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Abstract

A new heuristic algorithm for solving the two-dimensional bin packing problem
with guillotine cuts (2DBP|*|G) is presented. The heuristic constructs a so-
lution by packing a bin at a time. Central to the adopted solution scheme is
the principle of average-area sufficiency proposed by the authors for guiding
selection of items to fill a bin. The algorithm is tested on a set of standard
benchmark problem instances and compared with existing heuristics produc-
ing the best-known results. The results presented attest to the efficacy of the
proposed scheme.
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1. Introduction

In several industrial applications, two-dimensional objects (items) must be
arranged without overlapping into larger objects (bins), with the overall objec-
tive of minimizing total waste. Examples include the metal, glass, and wood
industries, where a set of items demanded by customer orders must be cut from
larger sheets or boards. Similarly, a common application in the transporta-
tion industry is the packing of rectangular items of fixed height into predefined
spaces.

Assuming both items and bins to be rectangular, these problems can be
modeled as two-dimensional bin packing problems. Additional constraints lead
to various variants. The most common [1] arise out of the four combinations of
orientation and type of cuts: items may have to be packed in a given orientation
or may be rotated 90 degrees, and items may be required to be obtained through
a sequence of horizontal or vertical edge-to-edge cuts (guillotine cuts) or may not
be. In industrial settings, further constraints may be imposed. For example, in
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the glass-cutting industry, which forms the background against which the work
described in this paper was carried out, a minimum distance between parallel
cuts may be additionally imposed or the available bins (glass sheets) may have
different sizes and each size may have a different cost and a different limit on
availability.

This paper addresses two variants of the problem: both require guillotine
cuts, but in one variant item orientation is fixed (2DBP|O|G), while in the
other items can be rotated (2DBP|R|G). Section 2 provides a review of the rel-
evant literature. Section 3 presents a new constructive bin-oriented heuristic
for addressing the two variants of the problem under consideration. Section 4
presents the results of extensive computational experiments on a large num-
ber of standard benchmark problem instances, in which various components of
the heuristic are evaluated. The heuristic’s performance is compared with the
best performing heuristics and metaheuristics on the given benchmark problem
instances available in the literature. Finally, section 5 offers concluding remarks.

2. Literature Review

The two-dimensional bin packing (2DBP) problem belongs to the general
class of cutting and packing problems, a typology for which was proposed by
Dyckhoff [6] and, more recently, by Schumann, Wäscher, and Haussner [12].
Cutting and packing problems, as a whole, have received considerable atten-
tion from the academic community in the past decades. A significant part of
this literature has been devoted to the 2DBP problem. Surveys on 2DBP are
provided by Lodi, Martello, and Vigo [7, 2], who describe lower bounds and so-
lution methods, both exact and heuristic, available up to 2002. In the following,
we briefly review the works published since 2002 on 2DBP with guillotine cuts
(2DBP|*|G), which is the subject of this paper. We also review those earlier
works that describe heuristics with which we compare our proposed methods.

A common two-dimensional packing strategy is to obtain a feasible solution
by packing the items in rows forming shelves, with the first shelf of a bin placed
on the bottom of the bin, and each following shelf placed on top of the previous
shelf. It is also common to adopt a two-phase approach. In the first phase, a two-
dimensional strip packing problem is solved, in which shelves are constructed
and stacked in a strip of unlimited height, such that the total used height of
the strip is minimized. In the second phase, shelves are repacked into bins by
solving a one-dimensional bin-packing problem.

Following this strategy, Berkey and Wang [4] developed two effective heuris-
tics, the Finite First Fit and the Finite Best Strip. However, these were later
dominated by two algorithms developed by Lodi, Martello and Vigo [1]. The
first of these is the Floor-Ceiling (FC) algorithm, which also packs items into
shelves, but instead of placing items solely on the floor (from left to right), items
are also placed on the ceiling (from right to left). The second is the KP algo-
rithm, which creates shelves by solving a series of instances of the 0–1 knapsack
problem. At each iteration, the new shelf is initialized with the tallest unpacked
item, and is then completed by solving an instance of the 0–1 knapsack problem,
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with each item having a profit equal to its area and a cost equal to its width,
and the knapsack capacity equal to the width of the strip minus the width of
the initial item. Lodi, Martello, and Vigo presented versions of both FC and
KP that are capable of solving the problem with and without rotation as well as
with and without the guillotine-cut restriction. They also proposed an effective
tabu-search scheme based on dynamic neighborhood size and structure.

Recently, Polyakovsky and M’Hallah proposed the Guillotine Bottom Left
(GBL) constructive heuristic [10]. GBL packs one bin at a time. The largest
unpacked item is positioned at the bottom left position of the bin. Subsequently,
either a vertical or a horizontal guillotine cut is imposed on the packed item: the
sizes of the two free rectangles that a cut would generate are computed, and the
cut that yields the rectangle with the largest area is chosen. The same procedure
is then applied recursively on the free rectangles that have been defined by it.
The process continues until no item can be further packed in the bin.

In the same work, a complex Agent-Based (A-B) algorithm was also pro-
posed. Based on distributed artificial intelligence, A-B mimics agent-based eco-
nomic systems. It dynamically creates agents that communicate among them-
selves in a (pseudo) parallel fashion. Each agent assimilates the items to be
packed and maintains its own characteristics (fitness, decision process) and em-
ploys the GBL algorithm to construct pieces of the solution. Through commu-
nication, agents can improve the feasible solutions obtained or can diversify the
search through different item orderings. The results of the activity of the agents
are disseminated to the system and the process is reiterated until the system
reaches a steady state, from which a local optimum solution can be generated.

