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ABSTRACT

This thesis is an attempt at solving one of the outstanding pre-
blems of three=dimensional elasticity through a novel approach. The
problem 1s that of a concentrated forece in gquarter space with a boundary
free from stress., The approach is that of a double superposition based
on the known solutions of the two problems of half space with the con=
centrated force perpendicular or parallel to the plane boundary as well
as the related solutions of ether muclel of strain in half space,

Assume that the force is acting at P and that 3102 is the
combination of muelel required at P102, mirror image of P with respect
to one of the two plane boundaries, in order to eliminate stress on this
plane., Assume further that Efg: is the union of combinations of nuelei
required at Ppoz, mirror image of Py, with respect to the second plane
boundary, in order to eliminate stress on this plane due to 202+ Now,

20
proceed in the opposite order and assume that 3n1 and 22032 are the

2
combination and unien of ecombinations corresponding to 3102 and zggz
202
respectively, If z%d! i equivalent to z:g; then the union of the

force, 2 1095, Z54q, and %g will represent the solution to the
problem,

However, the two unions of combinations did not turn out to
be equivalent, and this meens that this approach has not lead teo the
solution of this problem, It is hoped that this negative result will

throw some light on future attempts at the solutions of this problem,

(iv) .
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CHAPTER I

THE PROBLEM AND ITS SCOPE

1) Introduction

The theory of elasticity is concerned with the study of the
response of elastic bodies to the action of forces. A body is elastie
if it possesses the property of recovering its original shape when the
forces céusing the deformations are removed, This property is shared
by all substances provided their deformations do not exceed certain
limits; it is characterized mathematically by certain functional
relationships connecting forces and deformations (displacements){&f:

Using Galerkin vector notation the fundamental equation of

elasticity can be written as :
6(a+ 5L grad aiv) y 2 0 (1]

where G 1s the modulus of elastieity in shear, v is the Polssonts ratio,
4 1s the Laplace operator and Beiutj Uy * K u, is the displacement
vector. The body forces are neglected in [1] and in this thesis,
Equation [1] 1s an equilibrium equation stating the conditien
that the resultant forece on any element of the elastie solid is zero,
It makes use of the generalized Hooke's laws that express the relation=-
ships between the stresses and displacements in a perfectly elastio
1sotropiec solid (2),

N
Numbers in parantheses refer to Bibliography at the end of the thesis.
-]l -
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Consequently, solving a problem in elasticity reduces to finding
a vector function (or its scalar components) which satisfies [ 1] at
every point in the solid and which produces the desired conditions
on the boundary, The problem isafirst boundary-value if the esondi-
tions are on the displacements, a second boundary-value if the
conditions are on the stresses, andamixed boundary=value if some

conditions are on the displacements and some on the stresses,

2) The Problem:
This thesis is an attempt at solving the problem of quarter~space

under the effect of a concentrated foree, Referring to the eartesian

coordinate system XYz, a quarter-space is chosen such that x> 0

and 2> 0, The concentrated force P is assumed to act at (a,0,¢),

and the boundary conditions are such that the stresses Ope? ©

xy
and T%g 1 X 20 and O Oyz and 9, 0n 3z =0 vanish; i,e,,

xz?
the boundaries x = 0and z = 0 are free from stress., So, this is
a second boundary=value problem,

This problem has resisted solution in spite of +he different
approaches that have been attempted, The approach chosen in thig
thesls, that of nucle! of strain, looks promising because of its
straight-fordwardness, However, thie approach, as such, proved to be
fruitless, and the problem remains unsolved, Nevertheless, it is hoped
that the negative result reported here will mark 80me progress towards
solving the problem through providing a definitive analysis of one
promising approach,
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3) Symbols Used in This Thesis:

G

v

E

Fxs Py, Fy
Bxs By, By, 3
4

Uy, Uy, U,
cxzvoyyvoaz
O xys Oxz» Oya

A

ﬁx, éy’ 6:,0.- etC-’

S x? J@,'/;,... ete,,

34
(X’Y:ﬂ)

R

X, Y, 2z, C
sz 6x%ﬁ /;C

(x'rY'sz')
Ry %
Zijk’cijk’ ) etc.,

120 if xt
a1l x!

- -1 x'

= a =1 y'

Modulus of elastieity in shear,

Polsson's ratio,

Galerkin vector,

Components of Galerkin; vector,

Papkoviteh functions,

Displacement vector,

Components of displacement vector,

Normal components of stress,

Shear components of stress,

Laplace operator,

Partial derivatives with respect to subseript
variable,

Integration with reabect to subseript variable.
Potential function for nuclei,

Arbitrary point of elastie solid,

Distance from origin to (x,7,8)

Single forces in Xy¥sZ=directions and center
of compression,

Nuclei derived from single force and center
of compression by indieated operations,
Polnt at which nucleus is located,

Distance from (x',y',2') to (x,7,8),

‘Nucleus located at (x?,y?z!) where;

0 J=0 ify'

0 kg0 if 3t

(1]
o

11

b =1 z'

-a 2z -l y' = b



R.02

13(¢)

112 (%)

102

201

202
102

202

2
201

l = gsolution

|| = solution

P
8 1(1=y)

n‘&-

VaYLyEQ (z +!:Tz.

