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ABSTRACT

This paper is a treatment of groups having two generators

with the following relations:

2 2.k

e® 2 b" « (ab)™ 2 o, ba® 2 a5,

The emphesis is on finding some important subgroups, specifically
the commutator subgroup.

The illustrative examples, however, ars chosen to clarify
the techniques we use to find the above subgroups,

The first chapter is an introduction to the Systematic
Enumeration of Cosets, among other results, with an illustrative
example. This forms the basis on which the properties of the
groups in the succeeding chapters depend, Although the first
part of the second chapter deals with finite groups, mainly

the groups are infinite,
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CHAPTER I

INTRODUCTION

In this paper we shall begin a study of the structure of a
non-asbelian group G generated by a and b with defining relations
8% z t® « (ab)® s e, ba® = & ¥,

In a defining relation such as = a e it is agsumed that the
order of x is exactly n, Powers of a and b may always be reduced
to their least non-negative residues (rod m and mod n respectively).
However it is convenient to write k z =1 instead of k = n = 1, |

Certain subgroups, such as commutator subgroups, will be
investigated.

The case in which m is odd may be partially disposed

of as follows. The order of a? 1s m, since (2,m) = 1, so a® = e

may be replaced by (2?)® 2 e, Also, from be? = a%bk we obtain

baT ¢ a2TpK" (r any integer), so that
b e ba?® ; o2Ppk™ k"

which requires K" s 1(mod n), since b has order n, This gives
k"1 e (k= 2)0™L K2 . kx 1) g0(mod n), If
k z 1(mod n) then b commutes with e?, but a = (a%) <2 , 80

ba = ab and G is abelian, which will not be conshdered in this
paper, Let k now be chosen so that

kl-l km-z K

LR

1 g O(mod n),

-1-.



s 2=

m-1
Then (a<h)® = a<® B 4 X440 k +v1la e, and a?b has
order m because no smaller power of a? squals e, Therefore in

this case G is generated by a2 and b with the defining relations
(0.2) = bn ® (lzb)m s 8, b!.z - azbk,

which is equivalent to a case studied by Basmaji 1 ,
It may also happen that k™ g 1(mod n) without either
factor of K™ 3 being congruent to zero (e.g., m = 3, n g 26,
k #« 3)» However, since thies paper will desl mainly with cases
which can be generalized for all n, from now on m will always be even,

The condition that k shoudd satiefy is

/2 4 1(mod n) since b w ba® = ambkn/z - bkm/2 M

(g is always sn integer since m is even), But 3 is eve® OF odd
depending on whetehr m gz O(mod 4) or m 3 2(mod 4) respectively,
If B 1s even, cleerly k = 1 is a solution of /2 4 1(mod n)

for 211 positive integer n., On the other hand 1f5 is odd then
for all positive integers n 2k g -1 is not a solution of

/2 g L(mod n) since =1 § 1(mod n). In case n z 2, =1 g 1(mod 2)
and hence they are equivalent, For some values of n there are
other solutions of K%/2 g 1(mod n). For example, if m = 4

and n = 20, there exist the additional solutions k # 9 and k « 11,

However, it will be shown that the cases k #» 1 may be generalized
for all relevant values of n, which is impossible for the other

In this paper we will use two results, one of which is
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due to Dyck [?t[which ist The effect of sedding new relations to
the abstract definition of a group G is to form a new group G'

which is a factor group of G. By abstrasct definition of G we

mesn "2 set of relations
dk{sl’ 825 ee Bn) z=e (k= 1,2,35408 s)

satisfied by the generators sy, 8; «.. s, of G, is called an
abstract definition of G if every relation satisfied by the
generators is an algebraic consegquence of these particular
relations", (Coxnter[?,p.i] )

Let us specialize this definition to the case where the
generators of the group G are a and b and let the abstract definition

of G be the following set of relations,

k
am-bn'(ab)mla, baznazb.
or
a® - b 5 (ab)® g a2 T = 8.

Now, according te Dyck's result, if we add the relation
ab = ba (or a"lb=lab - e) to the above relations we get a facter
group of G, Moreover, this factor group is abelian since the
generators commute. Obviously, if no further relations are
imposed, we will get the largest abelian factor group of G which
is the commutator factor group of G,

So adding ab = ba to the relations a® = b” = (ab)™ = e

ba? = azbk we got the defining relations of the commtator factor

group of G,
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The gecond result is due to Todd and Coxeter [3,p.121 »
The Systematic Enumerstion of Cosets which is described and illus=

trated below,

The Todd-Coxetar Method of Systematic Enumeration of Cosets.

1£ H is a subgroup of G and a™ = e is a defining relation

of G, there ars at most m cosets of the type Hal, We indicate
this by a table headed by the slement a wmritten m times, These
a's serve to ssperate m t+ 1 columns from each other. The number 1,
denoting the coset H, is entersd at the top of the first column.
Then the entry &t the top of column i(i = 2,3,,..,m +1) should
denote the cosat Bai-l. If Ha = H, the number 1 will appear at
the top of every column, If Ha f H, a number different from 1
will appear at the top of column 2 (2 may be used if it has not
been used for a coset other than Ha), In any case, 1 must be
entered at the top of the last column., For example, if a® -8,

but there are only three cosets Hai, the first row may be filled in

as follows:

If other cosets exist, a new row may be started with one of them,

and thls process may be repeated until there are no more cosets,
Simaltaneously, the procedure is carried out for every

