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A modular form is a function holomorphic in the upper half plane and at the
cusps. It satisfies certain transformation conditions under the full modular group.
The space of entire modular forms of integer weight on the full group is finite
dimensional and the Fourier coefficients of these forms possess interesting
arithmetical properties. Moreover, the zeroes of modular forms have been studied
intensively and were the center of attention in the field. As an example, we show
that the zeroes of the Eisenstein series of weight greater or equal to 4 lie on the
portion of the unit circle. {z = eiθ : π

2
≤ θ ≤ 2π

3
}.

The (k + 1) fold integral of a modular form gives rise to what is known as the
period polynomials. These polynomials satisfy certain consistency condition and
have interesting connections to L-functions. We show that the zeroes of period
polynomials lie on the unit circle.
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Chapter 1

Basic Definitions

The importance of the study of modular forms arises from the following: The

space of modular forms has a finite dimension , is computable, and can help solve

several problems in many areas of mathematics.

1.1 The Full Modular Group Γ

Define H to be the upper half plane containing all complex numbers with positive

imaginary part. Define the full modular group to be the set of all 2 x 2 matrices

with integral entries and having one as a determinant. We denote this group by Γ.

Γ acts on H by Mobius transformations in the following way:

Let z ∈ H

γ =

 a b

c d

 ∈ Γ.
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γ(z) =
az + b

cz + d

Notice that −γz = γz. Thus, we identify each matrix with its negative. Under the

group action, the image remains in H due to the fact that

Im(γz) =
Im(z)

|cz + d|2

A modular function f is a complex-valued function from H to C satisfying:

f(γz) = f(z) for all z ∈ H and for all γ ∈ Γ.

A more interesting form would be modular forms, which we limit here to entire

holomorphic functions from H to C satisfying the transformation law

f(γz) = (cz + d)kf(z)

for all z ∈ H and for all γ ∈ Γ where k is the weight of the modular form.

An entire function is a complex-valued function holomorphic over C.

Define Mk(Γ) as the space of entire modular forms of weight k on Γ.

Consider

T =

 1 1

0 1

 ∈ Γ.

Then

f(z + 1) = f(Tz) = (0.z + 1)kf(z) = f(z)
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f is periodic of period 1,and can be written as

∞∑
n=0

a(n)e2πinz

Note that holomorphic modular forms of odd weights on the full modular group

are the trivial ones.

proof :

f(Iz) = (1)kf(z)

f(−Iz) = (−1)kf(z)

f(Iz) = f(−Iz) = f(z)

Adding the first two equations we get 2f(z) = 0.

Thus we consider modular forms of even weights in this paper.

1.2 The Full Modular Group and its

Fundamental Region

The full modular group is generated by two matrices:

T =

 1 1

0 1



S =

 0 1

−1 0
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f(Tz) = f(z + 1) = 1kf(z) = f(z)

f(Sz) = f(−1/z) = (zk)f(z)

We identify γ ∈ Γ with −γ. forming the group PSL2(Z) = Γ/{±I}.

We conclude that a modular form of weight k as a periodic function of period 1

and satisfying f(−1/z) = zkf(z).

Definition 1.2.1. Two points z1, z2 in H are equivalent under the full modular

group Γ if there exists γ ∈ Γ such that z1 = γz2.

Definition 1.2.2. A fundamental domain, denoted by FΓ,is an open subset of the

upper half plane such that no two distinct points of it are equivalent under Γ and

every point in H is equivalent to some point in the closure of FΓ.

Theorem 1.2.3. F1 = {z ∈ H||z| > 1.|Re(z)| < 1/2} is a fundamental domain for

the full modular group Γ.

Proof. We first prove that any point in H is equivalent to some point in the closure

of F1 :

Let z ∈ H and consider the lattice L= {gz + p| g, p ∈ Z}. Since z ∈ L for g = 1

and p = 0, L is not empty, and we can choose z1 ∈ L such that z1 6= 0 and having a

minimal modulus. z1 = cz + d, c, d ∈ Z with (c,d)=1. ( If not, we choose

z2 = cz
(c,d)

+ d
(c,d)

with |z2| < |z1|)

Since (c,d)=1, then by Bezout’s Lemma , there exists

a, b ∈ Z such that ac− bd = 1.

4



Hence, we can consider

γ1 =

 a b

c d

 ∈ Γ.

We have

Im(γ1z) =
Im(z)

|cz + d|2

Since |cz + d| is minimal, Im(γ1z) is maximal in the set {Im(γz), γ ∈ Γ}

Let zn = T nγ1z = γ1z + n be such that |Re(zn)| ≤ 1/2, n ∈ Z. Notice that |zn| ≥ 1

because if |zn| < 1, Im(Szn) = Im(zn)
|zn|2 > Im(zn) = Im(γ1z) contradicting the fact

that Im(γz) is maximal. Also, T nγ1 ∈ Γ. Hence, z being an arbitrary point in H is

equivalent to a point zn belonging to the closure of F1.

Next, we prove that no distinct points of F1 are equivalent under Γ.

Suppose z1, z2 ∈ F1 such that z2 = γz1 and γ 6= ±I ∈ Γ,

γ =

 e f

g h


For z ∈ F1, |z| > 1 and thus Im(z)2 > 1−Re(z)2 = 3/4 Now Im(z) > 0 and thus

Im(z) >
√

3
2

Then,
√

3
2
< Im(z2) = Im(z1)

|gz1+h|2 ≤
Im(z1)

Im(gz1+h)2
= Im(z1)

Im(gz1)2
= 1

g2Im(z1)
< 2

g2
√

3
We get

3g2 < 4. Now g is an integer and thus is either a 0,1,or -1. If g is a zero,γ would be

either ±I or T n and the latter is not possible since z2 would have its real part

greater than 1/2. The only left case is g = ±1. Now assume that Im(z1) ≤ Im(z2)

, Im(z2) = Im(z1)
|±z1+h|2 ≤

Im(z1)
|z1|2 < Im(z1).

A contradiction arises. Thus no two distinct points of F1 are equivalent under Γ.

This proves the claim.
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1.3 Entire Modular Forms

A modular form of weight k is not a well-defined function on Γ\H

Proof Let z1 , z2 ∈ H . Suppose z1 ∼ z2 , then there exists

γ =

 a b

c d

 ∈ Γ.

such that z1 = γz2. γ 6= I

Now f(z1) = (cz2 + d)kf(z2) 6= f(z2) for γ 6= T b .

Definition 1.3.1. Let p ∈ Γ/H,

multip(f) is the local multiplicity.

multi∞(f) is defined as the smallest integer n such that a(n) 6= 0 in the Fourier

expansion
∑∞

n=1 a(n)e2πinz.Define the stabilizer of z ∈ H as the set of elements of

the full modular group that fix z. np is the order of the stabilizer in the closure of

the full modular group.

Note that the boundary points FΓ are Γ-equivalent: If z1 = ±1
2

+ y1 and

z2 = ∓1
2

+ y2 . z1 = Tz2. Now if |z3| = |z4|=1 and z3 and z4 belong to the left and

right halves of the arc |z1|=1, then z3 = Sz4. These are the only equivalences we
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have for the boundary points, and the points of FΓ are not equivalent from the

definition of a fundamental domain. That is why we define F1 the semiclosure of

FΓ containing the boundary points with non-positive real parts. Thus, every point

in the upper half plane has its unique Γ-equivalent point of F1 .

Proposition 1.3.2. Let f be a non-zero modular form of weight k on Γ .

∑
Γ\H

1

np
multip(f) +multi∞(f) =

k

12

.

Proof. Since every point in H is equivalent to a unique point in F1, and since the

stabilizer of any point in FΓ is trivial, and the stabilizers of ω = e2πi/3 and i are the

cyclic groups generated by ST and S respectively, np is 1,2, or 3. The only cusp of

Γ/H is ∞ and we add it to compactify the moduli space.

For p ∈ H, there exists a unique z1 ∈ FΓ and γ1 ∈ Γ such that p = γ1z1. Let γ be a

stabilizer of p.(γp = p)

Recall the Argument Principle: Let f(z) be analytic inside and on a simple closed

curve inside C except for a finite number of poles inside C. Then

∫
C

f ′(z)

f(z)
dz = 2πi(N − P ) (1.3.1)

where N is the number of zeroes of f(z) inside C ,and P is the number of poles of

f(z) inside C. Delete ε-neighborhoods of all zeros of f and the neighborhood of
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infinity. Choose ε small enough so that the neighborhoods do not overlap. Let C

be the closed set from F1 with the deleted neighborhoods. Since f has no zeroes

nor poles in the selected region, then by the argument principle:

∫
∂C

f ′(z)

f(z)
dz = 0

.∫
C1

f ′(z)

f(z)
dz+

∫
C2

f ′(z)

f(z)
dz+

∫
C3

f ′(z)

f(z)
dz+

∫
C4

f ′(z)

f(z)
dz+

∫
C5

f ′(z)

f(z)
dz+

∫
C6

f ′(z)

f(z)
dz = 0

(as in the figure)

Consider C1 and C3

Over C1, z1 = −1
2

+ iY , and over C3, z2 = 1
2

+ iY = z1 + 1, and recalling that f is

periodic of period 1, we have:∫
C1

f ′(z1)

f(z1)
dz1 +

∫
C3

f ′(z2)

f(z2)
dz = i

∫ Y

√
3
2

f ′(−1
2

+ iy)

f(−1
2

+ iy)
dy + i

∫ √
3

2

Y

f ′(1
2

+ iy)

f(1
2

+ iy)
dy = 0

Now, ∫
C2

f ′(z)

f(z)
dz = 2πi mult∞(f).
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C5 being the curve surrounding a zero inside the fundamental domain

Over C5, if a is a zero of f(z) of order p then where F (z) is analytic inside C5 and

F (a) 6= 0 and

f ′(z) = p(z − a)(p−1)F (z) + (z − a)pF ′(z)

so the integral on the boundary is

∫
C5

f ′(z)

f(z)
dz = 2πip.

In the case where np = 1:

∫
C5

f ′(z)

f(z)
dz = 2πi multip(f)

For np = 2 or 3: ∫
C5

f ′(z)

f(z)
dz =

2πi multip(f)

np

What happens at ω and i is we integrate over third and half the circle respectively,

so we divide by 2 or 3 respectively.

Now for C4, divide C4 into C1
4 and C2

4 with C1
4 being the curve joining w + 1 to i

and C2
4 joining i to w. Notice that S(w + 1) = w and S−1 = S. Also Si = i.

∫
C4

=

∫
C1

4

+

∫
C2

4

=

∫ i

w+1

f ′(z)

f(z)
dz +

∫ w

i

f ′(z)

f(z)
dz.

