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ABSTRACT

In thig thesis, we discuss the heredity and productivity
of topological properties, We show that the basic separation
properties are hereditary and produetive with the exception of
normality (which is neither) and complete normality (which is only
hereditary). We next show that first and second countability are
hereditary and weakly productive, Compactness and countable compac=
tness are non<hereditary, but they are productive, The Lindeléf
property and paracompactness are non~hereditary and non=productive. Local
compactness is non-hereditary and is only finitely product invariant,
Separability is non-hereditary, but it is produet invariant for e
factor spaces. The property of being developable is hereditary and
weakly productive. The basic connectivity preperties (connectedness,
local connectedness, "connected im Kleinen at x" and arcwise connectedness)
are all non-hereditary and are produective except for "connected im Kleinen
at x" and local connectedness which are finitely produet invariant,
Finally, we show that metrizability, Moore-space, semi-metrizability

and a=metrizability are all hereditary and weakly produetive,
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I. INTRODUCTION

In this thesis, we discuss the heredity and productivity of
the basic topologieal prﬁperties. A property P 1is a ‘pologiecal
property iff P is invariant under homeomorphisms (1 = 1; bicontinuous
mappingy, A property P 1is hereditary iff it is inherited by every
subspace of any space possessing the property. P is productive
iff the product space of an arbitrary number of spaces, each having
property P, also has property P. P is weakly productive iff P
is countably "produet invariant",

We denote by < S, &> the topological space consisting of
S # ¢ and the topology B on S. < A, ANT > denotes the subspace of
< S,3> consisting of AC S and the relative topology AT on A,
An arbitrary index set is usually denoted by the letter A, but we use
I* (the set of positive integers) for a countable index sets

Let S« ,) be a topological space ¥x € A, The
topologiecal product ('FPA Set ﬂﬁa{> of these spaces consists
of the cartesian product set -FPA S and the product topology H’AT«.
Thus, x € .FPA S iff x = {x,‘?* ¢ A where Xe € Sy V.(eﬁ.. A basis
for FPA Tﬁ is the collection-
{?A U | Uw € B and Uy # S¢ for only finitely many« & A} :
The elements of ‘H’AT,.; are obtained by taking arbitrary unions and
finite intersections of these basic sets, Moreover, the projection
mappings Trq: RA Sﬁ-—-—y Sﬂ’, given by T‘:((x) 2 X, are both continuous and

openV« ¢ A. Thus, an equivalent basis for FPA B 1is the collection

n -]
of 2ll sets of the form -nlmi(Uﬁi) where Uy , € fxi,ial, eso,n and n € T
1ow
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We begin our exposition with a discussion of the separation
axioms. The properties Ty, Ty, T5 (Hausdorff), T5/2’ T3 (regularity)
and Ty /5 (Tychonoff) are all hereditary and productive. T, (Normality)
is neither hereditary nor productive, and Ts (complete normality) is
hereditary but not productive,

Chapter three is concerned with the various covering properties,
The first and second axioms of countability are hereditary and weakly
productive. Separability is neithef hereditary nor productive, but it
1s invariant under the produet of @ gspaces (the cardinality of the
reals). Compactness is productive by the Tychonoff theorem, but it
1s not hereditary., ILocal compactness is neither hereditary nor
productive, but it is invariant under the product of a finite number
of spaces, Countable compactness is productive, but it is not
hereditary, Paracompactness and the Lindeldf property are neither
hereditary nor productive, Finally, the developable property is
hereditary and weakly productive,

Chapter four treats the conngctivity properties: connectedness,
local eonnectedness, connected im Kleinen at x, and ar@vise connected-
ness, None of them is hereditary, but all are produetive with the
exception of loeal eonnectedness and connsectad im Kleinen which are
only finitely "product invariant",

In the final chaptef, we consider the generalized metrizability
properties: metrizability, Moore- space, semi-metrizability, and a=-metri-

zability, 211 are hereditary and weakly productive,



IT, SEPARATION PROPERTIES

We consider in this chapter the "Trennungsaxioms™
T4(1 & 0, 1, 2, 3, 4, 5) of Alexandroff and Hopf (see Hocking
and Young [27] , ppe 37, 40=42) and related separation properties,
Al11 are shown to be both hereditary and productive with the
exception of normality (Tq} and complete normality (T;) which are

not productive, Complete normality is hereditary, but normality

is not,

Definition 2,1.< 8, )is a Tywspace iff given any two

points of S 3 an open set containing one of them but not the other.

Theorem 2,1, If < S, ) is a Ty=space and (A, A n >

is any subspace of S, > , then<A, An P> is also Tye
Proof., TLet p,q € A. Since p,ge Salso, 3 Vel p e U,
af¢U orqelU, p¢ U, Thus, either p e Un A, af UnNAor

g€ UnA, pUNA, vhere UNA € AnS , By Definition 2,1, the
space <A, AN3) is Te

4

Theorem 2,2, If Sy, %> 1is a To=space W e A, then

the produet space < TPA . FFA 34> is Ty

Proof, Let p,qe H’A S¢ » For some B € A, Pﬁ £ qP .

Hence, 3 Ug € Tg 2 (i) U U i
qP € ?.35 » Because of the similarity of the two cases, we consider

~)
only ease (i), Now ‘lTF (UF Y e FPA’-F,{ since ’ng is continuous,

= -
Also, p € TTQ (Uﬁ ) and q ¢ “FI(UP) since q.g ¢ Ug o Hence,
< ?A SD( ’ F?A¢“> is TDi

ﬂ'jﬂ



Definition 2,2, < 8, > is a Ty=space iff given any two

points of S, each of them lies in an open set not containing the

other,

Theorem 2.3. Any subspace <A, ANT> of a Tl-space <3, T>

is TI;
Proof, If p,q € A, then p,q € S also, Thus, 3 U, Vel 3 pel,
q¢fUand qe V, p€ V, Consider AnU, AnV eAnd ., peAn U,

a¢d AnUTandqeAnV, p¢ An V., Henece, <A, An{d) is Tye

Theorem 2,4s If {Suy, XD 1is a Ty=space Vo € A, then
the product space <P, Sy, B, &> 1s 1y,

Proof., Let p,q € FPA Sy o For some yé A, Py dqr.
A Uy, Vpe Jyp Py€Uyra d Ty anda, 6 Vi, R ¢ V.
The sets TI'; (U t)')’ TT; (Va,,}e H’Aﬂ",{ since 176' is continuous.
Also, p eTT;, (Ua, )y a ¢ TT;(UBJ and q e"';(va,), P ¢Tf;(va, )e

Thus, the product space is also Ty

Definition 2,3. ¢ S, > is a T, (Hausdorff) -space iff for any

two points of S, 3§ +two disjoint open sets each containing one of

the pointss

Theorem 2,5. Any subspace <A, A NTY of a Hausdorff space

<8, T> is Hausdorff. _
Proof. If p,q € A, then Pyq € S also. 3 U, V e 3 5 p el,
q€VendUnNnV=20. NowANU,AnVE ANT , and p € AnvU,
e € ANV, Also, (ANU) N(AAV) « ¢ since U NV e @, Hence,
< A&, Aa%® is Hausdorff,

Theorem 2.6, If< S_,, M>is a Hausdorff space Vae &, then

the produet space <FPA 9 H’AJ}.) is Hausdorff,



Proof., Let p,q € WA S o For some 8¢ A, Pﬁ £ q
Hence, 3 Uﬁ . Vﬁ e:)‘ﬁ > Pg € Ulg > qﬁg Vp and Uﬁ *‘Jg ::Ffa
The sets TT; (Uﬁ P Tf"" (V ) € fPAﬁg o Also, p € "'ﬁ (UP )
qe—TJ';,' (V, ), and (nﬁ) N ﬂ;’ (7, ) = ¢ sinee Ug N T, = fe
Thus, the produet space is Hausdorff,

We next investigate a separation property which is stronger
than Hausdorff but weaker than Tjo We label this property T5 /20
R.H. Bing gave in{ 1] an eti‘ampie of a countable, connected, Hausdorff
space which is not T5/2 since the closures of each two basic sets
have a nonempty intersection, B.T. Sims gave in his Fhesis [6 ]

an examﬁle of a T5/2-space which is not regular,

Definition 2.4 <S, &> is a T5/2-space iff for any two points
of S, 3 two open sets, each containing just one of the points, with

disjoint eclosures.