@efining relation, any information obtained from one table being

entered whemevar possible in other tables. Care must be taken
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t0 ensure that each coset appears in all poassible non-equivalent
columns., In the above example, all positions are equivalent. However,

if (a?t)? = e, the table headed by

has three essentially different columns, Columns 1,4, and 7 are
equivalent, columns 2 and 5 are equivalent, and colums 3 and 6
are equivalent, If aZbab = e, all columns are different, except
that the first and last columns are always regarded as identical,
When all the tables are complete, namely all the rows
and columns are filled upythe process is at an end,
The interpratation of the above process is the following:
If the tables are compleie after m cosets have been entered, then
the index of H is a divisor of m, If no coset has besn inadvertently
repeated, the index of H is exmctly m, Hence if H is of order n,
the order of G is mn, The process may even be applied when G is

infinite, provided that H has finite index in G,

G 2 &a_-,b {
Let
Py (ab)* = e
and

b.z T azb-ll

The above is equivalent to a% a b3 = (ab)™ - ba’ba? = e let
Ha {ajbal b} « It will be shown later that a3ba and b commuts
and hence the order of H is 9 = 32 and its elements are

adoland 1, 320,1,2,
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The tables with 1 =« H inseted are

Note that the symbol 1 appears in each table in every essentially
different position., We define 2 w 1l,a and insert this into the

tables to obtain

Note that in the second, third and fourth tables we have placed
a 2 in every essentially different position. Define

33 2,2 2 ltazo



a a a a b b b a b a b a b a b
23 1 11 1 1 1 2 1 1
2 2 2 3 2
3 3 3 3

1 1 2 3 1
1 2
2 3
3

Similarly here we have insertad 3 in the tables in every essentially
different position,

Define 4 = 3a and hence from the first table we get 4.2 = 1.

a a &a a b b b a b a b a b a b
1 2 3 4 1 1 1 1 1 1 2 4 1 1
2 2 2 3
3 3 3 4 3
4 4

1
4
2
3

AW =N

And from the last table we get 3b = 3.



Henee the tables will be

a a 8 a b b b a b a b a b a
1 2 3 4 1 1 1 1 1L 1 2 4 1
2 2 2 3 3 4
3 3 3 3 3 4 2 3
4 4

I I 2 3 3 4 1
4 1 2
2 3 4

3 3 4 1 1 2 3

Now the elements of the coset 4 are a3blabvda3 and tne elements of
4b are adb%ab alb, where 1,7k, {=0,1,2, i€ 1 2 j = 0. Then

a 15 in 4. Also if {2 O end k = 2 then a> is in 4b, Therefore
4 = 4b (since two cosets are either disjoint or identical),

Hence we will have

a a & a b b b a b a b a b a
1 2 3 4 1 1 1 1 1 1 2 2 3 3 4 4 1
2 2 2 3 3 4 4 1 1 2
3 3 % 3 3 4 & Y 1 2 2 3
& 4 4 4

1 1 2 3 3 4 1
4 4 1 2 4
2 2 3 4 4 1 2
3 3 4 1 1 2 3



and 1t is obvious that 2b = 2. Hence the final situation is

P S W
[ N W

1 1 2 3 3 4 1
4 4 1L 2 2 3 4
2 2 3 4 4 1 2
3 3 4 1 1 2 3

so after defining 1 a H, 2 = 1l.sa, 3 = 2,2 4 =» 3.a the tables
close up and hence the order of G, which is generated by a and

b with the defining relations

g4 212 2 (ab)% m e, ba? = azb'l,

ie the order of H times 4 (because H is of index 4,}; hence G

is of order 4 x 9 a 36,



CHAPTER II

1. Introduction
In this chapter we shall study the structure of the non-

abellian group G generated by a and b with defining relations:
34 2 b? - (ab)l‘ =8 ba? = azbk

where k = 1. The commtator subgroup of G will be investigated,
end it turns out to be contained in the subgroup b,a’ba (i.e, the
subgroup generated by b, and a’ba),

The tables of the systematic enumeration of cosets will

be provided at the end of the chapter,

2, An Example
Let n » 5 and k » =1, Then G is finite and of order 100

since by the systematic enumeration of cosets, if we define
la S_b i, we need 20 cosets to close up the tables. (See Table 2,1),
The order of G is the order of b times its index., So
G is of order 5 x 20 # 100, This result may be generalided as follows.
Theorem 2,1
If m = 4 and k ¢ =1, then G is of order 4n2, where n 1s
any positive integer.
Bafore proving this theorem we prove a lemma.
Louma 2,2
The subgroup N generated by b and a’ba is of order n?

10 -
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froof:
The order of b is n, Also the order of a3ba is n, since a’ba is

the conjugate of b, Moreover, a’ba and b commite, because
a’bab 2 a°.abab

] 1. =1 =1
]'alba

s 8°%.b since (ab)l’ = e,

baladp~la3

hazabaza3

ba3ba,

Hence N is commutative since its generators commute, This
commutativity means that N = {bi(aBba) J/i,j - 0,1,...,n-1'i.
Therefore the order of N is n° This completes the proof of the
Lenma,

Proof of Theorem 2.1

Let 1 2 N = &b,a:"baE. Then after defining four cosets the
tables will close up. (See table 2.2).

Therefore the order of G is 4n?, This completes the proof
of the theorem. Note that the cosets above form a eyclic group {Ra}
of order four,

Corollary 2,3

The group G (Theorem 2,1) consists of all elements of the form
bladbda® ( r 2 0,1,2,95 1,1 % 00,60+ 0 = 1),

Broof

Every element of G is in a coset Na'™), Since an element
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of N may be written bl(adba)J = blabla, the result follows.
Iheorem 2.4

N -.-\b, a.3ba1} is a normal subgroup of G when m = 4,
k= -1,
Proof:

We need to prove only that aN = Na, since b commtes
with I and every element of G is of the form biabjar. But
every element of N is of the form biajb"a and hence an element

of Na is of the form bia.}bjag.
hia3bja2 = bia3 .azb"J = biab-j.

Also, an element of aN is of the form abPa’b%, But abPa’bla
= 8.27b%bP, since alba and b commite, and a.a’b%abP z blabP
is &an element in Na. Hence aN = Na, and the result follows.

