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AN ABSTRACT OF THE THESIS OF

Maryam Ali Bu Taam for Master of Science
Major: Physics

Title: Supersymmetric Gravitational Solutions in N=2 Supergravity Theories

Not only are black holes important objects in the field of gravitational
physics, but also in studying other branches of physics such as quantum field the-
ory [1], condensed matter physics and material science [2]. Within supergravity
theories, black holes are considered as solutions of the low energy supergravity the-
ories originating via compactification of the M-theory, and they can, in principle,
be lifted to solutions in higher dimensions. In recent years, there has been a lot of
research activities in physics and mathematics on the subject of finding and classi-
fying black hole solutions and gravitational instantons admitting various fractions
of supersymmetry (see for example [3], [4] and [5]). Supersymmetric solutions are
those admitting Killing spinors, i.e., covariantly constant spinors with respect to the
supercovariant connection. My thesis is based on learning spinorial geometry [6], a
powerful method used in classifying and finding supersymmetric solutions in super-
gravity theories. We, specifically, discuss the ordinary and the fake N = 2, D = 4
supergravity theories coupled to vector multiplets. In the fake theory, the gauge
fields have kinetic terms with a sign opposite to that present in the ordinary case.
We solve the Killing spinor equations for the standard and the fake theories in a
linked manner by introducing a parameter κ. The solutions found are fully deter-
mined in terms of algebraic conditions, the stabilisation equations, in which the
symplectic sections are related to a set of functions. These functions are harmonic
in the case of the ordinary supergravity theory and satisfy the wave-equation in flat
(2+1)-space-time in the fake theory.
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Chapter 1

Introduction

Recently, investigation and classification of supersymmetric solutions in su-

pergravity theories have been active areas of research. Piling up systematic classi-

fications of candidate solutions of supergravity theories in different dimensions is a

very beneficial thing to do. This is because it could give us an insight about pos-

sible background geometries for different strings from a low-energy perspective [7],

for instance. In the early 80’s, Tod [8] was capable of setting a first classification

of the four-dimensional Einstein-Maxwell theory. Then, other significant findings

and categorizations of solutions took place using various approaches. However, few

years ago [9], the method of spinorial geometry was implemented as a powerful tech-

nique in the classification of solutions in supergravity theories. One of its traits is

that it supplies us with a systematic way to solve the Killing spinor equations of

supersymmetric theories.

In this thesis, we will use this method to discuss solutions in ordinary and

fake N = 2, D = 4 supergravity theories coupled to vector multiplets. A special

characteristic about the concerned fake supergravity theories is that their gauge

fields’ kinetic terms come with the non-conventional sign in the action. We shall

refer to the solutions of these theories as phantom solutions. It is worth mentioning

that fake de Sitter supergravity can be obtained by analytic continuation of anti-de
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Sitter supergravity or by a non-linear Kaluza-Klein reduction of the * theories of

Hull [10].

Phantom black hole solutions have been considered and analyzed by Gib-

bons and Rasheed [11]. Add to that, those solutions have been employed by different

authors in the fields of astrophysics and dark matter [12]. Very recently, metrics

with space-like Killing vectors admitting Killing spinors in four-dimensional Einstein

gravity coupled to a phantom Maxwell field were found by Sabra [13]. In this work,

we will generalize the results of [13] to four-dimensional N = 2 supergravity theory

coupled to vector multiplets. Furthermore, we will present in a unified manner the

ordinary scenario of the theory [3].

This thesis will next be divided into four main chapters. Chapter 2 is a brief

chapter that illustrates some mathematical concepts that are essential for later use.

Since supergravity was born after introducing supersymmetry to general relativity,

chapter 3 was added to provide the reader with a summarized background about

the latter triumph which stroke the world of theoretical physics. Chapter 4 is more

of a tool chapter that supplies us with some relations in special geometry which

are necessary to carry out calculations in chapter 5. That fifth chapter is where we

present detailed calculations of the solutions of Killing spinor equations for both,

the standard and the fake, supergravity theories. Finally, chapter 6 summarizes

what we have done in few words.
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Chapter 2

Mathematical Preliminaries

Since the break of their dawn, mathematics and physics have often comple-

mented one another. Advances in both fields, no matter how specialized they grew

independently, seemed to serve each other on many occasions. To physicists, a very

gratifying branch of mathematics is the one that has to do with geometry and its

concepts. The reason behind that is the sole intuition that one can extract from

it. The intimate relation between the geometric perspective and the analytic one

sets the stage for this chapter. The chapter will be concerned with few concepts in

differential geometry which are essential tools to equip ourselves with in theoretical

physics.

2.1 Manifolds

Manifolds, with their presentable mathematical aura, are one of the funda-

mental concepts in physics. For example, in Einstein’s general theory of relativity,

spacetime is taken to be a 4-dimensional differentiable manifold. In other situations,

manifolds of arbitrarily higher dimensions play a good deal of parts in different the-

ories. Putting this into context, a manifold corresponds to a space that may have

complicated topology globally but locally can be seen as Euclidean space. In what
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follows, our treatment is close to that of [14].

Mathematically speaking, a D-dimensional manifold M is a topological

space covered with a family of open sets (coordinate patches Mi) in a way that

allows us to write: M = ∪iMi. On each patch there is a one-to-one map φi, called a

chart, from Mi → RD. In other words, a point p ∈Mi ⊂M is mapped via φi to its

local coordinates, i.e, φi(p) = (x1, x2, ..., xD). However, in more exciting situations,

p may belong to some overlap between two patches, Mi∩Mj. When this is the case,

then there exists another map φj(p) = (x′1, x′2, ..., x′D) that leads us to a second

set of coordinates for the point p. The set of functions x′µ(xν)1 then specify the

compound map φj ◦ φ−1
i from RD → RD.

2.2 Scalars, Vectors and a Little More

Here, as in [14], we will refer to a less formal way in defining the properties of

objects that will live onM, and then we will elaborate on one definition. A manifold

now should be understood as a topological space having points each of which can

be linked to different coordinate systems such as the ones defined in the Manifolds ’

section. Now any two sets of these coordinates are related by smooth functions, C∞,

like those mentioned previously, i.e, x′µ(xν) with non-singular Jacobian ∂x′µ

∂xν
. This

certainly will ring a bell later on in chapter 3, for we will refer to such a change of

coordinates as a general coordinate transformation.

From what preceded, we can give a flavor of the sort of ways objects are

related on a manifold.

A scalar field is described by f(x) in one set of coordinates and f ′(x′) in the second

set. The two functions must be pointwise equal

f ′(x′) = f(x). (2.2.1)

1These functions and their inverses are required to be smooth.
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A contravariant vector field is described by D functions V µ(x) in one coordinate

system and D functions V ′µ(x′) in the second. Those are related by

V ′µ(x′) =
∂x′µ

∂xν
V ν(x). (2.2.2)

A covariant vector field ωµ(x) and a (mixed) tensor T µν (x), by a similar fashion, can

behave under general coordinate transformation respectively as

ω′µ(x′) =
∂xν

∂x′µ
ων(x), (2.2.3)

T
′µ
ν (x′) =

∂x′µ

∂xσ
∂xρ

∂x′ν
T σρ (x). (2.2.4)

Using the notion of a contravariant vector field, one can consider this system of

differential equations

dxµ

dλ
= V µ(x). (2.2.5)

It is the idea of an integral curve, a curve on the manifold M, that we now aim to

illustrate. This would be the solution xµ(λ) of the equation (2.2.5) and which is a

map from R→M. Through every point of each of the M ′
is in which the vector field

does not vanish, there is an integral curve. If the manifold is RD, then the tangent

to the curve xµ(λ) is well-known to be the vector

dxµ

dλ
. (2.2.6)

This interpretation is carried on for a general manifold.

It turns out that the vector fields evaluated at p determine the D-dimensional

tangent space Tp(M). Thus, as p varies over M, a vector field V µ(x) may then be
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thought of as a smooth assignment of a tangent vector in each Tp(M).

2.3 Differential Forms and Hodge Duality

In this section, we discuss the algebra [14] of differential forms by listing

some of the useful properties. This concept of differential forms is one that we will

encounter a lot in chapters to come.

When considered together, the scalars (0-forms), the covariant vectors and

the totally antisymmetric tensors (e.g., ωµν = −ωνµ) make up a useful structure. A

differential form of order p or a p-form for p = 1, 2, ..., D is a totally antisymmetric

tensor

ω(p) =
1

p!
ωµ1µ2...µpdx

µ1 ∧ dxµ2 ∧ ... ∧ dxµp . (2.3.1)

For example,

ω(1) = ωµ(x)dxµ, (2.3.2)

ω(2) =
1

2
ωµν(x)dxµ ∧ dxν , (2.3.3)

where the wedge product, ∧, is defined as antisymmetric. That is, upon flipping

two neighboring dxµ’s, we pick up a minus sign. For instance,

dxµ ∧ dxν = −dxν ∧ dxµ, dxµ ∧ dxν ∧ dxρ = −dxρ ∧ dxν ∧ dxµ. (2.3.4)

In addition to that, there is an exterior algebra of p-forms. A p-form ω(p)

and a q-form ω(q) can be multiplied to give a (p+q)-form if p+q 6 D. This product

has a property that says

ω(p) ∧ ω(q) = (−1)pqω(q) ∧ ω(p). (2.3.5)
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Now in order to give a complete exterior calculus overview, we define the

exterior and the interior derivative. The former maps p-forms into (p + 1)-forms,

whereas the latter maps p-forms into (p−1)-forms. We start with exterior derivatives

which can be generally defined as

dω(p) =
1

p!
∂µωµ1µ2...µpdx

µ ∧ dxµ1 ∧ ... ∧ dxµp . (2.3.6)

It is noteworthy that a p-form is called closed when it satisfies

dω(p) = 0, (2.3.7)

and exact when it can be written as

ω(p) = dω(p−1). (2.3.8)

On the other hand, interior derivatives are expressed as

(iV ω
(p)) =

1

(p− 1)!
V µωµµ1...µp−1dx

µ1 ∧ dxµ2 ∧ ... ∧ dxµp−1 . (2.3.9)

Finally, we list one more operation on differential forms. It is the Hodge

duality. The Hodge star operator, ?, on an n-dimensional manifold takes p-forms to

(n− p)-forms

?(dxi1 ∧ ... ∧ dxip) =
1

(n− p)!
ε
i1...ip

j1...jn−p
dxj1 ∧ ... ∧ dxjn−p . (2.3.10)

This map is quite useful in the physics of Supergravity.
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Chapter 3

General Relativity: A Review

General Relativity, dressed with an elegant mathematical structure, is one

of the most revolutionary theories in physics. Questing for a relativistic theory

of gravity, Einstein changed our perspective in viewing space and time. In 1915,

General Relativity was brought into existence with its roots rested in the Equivalence

Principle. Einstein related the fact that all bodies fall with the same acceleration in

a gravitational field to a natural understanding of gravity in terms of the curvature of

the four dimensional union of space and time [15]. Consequences of the Equivalence

Principle were significant and gave General Relativity the spirit it needed. This

chapter will start off from there shedding lights on few of the principle’s results.

These will be accompanied with the presentation of necessary technicalities in order

to give a complete picture in a brief manner. The technicalities, in turn, will also

serve in helping us find some of the solutions to Einstein’s field equations. Finally,

as this chapter comes to a close, we push things a little further so as to introduce

the concept of vielbeins which will be of great use in chapters to come.
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3.1 Gearing Up

We will begin this section by considering the effects of general coordinate

transformations when performed in Minkowski space, the spacetime of Special Rel-

ativity. This strategy, used by [16], will pave the way for introducing essential

concepts in our General Relativity journey. τ , the proper time, will be our starting

point since as we know, it should not rely on what coordinates one uses. As such,

we perform an arbitrary general coordinate transformation that will take us to new

coordinates, say, xµ(ξb) where ξa indicates a locally inertial coordinate system,

dτ 2 = −ηabdξadξb = −ηab
∂ξa

∂xµ
∂ξb

∂xν
dxµdxν . (3.1.1)

Here, ∂ξa

∂xµ
is the Jacobi matrix associated with the coordinate transformation ξa =

ξa(xµ), and ηab = diag(−1,+1,+1,+1) is the Minkowski metric. What preceded

calls up the first fact that in the new coordinates, proper time and distance are

measured by the metric tensor gµν instead of the Minkowski metric ηab, for now dτ 2

can be written as

dτ 2 = −gµν(x)dxµdxν , (3.1.2)

where gµν(x) = ηab
∂ξa

∂xµ
∂ξb

∂xν
.

