AMERICAN UNIVERSITY OF BEIRUT

Keyword Search Over Weighted
Keyword-Augmented RDF Graphs

by
Hrag Artine Yoghourdjian

A thesis
submitted in partial fulfillment of the requirements
for the degree of Master of Science
to the Department of Computer Science
of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
February 2016

AMERICAN UNIVERSITY OF BEIRUT

Keyword Search Over Weighted
Keyword-Augmented RDF Graphs

by
Hrag Artine Yoghourdjian

Approved by:

Dr. Shady Elbassuoni, Assistant Professor Advisor
Computer Science %}

Dr. Wassiin El-Hajj, Associate Professor mber of Committee
Computer Science
Dr. Mohamad Jaber, Assistant Professor Member of Committee

Computer Science

Date of thesis defense: February 5, 2016

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Student Name: ,Y%@um(:: an Hran Ar{‘mp
ast U Firld Middle

& Master’'s Thesis O Master’s Project O Doctoral Disscrtation

X I authorize the American University of Beirut to: (a) reproduce hard
or electronic copies of my thesis, dissertation, or project; (b) include such
copies in the archives and digital repositories of the University; and (c¢)
make freely available such copies to third parties for research or educa-
tional purposcs.

O I authorize the American University of Beirut, three years after the
date of submitting my thesis, dissertation, or project, to: (a) repro-
duce hard or electronic copies of it; (b) include such copies in the archives
and digital repositories of the University; and (c) make freely available such
copies to third parties for research or educational purposes.

Si% Date

Acknowledgements

I cannot find words to express my appreciation to my advisor, Dr. Shady
Elbassuoni for his constant guidance, advice, and time invested for the success of
this thesis.

From the very start and during each step of this work, Dr. Shady dedicated
all the time needed to help me overcome the problems that I faced in completing
this thesis.

I owe special thanks to Dr. Wassim El-Hajj and Dr. Mohamad Jaber for
their valuable suggestions and objective criticisms during the different phases of
the thesis.

I am truly grateful for the support of my family and special friends who were
there for me when I needed them and greatly helped me in completing my thesis.

Finally, I would like to thank all the participants that gave their time and
helped in evaluating the effectiveness of our proposed approach.

An Abstract of the Thesis of

Hrag Artin Yoghourdjian for Master of Science
Major: Computer Science

Title: Keyword Search Over Weighted Keyword-Augmented RDF Graphs

Large knowledge bases consisting of entities and relationships between them
have become vital sources of information for many applications. Most of these
knowledge bases adopt the Semantic-Web data model RDF as a representation
model. Querying these knowledge bases is typically done using structured queries
utilizing graph-pattern languages such as SPARQL. However, such structured
queries require some expertise from users which limits the accessibility to such
data sources. To overcome this, keyword search must be supported. In this
thesis, we develop a retrieval model for keyword queries over RDF graphs. Our
model retrieves the top-k most relevant sub-graphs to a given keyword query. To
be able to do this, we augment the searched RDF graph with keywords which
are extracted from entity labels and textual patterns for relations. Moreover, we
associate each triple in the RDF graph with a weight reflecting the importance
of the triple. Finally, we deploy a graph searching algorithm that searches this
weighted keyword-augmented RDF graph and retrieves the top-k most relevant
sub-graphs to the given keyword query, where relevance is measured based on
the triple weights. We evaluate the effectiveness of our retrieval model using a
real-world RDF dataset and compare it to various state-of-the-art approaches for
keyword search over RDF graphs.

vi

Contents

Acknowledgements v
Abstract vi
List of Figures ix
List of Tables X
1 Introduction 1
1.1 Motivation 1
1.2 Our approach and Contribution 3

1.3 Overview of the Thesis 4

2 Literature Review 5
3 Our Approach 8
3.1 System Overview 8
3.2 Query Segmentation and Resource Matching 9
3.3 Retrieval Model 12
3.4 Scoring Function oL 16
3.5 Termination Condition 17

4 Experiments 19
4.1 Dataset 19
4.2 Competitions 20
4.2.1 Scalable Keyword Search on Large RDF data 20

4.2.2 Web Object Retrieval 20

4.2.3 Keyword Search Over RDF 21

4.3 Experimental Setupo 22
4.4 Experimental Results L. 23

5 Conclusion and Future Work 26
A Abbreviations 27

vii

B All Queries
C Gold Queries
D Guidelines

Bibliography

28

30

31

33

List of Figures

1.1 An example RDF graph about movies.

4.1 Average NDCG values with different alpha values
4.2 Average NDCG values for four approaches

1X

List of Tables

1.1 The set of RDF triples for the RDF graph in Figure 1.1 2
3.1 A Subgraph for the query ”Germany England” 16
4.1 Backward Search results 20
4.2 Entity Based Results 0. 21
4.3 Backward Search results 22
4.4 alpha = 0.3, query = "woody allen scarlett johansson” 24
4.5 alpha = 1, query = "woody allen scarlett johansson” 24

Chapter 1

Introduction

1.1 Motivation

The continuous growth of knowledge sharing communities like Wikipedia and the
advances in automated information extraction from Web pages [1, 2] have made
it possible to build large-scale knowledge bases. Examples of such knowledge
bases include YAGO [3], DBpedia [4], Freebase [5], and also community-specific
collections such as DBLife [6] or Libra [7]. These repositories contain entities
such as people, movies, books, etc. and the relationships between them such
as bornIn , actedIn , hasGenre , isAuthor0f and so on. Such data is typically
represented in the form of subject-predicate-object (SPO) triples of the Semantic-
Web data model RDF [8], where subjects and objects are entities and predicates
are relationships between pairs of entities. An RDF collection conceptually forms
a large graph, which we refer to as an RDF graph, with nodes corresponding to
subjects and objects and labeled-edges denoting predicates. We refer to the
entities with their relations (nodes and edges) as resources of the graph, where
these resources are in the form of URIs in the dataset.

RDF is also gaining popularity in the scientific domain (e.g., in biological
networks [9]), for social Web2.0 applications [10], and as a light-weight represen-
tation for the ”Web of data” [11]. Overall, RDF collections can store various
types of structured data. They serve as data sources that semantic-search en-
gines can operate on to retrieve precise information that is hard to retrieve using
a traditional Web-search engine. Figure 1.1 shows an example RDF graph of a
movie knowledge base and Table 1.1 shows the corresponding RDF' triples.

RDF data can be queried using a conjunction of triple patterns. A triple pat-
tern is a triple with variables and the same variable in different patterns denotes
a join condition. For example, to find ”comedies that have won the Academy
Award” the following 2 triple-patterns query can be used (where a conjunction
is denoted by ’;’): <?x hasGenre Comedy; ?7x hasWonPrize Academy Award> .