Let C be the commutator subgroup of G. Then x,y ¢ G
imply x'ly"lxy £C., But x,y ¢ G implies that

Xs bia3b'1ar1 sy Y = bkajb"arzg

where
!‘1, r2 = 0,1’2,3;
i’j’k, E' 0’1, ses Nel,
Also , I Y B o, 0 &
x-l"rlbjabirylsi 2b?ab «
Hence,

- - - - - - - - k
x l! 13! =a 1y jab ia T2, eab klaietjbjnrlb asb?arz.

Note thet bl and a’bla commite (Lemna 2.2) so:
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Ir
rl -4 0’ rz H O]
then -iw -
x'ly'lxy - v ab A gabi % 33 b“-k o be
Y k =/
= b jabi (;bikajbj+ ab a2
- - i-k" +k
=b jab i-fab e u";l:v'i a3
- b'jab-i‘paj'bk+e -4 abj*ku:’
s 1 iasd rk-1-{ aabk-e-( ol
L pk¥leieg EXL
If
rl - 0, r2 - 1
then

ly ey 2 v Jab-injb-e ab-kbiasbj+ka3b4 a
= b_j-'1 abkqe o b"(Fj
- O a’b {k apt+d
- bk-e ljb‘c-k A.

Similarly, we have
1.1 1ajak-{ ‘3b1-l+,1 +k,

Ir ry = 0,r2 = 2, then x xy=b
ryz0, 123 x'ly'lxy - bg'k"i'i adpie {'ka
ryz1, 1,20 x‘ly']‘xy - bj-ia'a’b-i.ja
rp=1r,20 Ly lxy = pi-ia3p=iziy

ry=1, r, = 1 x"ly.r‘lq s ¢ (identity element of G)
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a1l pi-2b-g, 3,11,

rpelry=2 Xy xy =
relLiryz3 1-1.7‘13(!' — b™%1a%p"20y
I e e R

r,=1 x"l‘y"liy = bhkajbe-ka

r = 2,

P22, 1rp2 2 Ly ley - AR
ry =2, rh= 3 I']'y_-]“ly s sz*f -kank-?-Zi
&35 Ty x 0 Lyl . bz?+ 133131*( =3
riz3, 1,21 z‘l'y'lzy - b&aabze a

Ty 23, 122 I.IT-]'KS = bt j-2(a3bj-i4r 2ka
1123, 1,2 3 Ly 5 b2 EG22

Clearly the commiator subgroup of G is contained in N,

gince for all possible values of r) and r, x'ly'lxy is in N,

Now we shall use Dyck's result which is mentioned in the

first chapter.

or

or

Add ab z ba to the defining relations of G, We get

a“':bn:(abjl':dmbazglzb.l and ab = ba

az‘:bnzal’b“‘:eg btb-]'

n‘:bngb‘*=o y bz-o.

-

Now, if n z 1(mod 4) we get
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ab = bae or a":e .

If n gz 3(mod 4) we get

]
.~
n
o
[
1
o
(]
"
@
o
H
Y
~
"
@

or _
a‘*;hw‘f’:b2=a or al‘-b =8
If n = 2(mod 4) we get

!l":'b‘2=9.

Hence, if n is odd (i.e. n 5 1, 3(mod 4))  the defining relation of

G/C, the commtator factor group, is

(ca)* = ¢ ) (1)
and if n iy even (i.e. n 3 O, 2(mod 4)), the defining relations of
G/C are _

(ca) = (c0)® 2 e, Ca Cb 5 Ob Ca « (2)

Now we are ready to state
Iheorem 2,5

The commtator subgroup Cof G (m 2 4, k =-1) is N if n is
odd, and is {bz,aBbza,a'lb-lab is Q if n is even.
Proof':

We know that C is contained in N.We also know from above,
that the index of C is 4 if n is odd. Moreover the index of N is



s 16 =

4Le (See table 2.2)

Now n
G/ 2 ana /1= o,.J.,z,;;E.‘1

and G/ = {cﬂ /Le01,2,37 . (1)

Since G/N and G/C are both eyclic and of order 4 if n is odd ythen
G/N 1is isomorphic to G/C. Therefore we conclude that C =Nifn
is oddjotherwise the cosets of C would be properly contained in the
respective cosets of N and would not contain all the elements of G,
If n is even:

G/C = {caibi /120,1,2,3, j « 0,1} ‘

Obviouely Q = {bz,a3hza, a-]h-lab 315 8 subgroup of N g ib,ana-S.
Moreover,the index of Q is G,m;d the set of right cosets
of Q is {Qaibj /120,1,2,3) 3= o,1§. (See table 2.3).
Obviously the right cosets of Q and C are in one=to-one correspondence,
Moreover, Mo e R c; and (Cb)? = €, in the defining relations
of G/C}noana b? 1s 4n €, Also a~'b%a = a3b2a is in C since C is
normal, So the generators of { are elements of C, Therefore Q
is contained in C.
Hence we conclude that C = Q if n is even, Otherwise
the cosets of Q would be properly contained in the respective
cosets of C and would not contain all elements of G, This
completes the proof of the thecrem,
Corollary 2,6
The order c:rGi.,nuzifuiaoddnmlgE if n is even.
The proof is obvlious,
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Let ns consider the group G generated by a and b . 30, that

the following relations hold:

ab 2z v 2 (ab)® = e, @ azb.

Theorem 2,7

G(m = 4, k = 1) is infinite for every n > 3.

Befare giving a proof we introduce a result due to Dyck
(Coxster [3, p.61)).

Let S and T be the two generators of a group G, and let
S eT (3'51')? = e,
Then; 1£ 1 +1 + é 71, G is finite} otherwise G is infinite.
Eroof of Theorem 2,7

Let H =ih, -3ba73bo & subgroup of G. The order of b is
m , 80 b” 2 e. Also (a%a)™ w e since a’ba is & conjugate of b.
The order of a’bab is 2, since

a’baba’bab = a%abababab = e,
But
1i+141<1 iftnvys,
n n 2
Hence H is infinite if n > 3., Therefore G is infinite since H is
a subset of G, This completes the proof of the theorem.
Theorenm 2,8
The order of G(m e 4, k = 1) is 48 when n = 3,
Proof:
Let 1 -%a“;,ﬂun after defining 12 cosets the tables



elose up; and since the order of {a gis 4y the order of G is 48,
(Ses table 2,4).

