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An Abstract of the Thesis of

Bilal Abdel Nasser Hammoud for Master of Engineering
Major: Mechanical Engineering

Title: Optimal Path Planning for a Class of Nonholonomic Systems with Drift

For a system to be completely autonomous, many subsystems need to inter-
act and ensure that the system executes the required tasks without any human
intervention or guidance. One subsystem that computes the trajectory which an
autonomous agent should traverse while going from an initial configuration to a
predetermined final configuration is an essential part to ensure complete auton-
omy. Solving the path planning problem is a major research area in the field
of autonomous robotics. Researchers tend to use simplified kinematic models to
obtain solutions, frequently analytic, for the planned trajectories of autonomous
agents.

This thesis introduces a new kinematic model to describe the planar motion
of an Autonomous Underwater Vehicle (AUV) moving in constant current flows.
The AUV is modeled as a rigid body moving at maximum attainable forward
velocity with symmetric bounds on the control input for the turning rate. The
model incorporates the effect a flow will induce on the turning rate of the AUV
due to the non-symmetric geometry of the vehicle. The model is then used to
characterize and construct the minimum time paths that take the AUV from a
given initial configuration to a final configuration in the plane. Two algorithms
for the time-optimal path synthesis problem are also introduced along with sev-
eral simulations to validate the proposed method.

After that the assumption of maximum forward velocity is relaxed. Then a
new type of paths is investigated. The trajectories computed allow the system
to travel between two predetermined configurations while minimizing the total
power consumption. Finally, the results are obtained numerically and geometric
interpretations are presented.

vi



Contents

Acknowledgements v

Abstract vi

1 Introduction 1
1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background Material 10
2.1 Systems with Constraints . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Holonomic Constraints . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Nonholonomic Constraints . . . . . . . . . . . . . . . . . . 11

2.2 Dubins’ Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Model in Constant Currents . . . . . . . . . . . . . . . . . . . . . 13
2.4 Optimal Control & Pontryagin’s Minimum Principle . . . . . . . . 14

2.4.1 The Cost Functional . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Pontryagin’s Minimum Principle . . . . . . . . . . . . . . . 14
2.4.3 Example: The Double Integrator . . . . . . . . . . . . . . 16

2.5 Two Point Boundary Value Problems . . . . . . . . . . . . . . . . 17
2.5.1 Shooting Method . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Relaxation Method . . . . . . . . . . . . . . . . . . . . . . 18

3 New Kinematic Model in Constant Currents 20
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Model Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Comparison with Previous Models . . . . . . . . . . . . . . . . . . 22

4 Minimum Time Trajectories 23
4.1 Time Optimal Controls . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Case where λθ = 0 . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 Case where λθ 6= 0 . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Structure of Motion Primitives . . . . . . . . . . . . . . . . . . . . 25

viii



4.2.1 Maximum Turning Rate Segments . . . . . . . . . . . . . . 26
4.2.2 Straight Segments . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Optimal Path Synthesis . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Concatenations of Possible Path Segments . . . . . . . . . 27
4.3.2 Non-Convex Speed Polar Plots . . . . . . . . . . . . . . . 28
4.3.3 Convex Speed Polar Plots . . . . . . . . . . . . . . . . . . 29

4.4 Convexity Condition . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 CSC Type Path Synthesis . . . . . . . . . . . . . . . . . . . . . . 30
4.6 CCC Type Path Synthesis . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Minimum Energy Trajectories and Future Work 37
5.1 Optimal Control Formulation . . . . . . . . . . . . . . . . . . . . 37
5.2 Manually Assigning tf . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Case 1: tf = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Case 2: tf = 40 . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.3 Case 3: tf = 7.5 . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 A Standard Form Two Point Boundary Value Problem . . . . . . 43
5.3.1 Case 1: Unbounded Control Input . . . . . . . . . . . . . . 45
5.3.2 Case 2: Bounded Control Input . . . . . . . . . . . . . . . 45

5.4 Analysis of Bounded Control Inputs . . . . . . . . . . . . . . . . . 46
5.4.1 Bounds on λx and λy . . . . . . . . . . . . . . . . . . . . . 47
5.4.2 Bounds on λθ . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.3 Geometric Interpretation . . . . . . . . . . . . . . . . . . . 49
5.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Penalizing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.1 Case 1: Time and control input with same weights . . . . 52
5.5.2 Case 2: Total time of travel with a very high cost . . . . . 53

5.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



List of Figures

1.1 The basic building blocks of an autonomous robot . . . . . . . . . 2

1.2 Hybrid Autonomous Underwater Vehicle . . . . . . . . . . . . . . 3

1.3 Examples of Available Wheeled Mobile Robotic Platforms . . . . 4

2.1 Dubins Car Possible Optimal Paths . . . . . . . . . . . . . . . . . 12

2.2 Trochoidal path due to a left maximum turning rate in constant
flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Shooting Method for a 1-Dimensional Differential Equation . . . . 18

2.4 Relaxation Method for a 1-Dimensional ODE with an Initial Guess 19

3.1 Vehicle’s forward speed ν, flow speed η and their corresponding
direction angles θ and φ . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Rotational model vs Irrotational model for various control inputs 22

4.1 Full Period Maximum Effort Left Turns starting form different
initial headings under fixed flow conditions result in a fixed dis-
placement vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Speed Polar Plot with Non-convex Region and a Convex Hull . . 28

4.3 Polar plots of the maximum net speed for different η . . . . . . . 30

4.4 CSC path synthesis for qf = {8, 4, π}, η = 0.35, and φ = π
3

. . . . 31

4.5 Li and Lf with qi = (0, 0, 0), qf = (0, 0, π) and multiple right
turning segments starting on Li . . . . . . . . . . . . . . . . . . . 33

4.6 Time optimal paths for cases where only paths of type CSC are
possible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7 Cases where both types CSC and CCC are time optimal candi-
dates for η = 0.35, φ = π

3
. . . . . . . . . . . . . . . . . . . . . . . 35

4.8 Optimal paths for the Rotational model versus the Irrotational
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 case 1 tf = 1 and J = 236.117 . . . . . . . . . . . . . . . . . . . 41

5.2 case 2 tf = 40 and J = 64.8377 . . . . . . . . . . . . . . . . . . . 42

5.3 case 3 tf = 7.5 and J = 0.432 . . . . . . . . . . . . . . . . . . . . 42

5.4 Total travel cost J for various total travel time tf . . . . . . . . . 43

5.5 Total trajectory length L for various total travel time tf . . . . . 43

x



5.6 case 1 Normalized final time tf with unbounded control inputs,
J = 1.76 and tf = 2.566 . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 case 2 Normalized final time tf with bounded control inputs, J =
0.000896 and tf = 7.7233 . . . . . . . . . . . . . . . . . . . . . . . 47

5.8 A region plot of the values satisfying the existence condition of θ̇∗(t) 50
5.9 φ = π

2
, qf = {5, 3, 0}, J = 1.88 and tf = 17.547 . . . . . . . . . . . 51

5.10 φ = −π
2
, qf = {5,−5, 0}, J = 1.376 and tf = 21.895 . . . . . . . . 52

5.11 φ = −π
2
, qf = {5,−5,−π

2
}, J = 1.79 and tf = 22.9 . . . . . . . . . 52

5.12 case 1 where α = 1, β = 1, γ = 0.5, J = 1.005, and tf = 6.263 . . 53
5.13 case 2 where α = 1, β = γ = 0.0001, J = 1, and tf = 4.395 . . . . 53



You will come to know that what appears today to be
a sacrifice will prove instead to be the greatest

investment that you will ever make.
Unknown



Chapter 1

Introduction

The reliance on machines that operate on their own without any human in-
teraction is increasing. Examples of such robots include, but not limited to, the
Roomba Vacuum Cleaning Robot, the Google Self Driving Car and surveillance
drones. The development of such systems is still in its early stages and it is
a long way before completely autonomous robots will be able to take a part in
our daily life and operate safely without the use of any human guidance or control.

A completely autonomous robot will comprise of many subsystems working
together. A high level mission planning system is required to plan the tasks a
robot is supposed to execute. A path planning algorithm then generates the states
that the robot must track during a certain time interval based on its current state
in order to execute the desired mission or task. A low level controller then controls
the actuators to ensure that the robot tracks the desired trajectories generated
by the path planning algorithm. In order to close the feedback loop, perception is
achieved through a collection of sensors that measure certain outputs of the robot,
such as encoders for angular or rotational measurements, inertial measurement
units for acceleration readings, GPS for coordinate measurements and many other
sensors. However, it is not possible to install sensors to read all the states needed,
so an observer or a state-estimator is needed to estimate the remaining states
based on the readings of the sensors. A simple block diagram presenting the
basic building blocks of an autonomous robot is shown in Fig.1.1. The robot’s
estimate of its current state could be used as the starting or initial configuration
for the planning algorithm in order to generate the trajectory connecting it to
the final configuration desired.

1.1 Literature Review

This work will focus mainly on path planning for autonomous robots. Plan-
ning algorithms such as the A∗ algorithm [1], Rapidly-Exploring Random Trees
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Figure 1.1: The basic building blocks of an autonomous robot

(RRT) [2], and many others presented in [3] use waypoint planning approaches.
Such approaches perform well for robots that are not constrained in motion, also
known as holonomic robots. However, for robots with nonholonomic constraints
the approaches presented earlier are not sufficient and would normally produce
trajectories that are not feasible or cannot be traversed by nonholonomic robots.
For a path planning algorithm to generate feasible trajectories for nonholonomic
robots, a thorough study of the constraints imposed on the system is required,
only then a planning algorithm can be devised to take into consideration the
specific nonholonomic constraints defining the type of movements that a cer-
tain robot can execute. Taking the nonholonomic constraints into consideration
further complicates the path planning problem. Holonomic and nonholonomic
systems and robots are described in more details later in chapter 2.

The class of nonholonomic systems of interest in this work includes systems
possessing similar constraints to that of a regular car but traveling in a medium
with a constant drifting field. This work is motivated by the Hybrid Autonomous
Underwater Vehicle (AUV) shown in Fig.1.2. This AUV doesn’t have the capa-
bility of rotating in its position or moving in a lateral or a sideways direction,
very similar constraints to that of a regular car. This work can also be applied to
Unmanned Aerial Vehicles flying in wind fields or for ships and surface vehicles
traveling in the presence of currents.

The behavior of such systems was modeled on the kinematics level in the
late 1880’s where Markov introduced the following minimum time problem in [4]:
given any initial and final positions and orientations in a plane, what is the min-
imum length trajectory given that there exists an upper and lower bound on the
curvature of the curve? In 1957, L. E. Dubins [5] presented his solution to the
Markov problem showing that a solution exists and comprises of two maximum
turning rate segments joined by a straight line, or three maximum turning rate
segments if the Euclidean distance between the initial and final positions is less
than four minimum turning radii. While Dubins solved the problem using geo-
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Figure 1.2: Hybrid Autonomous Underwater Vehicle

metric arguments only, Boissonnat et al [6] solved the minimum time problem by
using an optimal control approach. The complete path synthesis problem for the
Dubins car model was solved by Bui et al [7].