-\/(X +!)_2_+y7+;2n

e el |
R(R*+t)

T-—-]-'_':-—t)—- . The following relations hold
R

55 I™(s) w -3 " 2(2) ne 3,57

6,I1%(z) = = I (a) n =z 3,57
Combination of nuclei at (a,0,=c) such that

E u t - 0.
102 %101 make free boundary at z =

Combination of nuclei at (=a,0,e) such that

Z v - 0,
201 2101 make free boundary at x = 0

Combination of nuclei at (-a,0,=c) such that

< U
2 Z ak bound t x=0
102 102 make free boundary at x = 0,

Combinatioaogf nuclei at (~a,0,c) such that

U make free boundary at z = 0,
201 2102 . 5

Mindlin's solution for a forece perpendicular
to the boundary in half=space,
Mindlin's solution for a forse parallel teo

the boundary in half-space,

force adjustment so that the solution represents

a force of magnitude P, This ad justment factor

is omitted from all the tables in the thesis,



CHAPTER IT

PREVIOUS WORK

1) Historieal Note:

Lord Kelvin, in 18,8, was the first to give the displacements
and stresses at any poiht of a homogeneous isotropic solid of indefinite
extent resulting from the application of a concentrated force at a
point inside the solid. In 1936, Mindlin solved the problem of a
concentrated foree inside the semi-infinite solid making use of Kelvin's
solution, Then, Mindlin in 1953, again, using two previouscly unrelated
techniques: Papkoviteh funetions and Green's analysis, discovered a
new approach suitable for the problem of a concentrated force in the
semi-infinite solid, The Papkeviteh funetions approach has been used
for concentrated forece problems since that time, Shortly arterra%ﬂs;in'1955,
1. Rongved derived the solution for a force in the interior of a solid
of semi«infinite extent with fixed plane boundary, Furthermore, the
power of the approach initiated by Mindlin was shown in 1956 when
W. Hijab solved mixed boundary problems and problems for bodies of come
posite boundaries (1,2),

2) Nuclei of Strain:
a) General Statement;-
By differentiation, integration or superposition other solutions
Man  be derived from Kelvin's solution, This set of solutions obtained

is ealled nuelel of strain; and it is found to be useful in solving many

-5 a
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interesting problems of concentrated force in the interior of = solid.
¥indlin's solution for semi-infinite solid, however, occupies the same
position as that of Kelvin's, The nuclei derived from it by differen=
tiation, integration or superpositioen satisfy the condition of vanishing
stresses on a plane boundary, Hence, in solving a problem under the
condition of zero stresses on at least one plane, a part of the condi=-
tions 1s satisfied (3).

Realizing the importance of such tools, Mindlin and Cheng
caleulated forty nuclei of the semi-infinite solid employing the
methods of Love, and reported their results in terms of Galerkin
vector stress functions (3),

The displacement vector u is given in terms of Galerkin
vector F by:

2Gu 2 2(1av)AF - grad div F [2]

where F = 1 F_ + J Fy *kF, 1is the Galerkin vector (3).
In order that the displacement vector derived *rom{ 2] should
satisfy (1], the Galerkin veector should be biharmonie; i,e,, AAE = O,
Lastly, the relationship between the Galerkin veetor and

Papkoviteh functions is given by Mindlin as:

1Byt By tkB = X 4 [3)

P2 atvy-p.s p

where R = 1 x + jy + k z 1is the radius vector (2)

Also, the following relationships hold:

GOAS =R.P



where B = 1 B, * j By *k B, 1s Papkoviteh function and P is the body
force vector (which is assumed to be zero in this thesis). The displa-

cement vector is given in terms of Papkovitech functions by the following

formalas

BzB- oy 4 @.E0) .

b) Notation for Nuclel of Strain:

The basls nuclei are the single forces and center of compression.
Other nueclel are derived from these by differentiation and integration,
Consequently, the following notation is followed:
X for single force im x-direction,
Y for single force in yedirection,
Z  for single foree in z=direction, and
C for center of compression (or dilatation).
As for the derived nuclei,the notation will be, by prefixing
to the letter of the original nucleus. the operators encountered in
derivation, Hence,0 will be used to denote partial differentiation
with subseripts indieating: (1) the variables with respect to whiéh
the operation is performed and (2) the number of such differentiations,
Therefore, double forces will be denoted as:
O, 2, for double force in z-direction, and
ﬁx Z, for double. force in z-direction with moment about
y-axis,
In contrast to the above, /' , the integral sign, will be used
and similarly subseripted to indicate the variables and number of
integrations, Here are two examples:

«/s 8x 2, aline, along the negative z-axis, of double forces



in the z-direetion with moment about the y-axis,

- /% € , a line of centers of compression along the negative
x=axis,

The minus sign appears so that the operation of differentimtion
of an Integral will produce the integrand; where as the integrals
resulting from the derivation of nuclel produece upon differentiation
the negative of the integrand. (2)

Such abbreviated notation is acceptable because in handling
these nuclei of strain, one deals, in fact, with a clearly defined set
of functions; and the results of the differentiation or integration
are unigue,

e) Two Nuclei of Strain:

To clarify the fore-mentioned notions, the derivation of displa-
cements and stresses derived from X and C is written. What follows
is a synopsis of the work reported in Lesely'!s thesis,

1) Nuclei derived from X:

Displacements and stresses of X are derived from the Galerkin
vector F w 1 R. Then, for any nucleus derived from X, its vector form
is found by subjecting the above vector to the same operations of
differentiation or integration as were performed on the displacements
and stresses of X in the derivation, Therefore, it will be of the form
FazlP,.

The components of displacements Ux, Uy, uz are computed using [2 ]
and the stresses O yy, Oyy, Oy,, O%ys “y3 2 94, follow from these

by Hooke's Low.