4. Normal Subgroups of G(m s 4, k 3 1)

Iheoren 2,9
H 2 \b, aamgia normsl in G and is of index 4.

Eroof:
To prove that H 2 ib, aabai is no™mal in G, note that
b~L m = H, sinceb ¢ H; a"l ba ¢ H;

a"l(a”be)a = 2%58° « b € H;

therefore a~lHa contains the generators of H, so it contains H,
Similarly, H contains a~ Ha. For any x € G, the operation

H ~3x"tix consists of taking successive conjugates of H with
respect to powers of a and b, Therefore x Llix = Hand H is
nornal in G, Moreover, H is of index 4, (see table 2,5)

where the cosets of H form a cyclie group.

GH s in;i /130,1,2,3 7}

This completes the proof of the theorem,
Froposition 2,10
The subgroup {12, b, n;bakia normal,
Froof:
The index of 32, b, aabui is 2. EHence the result follows.
(See table 2.6).
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Note that if n is odd, the index of‘\b, aba] 1s 2 (see

table 2.6a), (Hence normal),

bg {12, b, agba.ﬁ ’

aba = a2(a’ba) ¢ {a°, b, a.Bba} .

Also,
and

* {b,aba& is a subgroup of iaz, b, n3ba-i N

¥oreover, both subgroups have isomorphic (abelian) factor groups.

(See tables 2,6 and 2,6a). Hence, we conclude that
az, b, QBMS -_-ib, aba'g

if n is odd., However, if n is even the imdex of ib, aba-iia be
(Ses table 2.6b).
So ib, uba.s is properly contained in 32, b, a3b33 if n

is even.

The Commutator Subgroup of G(m = 4. k = 1),
Lemsa 2,11

The commmtator subgroup C of G is a subgroup of H -ib, aaba].
Proof:

G/H is abelian, (see table 2.5) so C is contained in H,

Let us apply Dyck's result, mentiomed in the first chapter,
to decide the commtator subgroup of G(m = 4, k 2 1).

Ad join the further relation

ab g bs toak g P s (ab)% = @, ba’ =« ad,

Ne get
al‘.—.bn-a"'bl'-a,



which is equivalent to
34=bn=b439 . (1)

If n is odd » 4
b® 2 b* s e implies b = e.

So (1) will reduce to
a"!" 2 O » (2)

and (2) will become the defining relation (ca)4 = C of the factor

group of the commutator group. Hence
i
6/C = \c. /120,23 .

Also if we consider H = \b,.Jba'g-hich is normal and is of
index 4, (see table 2.5), the factor group G/H is {Hai/i = 0,1,2,3&
and obviously ite defining relation is (Ha)" = H,

Clearly G/H is isomorphic to G/C since both are cyclic of
order 4.

Theorem 2,12

If n is odd, then the commtator subgroup Cof G (m = 4, k =z 1)
1 equal to H = {b, a’ ba}.

Proof:

G may be partitdoned into C, Ca, Ca?, Ca’ or H, Ha, Ha?, Ha’.
Also C is contained in H Lemma 2.11, If C £ H, part of H must lie
in a coset Cal # C. But CalC Ha® £ H, Therefore H would intersect
Hal, which is impossible. Hence € = H.

Theorem 2,13
If H and ¥ are subgroups of G, and H is a subgroup of K, and
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if there is a one-to-cne correspondence

Hx, —» Kx, (1 » 1,2,...%)

i i

between the sets of right cosets of H and K then
H = K.
Eroof:

HCK implies Hx; C Bxgy (=21, 2, .00, t). If H{£K,
part of K must 1ie in a coset Hx; # H. But Hx, C Kx;, so pert of
K would be in Kx,;, which is disjoint from K., Contradiction.

Hence H = K.
Since a~1b"1 ab and sb a" b~L are in C, so is their

product:

azb-lababa

a3b'ﬁ'bnbaba3b'1

ab~2a 2bebabaa’b1

a'Jfb-lababa.lb-l Bb“1

ab'zbabababbdazb-l

i

ab™ <2 (ab) hp=1g2y1

ab™2a Xp~2

= (ab™ !3b2) b-f’.

Since ab~?a%b” is a commutator, and since C is a subgroup, b4

and its inverse b4 are in C.



“« 22 -

So for any positive integer n, whers n is the order of b,
bz' ig in C, If n is odd then b is in C and C -‘tb,a:}ba ?}. Now,
if n 1is even ve have to consider two cases!(i) n g2(mod 4) and
(i) n g O(moé 4). (1) If n 3 2(mod 4) and b* is in C, then all
the powers of b% are elements of C, Among these powers comes also
bn* 2 ~ bz. Hence b2 is an element of C. Let us apply Dyck's

result on case (1),

Add
ab = ba to atsbtPa (ab)4 z e, btp.2 . az‘n.
We get
n"‘ = b'nz b4 = e,
but 4
P = b* = e implies b? = e,
So we have;

at‘:bzze,abgha (3)

Hence (3) will become the defining relations (Ca)l‘ = (C:b)2 = C,
CaCb = Cb Ca of the commutator factor group Cof G (m = 4, k = 1),
Therefore G/C .S(ceibi /is0,2,5.% § 0,1g-h1ch is of order 8,
so the index of C is 8
Theorem 2,14

If n gy 2(mod 4), then the commtator subgroup C of
Glm = 4, k= 1) 18 ibz, n3b2a, a.lb-lnbl: K.
Froof:

We showed that b2 is an element of C, Since C is normal,
a"'b%a = a’b s 1s also an element of C. Also a™'b™leb is an element -
of C., Since each of the generators of I is an element of C, then K
is a subgroup of C. But the index of K is 8, (See table 2.7).
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Moreover, the set of right cosets of K 1is

akaibj /1i=0,1,2,3 3= 0’11 .