Theorem 2,7, If £ S, o> is a Ts/g-space, then any subspace

<A, ANDD of S, is also T5/2.
Proof, TIf Psq € A, then p,q € S also, Hence, 3 U,V €T3 p €U,

eV, T N7 =4, Thus, pe UN A, g€ V N 4, and Unk, VA AeAns

uso, TAACTAR Cc T and VOA c ¥l eV Sincaunvu;!,
T¥ (\AﬁA)\‘V r‘\A“h) #. Thus, (A, Ang> is also T5/2,

Theorem 2,8, If ¢ Sy s Tu> is a T5/2mspaee Vx ¢ A, then the

produet space <ﬁ>A et 9 ﬁgﬁh) is T5/2.

Proof. If p,q e FPA S« » then for some B ¢ 4, P, £ q

g o
Hence, 3 UP; s Vﬁ € Tﬁ 3 Pp € Uﬂ ’ qﬂ € Vﬁ » and ?—’B n ‘_rﬁ < go
Thus, TT; (UF ), F(g (Vﬁ ) € ﬁ)ATﬁ K and p € ﬂﬁ- (Uﬁ)s

q EU{; (Vﬁ )+ TWe have to show that ﬂ; (UF) M) ff;r (VF ) = &,
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5 (R
Since Tl'ﬂ is continuous, we have that —“;(Vp 1 T‘F(VF) and

& Gyt A e ~} (77 >
'1T‘B" (UP } C 1TP (UP )e MNoreover, 1T‘g (Vﬁ )N Tr[a (0,1 29

Definltion 2,5, < S, A> is regular iff given - any closed subset

Cof S and a point p€ S~C , 3 two disjoint open sets U,V» C C U,
peVe <£85,%>» isa Tq=space iff it is a regular Ty=spacee

Theorem 2,9. Any subspace <A, AnT> of a regular space

<S8, M is regulars
Proof, Tet p ¢ A and let C be a closed subset of A with

'pfﬂu Hence, ¥ ¢* closed in & » C = c*n A, We havepESnO*
since pf C and pe A, NowI U, Vely ¥y, pevepc cu,
PeVwithUNVss @ The sets INa VNMA € AnT . Also,

Pe ANTU, CC U NA since CC C*CU and C C A, MNoreover,
(TN N (VAR = sinceTNT = g, Hence, <A, ANT> is
regular,

Coroellary 2,1, Sinece Ty is a hereditary property, it follows

that every subspace of g Ty=space is also TB'

We shall make use of the following characterization of
- regularity in proving that regularity is s productive property.
This result is proved as“fheorem 2=/ in Hocking and Young [2 ] s
P. 41.<S, 1 is regular iff ¥, € S and Vuetrpeu,
3 Ve®y pevcTcCu,

Theorem 2510, If {Sx,4> 1is regular Vo e A, then the

product space <FPA S s H’Afﬁx) is regular,

Proof, Letp€ W, Sy and We P, 2 pem I UCW3pe U

n - -1
U L
and = {i=! Tr“i (Hui). Since p ¢ -“.di (Udi) for 1 = 1,266 sy



o ¥ -

Ug for 1 =1, 2, 440, ns Since each component space is
pﬁi € Y« y <) » -
regular, 3 V“i € :&i 7 Pdi & V“ic inC U‘i fo‘}:‘ 3 - 1, 2, eonglle

Each,-vﬁ:ij(ﬁ;i) is closed since TTQi 1s continuous, Thus,

Tﬂk (qg is closed, Moreover,
iul 1

n -] -1
iﬂlm (ti)c n F‘Tﬂ.i('vd. | Yo ('\ —'n:( (U ) since

V«i C Vdic U'“i, i : 1, 2,. LR Ne AJ.SQ,

kS P M

' | : n wl
iﬂl TI; (v,) C r\ Tl; (V,, )C n . (vﬂ since '01 'T]‘,(i(vui)

n -1 n -]
is closed. Thus, pe [) Tl (v, )C N T, (v, YCUCw.
il Tocie A8 i

Corollsry 2,2. Since Ty 1s a productive property, if follows

that any product of TB-Space is a T3-spaceu
In between the separation properties of regularity and normality,
we have a separation property known as complete regularity, which seems
to have first been investigated by Tychonoff (Hocking and Young [ 2] 5ipiTh)
A completely regular Ty=space is usually called a Tychonoff space and

sometimes labeled a T7/2aspace,

Definition 2,6, <S8, 71D is completely regular iff given any

closed subset C of S and a point P €S =20C,d a continuous
function f: S—[0,1] 3 £(C) = 1 and f(p) =2 0. <S8,V is o T /2
(Tychonoff) -space iff <S,$> is a completely regular Ty=space,

Theorem 2,11, If <A, ANTY is subspace of a completely

regular space <S, N> , then C4, ANT) is completely regular,
Proof, Let C be a closed subset of A and PEA=C,

3 %c s :;C*is closed and C‘*n A2 C, Also, quc*sinca P€ A and p #C.
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Since S, T is completely regular, 3 a continuous function f: S—[0,1]
3 f(C* = 1 and f(p) = 0., Let g(x) = £(x) fo' Ay i.e., gz A—[0,1] .,
Also, g(C) = £(C) € £(C® = 1 and g(p) = £(p) = 0. It remains to

show that g 1s continuous. If V 1is opern in [0,1] , then

U = fﬂl(V) is eopen in S since f is continuous. Hence, g~1(V) = UN A
which is -open in A. Thus, <A, ANZT> is completely regular.

Corollary 2,3. Any subspace of a Tychonoff space ig Tychonoff,

sinee property Ty is hereditary.
We will need some auxiliary results in order to show that complete
regularity is productive. These are given below as Lemmas Rody Rel,

Lemma 2.1, Let <S, ) be a space and f3: S— [0,1] be a

continuous funetion 3 if x, € S and Xo € U3y €3 , then f3 (x,) = O
and f3 (S = Uy) = 1,1 = 1,2, Then the function g defined by
g(x) = sup{fifx) /4ia 1,2j’has the following properties: (i) g(x,) = O,
(11) g[S =(Uy N U021, (111) g is continuous,

Proofe (1) g(x,) = 0 since F1(x,) = folx,) = Os
(11) gls= (1N U)]e 1. Let p€ g - (U3 A Uy). Then pe s =1y
or p € S = Uy Thus, fy(p)=1 or fo(p) = 1, which implies g(p) = 1.
(iii) g 1is continuous. TLet X1 € S be arbitrary, We distinguish

two cases,
(a) g(xq) = £1(x9) = £o(x9)e Let W be any open set €ontaining
2{x1)5- 3 open sets Usys Vxy» containing x 3 F1(Uxy) CW and f2(Vyy )W,
since fy and f5 are continuous. Thus, g(Ux]_n VXI)C W, and g is continuous at X7 .
~ (b) g(x7) = f1(x7) > £5(x5) (the thirg case, g(xy) = fo(xy) & fy(x7),
is similar). Iet fl(xl) - fz(xl) ¢ 3r>0, and let Ny, N> be open intervals

centered at fl(xl) and fz(xz))respectively, of radius r, 3J open sets le’vxl
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containing xy fl(le) = Nl' and fz(Vxl) C N, since f; and f, are
continuous, Since Ny M Ny = d, fl(UXI} M f2(VX1) = ¢, and every
element in fl(leﬂ Vxl) is greater than every element in fz(leﬁ Vxl}g
Hence, g(UXlﬂ Vxl) - fl(leﬂ Vxl} C Ny, and g is continuous at xy.

Lemma 2.2, TIf fy, cesy £ are continuous functions mapping

S into [0,1] » as defined in Lemma 2,1, then the function g defined
by g(x) = sup {fi(x}/i - 1,..,,n} ‘has properties (i), (ii) and (iii)

Proof. By mathematical induction., For n = 2y 1t is true by

,

Lemma 2,1, Assume the Lemma is true for n = ks i,0,.,

g (x) = sup{ fi(x) /1= 1,.“,1:} has properties (i), (ii) and (iii),

13

We show that g},_l_l(}:} = sup {fi(x}/i 1,2,000,k + 1} also has these

three properties., This follows since

gk_',l(x} ~ sup{sup-[fi(x)/i o l,..g,k} : fk-l-l(ﬂ} = sup {gk(x), fk+1(x}} .