But f(Sz) = zkf(z), so

f ′(Sz)(Sz)′ = kzk−1f(z) + zkf ′(z)

and thus

f ′(Sz)(Sz)′

f(Sz)
=
k

z
+
f ′(z)

f(z)

9



We have

log f(Sz) = k log z + log f(z)

. Thus,

log f(z) = log f(Sz)− k log z

d log f(z) = d log f(Sz)− kdz
z

. As a result,

∫ i

w+1

d log f(z) +

∫ w

i

d log f(z)

=

∫ i

w+1

d log f(Sz)− kdz
z

+

∫ w

i

d log f(z)

=

∫ Si

Sw+1

d log f(z)− kdz
z

+

∫ w

i

d log f(z)

=

∫ i

w

d log f(z) +

∫ w

i

d log f(z)−
∫ w

i

k
dz

z

= 0− k(log(w)− log(i))

= −k(i
2π

3
− iπ

2
) = −kπi

6

(the path of the third integral does not pass through zero and thus the function is

the derivative of the analytic logarithmic function so the fundamental theorem of

calculus applies)

Adding up all the above over the specified paths as in the figure we get:

∑
p∈Γ/H

2πi
1

np
multip(f) + 2πi multi∞(f)− kπi

6
= 0

Dividing the equation by 2πi we get

∑
p∈Γ/H

1

np
multip(f) +multi∞(f) =

k

12
.
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Notice that since p ∈ Γ/H implies that there exists a p1 ∈ F1 such that p ∼ p1, so

we can choose p1 ∈ F1 as a representative of the equivalence class

We denote the space of entire modular forms of weight k on Γ by Mk(Γ) and the

space of cusp forms of the same weight on Γ by Sk(Γ).

1.4 Eisenstein Series and the Discriminant

Function

Define

(f |kγ)(z) = (cz + d)−kf(γz)

where z ∈ C, γ =

 a b

c d

 ∈ Γ, and a, b, c, d ∈ Z.

The map f → f |kγ defines an operation of the group Γ on the vector space of

holomorphic functions. Define Γ∞ to be the stabilizer of the cusp at infinity

A matrix γ =

 a b

c d

 ∈ Γ maps ∞ to a
c
. For γ to map ∞ to ∞, c must be 0.

Thus γ = ±

 1 n

0 1

 , n ∈ Z. So γ = ±T n. In PSL2(Z), T and −T are identified,

and we deduce that Γ∞ =< T > is the infinite cyclic group generated by T.

Now, let

γ =

 a b

c d

 ∈ Γ
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γ′ = T nγ =

 1 n

0 1


 a b

c d

 =

 a+ nc b+ nd

c d


has the same bottom row as γ.

Also, and knowing that (T n)−1 = T−n , if γ′ =

 a′ b′

c d

 ∈ Γ. then

T−nγ′ =

 1 −n

0 1


 a′ b′

c d

 =

 a′ − nc b′ − nd

c d


 a b

c d

 = γ.

and ad− bc = 1, which makes (c, d) = 1.

The Eisenstein Series of weight k is defined as

∑
Γ∞/Γ

1|kγ

Also, another way to express an Eisenstein Series is

Ek(z) =
1

2

∑
(c,d)=1,c,d∈Z

(cz + d)−k

1
2

comes from the fact that elements having(c,d) and (-c,-d) are identified

This sum is absolutely convergent for k>2, and for all z ∈ H, as well as uniformly

convergent on all compact subsets of H.

Recall the Riemann-Zeta function

ζ(k) =
∞∑
n=1

1

nk

converges for Re(k)>1

Another way to define Eisenstein series would be

Gk(z) =
1

2

∑
m,n∈Z,(m,n)6=(0,0)

1

(mz + n)k

12



Gk(z) is holomorphic in H since z ∈ H and thus z 6= −n
m

.

Let D =

 a b

c d

 ∈ Γ. We have

Gk(Dz) =
1

2

′∑
(m,n)∈Z2

(m
az + b

cz + d
+ n)−k

= (cz + d)k
1

2

′∑
(m,n)∈Z2

((ma+ nc)z + bm+ nd)−k

(a, c) = 1 and (b, d) = 1. Now ma+ nc runs over all integers as n and m do.Same

thing goes to bm+ nd. To show it, let m′ = ma+ nc and n′ = bm+ nd.Clearly,

m′ ∈ Z and n′ ∈ Z, Let p ∈ Z. Since (a, c) = 1, then by Bezout’s lemma, there

exists q ∈ Z and r ∈ Z such that qa+ rc = 1. Multiply both sides by p to get

pqa+ prc = p. Now, pq ∈ Z and pr ∈ Z and thus, p = ma+ nc where m = pq and

n = pr. Similar approach yields bm+ nd running over all integers.

Thus

Gk(Dz) = (cz + d)k
1

2

′∑
(m′,n′)∈Z2

(m′z + n′)−k = (cz + d)kGk(z)

Gk is an entire modular form for k ≥ 4. Both definitions relate in the sense that

Gk(z) = ζ(k)Ek(z). This comes from the fact that any pair of integers can be

expressed the product of their gcd by a pair of coprimes.

Proof : Let (m,n)=q(a,c) with q=gcd(m,n) and suppose a and c are not coprimes,

then there is a divisor p for a and c, and thus q is not the greatest common

13



divisor.)

Gk(z) =
1

2

′∑
(m,n)∈Z2)

(mz + n)−k =
1

2

′∑
(c,d)=1∈Z2

(qcz + qd)−k = ζ(k)Ek(z)

1.5 Eisenstein Series and their Expansions

Define

Gk(z) =
(k − 1)!

(2πi)k
Gk(z)

Proposition 1.5.1. For k > 2,

Gk(z) = −Bk

2k
+
∞∑
n=1

σk−1(n)qn

where Bk is the kth Bernoulli number and σk−1(n) is the sum of the k − 1 powers

of the positive divisors of n and q = e2πiz.

Proof. Euler identity states that for z ∈ C/Z

1

z
+
∞∑
m=1

(
1

z +m
+

1

z −m
) =

π

tan(πz)
(1.5.1)

π
tan(πz)

is periodic of period 1 and its Fourier expansion is given by:

π
tan(πz)

= π cos(πz)
sin(πz

= πi e
πiz+e−πiz

eπiz−e−πiz = −πi1+q
1−q = −πi( 1

1−q + q 1
1−q = −2πi(1

2
+
∑∞

r=1 q
r)

Differentiate (1.5.1) k − 1 times to get:

∑
n∈Z

1

(z + n)k
=

(−2πi)k

(k − 1)!

∞∑
r=1

rk−1qr (k ≥ 2, z ∈ H) (1.5.2)
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Gk(z) =
1

2

′∑
(m,n)∈Z2

1

(mz + n)k

=
1

2
[
∑
n6=0

1

nk
+

′∑
m 6= 0, (m,n) ∈ Z2 1

(mz + n)k
]

=
∞∑
n=1

1

nk
+
∞∑
m=1

∞∑
n=−∞

1

(mz + n)k

= ζ(k) +
∞∑
m=1

∞∑
n=−∞

1

(mz + n)k

Using (1.5.2) and letting z′ = mz

Gk(z) = ζ(k) +
∞∑
m=1

∞∑
n=−∞

1

(z′ + n)k
= ζ(k) +

∞∑
m=1

(2πi)k

(k − 1)!

∞∑
r=1

rk−1e2πirz′

Gk(z) = ζ(k) +
(2πi)k

(k − 1)!

∞∑
m=1

∞∑
r=1

rk−1qmr

Let l = mr, and so m divides l, and since m and r vary from 1 to ∞, so does l and

l
m

= r.

Gk(z) = ζ(k) +
(2πi)k

(k − 1)!

∞∑
l=1

∑
m|l

((
l

m
)k−1ql

= ζ(k) +
(2πi)k

(k − 1)!

∞∑
l=1

σk−1(l)ql

=
(2πi)k

(k1)!
(−Bk

2k
+
∞∑
n=1

σk−1(n)qn)

Gk(z) = −Bk

2k
+
∞∑
n=1

σk−1(n)qn

15



1.5.1 Eisenstein Series of Weight 2

Since the Fourier expansion of Gk(z) defines a function which converges and is

holomorphic even for k=2, we define G2, G2, and E2

G2(z) =
−1

24
+
∞∑
n=1

σ1(n)qn

E2(z) =
6

π2
G2(z)

G2(z) =
1

2

∑
n6=0

1

n2
+

1

2

∑
m 6=0

∑
n∈Z

1

(mz + n)2

Theorem 1.5.2.

The Eisenstein series is not a modular form.However, it is well defined on H and

satisfies

G2(z) =
1

2

∞∑
n=−∞

∞∑
m=−∞

1

(mz + n)2

which converges conditionally.

Also,

G2(z) =
πi

z
+

1

2

∞∑
m=−∞

∞∑
n=−∞

1

(mz + n)2

G2(Sz) = z2G2(z)− πiz

Proof. We recall the following: For z ∈ C/R we have

πcot(πz) =
1

z
+
∞∑
m=1

(
1

z +m
+

1

z −m
)

For d ∈ R

lim
d→∞

(πcot(πdz)− πcot(−πdz)) = lim
d→∞

2πcot(πdz) = −2πi

16



Note that

σ1(n) =
∑
d|n

d <
n∑
d=1

d = n(
n+ 1

2
) ≤ (n+ 1)2

|G2(z)| ≤ π2|B2|+ 4π2

∞∑
n=1

|σ1(n)||e2πinz| <∞

lim
n→∞

(n+ 1)
2
n e−2πImz < 1

Thus G2 converges absolutely on H.(By the root test)

We need to show the conditional convergence of G2(z) , and the approach is to

prove that changing the order of the summands of m and n yields different results.

Define the auxiliary function

Ga(z) =
1

2

∞∑
c=−∞

∞∑
d=−∞

1

(cz + d)(cz + (d− 1))
((c, d) 6= (0, 0) and (0, 1))

If c 6= 0,

∞∑
d=−∞

1

(cz + d)(cz + (d− 1))
=

∞∑
d=−∞

1

(cz + (d− 1))
− 1

cz + d

=
∞∑
d=0

(
1

(cz + (d− 1))
− 1

cz + d
) +

−1∑
d=−∞

(
1

(cz + (d− 1))
− 1

cz + d
)

= limd→∞
1

(cz + (d− 1))
− 1

cz + d
+ limd→−∞

1

(cz + (d− 1))
− 1

cz + d

= 0

If c = 0 and d 6= 0, d 6= 1,

∞∑
d=−∞

1

d(d− 1)
= 2

∞∑
d=2

1

d(d− 1)
= 2

17



Thus Ga(z) = 1

Define

Gs(z) =
1

2

∞∑
d=−∞

∞∑
c=−∞

1

(cz + d)(cz + (d− 1)
((c, d) 6= (0, 0), (0, 1))

z−2Gs(
−1

z
) =

1

2
z−2

∞∑
d=−∞

∞∑
c=−∞

1

(c(−1
z

) + d)(c(−1
z

) + d− 1)

=
1

2
.
1

z

∞∑
d=−∞

(
1

(d− 1)z − c
− 1

dz − c
)

We split the series according to the values of d.