A recent work by Puchinger and Raidl [11] addressed a problem similar to
the one being tackled here; that of three-stage two-dimensional bin packing. In
that problem, it is required to have at most three levels of cuts in each bin: the
first horizontal (when the bin is cut by one or more horizontal cuts), the second
vertical (when each resulting piece can additionally be cut by any number of
vertical cuts), and the third again horizontal (when each resulting piece can
additionally be cut by any number of horizontal cuts). The authors presented
integer linear programming models for a restricted version of the problem and
solved them using CPLEX. They also offered a branch-and-price algorithm for
a set covering formulation of the unrestricted problem, with columns generated
by a variety of means. The same rescricted version of the problem was recently
addressed by Alvelos et al. [3] who propose a greedy best-fit heuristic, using
various criteria for evaluating fitting and ordering items. The initial solution
was followed by local search heuristics and, subsequently, by a Variable Neigh-
borhood Decent method.

3. The Constructive Heuristic

Our new constructive heuristic, shown in Algorithm 1, constructs solutions
of the 2DBP|*|G in a bin-oriented fashion: while unpacked items exist, open
a new bin, construct a pattern using a subset of the unpacked items, and place
the pattern in the bin. A pattern, P , is a feasible arrangement of items that fits
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in a bin. In our algorithm, a pattern is represented by the set of items and their
coordinates. Each pattern is constructed using procedure genPattern, which is
described later.

Input: (I,H,W ); I — set of items with dimensions (hi, wi) for i ∈ I,
(H,W ) — bin dimensions

Output: X — a solution represented by a list of patterns
X ← empty list of patterns;
while I 6= ∅ do

P ← empty pattern;
(P, I)← genPattern(P, I, [(0, 0, H,W )]);
Add P to X;

end
return X;

Algorithm 1: The constructive heuristic

Throughout the algorithm, unpacked items are kept in a set, I, which is
updated every time items are added to a pattern. To allow for item rotation, two
copies of each item are stored in I, one for each orientation, and an availability
vector is maintained to disallow double packing.

Since our constructive heuristic depends on the orientation of the problem,
it is run twice, once with original bins and items, and once with all bins and all
items rotated 90 degrees, and the better of the two solutions is returned. The
second run is omitted if the problem considered is with rotation and the bins
are square.

3.1. Comparing Patterns

During pattern construction, several partial patterns are considered and the
best of them is committed. A key component of the new heuristic is the criterion
for comparing patterns. A natural criterion is one that chooses the pattern with
maximum total area of packed items. Unfortunately, such a criterion may favor
selecting patterns that use many small (easy to pack) items. As a result, many
small items can be used in the early stages of the construction of the solution,
leaving larger, more difficult to pack, items for later stages.

To guard against excessive use of small items in early stages of solution
construction, this work proposes to use an average-area sufficiency criterion in
addition to the objective of maximizing the total area of packed items. Let ā(I)
be the average area of items in I. A pattern, P , having an average area ā(P )
over its items is said to meet the sufficiency criterion if ā(P ) ≥ ā(I). In other
words, the average-area sufficiency criterion specifies a desired lower limit on
the average area of items included in a pattern.

When two patterns are compared, the choice is performed as follows:

• If both patterns satisfy the sufficiency criterion, then the one with the
larger total area of items is chosen.
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• If only one pattern satisfies the sufficiency criterion, then this pattern is
chosen (total item area is ignored).

• If neither pattern satisfies the sufficiency criterion, then the one violating
the sufficiency criterion least is chosen (total item area is ignored again).

Application of the sufficiency criterion in combination with the total item
area maximization seeks to have tight packings, and, therefore, high area-
utilization, while preferring larger items over smaller items, providing a look-
ahead capability. This strategy is dynamic: when large items are packed, the
average area of the remaining items decreases; thus increasing the possibility of
using smaller items in subsequent bins.

In the following sections, the proposed comparison method is represented by
the function fitsbetter(P1, P2, I) that returns true if pattern P1 is preferred over
pattern P2 in the presence of unpacked items, I, and false otherwise.

3.2. Generating Simple Patterns

Our heuristic constructs patterns for bins incrementally, by inserting a simple
pattern into a free (unoccupied) rectangle within the current pattern, P , until
no insertion is possible. A simple pattern is a subset of unpacked items arranged
side-by-side such that the bottom edges of all items form a single segment.

Simple patterns are generated using procedure genSimplePattern, shown in
Algorithm 2. The procedure accepts as input: the current partial pattern, P ,
to which the new simple pattern will be added; the set of unpacked items, I;
and the dimensions, (H,W ), of the free rectangle within P , for which a simple
pattern is to be constructed. The procedure returns the constructed simple
pattern, S∗.

