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ABSTRACT

Factorization theory in commutative domains is well-known,
In this thesis, we extend this theory to nonecommtative domains,
Each of the basic concepts: divisor, prime, associate, common
divisor, etc., principal ideal and unique factorization must be
analyzed and appropriately generalized to the non-commtative
case, The concept of being associated mst be extended to the
mach more general concept of similarity, Using this, we can
extend the ides! of unique factorization and establish that a princi-
pal ideal domain is a unique factorization domain, just as in
the commmutative case,

In Chapter I, we discuss the concept of associated elements
both from one side and two sides, We also discuss units and
divisibility from both sides and we give five definitions of a
prime element and discuss the conditions which meke some or all
equivalent,

In Chapter II, we use modules and module~homomorphisms
to define similarity between two elements, We give a definition
of a prime element by means of the module notion. In the end of
the Chapter, we prove the uniqueness of factorizatiom, up to
similar elements and up to the order, in a domain with properties
weaker than the principal ideal property.

iv



In Chapter III, we discuss principal ideal domain, PID,
which we prove to be a unique factorization domein, UFD, in the
previous sense,

Chapter IV deals mainly with the Hurwitz integral domain H, and
the Lifschitz integral domain L, The first one is the maximal
integral domain containing the second one, The second is the
set of all quaternions with integral coefficients. We shall show
that H is euclidean and hence a FID, and so a UFD,
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CHAPTER I

BASYC CONCEPTS

In this chapter, we shall state many definitions of a
prime element in an integral domain (not necessarily commutative),
and prove the equivalence of four of the definitions, We shall also
define the norm and the relation of two elements being associated,

and analyze both concepts.

1, Division in an Integral Domain
Definition 1,1t A ring D (not necessarily commutative)

with an identity 1 4 O is called an integral domain (domain,
cancellation ring) iff it has no zero-divisors, i.e. ab 2 0
implies a = O or b 2 O for any two elements a and b of D,
Thus, in an integral domain D, the non-zero elements form a
semigroup (a system consisting of a set S and an associative
binary operation in S) under multiplication, which will be
denoted by Dt

All our work will be in integral domains.

Definition 1.2: By writing a I b, a is a right divisor
of b, we mean that Jan element ¢ e Dnsuch that » = ca.
Similarly, by a I! b, a 1s & left divisor of b, we mean that

b = ac for gome element c € D.

Proposition 1l,1: a lb, b le = 2 le.
R R

R
fistisrtys Vg5 lo apa le
1 L . L
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Proof:
Since a | b then b =z ra for some r €D and, since b |c

R R
then ¢ z sb for some s ¢D. Hence ¢ = s.ra = sr.a = r'a, where

er = r' €D, that is a ‘ ¢. The second assertion is proved
R
similarly,
(Q.E.D.)

ition 1,2: a l a =and a l a for any a €D,
since a = l.,a = 2.1 ., ! -
Proposition 1,3: Cancellastion is valid, from right and
from left, in any integral domain D, i,e. ax = bx, x {0,

implies a = b, similarly for xa = xb,

Definition 1,3: If a l 1 then a is called a right unit.
R

Similarly 1f a |1 then a is called a left unit.
L

Proposition 1,4: In an integral domain, a right unit a

is necessarily a left unit, and conversely., Thus we refer to
right (and so left) unit juet as unit,

Proofs

Let a l 1. Then 1l z a'a for some a' € D, So clearly
a and a' areRboth different from zero, Now
a'a . a'a 2 1.1 = 1 =« a'a, Thus by cancelling a from the
right of both sides and a' - from the left of both sides » we have
aa' g 1; that is a I! 1 and hence a 1is a left unit,

Similarly we prove the converse,
(Q.E.D.)

We will denote a' by a"'l,‘ and so we have a.a - = a'l.a =1

in the integral domain D, if a 1s & unit,



2, Associated Elements
Definition 2,1: Ir an integral domain D, an element

b=zuav, where u abd v are units, is called an associate
of a end is denoted by basa.

If ¥=21, i.e. b = ua for some unit u €D, then b is
R
called a right associate of a and shall be denoted by b ~v a,

Ifuel, i, b = av for some unit v ¢D, then b 1is
called a left associate of a and shall be denoted by b,-\LI a.

Proposition 2,1: a | band b la iff a p® b, Similarly
R

a \bandb |a iff a A b,
L L

Proof:

Since a l b, then b = ua for some u €D,
R

Since b l a, then a = vb for some v €D,
R

Thus & = veua = vu.a, which means that vu = 1 and hence
u and v are units. Thus a 1\3 b, Conversely, since a/\R/ b,
then a = vb for some unit v € D, Hence b |a. But since u is

R

a unit, it has an inverse vl in D. S0 v'lag b, which means

that a | b,

R
The proof for the sscond assertion is parallel to this,

Theorem 2,1: The relation asdefined in Definition (2.1}Q'E'D')
is an equivalence relation,
Proof:

l. a~a for any a € D since a = 1l,a.l.

2, If basa then a ~ b, because b z u a v for some units

uand v, Thus a = ul bv'l, and hence a ~b,
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3. If basa, a ;vd then b ~rd, because b = u a v,
a = u' d v' where u,v,u' and v'! are units. Thus b = un'dvv'
w u" dv"; u" and v" are units recalling the well=known fact,
that the units in any domain form a group under multiplication,
Hence bas d, and so s is reflexive, symmetric and associative;

hence it is an equivalence relation,
(Q.E.D.)

More precisely, we have

Theorem 2,2: The relations > and ,{"'./ are both equivalence
relations,
Proof':

1, & 45 a for any a € D since a = l.a.

2, If b A% & then a . b, because b = ua for some unit
u €D, Hence & a u"lb, end so a ,E.r b.

3.1t b & aanda B 4 thenb X 4, because b  ua
and a 2 vd for u,v units in D, Thus bwu v d = u' d where u'
is a unit, and hence b .-E; d. Thersfore ,E; is an equivalence
relation,

The proof for ,J‘, is parallel to this onse,

(Q.E.D.)
it 221 Ifb}».{raandb-ca, where b J O and
hence a § 0, then ¢ is a unit,
Also b = ac and bi‘ra imply that ¢ is a unit, provided b
and hence a are different from zero.
Proof:

Since b}.l.,,a, then b 2 ua for a unitu ¢ D, But b w ca,

thus ua = ca and hence ¢ =« u, i,6, ¢ 1is a unit (by the cancellation of a),
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The proof for the second assertion is parallel to this,

Remark: An element a may be a right divisor of m(;s%ﬁﬁ')
element b without being a left divisor of b, and conversely.
Also, an element a may be a right assoclate of another element

b without being & left associate of b, and conversely. That is

| and ' are generally different,

R L

Also R L
~ and Pleg¥) are generally different,

To show this, take the Lipschitz integral domain, which
is denoted by L, and ccnsists of all quaternions, ap+ a.li-%azjk n*,
where aj's are rational integers (to be discussed thoroughly in
Chapter 4).

Take a = 241, ba (2%¥1)(1+j = k) =« 24143j =k, So
(241) l (241 43] = k).
L

Now suppose that (2+41) | (241 43) =~ k), so there exists
R
an element d = a5 + aji + ayj +agk of L such that

241 43j -k = (ao-\' a1l 4asj +a3k) (2 +1),
2+i'~3j -k = (230 - a1)+(2a1+a0) 14 (282) .1+(283 - Bz)k,

which implies that 3 = 2a,, 1.e. a5 1is half an integer, which is
impossible in L, Therefore, no element d of L gilves
2 $1 +3j = k such that d(2+4+ 1) e 2 + 1 +3] =k, i.e,

(2 +1) ;r (241 +43)-X.
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We shall see later on that e = 2 + 1 is prime in L,

By a similar way one shows that

2-1 | 2-1+35-1
R
but ‘r
(2 = 1) (21 4+3)j =k).
L
To show that ,JE and ,E/ are different, teke any
special case of Corollary ( 4.2 ) of Chapter 4, using a = 14i4]

end ug ¥ior t jor k., Thus au f va for any unit v é¢L.

3. The Norm
Definition 3,1: A norm is a function defined on a domain

+

D into the set Z of non-negative integers such thats
1, N(x) =« O iff x=z O
2. N(ab) = N(a) . N(b)

3, N(u) 1 implies that u is a unit,

If a norm exists on a domain, we call the domein a normed
domain (or a domein with a norm).

From the above Definition we conclude several corollaries,

Corollary 3,1,1: N(ab) 2 N(a) for any & § 0, b i 0. Also
N(ab) > N(b) for any af 0, b 1,{ C.
Proof:

N(ab) = N(a) . N(b). But any one of the right factors is
greater or equal to 1 since neither a mnor b is zero (Property 1),

Therefore N(ab) > N(a), and N(eb) 2 ¥(b).
(Q.E.D.)
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Corollary 3,1,2: N(1) = 1.

Proof: N(a) = N(a,1) = N(2) . N(1) for any a §C € D. Therefore

N(1) = 1.
(Q.E.D.)

More generally, we have
Corollary 3.1,3: If u is e unit, then N(u) = 1.
Proof:
N(usu=l) » N(1) @ 1> N(u). But N(u) > 1 since u § 0
(beceuse u 1is a unit so is e divieor of 1). Therefore N(u) » 1.
(Q.E.D.)
From property (3) and corollary (3.1.3), we have

Corollary 3,1,4t N(u) = 1 iff u is a unit,

Proposition 3,1: a | & end N(e) = N(b) imply that a & b.
R
Similarly a | b and N(a) = N(b) imply that a 2, b.
L

Proof:
If a = 0, then b & C and the proposition follows immediately.

If a 4 0, then b w ua for some u € D, since a [b. But
N(b) = N(u) o N(a) = N(a), Thus N(u) = 1 (by cancelliig N(a)
which is different from zero since &  0), Thus u is a unit
(by Corollary 3.l.4). Hence a A b,

The proof for the second assertion is parallel %o ?his.
Q.E.D.)

Remark 1: Two associated elements have the same norm, In
particular N(-a) = N(a) for any a €D.
That is because, if a ~/b, then a # u b v, where u and ¥

are units. Then N(a) = N(u) . N(b) , N(v) = 1,N(b).1 = N(b). The
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second assertion follows sincs - 1 is a unit in any domain,
Remark 2: The converse of remark (1) is not necessarily
true,
For the proof, take the Lipschitz integral domain
L -ia - 8, A al +ayj + a3k Iai is a rational integer for all i-}.
The norm of a in L is defined as N(a) = ag +-a§ +-n§ 4—a§.
(See the Lipschitz integral domain in Chapter 4).
Teke a # 1 + 21 + 2] = 2k, Thus N(2) e L + 4 +4 +4 a 13,
Take b = 31 + 2j. Tius N(b) = 9 44 = 13.
However, a A/b beceause no one of the eight units of L,
ii 1, *1i,+ 3,2k } , changes the number of terms of an element

of L (b has two terms while a has four),

L, Definitions of a Prime

We are giving here six definitions of a prime element in an

integral domain: In the following definitions p represents a
non-zero, non-unit in an integral domain D,

Definition I: p 1is prime iff p =T Tr2 implies that
T, or T, is a unit,

Definition II R: p 4is prime iff p RI ab implies that

pla orplb.
R R

Definition II Lt p 1is prime iff p | ab implies that
L

pla or p[b.
L L

Definition III: p is prime iff p = ab implies that a is

a left associate of p or b 1is a right associate of p,
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Definition IV R: p is prime iff c ' p implies that ¢ is
a unit or a right associate of p. ¥

Definition IV L: p is prize iff ¢ l p implies that ¢ 1is
a unit or a left associate of p. .

Now let us first prove

Theorem 4.1l: In any domain D, the four definition I,III,IVR
and IV L are equivalent,

Proof:

I %III : Assume I and let p = ab, Then a or b is
a unit, If a 1is a unit, then b 1s a right associate of P
(by Definition 2.1 of right associate), If b 1is the unit, then
a 1is a left associate of p (by Definition 2,1 of left aasociate),
and so Definition III follows.