Given a query with n-triple patterns, the results are all the subgraphs with n

| Steve_Guttenberg |

é\‘\

o€

k)

| The_Darwin_Awards |

Yas
Rz

| The_Pink_Panther

']

‘ Criminal_comedy_films

Figure 1.1: An example RDF graph about movies

Subject (S)

Property (P)

Object (O)

Traffic

Innerspace
Innerspace
Joe_Dante
Toy_Story
Road_Trip
Toy_Story
Tom_Hanks

Diner

Diner
Steve_Guttenberg
The_Pink_Panther
The_Pink_Panther
Police_Academy
Steve_Guttenberg
The_Darwin_Awards

hasWonPrize
hasWonPrize
hasGenre
directed
hasWonPrize
hasGenre
hasGenre
actedIn
hasWonPrize
type

actedIn

type
hasWonPrize
type

actedIn

type

Academy_Award
Academy_Award
Comedy
Innerspace
Academy_Award
Comedy
Comedy
Toy_Story
Academy_Award
Comedy _films
Diner
Criminal_comedy _films
Academy_Award
Comedy _films
Police_Academy
Comedy_films

Table 1.1: The set of RDF triples for the RDF graph in Figure 1.1

triples that are isomorphic to the query when binding the query variables with
matching entities and relations in the knowledge base. For example, a result for
the example query above could be the following subgraph: <Innerspace hasGenre
Comedy; Innerspace hasWonPrize Academy_Award> .

Even though structured queries like the one above, allow users to represent
their information needs very precisely; they are also very restrictive. They require
the users to be familiar with the underlying data and a structured-query language
like SPARQL. Empowering users to search RDF graphs using keywords only can
increase the usability of such data sources. In addition, it enables adapting the-
state-of-the-art IR searching and ranking techniques.

1.2 Our approach and Contribution

In this thesis, we tackle the problem of keyword-query-processing over RDF
knowledge bases. In particular, we implement a set of algorithms to process
keyword-queries and retrieve the top-k highest scored results. The results are
then scored with a ranking model further explained in Chapter 3.

Our main contributions can be summarized as follows.

o We develop a suit of algorithms that process keyword queries over weighted
keyword-augmented RDF graphs and return a set of RDF subgraphs match-
ing the query.

e We develop a ranking model for keyword queries over weighted keyword-
augmented RDF graphs. Our ranking model should be theoretically-founded
and should take into consideration the weights of the triples.

e In order to efficiently process keyword queries over large weighted keyword-
augmented RDF graphs, we develop a set of top-k query processing al-
gorithms. Our algorithms should combine the retrieval with ranking and
provide guarantees that for any given k, the returned results are indeed the
k highest ranked ones.

e Finally, we test our algorithms and models on a very large real-world RDF
graph, YAGO which contains millions of triples. Moreover, we plan to im-
plement a real keyword search engine over this dataset and make it publicly
available.

As an example, consider running the query ”comedy academy award” against
the RDF graph in Figure 1.1. A result to such a query could be the sub-
graph <Innerspace hasGenre Comedy; Innerspace hasWonPrize Academy_Award>

Note that our goal is not to return entities as results to a given query. We
believe that subgraphs provide more concise answers to the user’s information
need, since they provide in addition to entities, the relationships between them.

Also note that our aim is not to limit results to tree-structured ones only. For in-
stance, a result to the query "woody allen director actor” would be the subgraph
<Woody_Allen directed Manhattan; Woody Allen actedIn Manhattan> which is
not a tree.

To retrieve a set of subgraphs given a keyword query as done in the above ex-
ample, we perform the following steps. First, we need to process the query: iden-
tify and differentiate the relations (predicates) from entities by matching them to
their resources. Second, for each entity from the query we expand its neighbors.
Third, we continue by expanding the neighbors of the entities while keeping the
complete path with the weight, meaning {entity, neighbor, ..., neighbor,,,w(p)}.
Fourth, we expand the vertices containing the lowest weight - when a path con-
tains all the matching URIs of the keywords from the query it is considered to
be a valid subgraph. Finally, we terminate when we have obtained top-k results
that have a weight less than other valid subgraphs or any other path that can be
expanded to become a valid subgraph.

1.3 Overview of the Thesis

In Chapter 2, we review related work. In Chapter 3, we describe our approach
for keyword search over weighted keyword-augmented RDF graphs. Chapter 4
contains descriptions and results of the conducted experiments. The conclusion
and possible future work are presented in Chapter 5.

Chapter 2

Literature Review

Many attempts have been made for searching RDF knowledge bases using key-
words queries. Most of this work can be categorized in two main categories.
The first category of works aims at mapping the keyword query into one or
more structured queries. For instance, the authors in [12] assume that the user
keyword-query is an implicit representation of a structured triple-pattern query.
They try to infer such structured query using the RDF graph and retrieve the
top-k most relevant structured queries. Then they provide the user with the
retrieved queries and let her choose the most appropriate structured query to
be evaluated. Their approach involves user interaction, and in addition suffers
from a loss-of-information phenomenon since typically k is set to a small number.
One way to overcome the problem of engaging the user in the inference process
is to directly evaluate the top-k inferred queries. Again, this has the problem
of information loss and in addition is typically inefficient since each one of these
queries would have to be evaluated against the RDF graph.

The work on query inference from a user’s natural language question in [13] is
also closely related to the previous work. It utilizes natural-language processing
tools and tries to parse a user’s question in order to infer the most-likely struc-
tured query. Their technique however relies heavily on the quality of the parsing
process and it also suffers from the information-loss problem highlighted above.

In the paper Natural Language Questions for the Web of Data [14], the au-
thors again work on translating a natural language into a SPARQL query. The
authors have seven steps that they follow in order to solve ambiguity and the
issue of segmentation of queries. The authors convert and map questions into
meaningful phrases, phrases to semantic entities, classes, and relations, and then
construct SPARQL triple patterns. The authors make use of types, surface names
and textual patterns provided by the knowledge base. The types help the dis-
ambiguation process, by which they are able to understand the category of the
entity.

The second category of work tries to overcome the problem of information
loss and efficiency issues of the query inference, by directly retrieving results of

the keyword query. The work on keyword search over XML data for instance,
falls into this category. XKSearch [15] returns a set of nodes that contain the
query keywords either in their labels or in the labels of their descendant nodes
and have no descendant node that also contains all keywords.

Similarly, XRank [16] returns the set of elements that contain at least one
occurrence of all of the query keywords, after excluding the occurrences of the
keywords in sub-elements that already contain all of the query keywords.

However, the above mentioned techniques assume a tree-structure and thus
cannot be directly applied to graph-structured data such as RDF graphs.

Also, closely related to our work is the language-modeling (LM) approach for
keyword search over XML data proposed in [17]. The authors assume that a
keyword query has an implicit mapping of each keyword into XML element(s).
Their ranking is based on the hierarchical language-models proposed in [18] and
they utilize the distribution of terms in the elements of the XML collection to
give weights the different component of the LMs. However, the setting of XML
data is quite different from that of RDF since in XML the retrieval unit is an
XML document (or a subtree). In an RDF setting, we are interested in ranking
subgraphs that match the user’s query. These subgraphs are not known in ad-
vance and are computed on the fly during retrieval time, and thus most of the
prior work on XML IR would not apply.

Keyword search on graphs which returns a ranked list of Steiner trees [19,
20, 21, 22] (the exception is [23] which returns graphs) deals with the latter
problem of having a predefined retrieval unit. However, the result ranking in
each of the above is based on the structure of the results [19, 24] (usually based
on aggregating the number or weights of nodes and edges), or on a combination
of these properties with content-based measures such as tf-idf [25, 21, 23] or
language models [7].