By the induetion hypothesis, g, (x) has these three pfopertias, and fk+1(x)
has the same properties by hypothesis, Thus, we gpplj Lemma 2,1 with

f1 2 g and £, = fx 415> and we have that 8k 4 1 has properties (i), (ii)
and (iii), |

Netation., Any function f: S-——)[O,l] as defined in Lemma 2,1

will be called a function fér the pair (Xb’ Uﬁﬂ)'

Theorem 2,12, If ( 8, : Tws  is completely regular Vo ¢ A,
then the product space <FPA S, FPA P« ) 1is completely regular,

Proof, ILet x¢e Hi Sk » and let U be any basie open get
containing x, Since U = {I'l\ T]';l-(UD(i), we have that Xy, € Uy € To(i,

=]
1w o N, Sinee <SujsTu i) 1is completely regular, J a functien
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£ for (X"‘i’ U“i)’ iely0e.9n. Hence, f;. Tr“i will be a

function for (x, ‘\'[‘0:'"1 (U“ Y}, 1 & 1l,000,n. According to Lemma 262,
3 1

sSup {fi' T i/i - 1,...,h} is a function for (x;U). Hence, the product
space is completely regular,

Corollary 2,4. Any product of Tychonoff spaces is Tychonoff,

since property Ty is productive.

Definition 2,7, <3S, ) is normal iff given any two 'disjc}int

closed subsets of S, J two disjoint open sets each containing Just
one of thems <S,™ is a T, = space iff < S, $)» is a normal T,=spaces
We give now an example of a normal space which is not herew
ditarily normal., The construction technique is due to Tychonoff,
although this pafticular example is found in Pervin [4] , pp. 93=94.
Example 2,1. Tet Sy = Xy LJ{a} be the one-point compactification
of an uncountable discrete space Xy, and let S5, = Xo U {b} be the
one=proint compactification of an infinite discrete space XQ, The
spaces Sy, S, are compact Hausdorff, since Xy, X5 are.Hausdorff and
locally compact (see [2], “Jheorem Re5k, Ps73)e Since compactness
and the Hausdorff property are productive, 51 X S is compact
Hausdorff (hence, normal).
The subspace Sy X So= {(a, b>} is not normal,
Proof, Let A = {{a, y> /vy e ng and B = {(x,b) Vo - l‘{l} .
“learly, A and B are disjoint subsets of S; X S, = {<a, b>} .
#We show that they are also closed in S1 X Sp = {(a,b)} « Let <Kr, s>
be any polut of 5y X8, » {<u, b>] which iz met in A (hence, > o a).
The set {r} X Sp 1s open in 51 x52 - {(a, b)} and contains no
point of A, Therefore, <v, s> 1is not a limit point of &, Thus,

A 1s closed, Similarly, B is closed in S; X Sp = {<a, b>}.
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Assume & disjoint open subsets U,V of Sl X Sy = {(a, by}
7 ACUand BCV, Let { %,V ss}bo a denunerable set of
distinet points of Xne Thus, {( a,71> , <'a,y2> . .”} is a
denumerable set of distinet points of A, U must contain all but a
finite number of the points in each set {< x,yi)’ /[ x € Xl]- 3
since U is a neighborhood of <a,y,> ,Yig1l, 2, o0, Tt
follows that at most a finite number of sets of the form { < x,y> fy € 8,3
can be completely contained in V, Similarly, at most a finite number
of sets of the form f <x,7>/y € 32} can be completely contained in L%
except for exactly one point each, Continuing this argument by
induetion, ﬁe see that for each n ¢ I:'only a finite number of sets
of the form {( x,y)/y € S } can be contained in V, except for exactly
n points each, Thus, for only a countable number of points x ¢ Ly 5
ean V contain all but g finlta number of the points in each set
{( X,v> /y € 32} o However, since V i3 an open set containing B,
V must contain all but a finite number éf the points of the set
{(x,y}/y é 82} for each x € Xl, since V 1is a neighborhood
of { x,b> Vx € {3 There are uncountably many such points <x,b? 5
X € X3, Contradietion,

We give now an example of a normal space, whose'fopological
product with itself is not normal, This example is due to Sorgenfrey
(See Kelley £33, pp. 133«134).

Example 2,2, Let R be the space of real numbers with the lower

limit ‘foyology. R 1is regular since if x € V an open neighborhood,
then 3 basic °pen Bob' B 5 = € B CV., Since B 15 ulis closed
the regularity is established. Now we show that R 1is Lindelaf,

Tet C be an arbitrary covering of R with basic open sets, We
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delete as unnecessary each member of € which is contained in the
union of two or more members of C, We need to show two things:
(1) Every disjoint subfamily of C is countable; (ii) those
subfamilies of C which have overlapping members are alse countable,
Hence, C contains a countable subecovering of R, and R 1is Lindeldf,
(1) Since the end points of a basic set are real numbers, we
associate with each basle set in C a rational number contained
in it, . In this manner, we obtain a onewone correspondence between
the disjolnt members of C and a subset of the rationals, which
implies that thils subfamily is countable, (11) We repeat the
same argument as above, assoclating a rational number with the nonw
empty intersection of any two basic sets in Co Thus, any subfamily
of C having overlapping members is countabls also,

Since this argument is true for any covering of R with basic

open sets, it is also true for any open covering of R, since every

open set contains a basic open set, Thus, R 1is normal since avery

regular Lindelof space is normal (Pervin L4l p. 92),

We now eonsider the space R x BRe Let
- {(x,y) ERXR /x4y = O, x rational} and
B = {{x,y >ERXR /= ¢y =0, x irrational} o Clearly, the
sets A and B are disjoint. We shew that they are closed, Let
K<P)yg2? €ERXR A, If <P,q> € B, then the open set Ep,p+l))([q,q +1)
contains <p,q> and is disjoint from A, TFf <Psq> ¢ B, then it is
either on the right of the line X+ y=20 oron its left. In the

first case, the open set [p,p+ 1) X[q, g + 1) contains <p,qd> and

is disjoint from A, In the second case, let lp+ q,’ = ry, where r> 0,

r
The open set [p, P+ -2- ) X[q, g+ g} contzing <p,qp, and is disjoint
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from A, A similar argument shows that B 1s closed., Let V be any
open set containing A, For each {p,q) € A, J a basic open set
Ne[pp+¢)X[a, a+¢) containing <p,q> and contained in v, '
For each n € Ir let N, = {(p,qb' € A / diameter (N) > %} » Clearly
AsOUN,, Ais dense in {<x,y>€R xR /x4 y = o} with respect
to ::12+ﬁsua1 topology of the plane, Thus,J me I*-} Nm is dense
in a segment ( <8, - &> , <t, = t> ) of the line
{4 X,y € RxR /x+y = 0} » We see that every point of the

1

open rectangle D, bounded by x+ y = O X4+ 7 = Sy X =Y 3 2 8

and x = y 3 2t,is in some baslec open set N about some point < p,q> e A.
Hence, DC V, Since D intersects B, V interseets B also, Tt
follows that B is intersected by the closure of every open set
containing A. Hence, R X R is not normal, The last assertion

makes use of the following theorem in Hocking and Young (2], p.41,

If H and K are disjoint closed subsets of a normal space S, then

- there exist disjoint open sets with disjoint clesures, one containing

H and the other containing X,

Definition 2,8. < 8, $)is completely normal iff given any

two separated subsets of S, 3 two disjoint epen sets, each containing
just one of them, <S,f) is a Tg-~space iff (S, ) is a completely

normal Ty=3pace,

Theorem 2,13, If <A, AN is any subspace of a completely

notmal space <S, >, then <A, An> is completely normal,
Proof, Let B,D be separated subsets of A. Thus, B, D
are separated subsets of S, Since {8, P)is completely normal,

3 disjeint open sets U, V> BC U, BCY, 1% follows that AN U; ANV
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are disjoint open subsets of A containing B and D, respectively,

Corollary 2,4 Any subspace of a Ts=space is Tg, since

property Ty is hereditary,

Example 2,3, We reconsider the space R of Example 2,2

which is completely normale The produet space R X R is not
completely normal since it is not normal,

In showing that R with the lower limit'fopolegy is completely

normal, we shall make use of the following theorem in Pervin (47}, p.92,

A topological space <S8, I*)> is completely normal iff every subspace
of <S8, T is normal,