Procedure genSimplePattern begins by creating a reduced set of unpacked
items, I ′, which includes only items that are small enough to fit in the free rect-
angle, (H,W ). Then, several candidate simple patterns are considered. Each
of them is generated by sorting I ′ and adding items in a first-fit manner un-
til no more items fit. The sorting is based on a combination of two natural
preferences, one for larger-area items, and the other for taller items. To this
end, items are sorted by the nonincreasing values of λh′i + (1 − λ)a′i, where h′i
and a′i are, respectively, the height and area of item i, each normalized over the
respective maximum from the unpacked items, I ′, and λ is a weighting param-
eter ranging from 0 to 1. When λ = 0, the items are sorted by nonincreasing
area; and when λ = 1, by nonincreasing height. By varying λ, several orders of
unpacked items are generated and, hence, several candidate simple patterns are
constructed in the first-fit manner. The best among these is chosen using the
fitsBetter function, described in Section 3.1. In order to ensure appropriate be-
havior of the sufficiency criterion (see Section 3.1), comparison is performed on
simple patterns combined with the currently committed pattern, P , considering
the union of I and P as the set of unpacked items.
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Input: (P, I,H,W ); P — pattern to which the simple pattern will be added,
I — set of unpacked items (excluding P ), (H,W ) — dimensions of the
free rectangle

Output: S∗ — the best simple pattern represented by a sequence of items
I ′ ← {i ∈ I : hi ≤ H ∧ wi ≤W};
S∗ ← empty sequence;
foreach λ ∈ Λ do

L← sort I ′ depending on λ (see the description);
Wleft ←W ;
S ← empty sequence;
foreach i ∈ L do

if wi ≤Wleft then
Add i at the end of S;
Wleft ←Wleft − wi;

end

end
if fitsBetter(P ∪ S, P ∪ S∗, I ∪ P ) then S∗ ← S;

end
return S∗;

Algorithm 2: Procedure genSimplePattern

3.3. Generating Patterns

Algorithm 3 shows procedure genPattern, which is used to generate patterns
for all bins. It accepts as input: the current partial pattern, P ; the set of
unpacked items, I; and the list of free overlapping rectangles, R, in which items
can be packed. Each rectangle in R is represented by (x, y, h, w), where x and
y are the coordinates of the left-bottom corner of the rectangle, and h and
w are the dimensions of the rectangle. The rectangles are always sorted by
increasing x. The procedure returns the updated pattern, P , and the reduced
set of unpacked items, I.

The procedure starts by removing from R all free rectangles that are too
small to accommodate any of the unpacked items. If R is not empty, the follow-
ing steps are performed. For each rectangle in R, a simple pattern is generated
using genSimplePattern (see Algorithm 2). All simple patterns are compared
using function fitsBetter (see Section 3.1) and the best is saved as S∗ with the
index of the corresponding free rectangle saved as j∗. Then, items of S∗ are
sorted by nonincreasing height and added to the pattern, P , by placing them
left-to-right on the bottom edge of rectangle R[j∗]. Items of S∗ are also re-
moved from the unpacked items, I. Subsequently, three lists of rectangles are
generated: Rleft with all rectangles in R before index j∗, Rbelow with all rect-
angles in R after index j∗, and Rsub with all largest free overlapping rectangles
remaining within R[j∗] after packing S∗ in it. Rectangles in Rleft and Rbelow are
trimmed from right and above, respectively, to those parts that are not over-
lapping with R[j∗]. Finally, procedure genPattern is invoked recursively three
times, first for Rsub, then for Rbelow (with increased heights, described later),
and last for Rleft (with increased widths, also described later).
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Input: (P, I,R); P — pattern, I — set of unpacked items (excluding P ),
R — list of free overlapping rectangles

Output: (P, I); P — updated pattern, I — reduced set of unpacked items
Remove from R all rectangles too small for any of the items in I;
if R = ∅ then return (P, I);
(S∗, j∗)← (∅, 0);
for j ← 1 to |R| do

S ← genSimplePattern(P, I,R[j].h, R[j].w);
if S∗ = ∅ or fitsBetter(P ∪ S, P ∪ S∗, I ∪ P ) then (S∗, j∗)← (S, j);

end
Sort items in S∗ by height nonincreasing;
Insert simple pattern S∗ into pattern P in rectangle R[j∗];
I ← I \ S∗;
Rleft ← [R[1], . . . , R[j∗ − 1]] trimmed from right by R[j∗];
Rbelow ← [R[j∗ + 1], . . . , R[|R|]] trimmed from above by R[j∗];
Rsub ← free overlapping rectangles above items of S∗ just inserted into P ;
(P, I)← genPattern(P, I,Rsub);
Increase heights of rectangles in Rbelow (see the description);
(P, I)← genPattern(P, I,Rbelow);
Increase widths of rectangles in Rleft (see the description);
(P, I)← genPattern(P, I,Rleft);
return (P, I);

Algorithm 3: Procedure genPattern

Recall that our constructive heuristic invokes the genPattern procedure re-
peatedly (see Algorithm 1 on page 4), once for each new bin, each time with
P = empty pattern, I = currently unpacked items, and R = [(0, 0, H,W )]; the
latter being a list containing a single free rectangle with dimensions equal to
those of the bin. Since in this call of genPattern there is only one free rectan-
gle, a simple pattern is always committed on the bottom edge of this rectangle
and Rleft and Rbelow are always empty. If Rsub is not empty, recursive calls of
genPattern occur, in which all three lists of rectangles may be non-empty.

Figure 1a shows an example partial solution with the first four-item simple
pattern committed inside the initial call of genPattern. At this point, four
free overlapping rectangles are generated and saved in Rsub, each defined by the
corresponding item of the simple pattern, as shown in Figure 1a (Rleft andRbelow

are empty). Procedure genPattern is now called recursively for R = Rsub. In
this recursive call, four simple patterns, one for each of the four free overlapping
rectangles, is generated. Due to overlapping, only one of those simple patterns
can be committed. Assume that a three-item simple pattern was committed in
the third free rectangle, as shown in Figure 1b. Rleft will now contain the first
two rectangles of R trimmed from the right, and Rbelow will contain the fourth
rectangle of R trimmed from above, and Rsub will contain two rectangles above
items 6 and 7, as shown in Figure 1b. For each of these three lists, genPattern
will be called recursively.