They are:

20u, 2 2(1 -v) AF, - Oy Py

2 Guy = 'ﬁnyx

2 Guy = «0 5 Py
G"uz (2 - v)axﬁ Py -0 i Py
G”:vaxarx-ﬁml‘x
Ogy = VOx AF, = Osex T
Ty (L =v) O amy - 5. 1y
qﬂ:' 'Gyzxrx

Ugs & (Le V)6 5 AFy = Opyy Fy

11) Buclei derived from C3

Let the vector for C be:

L@ )

Er- dow

alx

FIETK

=< J [¥)

Then F is the gradient of a scalar function:

g "'1%'*3 = grad R.

M
=] )

As a result, the vector for any nucleus derived from C is found
by subjecting the vector for C to the same operations as performed on
the displacements and stresses in derivation; this veetor, however, will

be the gradient of a funetion found by doing the same on R,
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Denoting this latter function by F., then

I a"- _.1___ grad F-
2(1-2v)

Therefore, by substituting back in [Z_Ithe displacement vector

in terms of F is

1

—————— [ 2(lay) A = grad div ad ¥,
2(1=2v) [ o ler

20u = =

Since div. grad A , then the equation reduces to

2012 - grad (307,

whave (-12- AT) is called the potential funetion,

As for displacements and stresses they will be given by:

26uy = - 5, AF)
1

2 Guy = = Sy(34 F)

20u; = = 5,2 4w

§,., = = 6xx(% A F)

T, = - su(% A F)

ﬁ]
"

= S;y(% AT

- 8433 A F)

Pa
]
"

=)
n

- Su(% AF).
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d) The Galerkin vectors of some nuclei:

This seetion stands ss a reference table to compare the nuclei

of strain used in this thesis to their corresponding Galerkin vectors,

Nueleus Galerking Vector
X iR
Y JR 8ingle force
Z kR
S ¢ i X
x -2
5 Y § % Double force
ﬁz Z k %
Oy X i 111
6, X i %
B T J % Double force
k. 3 with moment
7 p) 2
ﬁx Z k %
6,v Z k g
2
1 z
zZ x - (R - Rj)
5] X i « X2
Xz X E}
: 2
5 2 k (1 - 22
4 E (R 33)



_/;f)xx
Jx & X
/x B35 X

fxx Gszz

/2 % C
/xxézc

/xx 42 C

_12-

ix log(R+ 2z)
iz log(R + x)
i (log(R+ x) «+ "—E—-*—-)
= R(R + x)
k -
= R+ x
'k log(R+ z) g 1 log(R + x)
xd o4 2
=== RRT %
1 x
=2 k
igek R(R+ z)
{ =X
- 3
k 2%

k [log(R +3) =R

=

log(R + z)

1=

[x log(R+ x) = R]




CHAPTER III

METHOD OF APPROACH

The approach attempted ig that of nuclei of strain, The muclei
of strain in the semi-infinite solid were caleulated by Mindlin and
Cheng in 1950, The halfespace they considered is defined by z > 0,
Point nuclei are at (0,0,c) and one end of each line nueleus is at
the seme point. The forty nuclei reported by them have the property of
vanishing stresses at the plane boundary z g 0. (3) TIllustrations

1 and 2 page 21 show the halfegpace and the quarter=gpace

respectively.
I
202 : 2’91
202 z]ul | I
[L->3 A l Z‘lo:_
(-I (-] (,‘ ] ln-.u,-d
I
I
I
|
|
_______________ > x
2"&[ ('&,o.c) [ (O.,Q,c_]
ZZ Zlo1
ol
rigurt 1 : Oum-bu. SFGCQ \’z nd Nu’g!‘_‘ Lecak.ms

-13-
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In order that the above mentioned nuclei can be used, the
quarter-space shonld be looked upon as cases of halfespace.Figure 1
shows the quarter-space defined by x> 0 and z >0.Z157 15 a single
force in z=direction located at (a,0,c); hence, it is perpendicular
to the boundary z = 0 and parallel to the boundary x = 0, Considering,
firstl, the half-space defined by z~ 0, then 1 -solution of Mindlin
will give the combination of nuclei, denoted by 2;.,,, located at
(a,0,~¢) so that z = O is free from stress due to the action of
Zy0p 204 2402+ However, 210y and 2102 don't make free boundary at
x 2 0, To counteract such result,then, for each member of 3102 the
corresponding combination of nuclei loeated at (-a,0,ec) is written such
that the member of 2102 together with the corresponding combination

make free boundary at x # O, The combination of all such combinations

is denoted by 21202 .

2

Sinilar];? employing | | =solution of Mindlin, 2201 will denote
the combination of nuclei located at (-a,0,e¢) so that 2401 and 2201
make free boundary at x = O in the half-space defined by x> 0,
Again, 714y and 2,59 will introduce non-vanishing stresses at z = O,
So for each member of 3201, the corresponding combination of nuelei
located at (=a,0,-c) is written in order that this member together with
1ts corresponding combination meke free boundary at z =0, 2 will

201
denote the combination of all such combinations,
5 202 and Z 202
102 20
will be complete if these two combinations come out to be the same,

Having done this, are compared, The solutien
Jince:'. some muclei can be written as the sum of others, they are not .