For d 6= 0 or 1

∞∑
c=−∞

1

dz − c
= πcot(πdz)

Hence

z−2Gs(
−1

z
) =

1

2z

∑
d∈Z\{0,1}

(πcot(π(d− 1)z)− πcot(πdz))

=
1

2z
(πcot(πz) + πcot(−πz)) +

1

2z
lim
d→∞

πcot(−πdz)− 1

2z
lim
d→∞

πcot(πdz)

=
1

z
πcot(πz) +

πi

z

For d=0

1

z

∑
c∈Z∗

(
1

−z − c
+

1

c
) =

1

z
(πcot(−πz) +

1

z
) = −πcot(πz)

z
+

1

z2
.

For d=1,

1

z

∑
c∈Z∗

(
−1

c
− 1

z − c
) =

1

z2
− πcot(πz)

z
.

18



Thus

z−2Gs(−1

z
) =

1

z2
+
πi

z

We get

Gs(−1

z
) = 1 + πiz

Gs(z) = 1− πi

z
= Ga(z)− πi

z

Ga(z)−G2(z) =
1

2

∞∑
c=−∞

∞#∑
d=−∞

1

(cz + d)(cz + (d− 1)
− 1

2

∞∑
c=−∞

∞′∑
d=−∞

1

(cz + d)2

Substituting the values when c=0 and d=1 by -1 we get

Ga(z)−G2(z) = −1

2
+

1

2

∞∑
c=−∞

∞#∑
d=−∞

1

(cz + d)2(cz + d− 1)
(4)

Define

Gse(z) =
1

2

∞∑
d=−∞

∞∑
c=−∞

1

(cz + d)2(cz + d− 1)

Using same concept as in (4) but interchanging the order of summands, we get

Gs(z)−Gse(z) = −1

2
+

1

2

∞∑
d=−∞

∞∑
c=−∞

1

(cz + d)2(cz + d− 1)

= Ga(z)−G2(z)

(Here we can interchange the order since the series
∑∞

d=−∞
∑∞

c=−∞
1

(cz+d)2(cz+d−1)

coverges absolutely)

G2(z)−Gse(z) = πi
z
6= 0
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This proves the conditional convergence.

z−2G2(−1

z
) =

1

2

∞∑
m=−∞

1

(−−m
z

+ n)2
=

1

2

∑
m

∑
n

1

(nz −m)2

=
1

2

∑
m

∑
n

1

(mz + n)2
= Gse(z) = G2(z)− πi

z
.

Thus,

G2(Sz) = z2G2(z)− πiz

1.6 The Discriminant Function

Define

∆(z) = e2πiz

∞∏
n=1

(1− e2πinz)24

for z ∈ H

The function converges ∀z ∈ H and is holomorphic.

Theorem 1.6.1. ∆(z) is a modular form of weight 12 on the full modular group.

Proof. We first note that

lim
z→i∞

∆(z) = 0.

Also, ∆(z) 6= 0 (z ∈ H and e2πnz 6= 1)

To prove ∆(Mz) = (cz + d)12∆(z) where M=

 a b

c d

 ∈ Γ, it suffices to prove it

for M=T or M=S as these are the only generators of Γ.

∆(Tz) = ∆(z + 1) = e2πi(z+1)

∞∏
n=1

(1− e2πin(z+1))24 = e2πiz

∞∏
n=1

(1− e2πinz)24 = ∆(z)
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Since the function is non-zero, we can speak of logarithm, which would help turn

the product into a sum and that should be easier to show that ∆(Sz) = z12∆(z)

log(∆z) = 2πiz + 24
∞∑
n=1

log(1− e2πinz)

Let x = e2πinz and |x| < 1. We have:

1

1− x
=
∞∑
k=0

xk − log (1− x) =
∞∑
k=1

xk

k

∆′(z)

∆(z)
= 2πi− 24(2πi)

∞∑
n=1

∞∑
k=1

ne2πinkz

Let l = nk

∆′(z)

∆(z)
= 2πi− 24(2πi)

∞∑
l=1

σ1(l)e2πilz = 2πi(−24G2(z)) =
12i

π
G2(z)

As a result,

∆′(−1
z

)

∆(−1
z

)
=

12i

π
G2(
−1

z
) =

12i

π
(z2G2(z)− πiz) =

∆′(z)

∆(z)
+

12

z

Integrating both sides we get:

log (∆(Tz)) = log (∆(z)) + 12 log (z) + c = log (∆(z)z12ec)

We get,

∆(Tz) = ∆(z)z12ec ∀z ∈ H

We evaluate it at z = i and get,

∆(i) = ∆(i)i12ec.
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We then have that c = 0 and hence

∆(Tz) = ∆(z)z12

1.7 Dimensions of Space of Modular Forms

Definition 1.7.1. A cusp form is an entire modular form with a zero constant

term in its Fourier expansion

We denote the space of cusp forms of weight k on the full modular group by Sk(Γ).

Theorem 1.7.2. Assume Sk(Γ) is finite dimensional. For k even and k ≥ 4, we

have dimMk(Γ)=1+dimSk

Proof. Let V = {v1, v2, ....., vm} be a basis for Sk(Γ). We show that

V ′ = {v1, v2, ....., vm, Gk} is a basis for Mk(Γ)

Let

a1v1 + a2v2 + a3v3 + .....+ amvm + αGk = 0

where a1, a2, ....α ∈ Z

a1v1 + a2v2 + a3v3 + .....+ amvm = −αGk

Letting z → i∞, we get

α
Bk

2k

(2πi)k

(k − 1)!
= 0

So α = 0 and the fact that V is a basis makes all a′is zeroes (v′is are linearly

independent),and hence we proved linear independence
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We now prove Mk is spanned by V ′

Let f ∈Mk(Γ), we have

f(z) = a(0) +
∞∑
n=1

a(n)e2πinz

f(z)− a(0)
2k(k − 1)!

Bk(2πi)k
Gk(z) ∈ Sk(Γ)

f(z)− a(0)
2k(k − 1)!

Bk(2πi)k
Gk(z) = b1v1 + b2v2 + ....+ bmvm

f(z) = a(0)
2k(k − 1)!

Bk(2πi)k
Gk(z)b1v1 + b2v2 + ....+ bmvm

and thus V ′ spans Mk(Γ).

Proposition 1.7.3. dim(Sk(Γ)) = 0 for k ∈ {2, 4, 6, 8, 10}. dimS12(Γ) = 1

Proof. Consider f(z)
∆(z)

.

f(Mz)

∆(Mz)
= (cz + d)k−12 f(z)

∆(z)

and

∆(z) 6= 0 ∀z ∈ H

Thus f(z)
∆(z)

is holomorphic in H and f(z)
∆(z)
∈Mk−12(Γ).

For k = 2, 4, 6, 8, 10, f(z)
∆(z)

has a negative weight and thus f(z) = 0.

For k = 12, f(z)
∆(z)

is an entire modular form of weight 0 and thus is constant.

f(z)

∆(z)
= c

So

f(z) = c∆(z)

and dimS12(Γ)=1.
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Definition 1.7.4. Let F : H → C be a meromorphic function on H and i∞. F (z)

is called an abelian integral if there exists P ∈ C such that

F (Mz) = F (z) + PM

for M ∈ Γ

Definition 1.7.5. Let f(z) be holomorphic in H, meromorphic at the cusp i∞

and satisfying

f(Mz) = (cz + d)kf(z) ∀M ∈ Γ

then f(z) is called weakly holomorphic.

Theorem 1.7.6. Let f be weakly holomorphic of weight 2 and

f(z) =
∑∞

n=−m a(n)e2πinz (m ∈ N). Then its antiderivative F is an abelian integral.

Proof. To show F is an abelian integral, we show that F (Mz) = F (z) + PM for

M ∈ Γ, through deriving F (z) and making use of the fact that it is the

antiderivative of f(z).

d(F (z))

dz
= f(z)

d(F (Mz))

dz
=
d(F (Mz))

dMz

dMz

dz

= F ′(Mz).(cz + d)−2

= f(Mz)(cz + d)−2

= f(z)

d(F (Mz))

dz
− d(F (z))

dz
= 0

Thus

F (Mz) = F (z) + c, c ∈ C
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Proposition 1.7.7. dimM2 = 0

Proof. Let f ∈M2(Γ) and let F be its antiderivative. Then we have:

F (Sz) = F (z) + cS = F (SSz) + cS = F (Sz) + cS

F (z) = F (SSz) = F (Sz) + cS = F (z) + 2cS

so cs = 0

(TS)3 = −I

and similarly we get

3cTS = 0

so

cTS = 0

F (Tz) = F (TSSz) = F (Sz) = F (z)

Thus F is periodic of period 1, and that yields a(0) to be 0.Thus, f is a cusp form

of weight 2, so f = 0

Corollary 1.7.8.

dim Mk(Γ) = 0 for k ≤ 0 or k odd.

dimMk(Γ) =


[ k
12

] + 1 if k 6= 2 mod12

[ k
12

] otherwise
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Proof. Let f ∈Mk(Γ)

- The case where k is odd: We have

f(Iz) = f(−Iz) = f(z)

Now by the transformation equations,

f(Iz) = 1kf(z)

and

f(−Iz) = (−1)kf(z)

Adding both we reach 2f(z) = 0 so f = 0.

The case where k is negative: It will be proved in Section 1.8 that |a(n)| ≤ cy−
k
2 ,

and letting y tend to 0, we get f = 0.

For 0 ≤ k ≤ 14, the result follows from Propositions 1.7.3 and 1.7.7.

For k > 14, we prove it by Induction.