Many variations of the Dubins-Markov problem were presented later on.
Reeds and Shepp [8] solved the minimum time problem for a Dubins car that
goes both forwards and backwards, thereby introducing cusps to the solution
presented by Dubins. Soueres and Laumond [9] later developed a complete study
to provide a method of selecting the proper path connecting any two configura-
tions.

With most of the minimum time path planning work being done on car like
robots, Balkcom [10] presented the minimum time paths for a differential drive
robot similar to the robot shown in figure 1.3a in an obstacle free plane. Balk-
com [10] also proved the existance of optimal controls. After 40 different classes
of candidate time optimal trajectories were identified. Finally and algorithm to
generate time optimal trajectories between any two configurations is provided.
In [11] Balkcom also investigated the minimum time problem but for an omni-
wheeled robot, shown in figure 1.3b. For a regular omni-wheeled robot it is clear
that the shortest path is a straight line, Balkcom studied omni-wheeled robots
that can move more quickly in some directions than others. The work presented
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in [11] provided analytical solutions for the fastest trajectories between any two
configurations. The time optimal trajectories for the omni-wheeled robot com-
prise of spins in place, circular arcs and straight lines parallel to the wheel axles.
Balkcom then identified four classes of candidate concatenations of time-optimal
segments.

(a) Pololu 3PI Differential Drive
Robotic Platform

(b) Nexus Robots Omni-wheeled
Robotic Platform

Figure 1.3: Examples of Available Wheeled Mobile Robotic Platforms

A generalization of Dubins and Reeds and Shepp trajectories was presented
by Furtuna and Balkcom in [12]. Furtuna described the sequence of rotations
and translations required to generate a minimum time trajectory connecting two
configurations of a rigid body belonging to SE(2). Furtuna then developed an
algorithm that generates a finite set of structures of optimal paths given a set of
optimal segments or controls.

In [13] Chitsaz and LaValle introduced the Dubins airplane model extending
the Dubins car model into 3D space by assuming an independent control over
the altituted. Then with the help of Pontryagin’s Maximum Principle the opti-
mal segments building up the optimal trajectories came out to be similar to that
of Dubins car along with pieces of planar elastica added to them. McGee and
Hedrick [14] introduced a kinematic model for an airplane moving in constant
wind currents in SE(2). The model introduced is similar to a Dubins car model
with constant drift terms added to the translational components of the model.
McGee and Hedrick then proved that the set of Dubins trajectories is incomplete
in the presence of wind. To get the complete solution McGee and Hedrick formu-
lated the problem as a virtual moving target problem then presented an iterative
method to get the complete solution. Later, Bakolas and Tsiotras [15] considered
a combination of the Markov-Dubins problem and the Zermelo problem to study
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the motion of an airplane in constant wind fields. They exploited the optimal
control structure to show that even though the control structure is similar to that
of a Dubins problem, the synthesis problem turns out to be significantly different.
Considering time varying wind currents or vector fields, McNeely [16] proved the
existence and uniqueness of minimum time trajectories and then introduced an
algorithm for obtaining the minimum time paths for such vehicles.

Rysdyk [17] explained that an airplane moving in a constant flow field and
executing maximum turning rate curves would traverse a trochoidal path. Us-
ing the results obtained by Rysdyk, Techy and Woolsey [18] derived analytical
solutions for the minimum time path planning problem of a planar airplane in
a constant flow field. Many variations of the problem described earlier were ex-
tensively studied later on. For example, Bakolas and Tsiotras [19] considered a
Dubins car model having non symmetric bounds on the steering control input.
The structure of the optimal control is the same as that of the Dubins model but
the different turning radii to each side affect the synthesis problem and furthur
complicate it. Choi [20] also studied Dubins car and airplane models belonging
to SE(2) while experiencing severe damages or control failures. In the presented
cases a unidirectional constraint is imposed on the controls and the lower and
upper bounds on the turning rate take the same sign, meaning that the vehicle
is always rotating to one side at a turning rate ∈ [a, b] where a and b are of
the same sign. Choi then solved the minimum time path planning problem and
extended the planar results to the planning of aircraft emergency landing.

On the other hand, and inspired by sea vessels traveling in ocean currents,
Dolinskaya [21] presented a model where the direction dependence of the mini-
mum turning radius and the maximum forward velocity of a ship traveling in
ocean currents is considered. Later, Dolinskaya and Maggiar [22] character-
ized the time optimal trajectories of a vessel traveling in anisotropic (direction-
dependent) environments where a more generalized model of Dubins car is used
to show that there exists an optimal path that is a subset of a path of the type
CSCSC where C denotes a maximum turning rate curve to the left or right and S
represents a straight line. At the same time, Chang [23] developed similar work,
where the minimum turning radius of robots working in mines depends on the
slope and nature of the ground making it direction-dependent. In both cases, [22]
and [23], the minimum time path planning problem was addressed, and a general
characterization of the optimal path structures for general direction-dependent
models was discussed.

The optimization criterion considered in all the work presented previously was
the total time of travel between two configurations. Another optimization crite-
rion considered by researchers earlier is the total energy expenditure or the total
control effort required to travel between two predefined configurations. In [24],
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Walsh et al. studied a particular problem known as the Landing Tower Prob-
lem. The authors of [24] formulated the problem as an optimal control problem
on SE(3), then the solution is presented using Pontryagin’s maximum principle
and numerical optimization methods. The system is presented as a left invariant
control system on SE(3) and the cost minimized is defined as the total control
expenditure along the path traversed.

Mukherjee and his colleagues considered the Dubins car model in [25] with
the aim of generating minimum control trajectories. First using Pontryagin’s
maximum principle the problem is converted into a two-point boundary value
problem and solved using numerical relaxation methods available for such prob-
lems. The authors then point out similarities between the energy-optimal motion
of the two-wheeled mobile robot and the motion of a pendulum in a gravitational
field. An analytical solution for the minimum energy paths is obtained in terms
of Jacobi Elliptic Functions. Later, Duleba and Sasiadek [26] presented a modi-
fication of the well know Newton Algorithm for the aim of generating minimum
energy trajectories for a general class of driftless nonholonomic systems.

Mei et al. presented in [27] a new approach for finding energy efficient trajec-
tories for omni-wheeled robots, where the motors speed is related to their power
consumption through a polynomial map. The velocity of the robot is then de-
rived as a result of a linear transformation of the wheels’ velocities. After that
the energy consumption for different planning methods was studied as a function
of the area being scanned by the mobile robot. Finally the results obtained were
validated through experimentation.

Few years later Moll and Kavraki used similar approaches to solve path plan-
ning problems for flexible wires used in surgeries. In [28] the authors parametrized
low energy configurations corresponding to the flexible wire. Then the curves sat-
isfying specified end constraints for the fixed length wires were presented. Finally
the authors developed three different methods for optimizing the energy within
the wire. Moll and Kavraki presented atfer that a new approach in [29] for plan-
ning trajectories that guarantee stable configurations for the flexible wires. These
stable configurations correspond to minimum energy curves that are parametrized
by the authors. The number of parameters in the work presented depends on the
complexity of the curves. The planning algorithm presented automatically varies
the number of parameters while computing paths from one minimum energy curve
to another minimum energy curve.

The energy optimal paths for a differential driven wheeled mobile robot were
studied by Kim in [30]. The author built his formulation based on Dubins car
model but including independent controls on both forward velocity and steering.
First he derived a closed form solution for the minimum energy control input
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along a straight line trajectory. Next the author investigated the turning trajec-
tories corresponding to minimum energy maneuvers. Finally an iterative search
method was used to find a trajectory that comprises of the derived segments
such that it minimizes the total cost of the robot’s battery energy consumption.
Spangelo and her co-authors [31] used numerical techniques to plan energy op-
timal paths for a solar powered aircraft in a loitering mission. Periodic splines
were first defined then the other parameters related to the aircraft were optimized.

Tokekar, Karnad and Lsler aimed in [32] to minimize the battery energy con-
sumption for car like robots when traveling along a given path. To achieve this
goal the authors modeled the energy consumption of the robot’s DC motors.
Then closed form solutions were presented for the case when the robot’s maxi-
mum velocity is unbounded and the case where the velocity is bounded. Finally
a calibration method was presented to estimate the model parameters and exper-
iments were conducted on a costume built robot to validate the results obtained.
Later, Tokekar and his colleagues studied in [33] the problem of finding energy
optimal paths and velocity profiles to minimize the battery energy consumption
during a mission for a car like mobile robot. First the problem of finding an
energy optimal velocity profile for a given path was studied. Closed form so-
lutions for the energy optimal velocity profiles were derived for a desired path.
After that, the analytic solutions of the velocity profiles were used as subroutines
in a more general algorithm to find the minimum energy trajectories. Finally,
the results of experiments conducted for following optimal velocity profiles were
presented.

In [34], Maclean and Biggs approached the problem of finding energy optimal
trajectories for a simple wheeled robot modeled as a Dubins car using a completely
different method. The authors first formulated the problem as a coordinate free
optimal control problem on SE(2). Then, an invariant function also known as a
Casimir function was derived. The surfaces formed by the control hamiltonian
and the Casimir function come out as a quadratic surfaces. The authors pointed
out that the intersection of such surfaces forms an elliptic curve. Maclean and
Biggs parametrized the control inputs in terms of Jacobi elliptic functions then
a convex optimization method was used to solve for the parameters defining the
control inputs given certain boundary conditions (initial and final configurations
of the robot). Recently, Kularatne [35] developed a method for both time and
energy optimal path planning for autonomous marine robots. The kinematic
model used was similar to that used by Techy [18] and others. However Kularatne
presented a graph search based method to solve the path planning problem for
general flows.
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1.2 Problem Statement

Most of the work done previously considered the agent as a particle moving
either in a 2D plane or in a 3D space with a heading angle defined. Consid-
ering the system as a particle ignores any interaction between the system and
the surrounding environment other than translational effects due to surrounding
winds or current flows. Given a start and an end configuration in SE(2) find a
time optimal trajectory as well as an energy optimal trajectory that connect two
provided configurations such that there exists a constant flow affecting both the
position and orientation of the robot and provided that the robot has bounded
control inputs, namely its velocity and steering rate.

1.3 Thesis Outline

This thesis builds upon prior work and is closely related to the work done
by Boissonnat [6], Techy [18], Dolinskaya [22] and many others. In Chapter 2
necessary background material that this work heavily relies on is introduced. A
brief discussion of holonomic and nonholonomic constraints is carried out. Du-
bins car model and its later modification to incorporate constant currents are
then introduced. After that, basic results in optimal control theory are presented
including Pontryagin’s maximum principle. Finally, numerical methods used to
solve boundary value problems that typically emerge from the use of Pontryagin’s
maximum principle are discussed.