Also
G/C = ic;ibj /L:6,1,2,3; ] s 0,1}.

Obviously, there is a one-tc-one correspondence between
the right cosets of F and €. 5o, by theorem 2.133!! = C

namely

C = \bz, n3b2a, a-lh'labl.

This conmpletes the proof of the theorem.

(11) If n g O(mod 4) then b4 is in C.

Now add
ab = ba to a R (a.b)l" s e, ba? B azb.
We get
al*.-:bngb!‘= e, ab = ba
or

a‘*-b"ge, ab = ba . (4)

Hence (4) will become the defining relations (Ca)“ - (C’b)l“ = C,
Ca Cb = Cb Ca of the commtetor factor group of G(m = 4, k = 1),

Therefors
G/C = i&ib-j /1, ) x0,1,2,3 1

which is of order 16, so the index of C is 16,
Theorem 2,13
If n 2 0(mod 4), then the commtator: subgroup C of G(m = 4, k= 1)

is 21 -
ib‘t’,a“’h‘da, n'lb'lab, sb a 1b 1; =Q

Proof:
By a sisllar argument as in the proof of the previous theorem
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ve have b ¢ C, a’ 4 ¢ C, al bl ab ¢ C, and also aba~1b"l ¢ C
gince they are commtetors., Hence { is a subgroup of C. But the
index of Q is 16, (See table 2.8).

Moreover, the set of right cosets is

@'l /1, 120,123
Also
a/C =§Lc.1b1 /i, §= 0,1,2,3}.

Obviously, there is a one-to-one correspondence between the right
eosets of Q and C,
So by theorem 2.12 Q = C,
namely
8 -{b’*, adbba, 2~ln"lab, aba'lb'l}.
This completes the proof of the theorem.

To summarize the results of these three theorems, we may
state the following:

Let G(» = 4, k = 1) be the group generated by a and b,
with defining relstions:

a% - b® 2 (ab)% = e, ba? = a’b,

Then for n = 1, 3(mod 4), n g 2(m0d 4), n 5 O(mod 4) the commutator

subgroup of G is
¢ ={b, a3ba}

c =ib2. a® b, !-lb-lﬂbk
c :ib"', a3bs, a”lb"lab, aba™b! S

respectively.



5. B Note on the Indices of the Subgroups of G(m = 4).

Whet the systematic enumeration of gosets tells ue about
the index of s subgroup H of G is the following: If after defining
m cossts of H (where 1 s H) the tables close up, then the index
of H is a divisor of m, On the other hand, through Dyck's result,
we can decide the exact index of the commutator subgroup C. Moreover,
if H is 2 subset of C then the index of H is greater than or equal
to the index of C.

Throaghout the chapter we have manipulated the multiple
of the index of N, H, K, Q, etc. and for each case we have
shown, independent of the tables, that the commutator subgroup
contains it, and it has happened that the multiple of the index
we bave found coincides with the exact index of the commutator
subgroup., Hence we conclude that the index of the commtator
subgroup is the proper number sought, For example, through
table 2.5 we have the multiple of the index of H = ib, a’ba {
is 4, where H is a subgroup of G(m = 4, k = 1). And we have
shown that if n is odd the commutator subgroup C of G contains
H. But the index of C iz 4, Hence we conclude that the index

of E is not merely a divisor of 4 but is exactly 4.
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IABLE 2,5

n factors
B
P b b ... © b b
1 I 1 Jewsl 1 X 1
2 2 2 2.,..2 2 2 2
3 3 3 3...3 3 3
L 4 L heoldh 4 4L 4

D
n =« 1 factors
P b e b a a b

1 1 1.1 1 2 3 3
2 2 2..2 2 3 4 4
3 3 3.3 3 4 1 1
L 4 4. b4k L 1 2 2

1.-.}1:, a¥bal = 4.2
23la32b
3228 2 3.b
4z 3e 2 4b

a



IABLE 2,€

B

b b b ... b b
1 1 1 1.,..11
2 2 2 2 4402 2

1 ,iaz, b, a’ba{ s 2a

2ela=2b
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TABLE 2,68

B
n factors
a P b be..bB b b a
1 1 1 1 1l,..1 1 1 11
2 2 2 2.2 2 2 2
D
n=1 factors
b b b‘ T b b b a a
l1 1 1 l1...1 1 1 1 2
2 2 2 2 ... 2 2 2 2 1
lg(ih,abaj
2:1-!:213
TABLE 2,6b
n_is even
B
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a b b b..b b b
l 1 1 1 1l...11 1 1 1
2 2 R Qeeed R 2 2 2
3 3 3 3...3 3 3 3
4 & 4 Laood 4 4 4
D
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b b een b a8 a b a
2 Lessdl 1 1 2 4 4 3
J 2+.¢3 2 3 1 2 3 1
4 Ao h 4L 4 3 1 1 2
2 Fees® 3 2 4 3 2 4
1.{!‘33,133:3! 3=2bg ia
2ml,aws 3 4L = 2a s 4b

b a b
2 2 1 1
b a b
2 311
4 4 3 2
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CEAPTER LI

1. Introduction
The difference between this chapter and the previous one

is that now the order of a (vhere a 1is one of the two generators
of the non-sbelian group G) is 6 instead of 4. That is, we shall
begin toc study the structure of the non-abelian group G generated
by a and b with defining relations:

e s b? (ab)6 -8, ba? = azbk.
Since - bab 2 b(az)j £ (Iz)g bk3 = ka’
1t follows that k” = 1 2 0 (mod 1),
or (k = 1) (x®t k£+1) 5 O(mod n).
For some n there are values of k for which X°+ k4 1 3 0(mod n);
for example, k = 2 or 4 when n 3 7. However, in this chap-tor we
shall let k = 1, which is valid for svery n.