Hence, checking the boundary conditions is inevitable which is dene in
chapter V,
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The following table serves as a summary of the approach and the
plan of work. It gives the nucleil with their corresponding combinations
and the eonditions of stresses on plane boundaries,

TABLE 1

NUCLEI AND STRESSES ON THE BOUNDARIES

Nuecleus or Combinations of Nuclei Stresses at z = 0O Stresses at x = 0

7101 /0 40
u

3101 Zloz(l‘lindlin J_ =-golution) =0 -0
u

%01 Zopy (Mndlin | ksolution) £0 =0
u 202 4

) 0 =0

“102 %102 :

" u 2202

Y201 ‘201 =0 £0

u U v 202
2101 %102 201 01
(V] u v 202
Zyo1 %102 201 02 - =0

in
(o]
1
]



CHAPTER IV

REPORT OF THE WORK

This chapter includes the main body of the thesis, The problem
stated again is thé quarter space defined by x >0 and z > 0 and’, the
force P acts at (a,0,e); the boundary conditions to be satisfied are:

Oy -_-oxy.on.o ) onngand(C‘n-_-Uyz = 0,,200mz=:0,

202
1) Muecleus 7107 8nd Combinations 3102 and 21102

For a force in z-direction, Mindlin's 1l ~selution will give the
following combination of nuclei located at (a,0,c) and (a,05¢) so that

z 20 is free:
2101"' (3"47)3102 - 2e 6i ZIO: - l.c (1"27) 0102*'4(1-7) -/; 01024- 232550102‘

However, this combination introduces non-vanishing stresses at
x = 0. To account for this, for each term of the nuclei situated at
(a,O,-c) the corresponding combination loecated at (-a,O,-c) is written.
This eorresponding combination to-gether with its initial term produce
free boundary at x = 0. These combinations are taken from Mindlin (3)
with suitable interpolation since the foree, now,becomes parallel to

the boundary plane x = 0,

Nucleus at (a,0,=c) Corresponding Combination at (=a,0,=c)
so that x = 0 is free

-—

282 8, Conpt 4(1=7) (1.2v)/, 8 _ Copo

-16.
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5, 2102 8 Zyo+28 8, Xny +2(1=2v) /.8 ,, Xy, =
2026 Cop+ 4(1=v) (1=2v)/ L 6, €.,
C102 (14v) Cpyp + 2 8y Xpgy = 28 8y Coyy
/2 C102 (1-4,‘)/. Conp = 22/, 8 Coyr+ 2./, O) Xonp
& 5 C202 (1=4v) 6, Copp = 2884, Conp+ 2 By Xpgoe

202
2) WNueleus Zyp1 and Combinations Ezo;’"d Z 201

The forece P, now, is parallel to the boundary x = 0, To
make x = O free, then Mindlin's || =golution will be applied, This

gives nmuclei at (a,0,¢) and at (=a,0,e), It is:
. 2
2901 %201 t220 , Xooy+2(12v) ./, 8, Xogy - 2270, @y

+ 4(1ev) (1=2v) / wx 8z Ca01°

Again, this combination intreduces non=vanishing stresses at
z = 0, So, each element of the combination located at (=a,0,=c) |
is taken, and for it the corresponding combination of muclei located
at (=a,0,=c) is written so that z = 0 is free,
Nucleus at (-a,0,¢) Corresponding combination at (=a,0,=c) so that
z =0 is free

Zo01 (324v) 205 = 268 , Zpy, = 4e(1e2v)Cop,
2
+ 4(1=v) (1=2v) /', Cppp+ 202 8 Cop
8, Yo =04 Xapathe Oy Conp+ 228 o,

“4(1=vY (1=2v)/, 8 Cpp =2¢ 8, 2,0 =4(1=v) 8 7,
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- + 2 - - -
fx 8, o0y fx os S +4e c202 2e cs! cm2 4(1ev) (1e2v) f‘cmz

- 2¢ 6; 2202 « 4(1=y) za02

238

+ -
5: 0 205“ C202 Z%Z 2202

201 (1+ 4v) 6’ c

202

/ xx 84 Com (4v) /8 €y, *2e/ 8, Cpy=2 VLIS W

3) Comparison of Nuclei
202

Having written all the entries of the combinations 2 and
202 102
2201 one needs to compare them, The following table provides such a
comparison, The nucleus is written in the left column and the coefficients
202 202

of that nucleus in 3102 and Z 201 T° written to the right of it,

It is clear from the table that all the nuclei except one
(/ s O 0202) have unequal coefficients, On the other hand, the
coefficients of the nuclei: 6“ 0202, Gn Copzs ./; Cagps and
/- = 6“ 0202 differ only in sign. Hence, it could be easily con-
cluded that the solutien of the problem seems not to be eomplete,
The follewing chapter provides for the final checking whether the

boundary conditions are sAtisfied.



TABLE 2

COMPARISON OF THE COEFFICIENTS OF NUCLEI IN 2202 AND 2 e
102 201

Nucleus Coefficients of the Nucleus in E:l',g: Coefficients in 3:;2
7202 3=Lv 3w4v =8 (1~v) (1=2v)
6, Za02 =2¢ w2c,=he(1l=2v)

8y Z202 -8a(lev)

622 2202 4a?

0 ,x 2202 ~lac

J xx B2z 2202 =8(1=v) (1=2v)

6 5 X202 2a(3=4v) -2a

852 X202 =4ac

5, X2 -8c(1=2v)

/455 X202 8(1av) (1=2v)

/%645 X202 2(1=v) (3=4v) «2(1=2v)

/x 625 X202 =4e(1=2v)

0 xz X202 he?

Con2 «4e(1=2v) (1=4v) =4e(1e2v) ,Bc(1e2v)
64 C202 «282(3=4v) ,2¢%(1=4v) 202, 4e2(1=2v) ,=2a2(1: 4v)
642 C202 4a’e "4!20
64 Cono 8ac (1-2v) Bac

19 a



5 xs 0202

/-I c202

/”55 x c202
fxx 8, 0202

fxxﬁzz C202

= 1‘502

4(1=v) (L=2v) (1=4v)

=88 (1=v) (1=2v)

4(1av) (1=2v) (3-4v)

=8¢ (1ev) (1-2v)

Lac?

