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ARSTRACT

Some classical procedures for testing optical components
are reviewed; the limitations of the tests considered are indicated.
A simple account of some wavefront reconstruction technioues follows.
Finally an attempt has been made to indicate how these techniques

can be put to use in optical testing,
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I. INTRODUCTION

In recent years there has been increased interest in
producing large aperture optical systems of high resolving power,
These systems are demanded by modern technology for such purposes
as} aerial photographic mapping; ground, or astronomical observa-
tlon from earth satelitesy and optical radar using laser sources
to mention just a few.

In the design of such systems the use of aspherlc elements
seems necessary to control aberrations. Although it is falrly easy
for the optical designer to produce an aspheric element in his
computer, the optical shop has more trouble producing the physical
reality. Much of the difficulty, in producing aspherlic elements
in the optical shop, centers around testing the element to determine
i1ts figure,

The classical procedures of testing optical components
usually rely on the fact that the element by itself, or in combi-
nation with a small number of other elements, can produce a good
axial image of a point object. For optical designs employing a
large number of elements, many of which are aspheric, thils conditlon
i1s no longer satisfied.

It then becomes nececsary to examine such surfaces, to
determine their shape, without the benefit of conjugate points,

Furthermore, it is now desirable to produce simple aspheric:
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surfaces such as astronomical paraboloidal mirrors of large size
with precision greater than was heretofore necessary, because of
the fact that it is now possible to use large astronomical

telescopes without the confusing effects of the earth's atmosphere,
For these reasons, it is desirable, to re~examine the classical
optical test procedures to see their limitations, and to see if some
of the modern techniques of wavefront reconstruction can be made to
serve the useful purpose of optical testing. )
What appears in Section II1 is, then, a review of some well-
known optical test procedures., Section III deals with some sallent
features of wavefront reconstruction. In Section IV we have attempted

to point out some of those areas where the purpose of optical testing

can best be met by wavefront reconstruction techniques.



IT. SOME WELL KNOWN METHODS OF TESTING OPTICAL SURFACFS

AND COMPONENTS

A. Description of Some Optical Test Procedures

In this section some of the well known schemes for testing optical
components will be discussed so that their merits and limitations may be
recognized, It is convenient to distinguish between a working test in-
tended to help in the polishing of optical components and a performance
test designed to measure the quality of finished optical systems, However
some tests are suitable for hoth purpeoses.

Any test has to be related to a criterion of assessment and early”
methods such as the Foucault Test were related to ray optics., They were
designed to test the stigmatism of a beam of light after it emerges from
the component under test. Later attention turned towards the shape of the
wavefront emerging from an optical component, Tnstruments such as the
Twyman-Green interferometer test these wavefronts for sphericity or
planarity, In instruments such as this it is necessary to generate

a reference wave to which the wave front under test can be compared.

1. The Knife-Edge Test

The knife-edge test was first discussed by Leon Foucault in

1858. According to E.H. Linfoot!s2*®

this test is still by far the
most widely used method of testing astronomical mirrors and other
high quality optlcal systems of large aperture during the process

of optical figuring, It is of unsurpassed simplicity and sensiti-
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vity when stigmatism is the property to be tested. For then the
the interpretation of the test is so easy as to be almost intuitive,

Figure 1 illustrates how the test is used for testing a sphe-
rical mirror. A pinhole S, placed laterally adjacent to the center
of curvature C, of a mirror M, is illuminated with light focussed by
a lens, According to geometrical optics the cone of 1ight frem § to
the mirror is reflected so as to pass through a2 point K. Tf the eye
of the observer E is placed just behind K, and a knife-edge is moved
laterally across K, then according to ray theory it is expected that
the face of the mirror will grow suddenly dim as the knife edge reaches
K, provided the mirror is perfect,

In the case of a parabeolic mirror one of several possible
arrangements used is shown schematically in Figure 2, Here F is the
focus of the parabolic mirror, P is a plane parallel plate lightly
silvered on the front face.

A similar arrangement to that of figure 1 may be used to test
a telescope objective lens except that the lens which replaces M has
to be backed by a plane mirror, Evidently the optically flat mirror
has to be perfect to the accuracy expected of the component under
test in both cases, If the mirror or lens is not perfect, then, as
the knife-edge is moved across the position of best focus, the defect
will show itself by appearing differently from the correct parts of
the component.

Ray theory can not explain some of the observed effects related

to the wave nature of light, but when large errors are present these



Fig. 1l.-~Testing of a spherical mirror by the
Foucault knife-edge test (schematic),

Fig. 2.=-Knife-edge method used for testing a parabelic
mirror with the help of a half silvered optical flat (schematic),
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effects can be disregarded without impairing the usefulness of the test,

As the errors are reduced by further polishing these effects become more
disturbing. To give an example, a brilliant line of light around the rim

of the component often causes trouble to the inexperienqed worker through
being taken to indicate the presence of a steep, narrow-turned edge. Also,
dark fringes appear on the brightly 1it areas of the component under the

test, Fortunately, their characteristic behavior as the knife edge is moved
from side to side makes it easy to distinguish these diffraction fringes, which
rapidly appear and disappear in different positions as the knife edge is moved,
from true knife edge shadows, which change their form and intensity much more
slowly,

The wave theory of the knife-edge test was studied by Ravieigh (1917),
Zernike (1934) and was extended by Linfoot in two papersl’z. Linfoot studied
the distribution of light across a plane near to the plane of best focus both
for a perfect component and for a component with certain specified aberrations,
He showed that (a) when a mirror is defective by more than a few wavelengths
the geometric interpretation of the test gives correct information concerning
the areas to be repolished; {b) the test is still useful for improving a
surface which is correct to about the wavelength of light used A, but the
interpretation of the shadows is not as simple as ray theory suggestss
(c) a perfect mirror will give a bright circle at the edge; fd) the test is
sensitive enough to detect imperfections of surface which are of the order

1
of 0 A deep.