III = IVR : Assume IIIl and let ¢ l p, so p = de for
some d 4 0 €D. Therefore, by Definition IIlli, ¢ is a right
associate of p or d 1is a left associate of p. If ¢ is
a right associate of p then we are finished, If d 1s a left asso-
ciate of p then c¢ is a unit (Proposition 2.2) and so Definition
IV R follows. ::

IVR = IV L : Assume IV R and let ¢ l p, 80 p = cd for
some d f 0 ¢D and so d l p. Therefore, by Dofinition IVR, d is
a unit er a right associate of p. If 4 is a unit then P is
a left associate of ¢, and hence, by symmetry, c is a left
associate of p. If d is a right associate of p then ¢ 1is

a unit (by Proposition 2.2)s
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P

IVL =3I : Assume IV L and lst p = Tl_l ! I:i2 . Therefore,

Trl I p, and so Ty is a unit or a left associate of p. If "1

is aLunit then we are done, If Trl iz a left associate of p then

7, is a unit (by Proposition 2.2), and so definition I follows,
Hence, the four definitions I, III, IVR and IV L are

equivalent.
(Q.E.D.)

We shall always refer to Definition L whenever we speak
about a prime element in a domain.

Theorem 4,2: In a normed domein D, if N(a) is a rational
prime (integer), then a is prime in D.
Proof:

Let N(2) = p, where p is e rational prime, Suppose that
a = bc, where neither b mnor ¢ is a unit, Then N(a) = N(b).N(e)
a s.r for some positive integers s,r such that N(b)=s, N(c)e=r.
Now since neither b nor ¢ is a unit, then both s and r are
greater than 1 (by Corollary 3,1.4). Therefore, N(a) = p is not
a rational prime, contrary to our assumption that p is a rational
prime, Hence b or c is a unit, and a is prime (by Definition I

of a prime element),.
(Q.E.D.)

Theorem 4,331 In a ncrmd domain D, Befinition II R
implies Definition I of a prime element in D, The same thing is
true for Definition II L,

Proof:
Assume II R and let p = T, e Then p : ™ o because
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m,s= l.p. Therefore, p ,'Tfl or p l‘{Tz (by Definition II R),
If p I-n'l, then Try = h p Por sons fi # 5 €. N(TT) = N(n).N(p) >
N(p). But N(T,) £ N(p), since p = TT'lTT'2 Therefore, N( 1) = N(p).
Hence N(Tz) = 1, and so T\'2 is a unit (by Corollary 3,1.4). Now
if p ITZ’ then by the same way we prove that Trl is a unit, Thus
m OE T, is a unit, which is the required result,

Definition II L implies Definition I similarly since
Ty, = pe1, and so p Il.-n-l or p Il"ﬂ"z; hence TT, or T is a

unit,

(Q.E.D.)
We shall see later on a case for which Definition I
implies Definition II R and Definition II L,



CHAPTER II

NON=COMMUTATIVE UNIQUE FACTORIZATION DOMAINE

In this Chapter we generalize the notion of a commitative
unique factorization domain, The generalization given here is due to
P, M, Cohn,[Non-Commtative Unique Factorization Domaing, Transaction=
Amer, Math, Soc, Vol, 109(1963), pp. 313-331).

Cohn wrote his paper on advanced level, using many concepts
without definitions. He also was not accurate in his Lemma which
we shall use in the Chapter. However, we shall state all the
required concepts and explanations, We shall define module and
module~isomorphism, We shall also define ideals before defining
the new concept of similarity which will be used in the case of

non=commutative unigue factorization domain.

1, Moduleg

Definition 1,1: M is an R=module if M is an additive
abelian group and R is a ring such that for all r € R and for

all m € M, there exists a unique product m.r €M, such that

l, nfr +8) mor4ms r,s R; m,n e M,
2, (m4n)r enr4nr
3. mn(rs) = (mr)s,
Sueh a module is called a right module. Left modules are defined

.‘ 12 =



-13-

similarly with multiplication from left by the elements of R.
If, moreover, there exists a multiplicative identity

1 €Randml emn for all m ¢ M, we call M & unitary module

(or unitel as some people prefer to use),

From now on we deal exclusively with right modules,
unless otherwise stated, and we refer to them simply as
modules or Remodules. It is evident that what we say about
these can be said about left modules,

ition 1,2: Let M be an Remodule. N is called

a submodule of M if N 4is a subgroup of M closed under
multiplication by elements of R(from right), Now if N is a
submodule of M, then we can easily see that the factor group M/

can be turned into an R=module by defining

(m +N)r = mrae N,

Definition 1,3: It is immediate that this composition

defines a module. We call this module the fector module (or

difference module) of M relative to N,
Definition 1,4t If X is a subset of a module M, then

the set (X), of elements of the form

nl X1+n2 124. T E +x1 rl-‘-xz 1‘2+ ..-..4'13 ra

where the nj's are integers, the ry's are in R and the x;'s are
in X, is a submodule of M, Evidently (X) 2 X and (X) is contained

in every submodule of M that contains X, Hence we call (X) the

submodule generated by X, If (X) = M, we say that X is a set of
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generators for M, If there exists a finite set of generators
for M, then we call M a finitely generated module and, if there
exists a single generator then M 1is a cyelic module.

A simpler formula can be given in the special ease of

modules that are unitary., (X) can be written in the form

Z ry where ry €¢R x; e X for all i,
pinite T ’ !

Definition 1,5t Let M and M' be R-modules. A mapping
g of M into M' is called an R~homomorphiem iff

1. ¢ is a group homomorphism of (M, +) into(M!, 4), that
is ¢ (m) + mp) = P(my) * #(my) for any my and my of M.

2, @(mr) » g(m)er for allm ¢ M, r¢ R,

The submoduleim|@(m) = 0} is called the kernel of ¢, denoted
by kern ¢.

If ¢ is one=to=one and onto, it is ealled an Re=igomorphism.
If ¢ 1is an isomorphism ©f M onto M' then M and M' are called
isomerphic modules.

If g3 M=3M/N is defined by

#(m) «m 4+ N, then @ is an R=module homomorphism (onto),

with kern ¢ & N,

If ¢s M—>N is an Re-module homomorphism, then
l/karn ¢ o2g(M) as Remodules; by " A" we mean "isomorphic to",

2, Ideals: Right and Left
ition 2,1: Take a ring R, A right ideal A of R

is a subset of R such that

l, a; =apisin A for any sy, a3 in A,

2, glven any a ¢ A, any r €R, then a,r €A,
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Similar definition is given for left ideals except that
(2) now becomes

2', given any a €A, any r ¢ R, then r.a & A,

Since every ring R 1s an R=module, then we see easily
that an ideal A of R 1is a submodule of R and conversely, any
submodule of R 1is an ideal,

It is clear that the sum end the intersection of two right
(left) ideals are right (1oft) idesls,

Definition 2,2: A right ideal A 1is called a principal right
ideal 1if there exists one element a € R such that A = aR, i.e.
all the elements of A are of the form ar for some r € R, We
shall denote the principal right ideal generated by a by 4R
or [a). Since all our rings are domains, and so have an identity 1,
- then a € A,

Similar definitlon is given for principal left ideals
exept that every element now is of the form ra for some r €R,
We shall denote such ideal by Ra or (al.

A 1is cyelic iff it is prinecipal.

Now if M 1s any eyclic R-module and x 1is a generator
of M, the correspondence between a in R and xa in M is an
Rehomomorphism, Thus in this case H'.‘\_/R/A, where A 1is the
right ideal of elements b such that xb O (the kernel of

homomorphism' which is called the eamihilator or the order of x).

The (GCRD GCLD LCRM d_(LCLM
Definition 3,1: An element g of a domain D, is called a



greatest common right divisor (GCRD) of two elements b and ¢

if g is a common right divisor of b and ¢ (See Definition 1,2.),
and, if any common right divisor of b and ¢ is a right divisor
of ge

A similar definition is given for the greatest common left
divisor (GCLD).

Defipition 3,2: If b = ac for some c € D, we call b a right
multiple of a, Similarly if b w ca for some ¢ € D, we call b a
left multiple of as. It can be seen that b 1s a right multiple
of a iff a 1is a left divisor of b.

Now if b = ac s a'ct for some c,e' in D, then b 1is called
a common right multiple of a and a', Similar definition is
given for a common left multiple,

Definition 3,3: An element { of D 1is called a least

-

common right multiple (LCRM) of two elements b and c if { is

a common right multiple of b and ¢ and, if any common right
multiple of b and e 18 a right multiple of { (or {isa
left divisor of such a common multiple),

S8imilar definition is given for a least common left
multiple (LCLM),

Lemma 3,1: In an integral domain R, if a prime element
p does not divide an element x from right (left), then the
GCRD(GCLD) of x and p is 1,
Proof:

Suppose that there exists a common right divisor d f o
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of x and p. Then p = ed for some ¢ € R. But p 1is prime,

thus ¢ or d is 2 unit, Suppose that c¢ 1is a unit, then

¢clp s ¢l cd = d. But x z rd for some r €R, thas

x » r(e™lp) = (re"1)p, a contradiction since p 'rx. Therefore,
R
d should be a unit, But the GCRD of two elements is unique

up to left unit factors; this can be seen directly from the
definition, Thus we can agree to take the GCRD to be 1,

The proof for the left case is similar to this,
(Q-E.'I)

Proposition 3,1t Let R be a domain, If aR and bR

are right ideals # (0), then aR 3 bR iff a [ b, Similarly, if
L

Ra and Rb are left ideals f (0), then Ra ) Rb iff a ' b.

R

Proof:
Assume aR 3 bR, Then b € aR, and hence b z ax for some

X QR, i.el a lbo
L
Conversely, if a l b then b = ax for some x € R, Thus
L

br = ax.r = a(xr), i.e., any right multiple of b is a right
multiple of a, and hence bR £ aR,

The proof for the second assertion is similar to tlzis. )
QIE.D.

Propogition 3,2: &R = bR iff a 2, b, Also Ra = Rb

Assume aR m bR, So aR > bR and hence a Ib (Proposition
- L
3.1 above). Also bR > aR, and hence b I a. Hence a ~~ b
- L
(Proposition 2,1 of Chapter 1),
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Conversely, if a A b then a | b and b | a (Proposition
2.1 of Chapter 1), Thus aR 2 bR and b;' 2 akR, uh?ch implies that
aR = bR,

The proof for the second assertion is similar to this,

Proposition 3.3: An element m, of an integral domain
D, is an (LCRM) of two elements a and b iff aR (\bR - mR,
Proof:

Suppose that m is an (LCRM) of a and b, Then
nr = (as)r = ar' € aR for some s ¢ R and for any r €R.
Similarly mr € bR, thas mR < aR(| bR, Alsoc any element in
aR [\ bR is of the form ar = br! for some r and r' of R.
But m 1is'an (LCRM) of a and b, hence aR (1 bR £ mR, and hence
ak N bR = m,

Conversely, if aR (| bR w mR, then m,1 = m € aR (| bR, Then
m 1is a common right multiple of a and b, But any common right
multiple of a and b is in aR N\ bR = mR, and so is a right
multiple of m, Hence m is an (LCRM), by Definition (3.3).

Propogition 3,4: In any domain R, if aR + bR w dlg?‘ fl.!g;l)
d is a (GCLD) of a and b; and d can be written in the form
d = ar +bs where r,s €D,
Proof'

Since aR + bR 2 dR, and because R has an identity 1 / 0,
then a = a,1 + b,0 = dr for some r € R, Also b = dr'! for some

r! € R. Thus d is a common left divisor of a and b, Now

suppose that d' is any common left divisor of a and b, Then



aR éd'R and bR __{_d‘?. (by Proposition 3,1 above), Hence
aR + bR =« dR £ d'R, and hence 4 = d'r for some r € R, i,e,
d'/is e left divisor of d, So d 1is a (GCLD) of a and
b (by Definition 3,1).

In particular, if aR 4 bR = R, then the (GCLD) of a

and b dis a unit.
(Q.E.D.)