The BANKS system [19] enables keyword search on graph databases. Given
a keyword query, an answer is a subgraph connecting some set of nodes that
"cover” the keywords (i.e., match the query keywords). The relevance of an
answer is determined based on a combination of edge weights and node weights
in the answer graph. The importance of an edge depends upon the type of the
edge, i.e., its relationship. Node weights on the other hand represent the static
authority or importance of nodes and are set as a function of the in-degree of
the node. However, BANKS completely ignores the content during ranking, and
thus does not make use of the content of the triples as an additional evidence of
relevance to the query.

A closely related work that combines structure and content for ranking is the
LM-based ranking model in [7] for ranking objects (entities in an RDF setting).
The model assumes that each entity is associated with a set of records extracted
from web sources. In turn, each record is associated with a “document”. The
relevance of each “document” (and correspondingly, the entity associated with
it) to a keyword query is estimated using LMs. This model however assumes that

6

the retrieval unit is entities only. While our ranking model goes beyond this to
treat triples in a holistic manner by taking into account the relationships between
the entities. In addition, it assumes the presence of a document associated with
each Web Object or entity, something that we lack in the case of RDF data in
general.

The Semantic Search Challenge provided a benchmark for keyword queries
over RDF' data, however the judgments were made over entities built by assem-
bling all the triples that shared the same subject. The best performing approach
[26] ranked the entities using a combination of BM25F and additional hand-
crafted information about some predicates, properties and sites. In contrast, we
retrieve the set of subgraphs that match the query keywords and rank them. We
believe that the graph representation provides more concise answers to the user
information need than a set of entities.

Keyword search on RDF graphs has also been addressed in [27]. While the
authors provide a retrieval and a ranking model for keyword queries over RDF
graphs, their algorithms are very graph dependent, meaning that they need a
lot of indexing effort for each RDF graph it is run on. Moreover, their ranking
model did not take into consideration the importance of the triples particularly
with respect to the query keywords and focused mainly on the structure of the
results. Finally, their model was computationally very expensive as it did not
include a top-k processing approach but instead used the brute-force retrieve-
then-rank approach.

Finally, the closest work to ours is [28], where the authors propose a graph
summarization algorithm to summarize the large RDF data sets using the types
of each node. They also provide an enhanced retrieval algorithm to search and
retrieve results more efficiently from the summarized graph. On the other hand
the authors do not provide a ranking model to retrieve the most relevant answer to
the query and do not take into consideration predicate keywords in their retrieval
algorithm.

Chapter 3

Our Approach

3.1 System Overview

Our knowledge base consists of a set of SPO-triples such as the one shown in
Table 1.1. To be able to process keyword queries, we use the labels provided by
the knowledge base. These labels provide for each URI from our knowledge graph
a set of surface names. We create an inverted index of URIs and their surface
names using Lucene. For example, the complete URI for Woody Allen would
have "woody allen” as a surface name. We also retrieve a set of textual-patterns
for each predicate (relation label) from our knowledge base by crowdsourcing.
We then create an inverted index of the textual-patterns and their predicates.

To be able to rank the sub-graphs, we associate each triple with a weight
reflecting the importance of the triple. We also refer to these weights as witness-
count of a triple. These weights can be computed in various ways depending on
the nature of the underlying knowledge base. For instance, for Wikipedia based
RDF graphs such as DBPedia and Yago, we can utilize the link structure of the
corpus from which the RDF graph was constructed to compute the weights for
the triples. That is, the weight of triple t = (s,p,0) can be set to the number
of Wikipedia articles that link to both s and o. This way, the weight of a triple
reflects the number of Wikipedia pages that mention both the subject and the
object of the triple. In other words, it estimates the number of pages that convey
the fact represented by the triple. The higher this weight is, the more important
or popular the fact is. We do this for every triple in the knowledge base and we
coin the resulting graph weighted keyword-augmented RDF' graph.

To retrieve a set of sub-graphs given a keyword query, first, we process the
query; identify the predicates and separate them from the entities with a seg-
mentation and resource matching approach explained in Section 2. Then, using
the Backward Search algorithm explained in Section 3, we retrieve all sub-graphs
that match the given query. Finally, Section 4 contains detailed explanation on
how the scoring function works and how we give weights for each and every single

SPO triple. Section 5 contains explanation on how the algorithm terminates and
how we confirm that we extracted the top-k most relevant sub-graphs.

3.2 Query Segmentation and Resource Match-
ing

In this section we describe in details the steps we perform for query segmentation
and resource matching. We explain how we separate the entities and relations
(predicates) from each other. We also describe how we match and select the most
relevant URI for each given phrase (an entity or a predicate).

Algorithm 1 Query Segmentation - Resource Matching
Input: Q = { wy,we,...,w,}, S, P, G = {V,E}
Output: sets g and r
Initialize tq < 0,q < 0,7 <+ 0,a < 0, W = null
for:=1..m do

if w; € P then
tr < P(w;)
a; < (wi_l, P(wz), wi—l—l)
if W # null then
tq — W
end if
else
W <+ w;
end if
end for
W <« null
q < EntityMatching(W,tq, S)
for j = 1..size(tr) do
if size(tr;) > 1 then
Vu € tr; Jv where degree(w;_1,v,w;41) > degree(w;_1,u, Wji1)
r4— v
else
r<$—ir;
end if
end for

Algorithm 1 contains the steps that we follow in order to successfully separate
entities from relations. The algorithm takes as an input the set of phrases of the
query), and outputs two sets: one containing a set of URIs for the surface-names,
while the other a set of URIs for the textual-patterns. The data structures used
in the algorithm are two empty sets tq and tr used as auxiliary sets for temporary

9

Algorithm 2 EntityMatching

Input: tq, W, S
Output: set q
for i = 1..size(tq) do
W <« tq;
if W € S then
if size(S(W)) > 1 then
Vu € S(W) Jv where degree(v) > degree(u)
g
else
q < S(tq;)
end if
else
while W # null do
split W starting from the most right
if W € S then
if size(S(W)) > 1 then
Vu € S(W) Jv where degree(v) > degree(u)
g v
else
q « S(tg:)
end if
end if
end while
end if

end for

10

use. a is used to track the entities with their relations, while W to create the
surface-names needed to link to the URI. P maps each textual pattern to a
predicate, while S maps a surface name to a URIL.

In the first loop of the algorithm we start by marking each query phrase as a
predicate or a non-predicate - by trying to match each word to a textual pattern.
Then, using ”EntityMatching” function we try to match the non-predicates to
labels by considering all the words in between two predicates to be a complete
phrase - if we had no match for the phrase we split the phrase into different parts
in different ways. We do that using a greedy approach starting from the most left
and removing the last word added to the complete phrase. If we end up getting
more than one match for a surface-name we consider the one with the highest
degree (number of times the label appears in a triple in our graph).