Thus it appears that the knife-edge test as developed by Linfoot
is highly sensitive both as a performance and as a working test, However,
for testing a parabolic mirror it is necessary to have a precise optical
flat of nearly the same aperture. Such an optical flat is verv di ffieult
to make when the parabolic mirror is of the size now used in leading ob-
servatories {more than 100 inches in aperture). In fact we see that the
knife-edge test is most useful when the surface under test should ferm
a peint image of a point object., This drawback is remedied but not without
introducing other difficulties in the modification due to E, Gaviola as

described in the next section.

2. The Gavicla Test = Caustic Test

The caustic test was devised by E, Gaviola4 and is a modification
of the knife-edge test applied to the examination of a parabolic mirror
{or for that matter any aspheric mirror) with errors symmetrical about
the optical axis, a feirly realistic assumption., This test is based on
the fact that the centers of curvature, in the plane of a2 diametrical
section through the center of an aspheric mirror, lie on a curve called
the caustic. For example, the facet of the parabola A vy of Fig. 3 has
its center of curvature at the point (pi,qi) in the ceoordinate svstem
shown. The relationship between thece caustic coordinates (pi,qi) and
the parabola’s coordinates (xi, yi) are given bv the calculus and coor-

dinate geometry as

2 3
3y. Y.
- i - dx - i
P T om0 %7 2 (4 7 (1)



Fig. 3.-=-Geometry of the CGaviola test., PR is the true
facet normal, PE is the observed facet normal.

Fig, 4.--Effectively coincident pinhele source and knife-edge
for use with the Gaviola test.
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where T, is the radius of curvature at center of mirror,

A Gaviola test of a parabolic mirror involves the following steps
to determine the inclination of each facet to the correct parabolic facet.
For a particular one of these facets centered at vy the coincident source
and knife gadget, shown in Fig., 4, ic set at the position where the center
of curvature of the facet should lie if the parabolic mirror were true,
i.e. at (pi, qi)’ If this zonal facet at y; has the eorrect inclination
then the source~and-knife should lie on its local center of curvatures
whether this condition is met or not can be determined by observing the
knife edge shadow on the facet. 1If the mirror is not a true parabola
the scurce-and-knife must be moved, say to g ' in a direction perpen-
dicular to the optical axis. Here the light reflected by Ayi will be re-
turned on itself and (q{ - qi) determines the angle of deviation, ey
shown in Fig. 3. After all the deviations, e have been determined,
we may calculate the curve of the mirror surface, -

At each facet the linear increment of deviation is eiﬁvi. The

aggregate deviation at s is given by

k=2

Mo (23

TYi = (e & »k) 2
k=1

where TY give the depth of the material %o be removed at Yo
i

The procedure of determining the e,'s consist of the following
steps., To begin with, by means of the 'coincident' pinhole light source

and knife-edge of Fig. 4, we detexmine T, for the central zone of the
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parabola. Secondly, with r_ known, Equation (1) gives the coordinates
(pi, qi) of the peoint R on the caustic corresponding to Yy Thirdly,
we move the knife-edge device to the calculated point (pi, qi\ for
testing the facet at Yy Then we make the further shift to q{ at Py
s0 that the knife-edge device is brought %to lie on the normal to the

facet. The angle of deviation e is, evidently, given by

(g, - q.) cos #
e - i i (3)
T

i

where § is as shown in the figure and T is the local radivs of cur-

vature of the parabola given by the formula
3

2
o= or [ (;:1')2 ] (4
o

This procedure is repeated for all the facets of the mirrer,
so that its shape may be determined by the sum given in equation (2Y.
The zonal errorsin the figure of the mirror are best seen and located
if the facets, By;,are small compared to the width of these error zones,
In which case very harrow zonal errors can be seen with much greater
sensitivity than when they are examined with the arrangement shown in
Fig. 2. Furthermore,the auxiliary optical flat required in the stanrard
knife edge test is dispensed with., However, because of the small facets
required there is considerable difficulty with diffraction effects

in determining the location of the center of curvature of each facet.



3. The Hartman Test

The Hartman test is a simulation of theoretical rav tracing.
Its principle may be understood from Fig., 5. An opague screen,fitted
with a row of equally spaced holes, admits well defined rays. To avoid
complications due to diffraction the holes should not be too small, At
various positions adjacent to the position of best focus, and on both
sides of it, photographic plates are exposed, By comparison of the
distribution of dots on the developed plates with the computed
distribution due to a perfect lens or mirror, defective zones can be
detected. The sensitivity of this test is limited by diffraction,
According to Candler5 this test is not suitable for the inspection of
microscope objectives which are so small that the apertures of the Hart-
mann screen will produce diffraction pattems that hideJthe aberrations,

4, Applicaticon of Fizeau Fringes

This test is very useful for the examination of the quality of
optically flat surfaces. The arrangement is schematically shown in
Fig. 6. S is an extended source of approximately moncochromatic light;
R is a seml-reflecting optical flatsand F is the eye of the obeserver
unaided or backed by a low power microscope. The surface to be tested
is laid over a transparent test flat or it is covered by such a flat,
The two surfaces form a wedge of a very small angle 8, of the order
of minutes of arc. The arrangement provides a means of observing
straight interference fringes if the tested mirror is flat. 1In any
case contour fringes localized near the wedge are observed, each

fringe corresponding to a constant optical path, Tf these fringes



- 14 -

Fig. 5.=-The Hartmann test illustrated by a lens with a raised
intermediate zone, The holes marked I in the Hartmann screen § are
for identification.
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Fig. 6.=-=Testing of a flat surface by Fizeau
fringes {(schematic).
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are viewed from a sufficiently great distance, and if they appear
parallel, straight, and equally spaced, then the tested surface
is flat to the same order ¢f accuracv as the test surface,

It can easily be shown that the separation between consecutive
fringes corresponds to a change of thickness of A/2 cos (r) where r
is the angle of incidence and % §s the wavelength of light. Since
cos {r) is very nearly constant for small r it is evident that the fringe
pattern is stable under small variations from normal incidence.