Let A be any subspace of R, A is easily shown to be
Lindelof by the same sort of argument we used ta show that R is
Lindel5f. Since R 1is hereditarily Lindeldf, and regularity is
hereditary, we have that R 1is hereditarily normal (hence,
completely normal)}, using the following theorem: Every regular

‘ILindelof space is normal, ([43 y Bs 92),



III, COVERING PROPERTIES

In this chapter, we discuss the basiec covering properties
of point-set topology. First and second countability are seen to
be hereditary and weakly productive, Separability is neither
hereditary nor productive » but it is preduct invariant for ¢
factor spaces, Compactness, loeal compactness, and countsble
compactness are all non-hereditary, -Compactness and ecountable
compactness are productive, but loeal compaciness is product invariant
for only a finite number of factor spaces, Paracompactness and the
the Lindeler Property are neither hereditary nor productive, Finally,
we show that the property of being developable is hereditary ang

weakly productive,

Definition 3,1, A space (S, 3 1is first countable iff

$ has a countable loegl basig at each x ¢ Se

Theorem 3,1, Any subspace (A, AN > of g first countable

Space. {S,4 > is firgt countable,
Proof, If p ¢ A, then P €S also, Henee, 3 a countable local
basis {Bn (p) / ne I*} for T g ¢ Pe The collection

- |
ion (p) /nel } s Where On(p) = A an(p) V n e I+, is a countable
local basis for 2 NT at p,

We glve an example to show that the property of being firgt

countable ig neot productive,

Example 3,1, TIet <80 P> He s countable discrete space
Vx ¢ 2 (uncountable), S8y D 1is fipst countable Vo ¢ 4,

e 15 @
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since {x‘(—} is a countable local basis for 3‘“ at x , 4 Xg € Se¢ o

Let x & WA So » and suppose \LPQTK has a countable local basis

1 Bn (x) /ne Il atx e I, there mst exist a basic

open set ‘H’AU“ 2> X € FPA Us C Bn(x), where U, ey Ve

and Uy = S for all but a finite number of values ofox . Thus,

the collection Ay of all such o ¢ &, 3 U, # S, is countable,

since a countable colle8tion of finite sets is countable. ILet

o € A = Ay, and choose Uy € Tq':} xy €Uy 4 S, . This is

possible since each <S8, y Dot Y £ discfate. Thus, x € TT (Uu ) e ﬁ’ * )

but ’[T'mE (U, ) does not contain any set B,(x)e Contradiction,
Theorem 3,2, If s;, T 17 1s first countable t/i € I+,

then the product space < ‘?I"'S’i’ & ,,,'? 4> 1is first countable,
Proofs Let x 2 <Xy, X5, ces) € H’ S.. Let

{B (xi\ /ne T } be a countable loeal basis for I i at xy € Si

X1 17, The family {TI‘ (B (Xi)) /i, € I-}} 1s a countable collec~

tion of open sets in the product space,

The set of all finite intere

sections of members of this collection 1s a countable local basis for

WI.’.G‘i E.t.)fn

Definition 3,2. A space (S, T is second countsble

(completely separable) iff T has a countable basis.

Theorem 3,3. Any subspace <4, AN > of a second countable
space < S, I is second countable,

Proof. TLet {B  /n € I} be a countable basis for . The

Collection {0, /ne¢ I*}, where 0 = AN B,
bHSiS for A ﬁ'S\ s

Vne I", is a countable



We give an example to show that the property of being second

countable is not productive,

Example 3,2, Let < Sg,Tu> be a countable diserete space

Vo('e A (uncoﬁntable}. < Su,Xu> is second countable Wx € A,
since {i:g'} / Xy € Sa} is a countable basis for $, . Since we
previously showed that P, Sy, F,%> is not first countable, it
can't be second countable,

Theorem 3,4 If ( Si, ) i > is second countable V i € I;"

then the produet space <WI+81’ H’I+3* i> is second countable,
Proof, Let {Bril /ne I"} be a countable basis for
T,V % 1 =) e 1% 1 mtabl
1 Vi €TI'c The family {TT ; Bn y N 8 a countable
collection of open sets in the product space. The set of all finite
intersections of members of this collection is = countable basis
for F?I + j\in

Definition 3,3, A space <8, J*> is separable iff 8 contains

a countable dense subset,
We give an example of a non=separable space which is a subspace
of a separable space,

Example 3,3, Tet £ be an uncountable set with the discrete

topology on S. Let a be an element not belonging to S, and let

S U {a} have a topological basis congisting of ¢ , {a} y and

{x, a3 Vxes. so {a} is separable, because fa} 1is a countable,
dense subset of Sy {a} « However, S is a noneseparable subspace of
SU {a} , since it's discrete and uncountable,

Ye give an example to show that separability is not produetive,
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Example 3,4. Let Sy = x4,y have the discrete topology
J: = {ﬂ, {xd} . {y.& y Sk 3 ¥« €h, where card () >e. <Sus D>
is separable Vofe A. Assume (\‘PA Set T'PA‘L& is also separable,
-and let C be a countable dense subset of FFA Sqe Y B e A, ]_at
B, Vu be the basic open set with Vg = {xﬁ} and Vy = S, 1if

o( ,JP - A]-so,‘Vﬁ ¢ A define a function fﬁ : C—> {0,13 as follows:

0 if xe ffy V,, where VF:: {xf,g and Vy = 8, foro #4.
_ fF’ (x) =
| 1l otherwise,
Now card ffﬁ /fF : C—>{0,13 = 2®e ¢ , since card (C) = H..
We show that card (&) < eard {fﬁ/ B € Af =c, which contradicts our
assumption that ecard (A) > ¢ . TlLet Pi1sf o€ehrz 1 £ Bo.
Conéider the basic open set FPA V¢ » where Vpl = {xﬁ 12 and
Vo = Sd for ¢ ""/ﬁl’ and FPA Ux 5 where U g - - {yﬁz'i and
Uye Sy for o o B o Since the intersection of these two basie
open sets is a nonempty member of H'AT“' y 1t must contain g
PUlEfR T80T 0. Slmes 2ol VM, v, we Have fp,(2) =0
and fgz(Z) = 1, Thug, fél ;(52 implies fﬁl £ fﬁ ,° Hence,
card (A)< @ . Contradiction, Hence, (HZ Se s H,A 2> 1is not
separable if card (2) S ¢ .,
The following theorem of Pondiezery establishes that separability

is produet invariant for ¢ factor spaces., The proof we give is due

to Marcgewski and is found in (51, pp. 398-399,

theorem 3.5, If Sy, 9y Dis separable Yo ¢ Rt (the sot of
positive reals), then the produet space <H>R+ S \?R+Ta) is

separable,
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Proof, Let Dy = {xi y, & I"R be a countzble dense subset
a.f.; S ¢ V’& €R . Let T be the set of all tuples
teiry, «ouy 1 Ky, cves Kn3 s Where Ty ¢ .. (T .y are positive
rationals, kyy vee, kp € d and n 2 2« The set T is countable,

being a countable colleetion of countable sets., Define a function

o T-aﬁ’R+ S« as follows:

te T—-—-—f-‘—)xt - {X‘}fd ¢ R & H,R-I' S oL where

- Xy if o £ry ,
X«E’ - < XY if Pralé & € Tp,
g e

f (T) is countable since T 1is countable, We show that £(T) is

also dense in FPR.,_ S o Let WR"' Uy be any basic open set in

the produet space, Thus, Uy # S¢ only for ¥ =Xy esey, say.