In the final loop of the algorithm, and after matching all the surface names
to their URIs we check if there exist textual patterns that match for more than
one predicate. We calculate the frequency of predicates occurring in the knowl-
edge base considering that the entities next to the predicate in the query are
either the subject or the object of the given predicate; we pick the one with the
highest degree. The entities next to a predicate are marked in the first loop and
later matched to their URIs in the second loop. If neither the right nor the left
side of the predicate are entities we consider the entities next to the predicates
neighboring predicates. Consider the example; given a query

Q = "woody allen judy davis actor”

The query Q contains a predicate, and two different labels (surface names) each
composed of two words.

We start by marking the phrases as entities or predicates. The first word
in this query is woody, this word does not exist in the set of textual patterns,
hence we add the word in W with an underscore behind it, and proceed to the
next word. The next word is allen, which again does not match to a textual
pattern, we concatenate it with "W and add an underscore at the end of the
newly concatenated phrase (W = woody_allen_). The next three words are also
added to W separated with underscores since they are not textual patterns.

Now, the next word is actor, which exists in the set of textual patterns, we
add its corresponding predicates (in this case only one) actedIn to the temporary
set tr, and add W to the set of temporary labels tq (after removing the last
underscore), and then we empty W.

At this stage we have:

e tr = { actedIn }
e tq = { woody_allen_judy_davis }

Now, we continue with the next step (Algorithm 2): mapping surface names

11

to their corresponding URIs. We only have one phrase in the set, we try to match
it to a URI, but since we do not have a match for the complete phrase we remove
the last word (the one after the last underscore) and we try to match the phrase
again. For our example woody_allen_judy would be the next try, followed with
woody_allen which is a hit for a matching URI i.e., < Woody_Allen > - in the
case of YAGO - and we add it to the set ¢. We remove the matching part of the
phrase and continue with the remaining part judy_davis where in our case this
is a hit with a single URI and we add it to the set q.
At this stage we now have:

o {r = { {actedIn} }
e ¢ = { <Woody_Allen>, <Judy_Davis> }

We proceed with the predicates, and in this example we had one hit for the
textual pattern. Hence, we add actedln to the set r. If we had more than one hit
to a predicate we calculate the number of times the predicates occurred in the
knowledge base considering that the entities next to the predicate in the query are
either the subject or the object of the given predicate. Here we would count how
many times < Judy_Davis > has appeared in the knowledge base as a subject
or an object having actedIn as a predicate or the other predicate and pick the
predicate having the higher result.

3.3 Retrieval Model

Our retrieval model is based on the backward search heuristic. The backward
search starts from each vertex in the graph G that matches a keyword from the
query, it then expands the neighbors of each vertex until a relevant answer is
found and the termination condition is met.

From the related work, Scalable Keyword Search On Large RDF Data [28]
the authors have applied the backward search idea. Their method does not take
into consideration the relation (edges/predicates) in between the entities. This
prohibits a user from getting results when searching for queries containing only
predicates, e.g., "actor directors”. Also, they do not have a scoring function to
retrieve the most popular and relevant results at top.

In our model we separate the entities from relations and then start exploring
the graph starting from the entities and expanding through the relationships
found in the query; Meaning we extract only results containing one of the relations
found in the query (if there exists one). If there are no entities in the query and
only relations as the example given above, we expand the neighbors of entities
having the highest witnesscount with one of the relations as an edge. Algorithm
3 shows how we retrieve the top-k most relevant result.

Given ¢ = {q1, 42, ---,gm} (the set of entities), r = { r,79,...,7n} (the set of
the predicates), and G = V, E' (our RDF graph). We initialize m empty priority

12

Algorithm 3 Backward Search

Input: q={ q¢1,¢, ., gn}, r ={ 11,72,...., 7}, G = {V,E}
Output: top-k retrieved sub-graphs
a min-heaps {ay, ...am };
M+ 0
fort=1..m do
V=g
for Yu € V and d(v,u) <1 do
a <= (v,p + {v, E(v,u),u},w(p) < w(v,u)
if u¢ M then
Mu] < {nil,..((v, E(v,u)), w(u,v))..,nil}
else
Mlu] < ((v, E(v,u)), w(u, v))
end if
end for
end for
while termination condition not met do
(v,p,w(p)) < pop(argmin;Z,{top(a;)})
for Yu € V and d(v,u) =1 and u ¢ p do
a< (u,pU{(E(v,u),u)},w(p) + w(p) + w(u,v))
if u¢ M then
Mlu] + {nil,..((v, E(v,u)),w(p))..,nil}
else
Mu] < ((v, E(v,u)), w(p))
end if
end for
end while

13

queues (e.g., min-heaps) {ay, ..., a;, }, one for each URI. a has the size of ¢ multi-
plied by the size of r where each node of a contains all the expanded values of the
vertex at that specific index with a specific relation (if r is not empty). Consider
the example "Woody Allen’s wife’s birthday”, here q= {"woody allen” }, while
r = {"isBornOn”, "isMarriedTo”}. We only have 1 entity in q but 2 predicates
in r, hence a will contain 2 min-heap in which all the expanded neighbors will
be stored in increasing order of their scores. The first heap will be used to score
"woody allen ismarriedto” while the second ”woody allen isBornOn”. Other then
keeping the path and the newly expanded neighbor in a we also keep track of the
predicates for each entity.

We also maintain a set M of elements, one for each distinct node we have
expanded or explored so far in the backward search, to track the state of the
node with their best known weights. MJu] is also used to identify complete
and incomplete sub-graphs. The pair (vertex, relation), weight in the j* entry
of M[u] indicates a path from u to the vertex with it’s total weight; we also
consider that there could be multiple entries in the same index, hence we add
each entry of M is an array.

Consider the following example M[u'] = {((vs, ps),0.5), ((v1,p1),0.6),nil} in
M. The entry indicates that vs has been reached from ¢; through ps, while v, from
¢» through p;. However, the 3" position has not been reached by any expansion
from any vertex containing g3 yet, hence M[u'] is not a complete sub-graph yet.

The query entered by the user is composed of the entities and predicates. The
number of entities and the predicates affect the performance of the algorithm and
the relevance of the resulting sub-graphs. Below are the five different types of
queries that a user might enter.

e Multiple entities and no predicates.

Multiple entities with predicates.

One entity without predicates.

One entity with predicates.

Multiple predicates and no entities.

For multiple entities and no predicates, the neighbors of the entities are ex-
panded with no condition on the relationship with the parent node. The edges
of the graph are not used. Similarly for a query containing one entity and no
predicates, the relation of the nodes are not used. The difference with the pre-
vious case is that the algorithm terminates when all the values remaining to
be expanded contain a path with more than 2 nodes or when the termination
condition applies.

For multiple entities with predicates, again the expansion process is similar to
the one above but we only consider sub-graphs to be candidate answers (complete)

14

when they contain all the entities and all the predicates in their path. Similarly
for a query containing one entity and predicates, a sub-graph is considered to
be a candidate answer only if it contains all the URIs of the surface-names and
textual-patterns. Again the difference with the previous case is that it terminates
when all the values remaining to be expanded contain a path with more than 2
nodes or when the termination condition applies.

For multiple predicates and no entities, we initialize W with a limited number
of entities - the ones with a higher witnesscount - that have an edge with one of
the predicates from the query. The last entity with the least witnesscount will
then be used to check if the given number of entities guarantee the best results.
If not, a new set of entities will be passed to the algorithm until all nodes are
passed or the termination condition applies.