Assume this holds for all weights less than k. Define the following map

H : Sk(Γ)→Mk−12(Γ)

H(f(z)) = f(z)
∆(z)
∈Mk−12(Γ) :

Let

p(z) =
f(z)

∆(z)

p(Mz) =
f(Mz)

∆(Mz)
=

(cz + d)kf(z)

(cz + d)12∆(z)
= (cz + d)k−12p(z)

Also,

∆(z) 6= 0
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Thus,

H(f(z)) ∈Mk−12(Γ)

H is a vector space isomorphism ( To prove surjectivity, take g ∈Mk−12(Γ), then

g∆ ∈ Sk(Γ) is the right preimage). To prove injectivity, note that

KerH = {p(z) ∈ Sk(Γ)) : H(p(z)) = 0} = 0

Therefore,

dimSk = dimMk−12

dimMk−12(Γ) = [
k

12
] if k 6= 2 mod12

else dimMk−12(Γ) = [
k

12
]− 1

dim Mk(Γ) = 1 + dim Sk(Γ)

Proposition 1.7.9. G4 and G6 generate the space of entire modular forms Mk(Γ)

Proof. We know that

dim Mk(Γ) = 0 if k < 0 and k = 2

and

dim Mk(Γ) = 1 if k = 0

To prove that the space of entire modular forms is spanned by G4 and G6, notice

that since k is even (for k ≥ 4), any weight can be obtained from linear
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combinations of 6 and 4. ( k = 6m+ 4n = 2(3m+ 2n) = 2Z and 3m+ 2n = Z, Let

a ∈ Z: If a is even then a = 2n n ∈ Z. If a is odd, then

a = 2n+ 1 = 2(t+ 1) + 1 = 2t+ 3, where m = 1)

Assume that G4 and G6 generate entire modular forms of weight less than k, and

let F ∈Mk(Γ) and let a0 be the constant terms of F in the Fourier expansion at

i∞

Define

h := F − a0cG
m
4 G

n
6 ∈ Sk

(c is the normalizing constant of the product of powers of G4 and G6)

Let

g =
h

∆
∈Mk−12(Γ)

By induction, g is a linear combination of powers of G4 and G6. Also,

∆ = cG3
4 − dG2

6

Thus h = ∆g is also linear combination of powers of G4 and G6 and so is

F = h+ a0cG
m
4 G

n
6 .
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1.8 Bounds on Fourier Coefficients of Entire

Forms

Theorem 1.8.1. Let f(z) be a cusp form of weight k on Γ with Fourier expansion∑∞
n=1 anq

n..Then

|f(z)| ≤ cy−
k
2

There exists a constant c such that

|an| ≤ cn
k
2 for all n

Proof. Consider

g(z) = y
k
2 |f(z)|

with g(z) ≥ 0, z ∈ H.

Let M be the usual typical matrix in the full modular group and consider

g(Mz) = (Im(Mz))
k
2 |f(Mz)|

= (
Im(z)

|cz + d|2
)
k
2 |(cz + d)kf(z)|

= y
k
2 |f(z)| = g(z)

So g is Γ-invariant

lim
z→i∞

g(z) = lim
z→i∞

y
k
2 |
∞∑
n=1

ane
2πinz| ≤ lim

y→∞
y
k
2

∞∑
n=1

|an|e−2πny| → 0

Also g is clearly continuous in H and at the cusp so g is bounded in H. That is
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g(z) ≤ c. So |f(z)| ≤ cy
−k
2

Consider the integral

∫ z+1

z

f(t)e−2πintdt =

∫ z+1

z

m=∞∑
m=1

a(m)e2πimte−2πintdt

=

∫ z+1

z

m=∞∑
m=1

a(m)e2πi(m−n)tdt

= a(n)

Hence

|a(n)| ≤ |
∫ z+1

z

f(t)e−2πintdt|

≤
∫ z+1

z

|f(t)|e2πny|dt|

≤ cy
−k
2 e2πny for all y > 0

Take y = 1
n

and we get

|an| ≤ cn
k
2

Corollary 1.8.2. There are no non-zero entire modular forms of negative weights

Proof.

|a(n)| ≤ cy
−k
2 e2πny

Letting y tend to 0, we reach a(n) = 0 ∀n ∈ Z
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Chapter 2

The Hecke Algebra and

Eigenforms and the L-series

Definition 2.0.1.

Tnf would be

Tnf(z) = nk−1
∑
d|n

d−k
d−1∑
b=0

f(
nz + bd

d2
)

Theorem 2.0.2. If f ∈Mk,

f(z) =
∞∑
m=0

a(m)e2πimz

Then

Tnf(z) =
∞∑
m=0

γn(m)e2πimz
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where

γn(m) =
∑
d|(m,n)

dk−1a(
mn

d2
)

Proof. The significance of this theorem is it linking the fourier coefficients of

Tnf(z) to that of f(z).

We recall the definition of Tnf(z) and then we substitute f inside by its Fourier

expansion as below:

Tnf(z) = nk−1
∑
d|n

d−k
d−1∑
b=0

∞∑
m=0

a(m)e2πim(nz+bd
d2

)

=
∞∑
m=0

∑
d|n

(
n

d
)k−1a(m)e

2πimnz
d2

1

d

d−1∑
b=0

e
2πimb
d

Note that

if d|m
d−1∑
b=0

e
2πimb
d =

d−1∑
b=0

1 = d

if d - m
d−1∑
b=0

e
2πimb
d = 0

Tnf(z) =
∞∑
m=0

∑
d|n,d|m

(
n

d
)k−1a(m)e

2πimnz
d2

As d|m then we can write m = qd for some q ∈ N, and we get

Tnf(z) =
∞∑
q=0

∑
d|n

(
n

d
)k−1a(qd)e

2πiqnz
d

Substitute d by n
d

and then reintroduce m = qd

Tnf(z) =
∞∑
q=0

∑
d|n

dk−1a(
qn

d
)e2πiqdz =

∞∑
m=0

∑
d|n,d|m

dk−1a(
mn

d2
)e2πimz
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We now introduce another definition for Tnf(z) involving an element from the full

modular group. It will hep us show that Tnf(z) maps entire modular forms to

entire modular forms:

Since d|n, n = ad, a ∈ Z.

Consider A=

 a b

0 d

 where detA = ad = n.

Tnf(z) = nk−1
∑

ad=n,a≥1

d−k
d−1∑
b=0

f(
adz + bd

d2
)

= nk−1
∑

ad=n,a≥1

d−k
d−1∑
b=0

f(
az + b

d
)

= nk−1
∑

a≥1,ad=n,0≤b<d

d−kf(Az)

=
1

n

∑
a≥1,ad=n,0≤b<d

(
n

d
)kf(Az)

=
∑

a≥1,ad=n,0≤b<d

akf(Az)

Theorem 2.0.3. If A1 ∈ Γ(n) and V1 ∈ Γ, there exists A2 ∈ Γ(n) and V2 ∈ Γ such

that A1V1 = V2A2.

Also, if Ai =

 ai bi

0 di

 and Vi =

 ∗ ∗∗

γi σi

 , i = 1 or 2

Then

a1(γ2A2z + σ2) = a2(γ1z + σ1)

Theorem 2.0.4. V ∈ Γ,V =

 ∗ ∗∗
γ σ

, f ∈Mk then

Tnf(V z) = (γz + σ)kTnf(z)
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Proof.

Tnf(V z) =
1

n

∑
a≥1,ad=n,0≤b<d

akf(AV z)

=
1

n

∑
a≥1,ad=n,0≤b<d

akf(V2A2z) =
1

n

∑
a≥1,ad=n,0≤b<d

ak(γ2A2z + σ2)kf(A2z)

=
1

n

∑
a≥1,ad=n,0≤b<d

ak2(γ1z + σ1)kf(A2z)

=
1

n
(γ1z + σ1)k

∑
a≥1,ad=n,0≤b<d

ak2f(A2z) = (γ1z + σ1)kTnf(z)

Theorem 2.0.5. Tn maps Mk(Γ) to Mk(Γ) and Sk to Sk.

Proof. Tnf is holomorphic in H (from the definition of Tnf)

From its fourrier expansion in theorem 2.0.2, we deduce it is holomorphic at i∞.

It satisfies the transformation law (by Theorem 2.0.4)

Hence, Tn maps Mk(Γ) to Mk(Γ).

To prove Tnf maps Sk to Sk, notice that if f ∈ Sk,

Tnf(z) =
∞∑
m=0

∑
d|n,d|m

dk−1a(
mn

d2
)e2πimz = σk−1(n)a(0) + a(n)q + ...

then if a(0) = 0, σk−1(n)a(0) = 0 and σk−1(n)a(0) is the first coefficient in the

expansion of Tnf(z), so we deduce that Tnf(z) ∈ Sk.

Definition 2.0.6. An entire modular form is said to be a simultaneous eigenform

if Tnf(z) = l(n)f for all n and th sequence of values l(n) are knowns as the

eigenvalues.

Theorem 2.0.7. If f is a simultaneous eigenform with a weight ≥ 4, then a(1) 6= 0
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Proof. Since f is a simultaneous eigenform, we know that

γn(1) = a(n) = l(n)a(1) for all n.

If a(1) = 0 then

a(n) = 0 for all n ≥ 1

f(z) = a(0)

. Thus f = 0. Hence

a(1) 6= 0

Theorem 2.0.8. f is a normalized simultaneous eigenform with a weight ≥ 4 if

and only if for all m and n

∑
d|(m,n)

dk−1a(
mn

d2
) = a(m)a(n)

Proof. - Suppose f is a simultaneous eigenform, we have a(n) = γn(1) = l(n)a(1).

Now a(1) = 1 so a(n) = l(n).

Also γn(m) = l(n)a(m) = a(n)a(m). Thus

∑
d|(m,n)

dk−1a(
mn

d2
) = a(n)a(m)

Note: If (m,n) = 1 we get a(m)a(n) = a(mn).

- Now suppose that for all m and n

∑
d|(m,n)

dk−1a(
mn

d2
) = a(m)a(n)
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Tnf(z) =
∞∑
m=0

γn(m)e2πimz

Replace γn(m) by a(m)a(n), we get

Tnf(z) =
∞∑
m=0

a(n)a(m)e2πimz

Thus

Tnf(z) = a(n)
∞∑
m=0

a(m)e2πimz

for all n.

Hence

Tnf(z) = a(n)f(z)

for all n and thus f is a simultaneous eigenform.

2.1 The Multiplicative Property of Hecke

Operators

Theorem 2.1.1. TmTn = Tmn if (m,n) = 1

Proof. If f ∈Mk,

Tn(z) =
1

n

∑
a≥1,ad=n,0≤b<d

akf(Az)

A=

 a b

0 d

 ∈ Γ.
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Tm(Tn(f))(z) =
1

m

∑
α≥1, ασ=m, 0≤β<σ

αkTnf(Bz)

=
1

m

∑
α≥1, ασ=m, 0≤β<σ

αk
1

n

∑
a≥1,ad=n,0≤b<d

akf(ABz)

=
1

mn

∑
α≥1, ασ=m, 0≤β<σ

∑
a≥1,ad=n,0≤b<d

(αa)kf(Cz)

where C= AB =  a b

0 d


 α β

0 σ

 =

 αa aβ + bσ

0 dσ


d runs through the divisors of n, σ through that of m. (m,n) = 1 so σd runs

through all divisors of mn. αb+ βd runs through a complete residue system mod

dσ ( by the Chinese Remainder Theorem). Thus C runs through a complete set of

non-equivalent elements of Γ(mn)

Thus

TmTn = Tmn.

Theorem 2.1.2. For all m,n ∈ Z

TmTn =
∑
d|(m,n)

dk−1T (
mn

d2
)

Proof. if (m,n) = 1, then d = 1 and TmTn = Tmn

Thus, it is enough to consider m and n as powers of the same prime p( if m and n

had different primes we use the fact that the gcd of two different primes is one and

thus TmTn = Tmn).
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First consider the case when m = p and n = ps, s ≥ 1.

