting terms and their corresponding group of words are shown
in Figure 11.
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Figure 11 Sample Terms from Data0l

2. Semantic Descriptor

a. Forming the Semantic Descriptor

After the Bag of Words are created, it is possible to create the semantic
descriptors. As previously mentioned, every entry in the data set consists of an image
and annotations. These annotations are projected on the bag of words. In other words,

every word in the annotation is looked up in the bag of words, and replaced by the lead
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root, to which every word is related. This transforms the annotations into combinations
of lead roots, instead of different (related) words, referred to as filtered annotations.
The semantic descriptor is a binary descriptor, with a vector size equal to the
length of the bag of words. Each feature corresponds to a lead root, and is flagged if the
root is present in the filtered annotation. One of the drawbacks of this approach is that it
does not take into consideration negated terms. We also do not leverage prior
knowledge regarding prominent terms. The step by step process is shown in Figure 12.

b. Dealing with sparsity

The semantic descriptor is sparse, mainly because the respective annotations
contain a small amount of words, as compared to the total number of lead roots. This
may affect accuracy and consecutively fail to be a proper representative of the semantic
data. A simple trick is devised to make it denser. After the semantic descriptor is
established, the probabilities of occurrence of the lead roots in every class are
calculated. Some of these words are shown in Table 3. Words that have a probability
higher than a certain threshold (in our case we chose 5% heuristically) in at least one of
both classes are kept, while the others are discarded. Increasing the threshold leads to
less lead roots with more frequency, rendering the semantic descriptor denser. By
increasing the threshold, some subtle words that may be indicative of the corresponding

class might be lost. This is evident by the lower Accuracy obtained with higher
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thresholds. Table 4 includes the length of the semantic descriptors at different

thresholds for the first 10 semantic levels.

Table 3 Probability Table of Sample Terms per Class

Sample Term Probability Built Infrastructure Damage | Probability Nature Damage
rise 0.1170 0.0517
death 0.1486 0.0369
photograph 0.0669 0.0627
kill 0.1216 0.0590
home 0.0557 0.0664

Table 4 Semantic Descriptor length vs threshold

Semantic Level | 5% | 10% | 15% | Semantic Level | 5% | 10% | 15%
Data01 32 |12 6 Data06 32 |12 7
Data02 34 |13 9 Data07 30 |11 8
Data03 30 |11 8 Data08 27 |11 8
Data04 32 |11 7 Data09 27 |11 6
Data05 32 |12 8 Datal0 27 |10 6

37




it just becomes deadweight
emily, so of @archcambridge
el (== on bad building in a quake

It, just, becomes,
deadweight, emily, so, of,
Get separate words @archcambridge, on,
bad, building, in, a,

quake

Is available in
Bag of Words

Become, bad,
building, quake

No

Yes

Become, bad,
building,
earthquake

Replace with ‘base’
word

Flag the
corresponding entry

Semantic
Descriptor

Figure 12 Obtaining the Semantic Descriptor

C Learning
1. Score and Decision Fusion
This proposed learning approach depends on the output obtained from low-

level and semantic classifiers independently.
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a. Semantic and Low-level Classification, Step 1

Three types of classifiers are investigated for this step, specifically Ensemble
Learning, Neural Networks and Support Vector Machines (SVM). Two types of kernels
are investigated for SVMs as well, linear (regular), and a Gaussian kernel. Images of
damage and their associated annotations are linearly inseparable according to the
representations we used. By projecting the features into the Gaussian space, a better
accuracy may be achieved. The performance of these classifiers on the proposed visual
and semantic features is addressed in the Experiments chapter.

b. Score Fusion and Decision Fusion, Step 2

Augmenting visual and semantic descriptors boosts performance. Stemming
from this statement, a hybrid approach is explored. More technically, two methods are
proposed; one which relies on the decision fusion of the independent classifiers (visual
and semantic), i.e. Majority Vote, from Step I, and the other method on score fusion of
the outcomes, Score Learning. It is worth noting that using MATLAB R2015b for
classification, the output is expressed in two values, the label, which indicates the
predicated class decision, and the class likelihood measure, score. Throughout the
experiments, we approach visual feature combinations in two manners, either the

features are aggregated as one vector and trained on one classifier resulting in one
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outcome, Two-score Fusion for learning and Two-decision Fusion for Majority Vote,
Figure 13, or every feature is trained on a separate classifier, resulting in several
outcomes, grouped together Multiple-score fusion for Score Learning and Multiple-
decision fusion for Majority Vote, Figure 14. For example, if we want to explore Grad
and Gabor features with semantic descriptors, the Two-score fiision entails that we
would use the score from the Grad-Gabor classifier resulting in a two-dimensional
feature, one from the Visual Feature classifier and one from the Semantic Descriptor
classifier, whereas the second approach, Multiple score fusion, would use the scores of
the Grad classifier and the Gabor classifier along with the score from the Semantic
Descriptor classifier, resulting in a three-dimensional feature, and so on. The decisions
and scores utilized at the second step, Score and Decision Fusion, are based on the
classifiers that achieved the best Accuracy from Step I, Semantic and Visual

Classification.
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2. Feature Aggregation

Similar to the visual feature aggregation, the semantic descriptors are
concatenated with the visual features to form a single feature vector. These features are
trained and tested on the same classifiers used previously.
3. Cortical Algorithm Learning
a. Structure

Cortical algorithms (CA) are an artificial computational model, neural network,
that mimics the activity of the brain. The architecture of the CA constitutes six hyper-
column layers of different thickness neural networks (Edelman and Mountcastle ),
which is inspired by the cortex of the human brain. The basic structure of this cortical
network is the hyper-column, a group of neurons associated to the same sensory input
region. Three types of connections govern the cortical network, horizontal and vertical,
and between non-consecutive layers. The horizontal connection represents that between
the hyper-columns within the same layer, whereas the vertical connection joins the
hyper-columns of consecutive layers. CA networks are hence learnt by tuning the
weights of the connections. Non-consecutive layer connections are ignored for
simplicity. CA are designed and used for supervised classification, however, (Hajj, Rizk
and Awad 327-334) employed CA for unsupervised training by focusing the output of

the network as a new representation of the observations studied. Training the cortical
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algorithm for either supervised or unsupervised learning is divided into the following
steps.

b. Supervised and Unsupervised CA schemes:

The connections which connect the neurons and layers in the network, referred
to as weights are initialized as random values, typically close to 0. The second step is an
unsupervised feedforward approach. Feedforward learning is done so that hyper-
columns may be able to identify features amongst observations that pass undetected by
other approaches. Similar to the action in the human-brain, this is done by inhibiting
and strengthening the weights, tuning, based on the input pattern. The weights of a
particular column are strengthened whenever the firing pattern coincides with a
particular input pattern. The weights of neighboring columns are consecutively
inhibited. In this iterative process, the columns learn to fire a specific pattern based on
the input, which in turn allows for the extraction of features from the data. This
feedforward learning does not ensure the firing of specific invariant patterns for
recurring input. This is ensured with the supervised feedback step. When a firing pattern
deviates from the specified pattern, a feedback signal is generated, so that the firing
column that lead to the misclassification is inhibited., and the column from the original

pattern is fired. Ultimately a “stable activation” is reached once the firing scheme no
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longer changes with multiple exposures. Once this is reach, each layer is trained until
convergence.