Remark: The converse of the above Proposition is not
necessarily true even if 4 is 1,

For the proof, take the domain R w&[x,y] of all polynomials
in x and y over the ring of integers Zg~ R is a commtative
unique factorization domain =, Now the (GCLD) of x and y
1s 1, Yet xR + yR § R 2 Z [x,y] since the left<hand side does
not contain any polynomial of non=-zero constant term. So we
eannot find two elements a,b of R such that ar +bs = 1, since
1 1is a non-zero constant polynomial,

Cohn assumed the equivalence of the two previous concepts
in the statement of his Lemma, i,e. of 1 being a (GCLD) of two
elements a and b, and of being able to write a relation such
as ad" = be' = 1 for some ¢', d' in a domain R (See the paper
of Cohn which has been mentioned in the beginning of the Chapter) .
So we state below the Lemma of Cohn in its correct form, and
give an amplification of his proof,

Definition 3,4: An n x n matrix over a domain R is
called unimodular if it is a unit in R, the ring of n x n

matrices over R.
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Lma_}__.g: [ CohnY) :

'l‘no"ele:;ents a, a' of an integral domain R may be
taken as the first pow of a unimodular matrix over R iff a and
a' have an (LCRM), and such that there exist o',d' € R such that

ad' « ate! = 1,

More precisely, the conditions

(3.1) 'm z ab' = a'b , where m is an (LCRM) of a and a!,
and
(3.2) ad' - a'e’ 2 1, where ¢! and 4' are in R,

are necessary and sufficient for the existence of ¢ and 4 eR
such that the matrix

a al
(3.3) Ag
c d

is unimodular, with the inverse

at «h!
(3-4) A' = .

c! b
Proofs:
Suppose that (3.1) and (3.2) hold. Then by (3,2),
ad'a = a'c'a = a, i,e. a(d'a = 1) = a'e'a, hence there exists
¢ €R such that

(3.5) d'a = 1 g b'e , e'a = be,

That is because m is an (LCRM) of a and a', thus the common

1

right multiple of a and a', namely a(d'a = 1) @ a'c' a, should

be a right multiple of m 2 ab'., Thus J ¢ € R such that
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a(dta = 1) = ab'c, and so (3.5). Also since m m a'b then

*a = be (a! £ 0, because

a',c'a g a'b,c which implies that ¢
otherwise, b' = 0, and a 1is a unit, and the problem is trivial
since c 2 c' = b' 20 andd 22, d' s b = a~l will do the job).
Similarly, ad'a' = a'e'a! = a', i,e, ad'a' = a'(c'a' 4 1),
which gives
(3.6) d'a'! = b'd, c'a' 41 = bd for some d € R,
because ad'a' g a'(cta®'+4 1) is a common right multiple of a and
a!, hence is a right multiple of m g ab* = a'b, So J de R
such that ad'a' = md = ab'd and a'(c'a' +1) amd g a'bd,
Now if we define A,A' as in (3.3) and (3.4), then (3.5)
and (3.,6) just state that A'A w I

at «ht a al
because A'A =

=gt b c d

d'a = b*e d'a' - b'd 1 0

-c'a 4 be wcla? 4 ba 0 1

Hence A'A,A' = A', and AA' = I if A' is not a left zero-divisor
(because then A'(AA' = I) = 0 and hence AA' = I since A' is not a left

zero=-divisor)., Thus, suppose that

X X
AY 1 =0
y Y1
d'" x = b'y d'xy = b'y,
So =0,

-ctx 4+ by -c‘xl +by,
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and so d'x = b'y, c'x = by, d'x; = b'y; and glxl = by;. We shall
prove that the first two equalities are impossible, and certainly
this is equivalent to the impossibility of the remaining two,
Now, by (3.2) we have
X g lox w ad'x = a'e'x 3 ab!y - a'by 2 0, hence x =20
and by = b'y « O, Suppose that y £ 0, then b « b' 2 O and hence,
by (3.5 = 3.6), d'a z 1, e'b! = =1, It follows that ad' = 1,

’ = -1, and so ad' = ale' 2 2, which contradicts (3.2), Hence

a'e
y = 0 and so A'! i8 not a left zero~divigor, So A' is an inverse
of A.

Conversely, if A, given by (3.3), is unimodular with inverse

A' given by (3.4), then
]

a a' d -5 ad! = a‘cl a'b = ab!
AA' = J-[ = '
e d -c! b ed! = de db =« cb’

L

Hence ad! = a'c' m 1, and ab' = a'b, Now let ab! « m and

let n ¢ aR[) a'R, say n = aby = a'aj. Put da; = cb; =z k, then

by a'a; = aby 0 }
A = = , hence
a1 day; = eby k

Ja—

=by -] 0 -b'k
s A = ’
a1 | k bk

which shows that n = mk (because by = b'k, hence n w ab; = ab'k = mk
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or a] = bk which implies that n = a'a; = a'bk = mk), which means

that m is an (LCRM) of 2 and a'.
(Q.E.D.)

Lemma 3,3: Any element similar to zero is, itself, zero,

Eroof:
. Suppose a 1is right similar to O,

Thus R/aR QR/(O) =R as right R - module,
Thus 14+ aR — C for some ¢ € R.
Now if ¢ = 0, then 1 4 aR = aR, and hence R/a.ﬁ s (0) which is
never isomorphic to the domain R(R has at least two elements 0,1).
Soc£0., Nowa4aR waR— ca +(0) = ca, hence ca w0, and
thus a = O since ¢ £ O.

Similarly, we prove the Lemma for left similarity,

Lemma 3,4: An element a of the domain R 1is a unit iff
R/aR is the zero=-module, and an element b is similar to a iff
b 1is a unit,
Proof:

The first assertion is obvious since then aR = R.

If b is a unit then R/ha is the zero=-module, and hence
is isomorphic to the zero-module R/aR.

Conversely, b is similar to the unit a implies that

R/bR s (0), and hence bR w R, which is true only if b 1is a unit,
(Q.E.D.)

Jacobson proved the following Proposition for principal
ideal demains ‘.Soe Jacobson, Theory of Ring pp. 33] . Cohn

reproduced the same proof for any domain without explanations.
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He, moreover, should have excluded the case of a or b being a
unit YSoe the Proposition below] , because if a = u, a unit, then

a is similar to any non-zero element b since, by taking

a' g u"l, a' « b' = 0, then both (3.7) and (3.8) below are

satisfied. However, as we have seen in Lemma 3.4, b should be

a unit so as to be similar to a, Therefore;, we state the Proposition
in its corrected following way, and we give all the required explana=-
tions,

Proposition 3,5 Jacobson=Cohn : Two non=zero, non=unit

elements a,b in an integral domain R are right similar iff

3&‘, b', ', d' € R such that

(3.7) ad! - a'e! = 1

and

(3.8) ab! = a'b is an (LCRM) of a and a'.
Proof':

Assume that R/bR &R /aR and in the isomorphism, let
(3.9) 14+bR — a' + aR,

Thus (1 4- bR)c corresponds to {a' 4 aR)e for any c € R,
Since 0 =0 in any Reisomorphism, (1 4+bR)b = b +bR = bR — (e' + aR)b

= a'b + aR g aR, Hence a'b & aR and we have

(3,10) a'b g ab! for some b'! e R,
Moreover,

(3.12) a'e, = &by implies a, €bR,
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because a; 4+ bR —» a'a; + aR = aR since a'ey = aby; eand hence
is in aR; therefore a; + bR = bR which implies that aj € bR.
From this we conclude that a'b is an (LCRM) of a and a'
(because any common right multiple of a and a' as abl = a'ay
ie a right multiple of a'b since a; € bR). So (3.8) has been
rstablished, Further, a' 4 aR generates R/aR since its
corresponding coset 1 4+ bR generates R/bR. So 30', dte R
such that ad! = a'c™ = 1, which is the required equation (3.7).
Conversely, if (3.7) and (3.8) hold, then let
£ R/hR —p R/aR be defined by @ (r +bR) = a'r 4 aR for
sy r € R.
Suppose that ry 4+~ bR = rp 4+ bR, then r] =rp m b s € bR,
Hence a'(ry = rp) = a'bs = ab's (by 3,8), and so is in aR, Hence
a'r; +aR = a'r, 4 aR, and so @ is well-defined, The mapping
¢ 1is an Rehomomorphism, because @(r; + bR t (rp + bR))
2 t;f(rlt ry+ bR) = a'(rl try)+ ak z a'ry + ok 1 (a'r; 4 aR)
= #(r; + BR) 2 @(rp + bR); also @((ry + bR))ry) = Plryry + BR)
= a'rr, + ek = (a'r) 4 aR)r,. The homomorphism @ 1is onto
since by (3.7), 1 4+ aR = a'(=c') 4 ad' 4 aR = a'(=c) + &R,
Thus any element r 4 aR of R/aR is equal to a'(=c'r) 4+ &R
which is an image of ~=c'r bR € R/bR. Finally, the homomorphism
is one~to~one as it is shown below,
Let a'r; +aR w a'ry 4 aR, Then a'ry = a'r;
= a'(r; = ry) € aR, 1,6, a'(r) = ry) = ab; for some by € R,

But a®(rj = r;) = ab) = a'br for some r eR, since a'b = ab'
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is an (LCRM) of a and a' (by 3.8). Now a' £ 0, because otherwise,
ad = 1 which means that a is a unit contrary to oud assumption.

Hence, by cancelling a' from both sides of the equality
a'(r; = rpy) = a' br, we have r; = ry = br ¢ bR, Hence
r; 4 bR = ry 4 bR, which is the required condition for @ to be
one-to-one, Hence { 1is an isomorphism, and so a is similar
By (Q.E.D.)

Before stating Fitting's result of the equivalence of
left and right similarity, let us state the following Lemma which
is analogous to Cohn's Lemma (3.2) and has an analogous proof,
However, we shall state it and its proof for completeness, and
for the benefit of those studying matrices. We shall need it in
proving Fitting's result completely.

Lemma 3,5: Two elements a,ai of an integral domain R
may be taken as the first column of a unimodular matrix over R
iff a and ai have an (LCIM), and such that there exist

t 't gt & &' 5@
ci, a] € R such that e) 8 dl a =1,

More precisely, the conditions

(3.12) me=b a'l - bi a
where m 1is an (LCIM) of a and ni, and
(3!13) ' ' - d' -1

N "R

where ci and di are in R, are necessary and sufficient for

the existence of 1 and dl ¢ R such that the matrix
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(3.14) Ay

is unimodular, with the inverse

-d! c!
(3.15) A 1 % I
b! =b
1

Proof:
Suppose that (3.12) and (3.13) hold. Then by (3.13),
acia'l - ad] 2 z a, i.e., (adi +1) a = ac:'tai which is a common

left multiple of a and al, Hence 3(:1 € R such that

1

(3.16) adi +1 = clbi 3 aci z epb.

Similarly, aiciai - aid‘la = aj, i.e., (aici - l)ai - aid'la,

which gives
(3.17) aj ef - 1=24d;b,

for some d; € R, Now if we define A, A' as in (3.14) and (3,15),

then (3.16) and (3.17) just state that

e 1
a 2 dl cl
klli = ' . -
al dl bl =b
—adi + clbi ac'l - clb 1 ©°

11}
n
L
=
.

-aidi +d1bi aici - dlb 0 1
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Hence A! A A' = A! and Ai A = I 4if A! is not a right zero-divisor,

2 it | | 1
Thus, suppose that
X y -dj i
- 0,
10N ! !
s0
wial ' -
xdl - ybl xe] = yb
= 0,

=x1d] +¥;,b} xlci - y1b

and so xd'l - ybl, xcl yb, xldl yib] and x x,¢ 1 = ¥;b.
We shall prove that the first two equalities are impossible,
which is equivalent to the impossibility of the remaining two,

By (3.,13), we have

X = xci ai - xd:'La = ybai - yb'a = 0, hence x =2 0

and thus yb = yb} = 0, Now if y O, then b] 2 b = O and hence,

: il
by (3.16) = 3.17), ad} = =1, a} ¢} = 1. It follows that dl &zl
and c:'l_ ai = 1 and so, ci ni - d] a = 2, contrary to (3,13)., Hence

y = 0 and so Ai is not a right zero-divisor,
Conversely, if A;, given by (3.14), is unimodular with

inverse A! given by (3,15), then

1
-d'l ei a e
A' A
S ) bt . 1
=b
1 Y
-dia +e] &} -d' e, + c'd 1 0
- = .
- ! 1 -
bia bnl blcl bdl 0 1
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Hence c} a = d' a = 1 (which is the required 3,13), and ba' z b'a,

1 X 1 1
Now let bai = bia = m and let n € Ra N Rai, say n = blai = 8,8, Put
ajcy = bid; = k, then
a ¢y
{al “'bl ![&13 - blall 5101 - blle
1
a dl
;[O kJ , hence
t 1
-dl el

{0 2] =0 Wa a0 x] e :[kbi-kb] .
1

which shows that n = km since a

32 kbi, which means that m = bia = ba!