The algorithm takes as input the complete set of the URIs of the surface-names
as well as the complete set of the URIs of the textual-patterns. The algorithm
proceeds in iterations. In the first iteration, for each vertex v from ¢;tog,, and
every neighbor u of v (including v itself), we add an entry (v, pv,u, w(u,v)) to
the priority queue a; (entries are sorted in the ascending order of w(p) where p
stands for a path and w(u, v) represents the weight of the triple containing u and
v as Subject or Object from the knowledge base). We also add (v, w(u,v)) to

The second iteration of our algorithm starts by popping the smallest top entry
(u,p =0, ...,u,w(p)) from the queue a; of {a;..a,,}. For each neighbor ' of u in
G such that «’ is not in p, we push an entry (v';p U {u'}, w(p) + w(u,v)) to the
queue a;. We also update M with v’ meaning M[u/][i] = (v, w(p) + w(u,v)).

If an entry M{u| for an entity u has no nil values, then this entry with all its
pairs contains a sub-graph that is a candidate answer (complete sub-graph).

In the worst case the whole graph G = (V,E) is explored in finding the top-k
most relevant answers, where our method has to traverse every triple in G for
each of the matched keywords ¢ = {wy, ws,,w,,} leading to an overall cost of
O(m.E).

Consider an example, given a user query "woody allen judy davis actors”
after the stage of segmentation and resource matching we would get the two
sets r and q as inputs to the algorithm. The set q would contain the two URIs
{ <Woody_Allen>, <judy davis> } , while the set r would contain the URI
{7actedIn” }. The first loop of the algorithm will iterate n times, where n is the
size of the set q (number of entities). All the direct neighbors of the entities
in q will be expanded in the first loop. In this case entities such as ”Vicky
Cristina Barcelona” will be expanded. The expanded nodes will be added to M
and the min-heap a each with their scores (after calculating the scores; explained
in Section 3.4). In this case. M[Vicky Cristina Barcelona] = {(WoodyAllen,
actedIn, Score) }, and we insert in a, (WoodyAllen, (Woody Allen, actedIn,
Vicky Cristina Barcelona), Score). This entry of M is not a candidate since it
does not contain all the predicates from r in its path. As you notice we keep

15

track of the predicates for each path. After expanding all the direct neighbors of
the vertex we continue to the second loop. In the second loop we remove from
a the element containing the minimum score. We expand the neighbors of the
direct neighbor of our entity and we store it in M and a but by adding the score
of the newly expanded neighbor to the score that is already in a. In this case one
of the expanded neighbors will be a literal that is the age of Louise Lasser. The
algorithm terminates when it guarantees that the scores of our top-k sub-graphs
are the lowest that can ever be created.

Consider the example ”Germany England” as a query. The retrieval model
without a scoring function (explained in Section 3.4) will produce a top-6 result
as some in Table 3.1.

Subject (S) Predicate (P) | Object (O)
Germany type country
England type country
Germany type economy
England type economy
Germany participatedIn | Battle of Graveney Marsh
Battle of Graveney Marsh | happenedIn England
Germany participatedIn | Adlertag
Adlertag happenedIn England
William Cramer isCitizenOf Germany
William Cramer livesIn England
Peter Griess isCitizenOf Germany
Peter Griess livesIn England

Table 3.1: A Subgraph for the query ” Germany England”

3.4 Scoring Function

To address the ambiguities of entities and enable ranking, we associate each
edge in the graph with a weight reflecting the importance of the edge - we call
this weight witnesscount, i.e., weighted keyword-augmented RDF graphs. The
total weight of the path when a neighbor is expanded (parent-neighbor) can be
computed as:

B we(t)
> verxnwe(t')

where « is a weighting parameter between 0 and 1, wc(t) is the witness count of
the triple ¢ (parent and expanded neighbor), K B represents the whole knowledge
base, degree(e) is the number of triples with e as subject or object, and t' =
(s',7",0"). Finally, given a path p with distance d(p) and assuming the case of

degree(s) + degree(o)
Y verp degree(s'’) + degree(o)

w(t) =ax*(1)+ (1 —a)

16

adding u to p by expanding through triple ¢, we update the distance of p as
follows:

d(p) = d(p) +w(t)

The first part of the equation takes into consideration the popularity of the
triple which is its importance, since we are using the witnesscount of the triple
that is the number of links pointing to both the entities in the triple. This
part helps in retrieving sub-graphs that contain in them entities that are the
most popular. For example, a sub-graph containing Albert Einstein would have
a higher rank than that to Max Steenbeck, since the witnesscount of Albert
Einstein would be much higher compared to Max Steenbeck and hence will have
a higher score.

The second part of the equation considers the degree of the triple (the number
of times the parent (Subject) and the expanded neighbor (Object) occur in the
knowledge base). For Example, Albert Einstein would have facts such as:

7 Albert Einstein hasGender male”

7 Albert Einstein isMarriedTo Elsa Einstein”.

Both facts are relevant and are candidate sub-graphs to our query. We want
to get triples such as the one containing information on who Albert Einstein is
married to on top and results such as the gender to be at the bottom. Hence we
give triples with entities occurring a lot in the knowledge base a higher score.

3.5 Termination Condition

The top-k results retrieved using our approach, should provide us with the most
relevant results of the query. We need to insure that it is not possible to get a new
relevant sub-graph having a score less than the score of the k" candidate. In order
to guarantee the above mentioned condition, we should consider two cases. First,
when an existing incomplete sub-graph - a non-candidate - is transformed to a
candidate, it should have a weight greater than that of all the top-k candidates.
Second, a newly created sub-graph should not have a weight less than that of the
top-k results.

We call nodes that are in a but not in M unseen nodes. We consider two
cases before terminating the algorithm:

e Unseen nodes form a new candidate sub-graph.

e A non-candidate sub-graph is completed with a node and a candidate sub-
graph is formed.

We make sure that are top-k results are the k most relevant results by calcu-
lating 7 and min(¢) and comparing them with our ming. When our miny, is less
than the other two we terminate. In the spirit of a top-k approach, we terminate
when the following condition holds:

17

Let ming = the k' smallest score of a candidate answer, i.e., those in M
with no nil values.

Let 7 =3, w(p;), where w(p;) is the weight of the head of priority heap
a;

Let ¢, = Y it w;xb; +w(p;) * (1 —b;) where b; is equal to 0 if M[v][i] = nil
and 1 otherwise, w; is the weight of the path at the i** entry of M, w(p;) is
the weight of the head of priority heap a;. This should be computed only
for those vertices in M that are not fully explored (i.e., whose entries in M
contain nil values - non-candidates).

let ¢ = min(phi,) over all the nodes where phi, is computed.

Terminate whenever miny, is less than or equal to min(r, o).