In Chapter 3 the motivation for developing a new model is discussed. Then
the intuition behind the new model is introduced. After that the model is de-
rived. Finally simulations are carried out to present the importance of the new
model and compare its results with previously developed models.

Chapter 4 presents an optimal control approach to formulate the minimum
time path planning problem. Applying Pontryagin’s Maximum Principle to the
problem defined makes it possible to derive discrete optimal control input values.
Next, and with the help of geometric and analytical arguments, a proof relating
the discrete control values to fixed geometric shapes is presented. After that three
different families of possible concatenations are defined based on the work done
by Dolinskaya [22]. A condition is then imposed on the speed of the flow field to
limit the possible concatenations into two families only. Then two algorithms to
construct all possible trajectories belonging to the two families of trajectories are
presented. Finally simulations are carried out to show the resulting trajectories
in comparison with previous models used for such problems.
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Finally chapter 5 reformulates the optimal control problem into a minimum
control effort or minimum energy expenditure problem. First, various numerical
approaches to solve the resulting two point boundary value problem are presented.
After that bounds on the costates of the system are derived and geometric inter-
pretations are provided. Finally future research directions are presented based
on the results obtained in this thesis and work done by previous researchers.
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Chapter 2

Background Material

In this chapter several preliminaries and material that this thesis builds upon
are introduced. This chapter is meant to refresh the readers about some of
the principles and basics and does not constitute a reference aimed for fully
understanding the presented material. Several references are cited along this
chapter for further treatment of the topics introduced. This chapter first presents
the difference between holonomic and nonholonomic constraints aiming to clarify
the need to account for a robot’s specific nonholonomic constraints in a motion
planning algorithm. Next, the Dubins car model is introduced and its relevance
to many systems that currently exist is presented. The modification made to the
Dubins car model by many researchers in order to account for constant drifts
is then explained briefly. After that basic results from optimal control theory
are reviewed including Pontryagin’s maximum principle along with an example
to clarify the presented material. Finally, two point boundary value problems
that usually emerge from the application of Pontryagin’s maximum principle are
discussed along with classical methods used to solve such problems.

2.1 Systems with Constraints

Generally, the freedom of motion of a mechanical system is constrained or
restricted in certain ways. Constraints may be imposed on a system’s position,
velocity, etc. One specific method to categorize the constraints acting on the
system classifies them as holonomic or nonholonomic constraints. Basic defini-
tions of holonomic and nonholonomic constraints are presented in this section to
refresh the readers’ memroy. For a full treatment of mechanical constraints the
reader may refer to Greenwood [36], Bloch [37] and Gans [38].
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2.1.1 Holonomic Constraints

Consider a system described by n generalized coordinates q1, q2, ...., qn. Holo-
nomic constraints are the constraints that can be written in the form of

f (q1, ..., qn, t) = 0. (2.1)

These constraints depend exclusively on time and the generalized coordinates
of a certain system. If holonomic constraints were to be written in terms of
the time derivatives or velocities of the generalized coordinates q̇(t), then the
equations resulting will emerge in a completely integrable form making it possible
to integrate the system back to the form defined in equation (2.1). Holonomic
constraints are also known as integrable constraints. A straightforward example
of a system with holonomic constraints is the simple pendulum with a massless
rigid rod. The fixed length of the massless rod that keeps the pendulum’s mass
at a fixed distance from its origin imposes a holonomic constraint on the system.
Another example is an omni-wheeled robot. By combining different ratios of the
rotational speed of the omni-wheels of the robot, an omni-wheeled robot is able
to generate motion in any direction in the plane.

2.1.2 Nonholonomic Constraints

Nonholonomic constraints are constraints that cannot be written in terms
of equation (2.1). Instead, nonholonomic constraints are written in terms of the
differentials of the generalized coordinates of the system and time. The constraint
equations take the form

f (q1, ..., qn, q̇1, ..., q̇n, t) = 0, (2.2)

where integrating the equations to retrieve equations that are similar in form
to equation (2.1) is not possible. An example of a nonholonomic system is the
rolling disk. A disk rolling on a horizontal surface has a constraint on its lateral
motion. The lateral velocity of the rolling disk equals zero if the assumption of
no skidding is made. This assumption imposes a nonholonomic constraint on the
system. Other systems that posses nonholonomic constraints on their motion
include cars, fixed wing airplanes, ships, certain underwater vehicles and many
other systems.

Constraints imposed on the motion of a specific mechanical system restrict
its motion in certain directions. This requires that motion planning algorithms
developed for a certain system be customized towards maneuvers permitted by
its constraints. The model of interest in this work describes the motion of various
systems including, cars, fixed wing aircraft, ships and underwater vehicles. The
model is known as the Dubins car model and it captures the constraint acting on
the rotational velocity or turning rate of some systems or robots.
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(a) Candidate Dubins Paths of Type
CSC
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(b) Candidate Dubins Paths of Type
CCC

Figure 2.1: Dubins Car Possible Optimal Paths

2.2 Dubins’ Paths

In the Dubins car model, Dubins [5], the system is modeled as a particle
with a defined direction in a 2D plane. The path planning problem is to find
the minimum time trajectory from an initial configuration to a final or target
configuration. Let q = (x, y, θ) be an element of the configuration space Q =
R2×S. The kinematic model used in the formulation of the problem is presented
in (2.3), where the particle is assumed to be moving at a constant forward velocity,
ν, which is typically equal to unity. Whereas u(t) ∈ [−umax, umax] is the control
input on steering with umax = 1.

ẋ(t) = ν cos θ(t),

ẏ(t) = ν sin θ(t), (2.3)

θ̇(t) = u(t),

The work done by Dubins [5] and Boissonnat [6] proves that candidate op-
timal paths consist of a maximum of three possible motion primitives. Namely
maximum turning curves to either directions, left or right, denoted by L and R
respectively, or a straight line denoted S. A total of six concatenations of motion
primitives exist and take one of two forms, CSC or CCC where C stands for
either a right or a left curve. Paths of type CCC may only exist if the distance
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between the initial and final configurations is less than four times the minimum
turning radius. Both types of concatenations are presented in figure 2.1.

2.3 Model in Constant Currents

Another model proposed by McGee [14] in equation (2.4) introduces the trans-
lational effects that a constant flow will induce on the particle.

ẋ(t) = ν cos θ(t) + η cosφ,

ẏ(t) = ν sin θ(t) + η sinφ, (2.4)

θ̇(t) = u(t),

where η and φ are the speed and direction of the constant flow, respectively.
Model (2.4), which shall be labeled as the irrotational model, was extensively
used in the literature for solving the minimum time path planning problems for
unmanned aerial vehicles and underwater autonomous vehicles. However, this
model only accounts for the translational effects of the flow while it ignores any
other interactions between the vehicle and the flow, namely, the rotational effects.
From Techy [18], optimal paths for the irrotational model in eqn. 2.4 consist of
maximum turning rate segments in either directions or straight lines. However,
unlike Dubins’ paths where a maximum turning rate curve produces a circle, a
maximum turning rate curve for the irrotational model generates what is known
as a trochoid. A trochoid is generated by a fixed point on a circle that rotates
with its center translating along the flow direction. The concatenations of the
motion primitives corresponding to the irrotational model is similar to that of
the Dubins’ paths.

0 2 4 6
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0.0

0.5

1.0

1.5
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x

y

Figure 2.2: Trochoidal path due to a left maximum turning rate in constant flow
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2.4 Optimal Control & Pontryagin’s Minimum

Principle

It is often required to find the control input for some system of the form

q̇(t) = f
(
q (t) , u (t) , t

)
(2.5)

such that the input control u (t) minimizes a certain objective or cost and drives
the system from a given initial state q(t0) to a final state q(tf ). The branch in
control theory that is concerned with finding such controls is known as optimal
control theory. A typical optimal control problem includes a system of the form
presented in eqn.(2.5) with the choice of an appropriate objective to optimize.
The choice of such an objective is critical in defining the problem and finding an
appropriate solution. This objective is known as a cost functional.

2.4.1 The Cost Functional

For an optimal control problem the general form of a cost functional is given
by

J = h
(
q
(
tf
)
, tf

)
+

∫ tf

ti

g
(
q (t) , u (t) , t

)
dt (2.6)

where the first term h
(
q
(
tf
)
, tf

)
is known as the endpoint cost or the Mayer

cost. The second term
∫ tf
ti
g
(
q (t) , u (t) , t

)
dt is known as the running cost or the

Lagrange cost. A functional maps a class of functions into an element in R. Mini-
mizing a functional is achieved using a branch in mathematics known as Calculus
of Variations, Kirk [39]. For an optimal control problem, the cost functional is
constrained by the system in eqn.(2.5) which makes the problem a constrained
minimization problem.

2.4.2 Pontryagin’s Minimum Principle

Using Calculus of Variations, Pontryagin [40], developed his principle known
as Pontryagin’s Minimum, or Maximum Principle (PMP ). A deep discussion
of PMP can be found in Kirk [39], Pontryagin [40], and Ross [41]. However, for
the sole purpose of this work only a brief overview of the results obtained by
Pontryagin will be presented without any derivations.

Given a system of the form

q̇(t) = f
(
q (t) , u (t) , t

)
(2.7)
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associated with the cost function given by

J = h
(
q
(
tf
)
, tf

)
+

∫ tf

ti

g
(
q (t) , u (t) , t

)
dt (2.8)

Then it is possible to define the control Hamiltonian as

H = g
(
q (t) , u (t) , t

)
+ λT .f

(
q (t) , u (t) , t

)
(2.9)

where λ is the known as the costate vector. An optimal control u∗(t) is a control
that globally minimizes the Hamiltonian. q∗(t) and λ∗(t) are the trajectory and
costate vectors along which the Hamiltonian is minimum. Then the necessary
conditions for u∗(t) to be optimal as stated by Pontryagin for all t ∈

[
t0, tf

]
and

all admissible u(t) are as follows

q̇∗(t) =
∂H

∂λ

(
q∗(t), u∗(t), λ∗(t), t

)
(2.10)

λ̇∗(t) = −∂H
∂q

(
q∗(t), u∗(t), λ∗(t), t

)
(2.11)

H
(
q∗(t), u∗(t), λ∗(t), t

)
6 H

(
q∗(t), u(t), λ∗(t), t

)
(2.12)

[
∂h

∂q

(
q∗(tf ), tf

)
−λ∗

(
tf
)
]T δqf

+

[
H
(
q∗(tf ), u

∗(tf ), λ
∗(tf ), tf

)
+
∂h

∂t

(
q∗(tf ), tf

)]
δtf = 0 (2.13)

Where δqf and δtf are the first variation in time and state. If the problem is
a fixed final state problem then δqf is zero, so is δtf when the problem is fixed
end time problem. This summarizes the necessary conditions an optimal control
should satisfy. However, it is very important to point out that PMP doesn’t
guarantee the existence of an optimal control and doesn’t provide an exact ana-
lytic form for the control. Thus it is possible to find controls satisfying the PMP
conditions yet not minimizing or maximizing the cost functional.