As mentioned earlier, (Hajj, Rizk and Awad 327-334) propose a distributed
implementation of CA on a MapReduce framework for unsupervised clustering. Their
proposed approach follows the same initialization and feedforward steps mentioned
earlier, however they take the output from the feedforward learning as a new
representation of the observation, and assign it to a cluster randomly. Subsequent data
points are then assigned to the clusters with the closest centroid, if the distance between
the given point and the nearest centroid is below a certain threshold, otherwise the
instance is assigned to a new cluster. This step results in scattered clusters that may not
be meaningful without fine-tuning and processing. The dispersed clusters that fall
within a distance of a predefined threshold, intra-cluster distance, are grouped together.
Afterwards the points of each cluster examined. If the farthest points within the same
cluster are larger than a threshold, inter-class distances, the cluster is divided into two
smaller clusters, and the other points assigned to the closest center. The proposed
approach is an iterative process, where it ends when steps 2 and 3 result in stable

clusters.
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c. Strong CA

Strong CA relies on modifying the elementary computational unit as well the
connectivity of the network to include recurrent connections. Unlike traditional artificial
neural network where excitation and inhibition alter the weight of a connection based on
the response of the cell an input, we adopt a more biologically plausible approach by
encoding these processes in the synapses mimicking the role of GABA, the chief
inhibitory compound in the mature vertebrate central nervous system, and NMDA
receptors, which control the memory function and allow the passage of information
once activated. In recurrent connections, the post-synaptic neuron is looped back to the
pre-synaptic neuron, so in other terms if a pre-synaptic neuron inhibits (excites) a post-
synaptic neuron, the post-synaptic neuron will in turn inhibit (excite) the pre-synaptic
neuron. This loop leads to more complex patterns.

A considerable amount of models has been proposed in the literature to model
the activity of a single neuron. These models generally fall under two types: biological
models which attempt to replicate the firing patterns observed in single cell recordings
and artificial models which abstract from the biology and model neurons as a computing
unit implementing a simple function. While the former expresses firing rate as an often
complex function of an input current, the latter deals with a numerical output in

response to a numerical input. In Strong CA, we borrow the concept of strength
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encoding from the anatomy: the strength of a stimuli is reflected at the output of the
neuron by the firing rate observed. In other terms, a "strong input" leads to a higher
frequency of spikes at the output of the neuron.

Mathematically, let [x;, x5, ..., x,]; be a vector representing n synapses
connecting to a neuron at time t, weighted by the vector [wy, w,,...,wy,], w; > 0
representing the corresponding synaptic strength, the output y of the neuron is

expressed as:

1
y = {1+ exp(¥;pix;w;)

fortzt,t+1,...t+mif2pixiwi >0
i

0 fort =telse

The model states that the response of a neuron to the total stimulus is a train of

spike sustained for mtime steps where m =t ),; p; x; w;. Following this train of

spikes is a refractory period, represented by r time steps of zero activity, where no input

can excite the neuron to generate an action potential. p; = 1 if the synapse is excitatory

and 0.01 if the synapse is inhibitory. In other terms, during the refractory period, the
neuron is unresponsive to stimuli.

Additionally, we introduce recurrent connections linking the output of the
neuron to its input through a weighted connection which weight (as well as all weights
in the network) will be learned according to the unsupervised scheme proposed in
(Hajj, Rizk and Awad 327-334)
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CHAPTER IV

DATABASE

This section details the steps that led to creating the dataset: crowdsourcing
through Twitter, building the database, and labeling the classes, as well as some data set

statistics and examples.

A Crowdsourcing through Twitter

Twitter is one of the most widely accessed social media networks, which is
used as a platform to ‘tweet’ messages and ‘retweet’ them, with an option to tag a media
element such as a small clip or an image. Twitter ("Twitter.")has approximately 310
million monthly active users with 83% of them on mobile devices. This is a
considerable amount, which makes almost every corner in the world reachable. It also
gives access to new events in a matter of a click of a button, which during these times is
faster than the conventional methods represented by the news channel or the newspaper.
Having such accessible big data can be useful on many levels that require fast and

accurate response.
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B Building the data set

Building the dataset was done solely based on twitter feed. The process was
done by querying keywords such as: earthquake, damage, disaster, crisis, flood, etc., on
a Java-developed tool that uses Twitter API to access Twitter. The tool collects the
tweet in the form of a JSON object, and parses the associated message. Attachments are
tweeted in the form of URL’s. This media URL which contains the image is then

downloaded via MATLAB, and saved along with the respective description.

C Labeling

Typically, the gathered images contain noisy elements, consisting of random
pictures that convey no damage-related visual information. This can happen mainly
because tweets are retrieved through keywords, and not based on visual content of the
associated media file. The images that don’t qualify as damage images are discarded
manually, as well as redundant images that pass in the form of retweets. After removing
images do not convey any concept of damage, for example, people taking selfies, clean
natural environment, and urban places, we identified the classes. It should be noted that
the term ‘damage’ is a fuzzy word that has no specific visual representation. For
example, fallen tree can be coined damage, just as sincerely as broken wall.

Nevertheless, there seems to be an inter-annotator agreement, where people can

48



differentiate types of damage easily when facing them. In this sense, a limited
crowdsourcing was used to provide some textual info. Three participants (age around 25
majoring in Electrical Engineering pursuing graduate degrees in the Machine Learning
track) were asked to independently separate the images in the dataset based solely on
the visual content. The resulting sets of images were compared to each other and to their
respective images by a fourth participant.

The images are classified by this group into 2 major classes: ‘built-
infrastructure damage’ and ‘nature damage’. Built-infrastructure damage includes the
images representing damage to man-made objects, i.e. houses, buildings, walls, etc.,
whereas nature damage represents, as the name suggests, damage that hit natural
objects, i.e. trees, land, crops, etc. Unlike other designed datasets, the images in our
homegrown set represent a diverse variation of the label concepts. This is one of the
limitations of crowdsourcing through social media, where the gathered observations do
not particularly share similar conditions in terms of camera angle, focus, scope of the

scene, noise within the image itself and other characteristics.

D Database Statistics
Some examples of images that belong to the identified classes are displayed in

Figures 14 and 15, followed by a sample of the annotations for each class. Finally, this
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section also contains Table 5 highlights some information regarding the resulting
dataset. The database was collected from tweets sent out between February and May
2016, around which earthquakes hit Nepal, Chile, and Japan, and floods hit Kenya.