Choose positive rationals Tl sets Tpg 3 g < 7y <X g L 7y Creo < Tpy &KX o
This is possible sinece, the rationals are densge in the reals, Since

U""i eJ';gi and D"‘i is dense in Sqi s 3 kl, '”Jkn e,_I'+ >

X;i“e U 4o for 1 21, ..., n, ILet ¢ :{rl, ooy Th 13 K1y cee,y ko3 5

the point x* s Where x& is defined as above, is in H)R*'U'” Hence,
KPP+ S« Po+Tu ) 1is separable,

Definition 3,4. A space <S, N> is compaet iff every open

covering of S contains a finite subcovering of &,
We give an example to show that compactness is not hereditary.,

Example 3.5. The Heine=Borel theorem states that a subset of
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the reals, under the interval topology, is compaet iff it is closed

and bounded. Thus, under the interval topology for the reals, the

closed interval [0,1] is compact and the open interval (0,1), which
is a subset of [0,1] » 1s not compact,

Theorem 3,6,

Any product of compact spaces 1s compact by the
Tychonoff theorem, ( L2 , 0. 25),

Definition 3.5, <8, ) is ccuntablg compact

subset of S has a limit point in §&,

iff every infinite

We give an example to show that countable compactness is

non=hereditary,

Example 3.6, The Bolgzano-Weierstrass theorem implies that on
the real line

compactness and countable compactness are equivalent,

o However, the open interval (0,1) 15 2 cubset of £0,1] whieh

is not countably compact sinece it ig not compact,

The following characterization of countable compactness is

given 1n 2 . p, 21, 1 space ¢S, > is countably compaect iff

given any countable colleection {Ci /i€ If? of closed subsets of S

satisfying the finite intersection hypothesis, then (1 C. #£4.

teTt
T2 1s countably compact W o e A,

then the produet space (FI"A S« s FPA I >
Proof, ILe

Theorem 3,7. If <%,

1s countably compact,
t {Ci / 3% Iff? be any countable collection of

closed subsets of fPA S« satisfying the finite intersection

nypothesis, Thus,the collection ET(C) /1 € I satisries the

finite interseetion hypothesis V X« € A. Moreaver, the colleetion

{Wd(ci) /i€ I-}} of closed subsets of

Sq satisfles the finite
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intersection hypothesis Va(e A. Sinee { Sy > 4 countably

compact ‘Vot [ A,a Xy € iQI"'”“(Gi) Vu é A, Let

Uy ¢ P 7 x4 ¢ Ux Mo e A, Since Uq N T];(Ci) f O for each
11, it follows that T™" (U )N G £ ¢ Y1ier! Let
p be that point of H’A S o With coordinate x & S, where x
is as above, lLet V = FPA V,be any basic open set containing p.

Since V, £ Scfor at most a finite number of values of  (say o 12000y X kjﬂ
X8 Bera v gl “I(V ). & > (T ) Y ]
i - ) nee d y
- RRLEES Y o uNEE TN
and for n z 1, 2, ..., k, it follows that vV NC; £ ¢, ¥ 1 € 1+ .

Since V 1is an arbitrary basie open set, this implies that p is a

1imit point of Cs Vi € I+. Hence, p € C;, since C; 1s closed

V ie I-r. Thus, p € iQ 74C1.

Definition 3.6, A space S, 4> is locally compact iff Y xe s

3 an open set which contains x and has a compact closure.

We give 2n example to show that loeal compactness is non=

hereditary.

Example 3,7, Let S = {x %2 03 with a topological basis

consisting of the family of halfwopen intervals [a,b) , a,b ¢ S with a(b,
Let R = € Ujo} be the one-point compactification of &.. Clearly, R

is locally compaet since it is compaect, Consider the point 1 in S,

The elosure of every basic open set [a,b) contgining 1 is the set [,a,b)
itself., Also, [a,b) is not compact, since {fa,b - %} /n €& I""_? is

an open covering of [a,b) which contains no finite subcovering of [a,0)
Hence, no open set containing 1 has a compact closure, and & 1is

not loeally compact,
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We give an example of a non-locally compact space which is the
topological product of infinitely many loecally compact spaces,

Example 3.8. Let 8; = (0,1) with the interval topology

Vie I*, and let p = {p-l, Py ses ) € ?I’* S;s Suppose 3 aset U
containing p and having compact closure. Then 3 a basic open set

B pe BCU, where B = FI"'vi and V; = S; for all but a finite number
of values of i, Since U is compact and EICZﬁ', B is compact alse, Since
T, is continuous, T, (B) is compact ¥ i €I'. This is impossible,
since for infinitely many values of i, 'n'i(ﬁ)‘ﬁ V., = 8 = (0,1), which

is not compact by the Heine=Borel theorem. Contradietion. Henée, no

such set U exists, and ‘PI+Si is not loeally compact,

Theorem 3,8. The produet of two locally compact spaces is locally
compact,

Proof. Let <8,Ty> , <S5, T5> be locally compact
spaces,e Let <p,g> e Sy X Soe  Since <8y, 1> 1is lecally compact,
= Wy € &) 12 P €Uy and ﬁl is compset, Similarly, 3 U, € ) »7F g €U,
and U2 1s compact, New <p,q> € Uy X Uy and Uy X U 2 Ul X UZ’ which
is compaet by the Tychonoff theorem, Hence, {Sl ). 4 32, .‘l‘l X Tz > 1is
locally compact, '

Corollary 3.1, The topological preduet of finitely many locally

compact spaces is locally compact,
Proof, By mathematical induetion using Theorem 3,8,

Definition 3.7. <S8, #*> 1is paracompact iff every open covering

of S has an open, locally finite refinement.

We give two examples to show that pParacompactness is none

hereditary and non~-productive.



Example 3,9. Let S be the set of real numbers with a

topological basis defined as follows: A basic neighborhood of

x € S consists of x and the set of rationals in an open interval
around X, The one=pcint compactifieation R = SV {a} of & is
clearly paracompact, However, the subspace & 1is not paracompact,
sinee 1t is Hausdorff but not regular. It is Hausdorff since for any
two distinct points of S, we can always find two disjoint basic
neighborhoods containing them. It is not regular, since the only
open set containing the closed set of irrationals is the set 8
itself,

Example 3,10, The space R of Example 2.2 is paracompact

since it is regular and Lindelof ( [4J, p. 167). However, R X R
was shown to be Hausdorff but not normal. Hence, R X R is not

paracompact,

Definition 3,8. A space < S, T\) is Lindelof iff every open
covering of S contains a countable subcovering of &,
We give two examples to show that the property of being

Lindeloef is non-hereditary and non=preductive,

Example 3,11, Let S be an uncountable space with the

diserete topology. Let S U {a} be the one~point compactification
of S¢ Thus, S U{g} is compact; hence, Lindelof. However, the subspace
S 1is not Lindelof, @&ince it is uncountable and has the discrete

topology,

Example 3,12, The space R of Example 2.2 was shown to be

el T?x ,e
regular and Lindelof &mdp not normal, Thus,RX¥Kis not Lindelof since

2 regular Lindelof space is normal ([4], p. 92),
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Definition 3.9, <S8, $*) 1is developable iff 3 a sequence

{Gig fio 2 of open coverings of S 3 G; 7 1s a refinement of

G; VieTtand W xe Sand Ued 3 xeU 3n=n (x,0) eI”

¥ Grr(x) C U, Gn*(x). is the union of g11 those members of Gn which
eontain x. The colleetion {Gi /e I*_? is called a development of

{s, .

Theorem 3.9. Any subspace < A, AN > of a developable space

<S8, > 1is develepable,
Proof, Let {G; /1€ I'§ be a development of <8, > .

#

Let 05 = A NGy \ te1', Thus, {O%? e ot is a sequence of open
LY

coverings of A and Oi-l-l 1s a refinement of O, v i € Ij since
+

G; 4 1 1s a refinement of G, ¥ 1 €T, Tet x e Aand U € An?t 3

'x €U. Thus, x€ Sand U=V nA, where V €T ., Since <8, £>

is developable, 3§ n = n (x,V) € I+:}G:'-(x} .Y, Hence ,

0p (x) CANV =T, Thus, <A, ANT> is developable,

We give an example to show that the property of being
developable is not produetive.

Example 3.13. Let <Sy,Tx> be a finite nondegenerate
discrete space Vu( € A (uncountable), Trivially, < Sy ,Tu> is
first countable and developable ¥o € A. ILet x & ﬂ; St » and
suppose ﬂ’A‘]} has a countable local basis {Bn(x)/ n e 17§

+
at x. Ynert » there must exist a basie open set "?A U 7
x & ﬂ’A Uy C Bn(x}, where Ud e Yt VYo & A and U2 S for all
but a finite number of values of & . Thus, the set Ay of all

such A € A 3Ty £ S, 1is countable, Let o € A = Ay, and choose

T_Tq. e xg € U, ;!S“ - This is possible since <Sd,'ﬂ‘,,> is



w 25 o

discrete. Thus, x & Tl'dl (Uﬂ ) & ‘:P '-T“ o However, 'I'I'M1 (U )
does not contain any set Bn(x), Tt follows that < FPA Sl » FP(&,)
is not first countable. Hence, it is not developable, since every
developable Ty=space is semi-metrizable and, consequently, first
countable ( (6], p. 40).