Before genPattern invokes itself recursively for Rbelow and Rleft, the dimen-
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Figure 1: Example 1.

sions of free rectangles in these lists are increased, if possible, in order to increase
the likelihood of packing larger items. The procedure performs the following
steps. Since increasing sizes of rectangles of Rsub is never possible, genPattern
is invoked first for unmodified set Rsub. Once processing of Rsub is completed,
all items packed above Rbelow (all items in R[j∗]) are shifted upwards as much
as possible (all by the same amount), and the height of each rectangle in Rbelow

is increased as much as possible, without violating guillotine cuts. Then, gen-
Pattern is invoked recursively for Rbelow. When processing Rbelow is completed,
all items packed to the right of Rleft (all items in R[j∗] and below it) are shifted
rightwards as much as possible (all by the same amount), and the width of each
rectangle in Rleft is increased accordingly, without violating guillotine cuts. Sub-
sequently, genPattern is invoked recursively for Rleft. Finally, when processing
of Rleft is completed, all items that were previously shifted upwards or right-
wards are shifted back as much as possible, maintaining guillotine cuts, in order
to allow for shifting of items after backtracking.

To illustrate how sizes of free rectangles are increased, consider the exam-
ple presented in Figure 2. Figure 2a shows a stage in which a five-item simple
pattern is committed in the initial call of genPattern, and a two-item simple
pattern is committed in the recursive call. At this point, genPattern is invoked
recursively three times. First, it is invoked for Rsub, which manages to commit
only item 8, as shown in Figure 2b. (In general, the heuristic could pack many
more items in Rsub.) Once processing Rsub is completed, sizes of rectangles in
Rbelow are increased. Items 6, 7, and 8 (enveloped by a dark-gray rectangle in
Figure 2b-c) are together shifted upwards and the height of each rectangle in
Rbelow is increased, as shown in Figure 2c. Note that for the first two rectangles
in Rbelow, the height is increased as much as 6, 7, and 8 were shifted upwards.
However, for the third rectangle, the height is increased even more, as shown
in Figure 2c. At this point, genPattern is invoked recursively for Rbelow, which
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Figure 2: Example 2.

commits only item 9, as shown in Figure 2d. (Again, many more items could
be packed in Rbelow, in general.) When processing Rbelow is completed, sizes
of rectangles in Rleft are increased. All items right of both Rleft and item 1,
i.e. items 2–9 (enveloped by a dark-gray rectangle in Figure 2d-e), are shifted
together rightwards and the width of each rectangle in Rleft is increased accord-
ingly, as shown in Figure 2e. At this point, genPattern is invoked recursively
for Rleft, which commits item 10. Finally, after processing Rleft is completed,
all items previously shifted rightwards and upwards are shifted back as much as
possible, as show in Figure 2f.

3.4. Time Complexity

Since items committed in a pattern are never reconsidered by the heuris-
tic, the time complexity of the heuristic is modest. In each call of genPattern,
at most n free rectangles are considered, where n is the number of items, and
for each rectangle the complexity of generating a simple pattern is bounded by
the sorting with O(n log n) complexity. Clearly, the repetition of the process
several times for several values of λ imposes only a constant coefficient on the
execution, leaving the complexity unaffected. Since in each call of genPattern
at least one item is committed, the number of recursive calls over all bins is
limited to n. Thus, the worst case complexity of our constructive heuristic is
O(n3 log n). Note that the average case should be much better, as the num-
ber of free rectangles is often much less than n, the sorted set is continually
reduced, and simple patterns that are committed often contain more than one
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item. Experimental results attest to this, as the algorithm requires only a few
milliseconds even for the largest problem instances.

3.5. Sufficiency Bias

Experimentation has shown that application of the sufficiency criterion along
with covered area maximization (as described in Section 3.1) yields considerable
improvements of solutions, compared with relying solely on the latter. However,
it also became evident that relaxing or restricting the adopted sufficiency limit
may be advantageous for certain problem instances. This may be the case when
there is a relatively large number of large items that need to be packed together
early on. To obtain a good solution in such instances, a pattern comprising large
items may be preferred to another that uses smaller items, even if both respect
the sufficiency criterion. Similarly, some instances require very tight patterns to
reach better solutions, even if the sufficiency criterion is moderately violated.

To cater for such instances, a bias strengthening or weakening the sufficiency
criterion may be introduced. The algorithm is first executed without bias. If the
optimal solution is not obtained (lower bound is not reached), a bias is applied
to the sufficiency limit and the algorithm is rerun. When a bias of α is applied,
the lower limit on average area is multiplied by (1 + α). Reruns are performed
for several values of α.

3.6. Postoptimisation

The stage in the constructive process in which an item is committed to a bin
depends to a great extend on its dimensions. Items of large area are often ad-
dressed early on as they contribute towards meeting the sufficiency criterion.
The same holds for elongated items (items with one large and one small dimen-
sion) as they can easily be added to develop efficient simple patterns or utilize
short vertical spaces without having considerable impact on the sufficiency of
the pattern. Also, small items (both dimensions relatively small) are packed at
various stages in the process as the algorithm always enforces maximal packs.
However, it is often the case that medium-sized square-like items (height and
width close to each other) have a tendency to be left towards the latter stages
of the constructive process. Through experimentation, it was observed that
forcing the packing of these items earlier in the constructive process may yield
improved results.