Table 5 Database Information

Class 1 Infrastructure Damage 1077

Class 2 Nature Damage 271

Imbalance Ratio 3.975

Low-Level Attribute Characteristics | Integer, Gaussian Distribution
NLP Attribute Characteristics Boolean

Associated Tasks Classification

government, Nepal, Nepal, give, rebuild Cost, damage, lake Biggest, major,
quake, survivors, hits, Quakehit airport examines, spotted earthquake
warning

Nepal, quake, areas, City, house, learn Deadweight, bad, Quake, disaster,
deliver, stronger earthquake building, quake triggered, changes

Figure 15 Samples of Built-Infrastructure Damage Images and Phrases
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storm, damage, area, Wind, damage,

Hurt, tornado, winds,

winds reported gust damage important
= -

Infrastructure, Storm, damage, Swim, lava, river Storm, damage
damage, assess county, severe

Figure 16 Samples of Nature Damage Images and Phrases
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CHAPTER V

EXPERIMENTS

In this section, the experimental setup and results are presented. To test the
accuracy of various classifiers, a 5-fold cross-validation is performed globally, i.e. all
classifiers are trained and tested on the same data. To measure the performance of the
classifiers two metrics are used, the normal accuracy measure to evaluate the accuracy
of the classifier for each class, and the F-measure to compare the overall performance of
the classifier. In other words, the F-measure is used to evaluate the trade-off between
improving the accuracy of the negative class and accuracy loss of the majority class.
Here the classifier with higher F-measure is considered to be more accurate. The
database crowdsourcing authenticity is compared with a modified cortical network
developed for clustering, Strong CA, as mentioned in the Methodology Section. In this
work, the negative class samples are considered the ‘Nature damage’ sample whereas
the ‘Built-Infrastructure damage’ samples are considered the positive samples.
Misclassifications are also addressed latter in this section. The simulations are executed
MATLAB R2015b on a computer with Intel(R) Core(TM) 17-4700MQ and 2.4GHz

CPU and Windows 10 64-bit operating system.
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A Standardizing

The extracted visual features consist of real values that vary in magnitude. This
fact, if left unnoticed, can have severe impact on the training process, mainly due to the
biasing that occurs when learning the weights. This point is easily solved through
standardizing. For every training fold, each feature is normalized into a Gaussian
distribution with mean value of zeros and standard deviation of 1. The testing fold is
then projected to the respective distribution. This step ensures that the predictors are

insensitive to scales on which they are measured.

B Damage vs Non-Damage

Before going into damage ‘type’ classification, we would like to make sure that
damage, as a concept in itself, can be automatically identified. To do so, a set of images
unrelated to damage from the original hand labelling, labelled as non-damage images,
are used for training and testing. These non-damage images were collected by querying
the same keywords originally used to gather damage images.
1. Classification based on Visual Features

Figure 17 highlights the best accuracy of visual feature combinations that are
used to differentiate between damage and non-damage images. It is safe to say that the

classifiers are able to easily differentiate between these two classes, considering the
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relatively high accuracy for most of the feature combinations. The best amongst all was
the Gaussian kernel SVM classifier that achieved Precision of 92.22%, an F-measure of
93.25%, and an Accuracy of 93.01% by using Gabor-GIST-Grad-HSV-RGB feature

combinations.

M Independent MPlus1 MPlus2 mPlus3 MPlus4 mPlus5

0.95

0.9
0.85
0.8
0.75
0.7
0.65 I
0.6
0.55 I
Gist Gray Gray Gist
Kernel Linear Ensemble NN

Figure 17 Accuracy of visual feature combinations on Damage vs Non-Damage

2. C(lassification based on Semantic Descriptors
In Figure 18, the Accuracy of the best semantic descriptors is shown across
classifiers. Similar to visual feature classification, using a Gaussian kernel SVM led to

the best Accuracy by projecting the annotations on the 1% bag of words, i.e. Data01l.
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0.74
0.72

Kernel SVM Linear SVM Ensemble

Figure 18 Damage vs Non-Damage semantic descriptors accuracy

C Semantic Classification
1. Proposed Semantic Descriptor

The semantic descriptors are established after several pre-processing steps,
which involves creating bag of words from synsets gathered from WordNet, filtering of
these bag of words, and using an empirical threshold of 5% to reduce the amount of
observations (lead roots). As mentioned in the Methodology, 50 semantic descriptors
corresponding to 50 semantic levels are created. However, for the sake of visualization,
only the first 10 results are presented. The semantic features are named Data0l,
Data02, etc., where the last two digits represent the semantic level of the descriptor.
Similar to the visual features, the semantic descriptors are trained and tested with 4

distinct classifiers. The F-measure of these descriptors is highlighted in Figure 19 and
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addressed in the following sections, nonetheless other statistics such as Precision and

Accuracy are also reported.

M Data0l1 m Data02 m Data03 m DataO4 m Data05

W Data06 W DataO7 W DataO8 W Data09 W Datal0

0.6
0.5
0.4
0.3
0.2
L |
0
Kernel SVM Linear SVM Ensemble Neural Networks
Figure 19 F-measure of Semantic Descriptors
a. Kernel SVM

The precision using Kernel SVM increases between the 1% and 2" semantic
levels followed by a significant drop at the 3™ semantic level (11.48%), where it again
increases and decreases to the lowest accuracy. The best performance is achieved with
Data07. With an Accuracy of 83.53%, it is not that higher than the worst Accuracy,
80.93% for Data09, nonetheless the F-measure and Precision are far better, 39.87% vs
29.76% and 75.10% vs 56.96% respectively. The low Sensitivity values indicate that
several negative class entries are being misclassified as positive.

b. Linear SVM

56



The Accuracyusing this classifier is almost consistent with a standard
deviation of 0.3%. The Sensitivity is even lower than Gaussian Kernel SVM, which
affects positive class classification. This is mainly due to the fact that several phrases, as
highlighted in the Error Analysis Section, are in common between both classes. This
fact confuses the classifier that fails to learn that one phrase can belong to the both
classes.

c. Ensemble Learning

Ensemble learning is much more sensitive to positives than the SVM
classifiers. The Accuracy obtained using Ensemble learning testing is incredibly low in
comparison to the other classifiers. On the other hand, Ensemble Learning resulted in
the highest F-measure.

d. Neural Networks

Neural Network architecture used here consists of one hidden layer with
number of neurons equal to that of the descriptor dimension. The results shown in
Figure 18, are missing Data02, Data03, and Data(7, since no true positives where
rightfully classified during testing. The performance of other descriptors is acceptable,
but still less than Gaussian Kernel SVM.

e. Discussion of Semantic Classifiers
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Amongst all 4 of the Semantic Descriptor classifiers, the Gaussian Kernel
SVM had the best performance, with an Accuracy of 83.53% via Data07. Based on
these results, the outcome of this particular classifier is used for Score and Decision
Fusion.
2. Word2Vec Descriptors