First we need to prove

T (p)T (ps) = T (ps+1) + pk−1T (ps−1)

(T (ps)f)(z) =
1

ps

∑
d|ps,ad=n,0≤bz≤pt−1,0≤t≤s

p(s−t)kf(
ps−tz + bz

pt
)

Also

{T (p)g}(z) = pk−1g(pz) +
1

p

p−1∑
b=0

g(
z + b

p
)

{T (p)T (ps)f}(z)

= pk−1T (ps)(pz) +
1

p

p−1∑
b=0

Tps(
z + b

p
)

= pk−1 1

ps

∑
0≤t≤s,0≤bz≤ps−1

p(s−t)kf(
ps+1−tz + pbz

pt
) +

1

p

1

ps

p−1∑
b=0

∑
ad=ps,0≤bz≤pt−1

f(
ps−t( z+b

p
) + bz

pt
)

= pk−1 1

pr

∑
0≤t≤s,0≤bz≤ps−1

p(s−t)kf(
ps+1−tz + pbz

pt
) + p−1−s

∑
0≤s,0≤bz≤pt

p(s−t)k
p−1∑
b=0

f(
ps−tz + bz + bpt

pt+1
)

bz + bpt runs through a complete residue system mod ps+1

T (ps+1)f(z) =
1

ps+1

∑
0≤bz≤ps+1−1,d|ps+1,0≤t≤s+1

p(s+1−t)kf(
ps+1−tz + bz

pt
)

Thus

{T (p)T (ps)f}(z) = T (ps+1)f)(z) + pk−1−s
∑

0≤bz≤pt,1≤t≤s

p(s−t)kf(
ps+1−tz + pbz

pt
)
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Let T = t− 1

= T ((ps+1)f)(z) + pk−1−s
∑

0≤bz≤pT+1,0≤T≤s−1

p(s−t)kf(
ps−T z + pbz

pT+1
)

= T (ps+1)f(z) + pk−1T (ps−1)

For the case when m = ps and n = pr, we need to prove

T (pr)T (ps) =
r∑
t=o

pt(k−1)T (pr+s−2t)

Suppose r ≤ s

For r = 1, the statement is true by what preceded.

Assume it is true for all r ≤ s, we have to prove it is true for r + 1. That is we

need to prove

T (pr+1)T (ps) =
r+1∑
t=o

pt(k−1)T (pr+s−2t+1)

T (pr+1)T (ps) = [T (p)T (pr)− pk−1T (pr−1)]T (ps)

= T (p)T (pr)T (ps)− pk−1T (pr−1)]T (ps)

=
r∑
t=0

pt(k−1)T (p)T (pr+s−2t)− pk−1T (pr−1)T (ps)

=
r∑
t=0

pt(k−1)[T (pr+s−2t+1) + pk−1T (pr+s−2t−1]− pk−1T (pr−1)T (ps)

We have

r∑
t=0

pt(k−1)[T (pr+s−2t+1)+pk−1

r+1∑
T=1

pT (k−1)T (pr+s−2T+1)−pk−1

r∑
T=1

pT (k−1)T (pr+s−1−2T )

=
∑r+1

t=0 p
t(k−1)T (pr+s−2t+1)
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2.2 L-Series of Eigenforms

Definition 2.2.1. Let f ∈Mk(Γ) and a(n) be its Fourrier coefficient. Define the

Dirichlet series

L(f, s) =
∞∑
n=1

a(n)

ns

Recall that a(n) = O(n
k
2 ) for f a cusp form( Theorem 1.8.1). And a(n) = O(nk−1)

for entire modular forms (Theorem 2.2.5), we study the convergence of the L-Series

based on the real part of s as below:

|L(f, s)| = |
∞∑
n=1

a(n)

ns
| ≤

∞∑
n=1

|a(n)|
|ns|

For f a cusp form,

|L(f, s)| ≤ c
∞∑
n=1

n
k
2

nRe(s)

Re(s)− k
2
> 1 and so Re(s) > 1 + k

2

For f an entire form,

|L(f, s)| ≤ c
∞∑
n=1

n
k
2

nRe(s)

We have Re(s)− k + 1 > 1 so Re(s) > k

Theorem 2.2.2. If f is a normalized simultaneous eigenform then for p prime

L(f, s) =
∞∏
p=1

1

1− a(p)p−s + pk−1−2s

Proof.

L(f, s) =
∞∑
n=1

a(n)

ns
=
∞∑
n=1

a(pn1
1 p

n2
2 .........p

nm
m )

pn1
1 p

n2
2 .........p

nm
m

Since the common divisors of p and pn are 1 and p, we have

a(p)a(pn) = a(pn+1) + pk−1a(pn−1)
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Also,

(1− a(p)x+ pk−1x2)(1 +
∞∑
n=1

a(pn)xn) = 1 (3)

We claim that the euler product of L(f, s) is the infinite product

∞∏
p=1

(1 +
∞∑
m=1

a(pm)

pms
)

This infinite product converges absolutely since

∞∑
p=1

|
∞∑
n=1

a(pn)

pns
| ≤ |

∞∑
n=1

a(n)

ns
| <∞

We now show the product is equal to L(f, s).

Consider

PN(s) =
∏
p≤N

(1 +
∞∑
n=1

a(pn)

pns
)

For N ≥ 2, let p1, p2, ...., pl denote all primes less than or equal to N . Noting that

the terms can be writter as a(pn)
pns

for n = 0 ( a(1) = 1 for normalized eigenforms),

we get

PN(s) =
∞∑

m1=0

...........

∞∑
m1=0

a(pm1
1 )a(pm2

2 ).....a(pmll
pm1s

1 pm2s
2 .........pmlsl

By the fundamental theorem of Arithmetic, every integer has a unique

factorization as powers of primes.Also, the integers pm1
1 , pm2

2 , .........pmll are elements

in the set SN = {n ∈ N : p|n p ≤ N}

Hence Pn(s) =
∑

n∈SN
a(n)
ns

Sn contains all integers less than or equal to N . Now

|PN(s)− L(f, s)| = |
∑
n/∈SN

a(n)

ns
| ≤

∞∑
n=N+1

| |a(n)|
|ns|
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By the nth term test, since
∑∞

n=N+1
a(n)
ns

converges absolutely then

limn→∞
|a(n)|
|n|s = 0 then limn→∞ PN(s) = L(f, s).

Using (3) and what was just proven, we get that

L(f, s) =
∞∏
p=1

(1 +
∞∑
m=1

a(pm)

pms
) =

∞∏
p=1

1

1− a(p)p−s + pk−1−2s

Theorem 2.2.3. Let f ∈ Sk(Γ).

L∗(f, s) =

∫ ∞
0

f(iy)ys
dy

y

.

L∗(f, s) is an entire function satisfying

L(f, s) = (2π)s
L∗(f, s)

Γ(s)

Proof. Recall

Γ(s) =

∫ ∞
0

e−tts−1dt

Re(s) > 0

We have

L∗(f, s) =

∫ ∞
0

f(iy)ys
dy

y

=

∫ ∞
0

∞∑
n=1

a(n)e−2πnyys−1dy
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Let τ = 2πny, dτ = 2πndy. Substituting, we get

L∗(f, s) =

∫ ∞
0

∞∑
n=1

a(n)e−ττ s−1 1

(2πn)s−1

dy

2πn

=
1

(2π)s

∫ ∞
0

∞∑
n=1

a(n)

ns
e−ττ s−1dτ

=
1

(2π)s
L(f, s)Γ(s)

As seen above, the integral of the sum is the sum of the integral and this can be

shown using Dominated Convergence theorem as below:

|
∞∑
n=1

a(n)

ns
| ≤

∞∑
n=1

|a(n)|
ns

≤
∞∑
n=1

cn
k
2

ns

The last series converges since s− k
2
> 1. Thus∫ ∞

0

∞∑
n=1

a(n)

ns
dτ =

∞∑
n=1

a(n)

ns

∫ ∞
0

dτ

Hence

L(f, s) = (2π)s)
L∗(f, s)

Γ(s)

Theorem 2.2.4. Suppose f is a cusp form, then L(f, s) can be continued

analytically beyond s ≥ 1 + k
2

by the functional equation

L(f, s)Γ(s)

(2π)s
=
ikL(f, k − s)Γ(k − s)

(2π)k−s

where Γ(s) =
∫∞

0
e−tts−1dt .

If a(0) 6= 0,and for k ≥ 4, L(f, s) is analytic for all s except a simple pole at s = k

with residue

(−1)
k
2 a(0)(2π)k

Γ(k)

43



Proof. Let t = 2πnτ , dt = 2πndτ . We substitute and get:

Γ(s) =

∫ ∞
0

e−2πnτ (2πnτ)s−12πndτ

Γ(s)

(2πn)s
=

∫ ∞
0

e−2πnττ s−1dτ

Γ(s)a(n)

(2π)sns
=

∫ ∞
0

e−2πnτa(n)τ s−1

Γ(s)

(2π)s

∞∑
n=1

a(n)

ns
=
∞∑
n=1

∫ ∞
0

a(n)e−2πnττ s−1dτ

By uniform covergence on compact sets

Γ(s)

(2π)s

∞∑
n=1

a(n)

ns
=

∫ ∞
0

∞∑
n=1

a(n)e−2πnττ s−1dτ

=

∫ ∞
0

(f(iτ)− a(0))τ s−1dτ

=

∫ 1

0

(f(iτ)− a(0))τ s−1dτ +

∫ ∞
1

(f(iτ)− a(0))τ s−1dτ

Now

f(Siτ) = (iτ)kf(iτ)

Γ(s)

(2π)s

∞∑
n=1

a(n)

ns
=

∫ 1

0

[(f(
i

τ
)(iτ)−k − a(0))]τ s−1dτ +

∫ ∞
1

(f(iτ)− a(0))τ s−1dτ

Let w = 1
τ

then

dw =
−1

τ s
dτ = −w2dτ

Γ(s)

(2π)s

∞∑
n=1

a(n)

ns
=

∫ ∞
1

[(f(iw)(
i

w
)−k − a(0))]w1−s 1

w2
dw +

∫ ∞
1

(f(iτ)− a(0))τ s−1dτ

=

∫ ∞
1

f(iw)i−kwk−s−1 − a(0))w−1−s 1

w2
dw +

∫ ∞
1

(f(iτ)− a(0))τ s−1dτ

= f(iw)i−kwk−s−1dw + a(0)
w−s

s

∣∣∣∞
1

+

∫ ∞
1

(f(iτ)− a(0))τ s−1dτ

= f(iw)i−kwk−s−1dw − a(0)

s
+

∫ ∞
1

(f(iτ)− a(0))τ s−1dτ
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Add and subtract (−1)
k
2

∫∞
1
a(0)wk−s−1dw to get:

Γ(s)
(2π)s

∑∞
n=1

a(n)
ns

=

(−1)
k
2

∫ ∞
1

(f(iw)− a(0))wk−s−1dw +

∫ ∞
1

(f(iτ)− a(0))τ s−1dτ − a(0)

s
+ (−1)

k
2

∫ ∞
1

a(0)wk−s−1dw

=

∫ ∞
1

(f(iw)− a(0))wk−s−1i−kdw +

∫ ∞
1

(f(iτ)− a(0))τ s−1dτ − a(0)(
1

s
+

(−1)
k
2

k − s
)

Let I = −a(0)(1
s

+ (−1)
k
2

k−s ) and let w = t = τ

Γ(s)

(2π)s

∞∑
n=1

a(n)

ns
=

∫ ∞
1

(f(it)− a(0))tk−s−1i−kdt+

∫ ∞
1

[(it)−kf(
i

t
)− a(0)]ts−1dt+ I

Let T = 1
t
. dT = −T 2dt

Γ(s)

(2π)s

∞∑
n=1

a(n)

ns
=

∫ ∞
1

(f(it)− a(0))tk−s−1i−kdt+

∫ 0

1

(i−kT kf(iT )− a(0))T 1−s.(−T−2)dT + I

=

∫ ∞
1

(f(it)− a(0))tk−s−1i−kdt+

∫ 1

0

(f(iT )− a(0))T k−s−1i−kdT + I

=

∫ ∞
0

(f(it)− a(0))tk−s−1i−kdt+ I =

∫ ∞
0

(
∞∑
n=1

e−2πnt)tk−s−1i−kdt+ I

Let B = 2πnt so dB = 2πndt and using Dominated Convergence Theorem as in

Theorem 2.2.3

Γ(s)

(2π)s

∞∑
n=1

a(n)

ns
=

∫ ∞
0

(
∞∑
n=1

e−BBk−s−1 1

(2πn)k−s
i−kdB

1

2πn
+ I

= i−k
∞∑
n=1

a(n)

nk−s
1

(2π)k−s

∫ ∞
0

e−BBk−s−1dB + I

= Γ(k − s)L(f, k − s) 1

(2π)k−s
i−k + I

Note that ik = i−k since k is even and i2k = 1. For f ∈ Sk(Γ) a(0) = 0 and we get

the equality needed.
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Theorem 2.2.5. If f is an entire modular form and not a cusp form, then

a(n) = O(nk−1)

Proof. If f = Gk,

a(n) = cσk−1(n)

We have

|a(n)| ≤ |c|nk−1

∞∑
d=1

1

dk−1
= |c|nk−1ζ(k − 1)

a(n) = O(nk−1)

Suppose f is an entire function of weight k Let

α =
f(i∞)

Gk(i∞)

Consider

f − αGk ∈ Sk

Then

f = αGk + g

and so

a(n) = O(nk−1) +O(n
k
2 ) = O(nk−1)
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Chapter 3

Zeroes of Eisenstein Series

For k ≥ 4 and z ∈ H, consider the Eisenstein series

Ek(z) =
1

2

′∑
(c,d)∈Z2,(c,d)=1

(cz + d)−k

In the problem of locating the zeroes of the Eisenstein series in the fundamental

domain on the full modular group, it was originally shown that the the zeroes lie

on the unit circle when k ≤ 34 and k = 38. Then the result was extended for all k

in the paper of Rankin and Swinnerton-Dyer.

Theorem 3.0.1. All zeros of Ek(z) in the fundamental domain of the full modular

group are located on the arc of the unit circle {z = eiθ, π
2
≤ θ ≤ 2π

3
}

Proof. From Proposition 1.3.2,

∑
p∈Γ/H

1

np
multip(f) +multi∞(f) =

k

12
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. Developing it we get,

∑
p∈Γ/H,p 6=i or w

multip(f) +multi∞(f) +
1

2
multii(f) +

1

3
multiw(f) =

k

12

Write k = 12n+ s where n ∈ Z and s=4, 6, 8, 10, 0, or 14. Then

∑
p∈Γ/H,p 6=i or w

multip(f) +multi∞(f) +
1

2
multii(f) +

1

3
multiw(f) = n+

s

12

Note that the value of s determines the minimum number of zeros that Ek(z) must

have at the elliptic points i and w counting multiplicity (say for s = 4, f should

have at least one zero at w. For s=0, f has no zeroes at w and i.For s = 4, f has

at least one zero at w. For s = 6, f has at least one zero at i. For s = 8, f has at

least two zeroes at w. For s = 10, f has at least one zero at w and one zero at i.

And for s = 14, f has at least two zeroes at w and one zero at i)

Thus, it suffices to show that Ek(z) has at least n zeroes on the arc of the unit

circle (π
2
, 2π

3
).

Write Fk(θ) = ei
kθ
2 Ek(e

iθ) =

1

2

′∑
(c,d)∈Z2,(c,d)=1

(ce
iθ
2 + de

−iθ
2 )−k

It is easy to see that Fk(θ) ∈ R for real θ

We limit n to the positive integers yielding k ≥ 12

Note that c2 + d2 = 1 for (c, d) = {(0, 1), (1, 0), (−1, 0), (0,−1)} Let R1 consists of

the terms of the series for which c2 + d2 > 1, we have

Fk(θ) =
1

2
{e

ikθ
2 + e

−ikθ
2 + e

−ikθ
2 + e

ikθ
2 }+R1 = 2cos(

kθ

2
) +R1

We show that for π
2
< θ < 2π

3
, |R1| < 2.
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In the closed interval [π
2
, 2π

3
], cos θ > −1

2
,

|ce
iθ
2 + de

−iθ
2 |2 = (ce

iθ
2 + de

−iθ
2 )(ce−

iθ
2 + de

iθ
2 ) = c2 + 2cdcosθ + d2

c2 + 2cdcosθ + d2 − 1

2
(c2 + d2) =

1

2
(c2 + d2) + 2cdcosθ

>
1

2
(c2 + d2)− cd

=
1

2
(c2 + d2 − 2cd)

=
1

2
(c+ d)2

≥ 0

There are at most 2(2N
1
2 + 1) couples such that the sum of their squares is N. Now

for N ≥ 5, N
1
2 > 2 and thus

2(2N
1
2 + 1) ≤ 5N

1
2

For c2 + d2 = 2, we have 4 couples {(1,−1), (−1, 1), (1, 1), (−1,−1)}

For c2 + d2 = 5 we have 8

couples.{(1, 2), (−1, 2), (1,−2), (−1,−2), (2, 1), (−2, 1), (2,−1), (−2,−1)}

|R1| ≤
1

2

∑
c2+d2>1

|ce
iθ
2 + de

−iθ
2 |−k

≤ 1

2

∑
c2+d2>1

|1
2

(c2 + d2)|−
k
2

≤ 1 + 2
−k
2 + 4(

5

2
)−

k
2 +

∞∑
N=10

5N
1
2 (

1

2
N)−

k
2

≤ 1 + 2
−k
2 + 4(

5

2
)−

k
2 +

20
√

2

k − 3
(
9

2
)
3−k
2

Clearly, the right hand side function is monotone decreasing and since k ≥ 12 , the

max value is reached at k = 12 and is equal to 1.03562.Thus |R1| < 2
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Let m ∈ Z, and consider Fk(
2mπ
k

) = 2cos(mπ) +R1

For m even, cos(mπ) = 1 and thus Fk(
2mπ
k

) = 2 +R1 > 0

For m odd, cos(mπ) = −1 and thus Fk(
2mπ
k

) = −2 +R1 < 0

Since π
2
≤ θ ≤ 2π

3
,

π

2
≤ 2mπ

k
≤ 2π

3

and thus

1

4
k ≤ m ≤ 1

3
k

Hence the number of zeroes of Fk(θ) in the interval (π
2
, 2π

3
) is equal to the number

of integers in the interval [k
4
, k

3
] minus one, and this is exactly n.

1

4
k ≤ m ≤ 1

3
k so

1

4
(12n+ s) ≤ m ≤ 1

3
(12n+ s) so 3n+

s

4
≤ m ≤ 4n+

s

3

Number of integers in this interval is n+ 1

The number of zeroes of Fk(θ) is the same as that of Ek(z) and the proof is

complete
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Chapter 4

Period Polynomials and their

Roots

In this chapter, we study the zeroes of period polynomials. Those polynomials that

arise from Eichler Shimura Integrals.

Definition 4.0.1. Define the nth period of f as

rn(f) =

∫ ∞
0

f(it)tndt

(0 ≤ n ≤ k − 2), f ∈ Sk)

Theorem 4.0.2.

rn(f) = n!(2π)−n−1L(f, n+ 1)Γ(n+ 1)

Proof.

rn(f) =

∫ ∞
0

f(it)tndt =

∫ ∞
0

tn
∞∑
l=1

a(l)e2πi(it)ldt =

∫ ∞
0

tn
∞∑
l=1

a(l)e−2πltdt
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Let q = 2πlt so dq = 2πldt

rn(f) =

∫ ∞
0

qn

(2πl)n

∞∑
l=1

a(l)e−q
dq

2πl

=
∞∑
l=1

a(l)

ln+1

1

(2π)n+1

∫ ∞
0

e−qqndq

= L(f, n+ 1)
1

(2π)n+1
Γ(n+ 1)

= L∗(f, n+ 1)

Definition 4.0.3. The Eichler-Shimura Integral of an entire modular form is

defined by:

Ef (z) =

∫ i∞

z

(f(τ)− a(0))(τ − z)k−2dτ

Theorem 4.0.4. We have

Ef (z) =
−(k − 2)!

(2πi)k−1

∞∑
n=1

a(n)

nk−1
e2πinz

Proof.

Ef (z) =

∫ i∞

z

∞∑
n=1

a(n)e2πinτ (τ − z)k−2dt

Let u = τ − z (possible because f is analytic in H)

Ef (z) =

∫ i∞

o

∞∑
n=1

a(n)e2πinue2πinzuk−2du
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Let w = −2πinu

Ef (z) =

∫ ∞
o

∞∑
n=1

a(n)e−we2πinz(
w

−2πin
)k−2 dw

−2πin

= − 1

(2πi)k−1

∞∑
n=1

a(n)

nk−1
e2πinz

∫ ∞
0

e−wwk−2dw

=
−(k − 2)!

(2πi)k−1

∞∑
n=1

a(n)

nk−1
e2πinz

Theorem 4.0.5.

Ef (z)− zk−2Ef (Sz) = rf (z)

Proof.