To find u∗(t) where H is minimum, it is possible to compute the first and
second derivatives of the Hamiltonian.

∂H

∂u

(
q∗(t), u∗(t), λ∗(t), t

)
= 0 (2.14)

∂2H

∂u2
(
q∗(t), u∗(t), λ∗(t), t

)
= 0 (2.15)
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If the control is not bounded then setting the first derivative to zero and solving
for u∗(t) might yield an analytic form for the optimal control in very few cases.
The second derivative has to be a positive definite matrix to guarantee local op-
timality (the Hamiltonian being a local minimum).

2.4.3 Example: The Double Integrator

To find the optimal control u∗(t) that transfers the double integrator system
given by

f
(
q(t), u(t), t

)
=

{
q̇1(t) = q2(t)

q̇2(t) = u(t)
(2.16)

from any initial state q(t0) to the origin in minimum time while satisfying

|u(t)| 6 1. (2.17)

First the control Hamiltonian is constructed and the control input u(t) is
studied to minimize H.

H = 1 + λ1(t)x2(t) + λ2(t)u(t) (2.18)

It is clear that the hamiltonian H is linear in control. Kirk [39] provides a proof
that a singular interval cannot exist for this type of problem, thus λ2(t) 6= 0 for
all t ∈

[
t0, tf

]
. Hence, in order to minimize H the optimal control u∗(t) is given by

u∗(t) =

{
−1 if λ2(t) > 0

1 if λ2(t) < 0
(2.19)

From eqn. (2.11) the costates are given by

λ̇∗(t) =

{
λ̇∗1(t) = 0

λ̇∗2(t) = −λ∗1(t).
(2.20)

Integrating both equations yields an analytical solution for the optimal costates
which are presented in terms of the constants of integration c1 and c2

λ∗(t) =

{
λ∗1(t) = c1

λ∗2(t) = −c1t+ c2.
(2.21)

The solution for λ∗2(t) in eqn. (2.21) shows that there can be at most one switch-
ing of the control input. The solution for the optimal trajectory of the system is
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given by eq. (2.10) as

f ∗(t) =

{
q̇∗1(t) = q∗2(t)

q̇∗2(t) = u∗(t).
(2.22)

The analytical solution for the optimal trajectory of the system can be obtained
by integrating eqns. (2.22) for both cases of the optimal control input u∗(t) = ±1.
The solution is then given in terms of the constants of integration c3 and c4 as
follows,

q∗(t) =

{
q∗1(t) = ±1

2
t2 + c3t+ c4

q∗2(t) = ±t+ c3.
(2.23)

In order to find the constants of integration c1, c2, c3, and c4 the initial and final
conditions for the problem must be incorporated in the solution.

However, it is not always possible to find closed form solutions for optimal
control problems as in the example of the double integrator. For complicated non-
linear systems the resulting optimal trajectory and costate dynamics may come
out as nonlinear differential equations making the problem harder to solve. Since
closed form solutions for nonlinear differential equations cease to exist in most
cases, numerical and discretization methods are used instead to arrive at approx-
imate solutions for the presented problem. For a rigorous discussion of methods
used to solve such problems the reader may refer to Kirk [39], Lewis [42], and
bertsekas [43] and [44].

2.5 Two Point Boundary Value Problems

In a standard path planning problem it is required to find a trajectory q(t),

for a certain system ˙q(t) = f (q, u, t), that connects its initial configuration q (t0)
with a desired final configuration q

(
tf
)
. When using optimal control techniques,

particularly PMP, the system dynamics f (q, u, t) are projected onto a control
hamiltonian H, the costate dynamics are derived, and the optimal controls are
expressed in terms of the states and costates of the system. This leads to a system
of 2n differential equations composed of n state dynamics equations and n costate
dynamics equations. However, The boundary conditions are provided on the ini-
tial and final states of the system and no prior knowledge is provided regarding
the costates other than their dynamics. A brief overview of some methods used
to solve Two Point Boundary Value Problems is provided in this section. For a
thorough explanation and presentation of the methods used to solve two point
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boundary value problems the reader can refer to Ward [45] or Press [46].

2.5.1 Shooting Method

Boundary value problems are considerably more difficult than initial value
problems. A shooting algorithm starts with a guess on the remaining needed
initial conditions then integrates the system forward in time until it reaches the
desired final time tf . Then the final values of the states are checked, it the
actual final states match the target states or the final conditions are met then
the algorithm has converged. Else the initial guess is modified and the process is
repeated until the algorithm converges. Interpolation is mostly used to improve
the guess. The shooting method is time consuming and is not always guaranteed
to converge particularly for nonlinear multi-dimensional systems.

Desired
Boundary
Value
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x
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0.5
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y

Figure 2.3: Shooting Method for a 1-Dimensional Differential Equation

2.5.2 Relaxation Method

In relaxation methods, instead of converting the boundary value problem into
an initial value problem, the ODEs are replaced by finite difference equations on
a mesh that spans the independent variable domain. The relaxation method then
starts with an initial guess of the solution over the entire independent variable
domain as shown in figure 2.4, then improves it using available iterative schemes
such as the multi-dimensional Newton’s method.
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Figure 2.4: Relaxation Method for a 1-Dimensional ODE with an Initial Guess

The methods presented above are not the only methods available for solving
two point boundary value problems. Over the years many methods emerged in
attempt to solve such problems. Most methods rely on numerical approximations
and iterative schemes in order to provide approximate solutions for two point
boundary value problems. Full a full treatment of boundary value problems a
curious reader me refer to Gakhov [47].
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Chapter 3

New Kinematic Model in
Constant Currents

This chapter presents the new model developed to describe the motion of ve-
hicles having similar constraints to that of a Dubins car model while traveling
in mediums with constant flow fields. First the motivation behind the need for
a new model is discussed. Then the model derivation is presented. Finally, sim-
ulation results are presented to compare the model performance with previously
developed models.

3.1 Motivation

The Dubins car model describes the constraint of a minimum turning radius
that many vehicles or robot posses. A modified model used extensively in the
literature, [14], [16], [17], [18], and [35] describes how a constant flow will affect
the translation components of the Dubins car model. However, the modified
model considers the vehicle as a massless particle that doesn’t interact with its
environment. The dynamics of an autonomous underwater vehicle AUV or an
airplane moving in flow field are much more complicated. The flow field, and
due to the geometry of the traveling vehicle, will cause it to rotate and not only
translate. Thus there is a need for developing a simplified kinematic model that
is still easy to work with for path planning purposes, but models more accurately
how a vehicle may react to external constant flows. The model developed in this
chapter is inspired by the hybrid autonomous underwater vehicle being currently
developed at the Vision and Robotics Lab at AUB. The vehicle is shown in figure
1.2 and the flow is assumed to rotate the vehicle until its axis of symmetry is
aligned with the flow direction.
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3.2 Model Derivation

In order to capture more details of how an interaction might cause the vehicle
to rotate, an additional term is added to the third equation in (2.4) to arrive
at the novel model given in eqn. (3.1). This proposed model, labeled as the
rotational model, assumes that the effect on rate of change of the heading angle
is proportional to the perpendicular component of the flow velocity with respect
to the heading angle of the vehicle as shown in Fig. 3.1.

ẋ(t) = ν(t) cos θ(t) + η cosφ,

ẏ(t) = ν(t) sin θ(t) + η sinφ, (3.1)

θ̇(t) = u(t) + ρη sin
(
φ− θ(t)

)
,

where the proportional constant, ρ, captures a geometric attribute of the body of
the vehicle, the location of the center of mass, and the nature of the interaction
between the vehicle and the flow medium.

η Sin(ϕ-θ(t))

θ(t)
ϕ

ν

η
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Figure 3.1: Vehicle’s forward speed ν, flow speed η and their corresponding di-
rection angles θ and φ

To clarify the significance of the developed rotational model (3.1), several sim-
ulations were worked out and the motion results were compared to the irrotational
model in (2.4). For a given planar curve (x(t), y(t)), let ψ = tan−1

(
ẋ (t) , ẏ (t)

)
be the course angle representing the angle that the tangent to the curve makes
with the horizontal axis.
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3.3 Comparison with Previous Models

Case 1: u = 0 and forward velocity ν = 0. This case corresponds to placing
the AUV in a constant current with a zero steering control u = 0 and a zero
forward velocity ν = 0. In this case the constant flow is the only effect acting on
the vehicle, the motion of the vehicle as described by both the irrotational (2.4)
and rotational (3.1) models is shown in Fig.3.2a.

It is clear that the heading angle for model (2.4) stays constant where as
the heading angle of model (3.1) θ(t) → φ as t → ∞. That is the vehicle will
eventually align with the flow. However, The course angle ψ(t) = φ for both
models stays constant.

Case 2: u = 0 and forward velocity ν = 1. In this case the forward velocity
is assumed be maximum at unity while the steering control is kept at zero. The
resulting traversed paths are shown in Fig.3.2b. With no steering input applied
to either models, ψ(t) corresponding to the irrotational model (2.4) is constant
and experiences no change, while ψ(t) corresponding to the rotational model (3.1)
is eventually aligned with φ and θ(t) as t→∞.
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(a) Case 1 with u = 0, ν = 0,
θinit = π, ρ = 0.1, η = 0.35,
and φ = π
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(b) Case 2 with u = 0, ν = 1,
θinit = 0, ρ = 0.1, η = 0.35,
and φ = π
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(c) Case 3 with u = 1, ν = 1,
θinit = 0, ρ = 0.1, η = 0.35,
and φ = π
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Figure 3.2: Rotational model vs Irrotational model for various control inputs

Case 3: u = 1 and forward velocity ν = 1. The model in (2.4) traverses a
trochoidal path as described in [17] and [18]. However, the developed rotational
model (3.1) shows a variation from the results described by (2.4) as shown in
Fig.3.2c. It is important to stress that θ(t) is not necessarily equal to the course
angle ψ(t) for either models.