4(1ev) (1=2v),
-8(1=v) (1=2v) (1=2v)

wa(lev) (1=2v)

4(1ev) (1=2v) (1 - 4v)

8e(l=v) (1=2v)
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CHAPTER V

STRESSES ON THE BOUNDARIES

The coefficlients of nuclei in 2202 and 2202 are not the
102 201
same, As a last resort, the stresses on the boundaries x = O and

z = 0 have to be checked, It iz eclear from the table at the end of

202
Chapter III that at z = O the stresses due to Zlolu 2;201"2‘1052102

have to be computed., Since Zml\l 2102 make free boundary at z = O

then the stresses due to 2201“2‘1285 , only, need to be written,

v 3 v >, 202
101 102 Z‘201 apy Meve Yo be

computed, But Zmlu 2-201 make free boundary at x = O, Then, the

At x = 0 the stresses due toZ

stresses due to 2102u 2 §g§ y only, need to be written.

The tables are arranged as follows: each component of the stress
function is written to the left of the page and to its right the coeffi=-
clents of that component. The stress functions for most of the nuclei
“are derived by the author, For reference, they were put in the
Appendix,

1) Boundary z = O

At this plane boundary there are three components of stress; one

is normal « gg? 20d the other two are shear v _ in x-direction and

G’n in y-direetion along the plane z gz 0,

a) G-xz
; =2(1=2v) (3=4v) =8(1ev) (1=2v) =2(1-2v)
R20
"; a =(1=2v) (3=4v) + 2§1-2v) (3=4v) +8(1=2v) (1+ 2v) (1ev)+ 4(1av) (1=2v) (7.4v)
le "‘(1"2') l

- 22 -



n23-

a?(x + _a) 6(3=Lv) + 6

25
20.
egi 6(1=2v) (3=4v) =36 (1=2v)=24(1=2y) + 12+ 6(1=2v)
R
A(x + a) IS“' =3(3=4v)+ 6(1+ 2v)=6(1=2v) (3=4v) + 36(1=2v) =12(1=2v) =3
R
20, “6(1=2v).
+24(1=2v) (14 2v) +12(1=2v) (1=iv) =6(1=Ly)
alx xa) . 6(3a4v)+ 24(1=v) (1=2v)
R30.
xt 8 Lp(1ew) (1-2v)
R20.
ag" 60 (1~2v) =60
R20,
gﬂy =30-60(1=2v) + 60(1 + 2v) + 30(1=4v)
R,
2%%(xta)  .30(3-4v) +180 - %
R2o.

2 2
&%)— 30(3=4v) = 180 + 120(1=2v) = 60 + 20
R2o.

(x+ a)2 60 - 120(1-2v)

LY
lﬂ!:t_gg 420 + 420
Rgo.
$cl*!x+ 5_13 _420
R.

At 3
c[:-l- a) 420



13(1 4 l)

e? I7(x + a)

et 1(x + a)

- 2l =

w4 (1=v) (1=2v) (3=4v) +4(1=v) (1=2v) (3=4v) + 4(1=v) (1=2v)
w/(ley) (1=2v) = O
4(1=v) (1=2v) (3=4v) =24(1=v) (1=2v) =4 (1=v) (1=2v) (3=4v)
+ 24(12v) (1=2v) =4 (Lov) (1=2v) + 4(1wy) (1=2v) = O
8(1ev) (1=2v) «8(lev) (1=2v) = O
Sy
«(12v) (3=4v) +2(1=2v) (3=4v) + 8(1av) (1=2v) + 4(1=v) (1=2v) (1=4v)

«(1=2v) +2(1=2v)

6(3=4v) + 6

=3(3=4v) + 6(1 +2v) =6 (1=2v) (3=4v) + 36(1=2v)=12
+12(1=2v) (1=iv)=3=6(1=2v)

wb(1miv) + 24 (1=2v)

=6(3=4y) +24(1ay) (1=2v) = 6

=24 (1=v) (1=2v)

30(3<4v) - 180 « 30

30260 (1=2v) + 60+ 30 (1=4v)

30(3=4v) = 180 + 120(1=2v) = 60 + 0

60 = 120(1=2v)



9
RZO.

yIIs(x + a)

2

et 11%(x + a)

c“y II7(x+ a)

- 25 =

420 + A20

=4 (1av) (1=2v) (3=4v) = 4(1=v)(1-2v)
4(1ev) (1=2v) (3=4v) = 24(1ev) (1=2v) + 4(1=v) (1=2v)

24 (1=v) (1=2v)

Uzs

«(1=2v) (3miv) + 2(1=2v) + 2(1=2v) (3=4v) (3=2v) =12(1a2y) (3=2v)

+ (1-2v)

«4(1=2v) (1=4v) + 4(1ev) (1=2v) (1=4v) +16(1av) (1=2v)
«8(122y) (1=2v) =2(1=2v) (3=2v)

=3(3=4v) +12(1+ v) =6 (1a2y) (3=4v) +24(1=2v) (3=v) =12(3=2v) =3
4(1=2v) (1=4v) =18(1ely) + 4B(1=2v) + 6(1=2v)

18(3=4v) = 36 - 18
=6(32v) (3m4v) +12(3=2v) «24(1=2v) + 24(1=v) (1=2v) +6(3=2v)

=24 (1ev) (1=2v) + 24(1=2v) (1=2v)

«30 = 60(1=2v)+ 60 +30(1-I.v) -0



a” o «30(3=4v) + 360 + 0
ac3(x+ a) 30(3=4v) = 120(3=4v) +120(1=2v) = 180 = 30
i(,x*#l 60(3=2v) = 120(1=2v)
geS!x-r a) 420 + 420
n
B «420