In addition to that, it is well-known that the form of the equation of motion

of a free particle in Minkowski space is

d2

dτ 2
ξc(τ) = 0. (3.1.3)

So, upon using the conventional change of variable, we get

d

dτ
ξa =

∂ξa

∂xµ
dxµ

dτ
, (3.1.4)

9



where ∂ξa

∂xµ
is an invertible matrix at every point.

Differentiating (3.1.4), we obtain

d2

dτ 2
ξa =

∂ξa

∂xµ
[
d2xµ

dτ 2
+
∂xµ

∂ξb
∂2ξb

∂xν∂xλ
dxν

dτ

dxλ

dτ
]. (3.1.5)

Setting (3.1.5) equal to zero as in (3.1.3), we arrive at

d2xµ

dτ 2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0, (3.1.6)

where

Γµνλ =
∂xµ

∂ξb
∂2ξb

∂xν∂xλ
, (3.1.7)

represents what we will be referring to later as a Christoffel symbol.

Equation (3.1.6) brings up the second idea we intend to introduce here which

is that (3.1.6) is known as the geodesic equation. This equation can be derived or

deduced from a number of other ways such as the variational principle.

It is also noteworthy that the Christoffel symbol can be written in terms of

the metric tensor as

Γµνλ =
1

2
(∂λgρν + ∂νgρλ − ∂ρgνλ). (3.1.8)

Now that we have introduced what we aimed to introduce, we will want

to relate and extend ideas as we divert to the Equivalence Principle and its conse-

quences [17]. Primarily, the Equivalence Principle tells us that physical equivalency

exists between gravitational and inertial forces, therefore it is impossible to separate

those by any physical experiment. In other words, gravitational forces (acceler-

ations) must be described in the same manner as inertial forces (accelerations).

Feeding on this last sentence, we take equation (3.1.3) in Minkowski space. This

equation, after the usage of general coordinates, takes the form presented by equa-
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tion (3.1.6). The second term of the latter equation is the inertial acceleration. Thus,

it is obviously clear that inertial accelerations are described by Christoffel symbols,

but then again, gravitational accelerations are the same thing as the inertial ones.

This means that gravitational accelerations are also described by Christoffel sym-

bols. At this point, it is insightful to see that (3.1.8) shows a reliance of these

symbols on gµν . This tells us that, in the General Relativity arena, gµν will play the

role of the gravitational potential. That was one consequence. Another consequence

could be deduced from turning again to Minkowski space and noticing that there

Γλµν = 0. This implies that the sum of the inertial and the gravitational acceler-

ation could be made equal to zero everywhere. Our experience with gravitational

accelerations, though, tells us that when they exist, it is not possible to make them

vanish everywhere. Thus, when a gravitational field is present, the space will be

necessarily a curved space. That is to say, in general relativity, the gravitational

field has gained a geometric interpretation. Therefore, the concept of curvatures, at

least intuitively, is now within our grasp. Curvatures depend in a way or another

on the metric which defines the geometry of our manifold. We would like to wrap

this section up by giving the technical expression of curvatures that will be of use

later on

Rλ
σµν = ∂µΓλ σν − ∂νΓλ σµ + Γλ µρΓ

ρ
νσ − Γλ νρΓ

ρ
µσ. (3.1.9)

We can construct from it Ricci tensor and Ricci scalar respectively as

Rµν = Rλ
µλν , (3.1.10)

R = gµνRµν . (3.1.11)
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3.2 Vacuum Einstein Equations

We present here a sketch of the mathematical derivation that boils down to

Einstein’s vacuum equations:

We start with the famous Einstein-Hilbert (E-H) action

SEH =

∫ √
−gd4xR, (3.2.1)

where R is the Ricci scalar.

If we unfold this, then we can write the Ricci scalar as R = gµνRµν , and thus (3.2)

can be written as

SEH =

∫ √
−gd4xgµνRµν . (3.2.2)

A classic approach to finding the Einstein’s equations is to study the behavior of

the E-H action under a variation of the metric, that is,

δSEH = δ

∫ √
−gd4xgµνRµν (3.2.3)

=

∫
d4x((δ

√
−g)gµνRµν +

√
−g(δgµν)Rµν +

√
−ggµνδRµν). (3.2.4)

Using the identity

δ
√
−g = −1

2

√
−ggµνδgµν , (3.2.5)

we get

δSEH =

∫ √
−gd4x(Rµν −

1

2
gµνR)δgµν +

∫ √
−gd4xgµνδRµν . (3.2.6)

For δS
δφi

= 0, the first term would give the Einstein equation in vacuum

Rµν −
1

2
gµνR = 0. (3.2.7)
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This is the case because the functional derivative of the action satisfies

δS =

∫ ∑
i

(
δS

δφi
δφi)dnx, (3.2.8)

where φi is the field being varied. The second term in equation (3.2.6) gives no

contribution1.

In case we wanted to find the field equations in the presence of matter,

then we can formally derive it using the same procedure but now with the necessary

addition of the matter part to the action. We only state the result

Rµν −
1

2
gµνR = 8πGNTµν , (3.2.9)

where GN is Newton’s gravitational constant and Tµν is the stress-energy-momentum

tensor.

3.3 Spherical Symmetry

As a primer application of the field equations in vacuum, we shall concern

ourselves with the gravitational field of a static and spherically symmetric body.

Therefore, in this section we will illustrate the general form of a metric with spherical

symmetry [18]. To require spherical symmetry, we write the metric of Minkowski

space in polar coordinates (r, θ, φ)

ds2
Minkowski = −dt2 + dr2 + r2dΩ2, (3.3.1)

where dΩ2 is the metric on a unit two-sphere. Maintaining the form of dΩ2 is one

requirement to preserve spherical symmetry, but we are otherwise free to multiply

1Showing that the term in the second integral is a total derivative gives rise to a boundary term
in the variation of the action that sorts this out though we do not present this here.
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all of the terms by separate coefficients as long as they are functions of the radial

coordinate. In other words, we can implement the conditions above by writing the

metric as

ds2 = −A(r)dt2 +B(r)dr2 + 2C(r)drdt+D(r)r2(dθ2 + sin2 θdφ2). (3.3.2)

This can be simplified by introducing new time and radial coordinates [16]. First,

defining a new time coordinate T (t, r) by

T (t, r) = t+ ψ(r), (3.3.3)

this implies that

dT 2 = dt2 + ψ′2dr2 + 2ψ′drdt. (3.3.4)

Thus, we can eliminate the 2C(r)drdt-term in equation (3.3.2) by choosing ψ to

satisfy

dψ(r)

dr
= −C(r)

A(r)
. (3.3.5)

Hence, (3.3.2) automatically boils down to

ds2 = −A(r)dt2 +B(r)dr2 +D(r)r2(dθ2 + sin2 θφ2). (3.3.6)

At will, we could define a new radial coordinate so as to embed D(r) in it. The line

element then takes the form

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdφ2). (3.3.7)

14



A useful representation of the line element is provided by setting B(r) = D(r) upon

a coordinate transformation

ds2 = −A(r)dt2 +B(r)(dr2 + r2dΩ2). (3.3.8)

This is known as the isotropic form.

3.4 Schwarzschild Solution

Schwarzschild geometry, after Karl Schwarzschild, is the simplest of curved

spacetimes in General Relativity. The reasons behind the simplicity are that, first,

the Schwarzschild solution is a solution to Einstein’s equation for curved spacetime

deprived of matter which practically makes things much easier than if this were

not the case. Another reason will be the important feature that characterizes this

solution and which is having a great deal of symmetry – spherical symmetry. Starting

from Einstein equations in vacuum

Rµν −
1

2
gµνR = 0, (3.4.1)

we get

Rµν = 0. (3.4.2)

Referring back to equation (3.3.7), we can write it using exponentials so that the

signature of the metric doesn’t change [18]. That is to say

ds2 = −e2A(r)dt2 + e2B(r)dr2 + r2(dθ2 + sin2 θdφ2). (3.4.3)
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We directly deduce that

gµν =



−e2A 0 0 0

0 e2B 0 0

0 0 r2 0

0 0 0 r2 sin2 θ


, (3.4.4)

where its inverse is

gµν =



−e−2A 0 0 0

0 e−2B 0 0

0 0 1
r2

0

0 0 0 1
r2 sin2 θ


. (3.4.5)

The non-vanishing Christoffel symbols are then

Γ1
00 = A′e2(A−B),

Γ0
10 = Γ0

01 = A′,

Γ1
11 = B′,

Γ1
22 = −re−2B,

Γ1
33 = −r sin2 θe−2B,

Γ2
12 = Γ3

13 =
1

r
= Γ2

21 = Γ3
31,

Γ2
33 = − sin θ cos θ,

Γ3
23 = Γ3

32 = cot θ,



(3.4.6)

where 0, 1, 2 and 3 represent the t, r, θ and φ coordinates respectively. The diagonal

terms of Rµν are found to be

R00 = e2A−2B(A′′ + A′2 − A′B′ + 2A′

r
), (3.4.7)
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R11 = −A′′ + A′B′ +
2B′

r
− A′2, (3.4.8)

R22 = (−1− rA′ + rB′)e−2B + 1, (3.4.9)

R33 = sin2 θR22, (3.4.10)

whereas the non-diagonal components of Rµν vanish. Solving for (3.4.2) using what

has just preceded, we promptly get

e2A = 1− 2m

r
, (3.4.11)

where m = GNM is constant of integration; m is usually called the gravitational

radius of the central body [17]. Therefore after the necessary substitution of (3.4.11),

(3.4.3) can be written as

ds2 = −(1− 2m

r
)dt2 + (1− 2m

r
)−1dr2 + r2(dθ2 + sin2 θdφ2). (3.4.12)

This is the Schwarzschild solution.

3.5 Reissner-Nordström Solution

We turn sights to another physical application, this time describing the

exterior geometry of a spherically symmetric electrically charged star or black hole.

Here, as well, we solve the Einstein field equations for a static spherically symmetric

spacetime. In this case, though, our Tµν is present.

Since spherical symmetry is imposed here and since the object is considered
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static, the general form of the metric is given by (3.4.3)

ds2 = −e2A(r)dt2 + e2B(r)dr2 + r2(dθ2 + sin2 θdφ2). (3.5.1)

With φ(r) being the usual scalar potential, we take the vector potential A

for the electrically charged scenario to have [16]:

At = At(r) ≡ −φ(r), Ar = Aθ = Aφ = 0. (3.5.2)

This implies that the only non-vanishing component of the field strength tensor is

Ftr = ∂tAr − ∂rAt = φ′(r). (3.5.3)

Now, for Maxwell theory, it can be easily derived starting from the theory’s action

that

Tµν = FµγFν
γ − 1

4
gµνFρσF

ρσ. (3.5.4)

For example for the Ttt case, we get

Ttt = FtrFtrg
rr − 1

4
gttg

ttgrrFtrFtr, (3.5.5)

Ttt =
1

2
grr(FtrFtr). (3.5.6)

We know what grr is from (3.4.5) and Ftr from the fact that [16]

φ(r) =
Q

r
. (3.5.7)

Hence, Er = Q/r2.
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Summarizing the obtained results for Tµν , we write

Ttt =
Q2

2r4
e−2B, (3.5.8)

Trr = −Q
2

2r4
e−2A, (3.5.9)

Tθθ =
Q2

2r2
e−2(A+B). (3.5.10)

That being mentioned, we only have to solve for Einstein’s equation (3.2.9)

using (3.4.7 - 3.4.10). Then, we follow the same procedure as in the Schwarzschild

case in order to arrive at the Reissner-Nordstörm solution

ds2 = −(1− 2m

r
+
q2

r2
)dt2 + (1− 2m

r
+
q2

r2
)−1dr2 + r2dΩ2, (3.5.11)

where q2 = GNQ
2.

f(r) being equal to

f(r) = (1− 2m

r
+
q2

r2
), (3.5.12)

has now two roots

r± = m±
√
m2 − q2. (3.5.13)

Having noticed that, we point out that there are three cases at hand now: m2−q2 <

0, > 0 or = 0. The latter case will be the subject of the next section.
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3.6 Extremal Reissner-Nordström Solution

The case where m2 = q2 characterizes the extremal Reissner-Nordström

solution. Thus, equation (3.5.11) becomes

ds2 = −(1− m

r
)2dt2 + (1− m

r
)−2dr2 + r2dΩ2. (3.6.1)

This equation can be written, upon setting r′ = r −m, as

ds2 = −(1 +
m

r′
)−2dt2 + (1 +

m

r′
)2(dr′2 + r′2dΩ2). (3.6.2)

This is the extremal Reissner-Nordström (ERN) metric in isotropic coordinates [16].