According to Tblanskyﬁ, a change of optical path of the order
of 1/40 X can be detected by an experienced observer using this method
under the most favorable conditions., It is hardly necessary to mention
that the semi-reflecting flat R must be accurate.

Fizeau interference fringes are also used for proving curved lens
surfaces in factory production.7 A convex or concave lens surface is
tested by placing on it a transparent matching master surface, made to
specifications., Here contour fringes of the same nature as Vewton rings
show the error of the surface under test.

Tolansky6’8 extended the methed of contour fringes by the
application of multiple beam interferometric procedures to show the
details of approximately flat crystal surfaces., The same method could
be applied to test a semi-reflecting plane mirror against a standard
semi-reflecting optical flat of known guality. Fxact parallelism
must be secured between the two semi-reflecting surfaces, Optical

path differences of the order of 30 anstroms are detectable due to
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the tremendous increase of sharpness of fringes.

5. Application of Haidinger Fringes

Fringes produced by the interference of beams reflected at
the top and bottom of a thick transparent plate are called Haidinger
fringes. They are useful in testing a plane-parallel plate.9 Since
the plate is thick a highly monochromatic source of light is necessary,
The arrangement used is schematically illustrated in Fig. 7. Here S is
an extended diffuse monochromatic source of light, R is a beam splitter
(must be optically flat), P is the plate to be tested and E is the eve
of the observer, unaided or backed by a good telescopic svetem. Tf the
exis of the eye or telescope is normal to the plate the observer sees
circular fringes. FEach circle is due to a hollow cone of light with
EN (Fig. 7) as axis.

It is shown in standard bocks on optics that the optical path
difference As between any two refl ected rays originating from the

same ray incident on the plate is given by

As ont cos (1) + (O./2)

where n is the refractive index, t is the thickness of the plate, r is
the angle of incidence at the lower plane surface and A is the wave-
length of light. The central ring is dark if 2nt is an integral multiple
of % and the surrounding dark rings occur at angles such that 2nt cos (T}

is an integral multiple of X. The Haidinger bands are not localized,

but lie at infinitvy,
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Fig. 7.=--Haidinger fringes used to test a thick
plate P (schematic).
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If the surfaces are not parallel, there will be a change in
the diameter of the circular fringes as the plate is moved parallel
to its surface. These are corrected by local retouching until there
is no perceptible change. Before testing for parallelism the flatness
of the two surfaces must have been previously demonstrated to the
desired accuracy., Distortions in the contour bands ( fringes) mav

often be due to small differences in the refractive index.

6. The Twyman-Green Interferometer Method

When the Twyman=Creen interferometer was invented in 1916,
it marked a great advance in the testing of optical components.,
According to Candler10 when this interferometer was used to exa-
mine the best camera lenses existing at that time, oblique rays
revealed path differences of several wavelengths. Here it is per-
tinent to remember that the optically tolerable path difference is
a quarter of a wavelength according to a Rayleigh criterion.11 Today
the best camera lenses are almost perfect as far as optical path
differences are concerned. The great improvement is probably a
fruit of Twyman pioneering work in optical testing.

The principle of this interferometer which is an important
development of Michelson's is explained with reference to Fig., 8.

A monochromatic light source is placed at the focus S of the well-
corrected lens Ll’ the plane wavefront emerging from Ll' is divided
at the half-silvered flat R; one of the*twe resulting plane wave-

fronts is reflected back by the mirror Ml and the other by Mz.
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Fig. 8.~~The Twyman-Creen interferometer (schematic)
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The two plane wavefronts are finallv incident on the lens L2 and
focused at E where the eye of the observer is placed.

Provided that the source of light is sufficiently monochromatic
and optical components are perfect, the two wavefronts will interfere

to produce a uniformly illuminated field if the image of M, in R is

1

parallel to M In other words there will be only one band in the

5
field, If t is the distance between M2 and the image of Ml in Rand n
is the refractive index of air then the field of view will change frgm
maximum darkness to maximum brightness as 2nt changes by half a wave-
length,

As has been menticned, the instrument is verv useful in optical

testing. The arrangement shown in Fig., 8 is suitable for testing an

optically flat mirror which may be either M, or M

1 59 the other being

of known quality., Contour fringes will be observed if the mirror
under test is not perfect and they can be drawn on the surface of the
mirror which is being tested. All components of the interferometer
must be of high quality so that any fringe seen may be ascribed to
the component under test,

For testing a lens M2 in Fig. 8 is replaced by the arrange-
ment shown in Fig. 9 consisting of the lens L to be examined and a
good convex mirror adjusted in position such that the rentar of
curvature of the latter is coincident with the focus of the former.

The arrangement shown in Fig. 10 may replace M2 of Fig. 8

for testing a concave mirror with the help of a well-corrected lens L,
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Fig. 9.--Testing of a positive lens with the
Twyman-Green interferometer.

1

Fig. 10.--An arrangement for testing a concave mirror
with the Twyman-Green interferometer.
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To test a prism we place 1t between R and M2 of Fig. 8 and
tilt M, so that the beam incident on it 1s reflected back on {tself,
The contour fringes that appear may be eliminated by retouching the
prism, but it is understood that this procedure will guarantee that
the prism will behave well only if used with light having the same
wavelength as that used on testing.