05§x+ a}z <420
R

(x+ a) 8(1=v) (1=2v) (1 * 2v)

(x + a)z Is(x+ a) =16v(1lev) (1=2v)

eIT (x + a) «12(1ev) (1=2v) (3=4v) + 24(1=v) (1=2v) + 12(1=v) (1=2v)
117 (x + a) 4(1=v) (1-2v) (3=4v) =48(Lev) (1e2v) =i (1=v) (1=2y)
STI9(x + a) 8(1ev) (1=2v)

2) Boundary x g0

The normal stress at this boundary is O ye? whereas o __ and0,,

Xy
are shesr components in y and z directions respectively,

a) Txs

=(1=2v) (3=4v) +8(1av) (1=2v) (1=2v) +2(1-2v)=2(1=2v)
=4(1ev) (122v) (1=4v) «8(1=v) (1=2v) B(1ev) (1=2v)+(1=2v) (3=4v)
=4, (1ev) (1=2v)



-6(3"A") - 12-.- 6

«12(1 +2v) + A+ 6(1 4 4v) + 24(1=y) (1=2v) =24(1=v) (1=2v) = O

6(1 +2v) (3=49)=12(1=2v) + 12(1+ 2v)=24=6(1 +2v)=12(1=2v)

=3(3=4v) +24(1=v) (1=2v) =6(1=2v) + 6(1=2v) + 24(1=v)+3(3=4v)

=30(3=4v) = 60 + 30

120(2 + v) = 30 = 30(1+ 4v) = 120(1ev)

30(3=4v) + 60 = 30

=180 = 60(1+ 2v) + 120

=420

=420

420 & 420

«4(1ev) (122v) 4 (1ev) (122v) (14 4v) + 8(1=v) (1=2v) (1+2v)



(z + e)? Is(a)

e(z + ¢)I(a)

c(z + ¢) 317(a)

(z + )41 (a)

02

azc;y(a . 012

Ro2

a’ey(z+c)?

5
%02

4(1=v) (1=2v) + 4(1=v) (1=2v) (14 4v)=16(1=v) (1=2v) (2+ v)
24,(1=v) (1=2v)

«8(1=v) (1-2v)
8(1=v) (1=2v)

REs

=3(3=4v) + 2(1av) (1=2v) «6(1=2v) + 6(1=2v) + 24(1=v) (1=2v)
+3(3=4v)

6(3alv)=12(1a2y) +12 = 24 = 6 = 12

=30(3=4v) = 60 + 30

180 = 30 = 30(1+4v) = 120(1ev) = 0

30(3=4v) + 60 = 30

=50 =« 60 + 120 = O

-4m

420 + 420



y(z 4 ¢) To(a)  4(1ev) (1=2v) 4 4(1ew) (1=2v) (1 +2v) =24(1=v) (1=2v)
ay T(z+ €)  =4(1av) (1=2v) (1=4v) 8(1=v) (1=2v) =4 (1=v) (1=2v)

oy T°(a) 8(1=v) (1-2v)

ey(z + €)%17(a) =8(1=v) (1-2v)

a’y 17(a) 8(1ev) (1=2v)

y(z+¢)°17(z+¢) 8(1av) (1=2v)

e) G'-n

; «2(1=2v) (3=4v )+ 4(1=2v) + 8(1av) (12v) =2(1=2v) =4 (1=2v)

.02
z ;_30;_ (L=2v) (3=4v) =8(1av) (1=2v) (1=2v) + 2(1=2v) (3=4v)

s + 4(1av) (1=2v) (14 4v) +(1=2v) (3=4v)
az};z 6(3=47) =12(1=2v) +12 +12(3=2v) =724 6 +12(1=2v)

2
21 =3(3=4v) + 24(1ev) (1=2v) =36(1=2v) =6(1=2v) + 6(1=2v)+6(1 + 4v)
%02

=3(3=4v) + 24(1=v) (3=2v)
2
ﬂlgi_“»‘)_ 6(1=2v) (3=4v)=24(1ay) (1=2v) + 6(1-2v) = O

2

s_(%+_ql “6(3=ldv) = 6

euz z+ @ 2

ca~f{at o)"  .30(3e4v) = 60 = 44(3-2v) =
%{;: Q2 go(1e2v)



(2 + o)

a2 T(z + o)
ok t7(s & 4)
(2 + 0)17(a)
(z + ¢)317(a)
(z + ¢)TT7(a)

(z+ e) II'?(a)

180 = 30 = 30(1+ 4v) = 120(1=v)

30(3=4v) + 180+ 30

=50 + 120

420 + 420

4(1=v) (12v) (1=4v) = 4(1ev) (1=2v)

=4 (1ev) (1=2v) (1=4v) #24(1=y) (1=2v) + 4(1ev) (1=2v)
8(1ley) (1-2v)

«24(1=v) (1=2v)
8(1-v) (1~2v)

=48v(1ev) (1=2v)

«16v(1=2v)



CONCLUSION

The stresses on the plane boundaries do not vanish though most
of the components vanish along y-axis; i.e. for x 2 2 « 0. Again, the
problem resisted soltuion., The nmuclel of strain approach, then, is
not adequate flor solving this problem, The approach is =0 limited and
1s not deep enough, hence the result is little surprising. Such
negative result indicates, plainly, that the problem is more deep:-
than it may be though of at the first sight., It calls for deeper
analysis and a stronger approach, A researcher who is interested in
contemplating this quarter-space problem shonld set himself, first, to
its intrigning nature and, second, equip himself with more analytie
tools, If he wishes to continue with the muclei of strain epproach,
then it is necessary to use additional techniques, May be while
developing such techniques and applying them he will find that
the computing machines will relieve him from spending much time and

effort on wendlonous drudgery,
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APPENDIX