' +
Theorem 3,10, If < S;, ¥ ,> is developable Vi & 17,

then the produet space H>I+Si, fPI+Ti> is developable,
Proof. By hypothesis each space ¢ Si' 3> has a development

iGi /nel 3’ where Gi is an open covering of <S ) j_> > Gn.;. 1

is a refinement of G ¥aell 14t G, = {‘n‘i Gk'I /i€ I+} ;

¥Yrer1 » G, 1s an open covering of FP +55

1s a refinement of Cps Let Uk + 15 Ck + 1° For some 1 € I-’
+ 1 -1, 1 k+1 i
o € T, (6, 1) and thus, T (") e Gy . Since Gk+1

is a refinement of Gf;, 3 ve Gli 2 V DTri(Uk""l). Hence,

+ 1 -l 3 +
i T 1 .
Uk cm : (V) é Ck hus, Ck-q-l 1s a refinement of Ck ¥Yke T

We show that Ck+ 1

Now let p € ﬂ}q.Si end U ¢ T?I*'Ti?' P €U, Since U 1is
open, 3 a basic open set LEY V; C U containing p with Vi £ S
only for i = 115 ceey i,. For each i,, k = 1, .“, n, Vlkt‘: j\ik
and Pi, € Vik' By hypothesis, 3 Nik e1' o1 G“i*(pik) C,Vik Let

N = max N;s. o Clearly, G - = |
1£k-fn ik y! ﬁrik.f C Vlk’ k o 1, ’ n. Hence,

-l¢ Ty N
3 5 {GN *(pik)gcﬁ’ﬂ Vi, Bowill s cian, N Let UNe CN >p €U,

:
For i & 145 eeey 1., we have Dy ETr (‘LTN) € G;I » Hence, pieTr (UH)
i
G GH*(pi) C S; =V, « Therefore, pe Tl 1(}31) C U = Tri (Gi (pi)
C B +7s CUe Tt follows that c¥p) C B S ol



IV. CONNECTIVITY PROPERTIES

In this chapter, we consider the basiec connectivity properties:
connectedness, local connectedness, connected imKleinen at x, and
arcwise connectedness. All are shown to be non=hereditary, Connected=-
ness and arcwise connectedness are shown to be produetive, and examples
are given to show that local connectedness and connected im Kleinen
at x are not preduective, However, the latter two properties are
shown to be product invariant for a finite number of factor spacess

Definition 4e1l. <S, T+ 1s separated iff S = A U B, where
A, BED -1 and A OB = #o < S, +> is connected iff it is not
gseparated,

We give an example to show that connectedness is not a hereditary

propertye

Example 4.1, The open interval (0,2) with the interval topology
is connected., However, the subspace (0,1) U (1,2) of (0,2) is not
connected,

Definition 4e2. lLet <S, 4> be a space. Two points of S

are connected 1ff 3 a connected subspace of <S8, 1D containing the
two points,

Lemma 4,1. <8, 3> 1is connected iff each two points of S

are connected,

Proof, The neces@ity is trivial., For the sufficiency, assume

each two points of S are connected, and suppose < 8, P> is separated,

= 26 =
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A U, 768 903 3 SalUuUVandUnVag ILetx U, y eV
and let <C, CN$> be any connected subspace of <8, #> containing
x and y. Thus, UNc )W (VNC) 2 cC and (VAC )N (U N c ) = d,
Hence, ¢C, ¢ n4> 1is not connected, Contradiction, Hence, < S, ">
is conneeted.

Theorem 4.1, If <8, 1> and <S5y % 5> are connected,

then the product space <8 X S,, TyXT » > 1s connected,
Proof, let <Pys 91> , <Pya2> € S5y X Soe The subspace

: {plg X So, being homeomorphic to < S,, G 2 2 5, 1s connected and
eontains the points <p1,q_1> and (pl . q2> « Thug, dpl, qy >

and <p1, G, » are conneéted by Definition Z,2. Similarly,

Sy X {qzi is a connected space containing <P;;, 95> and <Pz 42> o
Thus, <Py, 62> and <P2s 45> are connected by Definition he e

This implies that < P1s 91> and < P2» 9 > are connected, Hence,

< 8y X 8o, Fi X7 2 > 1s conneeted by Lemma 4.1,

Corollary 4,1, The topological produet of finitely many

connected spaces is connected,
Proof, By mathematical induction using Theorem bels

Theorem 4,2, If S8ws By> 1in connected ¥ o € A, then

the preduet spacse <’FPA %t » H’ﬁ 3:.,} is conneeted,

Preof, Iet p € !PA S and C be the component of Py Se
which contains p, We shall show that € 1is dense in H’A Sat o
let U = F?A Uy be a basie open set in FPA S . » Wwhere Uy # S _r:}nly

for o4, seor&ne Let %3 ¢ Uy ;2 131, oo, n, be fixed but arbitrary,
let g be the point in FPA Sy Whose X coordinate is the same

as that of p 1if o o X i» and equal to x; if « 2o¢ , for some
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1 fl<i ¢ n), Thus, g €Ue let X = {x/x,,.a p, for ally € A

n
= {0(1, .u,alngj e The subspace X is homeomorphic to <i§1 S“fi’
n

P >which is connected by Corellary L.ls Sinee connectedness
Tl 1
is a topological property, X is connected and contains both p. and Qe

Since C 1s the component containing p, X CC and q € Co Hence,
qg € U NC and every basic open set meets Cs This implies that
C = HDA Sy e MNoreover, e = C since C is a component, Hence,

<'CPA S o s FPAO‘,,¢> is connected,

Definition 4.3, <S, > is loeally connected at x € S iff

for every open set U containing x, 3 a connected open set

V3 x eV CU, <S8, 4> is locally connected iff < S, > is locally

connected at x, V x € Se

a
The following space isplocally connected space which is

net hereditarily locally connected.

Example 4,2. Let [0,1] and [=~1,1] have the interval topology

and S =z [0,1] x [~1,1] with the product topelogy, Sinee 0,1}
and(=1, 1] are locally connected, & is locally connected by
Theorem 4.3, which follows this example, Consider the subspace

Xs {(x,y) €S/ y = sin ?]c- s 0 L x& 1} v {40,0)} » The open
set C gz {( x,y> &8 / x° + y24 10"4‘? N X, in the subspace
topology of X, contains 40, 0>, Moreover, the only connected
subset of C which contains <0, 0> is the singleton set {_( 0,0 )},

However, {(O, O}} is not a member of the subspace topelogy of X.

Hence, X 1is not locally connected,
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Theorem 4.3. If £8;,3 1> and <5,, % 5> are loeally

connected, then the product space <S8y X Sy, Iy X T, > is
locally connected.

Proof. Let <p, q> € 8; X S, and U € :Tl)(d‘z,; <p, q> € U .
d a basic open set Tfl XVy3 <p, q> € Vl X I-IzC Us Since
<8, T 1> and <8,, T ,> are locally connected, 3 Uy e-‘ﬂ‘l,
U, e 5 3 Uy and U, are connected and p € eV ge U,C 7,
Thus, U1 p 4 Uy is connected hy Theorem A1, and<p, g> €& Ul X U2 C U

Corollary 4.2, The topological product of finitely many
loecally connected spaces is locally connected,

Proof. By mathematical induetion using Theorem 4.3,

We give an example to show that local connectedness is not
infinite produet invariant,

Example 4,3. Let S, = $%;, y43 have the discrete topology
Tie 15 i s 83 513 W3 eI’ Ietp e Pr+8;

and U ¢ FPI.,.'J 1 2 P €U, Suppose U 1s connected, Hence, 3 a

basic open set fPry4 V. in the product topology > p & E)I"' V. C U,
Thus, for infinitely many values of i, we have Vi 2 S;5. Let ik
be one such value, Thus, 'ITk( ?I+Vi} = Sy« Since U contains

29 I.,.Vi, we have Tk(U) = 5 alse, Since U is connected and

My is continuous, S must be connected, However, S; 1s disconnected
X § E I¥ because it has the discrets topology, Contradietion, Hence,

there does not exist any connecied member of the product topology

containing p, Hence <H’I+Si, FPI+ < 1 2 1s not locally connected,

Definitidn Leks <S8, > is connected im Kleinen at x € S

iff for overy open set U containing x, there is an open set V,
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containing x and contained in U 5 if y € V, then 3 a connected
subset of U containing {x, y? e <38, > 1is connected im Kleinen
iff <S,4> 1is connected i Kleinen at x VY x € S,