The adjustment of the instrument for various purposes 1is
described in detail by Candler = where the limitations of the
instrument are also discussed. It is important to note that the
wavefront from the arm containing the component under test is com-
pared with a plane refersnce wavefront from the other arm which
means that whenever the former wavefront is nearly plane the
Twyman-Green interferometer is very efficient, The fact that
the reference wavefront has to bz at least of the same aperture
as the wavefront under test is a serious limitation which makes
this methed not suitable for testing ienses and mirrors of
astronomical sizes,

An important advantage of this method is the shortness
of time required to teach an optical worker how to read the
contour fringes and do the retouching for nearly perfect op-
tical components. Another advantage is that this test is highly
quantitative and can be related to the Rayleigh criterion. Varlous
interferograms (photographs of interference fringes in the fileld)
taken in different positions of the component under test can be

used to record its quality.13
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7. Wave-shearing Interferometric Method

A important modification of the old Mach-Zehnder system was

suggested by Bates in 1947 for testing nearly spherical mirrors of

astronomical sizes.14 The mirror system of this interferometer

shown in Fig. 11 is the same "round the rectangle" system of Mach
and Zehnder which dates back to 1891,
The idea and a practical undeveloped interferometer were
pPresented by Bates in a meeting of the Roval Astronomical Society
of England when the project of constructing a 70-inch telescope was
contemplated.l5 Liks many great advances, the idea is very simple
and original. The principle is illustrated with reference to Fig. 1l.
Conslder a converging wavefront from a mirror or lens system,

approaching a beam-splitter R Two wave-fronts emerge from Rl’ one

1.
of them is reflected by the flat mirror M

1 and the other by M2 and

finally the two wavefronts are combined by the semi-reflecting flat RQ.
Initially it is arranged that the four mirrors are all parallel and

positioned such that two coincident real images I, and I, are formed

1 2
close to R,. Corresponding to the incident wave-front W, two virtual

emergent wave-fronts wl and wz, with principal axes ClIl and C 12, are

2
then exactly superimposed. An éye behind R2 will see a field which is

unifdrmly illuminated. Rl and M2 are then rotated slightly together

about the principal axis of W, so that C.I. and C.I,, are given a very

171 272
small vertical displacement. Now the field becomes crossed by equidis-
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Fig. 11.--The principle of the wave-shearing interferometer
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tant heorizontal fringes.

Mext let us suppose that R. is rotated about a vertical

2
axis thxough I, end I, (these are very close). C,1, will not
be affected, but 0212 will be rotated by twice the angle through

which R2 is rotated and the virtual wavefront W2 will be sheared

relative to Wl.

When Wl and W2 are perfectly spherical the above rotation
will not affect the system of fringes, In general the fringes
are displaced by an amount depending on the asphericity of W,

By measurement of the change in the order of the interference
at a given point in the field due to a certain shear, the error
in the incident wavefront from sphericity can Be determined.15

The use of this interferometer is limited to wave-fronts
which are surfaeces 2. revolution and are either spherical or
deviate from the spherieal shape conly slightly, for otherwise
the interpretation of the change in the fringe system dﬁe to
shearing becomes formidable. The main advantage gained is that
no reference wavefront from a large flat is necessary to test an
astronomical mirror where a star may act as the source of light
and the nearly spherical wavefront reflected from the paraboleidal
mirror acts as ¥ of Fig. 1l. #Another advantage is the simplicity

of the instrument: the tes%ing epvaratus proposed for the exami-

nation of a 70-inch telescope occupied a é-inch cube.15
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8. Scatter Fringes Method

To illustrate how scatter fringes can arise, consider a
plane parallel back-silvercd mirror with a thin layer of dust
on the front and let a beam of light strike the mirror at nor-
ma}l incidence. Light is scattered by the dust particles and can
reach the eye by two different paths as shown in Filg. 12, one
peing by reflection after scattering and the other by weflection before
scattering. The two resulting rays are coherent since they come
from the same source.

It is easy to chow that the optical path difference As
between two rays scattered at angle r is given by

As = 2nt (1 - cos r')
where n is the refractive index, t is the thickness of the mirror
and r' is the angle of incidence at the silvered surface. This
evidently depends on the angle of scattering and vanishes as the
angle of scattering goes to zero. Since the emergent rays are
parallel, the fringes are located at infinity.

This phenomenon has been applied by Burch17 to make a
simple.interferometer suitable for testing large spherical sur~
faces. Interference accurs where scattered light reflected by
all parts of the mirror under tes is superimposed on light
reflected from a chosen small part, the latter forming the
reference beam, Roth beams are arranged to transverse the

same optibaithrough the vse of two replicas of a spaeially
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Fig. 12.=--0rigin of scatter fringes
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prepared diffusing plate. Interference is possible even with
white light and the instrument i{s described as common path
interferometer,

This interferometer described in detail by J. Daysonls
has three advantages over the Twyman-Green interferometer.
First it is very stable; secondly the source of light need
not be highly monochromatic; and lastly no large high quality
optical components are required to test large spherical mirrors.
As indicated before the use of this method is limited to the
testing of spherical mirrers or guasi~spherical wavefronts,

9. Other Iaterferometric Tests

Other interferometric tests for the investigation of
spherical and flat surfaces are described by Daysonl9 and by
Saunderszo. The iatter describes the application of Koster
double-image prism, in an arrangement called a wavefront
inverting interferometer, for testing a lens., Presence of
various aberrations can be easily detected by ingiection of

the interferograms.
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B. Classification of Optical Tests

It can be seen from the previous description of optical
tests that they may be classified in the following manner,

1. Tests Suitable for Systems which are Capable of

Porming Point Images

Systems which form a real point image of a point sourse,
placed at a suitable distance, can be readily testéd with the
standard knife-edge test, the wavefront shearing interferometer,
or the scatter fringe interferometer, These tests rely on the
fact that the wavefront emerging from the optical component
under test is quasi-spherical,