Ef (Sz) =

∫ i∞

Sz

(f(τ)− a(0))(τ − Sz)k−2dτ

Since f is analytic over the region, we can do a change of variables. Let

τ = Sw =
−1

w

, so

dτ =
1

w2
dw

Ef (Sz) =

∫ S−1i∞

z

(f(Sw)− a(0))(
−1

w
+

1

z
)k−2 1

w2
dw

=

∫ 0

z

(wk)(f(w)− a(0))(
−z + w

zw
)k−2 1

w2
dw

=

∫ 0

z

(f(w)− a(0))(w − z)k−2

zk−2
dw

zk−2Ef (Sz) =

∫ 0

z

(f(w)− a(0))(w − z)k−2dw
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Ef (z)− zk−2Ef (Sz) =

∫ ∞
z

(f(w)− a(0))(w − z)k−2dw +

∫ z

0

(f(w)− a(0))(w − z)k−2dw

=

∫ i∞

0

(f(w)− a(0))(w − z)k−2dw

Thus we define the rf (z) as the period function given above

rf (z) = Ef (z)− zk−2Ef (Sz) =

∫ i∞

0

(f(w)− a(0))(w − z)k−2dw

Lemma 4.0.6. The period function is a polynomial of degree less than or equal to

w = k − 2

Proof.

rf (z) =

∫ i∞

0

(f(w)− a(0))(w − z)k−2dw

Using the binomial theorem,

rf (z) =

∫ i∞

0

k−2∑
l=0

C l
k−2w

l(−1)k−2−lzk−2−l(f(w)− a(0))dw

=
k−2∑
l=0

(−1)k−2−lC l
k−2z

k−2−l
∫ i∞

0

wl(f(w)− a(0))dw

=
k−2∑
l=0

a(l)zk−2−l

where a(l) = (−1)k−2−lC l
k−2

∫ i∞
0

wl(f(w)− a(0))dw

Definition 4.0.7. The odd part of the period function is denoted by r−f (z) and is

equal to
rf (z)−rf (−z)

2

The even part of the period function is denoted by r+
f (z) and is equal to

rf (z)+rf (−z)
2

For f ∈ Sk (a(0) = 0),we get

rf (z) =

∫ i∞

0

f(w)(w − z)k−2dw
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If z0 is a zero of rf (z) then

Ef (z0) = zk−2
0 Ef (

−1

z0

)

and we get
∞∑
n=1

a(n)

nk−1
e2πinz0 = zk−2

0

∞∑
n=1

a(n)

nk−1
e
−2πi n

z0

Definition 4.0.8. Let Vw be the space of complex polynomials with real-valued

coefficients of degree less than or equal to w. Also V −w and V +
w be the subspace of

odd and even polynomials respectively.

Let φ ∈ Vw and γ =

 a b

c d

 ∈ Γ.

Introduce the following group action of Γ on Vw

φ
∣∣∣
 a b

c d

(z) = (cz + d)wφ(
az + b

cz + d
)

The action preserves V ±w

Definition 4.0.9. Consider S =

 0 −1

1 0

 and U = TS =

 1 −1

1 0

.

S2 = −I and U3 = −I.

Define Yw = {φ ∈ Vw : φ|(1 + S) = φ|(1 + U + U2) = 0}

Y ±w = Yw
⋂
V ±w

Lemma 4.0.10. Let f ∈ Sk(Γ), M =

 a b

c d

 ∈ Γ, then

rf |M(z) =

∫ M−1i∞

M−10

f(w)(w − z)k−2dw

Proof.

rf (Mz) =

∫ i∞

0

f(w)(w −Mz)k−2dw
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Since f is analytic over 0 and i∞ we can safely do a change of variables.

Let

w = Mt =
at+ b

ct+ d

For w = 0, t = M−10, and for w = i∞, t = M−1i∞

dw =
a(ct+ d)− c(at+ b

(ct+ d)2
dt =

ad− bc
(ct+ d)2

dt =
1

(ct+ d)2
dt

rf (Mz) =

∫ M−1i∞

M−10

f(Mt)(Mt−Mz)k−2 1

(ct+ d)2
dt

=

∫ M−1i∞

M−10

f(Mt)(
at+ b

ct+ d
− az + b

cz + d
)k−2 1

(ct+ d)2
dt

=

∫ M−1i∞

M−10

f(Mt)(
t− z

(ct+ d)(cz + d))
)k−2 1

(ct+ d)2
dt

=

∫ M−1i∞

M−10

f(Mt)(
t− z

(ct+ d)(cz + d))
)k−2 1

(ct+ d)2
dt

=

∫ M−1i∞

M−10

(ct+ d)kf(t)(
t− z

(ct+ d)(cz + d))
)k−2 1

(ct+ d)2
dt

(cz + d)k−2rf (Mz) =

∫ M−1i∞

M−10

f(t)(t− z)k−2dt

rf |M(z) =

∫ M−1i∞

M−10

f(w)(w − z)k−2dw

Lemma 4.0.11. rf ∈ Yw.

Proof. It was shown that rf ∈ Vw (lemma 3.0.5). So we show that

rf |(1 + S) = rf |(1 + U + U2) = 0

S−1 =

 0 1

−1 0

 ; U−1 =

 0 1

−1 1

 and U−2 =

 −1 1

−1 0


rf (z) =

∫ i∞

0

f(w)(w − z)k−2dw
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rf |S(z) =

∫ S−1i∞

S−10

f(w)(w − z)k−2dw

rf |S(z) =

∫ 0

i∞
f(w)(w − z)k−2dw

Hence

rf (z) + rf (Sz) =

∫ i∞

0

f(w)(w − z)k−2dw +

∫ 0

i∞
f(w)(w − z)k−2dw = 0

Now we show that

rf (z) + rf |U + rf |U2 = 0

rf |U(z) =

∫ U−1i∞

U−10

f(w)(w − z)k−2dw =

∫ 0

1

f(w)(w − z)k−2dw

rf |U2(z) =

∫ U−2i∞

U−20

f(w)(w − z)k−2dw =

∫ 1

i∞
f(w)(w − z)k−2dw

Hence

rf (z) + rf |U + rf |U2 =

∫ i∞

0

f(w)(w − z)k−2dw +

∫ 0

1

f(w)(w − z)k−2dw +

∫ 1

i∞
f(w)(w − z)k−2dw

= 0

Thus

rf (z) ∈ Yw

According to the Eichler-Shimura theory, there is an isomorphism between the

space of cusp forms and that of odd period functions. Thus a cusp form is

uniquely determined by its odd period function. In this context,there would arise

the relation between the zeroes of cusp forms and that of period functions(also

known as period polynomials).According to Conrey, Farmer and Imamoglu, the
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odd period polynomial of a Hecke eigenform has simple zeroes at 0,±2 , double

zeroes at ±1, and zeroes as complex numbers on the unit circle.

Here we include the proof that the zeroes of the full period polynomial of a Hecke

cusp form are on the unit circle.

4.1 Inroduction to Period Polynomials

A (complex) polynomial P (z) =
∑d

i=0 aiz
i of degree d (ai ∈ C) is said to be

self-inversive if P (z) = czd P (1
z
) for some constant c. If P = P and c = 1, P (z) is

self-reciprocal.

Theorem 4.1.1. A necessary and sufficient condition for a polynomial to have all

its zeroes on the unit circle is it being self-inversive and its derivative having its

zeroes in the closed unit disc.

Theorem 4.1.2. Let g(z) be a non-zero complex polynomial of degree n with all

its zeroes in the closed unit disc. For m ≥ n, and c with |c| = 1, the self-inversive

polynomial P (c)(z) = zm−ng(z) + czng(1
z
) has it zeroes on the unit circle.

Proof. Let g∗(z) = zng(1
z
). Suppose all n zeroes of g(z) are in the open unit disc.

g(z) = (z − a1)(z − a2)....(z − an)
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with |a1|, |a2|, ..., |an| < 1. Then

g(
1

z
) = (

1

z
− a1)(

1

z
− a2).......(

1

z
− an)

The zeroes of g(1
z
) are 1

a1
, 1
a2
...... 1

an
whose modulus is greater than 1.

g∗(z) has all its zeroes in |z| > 1. Now zm−ng(z) has its m zeroes inside the open

unit disk.

Let us recall Rouche’s Theorem: If f and p are holomorphic functions inside and

on a simple closed curve C with |p(z)| < |f(z)| on C, then f and f + p have the

same number of zeroes inside C.

Although in the theorem stated, |c| = 1, we consider the two other cases(when

|c| < 1 and |c| > 1) to deduce what happens at the value 1.

Case I: |c| < 1, set f(z) = zm−ng(z) and p(z) = cg∗(z)

On C,( z = 1
z
)

|p(z)| = |cg∗(z)| < |g∗(z)| = |zng(1
z
)| = |g(z)| = |g(z)| = |g(z)| = |zm−ng(z)| =

|f(z)|

Now f(z) has its m zeroes inside the open unit disk and thus P (c)(z) has its m

zeroes inside as well.

Case II: |c| > 1, set p(z) = zm−ng(z) and f(z) = cg∗(z)

|p(z)| = |zm−ng(z)| = |g(z)| = |zng(1
z
)| = |zng(1

z
)| < |cg∗(z)| = |f(z)|

Now f(z) has its no zeroes inside the open unit disk and thus P (c)(z) has no zeroes

inside as well. Thus, all its zeroes are on |z| > 1

The zeroes of P c(z) are continuous functions of c, and hence the lie on the unit

circle for |c| = 1. Also this continuity leads to the same result if g is assumed to

59



have its zeroes in the closed unit disk. (Further details can be found in the paper

entitled ”Unimodularity of zeros of self-inversive polynomials” by M.Murty and

C.Smyth)

Given f a cusp form of weight k = w + 2 (f(z) =
∑∞

n=1 a(n)e2πinz), let L(f, s) be

its L-series.We have

rf (X) = −
w∑
n=0

w!

n!

L(f, w − n+ 1)

(2πi)w−n+1
Xn

= − w!

(2πi)w+1

w∑
n=0

L(f, w − n+ 1)
(2πiX)n

n!

Proof.

rf (X) =

∫ i∞

0

f(t)(t− x)wdx

=

∫ i∞

0

∞∑
l=1

a(l)e2πilt

w∑
n=0

Cw
n tw−n(−1)nxndt

Let b = −2πilt, then we have

rf (X) =

∫ ∞
0

∞∑
l=1

a(l)e−b
w∑
n=0

Cw
n bw−n(

1

−2πil
)w−n(−1)nxn

db

−2πil

= −(
1

2πi
)w−n+1

w∑
n=0

Cw
n

∞∑
l=1

a(l)

lw−n+1

∫ ∞
0

e−bbw−ndb xn

= −(
1

2πi
)w−n+1

w∑
n=0

Cw
n

∞∑
l=1

a(l)

lw−n+1
(w − n)!xn

= −
∞∑
n=0

w!

n!

L(f, w − n+ 1)

(2πi)w−n+1
Xn

= − w!

(2πi)w+1

w∑
n=0

L(f, w − n+ 1)
(2πiX)n

n!
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We normalize rf to deal with period polynomials of real coefficients

Pf (X) =
w∑
n=0

L(f, w − n+ 1)
(2πX)n

n!
=
−(2πi)w+1

w!
rf (

X

i
)

Lemma 4.1.3. Pf (X) is self-inversive.