Remark., Sinee local connectedness of < 8, > 1is equivalent
te <S5, > being connected im Xleinen, we shall only consider the
weaker property, "connected im Kleinen at x",

Example 4.2 shows that “conuected im Kleinen at x" is not a
hereditary property. S 1is locally coanected at 0, 0>, Hence,

S is conneeted im Kleinen at <0,0)» , However, X is not conneected
im Kleinen at <0, 07 , If X were connected im Kleinen at <0, 0>,
thén X would be connected im Kleinen at every point of X, By our
remark above, X would be loecally connected, However, this is not
the case, as we saw previously, Thus, X is not connected im Kleinen
at <0, 0)

Theorem 4ek. If <8y, %4 > is connected im Kleinen at
Xy € Sq and <S55 5> 1s connected im Kleinen at X, € Sy, then
<Sl X So, :1"1 X :1‘2)' is conneeted im Kleinen at <x1,- Xo> € Sl ) ¢ 32,

Proof, Let U be any open set contalning <X %Y o J =
basic open set U1 XUy 5 <xq9, X5> € Uy XUy C U, Since <Sl, I 1}
is eonneeted im Kleinen at Xy, 3 Vl €& 4‘1 7 X3 €V4 C Ul’ and
X Y1 €75, 3 a connected subset Cl of Uy containing {xl, yl} °
Similarly, 37,6 F5 3 x, ¢ V, C Uy, and ¥y, € V

2 2)
connected subset 02 of Us containing {xz, yz} o Let <3r1, y2>

3 a

= Vl b4 "J2 = 3\1 X G 5 .3 a connected set Cl C’f}l and contalining
1x1» ylg and a connected set C, C U, and containing ixz, Yol e

Thus, C; X C; C Uy X Up C U, Also, Cy X Cyr 1s connected by
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Theorem 4.1 and contains {( Xys Xo> 4 Yq? y2>3 o Hence,
<8y, » 8,5 T3 X3 5> is connected im Kleinen at <xy, x> o

Corollary 4,3, If <8;, T ;) 1s connected im Kleinen

at x; € 83 , 1=1, 2, ..s, n, then the product space

n n
< iFF; Si’ iH:;L ) 1 > 1is connected im Kleinen at < Xy9 evos X D

n
i=1

Proof, By mathematical induction using theorem 4.4.

Since each space <Si,d‘ i2 of Example 4.3 is loeally
connected, we have by a previous remark that <8;, 4 ;> is
connected im Kleinen ¥ 1 €17, 1f (H’I.,Si, H’I.-rd‘i) were
connected im Kleinen, then it would be locally connected. Howaver,
we have glready sesen that this is not the eass, Hence,
< P = Si ) FPI"’ & ¢+> eannot be connected im Kleinen at all of
its points, Thus, we see that "connected im Kleinen at x" is not

infinite product invariant,

Definitien 4.5. { S, > is arcwise connected iff any two

points of S are the end points of an are in S. (Recall that
an are is any homeomorphic image of [0, 11 ).

The following example shows that arcwise connectedness is
not hereditary,

Exampls 4.4, TLet S = [0, 2] with the intervsl topology.,

Clearly, S is arcwise connected, However, the subspace
[0, 1) U (1, 2] 15 not arewise connected, since the points

O and 2 are not the end points of any are in (o, 1) L (1, 27 .
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Theorem 4e5., If < Sy, ¥x> 1is arcwise connected Vo e 4,
then the product space <FPA 8, » ﬁ"ﬁ1 £, is arcwise connected,
Proof, Let p, g € Fl”A S ¢ For each ol € A, P, , q,
€ Sx , and Sy ,x> 1is arcwise connected, Hence, F a
homeomorphism f, : I—=>8S, 3 f, (0) = P, and fﬁ(l) =q Vo E A
We must show that § a homeomorphism f : I—» FPA S » With £(0) = p
and £(1) 2 qo This follows immediately from above, if we let f = fP £

A
where the o =coordinate of f£(t) is f,{(t} Y te fO, 1) . Thus

£(0) 2 P, fa (0) =2 P, {R,f =pand (1) 2 I, £,(2) 2 Py 19,3 = a-
f 1s a homeomorphism, sinee the coordinate mapping fo¢ is a homeomor=

phism Vafeﬁ. Thus, <FPA Dol s FPA-:!I'*‘ > 1s arecwise connected,



V. METRIZATION PROPERTIES

In this final chapter, we consider the generalized metrization
properties: metrizability, Moore space, semi-metrizability, and a=metriw
zabllity, All of these are easlly seen to be hereditary, None of them

1s produetive, but all are shown to be weakly productive,

Definition 5.,1. (S, 3> 1is metrizable iff 3 a metriec

d on S 3 the collection {Sd(x;r?'/ r > 0} is a loecal basis for
j‘ at x ¥ x €S, (d is a metric on S iff 4: S:(S——*R"U{O}
and satisfies the fellewing conditions: (i) d(x,y) = 0 iff x = y;
(i1) da(x,y) = aly,x) 3 (ii1) d(x,z) < d(x,v) + d(y,2z) ’dx,y)
z € S.)

Theorem 5,1. Every subspace (A, A N4> of a metrizable
space £ S,T>. is metrizable,

Proof, Let d: S X S—R¥U {0} be any admissible metrie for
{8, $>. The restriction dy = 4 ./ A of the domain of d to A X A
is clearly a metric on A, We show that the collectionifsal (x37) /r> 0%
Is a local basis for An% at x ¥ x ¢ A, Tet Ve anT 3 xe V.
Thus, 3 U €€ 3 V=AU, By definition of a logal basis, 3 an
open d-sphere S3(x;r) about x 3 x ¢ Sg{xsr) c U, Hence,
x € AN%(x7m) 2 §5,(x57) cAnU =T

We give an example to show that the product of uncountably
many metrizable spaces is not necessarily metrizable,

Example 5.1, We reconsider the space of Example 3,13, which

we used previously to show that the property of beling developable is
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not productive, Each factor space is metrizable, and the product space
is not first ecountable. Hence, the produect space is not metrizable,

A1 though metrizability is not productive, we are able to show
that it is weakly productive.

Theorem 5.2, If <Sj_, T ;Y is metrizable Vie I+, then

the product space <{® WI*T 37 1s metrizable,

g
Proof, Let dj be any admissible metrie for{S,,% > Nie I*._,

For each i & I+, let P£; be the admissible, bounded metric on <8;, 3 >

given by £, (x1,y;) = 4 (5,71) ¥ x, yi€ 8. ¥ x, v e H>I+ S s

1+ di(xirj"i)
we let d(x,y} - 4 —%—- » f (x, ,Yi)n We show that 4 1s a metrie
iel 2 2
on FPI+Si and induces the product topology FPI* 4 on HJI* S; 0

(1) da(x,y) > 0. Since £ 1(x3,¥1) > 0, each term of the series
ol

2 —.p ,(x;,7;) is non-negative, Thus, d(x,y) 2

=l

2 e £ 4
(i1) d(x,y) = 0 1ff x = o, then :xi =y; Y1i€é I', Hence,
ol L~ ]

2 [z as) 2 Z "2+ (0) g0, If4

s 21 P 1(xyy) = i (0) = (x,5) = 0, then
oD

> =P i(xi,yi) = O. Hence, each term of the series is zero.
iil 21 .

Thus, f i(xi,yi}’ = O and X;s &Y, )d i€ I+, which implies x = y,

(1i1) d(x,y) = d(y,x)., Since -+ i(xi’yi) s f 1(3'1,?51};

e o
= (2 .- s = 3 . _
fal 21 ——-P 1 %1971 2 a1 :?..i._f 1\5’1,3{1), which implies

d(x,y) = d(y,x}. (iv) d(x,y) +d(y,z) > d(x,z). Sinece

- (Xl,Yi + fi(yl,zi ji(xl,zi), it follows that
s 1
EE j: (31,31)_+ :E j’l(y1,Zi; g‘ég_%_{?ij,i(xi}yi)tfai(yijzii}

1"1 21 =1
oo . 2

P e = f'i(xi,z ), all of thess series being convergent,
iz1 o7
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We now show that 4 induces the product topology H’I.,.Ti.
Let p & H>I+ 8; and let fP .4+ U; be any basic open set containing p,
where ﬁi £ Sy only for i = il’ 005y ik' Sinece f£i is an admissible
metric on £S5, 31> ¥ 1 EI+, 3 Sfi(pi;ri} > Py 6Sfi(pi;ri) CUi,
1 g4y, oass 13- Dot r s min {-—}-_.ri fbg i, e, ik}

-
1
q € S3(psr), then > 2 s l(Plyqi}( re Thus, =7 fi(}?fl,qﬂé é_i"" s

1=l 2 2

and fi(pj_’qi) b4 r, V i = il’ cany ik' Hence, a3 € Sfi(Pi;ri) CUi_,
and q € H’I+ Ujo Thus, p € Sy(psr) C P ;4U;, and d induces the
product topology H’I-,-Ti on H"Iﬂ,i.si..