In the knife-edge test, the point of interest is the center
of the spherical wavefront, The wavefront_fhearing interferometric
test utilizes the symmetry of wavefronts which are nearly spherical
surfaces of revolution. In the scatter fringes method the defects,
if any, in an opticél.ﬁomponent of the point image type, may be
detected by observing interference between a wavefront coming
from a selected small part of the element under test and a
wavefront coming from the whole element,

2. Tests which Require a Precise Reference Wavefront

Test procedures which require a precise reference wave-
front are represfnted, in our account, by the Twyman-Green

interferometer and the Fizeau tests. The fact that the
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reference wavefront has to be of, at least, the same aperture
as the wavefront coming from the examined component, restricts
the usefulness of such tests to optical elements of fairly
small aperture,

3. Testing of a Plane-Parallel Plate

A transparent plane-parallel plate may be readily testsd
by the Haidinger fringes method.

4., Tests Useful in Mpore General Situations

The Gaviola end the Hartmann tests are, in a certain sense,
applicable in more general situations. Both tests are, however,
not convenient for the exemination of small aperture components
because of difficulties caused by diffraction effects.

The Gaviola test is useful for the examination of concave
mirrors of arbitrary shape, sinte it essentially depends con deter-
mining the caustic curve for various sections of the mirror surface,

The Hartmann test basically depends on the comparison of
the actual distribution of rays from the system under test with
the computied distribution for a perfect system. This fact extends
the applicability of this test, especlally, in the age of high speed

digital computers,



ITT. WAVEFRONT RECONSTRUCTION TRECHMIMIES

A. The Gabor's Pioneering Work

In trying to improve the resolution of electron microscopes,

caporil22:23

invented a two-step method of optical imagervy., 7Tn the
first step an object 1s illuminated with a spatially coherent monochro-
matic light wave. The object is chosen such that a large fraction 4f

the wave penetrates undisturbed through it, A Frecnel diffraction
pattern called a hologram, formed by the bnterference of the =econdary
waves scattered by the object with the strong c¢ccherent background wave,
is recorded on a photographic plate. In the second step the plate sui-
tably processed, is placed in the original position and is illuminated with
the background wave alone. The wave which is diffracted by the plate isn
found to contain a compenent called a recenstructed wavefront which aives
rige to a virtual image of the original object at the position which the
object formerly occupied, However, a twin wavefront havino the same
ampiitude but opposite phase shifts relative to the backaround wave isg
also generated, This will in ceneral have a disturbing effect on the
virtual image when the latter is viewed.

It is possible te make a real image from the reconstructed wave-
front by means of optical methods, Tt is only necessary to send the
reconstructed wave throuch a sditable imace-forming system, in order to
reconstruct the image of the object., To explain the method further we

go over the two steps in more deiail,
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1. Producing the Pisitive Hologram,

Consider a monochromatic wave from a small source S, impringing
on a semi-transparent object 0, Fig. 13 {a)., Let H be a screen a
certain distance behind the object and let U = A exp (if) represent
the complex disturbance at a typical point of H, A, being the real am-
plitude and f, the phase of the disturbance, U may be considered as

the sum of two terms,
U=y +u, = I'Al exp fif1)+ Ay expfifz)] (1)

where U, = A exp (ifl) represents the incident wave which 1s the

1
field which would be produced at H in the absence of the object. The
other tem, U2 = A2 exp (ifz) represents the secondary, or diffracted,
wave which contains information about the object.

Eguation {1} may be written as

U= exp(if)fA + A, exp 1(f, - 1) ] (2)

According to (2) the amplitude of the resultant disturbance

may be written 1 .

[

_ "2 _ 2, ,2 _ 2
A= = [aPe a2+ oam, cos (5, 12 3
We have omitted the factor exp ~iwt and thus we have implicitly

assumed that the secondary wave has the same frequency as the incident

wave which is usually the case.



Fig, 13.--Gabor's method of imaging bv reconstructed
wavefronts, (a) represents formation of the hologram:
(b) represents the reconstruction.
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(a)

- (b)

Fig.13
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Mext let a photographic plate be exposed in plane H, After
processing let the transmittance of the plate be w., This is defined
as the ratio of the complex amplitude of the wave emerging from the
plate to that of the wave incident on the plate. The corresponding
transmissicn factor for the intensity is T = aa*; and the guantity

D = -log),T = -log)g cu¥ (4)

~

is called the d2nsity of the plate. The product ¥ of the intensity
I = A? of lighat that —eaches the plate and the time t of exposure

E = I% (%)

is called the light sum, or simply exposure, and the curve giving D
Vs 10910 E is knewn as the Hurter-Driffield curve. This is usually
S shaped as shown in Fig., 14 with a straight part in the middle,
betreen P and Q. I the linear portion of the curve, the density T
of the negative is civen by

D = F Tl = (6)
= D, ¥ T logy

where I is the slope and D_ and E_ are constants. Using {4}, it

follows +hnt

_ ET (7
T =T, (E;)

vhews T_ 1s ¢ constant.
We now make the simpiification of pure absorption (without
change of phase). Consequently a is vcal, and the transmittance a,

of the nrg-tive hologzam is glven by

¢ = {z p " (8)



Fig. l4.--The H-D curve
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where Kn is proportional to the square root of the time of exposure,
If a positive print of the negative hologram is taken, the

amplitude transmission factor ap of the positive hologram,is given

by
= [k & A)‘F" ]"T‘p = KA {9)
GP L p N -
where I* = Ph Fb is the "over all gamma" of the negative~positive
process and K = K o L.
o] n