From the above simulations, it is obvious that the proposed model better
captures the motion of a real system moving in a medium with a constant drift
field.
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Chapter 4

Minimum Time Trajectories

This chapter studies the model developed in Chapter 3. It aims to arrive
at a solution describing the trajectories corresponding to the minimum time of
travel for the model in eqn. (3.1) while traveling in environments with constant
flow fields. First, with the help of optimal control theory, discrete control values
that the optimal time trajectory consist of are derived. These discrete optimal
control values are then used to describe fixed motion primitives, or geometrically
defined shapes that build up the minimum time trajectories. After that the
work done by Dolinskaya [21] is used to arrive at a concatenation of the motion
primitives that guarantees a minimum trajectory. Next, a condition is imposed
on the flow speed to guarantee that the optimal trajectory is one of two possible
concatenation families possible. Then, two algorithms are introduced to solve
for the two possible families of optimal trajectories and find the optimal path.
Finally simulations are presented to show the resulting time optimal trajectories
resulting compared to time optimal trajectories of the model that doesn’t account
for the rotational effect.

4.1 Time Optimal Controls

In order to solve the path planning problem, we take recourse to optimal
control theory techniques, specifically, Pontryagin’s Minimum Principle (PMP).
PMP is used to reduce the space of candidate optimal paths. For a minimum
time problem where the end-time tf is free, the cost function is given by

J =

∫ tf

0

dt = tf , (4.1)

and the control Hamiltonian is given by

H(λ, q, u, t) = g(q, u, t) + λTf(q, u, t), (4.2)
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where g is the integrand of the cost function J and f : (q, u, t) 7→ q̇ is the kinematic
model given in (3.1). Using the proposed model, the Hamiltonian becomes

H(λ, q, u, t) =1 + λx(cos θ(t) + η cosφ)+

λy(sin θ(t) + η sinφ)+

λθ(u(t) + ρη sin
(
φ− θ(t)

)
),

(4.3)

where λ = (λx, λy, λθ) is the vector of co-state variables. These variables are
governed by the costate equations given by

λ̇x = −∂H
∂x

= 0, (4.4)

λ̇y = −∂H
∂y

= 0, (4.5)

λ̇θ = −∂H
∂θ

= (λx − λθρη cosφ) sin θ(t)

+ (λθρη sinφ− λy) cos θ(t). (4.6)

According to Pontryagin’s Minimum Principle the optimal control, u∗, is the
one that minimizes the Hamiltonian such that, H(λ∗, q∗, u∗, t) 6 H(λ∗, q∗, u, t).
Also for a free end-time problem, using [39], the boundary condition is given by
H(λ∗(tf ), q

∗(tf ), u
∗(tf ), tf ) = 0. Additionally, if the Hamiltonian is not explicit

in time then we get
H(λ∗(t), q∗(t), u∗(t)) = 0. (4.7)

For the proposed model and its associated Hamioltonian in (4.3), the control
u is only multiplied by the costate λθ. Thus, minimizing the Hamiltonian with
respect to u(t) is equivalent to minimizing λθ(t)u(t). Thus, the optimal control,
u∗(t), is a function of the sign of λθ(t) which is also known as the switching
function. To find the optimal controls for the proposed model the following cases
are considered.

4.1.1 Case where λθ = 0

Using (4.7) the Hamiltonian becomesH = 1+λx(cos θ(t)+η cosφ)+λy(sin θ(t)+
η sinφ) = 0. Even though u(t) doesn’t appear explicitly, it is still possible to de-
duce important results regarding the control input. From the costate equations,
(4.4) and (4.5), and from the assumption of constant flow, the following variables,
λx, λy, η, and φ, are constants. Thus, the Hamiltonian becomes

λx cos θ(t) + λy sin θ(t) = constant, (4.8)

which implies that θ(t) = constant ( mod 2π). Thus, the heading angle, ψ(t), is
constant which yields a straight line path. Additionally, since θ(t) is constant,
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using the third equation in (3.1), one can solve for the optimal control, which
will be referred to as a singular control, to get

u∗(t) = −ρη sin
(
φ− θ(t)

)
. (4.9)

4.1.2 Case where λθ 6= 0

The optimal control input, u∗(t), that minimizes the Hamiltonian whenever
λθ 6= 0 is given by,

u∗ = −sign(λθ)umax, (4.10)

which represents a maximum turning control either to the left or the right, also
known as a maximum effort or a bang control given by

u∗(t) = ±1. (4.11)

Hence, Pontryagin’s Minimum Principle reduces the space of candidate mini-
mum time paths to those traversed by the model under the two optimal controls,
the singular controls in (4.9) resulting in a straight line paths, and the maximum
effort controls in (4.11) resulting in stretched-like trochoids.

4.2 Structure of Motion Primitives

Having reduced the space of candidate minimum time paths to concatenations
of straight lines and turning segments corresponding to maximum effort control
inputs, in this section, these motion primitives are characterized and their struc-
ture is analyzed to be used in the path synthesis problem. First some terminology
is introduced.

• Ca : A curve traversed by the model when taking a maximum turn rate
either to the left or the the right so C could take the values of L or R and
a is either i indicating initial or f indicating final.

• tiL : time spent traversing a maximum left turning segment starting from
the initial configuration qi = {xi, yi, θi}. Similarly tiR could be defined to
correspond to a right turn.

• tfL : time spent traversing a maximum left turning segment ending at the
final configuration qf =

{
xf , yf , θf

}
. Similarly tfR could be defined to

correspond to a right turn.

• qiL (t) : corresponds to the configuration of a point starting at an initial
configuration and traversing a maximum left turn for a duration t. Similarly
qiR (t) is defined for a right turn.
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• SCi,Cf
: is the straight line segment that is tangent to both the initial turning

segment Ci and final turning segment Cf .

• VCi,Cf
: velocity of the particle while traveling along the straight segment

tangent to both Ci and Cf .

4.2.1 Maximum Turning Rate Segments

Pontryagin’s Minimum Principle restricts the segments of any optimal path
for the rotational model (3.1) into maximum turning rate segments and straight
line segments. Some important implications of such results are presented below.

Using Mathematica, an analytical solution for the non-linear differential equa-
tion describing θ(t) in the rotational model in (3.1) is given by

θ(t) = φ+ 2 tan−1

(
ηρ+

√
u2 − η2ρ2 tan β)

u

)
(4.12)

where β is

β =
1

2
t
√
u2 − η2ρ2 + tan−1

u tan
(
θ0−φ
2

)
− ηρ√

u2 − η2ρ2

 . (4.13)

Inspecting the above solution, specifically the term associated with time, t, it
is clear that θ(t) is periodic with a period

P =
2π√

u2 − ρ2η2
(4.14)

Under constant flow conditions and a constant bang control, such as u(t) = 1,
the net displacement vector generated by a full turning period of θ (t), denoted
by D2π, is unique and independent of the initial configuration. That is, starting
from any initial fixed position {x(0), y(0)}, then taking a maximum rate left turn
for a period P , the final position {x(P ), y(P )} is the same independent of the
initial heading θ(0) as shown in Fig. 4.1. The arrows in Fig. 4.1 depict the initial
and final headings corresponding to each maximum left turn curve. Similarly
u(t) = −1 defines a unique net displacement vector for a full period right turn.
Hence, the shapes of bang path are periodic. This could be verified by integrating
the first two equations in (3.1) over a full period of θ (t).

4.2.2 Straight Segments

For the case where θ is constant, and given that u ∈ [−1, 1], it is clear from
eqn. (4.8) that to achieve singular segments, one must assume that |ρη| < 1 .
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Figure 4.1: Full Period Maximum Effort Left Turns starting form different initial
headings under fixed flow conditions result in a fixed displacement vector

Unlike prior models where the control u takes only the discrete values 1, 0, or −1,
in the proposed model, for singular segments, u could take any feasible value to
ensure that θ is constant. Thus, for the rest of this work, it is assumed that flow
parameters are constrained by |ρη| < 1.

4.3 Optimal Path Synthesis

Having proved that any time optimal path must consist of either singular
straight segments or bang maximum turning rate segments, the number and
order of concatenations of such segments, that is, the path synthesis problem, is
addressed next.

4.3.1 Concatenations of Possible Path Segments

The first two equations of the proposed rotational model (3.1) describing ẋ(t)
and ẏ(t) can be written in the form of the model introduced by [22] which is given
by
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ẋ(t) = V (θ) cos θ(t),

ẏ(t) = V (θ) sin θ(t), (4.15)

θ̇(t) =
V (θ)

R(θ)
u(t),

where V (θ) is the vehicle’s net speed in polar coordinates and R (θ) is the min-
imum turning radius of the vehicle also in polar coordinates. Recall that the
two components, x(t) and y(t), describe the path traversed by the vehicle. Thus,
results obtained by [22] on path segment concatenations are applicable to the
proposed rotational model in (3.1). Hence, as indicated in [22], the number of
segment concatenations and the structure of the path are a function of the con-
vexity of V (θ), and can be summarized as follows:

4.3.2 Non-Convex Speed Polar Plots

If the line connecting the initial and final configurations intersects a non-
convex portion of the speed polar plot, the optimal path is comprised of five
segments having the following specific order CSCSC where the straight lines are
parallel to the straight lines to both edges of the convex hull of the non-convex
region as shown below in fig. 4.2.
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Figure 4.2: Speed Polar Plot with Non-convex Region and a Convex Hull
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4.3.3 Convex Speed Polar Plots

If the line connecting the initial and final configurations intersects a convex
portion of the speed polar plot, then the optimal path is comprised of at most
three sections which have the following order CSC or CCC.

4.4 Convexity Condition

Restricting the path synthesis problem in this paper to either CSC to CCC,
another constraint is imposed on the flow parameters in such a way to ensure
that the speed polar plot is convex everywhere.

The speed in polar coordinates for the proposed model is given by

V (θ) =
√
ẋ2 + ẏ2 =

√
η2 + 2η cos (θ − φ) + 1.

Note that, the net speed polar plot in the absence of any flow, i.e. η = 0, is
simply the unit circle depicted as a dashed circle in Fig.4.3. The effect of constant
flow will deform this unit circle, where the amount and location of deformation,
as expected, depends on the flow parameters, η and φ.

Studying the effect of the constant flow on the speed polar plot, as shown in
Fig. 4.3, it is clear that the maximum deformation to the polar plot will occur
along the direction of the flow, that is, at θ = φ + π. Let α = θ − φ, then the
curvature in polar coordinates is given by

κ =
V 2 + 2

(
∂V
∂α

)2
− V ∂2V

∂α∂α(
V 2 +

(
∂V
∂α

)2)3/2
. (4.16)

Setting the numerator of the curvature, κ, in (4.16) to zero, will determine
the flow speed, η, at which the deformation in the speed polar plot starts to form
a non-convex region in the plot. The numerator in terms of α is given by

10
(
η3 + η

)
cos(α) + 3η2 cos(2α)

+2η4 + 13η2 + 2 = 0. (4.17)

Setting α = π, then the only feasible root of the equation turns out to be

η = 1
2

(
3−
√

5
)

which is about 38.2% of the vehicle’s maximum forward speed

and is the maximum flow velocity for which the entire speed polar plot will re-
main convex.
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(b) η = 0.3 and φ = π
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(c) η = 0.5 and φ = π
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(d) η = 0.75 and φ = π
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Figure 4.3: Polar plots of the maximum net speed for different η

Having characterized the individual segments and the concatenations of such
segments, and by setting η ≤ 0.382, the model is then restricted to the case where
speed polar plot is convex. This restriction guarantees that an optimal path takes
either the form CSC or CCC. This reduces the space of possible optimal paths
to a maximum of six types: LSL, RSR, RSL, LSR, LRL, and RLR.