The proposed semantic descriptor scheme mentioned earlier involves
intermediary processing steps, passing through a bag of word and applying an empirical
threshold to remove noise. In this section we address raw semantic data processing. This
is done by utilizing the tool developed by (Mikolov et al. ), publically available as
word2vec. Word2vec utilizes continuous bag-of-words and skip-gram architectures for
computing vector representations of words. A text corpus is used for training by
constructing a vocabulary from the training text data and then learns vector
representation of these words in terms of numbers. Untrained words can be projected on
the output, and represented in turn using numeric values. For our training purposes, we
used the first billion character from Wikipedia, available online on Matt Mahoney’s
page.(Mahoney ) The dimensionality of the word vector representation can be user-
defined. In our experiments, we used the same classifiers applied on the proposed
semantic desriptor. 5 feature dimensions are created, with 1, 2, 5, and 10 numeric

values. Since the number of words differs between observations, the semantic
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representation of each observation was extended to the length of the largest amount of
words present in these observations. After inserting the numeric values for each words,

the rest of the feature vector is zero padded. The Accuracy are presented in Figure 20.
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Figure 20 Accuracy of Word2 Vec classification

The results appear to favor an increase in the number of values representing
each world. This is obvious from the Accuracy of Word2Vecl10, where every word is
represented by 10 numeric values. Representing the words with one or two values,
Word2Vec01 and Word2Vec02 respectively, prevents the classifiers from properly

identifying the true negatives, which can be deduced from the lack of F-measure values

amongst three out of four classifiers used.
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D Low-level Classification

Pairing 6 distinct features together in every possible way leads to 63 separate
groups. All these variations are trained and tested. The statistics, are the highest for
every value of pairing, i.e. Plus 1 for the Grad feature is the highest amongst all other
pairs of the Grad feature with other features, and so forth. Figure 21 represents the
Accuracy and F-measure of the best group of combinations of visual features per

classifier respectively.
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Figure 21 Performance of feature combinations on homegrown dataset
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1. Kernel SVM

A general conclusion that can be drawn at a first look upon the charts is that the
Accuracy increases as a function of concatenated features. The lowest performance is
achieved using RGB feature vector independently with an Accuracy of 83.46% and an
F-measure of 42.20%. The best performance however is achieved by using Gabor Plus
3, where the 3 in this case are Gist, Gray and HSV. The best Accuracyis 90.65% with
an F-measure of 72.50%. The relatively inferior performance of the RGB feature may
be certainly attributed to the fact that the images from both classes share a lot of colors.
Granted that some ‘Nature Damage’ images, as the name suggests must contain more
green, then let’s say gray, green can be also present in abundance with ‘Infrastructure
Damage’ images. The RGB feature also affected the performance of other
combinations. This is noticed in the decline of performance between all the Plus 5’s,
except for the RGB Plus 5 itself, where combining all other features with RGB boosted
the performance.
2. Linear SVM

The same set of combinations are trained and tested on a regular SVM. The
Accuracy and F-measure follow the same trend. Unlike the Gaussian Kernel SVM,

Gray features start off with an Accuracy of 91.10%, and then decreases gradually. The.
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Gabor rises suddenly around 6.01% then descends, while other combinations of features
follow the same ascending trend.
3. Ensemble Learning

Ensemble learning melds results from many weak learners into one high-
quality ensemble predictor. Because the data set has an imbalance ratio of 3.971,
RUSBoost is especially effective with imbalanced data sets. Entries from the ‘major’
class are under-sampled, and then learning is boosted using AdaBoost. In Figure 21, It
appears that Ensemble learning is not as effective as any of the SVM’s. Some feature
combinations, specifically the Gist, RGB, and Grad increase incrementally, but the
overall Accuracyis not encouraging. On the other hand, Gray, Gabor, and HSV feature
combination start off with a relatively high Accuracy then drop when augmented with
other features.
4. Neural Networks

Neural networks are also explored to find a latent connection between the
probabilities. In this attempt, we train several neural networks using backpropagation
and the best Accuracyis obtained via Gabor-Gray-HSV. In choosing the architecture of
the Neural Network, one hidden layer is created where the number of neurons is equal
to the vector size of the feature. The Accuracy of the Neural Network follows the same

trend as that of the Gaussian Kernel SVM, i.e. the Accuracy enhances as a function of
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features augmented. This leads to the conclusion that the more feature spaces are used
to represent the image, the more hidden connections can be made to increase Accuracy.
5. SMOTE SVM

Oversampling the negative class data via SMOTE resulted in Accuracy
increase as a function of features as well. Nonetheless, the best Accuracy, which is the
result of aggregating Gabor and Gray features, was still less than that of all the other
classifiers, 86.50%, shown in Figure 21.
6. Discussion of Visual Classification

Judging by the performance of these classifiers, Kernel SVM is adopted for the
Score and Decision Fusion. Although the best Accuracy obtained with Linear SVM,
91.10% vs 90.65% for the best Kernel SVM Accuracy, the latter achieved higher
Precision against the former, 88.78% vs 81.24%. The F-measure of Linear SVM is
76.34% vs 72.50% for the Kernel SVM.
7. Visual Classification on a Different Dataset

In order to demonstrate the effectiveness of these features, they are tested on a
separate dataset. The dataset used for comparison is created using the SUN Database
(Xiao et al. 3485-3492) for images. The SUN Database is a designed data set of images
gathered from several search engines, describing scenes by labels which satisfy the

statement: “I am here.”. It encompasses 397 scenes and is also labeled based on the
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object content. Since the proposed approach handles Infiastructure damage and nature
damage, the closest thing for comparison was to test City versus Landscape. The City
images consisted of ‘rubble, office building, city and building fagcade’, whereas the
Landscape images consisted of ‘archaeological excavation, bog, forest and forest road’.
The result is 740 City images as opposed to 256 Landscape images. No preprocessing
was done on the images except resizing them to 256 X 256 . By taking a look at Figure
22, we notice that the performance of the classifiers on this dataset follows the same
trend as the performance on the homegrown database described earlier. Specifically, the
Accuracy increases as a function of features aggregated, with the RGB features
increasing the most. The best performance in terms of Accuracy is obtained by the
Kernel SVM (96.69%). In terms of Precision, Kernel SVM also dominated with a
96.25% vs 93.17% achieved through Linear SVM. Unlike the homegrown dataset,
SMOTE SVM performed better than Neural Networks in terms of Accuracy, with

94.38% vs 90.46%.
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Figure 22 Pertformance of feature combinations on SUN database

E Score Fusion and Decision Fusion

The output of the Step I classifiers is expressed in two values, the label, which
indicates the predicated class decision, and the class likelihood measure, score. Two
approaches are sought at this stage, the first utilizes the decision of the Visual Features’
and Semantic classifiers through majority voting, while the second aggregates the scores
of these classifiers as new feature vectors to be trained, Score Learning.
1. Majority Vote

In this approach, the predictions of the visual feature SVM and that of the

semantic descriptor SVM are utilized. These predictions are combined, through an AND
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logical function, where the prediction is positive if and only if both SVM’s agree on it.