2. The Reconstruction

In the reconstruction process (Fig. 13 (b)) the positive
+
hologram (R ) whose amplitude transmission factor is given by (9)

is illuminated by the coherent background U, alone, The background

1
is obtained simply by removing the object, otherwlse keeping the

geometry of the original arrangement. A substitute wave U, -

emerges from the plate, where

1
. --T‘
- - . 2 2 -2

u, = up U = KAl exp (1f1)[A1 + .&2 + 2A1A2 cos (f2 - fl) i

{10)

As a simple case, we choose I* = 2, and obtain

2 - Aéz " ;
* I 3 -F '
U3 = KAl exp (1f1)[ﬂ.l Ay + 112 exp __(52 ..1)

+ A, exp - 1{f, - fl)] (11}
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on comparing {11} and (2) it is sesn that if Ay is constant,
i.e, if the background is uniform, the substitute wave Ug contains
a component (the first and third terms in equation (113, called
the reconstructed wave, proportional to U. The remainder of (11)
consists of twe terms, One, the second term in(11), has the same
phase as the background and an amplitude (AE/Al)Z times that of
the background. This term can be made negligibly small by making
the background sufficiently strong. The other term (last term of
11) has the same amplitude as the reconstructed secondary wave but
has a phase shift of opposite sign relative to the background., Tt
is said that it represents a conjugate wave and it can be shown
that it may be considered as being due to a fictitious object
similar to the true ohject, but situated in a different plane,
Thus, provided the background is uniform and strong com-
pared to the scattered wave, the substitute wave U3 of equation
(11) is effectively the same as the original wave, apart from a
contribution arising from the conjugate object. Tt follows
that if a lens L is placed behind the positive hologram and the
hologram is illuminated by the coherent background alone (Fig.
13 (b)) an image 0! of the original object will be formed in
a plane conjugate to that of 0, but this image will usually
be degraded by a contribution due to the conjugate object.

Conditions may be found under which this effect is not serious,
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Such conditions were investigated by Gabor22’23

4 .
and Braggz', and Kirkpatrick and El-Sum.25 Furthermore, if

s Rogers

two holograms are produced which are complementary in the sense
that the deficiencies of one are compensated by the other, and
the reconstruction is made by using both holograms together,

the undesirable effect of the twin image can be completely eli~
minated. Such techniques are theoretically sound but experimen-
tally they present the difficult problem of precise alignment

of two holograms.26

B. Recent Advances in Wavefront Reconstruction

As indicated in the previous section the original idea
of two-step imaging (wavefront reconstruction) is due to Gabor.
The fact that the recomstructions cbtained by Cabor were limited
to those of small semi-transparent objects, and were not of high
quality, does not mean that something was wrong with the original
idea. Rather, the limination was due to the fact that it had not
been otherwise possible to meet the requirement of strong coherent
background with the optical sources available at that time.

With the development of the laser in 1960, a new tool became
available for reconstruction techniques. This instrument is capable
of generating strong monochromatic light, coherent over large arcas.
Thus it became possible to play with the experimental arrangements

and develop the ideas of Gabor further so as to achieve better



results. This was taken up by many scientists with Leith

and Upatniek527'28’29 30,31,32

, and Stroke and Coworkers,
outstanding among them.

Greater coherence has made it possible to alter the
manner of superposing the coherent background on the beam
scattered by the object, The background beam is now incident
obliquely on the plane of the hologram, a prism or mirror having
been interposed in the path, As shown in the following two
sections, whi¢h describe the production of the hologram and
the reconstruction respectively, this technicue does the trick
of forming the conjugate images in different directions. Thus
the two conjugate images are naturally separated and either
of them may be viewed without the disturbing effect of the

other,

1. Mzking The Hologram,

Fig. 15 illustrates the method of making the hologram
of a semj-transparent object, A plane wave from 2 laser illu~
minates the object 0 and after scattering the transmitted com-
plex wavefront Wy travels towards the photographic plate H.
Above the object a transparent wedge P deviates the upper part
of the plane wave by an angle @ and the reference plane wave-
front w travels towards H where the fields due to w, and w,

are superposed,
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Fig, 15.=-=Producing the hologram of a semi-
transparent object {obligue incidence).
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Fig. 15
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At the photographic plate the field due to the reference
plane wave may be represented by Ab oxp {-iax) where Ao is the
amplitude, x is as shown in the figure and

23 L 2n
}\. sing = x e (12)

where % is the wavelength of light and the approximation holds
for small 8., For simplicity we assume that the field at a point
on H due to the scattering object to depend only on x and hence we
may represent it by A(x) exp 1if(x), where A(x) is the amplitude and
f(x) is the phase. (A factor exp -iwt is omitted throughout,)

Thus the resultant field E at the photographic plate may
be represented by

E = A exp (-iax} + A(x) exp (1f(x}) {13)

The emulsion of the photographic plate is sensitive to the intensity
I = EE%*, whereE¥ is the complex conjugate of E. Using 13 we find

2

I = A
e

* A(x)2 + 24 Alx) cos (ax + £(x)) {14)
In the linear portion of the H - D curve the amplitude transmittance
a(x) of the developed photographic plate will be given by
"2 {15)
a(x}) o« (1(x)) )

where T" is again the slope. Substituting for I{x) from Tguation

(14) we see that a(x) may be represented by



thy

alxj = |—A02+ ;\(x)z + 2*"‘0"*(") cos (ax + F(x)) -l

N

(16)

Assuming that A{x) is much smaller than A, we may expand using the

binemial theorem and retain the leading terms only. The result is

alx) x 25;2- r A(x)2 - 20 A t{x) cos (ax + f{x))
~ 2 2
= 2Ao - TA(X)S ~ PAO A(x) exp i(ax + f£(x))

- TA A(X) exp - 1 (ax + f£(x)) (17)

The photograph whose transmittance is given by (17) is the hologram.
An important remark may be made concerning the last equation, WMeither
the sign nor the exact value of T is important in the recording process,
Making a contact print of the hologram, which changes the sign of ™,
will only shift the phase of the non-constant terms of the transmittance
by 180° which is of no consequence, Changing the magnitude of ™ will
have the effect of multiplying each of the non-constant terms by the
same factor which is again of little importance.