1

is an (LCLM) of a and ai.
(Q.E.D.)

Now we state a proposition which is analogous to Proposition
(3,5). We shall omit the proof since it is directly parallel to
the proof of Proposition (3.5).

Proposition 3,6: Two non=-zero, non=unit elements a,b of

an integral domain R are left similar iff 3 ai, bi, e}, di &R

such that
(3.18) clal - djasl
and,
W1 b at t
(3,19) al = bl a

is an (LCLM) of a and a'.
We can now prove Fitting's Corollary completely, Actually,
Fitting's Corollary follows from a more general result of his

iﬁberdan Zusammenhang zwischen dem Begrieff der Gleichartigkeit
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zwe il er Ideals und dem .Kquivalenzbegriff‘ der Elementarteilertheorie,
Math . Ann, 112(1936), 5'?2-582] . However, Cohn proved it very
brie fly by using his Lemma (3.2) and Proposition (3.5). [ See
Cohni® s paper pages (316=317) ] »

Coroll 1) [FITTING]: Two elements a,b in an
integral domain R are right similar iff they are left similar,
Proof:

This is trivial if one of the elements (and hence the
otherxr) is zero or a unit [See Lemmas (3,3) and (3.4)]. Now suppose
that botha and b are non-zero, non-unit, elements, Hence, by
combining Lemma (3.2) and Proposition (3.5), we see that a and b
are xright similar iff 3J a', ¢, d, b', c', d* such that the matrices
A, AT given by (3.3) and(3.4) are mutually inverse, Also, by
combining Lemma (3.5) and Proposition (3.6), we see that a and b
are left similar iff 3 ai, cyy gy bi, ci, di such that the
matxrices A, A} given by (3,14) and (3,15) are mutually inverse.
But +the existence of the first six elements in R with the first

cond ition mentioned above is equivalent to the existence of the

second six slements under their corresponding condition; we take

=at,d .-d’ bi:‘ci’ c‘ ’b" d'!"d‘o

1 1 1

ai = =¢, ¢

Hen ce the Borollary follows,
(Q.E.D.)
As we shall be dealing exclusively with integral domains,
we may omit the reference to left or right and simply speak of

simi lar elements,
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Corollery 3,5.2: An element of an integral domain is similar
to any of its associates.
Proof:

Let a osb, then b = u a v, where u and v are units.

1 l.uav-.zu"lb

Thue a is an (LCRM) of a and u™" and so a.v z u~
is also an (LCRM) of a and u™! (Apply the definition to see that
the (LCRM) of two elements, of a domain, is unique up to unit
right factor), Hence, to apply the two conditions (3,7) and

(3.8) mentioned in Proposition (3.5), we take a' g u~l, Also we
take ¢! g =u and d' s O, Hence equation (3.7) is satisfied and

hence a and b are right (and thus left) similar,
(Q.E.D.)

Definition 3,5: An Remodule is called girictly cyeclic if
it has one generator and one defining relation (which is not
redundant) ,

Propogition 3,7: A strictly cyclic R-module (with R an
integral domain) is one of the form R/aR, a 1is a non-zero, non=unit
element of R,

Proof:

Let R be a gtrictly cyclic R=module, Then R a mR for
some m f O, and with the defining relation ma u 0, a § O, Define
the R-homomorphism

g:RemR —>PR/aR
by the relation

@(mr) = r 4aR for any r €R.

Now, if mr] = mrp, then m(ry=ry) = 0, and rj = rp € aR, since
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otherwise we have another defining relation., Hence ry; 4aR =

g(mry)) = vy +aR = F(ory)s So ¥ is well-defined., It can be

seen directly that ¢ is an Rehomomorphism onto, Now if ry 4 aR
2Ty AaR, then r) =rp s ar €aR, and hence m(r; = r)) amar =0
since ma = 0, Hence mry = mrp, and so ¢ is an R=isomorphism,
Hence R is of the form R/aR, Now a § O, since otherwise R = R,
which has no defining relation, Also, if a 1is a unit,then

R = (0), which has no non-redundant defining relation,

Conversely, if R is of the form R/aR, where a is a
non=zero, non-unit, element of R, then it is cyeclic since it is
generated by 1 4 aR, Moreover, it has exactly one non-redundant
defining relation, namely, (1+ aR)a = aR = (0),

Lemma 3,63 IfR D S) {o] » Where by ) we mean strictly
greater, and if R//S is strictly cyclic, then & 1s of the form
bR, where b 1s a non=zero, non-unit of R,

Proof:

Since H//S is strietly cyclic, then it has a unigue defining
relation, say, (1 +8S)b = S, Hence bR is contained in the annibilator
ot R/ 8.

If ¢t R —)R/':‘ is the canonical homomorphism defined by

#(r) ar +8a (1L +8)r for all r €R, then Kern @2 S = annihilator
of Vs >bR., If I x €8 ~bR, then (1 +8)x a S is a non-redundant
second &:;ining relation, So S @ bR where b £ 0, b is non-unit,
because otherwise either S g O or R = S which are both contrary

to our assumption,

(Q.E.D.)
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Propogition 3,8: A non-unit, non-zero, element a of an
integral domain R 1is prime iff R - %//ER has ho submodules S
other than zero or itself such that E//E is strictly cycliec.
Proof:

Suppose a 1is not prime, Then a z be €bR, where neither
b nor ¢ is a unit, and R DBR D> aR. Soﬁ.n/an>§
a b%/’aﬁ ;>ip}, and we have the submodule S of R which is non=zero,
and £ R since b is not a unit, Moreover, E//E ﬁiRy/%R is
strictly eyclie [iee Proposition 3.7]. Hence, R has no submodule
S other than zero or itself such that %//3 is strietly cyclic
implies a is prime,

Conversely, let R has a submodule S # O, such that
E/E is strietly cyelic, Then R = R/aR > s >‘_0}. Let 8 be
the unique submodule of R, such that S/ aR = S. Then R >8 )aR,
Also, ﬁ/g = R/aR/S/aR HIVS. Since -B-/E is strictly cyecliec,
then %//% is strictly cyclic, and S = bR for some non=zero,
non-unit element of R [Lemma 3. 6}. Hence bR = S)aR, and a = be

for some non-zero, non-unit ¢ of R, Hence a is not prime,

(Q.E.D.)
tio 6: Let a,b € R and consider any factorizations
of a and b

a = &1 85 ese Bpy
be bl b2 ose bB'

These factorizations are saild to be isomorphic if r = = and there

is & permtation T of (1,...,r) such that ay 1is similar to by1,
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where it 1is the result of Ton i,
Propogition 3,9: Let a,b be non-zero elements of an integral
domain R, which are similar, Then any factorization of a gives

rise to an isomorphic factorization of b,

Proof:
Let a = a; ap be any factorization into two elements of a.
Then
aR éal R é_R, since aj i a.
Hence,
0 aR/aR &R /aR,
Now,
R/aR o/R/ bR

since a and b are similar, If we denote the isomorphism by @,
then ¢ maps alR/nR onto & submodule B, 0 £B éR/bR, which
corresponds to submodule B, bR é__B <R, and B = B/ bR .

Now R/Bogn/bn/ﬁ L R/aﬂ/llR/aRﬁl%lﬁ

which is strictly cyclie, or, if 2y is a unit, is (0). Then
B w bR by Lemma 3.6, or @ls@¢ BzR = 1 , R (if a; is a unit),

so we have
~
aln aR _.b1R bR,
Now if \rs R/azR -)alR/a.R is defined by
W (r yaR) » ayr+ aR
for all r € R, then (“defines an R-isomorphism. For the proof, let

r) 4 82R w rp  agR, then r) = ry € ajR. Hence a)(r) = rp) € aR = ajaR.

Hence a)ry = a;r, € aR, and a;r) +aR =z a;r, +aR, Hence yris well -
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defined, The proof for W to be an R-homomorphism onto is direct.
Now to prove the one-to-cne property, let ajry + ak = ajr, + &R,
Then ‘1(1'1 - rz) = ar ¢ aR for some r € R. Hence a;(ry = ry)

s 8 aor, and thus r; - r; 2 a; r ¢ a;R. Hence \nis an
Reisomorphism,

Now, we have the following figure

r v w
n/.zn galﬁ/aﬂ _f:,blfl/bR ~R /bR
{
where ™~ is an isomorphism similar to W, and b, is an element
of R such that b z by b, since bR £ byR. Hence a, is similar

to by, by the isomorphism. Now, since R/aln.n R/ al’/alR/aR and
I/bln :'_R/ bR / biR /bR, by the second isomorphic theorem, then

1/.13 Q_R/a%lR/aR L R/%IR/bR ngln.

Hence Fyalll 2R/bR, and a; is similar to b;. Hence the
proposition is true for two factors, and by induction it is

true for any finite number of factors,
(Q.E.D.)

Now we can state Cohn's basic definition of a unique
factorization domain (UFD), which is a generalization of the
definition of a commutative UFD,

inition of a Uni tion in
tion 4,1: A (UFD) is an integral domain R such that
every non-unit of l?(- R ={ 0] ) has a factorization into primes, and
any two prime factorizations of a given element are isomorphie,

The first natural thing to do is to show that this definition
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reduces to the three conditions of a commutative UFD given below,

Definition 4,2: A commutative UFD is a commutative domain
satisfying the three conditions:

Al: Every element of R which is neither zero nor a unit
is a product of primes.

42: Any two prime factorizations of a given element have
the same number of factors.

A3: The primes occurring in any factorization of x, any non-
zero, non-unit of R, are completely determined by x except for
their order and for multiplication by units (i.e. up to order and
associates).

Theorem 4.,1: A commutative integral domein R is a UFD
iff it satisfies Al = 3 in Definition 4.2,

Proof:

Suppose that R is a UFD (of Definition 4.1). Al and A2
follow directly from the Definition. So, we need to prove that
if

8 =28 8) «s 8,

a s bl b2 se e br’

are two prime factorizations of any non=unit a of R,* then a; NbJ
for some j between 1 and r and for all i, Now j = i' where
i' 1is the result of the permutation (1,...,r) assumed in Definition
(3.6), where a; is similar to bj. Call a; = ¢, bj = du So the

theorem reduces to proving that
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(421) R/R ~R/aR
holds iff ¢~ d(c and d are associated).
If ¢ . d, then ¢ 1s similar to d, and R/cB. o
B/dn (by Corollary 3.5.2)
If, conversely, R/oR g_R/dR, then d 4. cR = (14cR)d»(d"4 dR)d
for some d' € R, But (d'4 dR)d g d'd 4+ dR = dd'y. dR =z dR. Hence
d € cR, and so R ScR. By symmetry cR & dR, and hence cR = dR,

which implies that ¢ A/ d.
(Q.E.D.)

In the proof we have just proved

Corollary 4,1: In a commutative domain, two elements are
similar iff they are associated.

As an example of a non-commutative UFD we mention non-
commtetive principal ideal domains, which will be discussed later
on in Chapter III. These include in particular the ring of integral
quaternions which will be discussed in Chapter IV, and the skew
polynomial rings studied by Ore [,Theory of non-commtative
polynomials, Amn. of Math. (2) 34 (1933), 480-508).

5. The Refirfement

Definition 5,1: Given two factorizations of the same element a, say
(501) 8 = 8) 85 «ae 8y,
(502) as=s bl bz e ba,

we say that (5,2) is a refinment of (5,1) if it is obtained from
(5.1) by replacing each ay by some factorization of itself,
A factorization is said to proper if no factor is a unit,

Now, if two factorizations of a are isomorphic, then by absorbing
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the units into their neighbouts we obtain: two proper factorizations
of a which are still isomorphic (Tecall Lemma 3.4). Now we note
that in a UFD,R, any two factorizations of an element of R have
isomorphic refinements. We need only decompose each non-unit
occuring in the two factorizations into primes; the refinements so
obtained are then isomorphie, provided we insert an appropriate
number of unit factors so as to get the same number of factors in
the two factoriszations.