This step is straightforward, yet still improved the Accuracy as shown in Figure 23.
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Figure 23 Difference in Accuracy between Augmented feature and Corresponding
visual feature

Figure 23 shows the differences between the best Accuracy of augmented
features, through two score decision and multiple score decision, and the corresponding
visual feature (alone), Difference I, and the semantic descriptor which was augmented,
Difference 2. Two score decision’s best Accuracy was achieved by Gabor-Gist-Gray-
HSV-Data07. Evidently, the Accuracy obtained using two-score fusion increased, albeit
a mere 0.081%, while the Accuracy using multiple-score fusion decreased. Regardless,
this hybrid approach favors Sensitivity and F-measure, while sacrificing Precision and
Specificity. This can be expected since the AND function will affect the TP rate,
whenever the outcome of both SVM’s is different. On the other hand, by using the

Multiple score decision scheme, it turns out that sticking to a single Visual Feature,
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specifically Gabor, with Data0l achieves the best Accuracy. Nevertheless, the overall
performance doesn’t improve the Accuracy as compared to the Visual Features and
Semantic Descriptors, shown also in Figure 17. The F-measure however is around
10.09% better against Visual Features and 24.76% better against Semantic Descriptors.
2. Score Learning

The second approach is more about training new classifiers based on the scores
obtained from the previous SVM's. In a sense, the independently trained SVM’s act as a
kernel, that reduces the features to scores, resulting in a small dimensional feature
vector, one score from every classifier. Generally, the performance of this newly
suggested SVM relies heavily on the performance of the preceding two. If the Gaussian
Kernel SVM that lead to the probabilities utilized did not have a high Accuracyrate in
the first place, it would be futile to even suggest such an approach. Both Two-score
fiision and Multiple score fision methods are used here. Figure 24 combines the
statistics of the best results achieved using different classifiers with Two-score fiision,
whereas Figure 25 presents the difference between Two-score fiision and Multiple Score

Fusion, D1, and Two-score fusion and Feature Aggregation, D2.
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Figure 24 Performance of Two-Score Fusion
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Figure 25 Difference D1 in Accuracy between Two-Score and Multiple-Score Fusion,
and D2 between Two-Score Fusion and Feature Aggregation

Figure 26 highlights the difference between the different approaches and their

corresponding visual features.
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Figure 26 Difference in Accuracy between different classifiers and their corresponding
visual features

It is clear that augmenting the semantic features to any visual combination,
improves the performance. The individual classifiers are discussed below.
a. SVM

A Gaussian Kernel SVM and a regular SVM are both trained on the
probabilities, and their performance is compared to the corresponding visual SVM
performance. The best augmented performance was achieved using different set of
independent features. The best two-score fiision accuracy via linear SVM is obtained
using Gist-Gray-HSVvisual features and Data0l, as well as with Gabor-Gist-Gray-
HSVand Data0l, but since the former contains less features, we emphasize it instead.
On the other hand, Gist-Grad-Gray-HSVvisual features combined with Data03 gave

the highest kernel SVM Accuracy. Training the SVM on the probabilities reduces the
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Precision and Specificity, but has higher Accuracy and an even better F-measure. The
linear SVM shows better Accuracy than the Gaussian SVM in terms of Accuracyand F-
measure. This may be attributed to the values of probabilities, which should in the first
place be linearly separable, i.e. below zero’s should belong to negative class and above
zero’s should be positive class. By using the Multiple score fiision, the best Linear SVM
Accuracy is achieved by using the scores of Gabor-Gist-Grad-Gray-HSVindependently
obtained from the visual features’ classifiers along with the Data04 score. The Accuracy
and F-measure are almost, yet less, as those of the Linear SVM of the aggregated
features, 92.21% and 82.82% vs 92.42% and 83.02% respectively. Unlike the Linear
SVM comparison, the Kernel SVM applied using Multiple score fiision is better than
kernel SVM using Two-score fusion. The best Accuracy is achieved by Gist-Grad-
Gray-HSV-RGB along with Data06. It took combining all the features to achieve this
result.

b. Ensemble Learning

Ensemble learning is obtained by fitting an ensemble via RUSBoost and 20
weak learners. The best two-score fuision Accuracyis achieved with Gabor-Gist-Grad-
Gray-HSVvisual features with Data0l. It turns out that using Ensemble learning, in this
case RUSBoost, does indeed increase Accuracy and makes the classifier more sensitive

to positives. Nonetheless, it affects the negative class classification with a reduced

70



Specificity value, and lower Precision. The best Ensemble classifier used with Multiple
score fusion is obtained by using the outcome of all the visual features along with
Data06, just like what happened with Kernel SVM trained through Multiple score
fiision.

c. Neural Networks

Achieved for two-score fision by using Gabor-Gist-Grad-Gray visual features
with Data02, with its corresponding visual SVM Accuracy. The neural network
architecture used is a single hidden layer with number of neurons equal to the size of the
feature dimension. Again, the Specificity and Precision are reduced, whereas both
Accuracy and F-measure are still better.

Using the Multiple score fision with Neural Networks faired poorer than the
former in terms of Accuracy and F-measure, and was achieved by using 5 visual
features, namely Gist-Grad-Gray-HSV-RGB with Data05.

d. Two-score vs Multiple-score Fusion

Judging by the Accuracy and F-measure, the best Accuracy for both two-score
fusion and multiple-score fiision was achieved using a linear SVM to train on the
probabilities. As mentioned earlier, this might seem straightforward since the new

features (probabilities), are linearly separable.
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F Feature Aggregation

In this section, the results of feature aggregation are discussed. Figure 24
includes the difference in statistics between the two-score fision classifiers and the
classifiers trained on aggregated features. Figure 26 shows the difference between the
aggregated feature classification results and the corresponding visual features.
Aggregating Visual Feature and Semantic Descriptors increases Accuracy of the SVMs,
with Linear SVM showing better differential results than Gaussian Kernel SVM.
Ensemble learning achieved the best Accuracy. Nevertheless, in terms of Accuracy the
performance decreased slightly while still maintaining a higher F-measure.
Performance is also boosted with neural networks, which resulted in a 11.39% increase

in F-measure, but still lost 2.7% Precision.

G Discussion of Supervised Training Results

In this subsection, we take a look at the best set of features for every classifier,
Table 6. The table shows one thing in common amongst the results, Gray visual feature
being part of every combination. This feature conveys statistical information about the
texture of the image, regardless of its color. Semantic descriptors on the other hand did
not seem to have any significance in terms or re-occurrence in the best features.

However, we note that Data06 and Data01 both occurred as the best semantic features
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three times and Data03 twice with Kernel SVM. Another remark is the fact that for

Linear SVM, Ensemble Learning and Neural Networks, feature aggregation (F.

Aggregation) had the lowest Accuracy where on the other hand using Two-score fusion

(Two-score fusion) had the highest.