4.5 CSC Type Path Synthesis

There exists four candidate minimum time paths of type CSC between an
initial configuration and a final one, namely LSL, LSR, RSR, and RSL. For an
initial and final configurations where the Euclidean distance between qi and qf is
greater than 4

∣∣|D2π|
∣∣ it is guaranteed that the solution will be of CSC type.
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Figure 4.4: CSC path synthesis for qf = {8, 4, π}, η = 0.35, and φ = π
3

Algorithm 1 constructs all four possible CSC paths then finds the path cor-
responding to the minimum travel time. In order to accomplish this, the al-
gorithm first constructs the initial maximum turning rate curves starting from
qi = {x (0) , y (0) , θ (0)} to the right and left respectively labeled as Ri and
Li. Next, maximum turning rate segments are constructed to end at qf =
{x (P ) , y (P ) , θ (P )} turning to the right and left respectively labeled as Rf and
Lf . Then, the algorithm seeks a line segment connecting a point on Ci to a
point on Cf such that the line segment is tangent to both curves. Finally, the
algorithm computes the total time of travel along each of the four possible paths
and finds the path corresponding to the minimum travel time. Fig.4.4 shows the
initial and final maximum rate turning curves for a full period P along with the
corresponding tangents.

4.6 CCC Type Path Synthesis

For cases where the Euclidean distance between qi and qf is less than 4
∣∣|D2π|

∣∣,
a mid-curve or type Cm could possibly be tangent to both Ci and Cf . Fig.4.5
shows an example where multiple right turning middle curves, depicted by dashed
curves, starting initially from different points along the initial left turning segment
intersect with the final turning segment. Also note that one of the mid-curves,
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Algorithm 1 CSC Type Synthesis

Given qi, qf , η, φ, and ρ
Simulate f(q, u, t) for t ∈ [0, P ] with boundary condition f(q,±1, 0) = qi
to get Ci
Simulate f(q, u, t) for t ∈ [0, P ] with boundary condition f(q,±1, P ) = qf
to get Cf

for The 4 possible combinations of Ci and Cf do
Solve for ti,Ci,Cf

and tf,Ci,Cf

tan−1

[(
xCf
− xCi

)
,
(
yCf
− yCi

)]
= tan−1

[
ẋCi

, ẏCi

]
tan−1

[(
xCf
− xCi

)
,
(
yCf
− yCi

)]
= tan−1

[
ẋCf

, ẏCf

]
Compute tsCiCf

=
∥∥∥SCi,Cf

∥∥∥ /VCiCf

Compute tfCiCf
= P − tfCiCf

Compute TCiCf
= tiCiCf

+ tsCiCf
+ tfCiCf

end for
FindMin TCiCf

depcited as a solid curve, is also tangent to Lf . For such case, a CCC type curve
is a possible minimum time candidate. Algorithm 2 solves for CCC candidates
only. Possible path types are either RLR or LRL.

Algorithm 2 first constructs both L and R initial and final turning segments.
After that a turning segment with opposite direction to that of the initial turning
segment and having initial conditions be any point belonging to the initial turn-
ing segment is constructed. Then for each pair of same direction initial and final
turning segments Ci and Cf , an opposite direction turning segment Cm is solved
for numerically. Cm starts from a point and a heading on Ci and is tangent to Cf .
Finally the total travel time corresponding to each candidate path is computed
and and the path corresponding to the minimum travel time is found. However,
for the case where CCC paths are possible candidates, CSC paths are also still
valid candidates for minimum time paths. Thus, an algorithm combining both
algorithms 1 and 2 computes the minimum time path in such a case.

4.7 Simulations

Some results of the algorithms introduced earlier are presented in this section.
Without loss of generality, the initial configuration is assumed to be qi = {0, 0, 0}
for all cases. Also, ρ is assumed to equal 0.1 for all cases presented in Fig. 4.6
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Figure 4.5: Li and Lf with qi = (0, 0, 0), qf = (0, 0, π) and multiple right turning
segments starting on Li

and Fig. 4.7. The flow velocity η is kept close to the limit, that is 0.38, to ensure
that the speed polar plot is convex.

Fig. 4.6 depicts cases where all possible path concatenations are of the type
CSC. Three different cases are presented where the final configuration, qf , as
well as the flow parameters, φ and η, are changed. For each case, the four pos-
sible path concatenations LSL, RSR, LSR and RSL are always guaranteed to
exist as depicted by the dashed curves. The path corresponding to the minimum
time of travel of the vehicle is depicted using solid curves. Note that, the turning
radius and length of various turning segments depend on the flow parameters as
well as the heading at which the vehicle starts to take a turn.

Several cases where the paths are potentially of the type CCC are as shown
in Fig. 4.7. Not that, for such cases, considering the initial and final turning
segments, one has to check, if these turning segments intersect or not. If the
segments intersect, then the potential candidate curve concatenation is of CCC
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Algorithm 2 CCC Type Synthesis

Given qi, qf , η, φ, and ρ
Simulate f(q, u, t) for t ∈ [0, P ] with boundary condition f(q,±1, 0) = qi
to get Ci
Simulate f(q, u, t) for t ∈ [0, P ] with boundary condition f(q,±1, P ) = qf
to get Cf

for Identical pairs of Ci and Cf do
Solve for ti,Ci,Cf

, tm,Ci,Cf
, and tf,Ci,Cf

Simulate f(q, u, t) with boundary condition f(q,±1, 0) = Ci(t) and
f(q,±1, t < P ) = Cf (t)

xCm = xCf

yCm = yCf

tan−1 (ẋCm , ẏCm) = tan−1
(
ẋCf

, ẏCf

)
Compute tfCiCf

= P − tfCiCf

Compute TCiCf
= tiCiCf

+ tmCiCf
+ tfCiCf

end for
FindMin TCiCf

type, whereas if the turning segment do not intersect, the potential candidate
curve concatenation is of CSC type. Referring to Fig. 4.7b, the candidate curve
are LRL, RLR, as well as LSL, RSR, and LSR. In this particular case, the
shortest path is the RSR. The proposed algorithm attempts to solve for all pos-
sible paths, and identified the time optimal one whether it is a CCC or a CSC
type. As for Fig. 4.7a and Fig.4.7c, the time optimal path for both is of type LRL.

Fig. 4.8 compares the optimal paths for both the rotational and irrotational
models where ρ is assumed to equal 0.5. The dashed paths represent the optimal
path corresponding to the irrotational model whereas the solid paths correspond
to the rotational model. Accounting for a rotational effect in the model shows
that it is possible to traverse turning curves with a smaller turning radius com-
pared to the irrotational model as shown in the final left turn of Fig. 4.8a. On
the other hand, for different scenarios such as the initial left turn of Fig. 4.8a
or the final right turn of the path in Fig. 4.8b it is only possible to follow the
corresponding curves with radii greater than those of the turns corresponding to
the irrotational model.

In Fig. 4.8c the maneuver of parking in the same position but with an oppo-
site direction is considered, that is, going from qi = (0, 0, 0) to qf = (0, 0, π). For
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this case, the optimal path is LRL for both models. However, note that for the
irrotational model, the solution path is symmetric about the x-axis. This, does
not represent accurately the effect of a flow on a vehicle. As for the rotational
model, the effect of the flow breaks the symmetry of the curve and yields a more
reasonable solution path.
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(a) Time Optimal Path for
η = 0.3, φ = −3π

4 , qf =
{−6,−7, −π2 } is RSL with
t = 8.48s
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(b) Time Optimal Path for
η = 0.3, φ = −3π

4 , qf =
{−6, 7, 0} is LSR with t =
12.56s
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(c) Time Optimal Path for
η = 0.35, φ = π

2 , qf =
{−6, 7, −π2 } is LSL with t =
10.23s

Figure 4.6: Time optimal paths for cases where only paths of type CSC are
possible
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(a) Time Optimal Path
for qf = {0, 0, π} is LRL
with t = 4.98s
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(b) Time Optimal Path
for qf = {3, 3, 0} is RSR
with t = 7.93s
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(c) Time Optimal Path
for qf = {0, 2, π} is LRL
with t = 10.8s

Figure 4.7: Cases where both types CSC and CCC are time optimal candidates
for η = 0.35, φ = π
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(a) Time Optimal Path for
η = 0.35, φ = 0, qf =
{0, 7, 0} is LSR with t =
11.12s
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(b) Time Optimal Path for
η = 0.35, φ = π

2 , qf =
{0, 7, 0} is LSR with t =
6.68s
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(c) Time Optimal Path for
η = 0.35, φ = −π

2 , qf =
{0, 0, π} is LRL with t =
5.83s

Figure 4.8: Optimal paths for the Rotational model versus the Irrotational
model
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Chapter 5

Minimum Energy Trajectories
and Future Work

The model developed and preliminary results obtained from solving the min-
imum time problem give a rise to many research questions. In a first attempt of
pursuing paths that make the AUV go from initial to final configurations while
using the minimum amount of energy or control input possible the problem is
solved as a fixed end-time two point boundary value problem. In order to incor-
porate the final time required by the solver, a scaling of time is introduced and the
final time is added as an augmented state to the system allowing the problem to
be solved numerically. After that the minimum time and minimum energy results
are compared when obtained using the same method. Then, observations regard-
ing the bounds on the costates and the space of feasible solutions are presented.
Finally, possible future directions to solve the problem are discussed. These di-
rections include converting the problem to a nonlinear programming problem or
writing the system in terms of body frame coordinates, solve the problem as an
optimal control problem on Lie Groups then transform the solution back to the
world or reference frame.

5.1 Optimal Control Formulation

For the system of main interest in this work, an Autonomous Underwater
Vehicle, most of the energy expenditure is due to the forward propelling control
input. Hence, the model is modified to include a variable control input v(t) on
the forward velocity (propelling) in addition to the previously introduced control
on the steering, u(t). The model then becomes,
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ẋ(t) = ν(t) cos θ(t) + η cosφ,

ẏ(t) = ν(t) sin θ(t) + η sinφ, (5.1)

θ̇(t) = u(t) + ρη sin
(
φ− θ(t)

)
.