The commutator subgroup of G will be investigated, and it
turns out to be contained in the subgroup ib,nsbn’i. The tables
will be provided at the end of the chapter.

Iheorem 3,1

The group G(m = 6, k = 1) is infinite if n > 2.
Proof:

Consider the subgroup H =§Lb,asba'gof G. The order
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of b is n, 50 b® » 6. Also (a’ba)® = e since a’ba is a con jugate

of b. The order of a’bab is 3 since

a5baba’baba’bab = a12(ab)® = e,

But
1idl-ley if n > 2,
n n 33—

Hence H is infinite if n 2 LA, p.6lj » Therefore G is infinite
gince H is a subgroup of G, This completes the proof of the

theorem,

Remark: When n z 2, the order of G is 36. (See table 3.1)

2. Normal Subgroups of G(m z 6, k = 1).
Theoren 3,2
Hz ib, aﬁnlia normal in G and is of index 6.
Eroof:
To prove that H is normel in G note that b™LlHb = H
since b is in H;
a"lba 2 a’be is in H;

a"}(a’ba)a = a%ba? = b is in H;

therefors a ‘Ha contains the generators of H, so it contains H.
Similarly, H contains a”'Ha. For any x ¢ G, the operation

H —x~1Hx consists of taking successive conjugates of H with
respect to powers of a and b, Therefore x~lHx = H and H is
normal in G,

Moreover, K is of index 6. (See table 3.2). This completes
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the proof of the theorem. Note that the factor group of G with

respect to H is eyclic of order 6.
G‘/H 2 I&BAi / 1 2 0,1,0.!5 !‘. (cf Thn 2-4,“ 209).

) ti
The subgroup &‘2’ b, asbal is normal.
Proof
The index of 12, b, a%alil 2.. Hence the result
follows. (See table 3.3).

3. The Oommutator Subgroup of G{m z 6, k 5 1)
Lemma 3,4

The commtator subgroup C of G is a subgroup of
H = \b, a5ba.s.
Proof

G/H is abelian, (see table 3.2) so C is contained in H,
Thie completes the proof of the lLemma,

Now, to determine the commutator subgroup of G, we
apply Dyck's result, mentioned in the first chapter,

Ad join the further relatiom

ab = ba to aenbna:(ab)6aﬂ,ba2:azb

we get
a6-bn-abb-6’-e,

which is equivalent to a® « b" : 1® 2 o (1)

Now, we have to consider six possibilities:
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n g l{mod 6), n g 2(mod 6), n g 3(nod 6), n § 4(mod 6),
n g 5(mod 6), n g O(mod 6).

If n g Limod 6), then (1) reduces to

56 sbze or simply a6 = 8,
Also, if n g 5(mod 6), then (1) reduces to

a6-b5sb6so or a6ue.

So if m ; 1,5(mod 6) the defining relation: of the commtator
factor group is:

(ca)® 2 ¢ (2)
Similarly, if n g 2,4(mod 6) (1) reduces to
ab = b? =8,
g0 the defining relations of the commitator Pactor group .are;

(ca)® - (cv)? 2 C, CaCh = CbCa .+ (3).

Aleo, if n g 3(mod 6) and n 3 O(mod 6) the defining relations &f

the commtator factor group are

(ca)® « (cb)3 = C, Calb = CbCa (),
and 6 6

(ca)” = (Cb)” = C, CaCb & CbCa (5)
respectively.
Theorem 3,5

If n 3 1,5(mod 6), then the commutator subgroup C of
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G(m = 6, k « 1) 1s equal to H = {b, a’ba} .
Proof

The factor group G/H is cyclic and obviously its
defining relation is (Ha,)é = H. (See table 3.2) clearly,

there is a one-to-one correspondence
Hal —> cal
between the set of right cosets of H and C, esince
G/C = iCai /1 20,1,...5%.

Moreover, by Lemma 3.4, C is contained in H. Therefore,
by Theorem 2,13, H 2z C; that is,

C-[b, a’ ba-"}.

Theorem 3,6
If nw 2,4(mod &), then the commutator subgroup C of
G(m = 6, k 3 1) 1is squal to
K s {bz, ab?a, a~lp-l ab3 ]

Eroof

2 2 52

(Cb) " = C implies b” is in C. Also a’b°a is in C since

C is normal, and clearly a~lv=lab 1s in c. S0, each generator
of K is in C. Hence we conclude that K is contained in C. Also,
the index of K is 12, and the set of right cosets of K is

¢

IKaibj / ie 0,1,.-.,5] J ] O’IE -
(SQ‘ table 304) .
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6/c = \catbd /12 0,1,...4, 5= 0,17,

Obviously there is a cne-to-one correspondence
Ka'bd > ca'n’

between the sets of right cosets of K and C. Then by Theorem 2,13,

CszK,

or
c gibz, ab%, a~lb"lab ’S.

Remark: This theorem is valid even when G is finite, that is,
when n = 2, Then b2 =8, s0 C 2 Eia'lb'lab}, which is eyelie

of order 3,
Iheorem 3.7

If n 2 3(mod 6), then the commutator subgroup C is
G(.i6, k'-' 1) is

Qs Sl.b3’ asbja, a-lb'lab, aba-lb'lg.

Proof:

By a similar argument as in the previous theorem we can
show that Q is contained in C. Now, the index of Q is 18 and
the set of right cosets of Q is

Yaals! /1. 0,1,... 5 520,1,2 12
(See table 3.5)
6/C = iCaibJ /1201, veuy 5, § = 0,1,2} '

Obviously there is a one-to-one correspondence
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@l 5 calpd

between the sets of right cosets of Q and €, Thus C = Q by

theorem 2,13, That is
Ce \bB , a°t7a, 8" b lap, aba'lb'lj.