The (ERN) black hole has many special properties [19, 20]. One of those properties

is that it has a multi-centered generalization. That is, as long as their horizons do

not overlap and all their charges have equal sign, there exist static configurations

of black holes. Those can be placed at arbitrary positions in space. Thus, the

gravitational attraction and electrostatic repulsion cancel out without the slightest

worry about the position. The corresponding metric belongs to the class of metrics

which was discovered by Majumdar and Papapetrou

ds2 = −H−2(~x)dt2 +H2(~x)d~x2, (3.6.3)

where H(~x) is a harmonic function.

One possible choice of the harmonic funtion would be

H(~x) = 1 +
M

r
. (3.6.4)
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This single-center solution is the ERN black hole with mass M.

The most general choice of H(~x) would be

H(~x) = 1 +
N∑
i=1

Mi

|~x− ~xi|
, (3.6.5)

where Mi and xi are the mass and position (of the event horizon) of the i-th black

hole. Extremal black holes have other very special properties and it turns out that

these can be translated in terms of a symmetry principle – the supersymmetry

principle. After embedding gravity into extended supergravity, extremal black holes

can be called supersymmetric solitons and a set of those black holes is the ERN one.

It is good to note that besides the Majumdar-Papapetrou solutions, there are the

IWP (Israel-Wilson-Perjes) solutions in the case of N = 2 supergravity. Those are

rotating, stationary generalizations of the Majumdar-Papapetrou solutions.

3.7 The Frame Field

In this section, we discuss the formalism of few notions but this time

in noncoordinate basis [14, 18]. We usually take advantage of the fact that for

the tangent space at a point p, a natural basis is given by partial derivatives with

respect to the coordinate at that point; that is to say, ê(µ) = ∂µ. But there is nothing

that can keep us from choosing any basis we want. So in order to get started, we

define a quantity called vierbein (or tetrad) when our physics is concerned with four

dimensions and vielbein (or frame field) in general cases. The tetrad, eaµ, enters the

game when expressing our old basis in terms of the new one via

ê(µ) = eµ
aê(a). (3.7.1)

These are chosen to form an orthonormal set of vectors at each point in
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the tangent space of M. We note that upon the introduction of the notion of the

vierbein, we can write gµν , the known metric tensor, in terms of the Minkowski

metric ηab as follows

gµν = eaµ(x)ηabe
b
ν(x). (3.7.2)

Equation (3.7.2) describes a general relation between the metric and the frame field.

One thing that is worth mentioning here is that given the metric tensor gµν , the

frame field eaµ(x), obtained by diagonalization, is not the only solution out there. In

fact, given any x-dependent matrix Λa
b(x) which leaves ηab invariant, we can get

another solution of (3.7.2). More precisely,

e′aµ (x) = Λ−1a
b(x)ebµ(x). (3.7.3)

All choices of frame fields related by local Lorentz Transformations (LLT)

are considered equivalent. Covariance under LLT is indeed the main principle be-

hind this discussion. Translating what we know about tensors, for example, into

noncoordinate basis is a matter of arranging vielbeins in the right place and order.

The exception comes when we begin to differentiate things. Usually, in ordinary

formalism, a covariant derivative differentiates tensors of type (p, q) to ones of type

(p, q + 1). But for that to hold appropriately, we have to add affine connection Γρµν .

So, on vector fields, covariant derivative goes like

∇µV
ρ = ∂µV

ρ + Γρ µνV
ν , ∇µVν = ∂µVν − Γρ µνVρ (3.7.4)

and it is quite straight forward to extend these to tensors. This will continue to be

valid for the noncoordinate basis, with the exception that we have to replace the

ordinary connection by the spin connection, denoted by ωµ
a
b,

∇µX
a
b = ∂µX

a
b + ωµ

a
cX

c
b − ωµ c bXa

c. (3.7.5)

22



This was an essential point to mention and now that we are at it, spin connections

are usually called that because of their importance in the description of spinors

on manifolds. It is about time at this stage to take advantage of our freedom to

suppress indices on differential forms, so we write

ea = eµ
adxµ. (3.7.6)

Given the frame 1-forms ea, we examine the 2-forms

dea =
1

2
(∂µe

a
ν − ∂νeaµ)dxµ ∧ dxν . (3.7.7)

The antisymmetric components transform as a (0, 2) tensor under coordinate trans-

formations, but not as local Lorentz transformation, this can be seen through

de′a = d(Λ−1a
be
b) = Λ−1a

bde
b + dΛ−1a

b ∧ eb. (3.7.8)

Clearly, the second term spoils the vector transformation property. To cancel it, we

add the contribution from a 2-form involving the spin connection and consider

dea + ωa b ∧ eb = T a (3.7.9)

If ωa b is defined to transform under LLT as

ω
′a
b = Λ−1a

cdΛc
b + Λ−1a

cω
c
dΛ

d
b, (3.7.10)

then T a does indeed transform as a vector. Equation (3.7.9) is called the first

Cartan structure equation. In most applications of differential geometry to gravity,
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the torsion term T vanishes, then

dea + ωa b ∧ eb = 0. (3.7.11)
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Chapter 4

A Glimpse of Special Geometry

We will start this intermediate chapter from the definition of a complex

manifold. Then, we will briefly take things from there to illustrate some properties

of Special Geometry that we will be using in chapter 5. Special Geometry is the

name given for a manifold determined by scalars of vector multiplets in N = 2

supergravity.

4.1 Complex Manifold

A complex manifold [14] is a manifold on which one can choose n complex

coordinates, zα, in a smooth fashion. Better stated, say the concerned manifold is

covered by open sets UI . On each of which there exists a one-to-one continuous

map, ψI(p) = (z1, z2, ..., zn), such that zα ∈ C.

What preceded was worth introducing in order to settle the ground of what

follows. The basic idea here is that the scalar fields of supersymmetric theories in

four spacetime dimensions are a set of complex fields, zα, which can be taken as

coordinates of an essential type of complex manifold known as the Kähler manifold.

This type of a manifold emerges naturally in supergravity. What we will be dealing

with in the next chapter is a subclass of Kähler manifolds called special Kähler
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manifolds which are necessary for supersymmetric theories of the N = 2 vector

multiplets.

4.2 Special Geometry Properties

If one is to obtain complex coordinates, one can start from a real coordinate

set φi where i runs from 1 to 2n as was illustrated in [14]. Accordingly, one can

write za as:

zα = φα + iφα+n,

z̄ᾱ = φα − iφα+n,

(4.2.1)

where in the first set a runs through to define ’holomorphic’ coordinates and through

the second to define ’anti-holomorphic’ coordinates.

The splitting of an index a into ’holomorphic’ and ’antiholomorphic’ com-

ponents is not preserved by general transformation of complex coordinates, but it is

preserved under the special class of holomorphic coordinate transformations.

That being said, the metric expressed in complex coordinates can be pre-

sented as

ds2 = gabdz
adzb

= 2gαβ̄dz
αdz̄β̄ + gαβdz

αdzβ + gᾱβ̄dz̄
ᾱdz̄β̄.

(4.2.2)

From there, we now move to define two conditions [14] on the metric gab

which are preserved by holomorphic coordinate transformations. The metric is said

to hermitian if gαβ = 0 = gᾱβ̄. Thus (4.2.2) takes the form

ds2 = 2gαβ̄dz
αdz̄β̄. (4.2.3)

In addition to that, given the hermitian metric, one can define a fundamental

2-form, [14]

Ω = −2igαβ̄dz
α ∧ dz̄β̄. (4.2.4)
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However, for the manifold with a hermitian metric to be Kähler, its fundamental

form must be closed. Thus upon that, we will have a necessary condition

∂γgαβ̄ − ∂αgγβ̄ = 0. (4.2.5)

This implies that the concerned metric is written as

gαβ̄ = ∂α∂β̄K , (4.2.6)

where K is the Kähler potential.

An important idea [14] that characterizes special Kähler geometry as a

subclass of Kähler manifolds is that they are Kähler manifolds in which the scalars

’sense’ the symplectic transformation [14]. We will define what we mean by sympletic

transformations next and then explain what we meant by the latter sentence as a

whole.

In four dimensions, the duality transformations are transformations between

field strengths. Those transformations preserve the field equations and Bianchi

identities under the action of the symplectic matrix1 S [21]

S =

A B

C D

 where STΩS = Ω and Ω =

 0 1

−1 0

 . (4.2.7)

If you take a look at the action in (5.3.3), you would observe a coupling

matrix, NIJ , that enters in the kinetic terms. This NIJ depends on the scalars we

introduced at the very beginning. The point of mentioning this is to say that NIJ

should transform under the action of the symplectic group above so that we get [21]

Ñ = (C +DN )(A+BN )−1. (4.2.8)

1Given the restriction that ÑIJ should be symmetric [21].
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This determines the action of symplectic transformations on the scalars and, in turn,

gives an idea of how these ’special’ manifolds are characterized.

A useful definition of a special Kähler manifold can be given by introducing

a (2n+ 2)-dimensional symplectic bundle with covariantly holomorphic sections V ,

V =

LI

MI

 = eK/2

XI

FI

 where, I = 0, ..., n, (4.2.9)

where [5]

DĀV = (∂Ā −
1

2
∂ĀK)V = 0, (4.2.10)

and

UA = DAV = (∂A +
1

2
∂AK)V =

 f IA

hAI

. (4.2.11)

These sections obey the symplectic constraint [3]

i(L̄IMI − LIM̄I) = 1. (4.2.12)

The Kähler potential, that we previously introduced, can be obtained from the

holomorphic sections by

e−K = i(X̄IFI −XIF̄I). (4.2.13)

Now, in general one can write [5],

FI(z) = NIJXJ(z), DAFI(z) = N̄IJDAXI(z), (4.2.14)

in addition to very handy equations

FI∂µX
I −XI∂µFI = 0, (4.2.15)
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gAB̄DALMDB̄L̄I = −1

2
(ImN )MI − L̄MLI . (4.2.16)

The U(1) Kähler connection A is defined by

A = − i
2

(∂AKdz
A − ∂ĀKdz̄A), (4.2.17)

where it was shown in [5] that this could be written as

A = MIdL̄
I − LIdM̄I . (4.2.18)

Upon using (4.2.9), (4.2.10) and (4.2.11), we can derive another helpful equation as

we will illustrate below:

∂µL
I = ∂ĀL

I∂µz̄
A + ∂AL

I∂µz
A

=
1

2
∂ĀKL

I∂µz̄
A +DALI∂µzA −

1

2
∂AKL

I∂µz
A.

(4.2.19)

Making use out of (4.2.17),

−iAµ =
1

2
(−∂AK∂µzA + ∂ĀK∂µz̄

A), (4.2.20)

we get the desired relation

DALIdzA = (d+ iA)LI . (4.2.21)

Furthermore, we plan to find another essential equation using equations (4.2.9),
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(4.2.10), (4.2.11) and (4.2.14):

∂µMI = ∂ĀMI∂µz̄
A + ∂AMI∂µz

A

=
1

2
∂ĀKMI∂µz̄

A +DAMI∂µz
A − 1

2
MI∂AK∂µz

A = N̄IJDALJ∂µzA − iAµMI .