As a converse we have.

Theorem 5,1 [Cohn]: Let R be an integral domein such
that any two factorizations of an element of R have isomorphic
refinements, Then any two prime factorizations of a given element
of R are isomorphic, and if a is an element of R possessing
a prime factorization, then any proper factorization of a has
a refinement with prime factors. In particular, if every non-unit
of R has at least one prime factorization, then R 1is a UFD.
Froof:

Let

(5.1) 8 ® D) Py see Py,
(5.2) as Q1 Q2 eee q',

be two prime factorizations of a, By hypothesis these have
isomorphic refinements. But in any factorization of Py or aqy,
all but one of the factors must be units (since it is prime),
Since all units are similar among themselves, but not similar to
any prime [Lom 3.4] » We may disregard them. Hence r « s and
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for some permutation 1T s Py is similar to an associate of Q1r(4)
Now by Corollary (3.5.2), p; is similar to dyr(3)s Further, if

a has a prime factorization with r factors, then no factorization
of a can have mre than r non-unit factors, from which it
follows that any proper factorization of a has a refinement with
prime factors. The last assertion is an immediate consequence of

this fact.
(Q.E.D.)
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for some permtation TT , p; 1is similar to an assoclate of qry)*
Now by Corollary (3.5.2), p; is similar to ap(s)> Further, if

a8 has a prime factorization with r factors, then no factorization
of a can have more than r non-unit factors, from which it
follows that any proper factorization of a has a refinement with
prime factors. The last assertion is an immediate consequence of

this fact.
(Q.E.D.)



CHAPTER III
NON~-COMMUTATIVE PRINCIPAL IDEAL DOMAINS

In this chapter, we give the definition and basic properties
of hon-commutative principal ideal domains (PID). We define the
prime ideal in both commtative and non-commtative PID's, and state
the relation between the two definitions. In the remaining part
of the chapter, we prove the uniqueness of factorization in PID's
in detail: The proof relates to N. Jacobson, Eﬁe Theory of Rings,
Chapter (3), Amer, Math. Soc, 1943 |, However, we modify it in
such & way as to let us continue with Cohn's line of the previous
chapter and make use of the last theorem of the chapter. We give
the required lemmas, theorems, propositions and explanations which
make things complete.

1, Definition of a PID, and Basic Properties.
Definition 1,1: An integral domain D is called a PID if every

right ideal of it is principal, and every left #deal of it is principal.
Propogition 1,1t In a PID, R, any two non-zero elements

a and b have a (GCLD), which can be written in the form ap +bq,

and an (LCRM), determined to within unit right factors. They,

sinilarly, have a (GCE.D)‘, which can be written in the form pa+ gb,

and an (LCLM), determined to within unit left factors.

Proofs
Consider the ideal aR +bR of elements ax4+ by, x and y

-w-
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arbitrary in R. This is the smallest ideal containing aR and bR,
and is principal since R is a PID, So aR +bR = dR for some
d €R. Then d = ap #bg for some p and gqof R (R has an
identity 1), Now d is a (GCLD) of a and b (by Proposition
(3.4) of Chapter II), Now if @' = du is another (GCID) of & and
b, then d'R = dR - aR + bR, Hence d is determined to within
unit right factor.

Now write a = daj, b = db;, Then a(l = pey) = a = apay
= da) - apa; = bga) and seimilarly, b(1 - gb,) = db; - bgb; = apb,.
Since either p or q (or both) £ 0, this proves that the intersection
aR R « R £ 0. Hence m is an (LCRM) of a and b (by Proposition
(3.3) of Chapter II). Also, m is determined to within unit right
factor, as it has been proved for 4.

The proof for (GCRD)and (LCLM) is parallel to the above

one,
(Q.E.D,)

Definition 1,2: For a family F' of ideals, we say that
an ideal A of F'is maximal in F if no ideal of " contains A
properly. Thus an ideal B of F is not maximal only if there
exists an ideal A of F such that A % B,

I is known that in a PID, the following two equivalent
conditions are satisfied (See N. Jacobson, Lectures in Abstract
Algebra, Vol. 1 pp. 168-170),

Gl: Ascending Chaln Condition (ssc.e.): If Ay 44,4454 ..,
is an increasing sequence of submodules, then there exists an integer
N such that Ay = ‘ll 41 = s+« .. This can also be phrased as: Every
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strictly ascending chain &) L A, £ ... of left ideals of R is
finite; the same is true for right ideals.

C2: | Co ion (M,C.,): Any n@n-vaguous collection

of submodules contains a maximal member,

Proposition 1,2 (Jacobgon): Let R be a PID, Any descending
chain of right (left) ideals having an intersection i 0 contains
only a finite number of distinct ideals. This property is called the Wamh
descending chain condition(wdsc.c.); actually the (d.c.c.) may be
defined in a similar way to that of the (a.c.c.)

Proof: Suppose that a;R > a R ... 1is a descending chain and that
all the a;R contain a fixed element b 7 0. Then b s a; by,

8y = 8j.) 4.1, by and ¢;_7 are in R, Hence b = '1-1(°1-1bi)

=8 bi-l for bi-l in R. It follows that bi-l s ¢ bi

and Rby {Rby& ... so that Rby = Rby .1 = oo for N sufficiently
large (by the a.c.c.). Thus ey, ¢y 47s +.+ are units (See
Proposition 3.2 of Chapter III), Hence aR = &y, Rz ... .

The proof for the left ideals is similar,
(Q.E.D.)

2, Prime Ideals

Definition 2,1: An ideal P 1in the domain R is called a
prime ideal iff CD <P implies C =P or D < P for any two ideals
C, D of R« By CD we mean the ideal consisting of all finite sums
2_c¢y d4, for ¢; e C and d; € D. Certainly, D cCc (1D,

If R 1is commutative, the definition is equivalent to the
element-wise definition,

Definition 2,1': An ideal P of a domain R is called a



- 43 -

prime ideal iff be e P implies b € P or ¢ eP, for any two elements
b,c of R.

Proposition 2,1: In any domain R, the element-wise

Definition (2,1)' implies Definition (2.1).
Proof:

Suppose P is not prime according to Definition (2.1).
Then 3 two ideals C and D such that D <P but P #C and
P3D. Thus 3c €C ~P, d €D ~P; by C ~P, we mean simply
those elements of C which do not belong to P, and similarly
for D ~P. Thus cd € CD =P, However, ¢ 41’ and d ,GP. Thus
P 1is not prime according to Definition (2.1)'. Hence Definition

(2.1)* implies Definition (2,1).
(Q.E.D.)

iti 2: In a commutative domain R, Definition

(2.1) implies Definition (2.1'), and hence, the two definitions
are equivalent,
Proof:

If the ideal P does not satisfy Definition (2.1'), then
there exist ¢ and d not in P but with od eP, Thus, if (e),
is the principal ideal generated by c, then (c) ¢ P; and (d) ¢ P.
However, since cd &P, then cP.dq = cd pq €¢P for any p,q of R,
Thus fci djy € P, where ¢; =z cp; € (¢), d; = dq; €(d) for some
P; and g3 € R; that is (¢)(d) <P, Thus P 4is not prime
according to Definition (2.1). Thus Definition (2,1) implies
Definition (2,1').

Now, combining this Proposition with the Previous one, we
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see the equivalence of the two definitions (2.1) and (2.1') in the

case of commutativity. ( )
Q.E.D.

For our work in non-commitative domains, we will mean by a
prime ideal one which satisfies the weaker Befinition (2.1)e

Lemma 2,1: Let R be any domain, If p is an irreducible
" element in the sense that p l ab implies p \ a or p ‘b (Definition IIR
pp. 8), then the principal 12:1; ideal (p]i!: prime. RSilnilarly, if

p l ab implies p l a orp | b, then [p) is prime,
L L L

Proof:

Let c¢d ¢ (p]; ¢ and 4 are any two elements of R. Then
ed = hp for some h ¢R, and so p \cd. Therefore p lc or p ld;
that is ¢ € (plord €(p]. Henl:e (p] is prime in ihe sonseRof
Definition (2.1'). Thus (p ]is prime ideal (Proposition Zzé)i B}

3. £ ion PI

Definition 3,1: A module M is called gimple if it is not

trivial and has no submodules other than zero or itself,
Definition 3,2: Let R be a ring and let Ry, Ry, «ss, R,
be R-submodules such that R; is a submodule of Ry _,, then
R = !ogﬂl'% Ry +ee 2R, is called a chain from R to R,. The
quotients R;_; / By for all 1 = 1,2,...,n are called the guotients
of the chain. If the chain is of the formR DRy > Ry) <o DR) 0,
where ) means strictly greater, we say that it is proper chain.
And if Ry_; / Ry has no proper submodule for all i = 1,2,...,n +1,
i.e. R;_; /Ry is a simple module, we call the chain a composition chain
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or a composition series. We shall also say that the chain
R )Rl) «++ DR, has no proper refinement to mean the same
thing.

Theorem 3,1: Let R be a PID. Two non-zero, non-unit
elements a, b of R are right similar iff 3 a', b' €R such
that the GCLD of a' and a, (a', a) is 1, and the LCRM of a' and
a is a'y, a =z ab' = a'b=m
Proof:

This reduces to Proposition (3.5) of Chapter (2) if we
show that 1 is the GCLD of a' and a iff 3d', ¢' ¢ R such
that ad' - a'c' =« 1, Now the necessity follows from Proposition
(1,1). Conversely, if ad' - a'c' = 1, then aR + a'R = R and hence

1 = (a',a) by Proposition 3.4 of Chapter (2).
(Q.E.Do)

Lemma 3,1: In a PID every element has a left prime factor,.
Proof:

Let a be any non-zero, non-unit, of R, our domain. If
e is prime, we are done. If not, a = &7by, where a;,b; are
non-units, non-zero. If aj is a prime, we are done. If not,
8y = asb,e. So & = aybyby, and so on, This gives aR 14 a;R { azl <...
by Proposition (3.1) of Chapter (2) . Since the chain must be
finite (by the a.c.c.), then the factorization must cease with a;

prime at some 1.
(QI E.D. )

Theorem 3.2: In a PID, every element has a prime factori-

zation,



Proof:

Let a be any non-zero, non-unit, of R, our domain, Then
& = pyby, Py prime (by Lemma 3.1). Also b; = p,by, P, prime,
Hence a = p1p2b2, and so on, If any bi is a prime, we are done,
If not, we have Rby { Rby{ «... with no termination, vhich:is
impossible (by the a.c.c.). Hence b_ is prime for some finite N,

N

and a = PyP,P3 sees pnbN, where all p; and bNare prime, (BB

Now to show that a PID is a UFD, we only establish the
refinement property of the hypothesis of Cohn's result (Theorem
(5.1) of Chapter (2)). However, before that, we rephrase
Theorem (3.2) above in the language of submodules and composition
serles,

In view of the proof of Proposition (3.9) of Chapter (2),

we have that a factorization of a = 818, ses 8 corresponds to a

n
chain of R-submodules between R and aR, !)g a1R>= aja R >= ..gaR,
such that the quotien® of the chain are strictly cyclic, and
conversely, a sequence R 2 Ry ?___ R2>= +es 2 aR with strictly cyclic
quotients gives a factorization a = byb, ..s b

A prime factorization corresponds to a proper chain with
strictly cyclie quotients : Q) = R/n]_R, Q, = alﬂ/a]_azR, seey
Qn = 8183 «ee 8 R‘/;R, where Q; has no non-trivial submodules S
such that Q4 / S is strictly cycliec,

Lemma 3,2: Since we are in a PID, any chain
R2Ri2 Ry ... >R, 2> &R has strictly cyclic quotients, and the

chain may be written



Proof:

R, = bR (by the fact of FID), Since bR _2 by 41 Ry

i

then 3 cy € R such that bi 41 = bici’ and so bncn = 8.