Theorem 3,8

If n g O(mod 6), then the commtator subgroup C of
G(m = 6, k = 1) is equal to

L 1‘b6,asbéa,a-lb'llb,aba-lb‘l,abza-lb-z,abja-]Tb-B,abl‘g'lb-t’j "

Proof

By a simliler argument as in the previous theorems we can
show that ¥ is contained in C. A4lso, the index of ¥ is 36 (see

table 3.6) and the set of right cosets of N is
aie! /4, 3a0,,..., 5.
G/C s {c.ih-j /1, 32010005,
Moreover there iz a one-to-one correspondence
Malvd — gulpd

between the sets of right cosets of M and C. Then by
theorem 2,13 C = M,

Namely
c :(Lbé ,asbéa ,a-l'b'l'ab,aba'lb-l ,abza ']‘b-2,nb3n-1b'3 ,ab""aﬂlb'l* S
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4 = 3.b

= 2.,b

5’4-!'6-b

221b = 3.8

6 = 5.b = 6,2

3.2...4.b
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CHAPTER IV

1, In io

Now some of the theorems of the previous chapters will be
generalized, One notes that the proofs are slmost the same for
these theorems. However, Theorem 2,13 is already in a generalized
form,

Also, we are going to consider some specific examples in
which k ¥ 1 (ba? « ab¥), of course, these examples cannot be
generalized since any k ¥ 1 is valid for only finitely many values
of n: in the congruence /2 g 1(mod n),

2, The I £ {b, a~lva

The argument below will hold for both cases k = 1 and
ka=1(if k= =115 a solution o K2 g 1(mod n)).

Define 1 = b, a~lba s clearly 1,b = 1,
Then define q = 1a9-l, Now, from the tables (part A) we get
ma w1, i,e. 1a™l ;1 where m 1is the order of a. Now
ql= 1a9°1) ig either (1) even or (ii) odd.

(1) q even implies q - 1 is odd., But a*lbla 1,

go a~lbla? g g0 2"l pJ q , where i is any integer and
Jei1 or J=z-i

Obvioudly ad~1l pd +1 € qb, but j is arbitrary, Hence,

qb.q sy Q= 2’4’040 m,
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(i1) q 1s odd implies q - 1 is even,
But
blad-1 = ad"1 bjé qy J=i1 or je-i,
Also a9l bJ* 1, qb and j 1s arbitrary.

Hence gqb = q, q = 1,3, see n - 1, So we get
q= 1a9-1 =qgb, 13z hm-lo

We claim that the tables will close up, Clearly part A of the
tables will close up with one row. ,fl’art B also closes up sincé
qb = g, all columns will be wqual. 1 -, Part C will begin as
follows: the first row begins with 1, then la =« 2, 2b = - A
28 m 3 and so on, Now, there are m a's and n b's at the head of
part Gy Since (ab)™ 2z e, Since the presence of b's does not
affect the process (because qb = q). Then obviocusly the rows
of part C will be in a way eguivalent to part A, Moreover there
are at most 2m rows so we are:;i?t; pert C,

Similarly, in part D there are m a's and the presence of
b's does not affect the process. Moreover, there are m + 2
essentially different positions and se m(m - 2) rows. Also,

every row is equivalent to a row in part A, So we are done

with part D, Hence we conclude that the index of

{b, a~l ba ]5 is =nm,

where
%z bz (ab)® e, ba2ga?b

or
a™ 2 b = (ab)™ 2 @, ba? = a2 b-L,
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3. 1 Sub of G
Theorem 4,1

N = ib, 2! ba S is a normal subgroup of G(k = -1),
Proof

To prove that N s {b, a=1 bal is normel in G note that
bl HbaeN, sinceb-¢ N,

Also a=l ba ¢ N;
l-l(l-l ba) a = a2 baz = b-l £ N,

Therefore a~lNa containe the generators of N, so it contains N,
Similarly N contains a~lNa, For any x G, the operation
N—sx-1 N x consists of taking successive conjugates of N with
respect to powers of a and b,
Therefore x"! Nx = N and N is normal in G(k = =~ 1), This completes
the proof of the theorem,

Since N is normal we can construct the factor group G/,

Obviously

a/n.il.i /10, .com-13,

(See table 4.1)
S0 we can state a Lemma,
lemma 4.2

The commutator subgroup C of G(k = = 1) is contained in W,
Proof

G/N is abelian, since it is eyclic,

Hence C is contained in N,
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Let us apply Dyck's result to determine the commutator

subgroup C of G(k « = 1) , Adjoin

.b e b‘ to a- s bn - 4 (lb). = ., baz = .2b-1.

We get 1
.’ b = b-

a® = b? 2 a™"

or

a® b = b" -2 z2e, b2 = e,

We have two cases
(1) n is odd,

(i1) n is even,,

(1) If n is odd
a.-bnsfb--o, bzgt

becomes
a" z e since bz e,

Hence the defining relatiom of G/C is
(C,). -4 C.

(i1) If n is even
l‘lbn=b‘l0,b2=.

becomes 2
a® = b“ we, abg ba .

Hence the defining relations of G/C are

(Ca)™ 2 (Cb)% 4 C, Ca Cb « Cb Ca,
Theorem 4.3

If n is 0dd the commtator subgroup C of G(K » 1) is



equal to N ={b, ol blg

Froof
C is contained in N by the previous Lemma,

G/N -((Nai /130,11, ...ma= 1%;
6/c =ical /120, 1, suum - 1.

Obviously there is a one-to-one correspondence between the sets of

right cossts of C and N, Hence by theorem 2,13

or

This completes the proof of the theorem,

If n is even we have
(ca)® = (Cb)2 2 C, Ca Cb 5 Cb Ca

es the defining relations of G/C.