TABLES OF STRESS FUNCTIONS

For reference, the tables of stress functions of the nuclei
that are enountered are written. The nuclel are assumed to act at
(-a,0,¢) and the stresses are given for any point in the solid. A

factor of —EF ___ is omitted all through. R, here, stands for Ry,

8 T (1ley)
=\i= - + 4 2
Z a0 Sgx 2 =(1=2v) (x + &) 2'113: 3(x GRL% e)
o = =3y(x s+ a)(z + e)
i 5
R
T - L(lﬂ';ll - M
yz © n3 RS
it (Q=2v)(z + &) . 3(x+ 8)%(z+ o)
= Rr3 RS
Ty “(1=2v)(z + ) . 3(z+ €)?

R RS

S, 7 e g23(1+2v)(x»r a)(z+e) 15(x+ a)(z+e)3
N s R 2

- + : 3
2 3(1 2?h+g - gm%;q

9
“n

o o =(1=2v) _ 6(1+v)(z +e)? +1§!stc[4
2z~ R3 RS R’

- =3y(x4a 15y(x+a)(z + ¢)?
e T % + ~

S 2 (le2v) . =2 (3r0)? | 3xea)? | 15(xsa)?(sre)’

-2 e



-33.

3(1+ 2v) (xt 8) , 30(2+v) (x+a) (54 c)?
Xz R5 R7

o los(x +a)(z+ o)
R?

z2

Tp -(1;'52‘7)! + 30(2+ vl)a%(z-* c)z - 105i32+ o)A

“9(1+2v) (z+¢) 4 20(2+v)(z+ )3 _ 205(z+ )%
22 RS U R’

Wy 2 Aﬁﬂx;%)_(y e) . loix{xnza) (z+¢)3

xx

- ..-20:&?151314-liL:gylA:Jii+éibs:zﬁﬂz:sl
- R R R’

_ 105(x+a)?(z+¢)3

r%
8¢ 2205 Oy = ={1=2v) , 3(1-2v) (x+a)® _ 3(+re)?
r3 R5 RS
+ 15(x+ 8)%(z+¢)?

R’

Ty 3(1-2v)y(x+a) , 15y(x+a)(z+ e) ?
' RS R’

G;zg ;2(1-2v!§x;'-a“z +e) , 1}11*—&%_(!4-0)3
R R

o, = =3v(z+e) , 15y(x+ agzgz + )
T TRS R

& = =3(3=2v)(x+a)(zae) , 15(x+a)3(z+e)

sz Za02 xz = 231t 2v)(2+ ¢ +15(1+2ﬂix+a22(z+ol +15(z+¢)?
RS R7 R’
105(x+a)2(z + )3

r?



o = 15(1+2v)y(xsa)(sre) . 105y(x +a) (s e)>
R’ r9

v, = 3(1=2v)(x+a) , 30(1av)(x+a)(zs e)?
RS

R7

. 105(x+a) (s +e)*
R9

2
- .gx ]z_v_!x-o- g) 5!!3*‘ e! 105y(x+n) (:+ e)
Y " r R

- 2
G 2 2 (r00) 4 1) (x2 )220
" 105(x+323(s+e)2
R

-(1+ 2v) I3 (x+a) +2(2+v) (z+¢)2 I7(x+a)
“(z+e)d T (x+ a)

xx “zz z202 U-xs

«(142v)y TT7(x+ a) + 2(2+v)y(z+c)2 II7(x+ a)

q
"

-y(z4+ )% IIg(x-o- a)

=3(1+ 2v) (2 4+ €)TT5(x +a) + 2(3+ v) (2 + )3 T17(x+ a)

«(s+e)> 119(x+- a)

Ty = Ir(z+ )15 (x+a) = y(z+¢)3 I’ (x+a)

32+ 0)T(x+a)=(z+e)> T (x+a) +6v(z+e) ITT5(x 4 a)

q
n

2v(z +¢)TT 7 (x+a).
Sz X202 P -(1- ! 3!1-21!5!54- 022 - 3x+ ;!2
R R

2 2

15(x+ a 2+



-3 e

T - =3v(x+a) , 157(x+a)(z+ e)?
zy = RS R'T

g = =3(3=2v)(x+a)(z+ec) , L5(x+a)(z+ e)3
227 RS .7

Ty = ﬂ—lﬂ—l'zv z+ ¢) + l.i!.(z:f_&lz_(!_:"_Ol
7

xy ”5 2

T = 3(1-h!§x;a‘(z+e) + 15(x+4a)2(§¢o)
R R

T 22!1-2\7!{31-0! - 15!1-.?1“:-!—0!3

wx R5 R7
+ A5(x+a)2(z+e) . 205(x+ g!j!u e)’
r7 R

o = 45y(x+a)(z+e) _ 1057(x+a)(z+e)’

z -
¥y R7 R9

., = 23(3-2v) (x+a) . ngz-v!(x-t—a!!z-rclz

R

105(x z +0)%
R

Ty o 3(1=2v)y . 15(1=2v)y(z+ c!z N 15y (x + n!z

. 1057 (x + a)%(z+ ¢)?

R’

§ = 3(1=2v)(x+a) . 15(1-2v) (x+a z+~c)3 " 15[1:1—;!3

. 105(x+ 513(5 +£)_2
r?