Q1 = R /Ry = R/DbyR is strietly cyelic, Q, = By /Ry = bjR /bR
= bR /byeiR &R feR ... ete. So @ ~R /ey 1 R is strictly

cyclice
(Q.E.D.)

Lemma 3,3: Let R be a PID, If Q 1is a eyclie
R-module, then Q has no non-trivial submodules & such that
Q / S 1s strictly cyclic iff Q has no non=trivial submodules &S,
Eroof:

The sufficiency is trivial. For the necessity proof,
let Q = gR for some q ¢ Q, and suppose 3 & submodule S such

that Q ) S) 0., Take the homomorphism

#: R 5qR = Q, defined by

#(r) = qr for all r ¢R.

It is'direct that ¢ is an R-homomorphism,

Now @~1(S) is a submodule S' of R, which equals bR for some
be€Rsince R isa PID. So ¢ (971 (8)) = 8 :{qals € slg=ii5"\"‘ﬂ"!\
= 7'r =z (qb)R which is eyclic, Hence S z cR { Q = gR, where

¢ = gb. Now Q/S = qR/cR = qR/th.@.R/hR is strictly cyclie,

contrary to assumption, Hence we are done.
(Q.E.D.)
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Hence we have now for a PID, the followlng correspondences,

factorizations chains from R to aR
proper . proper chains "
prime * composition series. " .

Hence the existence of a prime factorization is equivalent
to the existence of a composition series. We have already seen
that we have a prime factorization. However, we give an alternate
approach by ghowing the existence of a composition series.

Theorem 3,3: A ring R has a composition series if it
satisfies both chain conditions,

Proof:

If R = (0), we are done. If not, consider the family For
proper submodules of R, This has a maximal member Rl » by the
maximum condition, which is equivalent to the a.c.c. Hence there
is no submodule R' such that R ) R > Ry and so R / Ry is simple.
Similarly Ry contains a submodule Ry such that Ry / R, is simple,
provided Ry £ (0), and so on.

Now, if any Ry is (0), we are done. If not, then we have
R> R R ... > «++,00ntrary to the d.c.c. So some Ry must
be zero, and we have a composition series.

Corollary 3.3,1: Let R rsdfisfy the '(a.2.d.) and'the (w.d.c.c.),
“Then f6F any rion-zero elemert. s R, .¢n R/aR satisfies both
chain conditions, and hence R / aR has a composition series,

which gives rise to the composition series

R >R]_> v >8.R.



Since any PID satisfies the (a.c.c.) and (w.d.c.c.), we have
the following direct.

Corollary 3,3,2.: Any FID R has a composition series from
R to aR for any a ¥ 0,

We can now state the main and last theorem of the Chapter.

Theorem 3,4: Any PID is a UFD,

Proof:
Refering to Theorem (5.1) of Chapter (2), we need only to

show that any two factorisations of an element of R have isomorphic
refinements, But in a PID this is equivalent to asserting that

the corresponding cheins of Re-submodules have isomorphic refinements;
the -prévious “motion. - is used in the usual senge of schreier

(See leng, Algebra, Chapter 4]+ Now, since the corresponding chains
of R-submodules do have isomorphic refinements, by the Schreier

refinement theorem [op. cit ], then the theorem follows. (
Q.E.D,)

We have promised in the end of Chapter (1) to give a
case for which Definition I of a prime element implies Definitions

IIR and IIL, We decided that this is the best place to fulfil

our promise in,

4 Duo R d Ore Rin
Defipition 4,1: A ring is called due if every one-gided
ideal of the ring is a two=gided ideal - and hence every right ideal
is a left ideal = (see Amer. Math. Monthly, Volume 74 (January

1967), pp. 95-96).
Definition 4,2: A ring is said to be an Ore domain if it
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is an integral domain and any pair of non-zero right ideals and
left ideals has a non-zero intersection.

We state here a Lemma by F. L, Sandomierski and
V.C. Cateforis, [op. cit ].

Lemma 4,1: An integral domain R, which is duo ring,
is an Ore ring.

Proof:

Let I and d be left (right), hence two=sided, non=zero
ideals of R. Then 0 £ 1J £I (}J,

Now we state our two theorems,

Theorem 4,1: In a PID, R which is a duo ring, hence an
Ore ring, pR = Rp for any prime p.

Proof:

Let p be any prime element in R,

Since R 1is a duo ring., Hence Rp = I, where I 1is a
right ideal. But R is a PID, hence I = gR for some q € R, Now,
since Rp » qR, p = qr for some r ¢ R. Hence q or r 1is a unit
since p is prime. If q is a unit, then Rp = R, which implies
that p is a unit[ Proposition 3.2 of Chapter (2) J , contrary to
assumption, Hence r should be a unit and qR = pR [by Proposition

(3.2) of Chapter (2)]. So Rp = pR,
(Q.E.D.)

Theorem 4,2: In a PID, R which is a duo ring, Defini-
tion I of a prime element implies Definitions IIR and IIL,
Proof':

Let p be any prime element (of Definition I), and
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let p l ab, Then ab = hp for some h € R, Suppose p 1&. hence
R R
the GCRD of a and p is l(by Leama 3,1 of Chapter (2)), and

hence Ju, v €R such that ua +vp = 1 (by Proposition (1.1)) since
R is a PID). So uab 4 vpb = b. Now, since pR = Rp (by Theorem (4.2)),
Pb = cp for some ¢ € R. Also since uab 3 uhp, hence uhp 4 vep = b,

from which we conclude that p , b.
R

The proof for Definition IIL is done similarly, ( )
Q.E.D.



CHAPTER IV

THE QUATERNIONS

In this chapter we shall discuss the quaternions, which
were invented by Sir William Rowan Hamilton., Two integral
domains of the rational quaternions shall be discussed. The
first is the Lifschitz integral domain which shall be designated
by L, The second is the Hurwitz integral domain which shall be
designated by H. We have found that not every right associate
of a non-zero, non-unit, element of L is a left associate, We have
studied this case and gave our theorem for the cases of right and
left associates being equal. The integral domain H is a non-
commtative Buclidean domain, as we shall prove, and hence is a PID,
from which the uniqueness factorization follows,

1. inition ic Pro ie
Let Fbe a field, and let 9 be the set of all numbers

X ze8y+ajirayy ek, a €F,

where it is understood that the numbers 1,j,k are commitative with ¥,
and that all associative and distributive laws hold, Furthermore,
1,1,3,k are linearly independent with respect to “F . The cosfficients
80» 81, 83, 83 are called the coordinates of «, Define 1 to be

the unit element of multiplication and define

(LD 122520k’ acl, 15u-gink, ik e ~kj w 4, ki 2 -ik ¢ §.

-52.
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io 1: With properties above, of is called a
guaternion, and if 'Fia the field of raticnal nunhora,@ is
called the rational gquaternions, and so on,
tion 1,2: Define X z 25 = X m 8y = 811 = 8,] = agk
to be the copjugate of «,
It is clear that the conjugate of « is o , and that the
conjugate of a sum equals the sum of the conjugates.
Now if P. by +byi +byj +bgk, it follows from (1.1)
that
(1.2) ®p = (agby = ayhy = azb, = azby) + (aghy + ayb, +

a2b3 - ‘31’2)1 + (uob2 - alb3+ a2b0+ a3b1).1
'1'(aob3 +a;b, - azb; + ajbo)k.
We can see by multiplication that
(1.3) THE g,

Defipnition 1,3: A biunique correspondence of a ring
with itself which is an automorphism with respect to addition

but such that
Xesw s [ +—p imply & L

is called an anti-automorphism.

We have so just proved
Theorem 1,1: The correspondence «.—pxis an anti-auto-
morphism of P.
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- 2 2
Definition 1,4: The number X o w & § = a§+a§+aa+33

is in T , and is ecalled the porm_of « » denoted by N(%). Hence

we have

N(o) o« .o = o -«

for any &« € 9

Theorem 1,2: N(XP) « N (x), N(B) for any «,p of D.
Proof:

Immediate, since N(XP ) = «g. 4 = «p.Aq = «N(R)-&

- N(&).N(B). (Q.E.D.)

Theorem 1,3: N( X+ ) = N(«) + N(B) + 2(agby + ayb; +
asb, 4 a,b.), where the a,'s, b,'s are the coefficients of *
272 33 i i

and § respectively.,

Proof:
N(&+p) = (4P )( X4p) 2 (%4f )(R+F ) 2 X o +
A + x § + AR s HR) + NP+ 4B + K,

But B = XA z(q , and 80  A+B4 = 20y, where
X8 = cog+ i + cpj + ek,

Now, ¢y =z agby + ajby + agb, + agb; [ See 1.2]. Hence, the

theorem follows,
(Q.E.D.)

Coreollary 1,3: If the corresponding coordinates of o and @
have the same sign, i,e. sign 8y = sign by for 1 = 0,1,2,3, then

Bix+p ) & N(x)+ N(B).
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Eroof:
This follows directly, since then, 2(a0b0 + a1b) + asb,

b.)> 0.
+ %55 = (Q.E.D.)

Theorem 1,4: Every quaternion & satisfies the quadratic
equation

(1.4) xz-h0x+ N(%) 20,

which 1s called the principal equation of & . The conjugate ok
satisfies the same equation,
Proof:

The equation (1.4) may be written

(1.5) x2 - (X+% )x + «.4 2 0,

which is satisfied by & recalling that «x = X « .

The equation (1.5) is satisfied also by o .
(Q.E.D.)

Definition 1,5: The middle cosfficient of equations

(L4 - 1.5) 2 T(x) 2 (&) 2 44 = 28, 1is called the trace of
Theorem L,5: If N(X) # O, then « has an inverse of '

in D such that x. o™l z 2L = 1,

Proof:

If N(x) £ 0, then & /N(x) 1s such a number,
(Q.E.D.)

2. Forwally Real Field
Definition 2,1: A field ie called formally resl if the
equation
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(1.6) x% +I§ 1- e +x: — 0

implies that
x]_:xz:-ulxnso

for every finite n and every set of x's in the field, Evidently,
the real field and all its subfieldes are formally real.

Iheorem 2,1: A field F is formally real iff -1 is not
a sum of squares of elements of T .
Proof:

Let 1‘ be formally real, and suppose that -1 is a sum
of squres. By moving =1 to the side of squares we will have
a sum of square (one of them is 1 which is a square element of F )
equals zero, while at least one of them is different from zero,
contrary to assumption.

Conversely, suppose that -1 is not a sum of squares
of F . If 'F is formally real, then we are done, If not,

then there exist non-gzero elements

.o’ .1, esey .-n

such that
2 2 2
.0 + al *+ ess + ..n 2 0.

Now, ‘5 has an inverse (u;‘:)'l - a;z = (‘al:l)2 which is a square. So
(a;l)z‘g +(&;l)2 ‘iﬁ--co +1:0,

and hence =1 is a sum of squares, contradiction. Hence F is

formally real.
(Q.E.D.)
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Theorem 2.2: If F is formally real, then the principal
equation over F: x° - 2a0x 4+ N(%) z 0 is either irreducible

or the square of x - a5 z 0,

Proof:
Suppose
x* - 2a0x + N(¥) z 0
reduces to
(x = ¢)(x = 4a) =0,
Then
c+dzZ&0,
and
2 2 2
od:l.0+a§+ a8y +a3 .
Hence
e? +20d +d? - 4ed = 4&3 - l.(ag +a§+a§ +n§).
So
(e = d)2 = -l.(ai-i- ag 1-:;),
and hence

(¢ = d)z-\- hf +la§ +4n§ = 0,

Now, since [ is formally real, then (c-d)2 = 0, and
hence ¢ : d; moreover, a; = a; = a3 3 0, and hence « = 8ge
Hence the equation reduces to (x - ao)z = 0. Hence the principal

equation is either irreducible or else it is the square of(x - ao)s 0.
Q.E.D,

Theorem 2,3: 1t D is over a formally real field 'F ’

and if N(o) 2 0, then o = O.