Now, we cannot immediately determine generators for the
commtator subgroup, because we need some information from the
tables to decide the index of a certain subgroup, However, one
might investigate the index of the subgroup‘abz, a"1b2 fwhich 1s
a subgroup of the commutator subgroup C because (Cb)2 = Cb? = C
implies b? ¢ C, and therefore a"lb% <C, One can do the
following through the electronic computers or otherwise:
Calculate the index of&bz, a'lbza} If its index is not equal
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to that of C, add a suitable commtator to the generators, and
repeat the process till the index of the subgroup at hand is equal
to that of C. In this way one can decide the commutator subgroup
Cof (G

When G has the defining relations

a® 2 b7 = (ab)™ s e, ba? - &b,

then H =z b, a“lba 1s of index m. The argument is almost the

same as for N, The only difference is that part D of the table will
be hesded by a® b a*b""! ingtead of a®2ba’b, But we said that

the presence of the b's does not affect the table,

Iheorem 44

Haib, a'lbagia a normal subgroup of G(k & 1).

Ercof

The proof is essentially the same as that for N,
(Theorem 4.1)

Since H 1s normal we can construct the factor group
G/H =

6/ = jHal /1201, vem=11,

which is cyelic of order m,
Hence we can state a lemma,
Lemma 4,5
The commutater subgroup C of G(k » 1) is contained in H,

Eroof
G/H 1s abelian; hence C is contained in H, Let us apply
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Dyck's result to determine the commtator subgroup C of G(k = 1),
Add
abzba to a® g b® 2 (ab)® w e, ba? @ ab.

We get
lnabnlbmia’ ablba.

But b2 = bY 5 e implies that b = e, where d = (m,n).
Hence the defining relations cf the commutator factor group

of G(k = 1) become.
(Ca)® 2 ()% 2C, CaCbsCbCa v (1)

Theorem 4,6
If d » (myn) = 1 then the commtator subgroup C of G(k = 1)
isHa ib, a"lbaB.

Eroof
H contains C by lemma 4,5.

G/H u ﬂaai /180,100 511,
(See table £,1)
G/C = ic;i /180100 mel |
since the defining relation of G/C is (Ca)™ & C from (1),
Clearly there is a one=to=cne correspondence between

the sets of right cosets of H and C, Therefore C = H by
theoren 2,13 that 1s ,

¢ = ib, sl ta 1.
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This completes the proof of the theorem,

i!ow, consider the case where @ s (n,m) £ 1,

The defining relations of G/C are

(caJ™ = (e»)® = ¢, Ca Cb = Cb Ca.
But (Cb)d 5 Cb? o C fmplies b4 ¢ €. Therefore a~lbda « C. Hence
de, u"lbdaﬁ is a subgroup of C, since its generators are in C,
Then we investigate, through the electronic computer or otherwise,
the subgroup
iba, a~1pd 3.1,

1f necessary, ad< to its generators suitable commtators £111
the index of the subgroup at hand is equal to that of C, If
the index of ibd, a"lvds, ©,,C,, ... G §» where Cy are

commtators, then by theorem 2,13
d _=1,d
c SSb y & b a, cl’ 02 s80 ch.

So we can state a general theorem,
Theorem 4,7

The commutator subgroup C of G(k a 1) is equal to
\bd, a"lbda, 01, Cy vea ng, where d « (m,n) 01(1 8 1,2,0609q)
are commutators,

d «=l,d 1

Note that, :lfﬂb » & °Db a}is contained in C, then
(b, alofy, C1s Cy e G} ds also contained in C where
Cq are commtators.
Theozen 4,8

&32, b, a™1 bugts a normal subgroup of G,
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Proof
The index of ja2, b, a"lba} is 2. (See table 4.2).

Hence the result follows.

4 Exanples where k =1

In the first chapter we mentioned that k 2z 1 is a
solution of the congruence /2 g 1(mod n) for all integersn and
for all even integerim, k = =1 is a golution for all integersn if
l is even, However, for some values of n and m there are values of
k where k ¥ ¥ 1 and yet satisfies the congruence K" n/2 s 1(mod n).

For example, if n » 24, m = 4 then
ks1l, 5 7, 11, 13, 17, 19, 23
(or ka+1l, +5, £7, +11)

are solutions of k% g 1(mod 24),

It turns out that in every case the subgroup H -ﬂb, a'lbai
is of index 4, and is normal,
Also

/i g \Hal /120,1,2 3}

which is abelian for all values of k. (See table 4s3)
(Note that table 4.3 serves to determine the index of H for
all values of k which are mentioned above, since the only
difference between tables for different values of k is the
excess of b's in part D of the tables which does not affect

the tables), Hence H contains the commutator subgroup C of G.
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For k = 5, 13, 17, the relations of G/C turn out to

be:
(ca)* g (Cb)% g C, Ca Cb = Cb Ca,

while for k = 7, 11, 19 the defining relations of G/C are

(Ca)* @ (®)2 2 C, Ca Cb g Cb Ca,
For
X s 5,13,17, C .ib*,a%‘a,a“lb'lab,af‘lb'ngz £
(See table 4.4, and apply theorem 2.13),
For

x = 7,11,19, C .S(bz,.‘lbza, a b tab §.

(See table 4.5 and apply Fheorem 2.13).
Note that the tables marked out are for k = 17 (Table 4.4)
and k = 7 (Table 4.5) but with slight modifications Table Aok

will serve for k =z 5,13, and table 4.5 will serve for k = 11,19

5. The Order of G(k s 1)
Consider H » ab, a"lba} .
The order of b is n, The order of a“lba is n since it is a

conjugate of b,
Also the order of a~lbab 1.% because

(a=lbab)? = (a"zahob)&

.q(n-n‘!) ((ab) 2)q.

aa(m=2) () 2a,
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Therefore the order of a~lbab is greater or equal to 2q. Let

qs 5 « Then
lon? 2 2 ()
e d®deE ()
2 - .a " (ab)"
.o
But

< n 24,

Hence the order of H is infinite, [l., P. 61} + Therefore G is

infinite since H is a subgroup of G.
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