Table 6 Best Classifier Performances Summary

Kernel SVM Visual Semantic | (%)
Two-score fusion Gist-Grad-Gray-HSV Data03 9072
Multiple-score fusion | Gist-Grad-Gray-HSV-RGB Data06 9162
F. Aggregation Gabor-Gist-Gray-HSV Data03. 9095
Linear SVM Visual Semantic | %
Two-score fusion Gist-Gray-HSV Data01 9243
Multiple-score fusion Gabor-Gist-Grad-Gray-HSV Data04 9221
F. Aggregation Gabor-Gray Data(09 9080
Ensemble Learning Visual Semantic | %
Two-score fusion Gabor-Gist-Grad-Gray-HSV Data01 9221
Multiple-score fusion | Gabor-Gist-Grad-Gray-HSV-RGB Data06 9192
F. Aggregation Gray-HSV Data06 8672
Neural Networks Visual Semantic | %
Two-score fusion Gabor-Gist-Grad-Gray Data(2 92.06
Multiple-score fusion Gist-Grad-Gray-HSV-RGB Data05 91.69
F. Aggregation Gabor-Gray-HSV Data01 89.54

H CA Clustering

Unsupervised learning techniques can be useful when attempting to identify

coherent set of observations without prior information about their actual label. In this

section, damage types are being clustered based on a model that mimics the network in

the human brain.
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1. Visual Clustering

As human beings, we see the image as raw pixels, which is exactly what we
attempt to cluster. However, for comparison purposes, the visual features that achieved
the highest supervised classification results, Gabor-Gist-Gray-HSV, also undergo
clustering. The resulting two clusters are assigned to one of the classes of the damage
type based on the label of the observations that are linked together. The cluster that
includes the most type of observations with the same label, is used as a reference to said
label. We investigate the regular CA approach, the Strong CA, and K-Means clustering
algorithm to serve as a benchmark for the results.

In Figure 27, we notice that the regular CA performs rather well in comparison
with the conventional K-means in terms of Accuracy and F-measure. However as
predicted, by remodeling the neuron function and tuning the parameters of the CA
network itself, STRONG CA demonstrates better performance, with 12.91% rise in

Accuracyand 18.82% increase in F-measure on raw pixel data.
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Figure 27 Performance of Clustering algorithms on pixel data and on visual features

A good understanding of the CA approach requires us to implement it on the
visual features as well. In Figure 27 also, the Accuracy of visual feature clustering is
also presented. Clearly from the graph, we can deduce that the visual features extracted
result in better clusters. We can witness quasi-consistent increase in F-measure of
around 20%. Although regular CA Accuracy on visual features shows a slightly higher
increase that using STRONG CA, STRONG CA still compares better with an Accuracy
of 89.91% vs 86.35% for CA.

2. Semantic Clustering

We also attempt to cluster the annotations associated with the images. Here
also we focus on the semantic descriptor the achieved the best Accuracy in semantic
classification, Data07. Figure 28 includes the Accuracy of Data07 on the different

clustering approaches.
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Figure 28 Performance of clustering algorithms on semantic data

Similar to the visual clustering, STRONG CA ranks chief in comparison with
the regular CA method, while K-means shows a significantly lower Accuracy. The
Accuracy achieved here, 85.76%, is also higher than that obtained from supervised

classification, 83.53%, and a greater F-measure.
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Figure 29 Difference in Accuracy between proposed semantic descriptor and Word2Vec
descriptors

Figure 29 represents the difference in Accuracy between the proposed semantic
approach, and the Word2Vec representations. The positive difference signifies that
clustering the semantic descriptors yielded better results than any of the Word2Vec
representations. Notably, the largest difference is always at STRONG CA, which might
be attributed to the fact the proposed semantic descriptor Accuracy improved the most
when clustered with STRONG CA. 1t is also noteworthy that the as the number of
numeric value representation of the words increases from 2 to 25, the Accuracy on the
regular CA and STRONG CA improves. Opposite to supervised classification,
representing a word with one numeric value, Word2Vec01 lead to the highest Accuracy
among other representations. This can be explained by the inter- and intra-class

distances that are scalable.
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I Error Analysis

In this section, we take a closer look at the misclassifications, visual, semantic
and augmented, that correspond to the classifiers with the best performance in terms of
Accuracy and F-measure.
1. Visual Kernel Classification

Attached in the table are some misclassified entries. These misclassifications
have been grouped, as best as possible, into visually consistent groups, in an attempt to
identify the cause behind misclassifying these subcategories. Some of these errors are
shown.

Table 7 False Positives of Best Visual Classifier
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Table 7 contains some examples of false positives, images that were supposed
to be classified ‘Nature Damage’, but didn’t. Generally, there is some type of
consistency amongst the errors. In part A, all the images share an open field view with
garbage (visually scattered colors); B shows houses in an urban location with slight
damage (broken trees); C is also a group of broken branches, but this time in nature
scenery as opposed to the countryside; Finally, in D, groups of people are present in the
damaged locations. False negatives are not as high as false positives; 21 vs 105.
Nevertheless, a pattern may be found as well.

Table 8 False Negatives of Best Visual Classifier

In Table 8, part A seems to include infrastructure damage to property in a
nature environment. The abundance and continuity of the green color is evident; part B
share a ‘flat’ ground in nature environment. The absence of chunks of rubble or broken

buildings may have caused the misclassification.
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2. Semantic Kernel Classification

This subsection tackles the semantic misclassifications. In Table 9, the
misclassified phrases are highlighted. TP and TN represent the frequency of each phrase
in the 2 classes, whereas FP and FN are the number of phrases that have been
misclassified, and R is the ratio of TP over TN. Take for example the phrase ‘bring,
damage, storm’, it is associated with 5 * Nature Damage’ images and only two ‘ Built-
Infrastructure Damage’ images; i.e. ratio of 0.4. When training on the sematic data, this
phrase is biased towards the negative class, and subsequently misclassified.

Table 9 Sample Semantic Misclassification phrases

Phrase TP | TN | FP |FN | R
lift, hit, death, earthquake, magnitude, toll, least 1 1 1 1 1
hit, absolutely, damage, quake, reported, severe 1 1 1 1 1
hit, earthquake, quake, magnitude, coast 3 |1 1 10 |3
kill, earthquake, people, least 1 |1 1 10 |1
damage, storm, reported 1 |2 |2 |1 0.5
bring, family, damage 1 |2 |2 |0 |05
bring, damage, storm 2 |5 |0 |2 |04
damage, quake, toll 2 12 2 |2 1

Some phrases that have occurred at least once in the negative class and the
positive class are misclassified as positive, for example kill, earthquake, people, least.
The phrase ‘damage, storm, reported’ is present twice as much in the negative class
than the positive class, ratio of 0.5. During testing, the positive phrase is misclassified,

and the one of the negative phrases is also misclassified. These examples highlight the
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fact when it comes to describing damage images on Twitter, there is no fixed set of
phrases for every class that can be used as a template for training. In some cases,
phrases are present in only one class, which is not enough for learning.
3. Score Learning Classification

The best augmented results are obtained through applying a linear SVM with
two-score fusion on the scores of the entries, with an Accuracy of 92.43%. Some
misclassified images and their corresponding annotations are shown in Table 10. It is
worth mentioning however that performance of Two-Score Learning using Linear SVM
for Gabor-Gist-Gray-HSV-Data01 resulted in the same performance of that of Gray-
Gist-HSV-Data0l, however since the latter performance is achieved with less feature
representation, we emphasize it instead.