Eroof:

Nt ) w ag-g-af-l-a% +a§ = 0,

ButT: is formally real. Honco;uaa]_-ngua_-, =0, and so x 5 0,
(Q.E.D,)
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Corollary 2,3,1t If P is over a formally real field,

then every element of ® except O has an inverse.
Proof:

If o is any non-zero element of © » then N(x) £ 0
[ by Theorem 2.3] . Hence o has an inverse [by Theorem 1.5] ,

(Q.E.D.)
Corollary 2,3,2: The rational quaternions Q form

& non-commtative field (skew=field or division ring),
Proof:

Q 1is a ring with identity 1 £ 0, Moreover, every « £ 0 ¢ Q
has an inverse, since the rationals Ra form a formally real field

[Soe Corollary 2.3.1] « Hence Q is a non-commitative fizld. )
Q.E.D,

3. Integral Quaternions
Definition 3,1: Let Q be the rational quaternions, that
is, the set of all numbers o a8y + 2871 +a,j + a3k, where a; € Ba.

A guaternion is called integral if it satisfies some equation of

integral type, i.e. of the form
xn+ﬂ1xn-1+ [ X X +.0'0’ ‘16 z,

the ring of integers.

Form now on whenever we speak about guaternions we mean
rational quaternions,

Before proving the following Theorem, let us state the
following well=known Lemmas,

Lemma 3,1: If m(x) is a polynomial of degree n with
coefficients in a field F, irreducible in F and, if & is a root
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of the equation m(x) = O and of another equation £(x) g O over
F, then m(x) ,f(!)-

For the proof see for example, MacDuffee, ‘_An introduction
to Abstract Algebra, (1966), pp, 91] .

Lempa 3.2 Geuss' Lemma : If #(x) is a polynomial with
rational integral coefficlents, the leading coefficient being 1, and
if £(x) = g(x). h(x), where g(x) and h(x) heve rational coefficients,
the leading coefficient being 1, then all the coefficlents of g(x)
and h(x) are rational integers,

Froof:

See the previous reference page 105,

Theorem 3,1: The quaternion o is integral iff both
T(®) and N( ) are ratiomal integers,

Proof:

let & satisfies the equation £(x) = 0 of integral type,
Now since  satisfies its Principal equation (1.4), hemce «
satisfies an irreducible equation m(x) = O which is either linear
or gquadratic [ Theorem (2.2)] « Hence, by Lemma (3.1), m(x) I f(x).
But, by Lemma (3,2), if £(x) factors, then the factors can be so chosen
as to be of integral type. Hence n(x) :i.q ©f integral type, Now
if o« 1is not rational, then m(x) s O is the principal equation of o .
If o is rational, [n(x} ]2 2 0 is the principal equation. In either
case, both T(«) and N( ) are rational integers,

If, conversely, both T( o) and N(«) are rational integers,
then « satisfies an equation, namely, its principal equation
[390 Theorem (1.4)] » which is of integral type. Hence o is
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integral [by Definition (3,1)] . rah

Definition 3,2: An integral domain of Q, the rational
quaternions, is a set of integral numbers of Q which is a
ring with unit element, and which contains four linearly independent
numbers, This last restriction is to exclude integral domains
such as {a -+bi§ where a and b are rational integers, which
are properly integral domains of a subalgebra of Q,

The set of all integral numbers of an algebraic field
forms an integral domain, Unfortunately, the set of all integral
quaternions is not an integral domain., To show that the set of
all integral quaternions is not closed we mention .,
Example:

Let « = 1, which is integral since it satisfies the
equation x2 + 1 « 0,

Let 3 = g i+ lg J which is also integral since it
satisfies the same equation,

However, A4+p = % 14 % J 1is not an integral quaternion
since N(x +g ) = !ng vhich 1s not a rational integer [ see Theorem(3.1)]

Two particular integral domains of quaternions have
received much attention and are of interest, therefore, to us, The
first is the Li t t 1 do » Which shall be denoted by

L, and which consists of all quaternions

A ® 80 + &)1 + ay) + agk,

where the a;'s range over all rational integers,
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It is evident that T(«) and N( ) are rational integers,
s0 that every number of this set is integral, It is also clear
that the set is closed under addition, subtraction and multipli-
cation, So that it forms a ring, Since L contains 1,i,j and k,
it is of dimension 4. Hence L is an integral domain of Q [ Bee
Definition 3.2] .

The second integral domain is the Hurwitz integral domain

which shall be discussed after the first one,

b z 1 1 Domai

Theorem 4.1: If « is an element of L, then N(X) defined
in Definition (1.4) satisfies Definition (3.1) of Chapter (1) of
the norm,

Proof:

N(x) = ag +a§ + ag-\- ag is a non-negative integer since
all a's are rational integers. Also, since « is a rational
quaternion, hence N( &) = 0 iff X s O [ See Theorem (2.3)] .
Noreover, N( €8 ) z N(«).N(B) for any « »p €. [by Theorem
(1.2)] . Finally, if u €L, and N(u) = 1, then since
N(u) au.\;tsl, hence u"l 2 ¥ ¢ /_ and so u is a unit in [, .

Hence N( &) satisfies Definition (3.1) of Chapter (1). (
Q.E.D,)

From the above Theorem, all the Corollaries (3.1.1-3,1,4),
and Proposition (3.1), of Chapter (1) are satisfied for N(w).
We shall just mention them for completeness,

Corollary 4,1,1: N(dp) 2 N(x), N( 48 )2 N(B), for
any dio,p fdoor L .
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Corollary 4,1,2: N(u) =1 iff u is a unit,

Corollary 4.1,3: The units of [, are, precisely, the
eight numbers %1, t1i, 2j, +k,
Eroof:

Let u b it of . Then N(u) s 82 + a2 48>+ a2 s L,

u e any un . = 8y 1 + 2 3 =

But since every a; is an integer, then the only solutions of the
equation are those which make a; = %1, ay = O for any j & i.

That isu-e *1 or *+i or *j or =k
(Q.E.D.)

ol :dlpandﬂ(n()-N(P)inplyarNﬁ
Similarly '(I P and N(x) = N( “J) imply qN/!

Mﬁ‘ Two associated elements have the same
norm.

Also, since L is a normal domain, we have the following
Corollary which follows from Theorem (4.2) of Chapter (2).

Corollary 4,1,6: If N(&) is a rational prime (integer),
then o is prime in .L

Theorem 4,2: Let « ¢ £ . Then there is a right associate,
other than T &, which is a left associate iff

1. « has two or fewer terms,

2. ® has four terms such that two coordinates sre equal
absolutely and the remaining two are equal abhsolutely,

In this situation, there are at least four right associates
which are left associatea.

Further, every right associate is a left associate iff

1. &« has only one term.
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2, of has two terms with coordinates equal absolutely,

3., o MHas four terms with equal coordinates absolutely.
Proofs

If & = 0, we are done, because every right associate in this
case is a left assoclate.

The proof for « g£ O depende on finding the eight right asso=
clates of o« z ag + a1 + ayj + a3k, e; € Z, and the eight left
associates of it, then equating any one of the first eight with
any one of the second eight to find the required conditions.
Nevertheless, we need not to take all the €4 equations, but
rather 32 equations since the eight right associates (as the left
ones also) are 4 different ones, and four others different from
the previous ones by the sign only. So we take the positive
four left associates of o , namely, X , 1 , J & and k  ,
and combine them with the eight right associates. Moreover,
to fue and to 4 v unlessuz vz *1 because I is an
integral domain, So, we actually need to equate expressions (2 = 4)
from below with expressions (5 = 10) each, which makes 18
equations only and that is the minimum number of equations that

we need,
(1) oes ﬂ.lﬂ.-i—‘li* lzj '\'lak (5) ooo Kiiloi -llﬂtzk -\-331
(2) eov iz agi = 8) =8y = a3]  (6) seum il m =agl & &) 4 8k = 8,

(3) oo.j*! .-OJ - ..lk - 32+ I31 (7) s e ﬂj = .0.1 + I.lk =83 = 331

(4) cosk®z agk +aj] = azd a3 (8) wvem % 2=ap) = ark + a5 + a5l
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(9) ees oK - aok - ﬂ.lj +ﬂ.21 - 33
(10) u.-"k’-lck +ajyj = azl +a3.

By equating coordinates, ve see that

(1.1) iz olsdag; = =ap, 33--13«5]&2:&3:(&

(1.2) 1“""14"‘0"‘0"1'"IQFO=‘1=0\

(1.3) 1«43 o] aFS == 83, 8) = a;i

(1.4) 1A 2- o] edpy = 8, 8) * = 8,

(1.5) 14 = ok “w

(1,6) 1« ==dk abg-- 8y, 8 = - g[

(201) J( - 1@“0 2 &3' !.1 - az

(2.2) J o a=di “["0 == 83, 8y 2 -:21

(2.3) J(I '{Ja’lilﬂll,GBS'GB ”11533:0\

(2.4) o zs=d)e 8, =-80,=85°3 = &, & [8g = a3 = EJ_

(25) Ju 2 ukeplagz-2a), 8532

(2,6) 3« =%k &D>lag = a;, a5 -lﬂ

(3.1) ko= %1 aﬁ;g - a,, 8 .l.l_l

(3.2) ko z=o %E_O_' ag, a3 z = 33—J
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(3.3) k «z «} q.\-og 81 8y = 85|

(3.4)  k 2= o) &d[ag z- a1, 83 = - a3

(3.5) k o« = ﬂk“ali-al,azs-az “ﬂ]_lﬂ.lej

(3.6) k « == Xk &> ag == a,, 13--a34-)lo=83=ﬂ-

It is clear that the six conditions in the small rectangles
mean that « should be of two or less terms, The twelve big
reftangles prove the second case of the first part of the theorem.

Further, if « has one term, it is clear that every right
assoclate is a left associate since the rational integers ay
commte with all elements(and in particular with the units) of L .
So actually u « = * o u for any u, a unit, and any « , an
element of L of one term. If & has two terms with equal
coefficlents absolutely,then for the case of a; = a3 =2 0, apg = * a3,
the equations (1.1), (2.5), (2.6), (3.3) and (3.4) all are satisfied,
which means that every left associate is a right associate in such
a case, The same thing is true for the case of ag = aj z 0 and

ap = t a3, by taking the equations (1.2), (2.5), (2.6), (3.3) and

- *

(3.4). One can check all the cases of 8y = 84 = 0, ap = % a,,

where i,j,r and s may take the values 0,1,2 and 3 such that they
are different from one another,

Finally, if all a; £ O, we must combine one equation from
each group of four large rectangles, so as to have all the left

assoclates 1ot , j , ko « For example, taking (1.3) determines
that we must take (2.5) or (2,6). Taking (1,3) and (2.5) then
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determines (3,1} and determines o« = ay - apl - agj = agk. Taking
(1,3) and (2.6) determines (3.2) and determines &= ag + api + ag]
- agk. Similarly we get a total of eight comblnations giving

all possible o =2 ag + apl % agj t apk. ( )
QIE'D.

Corollary 4,2: If o« is of three terms, then & u =z v« &

From all the eighteen above conditions, no case of having one
zero coordinate has arisen,
(Q-E-D-)

5 a z I 1 Domain (H
5,1, Derivation of H. Recalling Definition (3.2), we try t8
find a maxima) integral domain which contains L , hence H contains
i, j, k, and therefore, contains i £ , jX , k A for any « = 8, S
a1l + a3) + ajk of H, Now T(«) = 23y, N(«) = a% +n§ +-a§ -
a3, mst be rational integers [Theorem 3.1]. But T(1i«) = - 2a,,
T(j«) 2 = 2a, and T(k«) - 2a3. Hence, the doubles of a;, a,, a,
and a3 mst be rational integers. Now let 2a; = a" , and so « may

be written
(5.1) « =k (a) +ajil +al +a} k)
where the a' s are rational integers. Then
2
(5.2) N(w) 24 @57+ a® poat® et

Since N(«) should be a rational integer, we must have
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(5.3) 0 +a' a n'2+ ‘52 g0 (mod 4).

But every square n? is congruent to 0 or 1 module 4 according
as n is even or odd., Hence, a(') ’ 1'1 ’ .:2’ a; are either all
even or all odd rational integers.

Definition 5,1: H is the set of all rational gquaternions
% = ag ¥ ali 4 nzj +a3k, where ai‘s are either all integers or
all halves of odd integers.