From this observation stems the proposed postoptimization algorithm. The
algorithm commences by running the constructive heuristic on the problem in-
stance without bias and then several times with varying bias values, as described
in Section 3.5. Throughout this process, the best obtained solution is stored.
A solution is considered better if it uses fewer bins, breaking ties in favor of
larger slack in the last bin. For each generated solution, bins are numbered
(bin 1 being the first bin packed and so on), and for each item, the sum of the
bin numbers in which it was packed, over all the solutions, is calculated. If the
sum of bin numbers for an item is relatively high, then it can be concluded that
this item consistently appears in the latter bins and, therefore, is avoided by
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the heuristic. Hence, developing solutions with such items packed early may
improve results.

The postoptimization improves the incumbent solution as follows. Our con-
structive heuristic is used to build a new pattern for one bin, assuming all items
are available, and forcing the most avoided item (the item with the largest sum
of bin numbers) in the first simple pattern. The new bin with the new pat-
tern is added to the solution. The new pattern will obviously use items that
were already allocated to other bins. To fix the solution, all affected bins are
unpacked. To increase the possibility of generating efficient bins, a number of
bins filled last in the solution process is also unpacked, even if unaffected. Any
unpacked items are then packed by our constructive heuristic. If the new solu-
tion generated in this manner improves the incumbent, then it is adopted. The
process is repeated, initializing the first bin with the second most avoided item,
and so on. Clearly, applying the postoptimization routine with items selected
early in the constructive algorithm would lead to solutions already developed as
similar patterns would be constructed. Therefore, postoptimization is repeated
for only a number of the most avoided items.

4. Computational Experiments

The proposed algorithms were tested on the 500 benchmark problem in-
stances proposed by Berkey and Wang [4] (classes 1–6) and Lodi et al. [1]
(classes 7–10). Each class includes 10 instances of size 20, 40, 60, 80, and 100
items, providing a total of 50 instances per class. In all problem classes square
bins are used. Item dimensions are random integers from uniform distributions
in various ranges. Classes differ in the bin size (ranging from 10x10 to 300x300)
and the distribution ranges used for obtaining the item sizes.

All our heuristics were coded in C# and compiled using Microsoft Visual
Studio 2008. All tests were performed on a PC with an Intel Core i3 M330
2.13GHz processor. Each heuristic was executed as a single process with a single
thread and real computation times were recorded.

Lower bounds were used for early termination of heuristics as well as for
calculating the deviations. For the oriented case, lower bounds were calculated
as in the work of Martello and Vigo [9]. For the case with rotation, the tighter
lower bounds of Clautiaux et al. [5] were used.

Inside the genSimplePattern procedure (see Section 3.2), six values of λ were
used, namely Λ = {0.001, 0.2, 0.4, 0.6, 0.8, 0.999}. A value of 0.001 (and 0.999)
was used instead of 0 (and 1) so that when the items are sorted by nonincreasing
area (height), ties are broken in favor of larger height (area). For biasing (see
Section 3.5), α varied from −0.4 to +0.6 in 0.2 steps. For postoptimization (see
Section 3.6), the processing was repeated for the 20 most avoided items; each
time unpacking the latter one fourth of the bins (rounded up to the nearest
integer) and any bin affected by packing the first bin in the new solution.

Table 1 shows the results of all versions of the proposed heuristic for the two
versions of the problem; one without rotation (2BP|O|G) and the other with
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Table 1: Results of the various versions of the proposed heuristic.

2BP|O|G 2BP|R|G
Heuristic Avg. Total Avg. Max. Avg. Total Avg. Max.

Dev. Bins Time Time Dev. Bins Time Time

CH without sufficiency 1.048 7403 0.005 0.022 1.071 7272 0.006 0.027
CH 1.045 7375 0.005 0.023 1.059 7191 0.006 0.028
CHB 1.041 7345 0.018 0.130 1.050 7117 0.018 0.129
CHBP 1.036 7311 0.033 0.347 1.037 7064 0.066 0.951

rotation (2BP|R|G). The quality of solutions is reported in terms of average
deviations from lower bounds and the total number of bins used. Deviation for
each instance is computed as the number of bins divided by the lower bound
on the number of bins. Average and maximum processing times are reported in
seconds.

The four heuristic versions reported in Table 1 are: the constructive heuris-
tic (CH) without and then with the sufficiency criterion, CH followed by biasing
the sufficiency limit (CHB) (see Section 3.5), and CHB followed by the postop-
timization (CHBP) (see Section 3.6). The impact of using a sufficiency criterion
on the construction of solutions is significant. For both versions of the problem,
with and without rotation, adding the sufficiency criterion improves the results
without increasing computation time. Both biasing sufficiency and postopti-
mization further improve the results of CH. The processing time increases but
is still modest.

Table 2 compares the CH heuristic (with the sufficiency criterion), CHB
and CHBP with the best methods available in the literature. CH is set against
other fast heuristics: the Floor-Ceiling (FC) and Knapsack-Problem-based (KP)
heuristics of Lodi et al. [1], and the Guillotine Bottom Left (GBL) heuristic of
Polyakovsky [10]. The heuristics proposed by Berkey and Wang are not included
as they are dominated in all cases by either the FC or KP. CHB and CHBP are
set against metaheuristics: the Tabu Search (TS) of Lodi et al. [1], the Variable
Neighborhood Decent (VND) method of Alvelos et al. [3] and, the Agent Based
(A-B) approach of Polyakovsky [10]. It is worth recalling that VND is designed
to solve the problem with constraints on the number of cutting stages. For all
algorithms, the same performance measures as in Table 1 are reported, whenever
available. Additionally, the processor used for testing each method is reported.