R’



036-

e =3(1 +2v) (x *a)(z te 15(x +a)3(z *e
.1, o 2 UL G4 Jala )

- =3v(z+e) , 15y(x +a)3(z+ e)
g * 5
R

R7

o 1-27)_3(1-2v)(x+a2_6z+02 15(x +a)?
e 2 T

g = «3(1 +2v)y(x *+a) + 15v(x+ a)3
xy R R7

o o« =(1=2v) _ 6(1* v)(x +a!2 + 15(x+ '.?!A
r3 R’ R

Oy

4

3
5, X o,, = {1*t2v)(x+a) | 3(xt a
fz x 4202 Xz »3 J-(——R'g")—

o o L .3u(x+a)?

yz = 33 RS

Q
L]

(1+2v)13(z +e)-2v(x+ a)2 I°(z *e) 2(.—.:_ e)

zz - R

o 3(z te)(x +a!2

RS

(1+2v)T7(z +e)-(x+ a) 3y 17(z +e)

Q
W

= (142v)I3(z + )+ 2(1+v) (x+ a)2 T7(z +e)=(x *+a) 417 (z%)

Q
]

[0, %y 0, = 20T (x+a)-2(1ev) (2 +) I(x+a) dega)

_ 3(x+a)(z+e)?

RS
- Y . 3x(z+e)?
A RS



zy

-1 e

. Jy(xvra)(zxe) . 2(1-v)y(z+ ¢) 1°(x+ a)

= 25

- *§§-2v!3(z-t— el . l(x_«—g!i!:Lg)_
R R

A=) (xra) , 15lLe 2 (xra) (o )
R R’

. 15(x+ a)> " _195(z+e12(x+413

R’ R’
2 2 2 2
- =3y 15y(x+a) 15y(z4+-¢)” _ 105(x+8) (2 +e)
T 7 R r?

15y(x -\—3!2 + 15v(z+ e)2 _ 105y (x+ a)z(z-rg_]_z
R’ R’ R’

=
R
=3(3=2v) (z+ e) + 15(3=2v) (x+ a!2§=+ e)

R R’

+15(z: 0)3 _ 105(x+a)%(z+e)2
R7 1:[9

15(1+ 2v)y{x +a) (z+ c) « o5y (x+ 8)3(5_1— e)
R

rR7

"

201 +v) (x+8)%(z + o)
R'?

3(1-2v) (2 +e)
RS

- Ioﬂxiall‘gn-cz

R9
=6(1=v) (24 €) T2 (x+8) +2(1=v) (2 +0) T (x + )

-Uzve)(xra) , 15(x+a)(a+e)?
RS R’

- =9y(z+ e) +1§ﬂz+g}3
RS r7



-3 e

T - (3=2) . 6(3-v)§ztc12 - 15(z +_’g)_"‘

22 © g3 R R
T u=3(xea) | 15(xsa)y(z4 &% (1ay)yI®(x+ a)
xy i B) R7

+2(1=v)y(z + ¢)2 T7(x+ 8)

o = =13-2v) , 3(3~2v)(z +e)? _ 3(x+a)?
X 5
r3 R

RD

2 2
+ 15(x+a)“(z+ ¢

R7

q

1]
=t
[ ]
1]
+
O

N

T S x+ a)?2
xx R3 l(—r)—n

-3(x+8) . 15(x+a!7(z+ e)?

RS R

8
B
"

=3 , 15y(z+ 022
RS r7

-Qﬂncz *,1 2 03
R’ R

4
-
1]
]
?JFL
+
2
ES
[
tad
+
o
N
o
0
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x+a)(z+ e __105(x+a)(g+c]3
R’ Rr?

- z+¢) _ 105y(z+ 0)?

=9 4 0(z+e)? _ 105¢4

ézz C202 ze 2

e RS R7 r?
s - 15(x+a)y . 105(x+a)y(s+e)?
Xy = H7 R9

- 15(3 +c[2 + 15(x+ n!2 - 105(x+ g)_z_(l‘\— 0)2
Sex = ﬁ‘g * R7 R R9

6:: 0202 Q}z:- zie) . 15(x a7 Z+ ¢
R R
- 15(x+a)y(z+ e
Oyz = 7
R
e =3(x+8) . 15(x+ a)(z4 c)?
St R’
5 = -ngﬂl " 15(x+ 313
- RS R7
¥, = - & 1§!XI 3!2!
T TRy R’
8.~ Bups Gy z 23 4 Lozt @)% 15(z0) - 105(x+8)%(z+ ¢)?
RS R7 R r?

15(x+a)y _ 105(x+ a)y(z+ ¢ 2
G‘n 2 > 70 ) i

- - A5(xt ag(ﬁ e) . 105{:139)_[:1 023
R R



“ 4D =

" ,-121!54-01 - 105(x + Z4+C
xy r7 R

Toy = _1,5!::1—}:”: re) _ 105(x+ 3313(:-1— e)

fs c20:?. sz =

Ty 2 (x+a)y T°(z 4 ¢)

e I (24 ¢) + (x+8)2 T(z4 ¢)

Ty =
1 . 3(x+ a)?
fzs bx C202 Tax = 53 RS

v, = =3(x+a)y
yz R5

T, -3(x +aRL‘(55L+ e)

Txy 2 Y Is(s+c) - (x4 a)2 y I7(z+ e)

3(x+ a) Is(s +g) - (x+-n)3 IT(z+ e)

Txx

xx 05 C202 Tax = I (x+ 8) « (5+¢)2 I7(x+a)

T -y TI7(x+a) 4+ y(z+ ¢)2 IT' (x4 a)

vz

=3(z +¢)TI° (x+ a) + (2 +¢)3 117 (x4 a)

G-SS
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