A new cost function is introduced to incorporate both costs corresponding to
the total time of travel and the the total expenditure of control inputs along the
optimal trajectory. The new cost function penalizes the running cost of time and
control inputs where α is the weight associated with the time of travel, β is the
weight associated with the forward velocity control input v(t) and γ is the weight
of the steering control input u(t), the general form of the cost function is then
given by,

J =

∫ tf

0

(
α + βν2 + γu2

)
dt (5.2)

The three positive constants α, β, and γ are positive constant weights selected
by the user according to the system of interest, motor power consumption values,
and total time of travel importance relative to that of control expenditure with
respect to a certain mission. The control hamiltonian describing the system then
becomes,

H =α + βν(t)2 + λx(t)(η cos(φ) + ν(t) cos(θ(t)))

+ λy(t)(η sin(φ) + ν(t) sin(θ(t))) + γu(t)2 (5.3)

+ λθ(t)(ηρ sin(φ− θ(t)) + u(t))

Where both control functions u(t) and v(t) appear as quadratic terms in
the hamiltonian which makes it possible to solve for the optimal controls that
will minimize the hamiltonian with respect to the control variables u(t) and v(t).
Consider the partial derivatives of the hamiltonian with respect to control inputs,

0 =
∂H

∂u
= λθ(t) + 2γu(t) (5.4)

0 =
∂H

∂v
= 2βν(t) + λx(t) cos(θ(t)) + λy(t) sin(θ(t)) (5.5)

resulting in the equations describing the controls that minimize the hamiltonian

u∗(t) = −λθ(t)
2γ

(5.6)

v∗(t) = − 1

2β

(
λx(t) cos(θ(t)) + λy(t) sin(θ(t))

)
(5.7)
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Also it is important to note that the second derivatives of the hamiltonian indicate
that the resulting optimal control solutions actually minimize the hamiltonian
and do not describe a maximum or a saddle point. The second derivatives turn
out to be positive in value indicating a minimum in the hamiltonian.

∂2H

∂u2
= 2γ (5.8)

∂2H

∂v2
= 2β (5.9)

Moreover, recall that the equations describing the dynamics of the costates of
the system are given by

λ̇x = −∂H
∂x

=0

λ̇y = −∂H
∂y

=0 (5.10)

λ̇θ = −∂H
∂θ

=ηρλθ(t) cos(φ− θ(t)) + λx(t)v(t) sin(θ(t))

− λy(t)v(t) cos(θ(t))

Substituting the equations for optimal controls obtained in (5.6) and (5.7) into
the state and costate dynamics described in (5.1) and (5.10) creates a system of
six coupled nonlinear ordinary differential equations for the dependent variables
q̃ =

{
x(t), y(t), θ(t), λx(t), λy(t), λθ(t)

}
. The resulting system is then given by,

ẋ(t) =
− cos

(
θ(t)

) (
λx(t) cos

(
θ(t)

)
+ λy(t) sin

(
θ(t)

))
2β

+ cos(φ)

ẏ(t) =
− sin

(
θ(t)

) (
λx(t) cos

(
θ(t)

)
+ λy(t) sin

(
θ(t)

))
2β

+ sin(φ)

θ̇(t) = ηρ sin
(
φ− θ(t)

)
− λθ(t)

2γ
(5.11)

λ̇x(t) = 0

λ̇y(t) = 0

λ̇θ(t) =
1

4β

(
4βηρλθ(t) cos(φ− θ(t)) + sin(2θ(t))

(
λy(t)

2 − λx(t)2
)

+ 2λx(t)λy(t) cos(2θ(t))
)
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Knowing the initial conditions on all six dependent variables of q̃ and the total
time of travel tf makes it possible to simply integrate the set of first order differen-
tial equations. This will generate the trajectory along with the controls required
to traverse it. However, for the proposed path planning problem, the boundary
conditions are only imposed on the state variables, namely q =

{
x(t), y(t), θ(t)

}
.

Moreover, the problem is a free end-time problem meaning that tf is not specified.

Thus, solving the minimum energy path planning problem requires solving the
Two Point Non-Linear Boundary Value Problem (BV P ) where the independent
variable t is also unknown at the final boundary, meaning that it is also required
to solve for tf that will minimize the provided cost functional J provided in (5.2).

A Two Point BVP where tf is specified is known as a Standard Two Point
BVP and few numerical algorithms are available to solve such problems. The
most common algorithm used is known as the Shooting Algorithm where an ini-
tial guess is taken for the remaining initial conditions required to integrate the
set of differential equations and the system is then integrated over the interval of
the independent variable t ∈

[
0, tf

]
. The values for the dependent variables at tf

are recorded and then the initial guess is modified accordingly until the boundary
condition at tf has been satisfied.

5.2 Manually Assigning tf

As a first Attempt to gain insight and solve the minimum energy path plan-
ning problem, consider the case where there is no time cost and the control inputs
are unbounded. In other words, the time of travel is not penalized in the cost
function, hence α = 0 and the control inputs u(t) and v(t) can take any value.
Keeping in mind that the motor propelling the vehicle will consume more power
than the actuators used for steering, let the weights associated with the control
inputs in the cost function be β = 1 and γ = 0.5. Then, the Standard Two
Point BVP is solved for fixed boundary conditions, i.e. fixed initial and final
configurations qi and qf , fixed flow conditions ρ, η and φ and fixed tf .

Through out the examples presented below, consider the case where qi = 0, 0, 0
and qf = 7, 5, 0. The flow conditions are given by ρ = 0.2, η = 0.3 and φ = π

4
.

The problem is solved for different values of tf and few samples of the obtained
trajectories are presented below along with the control inputs used to generate
them.
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5.2.1 Case 1: tf = 1

For the first case, time is too short and the control distance cannot be covered
by the systems for control inputs that are bounded. it is clear that the control
input required to cover the distance in a very short time will exceed the control
bounds. This leads to a very high value of the cost function which defies the
purpose of trying to minimize the control expenditure, hence a longer time of
travel is required for the system to go from an initial to final configuration.
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Figure 5.1: case 1 tf = 1 and J = 236.117

5.2.2 Case 2: tf = 40

For the second case a total travel time is selected to be tf = 40. By inspecting
the results, it is clear that the control input stays within bounds. However, the
cost function retains a relatively high value at J = 64.8377. Also, it appears
that the solution for this case includes periodic steering in order to traverse a
longer trajectory to satisfy the total time of travel constraint. Meaning that the
system traverses a longer trajectory in order to spend more time before arriving
at the final configuration, but by doing this excess energy is being spent. Hence
a shorter total time of travel is required to reach the final state.

5.2.3 Case 3: tf = 7.5

The third case where tf = 7.5 yields a more reasonable result with a more sat-
isfying total cost J = 0.432 and with controls that remain withing the bounded
input intervals. The trajectory traversed by the system matches the intuition
where the vehicle or robot drifts with the flow fields while applying the minimum
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Figure 5.2: case 2 tf = 40 and J = 64.8377

possible control input to end up at the desired final configuration qf .
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Figure 5.3: case 3 tf = 7.5 and J = 0.432

More cases were simulated and the resulting total cost and trajectory lengths
are presented in the the below two figures 5.4 and 5.5 respectively. It is obvi-
ous that the choice of final time affects the total cost of travel. However, it is
not clear if a certain final time yields a global minimum or if a global minimum
actually exists. Also, the total travel time affects the total length of the trajec-
tory obtained by the solver but no clear relation can be concluded between the
total length L and the total time of travel tf . By looking at the results obtained
one can conclude that more than one solution may satisfy the conditions im-
posed by Pontryagin’s minimum principle. However, this doesn’t guarantee the
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convergence of the solver to an actual global optimal solution.
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Figure 5.4: Total travel cost J for various total travel time tf
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Figure 5.5: Total trajectory length L for various total travel time tf

5.3 A Standard Form Two Point Boundary Value

Problem

It is clear that the total time of travel affects the cost of travel and the shape
of the trajectory traversed. It also affects the value of the control input required
to generate such trajectories. Selecting tf manually comes out to be an ineffective
approach for solving the problem and doesn’t guarantee an optimal solution. An
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approach proposed in [48] takes care of the problem of finding a suitible final time.

First a scaling of time is introduced by

τ =
t

tf
(5.12)

dτ =
dt

tf
(5.13)

The second step is to add a dummy state r(t) that corresponds to tf with
the trivial dynamics ṙ(t) = 0. Then the new system is derived from the system
defined in (5.1) and (5.10) by

q̇(t) = f (q, u, v, t)⇒ ẏ(t) = tff (q, u, v, τ) (5.14)

λ̇(t) = −∂H
∂q
⇒ Λ̇(t) = −tf

∂H

∂q
(5.15)

Adding a fourth state r(t) the the newly derived system results in a system
of seven coupled non-linear differential equations. Note that it is inefficient to
add a fourth costate for the state r(t) since it won’t be appearing anywhere in
the system. The final time is now set to, or determined to be tf = 1. Then the
new system can be solved as a Standard Form Two Point BVP. The resulting
standard form system is given by,

ẋ(t) = r(t)
(− cos

(
θ(t)

) (
λx(t) cos

(
θ(t)

)
+ λy(t) sin

(
θ(t)

))
2β

+ cos(φ)
)

ẏ(t) = r(t)
(− sin

(
θ(t)

) (
λx(t) cos

(
θ(t)

)
+ λy(t) sin

(
θ(t)

))
2β

+ sin(φ)
)

θ̇(t) = r(t)
(
ηρ sin

(
φ− θ(t)

)
− λθ(t)

2γ

)
(5.16)

ṙ(t) = 0

λ̇x(t) = 0

λ̇y(t) = 0

λ̇θ(t) =
r(t)

4β

(
4βηρλθ(t) cos(φ− θ(t)) + sin(2θ(t))

(
λy(t)

2 − λx(t)2
)

+ 2λx(t)λy(t) cos(2θ(t))
)
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In order to solve this standard problem one more boundary condition is
needed. This boundary condition is provided by the boundary condition on the
hamiltonian at the final time tf = 1 for the re-scaled problem and given by,

0 = H =α + βν(1)2 + r(1)λx(1)(η cos(φ) + ν(1) cos(θ(1)))

+ r(1)λy(1)(η sin(φ) + ν(1) sin(θ(1))) + γu(1)2 (5.17)

+ r(1)λθ(1)(ηρ sin(φ− θ(1)) + u(1))

This method of converting the free end time problem to a standard form prob-
lem is implemented and the results obtained are presented below.

5.3.1 Case 1: Unbounded Control Input

The standard form system derived in eqn. (5.16) is solved for the same bound-
ary conditions presented at the beginning of this chapter along with the boundary
condition from the hamiltonian at the final time in eqn. (5.17). First both control
inputs are assumed to be unbounded and can take any value. The solver is able
to converge to a solution satisfying the state and costate dynamics along with
the optimal controls solution obtained by PMP. The obtained solution provides a
low total travel cost at J = 1.76, a relatively short total time of travel tf = 2.566.
However the resulting control inputs exceed the bounds or the constraints on the
total control inputs allowed. to solve this problem, the control constraints are
imposed on the system and the solution is obtained using the same method in
the next section.