Consider the following example:
let m=2and k=2

Al = (’Ul, 055), (’UQ, 077), (1)3, 085)
AQ = (U4, 02), (Ug,, 07), ('Ug, 09)
7=0.5540.2=0.75

candidates:

(0,0.77), (v5,0.7)}
(v1,0.55), (vg, 0.9)}

MPY] = {
MP 7] =

non-candidates:

M["X7] = {(v3,0.77), nil}
M["W?] = {nil, (vs,0.2)}

Weight, = 0.774+ 0.7 = 1.45
Weight, = 0.55 + 0.9 = 1.42

Weight,, = top(as) +0.2 = 0.55+ 0.2 = 0.77
Weight, = 0.77 + top(as) = 0.77 4+ 0.2 = 0.97
ming = 1.45

b= 0.77

terminate only when min, < min(¢, 1)

18

Chapter 4

Experiments

Our experiment is composed of several stages. We test our algorithms and models
on a very large real-world RDF graph, called YAGO. We compare the top-10
results of our approach with different alpha values for the scoring function. After
which we compare the top-10 results of three different approaches that search
RDF graphs using keywords with our method.

First, we implemented the three different approaches and methods for search-
ing RDF graphs using keywords only. Then, we run the algorithms on a set of
keyword queries and place the top-10 results of each approach in a pool later to
be evaluated. After which we ask some volunteers to evaluate the results of each
query. Finally, we calculate the NDCG value for each method.

This Chapter is organized as follows. Section 4.1 contains details about what
dataset we used. Section 4.2 contains descriptions about three other methods
used for experimentation. Section 4.3 shows how we performed our experiments.
Section 4.4 contains results of the experiments performed.

4.1 Dataset

In this thesis we use the resources of YAGO dataset [3] to do our testing and
evaluations. YAGO is a large-scale general-purpose RDF dataset derived from
Wikipedia and WordNet. It contains more than 120 million triples about 10
million resources (like persons, organizations, cities, etc.).

We made use of the labels provided by YAGO that contain surface names for
each entity in the dataset. We created an inverted index for each surface name
and its entity.

The dataset is composed of 75 distinct predicates, for each predicate we found
a set of textual-patterns by crowdsourcing.

We use Apache Lucene to create an inverted index for the resources of YAGO,
the surface-names, and the textual-patterns.

19

4.2 Competitions

In the below subsections we explain the three approaches used to compare with
our proposed approach. The three approaches are: Scalable Keyword Search on
Large RDF data [28], Web Object Retrieval [7], and Keyword Search Over RDF
27].

In order to be able to rank the sub-graphs for the two approaches ”Web
Object Retrieval” and ”"Keyword Search Over RDF”, we use the same weighted
RDF graph and further augment each triple with a new set of keywords. These
keywords are the links present in the pages of both the entities in a triple, com-
bined with the textual patterns of the predicate weighted keyword-augmented
RDF graph. We also add weights for each keyword of each triple - the weights
are the number of links pointing to that keyword.

4.2.1 Scalable Keyword Search on Large RDF data

In the paper Scalable Keyword Search On Large RDF Data [28] the authors have
applied the backward search idea. Their method does not take into consideration
the relation in between the entities (the predicates) and does not use any scoring
function to rank the sub-graph. For example, if we run the query ”scientists
graduated from Boston University” we get the 5 results found in Table 4.1 as
top-5 results. The top results shows in Table 4.1 are not scientists who graduated
from Boston University but are scientists who worked at the Boston University.

Subject (S) Predicate (P) | Object (O)
Anna Geifman type Scientist

Anna Geifman worksAt Boston University
Peter L. Berger type Scientist

Peter L. Berger worksAt Boston University
H. Eugene Stanley type Scientist

H. Eugene Stanley worksAt Boston University
Carol Christian type Scientist

Carol Christian graduatedFrom | Boston University
Julius Sumner Miller | type Scientist

Julius Sumner Miller | graduatedFrom | Boston University

Table 4.1: Backward Search results

For this approach we use the same weighted keyword-augmented RDF graph.

4.2.2 Web Object Retrieval

The method Web Object Retrieval is based on entities, meaning the top-k results
produced by this algorithm will be entities rather then sub-graphs. In this method

20

we start by splitting the user query into words and then we go through word-
by-word and extract all the triples containing that keyword. Then, we calculate
a score for each triple, followed with a score for each entity in each triple. We
calculate the score using the following formula

Score(e) = P(q;|t) * P(t|e)

wc(tv QZ)
P zt - /
(q) Zt’eKB wc(t) Qi)

where we(t', ¢;) stands for the weight (witnesscount) of the keyword found in the
triple.

Finally we output the top-k entities as relevant results to our keyword query.
Table 4.2 shows the top-5 results found after running the query: ”scientists grad-
uated from Boston University”. Most of the results are non relevant since in this
approach each keyword is treated separately, which causes a lot of ambiguity.

New York City
Harvard University
1998-12-09

Julius Sumner Miller
David Winning

QU | W N~

Table 4.2: Entity Based Results

4.2.3 Keyword Search Over RDF

The third method is based on the Keyword Search Over RDF [27]. This method
returns the top-k sub-graphs and not entities. The authors first retrieve triples
that contain the keywords of the user query, and then proceed to forming sub-
graph with one or more triples. Sub-graphs can be formed by triples if the
following three rules apply:

e The triples have a similar entity (the subject or the object)

e The sub-graph formed must be unique and maximal, i.e., a sub-graph cre-
ated must not be a subset of any other sub-graph.

e Sub-graphs should contain triples matching different sets of keywords, i.e.,
triples in the same sub-graph must not have the same set of keywords or a
subset of keywords of a triple in the sub-graph. If they do they should be
part of two different and separate sub-graphs.

For example consider the user query ”scientists graduated from Boston Univer-
sity”.

21

Subject (S)

Predicate (P)

Object (O)

Keywords

Fred Joseph graduatedFrom | Harvard University | graduat: 13703, boston: 1113,
univers: 28829

Fred Joseph wasBornln Boston scientist: 15, boston: 14789

John Andrew Sullivan | wasBornIn Boston boston: 278, univers: 322

John Andrew Sullivan | graduatedFrom | Boston University scientist: 15, boston: 15083,
graduat: 1500

Fred Richmond graduatedFrom | Boston University boston: 3179, univers: 3482

Fred Richmond wasBornln Boston scientist: 15, boston: 11422,
graduat: 2870

H. Eugene Stanley gradatedFrom Wesleyan University | graduat: 9827, scientist: 240

H. Eugene Stanley worksAt Boston University boston: 2834, univers: 2442

Carol Christian graduatedFrom | Boston University boston: 1475, univers: 4546,
graduat: 3487

Carol Christian type Scientist scientist: 570

Table 4.3: Backward Search results

Table 4.3 contains the top-5 results for the above example. The valid sub-
graphs are the ones that have a match for all the keywords from the user query.
The first sub-graph matches all the keywords of the user query but is not a
relevant answer to our query. From the top-5 the only relevant answer appears

to be the 5 sub-graph.

4.3 Experimental Setup

After implementing three of the methods, we created a website for the evaluation
phase. We then created a benchmark composed of 35 queries found in Appendix
B. 3 of the 35 queries were gold queries found in Appendix C, meaning they
were added intentionally in order to make sure the evaluator has done her job
correctly. After having the benchmark ready, we ran all four algorithms. The
same benchmark queries are used for all four methods. We also ran our new
approach with different alpha values - for alpha 0 to 1 with a scale of 0.1. We
then combined all the top 10 results and added them to our database later to be
evaluated. Finally, we asked 5 people to evaluate our queries based on the given
guidelines found in Appendix D, in between four different rates:

e highly relevant and popular

e highly relevant

e marginally relevant

e non relevant.