Table 10 False Negatives of Best Augmented Classifier

Group 1 Images

Group 1 texts Group 2 Images Group 2 texts
Rise, damage, earthquake v .4 | Rise, death, earthquake,
year, toll

death, damage, earthquake,
More, dead

Kill, lay waste to,
damage, earthquake,
seashore, magnitude,
people
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rise, death, earthquake,
seashore, strike, toll,
powerful

Lay waste to,
earthquake

rise, death, damage,
earthquake, survivor, toll

Rise, country, damage,
earthquake, hit, more,
magnitude, toll, people,
dead

Just as for the visual misclassifications, some of the images in augmented
classification share visually similar traits, however this time, they share semantic words
as well. The column of images to the left, Group 1 images, corresponds to group of
images that seem to have rubble and part of broken house in common. Looking at their
annotations, Group 1 texts, a set of mutual words presents itself, for example: ‘damage,
death, earthquake, rise’. Images in column Group 2 Images exhibit broken buildings
that are somehow still intact. Pairs of words that are mutual are found as well, such as
‘earthquake, damage, lay waste to’. It is noteworthy that these 2 sets of images where
chosen based on their appearance rather than on their annotations. The fact that the
annotations are almost similar highlights the fact that people use the same set of words
when describing some visually similar attachments.

Table 11 includes some examples of false positives. Unlike the false negatives,

these images do not share some evident features, but they do however share some
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similarities with ‘Infrastructure Damage’ images. Some of these similarities are

presented through the images in column Group 1 images. These images represent

‘Nature Damage’ in an urban environment, with houses and roads. The semantics in

column Group 1 Texts have mutual words as well, mainly ‘damage, storm, cause’.

Images in column Group 2 Images contain nature-like scenarios, which are a bit

different from standard images presented in Figure 2. The term ‘earthquake’ is shared

amongst them.

Table 11 False Positives of Best Augmented Classifier

Group 1 texts

Group 2 Images

Group 2 texts

Group 1 Images

Damage, storm Aid, country,
earthquake

Damage, Earthquake,

earthquake, cause, hit

hit, magnitude,

severe, storm

Damage, cause, damage

more

Damage, report, Kill,

storm earthquake,
hit, seashore,
magnitude,
least
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4. Low-Level Gaussian Kernel SVM vs Two-score Linear SVM

In this section, we address how the misclassifications of low-level Gaussian
kernel SVM differ from Two-score Linear SVM. We do so first by comparing the
amount of false images from the best low-level classification obtained via Gabor-Gist-
Gray-HSV, Classifier 1-Visual, with the false images from the best two-score learning
obtained by augmented Gabor-Gist-Gray-HSV visual features with Data0l, Classifier
1-Augmented. We also compare the false images from the best two-score learning
classification, obtained from Gray-Gist-HSV-Data0l, Classifier 2-Augmented, with the
false images from the low-level classifier of the corresponding visual feature, Classifier
2-Visual. Misclassifications of Classifier Data0l are also taken into consideration.
Table 12 indicates the number of false positives and negatives of above mentioned
classifiers.

Table 12 Low-Level Misclassifications vs Two-Score Learning Misclassifications

Classifier False Positives False Negatives
Classifier Data01 205 22
Classifier 1-Visual 105 21
Classifier 1-Augmented 25 77
Classifier 2-Visual 108 22
Classifier 2-Augmented 25 77

Notice that in both cases, the number of false positives drops significantly,

whereas the number of false negatives increases as the semantic information is
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augmented with the low-level features. This can be attributed to the ambiguity of the
annotations used to describe the images. As addressed in the Semantic Kernel
Classification section, several filtered annotations are assigned to both classes. It would
appear that some positive observations, represented by the new feature vector consisting
of the scores from the low-level and semantic classifiers, are being grouped with the
negative observations, as a result of the optimal separation plane, considering this is a
linear SVM. In both cases however, the Accuracy increases with the Two-score
learning. Some errors remain even after Two-score learning. For both Classifier 1 and
Classifier 2, the same observations remained misclassified after two-score learning,
shown in Table 13. Although there is no apparent visual indication that necessitates this
confusion in the classifier, there may be a hidden feature that is shared amongst the
classes, to which these observations are misclassified.

Table 13 Observations that remained misclassified as False Negatives

earthquake earthquake,
aid, survivor
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Table 14 Observations that remained misclassified as False Positives

damage, storm

damage, cause,
storm

damage, cause,
more

damage, report,
storm

&

o i
—

damage,
earthquake,
cause, hit,

aid, country,
earthquake

empty

The surviving false negatives are both located in a forest-like area. The

affected places in both images are the houses themselves, nonetheless, the holistic scene

in the image represents nature. The annotations of the false positives are not distinct, yet

share some keywords such as damage, storm and empty. Since we rely on annotations

to improve the performance, it appears that these annotations do not help in this

distinction, since they may be misclassified originally. A deeper look at the annotations

1s shown in Table 15.
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Table 15 Annotations of Misclassified Observations

Phrase TP TN FP FN

aid, earthquake, survivor 3 0 0 0
earthquake 90 11 11 0
damage, cause, storm 1 6 0 1
damage, report, storm 0 3 0 0
damage, storm 10 8 8 0
damage, cause, More 1 1 1 1
aid, country, earthquake 0 1 1 0
damage, earthquake, cause, hit, magnitude, severe, storm 0 2 2 0
Nothing 57 24 24 0

The first two rows correspond to the false negative observations. The phrase in

the first row is correctly classified every time, while the term ‘earthquake’ fails to be

recognized as a true negative since the majority of the observations made of this phrase

are labeled as true positives. This fact should contribute to the improvement of the

augmented results, so failure of improvement can be attributed to the value representing

the image. For the false positives, we can say that the observations failed to be correctly

classified when augmented since the phrases associated with them are also

misclassified, except for the first two phrases in light blue, that had no false positives

during phrase classification.

5. CAvs Strong CA
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Similar to Table 12, we take a look on the misclassifications that occurred after

implementing Strong CA. Table 16 highlights the number of false positives and

negatives from both implementations

Table 16 Misclassification Values of CA and Strong CA

Approach False Positives | False Negatives
Raw CA 177 181

Raw Strong CA 164 20

Visual Features CA 62 108

Visual Features Strong CA 58 78

From the numbers mentioned above, we deduce that Strong CA is better than

regular CA, where in both cases, visual features and raw pixel clustering, the number of

false positives and false negatives decreased. However, some of the originally

misclassified images remained misclassified after the clustering with the modified

algorithm. A sample of the images are presented in Table 17.

Table 17 Sample of Surviving Misclassification of Raw Clustering

False Positives
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By inspecting the images in Table 17, we notice that the false positives contain
pixel values (colors) that are usually present in an urban environment, mainly the grey
color. False negative on the other hand, albeit contain grey, have also brown and green
present in them, making it hard for the clustering to recognize as an infrastructure
damage image.