5.3.2 Case 2: Bounded Control Input

In the previous section the solver converged to a solution satisfying all the
constraints and dynamics equations except for the bounds imposed on the control
inputs. To enforce a solution where the control inputs are bounded and given by,

u(t) ∈ [−1, 1] (5.18)

ν(t) ∈ [0, 1] (5.19)

The unbounded control functions are replaced by new bounded control inputs
U(t) and V (t) where,
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Figure 5.6: case 1 Normalized final time tf with unbounded control inputs,
J = 1.76 and tf = 2.566

U∗(t) =


−1 if u∗(t) < −1

1 if u∗(t) > 1

u∗(t) otherwise

(5.20)

V ∗(t) =


0 if ν∗(t) < 0

1 if ν∗(t) > 1

ν∗(t) otherwise

(5.21)

The results come out to be more satisfying than the case where no bounds
where imposed on the control inputs of the system. The total travel cost attains
a very low value at J = 0.00316 and a reasonably moderate total time of travel
tf = 6.565. The behavior of the system matches the intuition of drifting with
the flow with using the minimum control possible to reach the final desired con-
figuration. However, obtaining two different solutions for the system satisfying
the optimal control and PMP’s formlation raises many questions regarding the
global optimality of the obtained solutions.

5.4 Analysis of Bounded Control Inputs

The shooting algorithm was used to obtain numerical solutions for all the
results obtained in sections 5.2, 5.3, and 5.5. The shooting algorithm however
is time consuming and fails to converge to a solution in some cases due to the
high nonlinearity of the problem. To speed up the time it takes for the shooting
algorithm to converge to a solution some bounds are imposed on the dependent
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Figure 5.7: case 2 Normalized final time tf with bounded control inputs, J =
0.000896 and tf = 7.7233

variables of the two point boundary value problem.

5.4.1 Bounds on λx and λy

In order to obtain bounds on the costates λx(t) and λy(t) the optimal control
v∗(t) is studied. The equation describing v∗(t) in terms of the states and costates
is given in eqn. (5.7) by

v∗(t) = − 1

2β

(
λx(t) cos(θ(t)) + λy(t) sin(θ(t))

)
(5.22)

β is a nonzero positive constant that is specified by the user. Also, v∗(t) ∈ [0, 1].
Interesting cases rise in equation (5.22), at θ(t) = 0, π

2
, π, −π

2

Case where θ(t) = 0:

For θ(t) = 0 the equation describing the optimal propelling control becomes

v∗(t) = −λx(t)
2β

, (5.23)

if v∗(t) = 0 then λx(t) = 0. Else if v∗(t) = 1 then λx(t) = −2β.
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Case where θ(t) = π
2
:

For θ(t) = π
2

the equation describing the optimal propelling control becomes

v∗(t) = −λy(t)
2β

, (5.24)

if v∗(t) = 0 then λy(t) = 0. Else if v∗(t) = 1 then λy(t) = −2β.

Case where θ(t) = π:

For θ(t) = π the equation describing the optimal propelling control becomes

v∗(t) =
λx(t)

2β
, (5.25)

if v∗(t) = 0 then λx(t) = 0. Else if v∗(t) = 1 then λy(t) = 2β.

Case where θ(t) = −π
2
:

For θ(t) = −π
2

the equation describing the optimal propelling control becomes

v∗(t) =
λy(t)

2β
, (5.26)

if v∗(t) = 0 then λy(t) = 0. Else if v∗(t) = 1 then λy(t) = 2β. Hence, from the
cases studied above,

λx(t) and λy(t) ∈ [−2β, 2β] . (5.27)

5.4.2 Bounds on λθ

The equation describing the optimal steering control input is given by eqn.
(5.6) as

u∗(t) = −λθ(t)
2γ

. (5.28)

For the case where u∗(t) = 1 then λ∗θ(t) = −2γ. Else, when u∗(t) = −1 then
λ∗θ(t) = 2γ. Now that the values the costates can attain are bounded by the
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bounds on the control inputs, it is possible to study the geometric structure re-
lating these costates to the states.

λθ(t) ∈ [−2γ, 2γ] . (5.29)

5.4.3 Geometric Interpretation

Going back to the optimal control hamiltonian H∗. A boundary condition
provided by PMP is that H∗(t) = 0. This condition makes it possible to solve
for λ∗θ(t)

λ∗θ(t) = 2
(
γ η ρ sin

(
φ− θ(t)

)
± γ
√
a+ b

)
(5.30)

where

a = η2ρ2 sin2(φ− θ(t)) (5.31)

and

b =
1

4βγ
(−4αβ + λx(t)(λy(t) sin(2θ(t))− 4βη cos(φ)) (5.32)

− 4βηλy(t) sin(φ) + λx(t)
2 cos2(θ(t)) + λy(t)

2 sin2(θ(t)))

Now that λ∗θ(t) is written in terms of the two constant costates λ∗x(t) and λ∗y(t)
then it is possible to substitute it back as the optimal steering control u∗(t). The
optimal steering control eliminates the drift and leaves an equation describing
turning rate dynamics as follows,

θ̇∗(t) = ±
√
a− b (5.33)

The fact that the optimal steering rate contains a square root imposes more
constraints on the costates and states relation. This means that

a− b > 0 (5.34)

To visualize the relation between the costates λ∗x(t), λ
∗
y(t) and θ∗(t) depending

on the flow conditions ρ, η, and φ it is possible to generate contour plots of the
regions satisfying the condition in eqn. (5.34) within the bounds obtained earlier
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on λ∗x(t) and λ∗y(t) as shown in figure 5.8. Assuming similar flow condition to
the ones considered earlier in this chapter, and with α = 0, β = 1, and γ = 0.5
provides an example of a resulting plot of the region satisfying the condition pro-
vided in eqn. (5.34). This geometric visualization shows the region where a value
for θ̇∗(t) always exists.

For a motion planning problem, two planes defining the two constant costates
λ∗x(t) and λ∗y(t) could be constructed. The line resulting from the intersection of
the two constant planes must connect both the initial and final heading angles
θ(t0) and θ(tf ) and remain entirely within the region satisfying the existence con-
dition provided earlier in eqn. (5.34).

Figure 5.8: A region plot of the values satisfying the existence condition of θ̇∗(t)
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5.4.4 Results

In the previous sections of this chapter both the flow parameters and final con-
figuration were fixed and various methods to solve the problem were explored.
In section 5.3 a method that guarantees the bounds on the controls and solves
for the final time of the problem was found. This method solves the two point
boundary value problem resulting form Pontryagin’s minimum principle.

Some results of the method derived above where the controls are bounded and
the final time is optimized are presented in this section. The initial configuration
is assumed to be qi = {0, 0, 0} for all cases. Also, both η and ρ are assumed
to equal 0.3. Figure 5.9 depicts the case where the flow is directed at φ = π

2

and the target configuration is qf = {5, 3, 0}. For this case the cost comes out to
be J = 1.88 while the total duration spent traversing the trajectory is tf = 17.547.
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Figure 5.9: φ = π
2
, qf = {5, 3, 0}, J = 1.88 and tf = 17.547

Figure 5.10 shows the case where the flow is directed at φ = −π
2

and the final
configurations is at qf = {5,−5, 0}. The total control expenditure cost comes out
to be J = 1.376 and the total time of travel along the trajectory is tf = 21.895.

Figure 5.11 presents a case where the flow is also directed at φ = −π
2
, however

the final configuration is given by qf = {5,−5,−π
2
}. The resulting structure of the

optimal trajectory comes out to be completely different from the case presented
in figure 5.10. The resulting trajectory has a total cost of J = 1.79 and a total
traveling time of tf = 22.9.
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Figure 5.10: φ = −π
2
, qf = {5,−5, 0}, J = 1.376 and tf = 21.895
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Figure 5.11: φ = −π
2
, qf = {5,−5,−π

2
}, J = 1.79 and tf = 22.9

5.5 Penalizing Time

In order to compare the problem with the results of the minimum time prob-
lem, the term α associated with the cost of the time of travel is then increased
while the weights associated with the control inputs are decreased. The results
obtained show that as β+γ

α
→ 0 then the numerical solution converges to the

minimum time solutions obtained in Chapter 4.

5.5.1 Case 1: Time and control input with same weights

The solution presented in this section uses a modified cost function. In order
to penalize the total time of travel, the weight associated with the time running
cost is set to α = 1. The weights associated with the control inputs are kept the
same with β = 1 and γ = 0.5. Figure 5.13 shows that the solver converges to
a solution similar in structure to that of the case where the cost of the time of
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travel is not taken into consideration. However the control input cost J = 1.005
comes out to be higher in value and the total time of travel tf = 6.263 is less
than the case presented in section 5.3.2.
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Figure 5.12: case 1 where α = 1, β = 1, γ = 0.5, J = 1.005, and tf = 6.263

5.5.2 Case 2: Total time of travel with a very high cost

The weights of the control inputs cost is set to β = γ = 0.0001. This assigns
a much higher cost to the total time of travel where α = 1. Then the same
approach used to solve the previous examples is used. The resulting trajectory
comes out to be similar in structure to the results obtained when solving the
minimum time problem in Chapter 4 as figure 5.13 indicates. The results turn
out to be as expected, a decrease in the total time of travel tf = 4.395. The
control expenditure decreased in value and the total travel cost remained almost
unchanged at J = 1.
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Figure 5.13: case 2 where α = 1, β = γ = 0.0001, J = 1, and tf = 4.395
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5.6 Future Work

This work started by introducing a new model to describe more accurately
the motion of vehicles in certain mediums with flow fields. Next, a minimum time
formulation was presented and a solution for the minimum time path planning
was derived. Then a minimum energy path planning problem was formulated for
the same model. Various methods to solve the minimum energy path planning
problem were exploited and a geometric interpretation was presented. The work
presented in this documents provided insight to optimal control problems includ-
ing systems with drift. It shows how complicated it can be to arrive at an exact
analytical or closed form solution for such problems. Never the less it raises many
questions for future exploration. One of many future directions possible based
on the results presented in this thesis is to develop the path synthesis algorithms
presented in chapter 4 into much faster algorithms that could be implemented
in real time. Another direction that could be taken is to develop numerical al-
gorithms tailored to problems of this type that guarantee quick convergence to
results satisfying the conditions provided by Pontryagin’s Minimum Principle.
One possible way to do this is presented by Bhattacharya [49] where the optimal
control problem is converted to a discretized nonlinear programming problem.
A completely different path could also be taken in solving such problems as in-
spired by Maclean [34] and Jurdjevic [50]. A work of this type will definitely be
considered incomplete if not implemented in real life mobile robots and proved
to deliver optimal performance.
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