(4.2.22)

Using equation (4.2.21), we get

dMI = −iAMI + N̄IJ(dLJ + iALJ). (4.2.23)

Thus,

dMI = i(ReNIJ − iImNIJ)ALJ + N̄IJdLJ − iA(ReNIJ + iImNIJ)LJ . (4.2.24)

This guides us to the second desired relation

dMI − N̄IJdLJ = 2AImNIJLJ . (4.2.25)
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Chapter 5

Ordinary and Fake Supergravity

Supergravity is an extension of Einstein’s general theory of relativity so as

to carry supersymmetry. Supersymmetry, in simple terms, is a development relating

the bosons (of integer spin) to fermions (of half odd integer spin). One of the main

aspects of supergravity that caught a decent amount of attention is the investigation

of supersymmetric solutions. These solutions are the result of solving a set of first-

order Killing spinor differential equations. The concerned Killing spinor equations

emerge from supersymmetric transformations that maintain the invariance of the

theory.

In this chapter, we will be dealing with the ordinary and fake N = 2 su-

pergravity theory in four dimensions coupled to vector multiplets. We will be going

through detailed analysis of our theory’s Killing spinor equations. Throughout this

analysis, we are going to use the elegant spinorial geometry method which was first

used in [9].

5.1 The Key Steps

We are going to start off this section by writing the spinors in terms of

exterior forms which facilitates the way the Killing spinor equations act on the
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spinor representatives. This is applicable upon employing the isomorphism between

Clifford algebra and exterior algebra [23]. After complexification, spinors can be

written as complexified forms on R2. Now, if ∆ were to denote the space of Dirac

spinors, then ∆ = Λ?(R2)⊗ C. Therefore, a generic spinor can be written as

ε = λ1 + µie
i + σe12, (5.1.1)

where e1, e2 are 1-forms on R2, and i = 1; 2; e12 = e1 ∧ e2. Here, λ, µi and σ

are complex functions. That being said, the next step is to find representatives up

to gauge transformations which can be used to simplify the Killing spinors of the

theory we are working in. Those are referred to as the canonical forms of the spinor.

After utilizing Spin(3, 1) gauge transformations, it was shown in [24] that one finds

three canonical orbits:

ε = 1 + µ2e
2, ε = 1 + µ1e

1, ε = e2. (5.1.2)

The first orbit, which we will be concerned with, represents the Killing spinor for the

IWP metric which has a time-like Killing vector. In [13], phantom1 solutions for the

Killing spinor, ε = 1 +µe2, were found. And because our work is a generalization of

the results of [13] to four-dimensional N = 2 supergravity theory coupled to vector

multiplets, our attention will also be concentrated on

ε = 1 + µe2. (5.1.3)

1We will refer to solutions of the fake theory, where the gauge fields come with the non-
conventional sign of the kinetic terms, as phantom solutions.
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Using the basis elements 1, e1, e2 and e12, we can construct and define Clifford

Gamma matrices in the following way [13]

Γ0 = −e2 ∧+ie2 ,

Γ1 = e1 ∧+ie1 ,

Γ2 = e2 ∧+ie2 ,

Γ3 = i(e1 ∧ −ie1),

(5.1.4)

where

Γ5 = iΓ0123. (5.1.5)

It is assumed that it is known that the i operation represents the adjoint of the ∧

one.

The third step, before moving on, is to write the Dirac matrices in (5.1.4) in terms of

the oscillator basis. The usage of this basis simplifies the operations in a significant

way. Thus,

Γ+ =
1√
2

(Γ2 + Γ0) =
√

2ie2 ,

Γ− =
1√
2

(Γ2 − Γ0) =
√

2e2∧,

Γ1 =
1√
2

(Γ1 + iΓ3) =
√

2ie1 ,

Γ1̄ =
1√
2

(Γ1 − iΓ3) =
√

2e1∧,

(5.1.6)

where the metric components in the null basis are given by g+− = 1 and g11̄ = 1.

Now that the Killing spinors are written in terms of forms and the Gamma

matrices are written in terms of form-operators, this will facilitate the way we solve

for the Killing spinor equations.
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5.2 Essentials

It will be essential that we now present the action of the new gamma matri-

ces on the desired forms – those that appeared in the previous section. This can be

processed by a direct application of the Gammas defined in (5.1.6). We note that

the anti-symmetrization convention, i.e, Γab = 1
2
(ΓaΓb − ΓbΓa) is used here. The

results can be summarized as

Γ1̄1 =
√

2e1, Γ1̄e
1 = 0, Γ1̄e

2 =
√

2e12, Γ1̄e
12 = 0,

Γ11 = 0, Γ1e
1 =
√

2(1), Γ1e
2 = 0, Γ1e

12 =
√

2e2,

Γ+1 = 0, Γ+e
1 = 0, Γ+e

2 =
√

2(1), Γ+e
12 = −

√
2e1,

Γ−1 =
√

2e2, Γ−e
1 = −

√
2e12, Γ−e

2 = 0, Γ−e
12 = 0,

Γ11̄1 = 1, Γ11̄e
1 = −e1, Γ11̄e

2 = e2, Γ11̄e
12 = −e12,

Γ+1̄1 = 0, Γ+1̄e
1 = 0, Γ+1̄e

2 = −2e1, Γ+1̄e
12 = 0,

Γ+11 = 0, Γ+1e
1 = 0, Γ+1e

2 = 0, Γ+1e
12 = 2(1),

Γ−1̄1 = −2e12, Γ−1̄e
1 = 0, Γ−1̄e

2 = 0, Γ−1̄e
12 = 0,

Γ−11 = 0, Γ−1e
1 = 2e2, Γ−1e

2 = 0, Γ−1e
12 = 0,

Γ+−1 = 1, Γ+−e
1 = e1, Γ+−e

2 = −e2, Γ+−e
12 = −e12.

(5.2.1)

Now, from what preceded, we can describe in a compact way

F abΓab(1) = 2F+−Γ+−(1) + 2F 11̄Γ11̄(1) + 2F+1̄Γ+1̄(1) + 2F+1Γ+1(1) + 2F−1̄Γ−1̄(1)

+ 2F−1Γ−1(1)

= 2F+−(1) + 2F 11̄(1) + 2F−1̄(−2e12)

= 2(F 11̄ + F+−)1− 4F−1̄e12,

(5.2.2)
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F abΓab(e
1) = 2F+−Γ+−(e1) + 2F 11̄Γ11̄(e1) + 2F+1̄Γ+1̄(e1) + 2F+1Γ+1(e1) + 2F−1̄Γ−1̄(e1)

+ 2F−1Γ−1(e1)

= 2F+−(e1)− 2F 11̄(e1) + 2F−1(2e2)

= 4F−1e2 − 2(F 11̄ − F+−)e1,

(5.2.3)

F abΓab(e
2) = 2F+−Γ+−(e2) + 2F 11̄Γ11̄(e2) + 2F+1̄Γ+1̄(e2) + 2F+1Γ+1(e2) + 2F−1̄Γ−1̄(e2)

+ 2F−1Γ−1(e2)

= −2F+−(e2) + 2F 11̄(e2)− 4F+1̄(e1)

= −4F+1̄e1 + 2(F 11̄ − F+−)e2,

(5.2.4)

F abΓab(e
12) = 2F+−Γ+−(e12) + 2F 11̄Γ11̄(e12) + 2F+1̄Γ+1̄(e12) + 2F+1Γ+1(e12) + 2F−1̄Γ−1̄(e12)

+ 2F−1Γ−1(e12)

= −2F+−(e12)− 2F 11̄(e12) + 4F+1(1)

= 4F+11− 2(F 11̄ + F+−)e12.

(5.2.5)

In short, one obtains for a 2-form F, the following

F abΓab1 = 2(F 11̄ + F+−)1− 4F−1̄e12,

F abΓabe
1 = 4F−1e2 − 2(F 11̄ − F+−)e1,

F abΓabe
2 = −4F+1̄e1 + 2(F 11̄ − F+−)e2,

F abΓabe
12 = 4F+11− 2(F 11̄ + F+−)e12.

(5.2.6)
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5.3 The Killing Spinor Equations

As we said earlier this chapter, our theory incorporates supersymmetry.

Since our background preserves supersymmetry, then it is invariant under super-

symmetries of the supergravity theory [14]

δ boson = ε fermion,

δ fermion = ε boson.

(5.3.1)

Our current aim is to find supersymmetric solutions. Because this is the case, we

should seek an ε such that the supersymmetric variations vanish. Our solutions are

bosonic, i.e., the fermions automatically vanish. That is, we need not worry about

the first variation in (5.3.1). Thus, the relevant supersymmetric variation now is

δ fermion = boson ε = 0. (5.3.2)

This, above, represents the Killing spinor equation. Once ε satisfies this equation,

it is then called the Killing spinor.

We are now going to solve the Killing spinor equations for the standard and

fake supergravity theories in a linked manner. A necessity for the desired linkage

is the introduction of a parameter, κ. The values that κ can take are: i and 1.

For κ = i, we will be referring to the standard N = 2, D = 4 supergravity theory

coupled to vector multiplet. For κ = 1, we will be referring to the fake theory where

the gauge field terms in the action come with the opposite sign. We will reiterate on

this throughout the thesis when necessary. As for now, we shall consider the action

[25]

e−1L =
1

2
R− gAB̄∂µzA∂µz̄B −

κ2

4
(ImNIJF I · F J +ReNIJF I · F̃ J), (5.3.3)
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where F I ·F J ≡ F I
µνF

Jµν and F̃ J is the dual of F J , I = 0, ..., n. Here, gAB̄ = ∂A∂B̄K

is the Kähler metric, and K is the Kähler potential. The n complex scalar fields,

zA, of the N = 2 vector multiplets are coordinates of the special Kähler manifold.

NIJ , the coupling matrix, is characterized by being complex and symmetric.

The Killing spinor equations are given by [25]

(∇µ +
i

2
AµΓ5 +

κ

4
ImNIJΓ · F I(ImLJ − iΓ5ReL

J)Γµ)ε = 0, (5.3.4)

and

κ

2
(ImN )IJΓ·F J [Im(gAB̄DB̄L̄I)−iΓ5Re(g

AB̄DB̄L̄I)]ε+Γµ∂µ(RezA−iΓ5Imz
A)ε = 0,

(5.3.5)

where ∇µ = ∂µ + 1
4
ω ab
µ Γab. For κ = i, those stand for the vanishing of the su-

persymmetry variations, in a bosonic background, of the gravitini and gaugini in

the standard N = 2, D = 4 supergravity theory coupled to vector multiplet. For

κ = 1, those stand for the vanishing of the fake supersymmetry transformations for

a theory where all the gauge field terms in the action come with the opposite sign.

5.4 Finding the Linear Systems

Our focus in this thesis will be on the canonical form, ε = 1 + µe2. As

such we plug it in the above Killing spinor equations. Solving for the Killing spinor

equations gives us geometric constraints as we will see later on, thus paving the path

toward the complete solution.

Concerning equation (5.3.4), we will obtain four sets of equations after sub-

stituting µ by +,−, 1, and 1̄ respectively. Each set will have four equations which

results in a total of sixteen equations. Making use out of (5.2) and (5.2.6), we

illustrate the results below.
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• For the + component, we get

∂+µ(e2) +
1

2
ω+,−+(1) +

1

2
ω+,1̄1(1)− ω+,+1(e12)− µ

2
ω+,−+(e2) +

µ

2
ω+,1̄1(e2)− µω+,−1(e1)

+
i

2
A+(1)− iµ

2
A+(e2)− iµκ

√
2

4
LJImNIJ(2(F I11̄ + F I+−)(1)− 4F I−1̄(e12)) = 0.

(5.4.1)

Collecting terms results in the first set of four equations:

ω+,−1 = 0,

∂+ log µ− 1

2
(ω+,11̄ + ω+,−+)− i

2
A+ = 0,

1

2
(ω+,−+ − ω+,11̄ + iA+)− iµκ√

2
ImNIJ(F I

−+ − F I
11̄)LJ = 0,

ω+,+1 − iµκImNIJF I
+1L

J
√

2 = 0.