Theorem 5,13 The set H 1is sn integral domain,
Proof:

We have shown that H consists of integral quaternions.

To show that it ie closed under addition and subtraction, consider

o = Q—(aa +all 4+ alj +a’k),

Ba x (b' +b'i + 1:'3 +b'k)

where the a' s are all even or all odd rational integers, and
likewise the b_i s are, If the a' s and b' s are all even or all
odd, the sums and differences, ai i‘bi are all even, If the a' s
are all even and the b' s are 2ll odd, or vice versa, then

a! *b!' are all odd. Hence o tp is in H,

i i
To show that H 1is closed under mltiplication, let

“@ =¥atd (cé +cfl + ofJ +o'3k).
From (1,2), we have

°| - i (.'b' « a'b! - g!

'-l
197~ %2%2 ‘b)'
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. Q(a'b' +aib' +a5b5 - a'b'),

2 é—(aab'z - aibé a'b' a'b‘),

é{a'b' yalbl - alb', + a'b').

If the a' s are even, or b' s are even, each of the c' s is an
integer. If all the a' s and all the b' s are odd, each
expression in parantheses is the sum of four odd integers,which
is even, so again the c' s are integers, Now N(¥) = N(d).

2

s céz = O(mod 4). So that either all the c' s are even or all

are odd, which shows that Y € H,

N( P), so N({) is a rational integer. Hence c(‘)z + c12+ ot?

Other conditions are dirdet from Q, the gquotient field
of H, Hence H 1is an integral domain in Q, and is the unique

maximal integral domain which contains I , by its derivat%on.
Q.E.D.)

Theorem 5,2: If o is an element of H, then N( #) defined
in Definition (1.4) satisfies Definition (3,1) of Chapter (1) of
the norm,

Froof:

The same proof of Theorem 4,1 exactly,
(Q.E.D.)

As in the case of Theorem (4,1), the following corollaries
are immediate,

Corollary 5,2,1: N(e«p )2 N(x), N(48 )2 N(f), for
any A £0, A #0, of H,

Corollary 5,2,2: N(u) = 1 iff u is a unit,
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Corollary 5,2,3t The units of H are, precisely, the twenty
four numbers *1, +1i, + j, * k, A * 141+ j tk),
Proof:

The first eight are from 1 which is included in H,
Moreover, if « = ﬁ-(aa-\- ajl +abj +a5k) is a unit, then

N( &) = f(at')z + al%4 ' a}z) = 1, which is possible only in these

1 2
two cases:
1, If all a,'s are odd then a'? 4 a'2+ a'? 4 at? .
iff aj'_ 2= 21 for all i, which gives the last sixteen units,

2. If all a;'s are even then a} = %2 for some i while

;3 =0 for all j £ i, This gives the first eight, (
Q.E.D.)
Also, since H is a normed domain, we have the following
Oorollary which follows from Theorem (4.2) of Chapter (2).
Corollary 5,2,4t If N(®) is a rational prime (integer),
then ¥ is prime in H,

Theorem 5,3t If B £ 0 and « are two numbers of H,
there exist numbers k and f:l.n H such that

xz2kg +p ,NP)N(P).
There is also, by symmetry, k' and (J' such that
«zpk +p NP NP,

X . X.8 =
@ N(p)

where s,t,u and v are rationals. Choose s', t', u' and v' rational

8 +ti +uj +vk,
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integers such that{s - a', sﬁ-, lt - t'l g-}, lu - u'( <4,
\v = v I ¢ 4. Now, there are two cases:

If et least one of the inequalities is strict i.e. é 2
take k = s' +t'i +u'j 4v'k, and take p z d-kp . Then
N(P) = N(4=kg), and writing k =z ( %- +k - % ),

N(P) a N(dex-(k = 2)F) mB( K=K, N(E). But

N( g- K) 2N[(s=s8)+(t=t)i +(a=u)j+(vevk]
sle-s2+ (b=t 2+ @au)?r (vev2(drdrtriel
Bence N( @) { N( ®).

If, however, all the inequalities are equalities, then
s,t,un and v are all halves of integers and ao_f(%—)- is an
element of H, So, in this cases take k = X8 = _o , and
68 % s N(f) &

(Q.E.D.)

Theorem 5,4: There exist a euclidean algorithm for
finding a GERD (and a GCILD) of two quaternions « , @ of H.
Proof:

This theorem follows from the previocus one, If

B 40, « £0, then 3 k), ; 4n H such that
Xak poap N( Py < N(B).

Mso, if /’110, then 3k, (,in H such that
fzX +P, §(P) L K(Py).

If f,#£0, then Jk,, f3 in H such that

();'k3 Pz +(‘3,st3)<11(/°2),
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and so on. Since the norms form a descending positive integers,

they should end with (" n =0 for some n, and we have

Pn-2 = ¥n Pn-1+ Pn= ¥ Ppa *
So P, 1is a right divisor of Pn-z’ hence is a right divisor
of Prn-3 = ¥51 Prez + Po-1? and so on. Hence Pn-l is a
common right divisor of o and 2 5 since it is a right divisor
of P 1» Pra? *++ s o (’1. But since any ether common
right divisor of o, ﬁ is a right divisor of (’1, and hence

of %29 Pgs eees Loy then P - isa GERD of o« and B |,

(Q.E.D.)
Hence we have the following direct.
Corollary 5.,4,1: H 1is a non-commtative euclidean domain,

Corollary 5,4,2: H 1s a PID,
Proofs

Let Aggbe any left ideal in H, Take the element
o 4 O € A whose norm, which will be a positive integer since
® 40, is the least. So 0 N(«) SN(B) for any P ¢A,
If it is possible to have an element P € A which is not a left
mltiple of o , then @ = k % + P, vhere k, P€ A and
0 CN( )< N(), by Theorem (5.3), But N(«) < N( @ by its
choice, hence we get a contradiction, Hence every element in A
is & left multiple of o« , and so A z (X ], Similarly, we prove

that every right ideal 1s a principal one., Hence H is a FID,
(Q.E.D)

From the previous Chapter, we have

Corollary 5.4,3: H 1is a UFD,
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Theorem 5,5: If o is of integral type (i.e. all its
coordinates are rational integers) and @ = m a positive rational
integer, then a necessary and sufficient condition that the
GCRD of « , @ , written («',P)R , is 1 1is that
(X « Np) =21, or (what is the same thing) that (N«, m) = 1,
Proof:

Suppose that (%, ), = 1, then 3 u, v € H such that
u« + vp sl (by Proposition (1,1) of Chapter (3) since H is
a PID), Hence N(uw) a N(1 = v ) o (1 -vp) (I =vp)

2 (1-m)(lenV) 21amveny+2N(v) «Nu ., Nx),

Now since (N«,m) divides every term in the equation except 1,
hence (N« , m) = 1. Since N(8) » 12, the two forms of the
condition are equivalent,

Conversely, if (N«, m) = 1, then («, ')R = («, Q)R = 1.
(Q.E.D.)

Theorem 5,6: If « € H, then one at least of its associates
has integral coordinates (i,e. is of integral type).
Proof:

If the coordinates of o are not integral, then we can

choose the signe so that
® = (bg + byl + byj +byk) +H +1t4+3t k) = B+Y,

say, where bj are even integers, Hence any associate of 3 has

integral coordinates so as to have ite norm, which equals the

norm of @ , a multiple of four, Also ¥ ¥ s which 1is an associate

of { since ¥ (and Y itself) is a unit, equals 1 , Hence « $
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which is an associate of « , has integral coordinates,
(Q.E.D.)
The following Lemma is known in Number Theory,
Lemma (Legrange's Theorem): Every positive integer is the
sum of four squares.
For the proof see Hardy and Wright, [ An Introduction to the
Theory of Numbers, Chapter XX, 1960].
As an application to this Lemma, we have
Theorem 5,7: A rational integer p cannot be a prime
quaternion (by a quaternion we mean here an element of H),
Proof:
If pis zero or % 1, it is clear, because then it is
zero or a unit which is in either case not a prime,
If p 1s any positive integer different from 1, then
P = ag - af + a% + ag, where not all a; are zero (by the preceding
Lemma). Then p = «.«4 , where £ = ag +ajl +apj +ajzk. Now «is
not a unit, because then p = 1, contrary to assumption, Hence, o
is almo not a unit, and so p 4is not a prime quaternion,
Now if p = = g, where q 1is positive integer 4 1, then
Q= @p— as above, where (3 and E are non-units, Hence
pz-@f.p or B(~®), and p 1is not a prime quaternion,
Theorem 5,8: An element T of H is prime iff N( ™)
is a prime integer.
Proof:
IZ N(T) is a prime integer, then T is prime (by
Corollary (5.2.4)).
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Suppose T is prime and plN( T), where p is a rational
prime integer. ( T, p)R= Tr': 8 non=unit (by Theorem (5,5) since T
can be taken to be of integral type by taking any of ite associates
by Theorem 5,6).

Since T is prime, TI'" is en associate of T, and N("")
» N(T). Also p = AT, where X ¢ H, and p? = N() . H('Il")
2 ¥(2) . N(T), so that N(A) is 1 or p. Now, if N( 1) were 1,
p would be an associate of T 'md T , and so a prime quaternion,
vwhich we have seen to be impossible. Hence N(T) = p, a rational

ime,
= (Q.E.D.)

Now after We have characterized the prime elements of H,
which is a UFD as we have seen, we can proceed further than before,

We give here the following Theorem from MacDuffes[6].

Theorem 5,9: Let « € H be not divisible by a rational
prime, and let

N(«) = P1Py ese Pp 4

where the rational primes Pjy are arranged in any fixed order.
Then

3 ®e m -
ABT T, oo T M) 2p,

where the T 's are prime quaternions. Moreover T 's are unique
except for unit factors.
Proof:

Let p be any one of the Py, and consider the idesl
(pso]e (] for some 7™ (by PID property). So p=k T, o AT
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for k, X\ ¢ H; and N(p) = p° 2 N(k) . N( ), so that N(T) = 1
or p or p=3,

Now if N(T) = p?, then k is a wnit and p 'TT , hence p '-( -
contrary to assumption, If N(T) 5 1, then T is a unit and
(pp®] a2 H, Hence Lwup +v « , for u, v €H, Then
veml-up, so N(vk) « (L = up)(1 = up) =1 - pT(u) + pN(u).
But u € H, so T(u) and N(u) are rational integers. Hence
N(ve) @ N(w) , N(%) g1 (mod p). But this is impossible,
since N(x) » 0 (mod p). Thus N(T) = p.

Now take p = p,, and denote a corresponding T by T .,
Then

® 2 %y TC , N(X,) a pyPy ves Pyoys N(T) = pp.

As before, we find a Ti‘n 1 such that

12 % Moy M%) 2 ppy vee Poogy M 5) 2 p -

Continuing, we have
K = Trl Trz e e -“-n » H(Tri) L] pi'
Now, suppose that
o o -3 ews m - =
2T Wy eee Tz byt eer b, N(T) 2 N(t)) = p,.

Hence T , 1s a GGRD of « and p,, since (p, %] = (T,]. Since
t, is also a common right divisor of « and P tp is a right
divisor of T . ILet

-“-n =z un_l tﬂ’ H(Trn) L ] H(un_l) B N{tn).
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But x(wrn) = N(t)) 40 so that N(un_l) = 1land u _; is a unit,
Then el 1 g
thwuy « T, where Y

is a unit, Thus

o 1 = T]. Tr2 ovc-'rn-l = tltz see tn-l un_lo

If n )2, we proceed as before to show that

¥pa1 Ypay Yhe2 Tn-l’
or — -
tp1 SWe2 "hel Y1 0 Nw,) 2L

We continue until we have

d -0 Tz sos T!"n - Trlu]. . ulTr zuzo soe .un-B'iT'

1 n-2"n-2

* Thn-2 wn-lnn-l'unul ™ n'

Hence the factorization is unique except for unit factora.( )
Q.E.D.,
It seems that is is true that in H, two prime elements

are similer iff they have the same norm, Unfortunately, we had no

time to work on this, However, we leave it to a paper in the future,
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