The published deviations of FC, KP, and TS for the problem with rotation
were computed with respect to weaker lower bounds than those used in this
paper; namely, those of Dell’Amico [8]. For comparability, the deviations for
these algorithms were scaled by multiplying them by the ratio of the two lower
bounds. Although this may cause slight rounding errors, the results should be
quite accurate. For the case without rotation, the published deviations of FC,
KP, and TS were used. For GBL and A-B, the reported results are based on the
detailed results obtained from the authors. The results for VND were computed
based on those published in [3].

Examining the results in Table 2, both the efficiency and effectiveness of the
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Table 2: Comparison of CH and CHBP with the best-known heuristics and metaheuristics.
2BP|O|G 2BP|R|G

Heuristic Avg. Total Avg. Max. Avg. Total Avg. Max. Processor
Dev. Bins Time Time Dev. Bins Time Time

FC 1.087 <0.5 1.089 <0.5 Silicon Graphics*
KP 1.089 7480 <0.5 1.085 7297 <0.5 Silicon Graphics*
GBL 1.109 7636 ∼0.03 0.07 1.094 7367 ∼0.03 0.07 Athlon XP 2800
CH 1.045 7375 0.005 0.023 1.059 7191 0.006 0.028 Intel i3 2.13GHz
TS 1.079 7433 32.55 1.055 7101 29.28 Silicon Graphics*
VND 1.075 0.246 Intel Core 2 2.13GHz
A-B 1.043 7374 3.5 1.045 7130 3.5 Athlon XP 2800
CHB 1.041 7345 0.018 0.130 1.050 7117 0.018 0.129 Intel i3 2.13GHz
CHBP 1.036 7311 0.033 0.347 1.037 7064 0.066 0.951 Intel i3 2.13GHz
*Silicon Graphics INDY R10000sc 195MHz

proposed heuristics are evident, both in the oriented case and the non-oriented
case. CH overwhelmingly outperforms FC, KP, and GBL in terms of average
deviations and total bins used, while requiring similar computation times. In
fact, for the oriented case, CH outperforms even the complex TS and VND
metaheuristics and performs comparably with A-B, while requiring a fraction
of their computation time.

When compared to TS and A-B, CHB performs comparably in the non-
oriented case and better in the oriented case, in both requiring significantly less
execution time, taking into account the different processors. When CHBP is
compared with TS and A-B it is evident that it achieves significantly better
results in terms of both average deviation and total bins used, again requiring
less execution time. VND is significantly outperformed by both CHB and CHBP
in terms of both solution quality and execution time.

Detailed results of the four fast heuristics, FC, KP, GBL, and our CH are
provided in the Appendix in Table 3. In this table, average deviations are
shown for each problem class and size group, for both the oriented and non-
oriented case. The total number of bins used is also provided. Similar results
for TS, A-B, and our CHBP are provided in Table 4. Examining the detailed
results, the robustness of our algorithms is also evident. Comparing constructive
heuristics for the oriented case, CH performs best in 49 of the 50 class/problem-
size groups, whereas FC, KP and GBL meet the best deviation in 11, 9 and 7
cases, respectively. Similarly, for the case where item rotation is permitted, CH
results in the best deviation in 44 out of the 50 groups whereas FC, KP, and
GBL do so only in 19, 21, and 18 cases, respectively. The same robustness can be
identified when comparing the three more advanced algorithms. For the oriented
case, over the 50 problem groups, CHBP performs best in 47 cases, whereas TS
and A-B do so for 9 and 22, respectively. Similarly, in the non-oriented case
CHBP achieves the best deviation in 47 out of the 50 cases, compared with 20
and 23 cases for TS and A-B, respectively.
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5. Conclusions

A new constructive bin-oriented heuristic (CH) for the two-dimensional bin
packing problem with guillotine cuts was presented. The algorithm constructs
solutions incrementally; at each stage adding a simple pattern to the previously
committed items. The main strength of CH is in generating multiple simple
patterns and in the way these patterns are compared to select the best. The
comparison uses the concept of area-sufficiency in addition to classical total area
covered maximization. The sufficiency criterion guards against overuse of easily
packed items early on in the construction of the solution by giving preference to
efficient patterns consisting of larger items. Moreover, the criterion is dynamic,
as the limit on average item area is adjusted when the set of unpacked items is
reduced.

Computational analysis shows that CH is very effective when compared to
other fast methods available in the literature. The experiments also show that
using the sufficiency criterion has a positive impact on the results. CH, which
is a simple constructive heuristic, managed to outperform even the tabu-search
heuristic of Lodi et al. [1] for the oriented case.

Improved results were obtained when the heuristic was enhanced with biasing
the sufficiency condition (CHB). Further improvements were obtained when
a postoptiomization routine was used (CHBP) that reapplied the algorithm
seeding it with the most avoided items. The CHBP outperformed all published
two-dimensional bin packing metaheuristics in terms of both solution quality
and computation time.