The original axioms for what is now known as a Moore space
were first given by R.L. Moore and later investigated by F.B. Jones,
R.H. Bing et al, Moore showed that this concept is a generalization of
a ﬁetrizable space, and Bing showed that the two concepts are equivalent

for the class of collectionwise normal (paracompact) spacess

Definition 5.2, ¢S, > is a Moore space iff S, > is a

developable T363pacep

Theorem 5,3, Every subspace < A, A N T > of a Moore space

<8, > is a Moore space.

Proof, This follows immediately since TB and the property of

being developable are both hereditary.

We give an example to show that the property of being a Moore

space 1s not productive, and then we prove that the property of being

a Moore space is weakly productive,
Example 5.2. We consider once again the space of Example 3,13,

which we used to show that the property of being developable is not
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productive, Each factor space, being metrizable, is a Moore space,
The product space is not a Moore space since it is not develonable,

Theorem 5.4, If <8S;, Ti > 1is a Moore space Yi e Tt

then the product space < 4S;, FPI* T ;> 1s a Moore space,

Proof. Since T3 is praduﬁ?ive (Corollary 2,2) and the product
of a countable number of developable spaces is developable
(Theorem 3,10), the result follows.

Ko Menger first introduced the notion of a semi-metrizable
space as a generalizatien of a metrizable space, Various topological
characterizations of semi=~metrizability have been given in the
literature by MecAuley, Cedar, Heath, Boyd, et élg Sims gave in
his Thesis [é] an "indexed neighborhood" characterization of semi-
metrizability and showed that every developable Ty-8pace is semi=
metrizable,

Definition 5.3, < S, > 1s semi-metrizable 1ff 2 a semie

metricd on S 5 the collection {Sd(x;r) /r> 0% is a loecal
basis for T at x V x € S. (d is a semi=metric on § iff

d: Sx S rY v {01 and satisfies the following conditionss

(1) d(x,y) 2 0 iff x 2 y 3 (i1) d(x,y) = d(y,x).)

Theorem 5,5. Every subspace (A, ANTD> of a semi-

metrizable space <S,‘J'> is semiemetrizable,

Proof, Let d: Sx S —=R*U {0} be any admissible
gemi-metric for <S, T> , The restriction dy = d/A of the
domain of d to A x A is elearly a semi-metric on A. As in the
proof of fheorem 5,1, the collection {Sal(x;r} /r> O} 1s easily

seen to be a3 loeal basis for A nYT at x V X € A.



Example 5.3. We reconsider the space of Example 3,13, which we

used to show that the property of being developable is not productive.
Each factor space is metrizable (hence, semie~metrizable), However,
the product space is not semi-metrizable since it is not first countable,

Theorem 5.6. If < 8;, T i> is semiemetrizable ¥ i€ I+,

then the product space < P ""Si’ [?I+Ti> is semi-metrizable.
Proof, Let d; be any admissible semi-metric on <S8, >

V’ 1erxt , and let f be the admissible, bounded semi-metric on

d
<Si, ®:;> Y 1ie 17given by £, (x1573) = i(xi’yi) in,yi € S,

i°

As in the proof of theorem 5.2, one can easily show that

o
d(x Vo= S e (x } Vx S is a semiemetric
»y = 21 ja 1 i’yi »y € FPI+ 1

on H’I.l. Si which induces the product topelogy ?I"' Ti.

BsTe Sims has defined in his Thesis [6] the notion of a=~metrizability

and shown it to be a generalization of semi-metrizability,

Definition 5.4. <8, 1> is a-metrizable (a > 0) iff 3 a metrie

d on S 35 the collection {Sd(x;r) /r> a} is a local basis for
T i N ' x 8. A is called an a=metric. In particular, < 8, 3>

is O-metrizable iff it is metrizable,

Theorem 5,7. Every subspace<A, A N4> of an a=metrizable

space <S, > 1is a=metrizable,

Proof, TLet d: Sx S — R U {®} be any admissible a-metrie
for <S, )., The restriction dy = d/A of the domain of d to A x A
i1s clearly a metric on &, sgince 4 is a metric on S, As in the proof
£ Theerem 5,1, the collection {Sdl(x;r) /r> a3 is seen to be a

local basis for AN4 at x V x ¢ A, Hence, dy is an admissible



a=metric for <4, ANT >.

Example 5.4 We again consider the space of Example 3,13,

which we used to show that the property of being develoepable. is not
productive. Fach factor is O=metrizable since it is metrizable.
However, v a 2 0 the product space is not g~metrizable since it
is not first countable ( [63] s Do 13), -
- rodudiive
In proving that a-metrizability is weakly'\‘we shall make use

of the following lemma,

Lemma 5,1. <S8, T> is a=metrizable (a > 0) iff <8, 2> is

lemetrizable,

Proof, Tet d be an admissible a=metric (a > 0) for <‘3,T>

Thus, {Sd(x;r} e a} is a local basis at x V x e Se Let

f (x,y) - i‘- d(x,y} ’O’x,y € S. 5 4 is a metric on S since 4 1is .

Clearly, 1S;(x;r) /r > a} = {Sd(-l-) (x;_ér_} /-E- >§§ = {Sf (x5r9) /vy > 14,

_ a
where ry = E. Hence, j’ is an admigsible l=metric for < 8, ">

L

Theorem 5,8, If <S;, T ;7 is l-metrizable Vie I-’, then
the product space (FPI+ Si s H’I.;.i‘i) 1s l=metrizable,
Proof, For each 1 € I, let £, be an admissible lemetric

for <8., % 17, and let dy be the admissible, bounded %—-metric for

<5, & 3 7 giwen by di(xi’yi) - F1(eiayy) Y Xi19Y3 € S5
1"'}:5-(111}'1)
Let d(x,y) = sup 1d;(xq,y3) /1€ I"'} Vxy € FP]_‘"'Si‘ We

show that d is 3 metric on

Pr+ S50 (1) dlx,y) =20 ifr
sup {di(x3,53) /1 €I w0ifr > eys ¥ 1 €1t 1rr & = Ve
+
(11) 4a(x,y) = sup {di(xi,yi} /1ie Ij = sup {di(yi,xi} /i€ I*}

= dly,x). (111) dlx,y) + d(y,2) = sup {di(xi,y) /1 €18 4



=
s :;l L

4
Sup{di(yiyzi) /1€ I*g Z sup {di(XiJYi} + di(Yirzi) /1iel _?-:?-'f
sup {d;(x3,23) /1€ I = d(x,2),
We next show that {Sd(P;I') /r> %} is a loeal basis for
Wi+®; at pVp el 45, Tetpe P 48 and let T,
be a basic open set containing p, Thus, U; # 83 only for

18 13y ees, 1, Since d; is an admissible %ﬂmetric for < Si! T i>J'

3 r > % 3 ¥ € Sy (pygry) © Uy 121y, eeny Lo let

r = min {ry /1. 175 eeey 1.3 o Clearly, r > -12-, If q € Sy(p;r),
then di(Pi!qi) € d(p,0) € r ¢ ri)i = 175 coey 1,0 It follows that
ay € Sdi(pi;ri) for 1 g 1s, esey i, and q & FPI“" Us;e Thus,

P € Sy(psr) C FPI"' Us;r and {Sd(p;r) /r > %} is & loeal basis for
Wi+Sy 8t p ¥pe By, Thus, <B4, Bt > ia
%-*me'trizable. Hence, it is l=metrizable by Lemma 5.1. Indeed, if

we let o (x,Fy) 2 2 d(x,y) Y XyY eﬁ’I.,.Si, then f is an admissible
lemetrie for <H>I+Si, FP I+ d\i > °
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