So far we have described how a hologram of a semi—transpafent
object can be made. In Fig. 16 an arrangement suitable for making
+-a. hologram of an opaque object is illustrated., Part of the inci-
dent plane wave from a laser is deviated by a plane mirror M to form

the reference wavefront v : the other part of the incident wave is

il
L

scattered by the object O and results in a complicated wavefront W,
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Fig. l6.=-~Producing the hologram of an opaaue
scattering object.
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Fig. 16
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striking H where the hologram is recorded. The transmittance of
the hologram will be given by an equation similar to (17),

In the two examples chosen the reference beam has been a
plane wave falling obliquely on the plane of the hoelegram., Instead
of a plane wave the reference wavefront could be a spherical wave.

2, The Reconstruction Procedure

In this step the hologram ils jlluminated with a coherent
plane wave as illustrated in Fig. 17. As the plane wave incident
normally passes through the photographic plate, it is multiplied by
a{x) as given by Equation {17). Four distinct wavefronts correspon-
ding to four terms of the equation above will emerge from the hologram,

The first term,being a constant, attenuates the parallel beam
uniformly, but otherwise does not change it. The second term also
attenuates the beam but not uniformly so that the plane wave suffers
some diffraction as it passes through the hologram. The wavefronts
that result from the first and second terms of equation {17) are indi-
cated by 1 and 2, respectively, in Flg. 17.

IThe wavefronts produced by the third and fourth terms are
more interesting. To understand how they affect the incident plane
wave, reference 1s made to Fig. 18 where it can be seen that a trian-
gular prism shifts the phase of a normally incident ray by an amount
proportional to the prism thickness at the point of incidence. A
positive phase shift deflects the ray upward, and a negative one

deflects the ray downward. Thus the wavefront produced by the



Fig. 17.=-Wavefront reconstruction and image
formation from a hologram.
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Fig. 17
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third term may be interpreted as the product of the wavefront
produced by the object of Fig. 15 and a positive prismatic phase“
shift, The fourth term may be congidered to give rise to a wave-
front represented by the complex conjugate of the amplitude of
the original wavefront scattered by the object and a negative
prismatlc phase shift., The wavefronts that result from the third
and fourth terms are represented by 3 and 4, respectively, in
Fig. 17.

It follows that the third and fourth components of the
transmittance equation (17) deflect the beam upward and downward
respectively through an angle @ defined by equation 12. Moreover,
in the case of the third term the upward deflected beam is also
multiplied by the scattered amplitude A(x) exp 1f(x) and therefore
a copy of this wavefront is reconstructed, This gives rise to a
virtual image of the original object. However, in addition to
déflecting the incident beam downwards, the fourth term multiplies
it by the complex conjugate of the scattered amplitude and
the result will be a real image of the scattering object, At a
distance sufficiently far from the hologram the two images are
naturally separated since they are formed in well-separated

directions.
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Fig. 18.--Linear phase shifts produced by prismatic
deflections. O is the érigin of x. (a) represents exp (iax);
{b}) represents (-iax).
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Fig. 18
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3. Discussion of the Physical Principles of the off-axis

Wavefront Reconstruction Technigue.

The physical principles of the technigue may be {llustrated
by considering a small hole in an opaque plate as object, Fig, 19,
When this aperture is illuminated with a plane wave it will act as
a source of spherical waves according to Huygen's principle. With
the reference beam shown in the figure the complex amplitude ¥ on
the photographic plate H will be of the form

E = A, exp i{-~ax) + A exp i(jﬁ%-— )x2

f18)
where A is the amplitude of the spherical wave generated by the small
hele at the center (x=0) of the hologram, and f is shown in Fig, 19,
the remaining symbols are familiar., The first term of (18) represents
the plane reference wave and the second term represents the spherical

wave due to the point object, The dimension of the hologram is assumed

small enough for the sagitta formula to be a good approximation. (In

eikr

the formula for a spherical wave refered to its center, r is
considered constant in the denominator, over the aperture of the
hologram, but not in the exponent due to the presence of the large
multiplier k = -2—’-% ‘)

By comparison of equations (18) and (13) we see that the
transmittance a(x) of the developed hologram may be obtained from

2
equation (17) by the transformation A(x) - A, f(x} - (—%¥)x .

Thus the amplitude transmittance alx} is now given bv:
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Fig. 19.,--Hologram of a small hole in an opaque
screen,
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Fig. 19



- 65 -

- 2 2 o 2
al{x) = 2Ao PA” - DA A exp i(ax + 3F X )

- TAA exp ~ §(ax + Xz ¥ (19

This formula allows us to understand the mechanism of the recons-
truction process in a simple case. When the hologram described by
a{x) above is 1lluminated with a parallel beam of coherent 1light,
three distinct components {wavefronts) are generated as in Fig., 20,

The first component is produced due to the first two terms
which being constant will give rise to a transmitted plane wave
with its amplitude uniformly attenuated. The third and fourth
terms produce two additional components by deflecting the incident
wave upward and downward, respectively, due to the linear phase
shifts in their exponents,

To show that these components give rise to a virtual and
a real image of the aperture we recall the action of thin, positive
and negative,lenses on plane waves. Upon emerging from a perfect
negative lens a plane wavefront is transformed into a divergent
spherical wavefront, Fig. 21, 1In this Figure F represents the
focus of the negative lens, 0 the center of the lens, and P a
point on the lens a distance x from 0. The two points P and O
have the same phase if we consider them on the plane wavefront.