A natural future research direction would be to examine whether a similar
approach could achieve the same quality of solutions when used for the bin
packing problem without the guillotine constraint. It would also be interesting
to examine whether the proposed algorithms can be incorporated into a more
sophisticated non-polynomial scheme that could attempt to solve the problem
to optimality. Finally, it would be of great interest to evaluate the effectiveness
of the sufficiency principle on other packing and related combinatorial problems.
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Appendix

This section contains the detailed results of our new heuristics, CH and
CHBP, and other heuristics with which CH and CHBP were compared in Sec-
tion 4. Results for all algorithms are presented in terms of deviations from
lower bounds. Additionally, for the new heuristics proposed in this work the
total number of bins is also provided in columns followed by ‘bins’.
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Table 3: Detailed results of CH and three other fast heuristics
Class n 2BP|O|G 2BP|R|G

FC KP GBL CH CH-bins FC KP GBL CH CH-bins

1 20 1.14 1.13 1.08 1.00 71 1.06 1.06 1.06 1.01 67
40 1.09 1.10 1.08 1.02 136 1.06 1.05 1.06 1.02 131
60 1.07 1.07 1.06 1.03 202 1.06 1.05 1.03 1.03 200
80 1.06 1.06 1.04 1.01 277 1.07 1.06 1.02 1.02 276
100 1.06 1.05 1.04 1.03 325 1.05 1.03 1.03 1.03 323
All 1.084 1.082 1.058 1.016 1011 1.060 1.048 1.039 1.024 997

2 20 1.10 1.00 1.20 1.00 10 1.00 1.00 1.00 1.00 10
40 1.10 1.10 1.10 1.10 20 1.10 1.10 1.10 1.10 20
60 1.15 1.15 1.20 1.05 26 1.05 1.15 1.10 1.05 26
80 1.07 1.07 1.10 1.07 33 1.03 1.07 1.07 1.03 32
100 1.03 1.03 1.08 1.03 40 1.03 1.03 1.03 1.00 39
All 1.090 1.070 1.137 1.050 129 1.042 1.070 1.060 1.037 127

3 20 1.18 1.18 1.21 1.08 54 1.16 1.10 1.19 1.04 49
40 1.14 1.15 1.19 1.08 98 1.15 1.15 1.12 1.07 96
60 1.11 1.12 1.14 1.06 144 1.16 1.09 1.13 1.05 138
80 1.10 1.10 1.18 1.07 199 1.10 1.07 1.09 1.07 194
100 1.09 1.09 1.11 1.06 233 1.12 1.09 1.09 1.06 228
All 1.124 1.128 1.166 1.068 728 1.140 1.103 1.124 1.057 705

4 20 1.00 1.00 1.10 1.00 10 1.00 1.00 1.00 1.00 10
40 1.00 1.10 1.10 1.00 19 1.00 1.00 1.00 1.00 19
60 1.10 1.20 1.25 1.10 25 1.10 1.10 1.15 1.10 25
80 1.10 1.13 1.17 1.10 33 1.10 1.10 1.10 1.10 33
100 1.10 1.10 1.09 1.07 39 1.07 1.07 1.10 1.07 39
All 1.060 1.106 1.142 1.053 126 1.054 1.054 1.070 1.053 126

5 20 1.14 1.13 1.09 1.00 65 1.04 1.04 1.06 1.00 59
40 1.11 1.09 1.10 1.03 122 1.07 1.08 1.08 1.03 116
60 1.10 1.10 1.09 1.04 185 1.08 1.08 1.07 1.05 180
80 1.09 1.09 1.09 1.04 251 1.08 1.07 1.06 1.06 249
100 1.09 1.09 1.09 1.05 292 1.09 1.08 1.07 1.07 290
All 1.106 1.100 1.091 1.032 915 1.072 1.070 1.066 1.042 894

6 20 1.00 1.00 1.10 1.00 10 1.00 1.00 1.00 1.00 10
40 1.40 1.50 1.40 1.40 19 1.40 1.40 1.40 1.40 19
60 1.10 1.10 1.20 1.05 22 1.05 1.05 1.10 1.05 22
80 1.00 1.00 1.03 1.00 30 1.00 1.00 1.00 1.00 30
100 1.10 1.10 1.20 1.07 34 1.07 1.10 1.13 1.07 34
All 1.120 1.140 1.187 1.103 115 1.104 1.110 1.127 1.103 115

7 20 1.10 1.10 1.14 1.02 56 1.19 1.17 1.22 1.13 53
40 1.11 1.07 1.12 1.05 115 1.15 1.15 1.18 1.09 108
60 1.08 1.06 1.10 1.04 163 1.18 1.16 1.18 1.10 154
80 1.06 1.06 1.09 1.05 235 1.15 1.15 1.16 1.08 216
100 1.04 1.04 1.07 1.03 277 1.17 1.16 1.17 1.09 261
All 1.078 1.066 1.105 1.039 846 1.167 1.157 1.184 1.099 792

8 20 1.16 1.12 1.12 1.02 59 1.12 1.12 1.15 1.08 54
40 1.08 1.07 1.09 1.03 116 1.18 1.18 1.19 1.09 106
60 1.06 1.06 1.10 1.04 165 1.17 1.17 1.19 1.09 155
80 1.06 1.05 1.08 1.02 227 1.16 1.15 1.16 1.09 214
100 1.06 1.04 1.07 1.04 284 1.17 1.17 1.17 1.09 263
All 1.084 1.068 1.091 1.030 851 1.160 1.159 1.170 1.088 792

9 20 1.01 1.01 1.01 1.01 144 1.00 1.00 1.00 1.01 144
40 1.02 1.02 1.00 1.01 280 1.01 1.01 1.01 1.02 279
60 1.02 1.01 1.00 1.00 439 1.01 1.01 1.00 1.01 438
80 1.02 1.02 1.00 1.00 578 1.01 1.01 1.01 1.01 576
100 1.01 1.01 1.00 1.00 696 1.01 1.01 1.00 1.00 694
All 1.016 1.014 1.001 1.004 2137 1.008 1.008 1.005 1.007 2131