Table 18 Sample of Surviving Misclassification of Visual Features

False Positives _ False Negatives

Table 18 includes a sample of the misclassifications carried on after using
Strong CA on visual features. These images definitely contain similar features with the
misclassified class in terms of shape, texture, or color.
6. Remarks

The misclassified images support the following conclusion, ‘damage’ in itself

does not a have a proper visual identification. The damage in the images may be that of

89



nature, i.e. fallen tree, mudslide, etc., nonetheless some images are being identified as
infrastructure damage. A house may be broken or wall destroyed, but if it is present in
natural scene, some are being identified as nature damage. This assumption may stem
from the fact that ‘damage’ in itself is not a fixed term, and has no fixed visual
representation. Moreover, damage can be relative, it is a fuzzy term. It can be used to
describe a broken window, or a broken wall, just as confidently as describing fallen
building or a chopped tree. With no proper definition of damage, classification remains
tricky. Tricky in a sense that features can’t definitely capture ‘damage’. For example, a
fallen building exhibits vertical and horizontal edges similar to a fallen tree, both are
damage, but distinct nevertheless. For this reason, we used features from various spaces,
to try to properly model an image, and ultimately understanding the type of damage

present in it.
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CHAPTER VI

CONCLUSION

Natural disasters leave behind chaos and disruption. This leaves first
responders and organizations overwhelmed with pressuring decisions based on
uncertain variables which is the result of poor assessment of the types of damage that
occurred. In this paper, we present a novel hybrid approach in humanitarian computing.
We propose a new disaster-related categorization for scene classification: ‘types of
damage’ with two classes: ‘ Infrastructure’ and ‘nature’ damage. This helps relieve
involved parties from tedious activities such as manually checking the news and social
media for a proper damage assessment, which helps create a better response. To test our
theory, we created a database based on information gathered from Twitter. These tweets
are initially manually labeled via crowdsourcing. In our current framework, the
observations are represented using both low-level features and semantic attributes. The
proposed semantic processing scheme includes grouping the words based on the mutual
words found in their WordNet synsets. A separation technique is proposed to keep
closely connected words together, splitting the large groups into smaller ones based on
the joining words frequency. The annotations are then projected on several bag-of-
words to obtain binary semantic descriptors. After testing several feature combinations,

the best visual features Accuracy was reached using Gabor-Gist-Gray-HSV features,
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90.65%, which is a combination of shape, color, and texture features. The best semantic
features Accuracy was reached using Data07, the semantic descriptor created by
projecting the annotations on the bag of words formed via the 7" WordNet synsets, with
Gaussian Kernel SVM, 83.53%. The Accuracy improved to 92.24% when two-score
learning utilized the decision and score from Data0l and Gist-Gray-HSV, to train a new
Linear SVM. The complete bag of words used for creating Data0l and Data07 can be
found in the appendix. Although the increase in Accuracyis not significant, the
performance in general, Precision, Sensitivity, and Recall, are all improved once visual
and semantic features are augmented together. A modified cortical algorithm is also
created that is more biologically plausible, were we build on the concept of strength
encoding from the anatomy. In this modified version, a strong input leads to a higher
frequency of spikes at the output of the neuron. The clustering Accuracy showed an
increase against the regular CA on both visual and semantic levels, which can be
attributed to the more human-like model of the neuron. The work presented in this paper
can be considered the first attempt to identify types of damage, and most importantly
figuring out the best way to visually represent it.

Future work includes moving further into sub-class understanding, such as
buildings or road damage for built-infrastructure, and/or hydrological or landslide under

nature damage. Additionally, we will take a step back to look into damage/non-damage
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classification. This will eventually facilitate damage image indexing and retrieval. In
terms of image representation, other visual features can be investigated. For semantic
processing, future steps might include leveraging prior knowledge of prominent words
in forms of weights, including negation, and also pursuing other representations that
serve to differentiate between the same phrases being labeled as both true positives and
true negatives. The proposed semantic approach can be also employed to different
languages as long as the bag of words are properly defined. Online learning can also be
explored by updating the weights of the classifier based on the decision and score of the

incoming observations, forcing this approach to adapt with emerging tweets.
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28.
29.
30.
31.
32.

APPENDIX

I.  Bag of Words corresponding to Data0l:

rise,rises,ascent,acclivity,raise,climb,upgrade,climbs,lift,arise,move up,go up,come
up,uprise,risen,rising,ascension,wage hike,hike,wage increase,salary increase,raises
death,decease,expiry,perish,exit,pass away,expire,kick the bucket,cash in one's chips,buy the
farm,conk,give-up the ghost,drop dead,pop off,choke,croak,snuff it,died,deaths
photograph,photo,exposure,pic,photos,movie,film,moving picture,moving-picture show,motion
picture,motion-picture show,picture show,flick,pics

kill killed,putting to death,kills,toss off,pop,bolt down,belt down,pour down,down,drink
down,downed

home,place,homes,family,household,menage,families,topographic point,spot,property
aid,assist,assistance,help,care,attention,tending,helps,assisting

lay waste to,waste,devastate,desolate,ravage,scourge,devastating,devastates,devastated
country,state,land,area,areas,dry land,ground,solid ground,terra firma
damage,harm,impairment,injury,hurt,trauma,injuries,damaged

. report,describe,account,reported,study,written report,reports
. earthquake,quake,temblor,seism,earthquakes,quakes

. cause,do,make,caused,causes,done

. hit,hits,impinge on,run into,collide with,struck

. injure,wound,injured,injures

. More,Thomas More,Sir Thomas More,more

. seashore,coast,seacoast,sea-coast

. survivor,subsister,survivors

. strike,work stoppage,strikes

. year,twelvemonth,yr

. deadly,lifelessly

. magnitude

. toll

. people

. least

. dead

. powerful

. severe,terrible,wicked,awful,dire,direful,dread,dreaded,dreadful, fearful,fearsome, frightening,hor

rendous,horrific

wind,air current,current of air,winds
storm,violent storm,storms
landslide,landslides

tree,trees

nature
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1I.  Bag of Words corresponding to Data07:

lift,rise,rises,originate,arise,develop,uprise,spring up,grow,risen,wax,mount,climb,surface,come
up,rise up,rising,go
up,climbing,pilfer,cabbage,purloin,pinch,abstract,snarf,swipe,hook,sneak,filch,nobble,lifted
bring,get,convey,fetch,induce,stimulate,cause,have,make,causes,getting,experience,receive,unde
rgo,got,taken,took,lend,impart,bestow,contribute,gets
family,household,house,home,menage,homes,kin,kinsperson,families,houses,place
hit,hits,strike,impinge on,run into,collide with,strikes

kill,killed,kills,stamp out,killing

help,aid,helping,helps

absolutely,perfectly,utterly,dead

death,deaths

deadly,mortal

. walk out,struck
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
217.
28.
29.
30.

earthquake

damage

quake

magnitude

toll

people

least

more

powerful

coast

year

survivors

fart,farting, flatus,wind,breaking wind,winds
video,picture,pictures,depict,render,showing
tree,shoetree,trees

storm,storms

nature

caused

reported

severe
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