22

There were 1422 results for the above 35 queries, it took 3 days for the eval-
uators to finish.

4.4 Experimental Results

We extracted the evaluations of all the queries, and checked the evaluations of
the gold queries. The participants evaluated all of the gold queries correctly.
Then, we calculated the Fleiss’ kappa [29] value for evaluating the reliability of
agreement between our participants using the formula:

PP,

T 1-P

K

We got P, = 0.326, P = 0.775, x = 0.66 which is in the range of substantial
agreement.

We used the majority vote from the 5 evaluators in order to calculate the
NDCG [30] value for our backward search approach with different alpha values.
We considered highly relevant and popular to have a relevance rate of 3, while
highly relevant of 2, marginally relevant of 1 and finally non relevant 0. We then
computed the normalized discounted cumulative gain using the formula:

DCG
NDCG = DCa
"L rel;
DCG =rel; + -
! ; logs (i)

where rel is the graded relevance of the result at position i

We use the discounted cumulative gain instead of using cumulative gain in
order to penalize the highly relevant results appearing lower in a search result
list as the graded relevance value is reduced logarithmically proportional to the
position of the result.

IDCG stands for ideal discounted cumulative gain, which is the sorted version
of the list of results based of their relevance.

We calculated the NDCG for all alpha from 0 to 1 in order to be able to
choose the best value for alpha. The results of NDCG values for alpha from 0 to
1 are found in Figure 4.1.

From Figure 4.1 we notice that setting alpha to 0.3 gives the most relevant
results as the top values. This proves the properties of the scoring function where
when alpha is set to 0, the non popular results tend to go up. At a value of alpha
= 0.3 the degree of the entities and the importance of the triple are normalized.
Table 4.4 and 4.5 show the top-2 results for the query "woody allen scarlett
johansson” setting alpha to 0.3 for Table 4.4, while 1 for Table 4.5. We notice

23

0.99

mi
=201
0.985 o
0.3
§ 0.58 m04
z
o =205
g
E 0.975 =06
B0.7
=08
0.97
=09
=1
0.965

Figure 4.1: Average NDCG values with different alpha values

num | Subject (S) Predicate (P) | Object (O)

1 Woody Allen directed Vicky Cristina Barcelona
Scarlett Johansson | actedIn Vicky Cristina Barcelona

2 Woody Allen created Vicky Cristina Barcelona
Scarlett Johansson | actedIn Vicky Cristina Barcelona

Table 4.4: alpha = 0.3, query = "woody allen scarlett johansson”

num | Subject (S) Predicate (P) | Object (O)
1 Woody Allen directed Vicky Cristina Barcelona
Scarlett Johansson | actedIn Vicky Cristina Barcelona
2 Woody Allen type Jewish actors
Scarlett Johansson | type Jewish actors

Table 4.5: alpha = 1, query = "woody allen scarlett johansson”

from the results that a sub-graph containing the type is given more importance
than a link between the two with a movie.

We now pick the evaluation results where alpha is set to 0.3 and compare it
with the results of the other three methods, shown in Figure 4.2. Our method
has gained the highest NDCG value. The ”Web Object Retrieval” and ” Keyword
Search Over RDF” methods have a low NDCG, since they both produce a lot
of ambiguous and non relevant results. The ”Scalable Keyword Search on Large
RDF data” method has a high NDCG value but not as high as our approach,

24

12

& Our Proposed Approach

=
[+

= Scalable Keyword Search on
LargeRDF daa

= Keyword Search Over RDF

Average NDOCG
=]
[=3]

=
s

Web Object Retrieval

02

Figure 4.2: Average NDCG values for four approaches

since most of the top results produced by this method are relevant but are not
ranked according to popularity, and relations are not taken into consideration.

Finally, we performed a t-test [31] which is used on two sets of data to de-
termine if they are significantly different. We used the t-test to check if our
approach is significantly different from the other three methods. The following
are the p-values we got after performing the tests.

e Our approach with the backward search method. p-value = 0.026
e Our approach with the entity based method. p-value = 2.52 x 10716

e Our approach with the Keyword Search on RDF data method. p-value =
1.41 x 1071°

The p-values of the last two methods are very small since the last two methods

produce a lot of non-relevant answers. We conclude that our approach outper-
forms the others significantly.

25

Chapter 5

Conclusion and Future Work

In this thesis, we develop a retrieval model that enables users to search RDF
graphs using keywords only. Our model takes as an input a keyword query and
returns a ranked list of RDF sub-graphs most relevant to the given query. In order
to do so, we performed the following tasks: First, we associated each entity in our
knowledge graph with a set of keywords which are surface names (labels). Second,
we addressed the ambiguities of entities and enabled ranking, by associating
each edge in the graph with a weight reflecting the importance of the edge, i.e.,
weighted RDF' graphs. Third we implemented an algorithm that would retrieve
all the sub-graphs that match the keyword query from the underlying RDF graph.

We compared our model with four different methods to search large knowledge
bases consisting of RDF graphs using keywords only. We evaluated the effective-
ness of our retrieval model using a real-world RDF data-set and compared it to
various state-of-the-art approaches for keyword search over RDF graphs. We have
shown that our approach with a new ranking model produces the most relevant
and popular results at the top. However, our retrieval model has an efficiency
problem. The issue can be handled in many ways as discussed below.

Future work possibilities include the following:

e Improve the efficiency by reducing the number of neighbor entities ex-
tracted. This can be done by summarizing the RDF graph but in an
effective way, in order not to have loss of important information. One
possible way is to use the types embedded in the knowledge base, where
each entity is associated with a type. The types can be used to understand
which entities to expand in the summarized RDF graph.

e Predict best relationship in a query, for ambiguous keywords. This can be
done again with the use of types where the types can be used to categorize
the query.

e Run and test the algorithm on other datasets like DBpedia.

26

Appendix A

Abbreviations

KA
KB
LM
RDF
tf-idf
URI

Keyword Augmented

Knowledge Base

Language model

Resource Description Framework

term frequencyinverse document frequency
Uniform Resource Identifier

27

Appendix B
All Queries

e Ron Howard actor director

e Woody Allen actor director create

e Woody Allen’s wife’s birthday

e married Albert Einstein

e Woody Allen

e acted Judy Davis Woody Allen

e actor director Woody Allen Scarlett Johansson
e Albert Einstein Isaac Newton

e Boston University Albert Einstein

e Frank B. Morse Albert Einstein

e Judy Davis Woody Allen

e Taylor Swift Nicki Minaj Kendrick Lamar
e Woody Allen Scarlett Johansson

e actor director

e actors wife birthday

e born wife actor director

e Germany population

e What country has london as a capital

28

elton john

Dogma and Chasing Amy
gone with the wind director
Doctor Zhivago actors
jessica alba Jennifer Aniston
jessica alba loan Gruffudd
Meryl streep mamma mia!
Australia leader

Russia leader wife birthplace
England Capital population
Germany England

Pierce brosnan meryl streep
leaders birthplace

birthdays and date of death of actors

29

Appendix C
Gold Queries

e Lindsay Lohan birthplace population
e Tom Cruise Top Gun

e when did Salvador Dal die

30

Appendix D

Guidelines

You are given a set of natural language search queries where each query contains
a set of results of two different forms.
e First Form
Example:
movies acted and directed by Woody Allen.
An answer:
Woody Allen directed To Rome with Love
Woody Allen actedIn To Rome with Love
Each result consists of one or more lines, where each line provides a fact
related to the answer.
e Second Form
Example:
movies acted and directed by Woody Allen.
An answer:
To Rome with Love

Each result is an entity that should be a result for the query. If you are
not familiar with the resulting entity or in case you are not sure whether
the result is relevant to the query or not, you may click on it in order to be
guided to its Wikipedia page.