10 20 1.14 1.16 1.08 1.05 44 1.13 1.10 1.17 1.13 42
40 1.09 1.10 1.08 1.02 75 1.08 1.08 1.09 1.08 75
60 1.10 1.10 1.13 1.05 103 1.08 1.07 1.08 1.09 103
80 1.12 1.12 1.15 1.07 132 1.06 1.06 1.07 1.07 131
100 1.10 1.08 1.11 1.07 163 1.07 1.05 1.08 1.05 161
All 1.110 1.112 1.110 1.051 517 1.083 1.071 1.097 1.083 512

Overall 1.087 1.089 1.109 1.045 7375 1.089 1.085 1.094 1.059 7191
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Table 4: Detailed results of CHBP and two metaheuristics
Class n 2BP|O|G 2BP|R|G

TS A-B CHBP CHBP-bins TS A-B CHBP CHBP-bins

1 20 1.11 1.01 1.00 71 1.03 1.01 1.00 66
40 1.08 1.02 1.00 134 1.03 1.02 1.01 129
60 1.05 1.03 1.02 201 1.03 1.01 1.00 195
80 1.04 1.00 1.00 275 1.05 1.00 1.00 271
100 1.05 1.02 1.01 321 1.02 1.01 1.00 314
All 1.066 1.017 1.008 1002 1.030 1.010 1.003 975

2 20 1.00 1.00 1.00 10 1.00 1.00 1.00 10
40 1.10 1.10 1.10 20 1.10 1.00 1.00 19
60 1.15 1.00 1.05 26 1.15 1.00 1.00 25
80 1.07 1.00 1.07 33 1.03 1.00 1.00 31
100 1.03 1.00 1.00 39 1.03 1.00 1.00 39
All 1.070 1.020 1.043 128 1.062 1.000 1.000 124

3 20 1.18 1.05 1.03 52 1.07 1.04 1.02 48
40 1.12 1.08 1.07 97 1.10 1.07 1.04 94
60 1.07 1.07 1.03 140 1.07 1.05 1.03 136
80 1.08 1.06 1.05 196 1.03 1.04 1.02 186
100 1.09 1.05 1.04 230 1.07 1.05 1.04 223
All 1.108 1.062 1.046 715 1.069 1.050 1.031 687

4 20 1.00 1.00 1.00 10 1.00 1.00 1.00 10
40 1.10 1.00 1.00 19 1.00 1.00 1.00 19
60 1.20 1.10 1.10 25 1.10 1.10 1.10 25
80 1.10 1.10 1.10 33 1.03 1.03 1.10 33
100 1.10 1.03 1.07 39 1.03 1.00 1.03 38
All 1.100 1.047 1.053 126 1.032 1.027 1.047 125

5 20 1.13 1.02 1.00 65 1.00 1.02 1.00 59
40 1.09 1.04 1.02 121 1.04 1.04 1.03 115
60 1.07 1.04 1.02 183 1.04 1.05 1.03 176
80 1.08 1.06 1.03 247 1.05 1.04 1.02 240
100 1.09 1.06 1.04 288 1.06 1.06 1.04 282
All 1.092 1.043 1.021 904 1.039 1.043 1.023 872

6 20 1.00 1.00 1.00 10 1.00 1.00 1.00 10
40 1.50 1.40 1.40 19 1.40 1.30 1.30 18
60 1.10 1.05 1.05 22 1.05 1.00 1.00 21
80 1.00 1.00 1.00 30 1.00 1.00 1.00 30
100 1.10 1.10 1.07 34 1.07 1.07 1.07 34
All 1.140 1.110 1.103 115 1.104 1.073 1.073 113

7 20 1.08 1.04 1.00 55 1.11 1.13 1.11 52
40 1.07 1.05 1.03 112 1.05 1.08 1.05 104
60 1.05 1.04 1.02 160 1.06 1.09 1.05 148
80 1.05 1.05 1.04 233 1.06 1.08 1.06 211
100 1.04 1.03 1.02 275 1.07 1.08 1.07 255
All 1.058 1.043 1.023 835 1.071 1.092 1.068 770

8 20 1.12 1.02 1.00 58 1.06 1.11 1.06 53
40 1.04 1.03 1.02 114 1.07 1.09 1.08 105
60 1.03 1.04 1.03 163 1.06 1.08 1.06 150
80 1.03 1.03 1.01 226 1.08 1.09 1.07 210
100 1.04 1.04 1.02 279 1.08 1.08 1.07 258
All 1.052 1.032 1.015 840 1.071 1.090 1.066 776

9 20 1.00 1.00 1.00 143 1.00 1.00 1.00 143
40 1.01 1.00 1.00 279 1.01 1.00 1.00 275
60 1.01 1.00 1.00 438 1.01 1.00 1.00 435
80 1.01 1.00 1.00 577 1.01 1.00 1.00 573
100 1.01 1.00 1.00 695 1.01 1.00 1.00 693
All 1.008 1.000 1.001 2132 1.008 1.000 1.000 2119

10 20 1.14 1.05 1.05 44 1.10 1.10 1.10 41
40 1.09 1.03 1.00 74 1.07 1.06 1.05 73
60 1.08 1.08 1.05 103 1.06 1.07 1.06 100
80 1.10 1.06 1.06 130 1.06 1.06 1.06 130
100 1.07 1.08 1.07 163 1.05 1.05 1.04 159
All 1.096 1.058 1.044 514 1.067 1.068 1.062 503

Overall 1.079 1.043 1.036 7311 1.068 1.045 1.037 7064

17