(5.4.2)

• For the − component, we get

∂−µ(e2) +
1

2
ω−,−+(1)− 1

2
ω−,11̄(1)− ω−,+1(e12)− µ

2
ω−,−+(e2)− µ

2
ω−,11̄(e2)− µω−,−1(e1)

+
i

2
A−(1)− iµ

2
A−(e2) +

iκ
√

2

4
ImNIJ L̄J(−4F I+1̄(e1) + 2(F I11̄ − F I+−)(e2)) = 0.

(5.4.3)

Collecting terms results in the second set of four equations:

ω−,+1 = 0,

µω−,−1 + iκ
√

2ImNIJF I
−1L̄

J = 0,

ω−,−+ − ω−,11̄ + iA− = 0,

∂− log µ− 1

2
(ω−,11̄ + ω−,−+)− i

2
A− −

iκ

µ
√

2
ImNIJ(F I

11̄ + F I
−+)L̄J = 0.


(5.4.4)
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• For the 1 component, we get

∂1µ(e2) +
1

2
ω1,−+(1)− 1

2
ω1,11̄(1)− ω1,+1(e12)− µ

2
ω1,−+(e2)− µ

2
ω1,11̄(e2)− µω1,−1(e1)

+
i

2
A1(1)− iµ

2
A1(e2) = 0.

(5.4.5)

Collecting terms results in the third set of four equations:

ω1,−1 = 0,

ω1,+1 = 0,

∂1 log µ− 1

2
(ω1,11̄ + ω1,−+)− i

2
A1 = 0,

ω1,−+ − ω1,11̄ + iA1 = 0.


(5.4.6)

• For the 1̄ component, we get

∂1̄µ(e2) +
1

2
ω1̄,−+(1)− 1

2
ω1̄,11̄(1)− ω1̄,+1(e12)− µ

2
ω1̄,−+(e2)− µ

2
ω1̄,11̄(e2)− µω1̄,−1(e1)

+
i

2
A1̄(1)− iµ

2
A1̄(e2) +

iκ
√

2

4
L̄JImNIJ(4F I−1(e2)− 2(F I11̄ − F I+−)(e1))−

iκµ
√

2

4
ImNIJLJ(4F I+1 − 2(F I11̄ + F I+−)(e12)) = 0.

(5.4.7)

Collecting terms results in the fourth set of the last four equations:

µω1̄,−1 −
iκ√

2
ImNIJ(F I

11̄ + F I
−+)L̄J = 0,

∂1̄ log µ− 1

2
(ω1̄,11̄ + ω1̄,−+)− i

2
A1̄ +

iκ

µ
ImNIJF I

+1̄L̄
J
√

2 = 0,

1

2
(ω1̄,−+ − ω1̄,11̄ + iA1̄)− iκµImNIJF I

−1̄L
J
√

2 = 0,

ω1̄,+1 +
iκµ√

2
ImNIJ(F I

11̄ − F
I
−+)LJ = 0.


(5.4.8)

Thus, we combine now the linear systems, (5.4.2), (5.4.4), (5.4.6) and
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(5.4.8), obtained from (5.3.4) into one system for ease of reference.

ω+,−1 = 0, (5.4.9)

ω1,−1 = 0, (5.4.10)

ω−,+1 = 0, (5.4.11)

ω1,+1 = 0, (5.4.12)

µω−,−1 + iκ
√

2ImNIJF I
−1L̄

J = 0, (5.4.13)

µω1̄,−1 −
iκ√

2
ImNIJ(F I

11̄ + F I
−+)L̄J = 0, (5.4.14)

∂− log µ− 1

2
(ω−,11̄ + ω−,−+)− i

2
A− −

iκ

µ
√

2
ImNIJ(F I

11̄ + F I
−+)L̄J = 0, (5.4.15)

∂1 log µ− 1

2
(ω1,11̄ + ω1,−+)− i

2
A1 = 0, (5.4.16)

∂+ log µ− 1

2
(ω+,11̄ + ω+,−+)− i

2
A+ = 0, (5.4.17)

ω1,−+ − ω1,11̄ + iA1 = 0, (5.4.18)

ω−,−+ − ω−,11̄ + iA− = 0, (5.4.19)

∂1̄ log µ− 1

2
(ω1̄,11̄ + ω1̄,−+)− i

2
A1̄ +

iκ

µ
ImNIJF I

+1̄L̄
J
√

2 = 0, (5.4.20)

1

2
(ω1̄,−+ − ω1̄,11̄ + iA1̄)− iκµImNIJF I

−1̄L
J
√

2 = 0, (5.4.21)

1

2
(ω+,−+ − ω+,11̄ + iA+)− iµκ√

2
ImNIJ(F I

−+ − F I
11̄)LJ = 0, (5.4.22)

ω+,+1 − iµκImNIJF I
+1L

J
√

2 = 0, (5.4.23)

ω1̄,+1 +
iκµ√

2
ImNIJ(F I

11̄ − F
I
−+)LJ = 0. (5.4.24)
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Now, as we solve for the second equation (5.3.5), we obtain

κ

2
ImNIJ [Im(gAB̄DB̄L̄I)− iRe(gAB̄DB̄L̄I)][2(F J11̄ + F J+−)(1)− 4F J−1̄(e12)]

+
κµ

2
ImNIJ [Im(gAB̄DB̄L̄I) + iRe(gAB̄DB̄L̄I)][−4F J+1̄(e1) + 2(F J11̄ − F J+−)(e2)]+

√
2∂+(RezA − iImzA)(e2) + µ

√
2∂−Rez

A + iImzA)(1) +
√

2∂1(RezA − iImzA)(e1)

+ µ
√

2∂1(RezA + iImzA)(e12) = 0.

(5.4.25)

Collecting terms boils this down to our second linear system, now resulting from

(5.3.5). The set stands as

−iκgAB̄DB̄L̄I(ImN )IJ(F J
−+ − F J

11̄) + ∂−z
Aµ
√

2 = 0, (5.4.26)

−iκ̄µ̄gAB̄DB̄L̄I(ImN )IJ(F J
11̄ − F

J
−+) + ∂+z

A
√

2 = 0, (5.4.27)

2iκ̄µ̄gAB̄DB̄L̄I(ImN )IJF
J
−1̄ + ∂1̄z

A
√

2 = 0, (5.4.28)

2iκgAB̄DB̄L̄I(ImN )IJF
J
+1 + ∂1z

Aµ
√

2 = 0. (5.4.29)

5.5 Studying the Linear Systems

5.5.1 Extracted Conditions

The analysis of the first linear system obtained from (5.3.4) produces ge-

ometric conditions which their derivation will be presented shortly. In addition to

that and upon a similar analysis, conditions will also be imposed on the gauge field

strengths. Furthermore, as this subsection comes to an end, we give two conditions

that will come in handy later on.

• We first multiply equation (5.4.20) by µ and then we take its conjugate.
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Then, upon adding what we get in the previous step to equation (5.4.23) multiplied

by κ and −κ̄/µ respectively, we get:

κ∂1µ̄−
µ̄κ

2
(ω1,−+ − ω1,11̄) +

iκµ̄A1

2
− κ̄

µ
ω+,+1 = 0. (5.5.1)

Addition of equation (5.5.1) and equation (5.4.18) after multiplying the latter by

(µ̄κ)/2, gives:

ω+,+1 = κ2µ(∂1µ̄+ iµ̄A1) . (5.5.2)

• Upon adding the conjugate of equation (5.4.21) to equation (5.4.13) mul-

tiplied by κ and −κ̄µ̄ respectively, we get:

−κ̄|µ|2ω−,−1 +
κ

2
(ω1,−+ + ω1,11̄)− iκ

2
A1 = 0. (5.5.3)

Addition of equation (5.5.3) and equation (5.4.16) after multiplying the latter by κ,

gives:

ω−,−1 =
κ2

|µ|2
(−iA1 + ∂1 log µ) . (5.5.4)

•Upon adding equation (5.4.14) to equation (5.4.15) after multiplying the

latter by µ and former by −1, we get:

−µω1̄,−1 + ∂−µ−
µ

2
(ω−,11̄ + ω−,−+)− iµ

2
A− = 0. (5.5.5)

Addition of equation (5.5.5) after dividing it by µ and the conjugate of equation

(5.4.19) multiplied by 1/2, gives:

ω1̄,−1 = ∂− log µ− iA− . (5.5.6)

• Upon adding equation (5.4.22) to equation (5.4.24) after multiplying the
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latter by −1, we get:

−ω1̄,+1 +
1

2
(ω+,−+ − ω+,11̄) +

i

2
A+ = 0. (5.5.7)

Addition of equation (5.5.7) and the conjugate of equation (5.4.17), gives:

ω1̄,+1 = ∂+ log µ̄+ iA+ . (5.5.8)

• Upon the addition of equation (5.4.16) to equation (5.4.18) after multi-

plying the latter by 1/2, we get:

ω1,11̄ = ∂1 log µ . (5.5.9)

• Substituting equation (5.5.9) in equation (5.4.18), gives:

ω1,−+ = −iA1 + ∂1 log µ . (5.5.10)

• Upon the addition equation (5.4.22) to equation (5.4.24) after multiplying

the latter by −1 and substituting ω1̄,+1 by its value in (5.5.8), we get:

1

2
(ω+,−+ − ω+,11̄)− i

2
A+ − ∂+ log µ̄ = 0. (5.5.11)

Addition of equation (5.5.11) to equation (5.4.17), gives:

ω+,11̄ = −iA+ + ∂+ log
µ

µ̄
. (5.5.12)

• Using equation (5.4.17) and after substituting ω+,11̄ by its value in equa-

tion (5.5.12), we get:

ω+,−+ = ∂+ log µµ̄ . (5.5.13)
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• Upon adding equation (5.4.14) to equation (5.4.15) multiplied by −1 and

µ respectively, we get:

∂−µ−
µ

2
(ω−,11̄ + ω−,−+)− iµ

2
A− − µω1̄,−1 = 0. (5.5.14)

Addition of equation (5.5.14) after substituting its ω1̄,−1 by its value in equation

(5.5.6) to equation (5.4.19) where the latter equation must first be multiplied by

µ/2, gives:

ω−,11̄ = iA− . (5.5.15)

Therefore, the existing geometric conditions can be summarized as:

ω−,11̄ = iA−, ω+,−+ = ∂+ log µµ̄,

ω+,11̄ = −iA+ + ∂+ log
µ

µ̄
, ω1,−+ = −iA1 + ∂1 log µ,

ω1̄,+1 = ∂+ log µ̄+ iA+, ω1,11̄ = ∂1 log µ,

ω−,−1 =
κ2

|µ|2
(−iA1 + ∂1 log µ), ω+,+1 = κ2µ(∂1µ̄+ iµ̄A1),

ω1̄,−1 = ∂− log µ− iA−.

(5.5.16)

We now move to the next necessary step and which is finding the conditions in-

volving the gauge field strengths.

• Using equation (5.4.20) multiplied by µ, we replace ω1̄,11̄ and ω1̄,−+ by

their values in equations (5.5.9) and (5.5.10) respectively. It is noteworthy that the

values could be subjected to certain manipulations from conjugation and flipping

indices where necessary. Accordingly, we get:

∂1̄µ− iµA1̄ + iκImNIJF I
+1̄L̄

J
√

2 = 0. (5.5.17)
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Taking the conjugate of equation (5.5.17), gives:

ImNIJF I
+1L

J = − iκ√
2

(∂1 + iA1)µ̄ . (5.5.18)

• In equation (5.4.13), after replacing ω−,−1 by its value in equation (5.5.4),

we take the conjugate of the result to get:

ImNIJF I
−1̄L

J = − iκ̄√
2|µ|2

(∂1̄ + iA1̄)µ̄ . (5.5.19)

• In equation (5.4.14), we substitute ω1̄,−1 by its value in equation (5.5.6).