Your task is to assess how the results are relevant to the query.
The relevance is projected on a three-level scale:

e Highly relevant and popular: You would select this level when the result is
an answer you would expect for the given query. For example, for the query
"movies acted by tom cruise” Both results " Tom Cruise actedIn Mission:

31

Impossible.” of the first form or ”Mission: Impossible” of the second form
are highly relevent and popular.

e Highly relevant: You would select this level when the result is a correct
answer but not a very popular one for the given query. For the same
example as above, "movies acted by tom cruise” Both results ”Tom Cruise
actedIn Endless Love.” of the first form or "Endless Love” of the second
form are highly relevent.

Note: The difference in the above two is in the popularity of the result,
as the example given above not all movies acted by Tom Cruise are that
popular. The Highly relevant and popular would be for the most popular
movies such as the film ”Mission: Impossible”, while movies like ” Endless
Love” which are as well correct answers but not that popular would only
be Highly relevant.

e Marginally relevant: You would select this level when the result is some-
how related to the expected answer but does not fully answer the query.
For example, for the query "movies acted and directed by Woody Allen”
"Woody Allen directed Broadway Danny Rose. Nick Apollo Forte actedIn
Broadway Danny Rose.” or "The Floating Light Bulb” - which is a play
written by Woody Allen - will be marginally relevant results to our example

query.

e Non-relevant: You would select this level when the result is not suitable and
is incorrect for the given query. That is, the statement does not provide
a relevant answer to the given query. For example, for the query "movies
acted and directed by Woody Allen” both results ”Soon-Yi Previn isMar-
riedTo Woody Allen. SoonYi Previn wasBornOnDate 19701008.” or ” Elton
John” for the second form will be non-relevant.

The order inside a line does not matter. For example: Soon-Yi Previn isMar-
riedTo Woody Allen and Woody Allen isMarriedTo Soon-Yi Previn are equiva-
lent.

Note: If you did not understand the guidelines do not hesitate to contact me.
Please do not randomly select answers, since it would appear in the Inter-rater
agreement test and would complicate the project.

32

Bibliography

1]

A. Doan, L. Gravano, R. Ramakrishnan, and S. V. (Editors), “Special issue
on managing information extraction,” ACM SIGMOD Record, vol. 37, no. 4,
2008.

S. Sarawagi, “Information extraction,” Foundations and Trends in
Databases, vol. 2, no. 1, 2008.

F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A large ontology from
wikipedia and wordnet,” J. Web Sem., vol. 6, no. 3, 2008.

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” in ISWC/ASWC, 2007.

“Freebase.”

P. DeRose, X. Chai, B. J. Gao, W. Shen, A. Doan, P. Bohannon, and X. Zhu,
“Building community wikipedias: A machine-human partnership approach,”
in ICDE, 2008.

Z. Nie, Y. Ma, S. Shi, J. Wen, and W. Ma, “Web object retrieval,” in WIWW,
2007.

“W3c: Resource description framework (rdf).” www.w3.org/RDF/.
“Uniprot: Universal protein resource.” http://www.uniprot.org/.

J. Breslin, A. Passant, and S. Decker, The Social Semantic Web. springer,
2009.

C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so far,”
2010.

T. Tran, H. Wang, S. Rudolph, and P. Cimiano, “Top-k exploration of

query candidates for efficient keyword search on graph-shaped (rdf) data,”
in ICDE, 2009.

33

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

V. Lopez, V. Uren, E. Motta, and M. Pasin, “Aqualog: An ontology-driven
question answering system for organizational semantic intranets,” Web Se-
mant., vol. 5, no. 2, pp. 72-105, 2007.

M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath, V. Tresp, and
G. Weikum, “Natural language questions for the web of data,” in Proceed-
ings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pp. 379-390, As-
sociation for Computational Linguistics, 2012.

Y. Xu and Y. Papakonstantinou, “Efficient keyword search for smallest Icas
in xml databases,” in SIGMOD, 2005.

L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram, “Xrank: ranked
keyword search over xml documents,” in SIGMOD, 2003.

J. Kim, X. Xue, and W. B. Croft, “A probabilistic retrieval model for
semistructured data,” in FCIR, 2009.

P. Ogilvie and J. Callan, “Hierarchical language models for xml component
retrieval,” Advances in XML Information Retrieval, 2005.

G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan, “Key-
word searching and browsing in databases using banks,” in ICDE, 2002.

V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar, “Bidirectional expansion for keyword search on graph
databases,” in VLDB, 2005.

V. Hristidis, H. Hwang, and Y. Papakonstantinou, “Authority-based key-
word search in databases,” TODS, vol. 33, no. 1, 2008.

K. Golenberg, B. Kimelfeld, and Y. Sagiv, “Keyword proximity search in
complex data graphs,” in SIGMOD, 2008.

G. Li, B. Ooi, J. Feng, J. Wang, and L. Zhou, “Ease: an effective 3-in-
1 keyword search method for unstructured, semistructured and structured
data,” in SIGMOD, 2008.

G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G. Weikum,
“Star: Steiner tree approximation in relationship-graphs,” in ICDE, 2009.

T. Cheng, X. Yan, and K. C.-C. Chang, “Entityrank: Searching entities
directly and holistically,” in VLDB, 2007.

R. Blanco, P. Mika, and H. Zaragoza, “Entity search track submission by
yahoo! research barcelona.” SemSearch, 2010.

34

[27] S. Elbassuoni and R. Blanco, “Keyword search over rdf graphs,” in CIKM,
CIKM 11, 2011.

[28] W. Le, F. Li, A. Kementsietsidis, and S. Duan, “Scalable keyword search on
large rdf data,” vol. 26, pp. 27742788, Nov 2014.

[29] J. L. Fleiss, “Measuring nominal scale agreement among many raters.,” Psy-
chological bulletin, vol. 76, no. 5, p. 378, 1971.

[30] Y. Wang, L. Wang, Y. Li, D. He, W. Chen, and T.-Y. Liu, “A theoreti-
cal analysis of ndcg ranking measures,” in Proceedings of the 26th Annual
Conference on Learning Theory (COLT 2013), 2013.

[31] R. H. Browne, “The t-test p value and its relationship to the effect size and
p (x¢y),” The American Statistician, vol. 64, no. 1, pp. 30-33, 2010.

35