Proof. We know that rf |1 + S = 0. Recall that

Pf (X) =
−(2πi)w+1

w!
rf (

X

i
)

Notice that

rf |S(
X

i
) = (

X

i
)wrf (

−1
X
i

)

= (
X

i
)wrf (

1

iX
)

= (
X

i
)wPf (

1

X
)

w!

−(2πi)w+1

Thus we get

Pf (X) =
−(2πi)w+1

w!
(
X

i
)wPf (

1

X
)

w!

(2πi)w+1

= −(
X

i
)wPf (

1

X
)

= ikXwPf (
1

X
)

Let

qf (X) =

w
2
−1∑

n=0

L(f, w − n+ 1)
(2πX)n

n!
+

1

2
L(f,

k

2
)
(2πX)

w
2

w
2

then

ikPf (X) = qf (X) + ikXwqf (
1

X
)
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Proof. We prove that

ikPf (X)− ikXwqf (
1

X
) = qf (X)

ik(
w∑
n=0

L(f, w − n+ 1)
(2πX)n

n!
−

w
2
−1∑

n=0

L(f, w − n+ 1)
(2π)n

n!
Xw−n − 1

2
L(f,

k

2
)
(2πX)

w
2

(w
2
)!

)

= ik(

w
2
−1∑

n=0

L(f, w − n+ 1)
(2πX)n

n!
+

1

2
L(f,

k

2
)
(2πX)

w
2

(w
2
)!

+

w∑
n=w

2
+1

L(f, w − n+ 1)
(2πX)n

n!
−

w
2
−1∑

n=0

L(f, w − n+ 1)
(2π)n

n!
)Xw−n)

Consider
w∑

n=w
2

+1

L(f, w − n+ 1)
(2πX)n

n!

For n > w
2
, we have

w − n+ 1 < w − w

2
+ 1

and thus

w − n+ 1 <
k

2

Hence we use the functional equation to get

w∑
n=w

2
+1

ik(2π)w−n+1L(f, n+1)Γ(n+1)
1

Γ(w − n+ 1)

1

(2π)n+1

(2πX)n

n!
=

w∑
n=w

2
+1

ik
(2π)w−n

(w − n)!
L(f, n+1)Xn

Let N = w − n, so we have

N=w
2
−1∑

N=0

ik
(2π)N

(N)!
L(f, w −N + 1)Xw−N
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ikPf (X)− ikXwqf (
1

X
) = ik(

w
2
−1∑

n=0

L(f, w − n+ 1)
(2πX)n

n!

+
1

2
L(f,

k

2
)
(2πX)

w
2

(w
2
)!

+

n=w
2
−1∑

n=0

L(f, w − n+ 1)
(2π)n

n!
Xw−n

−
w
2
−1∑

n=0

L(f, w − n+ 1)
(2π)n

n!
)Xw−n)

= qf (X)

Notice that rf (z0) = 0 if and only if

Pf (iz0) = −(2πi)w+1

w!
rf (

iz0

i
)

and |iz0| = |z0|.

Hence rf (X) has its zeroes on the unit circle if and only if Pf (X)(or ikPf (X)) has

its zeroes there as well.

By theorem 3.1.2, If qf (X) has all its zeroes inside the closed unit disk, ikPf (X)

would have all its zeroes on the unit circle, and so would rf (X).

4.2 Zeroes of Period Polynomials

We now show that the zeroes of the period polynomials lie on the unit circle.

Let

Tm(z) =
m∑
n=0

(2π)n

n!
zn

and

Hm(z) = zmTm(
1

z
) =

m∑
n=0

(2π)n

n!
zm−n
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P (c)
m (z) = zmHm(z) + cTm(z)

with |c| = 1

Theorem 4.2.1. For m ≥ 20, the zeroes of Hm(z) lie in the open unit disk, and

thus P
(c)
m has its zeroes on the unit circle.

Proof. Recall that

ex =
∞∑
n=0

xn

n!

f(z) = e2πz =
∞∑
n=0

(2π)n

n!
zn = Tm(z) +Rm(z)

f (m+1)(z) = (2π)m+1e2πz Notice

|e2πz| = |
∑∞

n=0
(2π)n

n!
zn| <

∑∞
n=0

(|2πz|)n
n!

= e|2πz|

|f (m+1)(z)| ≤ (2π)m+1e|2πz| = (2π)m+1e2π for |z| = 1

Hence |Rm(z)| ≤ (2π)m+1e2π

(m+1)!
|z|m+1 = (2π)m+1e2π

(m+1)!

|Rm(z)| ≤ 0.0007513 for m ≥ 25

For z = eiθ |e2πz| = |e2π(cosθ+isinθ)| = e2πcosθ ≥ e−2π ≥ 0.001867

Thus |Tm(z)| = |e2πz −Rm(z)| ≥ 0.001867− 0.0007513 = 0.001157

Thus we found a lower bound for Tm(z) on the circle, and this would be the lower

bound for Hm(z)

For m ≥ 25, Hm(z) can be written as

Hm(z) =
∑m

n=0
(2π)n

n!
zm−n =

∑25
n=0

(2π)n

n!
zm−n +

∑m
n=26

(2π)n

n!
zm−n∑25

n=0
(2π)n

n!
zm−25z25−n +

∑m
n=26

(2π)n

n!
zm−n

Let gm(z) =
∑m

n=26
(2π)n

n!
zm−n

For |z| = 1,
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we have |gm(z)| ≤
∑m

n=26
(2π)n

n!
≤
∑∞

n=26
(2π)n

n!
= e2π −H25(1) ≤ 0.000001823 <

|H25(z)| = |zm−25H25(z)|

Now gm(z) and zm−25H25(z) are holomorphic inside and on C and

|gm(z)| < |zm−25H25(z)| so zm−25H25(z) and gm(z) + zm−25H25(z) = Hm(z) have

the same number of zeroes inside C. PARI (as given in [1]) shows that H25(z) has

all its 25 roots inside the unit circle.Hence, zm−25H25(z) has all its m zeroes inside

C, and so does Hm(z) by Rouche’s theorem. Using PARI (as given in [1]) for

m ≥ 20 and m ≤ 24, the same result is reached. This proves (by Theorem 3.1.2)

that P c
m(z) has its zeroes on the unit circle.

Lemma 4.2.2. Let f ∈ Sk be a normalized Hecke eigenform and L(f, s) be its

L-function. Thus for Re(s) ≥ 3k
4

, |L(f, s)− 1| ≤ 5 ∗ 2−
k
4 and for Re(s) ≥ k

2
,

L(f, s) ≤ 1 + 2
√
klog(2k)

Theorem 4.2.3. If f ∈ Sk is a Hecke eigenform, then rf (x) has all its zeroes on

the unit circle

Proof. Note that rλf (X) = λrf (X) for λ ∈ C (Proof:

rλf (X) = − w!
(2πi)w+1

∑w
n=0 L(λf, w − n+ 1) (2πiX)n

n!

L(λf, w − n+ 1) = (2π)s L
∗(λf,s)
Γ(s)

= (2π)s

Γ(s)

∫∞
0

(λf)(iy)y
s

y
dy

= λ (2π)s

Γ(s)

∫∞
0
f(iy)y

s

y
dy = λ (2π)s

Γ(s)
L∗(f, s) So

rλf (X) = λ −w!
(2πi)w+1

∑w
n=0 L(λf, w − n+ 1) (2πiX)n

n!
)

So we can suppose that f is normalized without loss in generality(if not, let

λ = 1
a(1)

and rλf (X) = λrf (X) )

As noted earlier, we prove the roots of qf (x) are inside C.
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Let m = k
2
− 1 and |X| = 1 ( m = w+2

2
− 1 = w

2
))

Using Lemma 3.2.2, and on C

|Hm(X)− qf (X)| ≤
m−1∑
n=0

|L(f, k − n− 1)|(2π)n

n!
+

1

2
|L(f,

k

2
)|(2π)m

m!
+

m∑
n=0

(2π)n

n!

=
m−1∑
n=0

|L(f, k − n− 1)|(2π)n

n!
+

1

2
|L(f,

k

2
)|(2π)m

m!
+

m−1∑
n=0

(2π)n

n!
+

(2π)m

m!

≤
m−1∑
n=0

|L(f, k − n− 1)− 1|(2π)n

n!
+ |1−

L(f, k
2
)

2
|(2π)m

m!

To make use of the inequalities mentioned in Lemma 4.2.2, we split the series on

the value of bk
4
c

For n ≤ bk
4
c − 1

So k − n− 1 ≥ k − bk
4
c+ 1− 1 ≥ 3k

4

Thus

|Hm(X)− qf (X)| ≤
b k
4
c−1∑

n=0

5 ∗ 2−
k
4

(2π)n

n!
+

m−1∑
n=b k

4
c

|L(f, k − n− 1)− 1|(2π)n

n!
+ |1−

L(f, k
2
)

2
|(2π)m

m!

=

b k
4
c−1∑

n=0

5 ∗ 2−
k
4

(2π)n

n!
+

m−1∑
n=b k

4
c

|L(f, k − n− 1)− 1|(2π)n

n!
+

|L(f,
k

2
)− 1|(2π)m

m!
+ |L(f,

k

2
)− 1|(2π)m

m!
+ |1−

L(f, k
2
)

2
|(2π)m

m!

|Hm(X)− qf (X)| ≤
b k
4
c−1∑

n=0

5 ∗ 2−
k
4

(2π)n

n!
+

m∑
n=b k

4
c

(1 + |L(f, k − n− 1)|)(2π)n

n!

for bk
4
c ≤ n ≤ m

for −m ≤ −n ≤ −bk
4
c

for −m+ k − 1 ≤ k − n− 1 ≤ −bk
4
c+ k − 1
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For |X| = 1 and k ≥ 124

|Hm(X)− qf (X)| ≤
∞∑
n=0

5 ∗ 2−
k
4

(2π)n

n!
+ (1 + 1 + 2

√
klog2k)

∞∑
n=b k

4
c

(2π)n

n!

= 5 ∗ 2
−k
4 .e2π + (2 + 2

√
klog(2k))Rb k

4
c(1)

Rb k
4
c(z) ≤ (2π)b

k
4
c

bk
4
c!

e2π

Also, for k ≥ 124

(2 + 2
√
klog2k)e2π (2π)b

k
4 c

b k
4
c! ≤ 0.000045

5e2π2−
k
4 ≤ 0.0000025

|Hm(X)− qf (X)| < |Hm(X)| (using theorem 4.2.1) ,both are holomorphic, Hm(z)

has all its m zeroes inside the circle so qf (X) has its m zeroes inside the circle .

For 12 ≤ k ≤ 122, results can be verified using PARI(as given in [1] ). The result

this is achieved for all k.
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