After that, we take the conjugate of the result to get:

ImNIJ(F I
−+ − F I

11̄)LJ = iκ
√

2(∂− + iA−)µ̄ . (5.5.20)

It is worth mentioning that equation ImNIJ(F I
−+−F I

11̄) could be obtained also from

equation (5.4.24) to get:

ImNIJ(F I
−+ − F I

11̄)LJ =
−i
√

2κ̄

|µ|2
(∂+ + iA+)µ̄. (5.5.21)

What preceded can be summed up as:

ImNIJF I
−1̄L

J = − iκ̄√
2|µ|2

(∂1̄ + iA1̄)µ̄,

ImNIJF I
+1L

J = − iκ√
2

(∂1 + iA1)µ̄,

ImNIJ(F I
−+ − F I

11̄)LJ = iκ
√

2(∂− + iA−)µ̄.

(5.5.22)

There are yet other conditions that will certainly come in handy. One of which

relates ∂−, ∂+,A− and A+. It comes from setting equations (5.5.20) and (5.5.21)

equal:

µ∂−µ̄+ κ2∂+ log µ̄ = −i(A−|µ|2 + κ2A+) . (5.5.23)
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Another one comes from adding equation (5.5.23) to its conjugate:

∂−(µµ̄) + κ2∂+ log µµ̄ = 0 . (5.5.24)

5.5.2 Torsion Equation

It is a good idea at this stage to collect the ω-terms derived in the previous section

in order to make it easier for us to plug things in the first Cartan structure equation

with a vanishing torsion term. Using equation (5.5.1), we can write the following

relations for the spin connection:

ω11̄ =

(
∂+ log

µ

µ̄
− iA+

)
e+ + iA−e− + ∂1 log µe1 − ∂1̄ log µ̄e1̄,

ω−1 =
κ2

µµ̄
(∂1 log µ− iA1) e− + (∂− log µ− iA−) e1̄,

ω−+ = (∂1 log µ− iA1) e1 + (∂1̄ log µ̄+ iA1̄) e1̄ + ∂+ log µ̄µe+,

ω+1 = (∂+ log µ̄+ iA+) e1̄ + κ2µ (∂1µ̄+ iA1µ̄) e+.

(5.5.25)

Now, using equation (3.7.11),

dea + ωab ∧ eb = 0, (5.5.26)

that we saw in The Frame Field section, we now derive expressions for de1, de+ and

de−.

• Expression for de1:

Expanding equation (5.5.26), we get:

de1 + ω1̄+ ∧ e+ + ω1̄− ∧ e− + ω1̄1 ∧ e1 = 0. (5.5.27)

We now substitute the desired terms in (5.5.2), where some of which could be sub-

jected to manipulations from conjugation and flipping lower indices, in equation
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(5.5.27):

de1 + (iA+ − ∂+ log µ)e1 ∧ e+ − (∂− log µ̄+ iA−)e1 ∧ e− + (iA+ − ∂+ log
µ

µ̄
)e+ ∧ e1

− (iA−)e− ∧ e1 + ∂1̄ log µ̄e1̄ ∧ e1 = 0 (5.5.28)

de1 − ∂− log µ̄e1 ∧ e− + ∂1̄ log µ̄e1̄ ∧ e1 + ∂+ log µ̄e+ ∧ e1 = 0 (5.5.29)

de1 + (d log µ̄) ∧ e1 = 0. (5.5.30)

• Expression for de+:

We perform the same technique used for de1. We start by expanding equation

(5.5.26):

de+ + ω−+ ∧ e+ + ω−1 ∧ e1 + ω−1̄ ∧ e1̄ = 0. (5.5.31)

Using concerned terms in (5.5.2), we obtain:

de+ + (∂1 log µ− iA1)e1 ∧ e+ + (∂1̄ log µ̄+ iA1̄)e1̄ ∧ e+ +
κ2

µµ̄
(∂1 log µ− iA1)e− ∧ e1

+ (∂− log µ− iA−)e1̄ ∧ e1 +
κ2

µµ̄
(∂1̄ log µ̄+ iA1̄)e− ∧ e1̄ + (∂− log µ̄+ iA−)e1 ∧ e1̄

= 0.

(5.5.32)

After a straight forward simplification, we get:

de+ = −(∂− log
µ

µ̄
− 2iA−)e1̄ ∧ e1 − (

κ2

µµ̄
e− − e+) ∧ [(∂1̄ log µ̄+ iA1̄)e1̄

+ (∂1 log µ− iA1)e1].

(5.5.33)

• Expression for de−:
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In a similar fashion,

de− + ω+− ∧ e− + ω+1 ∧ e1 + ω+1̄ ∧ e1̄ = 0. (5.5.34)

That is,

de− + (−∂1 log µ+ iA1)e1 ∧ e− + (−∂1̄ log µ̄− iA1̄)e1̄ ∧ e− + (−∂+ log µµ̄)e+ ∧ e−+

(∂+ log µ̄+ iA+)e1̄ ∧ e1 + κ2µ(∂1µ̄+ iA1µ̄)e+ ∧ e1 + (∂+ log µ− iA+)e1 ∧ e1̄+

κ2µ̄(∂1̄µ− iA1̄µ)e+ ∧ e1̄ = 0.

(5.5.35)

After collecting terms, we get

de− =− (∂+ log
µ̄

µ
+ 2iA+)e1̄ ∧ e1 + ∂+ log µ̄µe+ ∧ e− − κ2e+ ∧ [(µ∂1µ̄+ iA1µµ̄)e1+

(µ̄∂1̄µ− iA1̄µ̄µ)e1̄]− 1

µµ̄
e− ∧ [(µ̄∂1µ− iµµ̄A1)e1 + (µ∂1̄µ̄+ iµµ̄A1̄)e1̄].

(5.5.36)

5.5.3 Total Differential and the Killing Vector

At this point, it would be rather illuminating to notice that using the results that

just preceded, we can write:

d(µµ̄e+ − κ2e−) = 0. (5.5.37)

In order to prove that equation (5.5.37) holds, we start by expanding it in the

following manner:

d(µµ̄− κ2e−) =d(µµ̄)e+ − µµ̄∂1 log µe1 ∧ e+ + iµµ̄A1e
1 ∧ e+ − µµ̄∂1̄ log µ̄e1̄ ∧ e+

− iµµ̄A1̄e
1̄ ∧ e+ − κ2∂1 log µe− ∧ e1 + iA1κ

2e− ∧ e1

(5.5.38)
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−κ2∂1̄ log µ̄e− ∧ e1̄ − iκ2A1̄e
− ∧ e1̄ − µµ̄(∂− log

µ

µ̄
− 2iA−)e1̄ ∧ e1

−κ2∂1 log µe1 ∧ e− + iκ2A1e
1 ∧ e− − κ2∂1̄ log µ̄e1̄ ∧ e− − iκ2A1̄e

1̄ ∧ e−

−κ2∂+ log µµ̄e+ ∧ e− + µκ4∂1µ̄e+ ∧ e1 + iµµ̄κ4A1e
+ ∧ e1

+κ4µ̄∂1̄µe+ ∧ e1̄ − iµµ̄κ4A1̄e
+ ∧ e1̄ + κ2(∂+ log

µ̄

µ
+ 2iA+)e1̄ ∧ e1.

Making use of (5.5.23) and its conjugate in addition to equation (5.5.24), we indeed

prove that equation (5.5.37) holds. Therefore, this tells us that

(µµ̄e+ − κ2e−), (5.5.39)

is a total differential. From here, we now want to check if

V = |µ|2∂− + κ2∂+, (5.5.40)

is a Killing vector. For a Killing vector to exist, it should obey the equation:

∂AVB + ∂BVA = ωA,CBV
C + ωB,CAV

C . (5.5.41)

And it turns out, after summing over all possible valid indices, that when A = +

and B = −, that equation (5.5.40) is valid, whereas for other cases, things vanish.

We note that in (5.5.40), if κ2 = 1, then the Killing vector is space-like. Meanwhile,

if κ2 = −1, then it is time-like.

But, we are also aware that the dual is defined by the map

∂

∂xµ
→ gµνdx

µ, (5.5.42)

so,

∂− → g−+e+ → e+,
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∂+ → g+−e− → e−.

As a result, the one-form could be written as

V =
1√
2

(|µ|2e+ + κ2e−) = κ2|µ|2(dt+ σ), (5.5.43)

where σ = σxdx+ σydy + σzdz is a 1-form independent of the coordinate t.

5.5.4 Prerequisites

The conditions noted at the end of section (5.5.3) permit us to introduce the

(t, x, y, z) coordinates. In order to proceed with the analysis, we will start by ex-

tracting expressions for e+, e−, e1, e1̄.

Upon the addition of equations (5.5.39) and (5.5.43), we simply get:

e+ =
1√

2|µ|2
(dz + V ) ≡ 1√

2|µ|2
(
dz + κ2|µ|2(dt+ σ)

)
. (5.5.44)

Whereas, upon subtraction, we get:

e− = − κ2

√
2

(dz − V ) ≡ − κ2

√
2

(
dz − κ2|µ|2(dt+ σ)

)
. (5.5.45)

We, then, extracted e1 by the following procedure:

Knowing that e1 is a one-form, we make use out of equation (5.5.30), to get

e1 =
1

µ̄
√

2
(dx+ idy) . (5.5.46)

We can take conjugate of (5.5.46) to arrive at the expression for e1̄ which is

e1̄ =
1

µ
√

2
(dx− idy) . (5.5.47)

50



We summarize the results,

e+ =
1√

2|µ|2
(dz + V ) ≡ 1√

2|µ|2
(
dz + κ2|µ|2(dt+ σ)

)
,

e− = − κ2

√
2

(dz − V ) ≡ − κ2

√
2

(
dz − κ2|µ|2(dt+ σ)

)
,

e1 =
1

µ̄
√

2
(dx+ idy),

e1̄ =
1

µ
√

2
(dx− idy).

(5.5.48)

Now, the metric is independent of the coordinate t and can be written as

ds2 = 2e1e1̄ + 2e+e− = κ2|µ|2(dt+ σ)2 +
1

|µ|2
(−κ2dz2 + dx2 + dy2). (5.5.49)

It is important to mention here that using equations (5.4.26) and (5.4.27) we deduce,

(µµ̄∂− + κ2∂+)zA = ∂tz
A = 0 (5.5.50)

Which means that the scalar fields are independent of the coordinate t.

We also note that another condition could be deduced from equation (5.5.50) along

with equation (4.2.17),

A+ = − i
2

(∂AK∂+z
A − ∂ĀK∂+z̄

Ā),

and

A− = − i
2

(∂AK∂−z
A − ∂ĀK∂−z̄Ā),

(5.5.51)

and which is

κ2A+ + µµ̄A− = 0. (5.5.52)

This implies and upon making use of equation (5.5.23) that

∂tµ = 0. (5.5.53)
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We will now find what ∂+, ∂−, ∂1 and ∂1̄ are in terms of ∂x, ∂y and ∂z. We know

that

dX = ∂+Xe+ + ∂−Xe− + ∂1Xe1 + ∂1̄Xe1̄, (5.5.54)

that is

dX = ∂+X[
1√

2|µ|2
(dz + V )] + ∂−X[− κ2

√
2

(dz − V )] + ∂1X[
1√
2µ̄

(dx+ idy)]+

∂1̄X[
1√
2µ

(dx− idy)],

= (
1√
2µ̄
∂1X +

1√
2µ
∂1̄X)dx+ (

i√
2µ̄
∂1X −

i√
2
∂1̄X)dy + (

1√
2|µ|2

∂+X −
κ2

√
2
∂−X)dz

+ (
1√

2|µ|2
∂+X +

κ2

√
2
∂−X)V.

(5.5.55)

But we also can write dX as

dX = ∂xXdx+ ∂yXdy + ∂zXdz. (5.5.56)

So by comparing equation (5.5.55) to the second and neater equation (5.5.56) fol-

lowed by elementary simplification, we get2

∂+ =
|µ|2√

2
∂z,

∂− = − κ2

√
2
∂z,

∂1 =
µ̄√
2

(∂x − i∂y),

∂1̄ =
µ√
2

(∂x + i∂y).

(5.5.57)

Our next step at this point is to find an expression for dσ. This can be done using,

25.5.57 is true provided we are acting on time-independent functions.
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for example, equation (5.5.44). For ease of reference, the equation says:

e+ =
1√

2|µ|2
(
dz + κ2|µ|2(dt+ σ)

)
. (5.5.58)

We start by taking the differential of the above equation to get:

√
2de+ − d

(
1

|µ|2

)
∧ dz = κ2dσ. (5.5.59)

We start one thing at a time, that is, we start by the expression of de+ which is

already derived in (5.5.33). Unfolding the concerned equation, we get:

de+ =− ∂1 log µe1 ∧ e+ + iA1e
1 ∧ e+ − ∂1̄ log µ̄e1̄ ∧ e+ − iA1̄e

1̄ ∧ e+

− κ2

µµ̄
∂1 log µe− ∧ e1 + i

κ2

µµ̄
A1e

− ∧ e1 − κ2

µµ̄
∂1̄ log µ̄e− ∧ e1̄

− i κ
2

µµ̄
A1̄e

− ∧ e1̄ − ∂− log
µ

µ̄
e1̄ ∧ e1 + 2iA−e1̄ ∧ e1.

(5.5.60)

We now make use of equations (5.5.48) and (5.5.57) by substituting them in the

equation that just preceded. We arrive at

de+ =− µ̄√
2

(
1√
2µ̄

)(
1√
2µµ̄

)
(∂x log µ− i∂y log µ)(dx+ idy) ∧ (dz + V )

+ i
µ̄√
2

(
1√
2µ̄

)(
1√
2µµ̄

)
(Ax − iAy)(dx+ idy) ∧ (dz + V )

− µ√
2

(
1√
2µ

)(
1√
2µµ̄

)
(∂x log µ̄+ i∂y log µ̄)(dx− idy) ∧ (dz + V )

− i µ√
2

(
1√
2µ

)(
1√
2µµ̄

)
(Ax + iAy)(dx− idy) ∧ (dz + V )

+
κ2

µµ̄

µ̄√
2

(
κ2

√
2

)(
1√
2µ̄

)
(∂x log µ− i∂y log µ)(dz − V ) ∧ (dx+ idy)

− i κ
2

µµ̄

µ̄√
2

(
κ2

√
2

)(
1√
2µ̄

)
(Ax − iAy)(dz − V ) ∧ (dx+ idy)
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+
κ2

µµ̄

µ√
2

(
κ2

√
2

)(
1√
2µ

)
(∂x log µ̄+ i∂y log µ̄)(dz − V ) ∧ (dx− idy)

+ i
κ2

µµ̄

µ√
2

(
κ2

√
2

)(
1√
2µ

)
(Ax + iAy) (dz − V ) ∧ (dx− idy)

+
κ2

√
2

(
1√
2µ

)(
1√
2µ̄

)
∂z log

µ

µ̄
(dx− idy) ∧ (dx+ idy)

− 2i
κ2

√
2

(
1√
2µ

)(
1√
2µ̄

)
Az(dx− idy) ∧ (dx+ idy).

(5.5.61)

Now, upon careful simplification of equation (5.5.61), we get:

de+ =− 1√
2µµ̄

∂x log µ(dx ∧ dz)− i 1√
2µµ̄

∂x log µ(dy ∧ dz) + i
1√
2µµ̄

∂y log µ(dx ∧ dz)

− 1√
2µµ̄

∂y log µ(dy ∧ dz)− 1√
2µµ̄

∂x log µ̄(dx ∧ dz) + i
1√
2µµ̄

∂x log µ̄(dy ∧ dz)

− i 1√
2µµ̄

∂y log µ̄(dx ∧ dz)− 1√
2µµ̄

∂y log µ̄(dy ∧ dz) + i
κ2

√
2µµ̄

∂z log
µ

µ̄
(dx ∧ dy)

−
√

2

µµ̄
Ax(dy ∧ dz) +

√
2

µµ̄
Ay(dx ∧ dz) +

√
2κ2

µµ̄
Az(dx ∧ dy).

(5.5.62)

Plugging related terms in equation (5.5.59) with further simplification, this gives:

1

µµ̄

(
−i∂y log

µ

µ̄
(dz ∧ dx) + i∂x log

µ

µ̄
(dz ∧ dy) + iκ2∂z log

µ

µ̄
(dx ∧ dy)

)
+

1

µµ̄
(−2Ax(dy ∧ dz) + 2Ay(dx ∧ dz) + 2κ2Az(dx ∧ dy)) = κ2dσ.

(5.5.63)

This then implies that

dσ = − κ2

|µ|2
?3

(
id log

µ

µ̄
+ 2A

)
, (5.5.64)

where ?3 is the Hodge dual with the metric (−κ2dz2 + dx2 + dy2).
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5.5.5 Equations of Motion

Given the action

S =

∫
d4x
√
G[R− 2gAB̄∂z

A∂z̄B − κ2

4
(ImNIJF I · F J +ReNIJF I · F̃ J)], (5.5.65)

we now want to derive the equations of motion using

Gµν
K = εµνρσ

δS

δF ρσK
. (5.5.66)

Starting with the term in the action containing ImNIJ , we calculate for δS
δF ρσK

as

follows:

=
κ2

4
ImNIJgµµ′gνν′(

δF µ′ν′I

δF ρσK
F µνJ +

δF µνJ

δF ρσK
F µ′ν′I)

=
κ2

4
ImNIJgµµ′gνν′(δµ

′

ρ δ
ν′

σ δ
I
KF

Jµν + δJKδ
µ
ρ δ

ν
σF

µ′ν′I)

=
κ2

4
(ImNIJF J

ρσ + ImNIJF
J
ρσ)

=
κ2

2
ImNIJF J

ρσ. (5.5.67)

Multiplying the previous result by εµνρσ, we arrive at

κ2ImNIJ F̃ Jµν . (5.5.68)

Following the same procedure for the part of the Lagrangian with ReNIJ , we get

−κ2ReNIJF Jµν . (5.5.69)
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Combining both, we obtain

Gµν
K = κ2(−ReNIJF

Jµν + ImNIJ F̃
Jµν). (5.5.70)

Thus, the Bianchi identities and Maxwell equations are

dF I = 0, and d(ReNIJF J − ImNIJ F̃ J) = 0. (5.5.71)

In order to find the equations of motion, we first start by finding an expression

for F I . In order to do that, we modify by simple means equations (5.4.26-5.4.29).

By this, we mean, multiplying each by DALM and using the relations (4.2.16) and

(4.2.21),

gAB̄DALMDB̄L̄I = −1

2
(ImN )MI − L̄MLI ,

and

DALIdzA = (d+ iA)LI .

(5.5.72)

As a result, we arrive at

iκ

2

(
FM
−+ − FM

11̄

)
+ iκ( ImN )IJ

(
F J
−+ − F J

11̄

)
L̄MLI + (∂− + iA−)LMµ

√
2 = 0,

−2iκ̄µ̄(ImN )IJF
J
−1̄L̄

MLI − iκ̄FM
−1̄µ̄+ (∂1̄ + iA1̄)LM

√
2 = 0,

−2iκ(ImN )IJF
J
+1L̄

MLI − iκFM
+1 + (∂1 + iA1)LMµ

√
2 = 0.

The set of equations in (5.5.73) can be altered using (5.5.22) and (5.5.57), in order

to obtain

F I
11̄ = i

[
−κLI (∂z − iAz)µ+ κµ (∂z + iAz)LI + κ̄µ̄ (∂z − iAz) L̄I − κ̄L̄I (∂z + iAz) µ̄

]
,

F I
−+ = −iκ2∂z

(
κ̄µLI − κL̄I µ̄

)
, ,

F I
−1̄ = i

1

µ̄

[
κ̄L̄I ((∂x + i∂y) + i (Ax + iAy)) µ̄− κµ ((∂x + i∂y) + i (Ax + iAy))LI

]
,

F I
+1 = iµ̄

[
κL̄I ((∂x − i∂y) + i (Ax − iAy)) µ̄− κ̄µ ((∂x − i∂y) + i (Ax − iAy))LI

]
.
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We now shall find expression for the gauge field strength,

F I =F I
−+e− ∧ e+ + F I

11̄e
1 ∧ e1̄ + F I

−1e
− ∧ e1 + F I

+1e
+ ∧ e1 + F I

1̄+e1̄ ∧ e+

+ F I
1̄−e1̄ ∧ e−

Upon substitution

F I =− iκ2∂z(κ̄µL
I − κL̄I µ̄)

(
− κ2

√
2

)(
1√
2µµ̄

)
(dz − V ) ∧ (dz + V )

+ i[−κLI(∂z − iAz)µ+ κµ(∂z + iAz)LI + κ̄µ̄(∂z − iAz)L̄I

− κ̄L̄I(∂z + iAz)µ̄]

(
1√
2µ̄

)(
1√
2µ

)
(dx+ idy) ∧ (dx− idy)

− i 1
µ

[κLI((∂x − i∂y)− i(Ax − iAy))µ− κ̄µ̄((∂x − i∂y)− i(Ax

− iAy))L̄I ]
(
− κ2

√
2

)(
1√
2µ̄

)
(dz − V ) ∧ (dx+ idy)

+ iµ̄[κL̄I((∂x − i∂y) + i(Ax − iAy))µ̄− κ̄µ((∂x − i∂y) + i(Ax

− iAy))LI ]
(

1√
2µµ̄

)(
1√
2µ̄

)
(dz + V ) ∧ (dx+ idy)

+ iµ[κ̄LI((∂x + i∂y)− i(Ax + iAy))µ− κµ̄((∂x + i∂y)− i(Ax

+ iAy))L̄I ]
(

1√
2µ

)(
1√
2µµ̄

)
(dx− idy) ∧ (dz + V )

− i 1
µ̄

[κ̄L̄I((∂x + i∂y) + i(Ax + iAy))µ̄− κµ((∂x + i∂y) + i(Ax

+ iAy))LI ]
(

1√
2µ

)(
− κ2

√
2

)
(dx− idy) ∧ (dz − V ).

(5.5.73)

Upon serious simplification of what preceded, we get:

F I =− 2i

µµ̄
(κµ̄AzL̄I − κ̄µAzLI)κ2(dx ∧ dy)

− 2i

µµ̄
(κ̄µLIAx − κµ̄AxL̄I)(dy ∧ dz)

− 2i

µµ̄
(κ̄µLIAy − µ̄AyL̄Iκ)(dz ∧ dx)

− ∂z(iκ̄L̄I µ̄− iκµLI)dz ∧ (dt+ σ)

+ ∂x(−iκ̄L̄I µ̄+ iκLIµ)dx ∧ (dt+ σ)

(5.5.74)
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+∂y(−iκ̄L̄I µ̄+ iκLIµ)dy ∧ (dt+ σ)

+
1

µµ̄
(−κ̄LI∂zµ+ κ̄µ∂zL

I + κµ̄∂zL̄
I − κL̄I∂zµ̄)κ2(dx ∧ dy)

− 1

µµ̄
(−κL̄I∂xµ̄+ µκ̄∂xL

I − κ̄LI∂xµ+ κµ̄∂xL̄
I)(dy ∧ dz)

− 1

µµ̄
(−κ̄LI∂yµ+ κµ̄∂yL̄

I − κL̄I∂yµ̄+ κ̄µ∂yL
I)(dz ∧ dx).

So,

F I = d
(
iκµLI − iκ̄L̄I µ̄

)
∧ (dt+ σ)− 1

|µ|2
?3

[
κµ̄dL̄I − κL̄Idµ̄+ κ̄µdLI − κ̄LIdµ

]
− 2i

|µ|2
?3

(
κ̄µLI − κL̄I µ̄

)
A. (5.5.75)

With the help of equation (5.5.64), (5.5.75) can be written as

F I = d
[(
iκµLI − iκ̄L̄I µ̄

)
(dt+ σ)

]
− ∗d

[
κ

(
L̄I

µ

)
+ κ̄

(
LI

µ̄

)]
. (5.5.76)

Next, we want to find an expression for F̃ I .

To do that, we first find

F̃ I
+− = iF I

11̄,

F̃ I
11̄ = iF I

+−,

F̃ I
−1 = iF I

1−,

F̃ I
+1 = iF I

+1.

(5.5.77)

We then make use of what preceded

F̃ I =F̃ I
−+e− ∧ e+ + F̃ I

11̄e
1 ∧ e1̄ + F̃ I

−1e
− ∧ e1 + F̃ I

+1e
+ ∧ e1 + F̃ I

1̄+e1̄ ∧ e+

+ F̃ I
1̄−e1̄ ∧ e−
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=− iF I
11̄e
− ∧ e+ + iF I

+−e1 ∧ e1̄ + iF I
1−e− ∧ e1 + iF I

+1e
+ ∧ e1 + iF I

+1̄e
1̄ ∧ e+

+ iF I
1̄−e1̄ ∧ e−

F̃ I =− κLI(∂z − iAz)µ+ κµ(∂z + iAz)LI + κ̄µ̄(∂z − iAz)L̄I

− κ̄L̄I(∂z + iAz)µ̄]

(
− κ2

√
2

)(
1√
2µµ̄

)
(dz − V ) ∧ (dz + V )

− κ2∂z(κ̄µL
I − κL̄I µ̄)

(
1√
2µ̄

)(
1√
2µ

)
(dx+ idy) ∧ (dx− idy)

− 1

µ
[κLI((∂x − i∂y)− i(Ax − iAy))µ− κ̄µ̄((∂x − i∂y)− i(Ax

− iAy))L̄I ]
(
− κ2

√
2

)(
1√
2µ̄

)
(dz − V ) ∧ (dx+ idy)

− µ̄[κL̄I((∂x − i∂y) + i(Ax − iAy))µ̄− κ̄µ((∂x − i∂y) + i(Ax

− iAy))LI ]
(

1√
2µµ̄

)(
1√
2µ̄

)
(dz + V ) ∧ (dx+ idy)

+ µ[κ̄LI((∂x + i∂y)− i(Ax + iAy))µ− κµ̄((∂x + i∂y)− i(Ax

+ iAy))L̄I ]
(

1√
2µ

)(
1√
2µµ̄

)
(dx− idy) ∧ (dz + V )

+
1

µ̄
[κ̄L̄I((∂x + i∂y) + i(Ax + iAy))µ̄− κµ((∂x + i∂y) + i(Ax

+ iAy))LI ]
(

1√
2µ

)(
− κ2

√
2

)
(dx− idy) ∧ (dz − V ).

(5.5.78)
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Upon serious simplification, we get:

F̃ I =− 2iAz(µκLI − µ̄κ̄L̄I)dz ∧ (dt+ σ)

− 2iAx(µκLI − κ̄µ̄L̄I)dx ∧ (dt+ σ)

− 2iAy(−κ̄µ̄L̄I + κLIµ)dy ∧ (dt+ σ)

+
i

µµ̄
∂y(κL̄

I µ̄− κ̄µLI)(dz ∧ dx)

+
i

µµ̄
∂x(−κ̄LIµ+ κµ̄L̄I)(dy ∧ dz)

− iκ2

µµ̄
∂z(−κ̄µLI + κL̄I µ̄)(dx ∧ dy)

+ (κLI∂zµ− κµ∂zLI − κ̄µ̄∂zL̄I + κ̄L̄I∂zµ̄)dz ∧ (dt+ σ)

+ (κLI∂xµ− κ̄µ̄∂xL̄I + κ̄L̄I∂xµ̄− κµ∂xLI)dx ∧ (dt+ σ)

+ (κ̄L̄I∂yµ̄− κµ∂yLI + κLI∂yµ− κ̄µ̄∂yL̄I)dy ∧ (dt+ σ),

(5.5.79)

this boils down to

F̃ =
i

|µ|2
?3 d

[
κL̄I µ̄− κ̄µLI

]
+
(
−2iA

(
κµLI − κ̄µ̄L̄I

)
+
(
κ̄L̄Idµ̄− κµdLI

)
+
(
κLIdµ− κ̄µ̄dL̄I

))
∧ (dt+ σ) .

We plug what preceded in ReNIJF J − ImNIJ F̃ J to get

ReNIJF J − ImNIJ F̃ J =

ReNIJ(d[(iκµLJ − iκ̄L̄J µ̄)(dt+ σ)]− ?3d[κ(
L̄J

µ
) + κ̄(

LJ

µ̄
)])

− ImNIJ(
i

|µ|2
?3 d(κL̄J µ̄− κ̄LJµ) + [(κ̄L̄Jdµ̄− κµdLJ)+

(κLJdµ− κ̄µ̄dL̄J)− 2iA(κµLJ − κ̄µ̄L̄J)] ∧ (dt+ σ)) =

(5.5.80)
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(
iκdµReNIJLJ + iκµReNIJLJ − iκ̄µ̄ReNIJdL̄J − iκ̄dµ̄ReNIJ L̄J

− κ̄dµ̄ImNIJ L̄J + κµImNIJdLJ − κdµImNIJLJ + κ̄µ̄ImNIJdL̄J

+2iAκµImNIJLJ − 2iAκ̄µ̄ImNIJ L̄J
)
∧ (dt+ σ)

+ (iκµReNIJLJ − iκ̄µ̄ReNIJ L̄J)dσ −ReNIJ ?3 d(
kL̄J

µ
+
κ̄LJ

µ̄
)−

ImNIJ
i

|µ|2
?3 d(κL̄J µ̄− κ̄LJµ) =

(5.5.81)

Using equations of dMI and MI and their conjugates

(iκµdMI − iκ̄µ̄dM̄I + iκMIdµ− iκ̄M̄Idµ̄) ∧ (dt+ σ)

+ (iκµReNIJLJ − iκ̄µ̄ReNIJ L̄J)dσ −ReNIJ ?3 d(
kL̄J

µ
+
κ̄LJ

µ̄
)

− ImNIJ
i

|µ|2
?3 d(κL̄J µ̄− κ̄LJµ) =

(5.5.82)

d[(iκµMI − iκ̄µ̄M̄I)(dt+ σ)]− (iκµMI − iκ̄µ̄M̄I − iκµReNIJLJ+

iκ̄µ̄ReNIJ L̄J)dσ −ReNIJ ?3 d(
kL̄J

µ
+
κ̄LJ

µ̄
)

− ImNIJ
i

|µ|2
?3 d(κL̄J µ̄− κ̄LJµ) =

(5.5.83)

d[(iκµMI − iκ̄µ̄M̄I)(dt+ σ)] + (κµImNIJLJ + κ̄µ̄ImNIJ L̄J)dσ

−ReNIJ ?3 d(
kL̄J

µ
+
κ̄LJ

µ̄
)− ImNIJ

i

|µ|2
?3 d(κL̄J µ̄− κ̄LJµ) =

(5.5.84)
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Substituting dσ by its value followed by simplifying and collecting terms, we obtain

d[(iκµMI − iκ̄µ̄M̄I)(dt+ σ)]− ?3(
κ

µ
ReNIJdL̄J −

dµκ

µµ
ReNIJ L̄J

+
κ̄

µ̄
ReNIJdLJ −

dµ̄κ̄

µ̄µ̄
ReNIJLJ + i

κ

µ
ImNIJdL̄J + i

dµ̄κ

µµ̄
ImNIJ L̄J

− idµκ̄
µµ̄

ImNIJLJ − i
κ̄

µ̄
ImNIJdLJ + i

dµκ̄

µµ̄
ImNIJLJ − i

dµ̄κ̄

µ̄µ̄
ImNIJLJ

+ 2A
κ̄

µ̄
ImNIJLJ + i

dµκ

µµ
ImNIJ L̄J − i

dµ̄κ

µµ̄
ImNIJ L̄J + 2A

κ

µ
ImNIJ L̄J).

(5.5.85)

Using dMI and MI along with their conjugates, we get:

ReNIJF J−ImNIJ F̃ J = d(iκµMI−iκ̄µ̄M̄I)(dt+σ)]−?3d[κ(
M̄I

µ
)+κ̄(

MI

µ̄
)]. (5.5.86)

This implies, after applying (5.5.71), the conditions

(
κL̄I

µ
+
κ̄LI

µ̄

)
= ψI ,

(
κM̄I

µ
+
κ̄MI

µ̄

)
= ψI , (5.5.87)

where

∇2ψI = ∇2ψI = 0, with ∇2 = ∂2
x + ∂2

y − κ2∂2
z . (5.5.88)

Using (5.5.87) along with the three special geometry-relations that we rewrite

here for ease of reference:

i(L̄IMI − LIM̄I) = 1,

FI∂µX
I −XI∂µFI = 0,

A = MIdL̄
I − LIdM̄I ,

(5.5.89)
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we get

ψIdψ
I =

[
κM̄I

µ
+
κ̄MI

µ̄

][
κdL̄I

µ
+ κL̄Id

(
1

µ

)
+
κ̄dLI

µ̄
+ κ̄LId

(
1

µ̄

)]
,

ψIdψI =

[
κL̄I

µ
+
κ̄LI

µ̄

][
κdM̄I

µ
+ κM̄Id

(
1

µ

)
+
κ̄dMI

µ̄
+ κ̄MId

(
1

µ̄

)]
,

ψIdψ
I − ψIdψI =

1

|µ|2
(M̄IdL

I − L̄IdMI) +
1

|µ|2
(MIdL̄

I − LIdM̄I) + i
1

|µ|2
d log

µ

µ̄
,

(5.5.90)

thus,

A =
|µ|2

2
(ψIdψ

I − ψIdψI)−
i

2
d log

µ

µ̄
. (5.5.91)

Substituting equation (5.5.91) in the expression of dσ, we get:

dσ = −κ2 ?3 (ψIdψ
I − ψIdψI). (5.5.92)

For κ = i, we get the known solutions of [3, 26] which are generalizations of the

solutions first obtained in [27]. The new derivation here, tells us that these are the

unique solutions with time-like Killing vector as has also been illustrated in [28]. For

κ = 1, we obtain new phantom solutions for the theories with the non-conventional

signs for the gauge kinetic terms. In this case, the functions ψI and ψI satisfy the

wave equation

(
∂2
x + ∂2

y

)
ψI = ∂2

zψ
I ,

(
∂2
x + ∂2

y

)
ψI = ∂2

zψI . (5.5.93)

These solutions are the unique solutions with space-like Killing vectors admitting

Killing spinors.
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Chapter 6

Summary

We started this thesis by giving a short presentation of necessary mathe-

matical concepts needed for later chapters. Then, in a brief manner, we illustrated

an overview of few ideas in Einstein’s general theory of relativity. This was essential,

since we were heading toward supergravity which was founded after incorporating

supersymmetry into General Relativity. Afterwards, we intended to collect few of

the Special Geometry relations in a separate chapter. Those relations were used

to carry out the calculations in chapter 5. This is because the scalars in vector

multiplets of N = 2 supergravity theories in four dimensions exhibit this sort of

geometry – the special Kähler geometry. Chapter 5, which is the core of my thesis

work, contains detailed calculations for solving the theory’s Killing spinor equations

using the method of spinorial geometry.

The method presented is very elegant and systematic. The first key step of

spinorial geometry is to describe the spinors in terms of exterior forms. Next, one

should seek the canonical forms of the spinor which are practically representatives

up to gauge transformations. This prescription reduces the Killing spinor equations

to sets of linear systems. From these systems, one derives geometric constraints in-

volving field strengths and spin connections. In their turn, those constraints occupy

their roles in the interplay that leads to the solutions.
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Not only did we use the spinorial geometry to discuss the ordinary N =

2, D = 4 supergravity theory coupled to vector multiplets, but we also used it to

tackle the fake scenario of that theory. Phantom solutions with Killing spinors were

first discussed by Sabra in July 2015. Our work here was a generalization of that

paper. That is, we obtained new phantom solutions admitting Killing spinors in fake

N = 2, D = 4 supergravity where the Abelian U(1) gauge fields have kinetic terms

with the non-conventional sign. The solutions found are characterized in terms of

algebraic constraints where the symplectic sections are related to a set of functions

satisfying the wave-equation in flat (2+1)-space-time in the fake theory. However,

in the ordinary one, those functions are harmonic.
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