The lens will advance the phase of P relative to O by (r ~ f) i
b



- 66 =

Fig. 20,--Reconstruction of the real and virtual
images of a small hole. 1In the figure W is the reconstruc-
ted wavefront, R is the real image, V is the virtual
image.
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Fig.20
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Flg 2l,--Phase shift due to a perfect negative lens
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Fig. 21
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Now

g = (ZoE)(eHE) | 2 - 2 _
r+f '

2f

[ &)

i

where f is the focal length of the lens and r is as shown in the
figure. Thus the phase shift produced by a negative lens at a
point distant x from its center is given by

'I'I‘)(2

553 (20)

Similarly for a positive perfect lens the phase shift is

2
X

- 55 (21)

Returning now to the component produced by the third term
of equation 19 we see that the effect of this term is to give rise
to a virtual image {spherical wavefront that seems to start on the

left of the hologram at a distance f), This is due to the factor

Tt xz)
Af '

angle ® given by

exp(i However the rays will be displaced upward by an
ax = 2'n8@ (22)

Similarly the last term will give rise to a real image,in
a direction making an angle 8 with the axis,and at a distance f from
the hologram. With respect to this real image the hologram behaves
as a posltive thin lens combined with a prism.

Thus by illuminating the hologram with a coherent plane
wave, one not only reconstructs the scattered wavefront but also

obtains a focused image of the object, which in this case is a
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point source, In this respect the action of a hologram is similar
to the action of a zone plate except that in the former case no -
secondary images are formed. The analogy between the action of a
hologram and a zone plate was investigated by Rogers.24

4, An Alternative Reconstruction Procedure

In the previous sectlon the reconstruction of the point
aperature was made by illuminating the hologram with a plane wave-
front parallel to it. An instructive alternative is to make the
direction of the plane wave the same as that used during the ex~
posure of the photographic plate to prepare the hologram. This
is simply done by exposing the photographic plate, developing
it,and then replacing it in the original position. The light
scattered from the object is not allowed to illuminate the holo-
gram, The situation is illustrated in Fig. 22.

The wavefront that reaches the hologram is now represented
by Ab exp{-1ax), As this wave passes through the hologram it is
multiplied by the transmittance a(x} as given by equation (19),
Again we distinguish three components of the radlation that emerge
from the hologram. These are again separated at a sufficiently
removed distance as can be seen from Fig. 22,

The first component is due to the first two {constant)
terms of (19). Since this component is proportional to exp{-ax}
it will be identical to the incident wave except that it will

have a smaller amplitude,
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Fig. 22.-- Wavefront Reconstruction with oblicquelw
incident plane wave, 0' is the virtual image, 0" is the
real image.
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Fig. 22
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The second component is produced by the third term of (19),
When this term multiplies the incident wave the result is propor-
tional to exp (4 f% xz). This represents a spherical wave iden-
tical in phase to the wave scattered from the object during the
exposure of the hologram., Tt thus gives rise to a virtual image
0' in exactly the original position of the object.

The third component which arises due to the last term of
(19) is proportional to exp -i(2ax +-i%L x2). This is the product
of two factors. The factor exp (-i i%— x2) represents a convergent
spherical wave which produces a real image 0" of the point aper-
ture at a distance f from the hologram. The factor linear in x
causes this image to be formed in a direction making 286 with the
normal to the hologram (for small 6). This is illustrated in
Fig. 22.

3. Wavefront Reconstruction by Diffuse Illuminatlon

Leith and Upatniek%ghawasuggested placing a diffusing
plate between the source (laser light) and the object during
the preparation of the hologram, The object will then be
illuminated with diffuse light, The hologram thus made has
many interesting properties.

An objection which might be made is that the diffuser
destroys the coherence of the light which mskes a reconstruction
impostaible. However the property which is essential to wave-

front reconstruction is not lost when coherent light emerges



from the diffuser, True, the light st#iking the object is no
longer a simple wavefront but instead has complicated phase
and amplitude variations from point to polnt, However, these
phase and amplitude variations are invariant in time. This is
the essential property that makes wavefront reconstruction
poessible,

If the hologram, prepared in the manner described above,
1s reconstructed with collimated colrerent light two reconstructed
images appear, one real and the other virtual., The remarkable
thing is that the real and virtual reconstructed images are
found to gain an interesting property. They can now be observed
visually without an eyepiece or other visual aid. The virtual
image can be seen by simply looking through the hologram as if
it were a window. The real image may also be seen suspended in
front of the hologram. Without the diffuser the reconstructions
could not usually be observed in this fashion.

To explain the reason for this, consider a transparency
which is illuminated with a point source. Except for some
Scattered light, the observer receives light from that part
of the transpareacy which lies in the cone defined by the peoint
source and the pupil of the eye., This is usually a small por-
tion of the transparency. However, if a diffuser is placed

behind the transparency, then light reaches the eye from all
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parts of it and all the transparency can be seen without moving
the evye.

Another interesting property of diffuse illumination
follows from the fact that each point on the object illuminates
the entire hologram. This means that the heologram plate may be
broken into small parts and each part will reconstruct the whole
object. However resolution is lost as the parts become small
since the hologram is the limiting aperture of the wavefront
reconstruction imaging process,

One of the most important properties of the hologram
produced by diffuse illumination is that local imperfections
in the optical elements no longer markediy degrade the recons-
tructed images. Before the introduction of the diffuse i1lu-
mination technique, it has long been a familiar fact to experi-
mentalists in holography (photography by reconstructed wave-
fronts) that zny scratches or dust particles on the hologram
recording plate, or on other elements of the optical system,
produce troubleseme diffraction patterns that appear in the
reconstructed images. These could be minimized by careful
technique but not completely eliminated. In the diffuse
1llumination holograms, such imperfections are practically
absent from the reconstructed images, In fact diffuse jillu=-
mination holograms could be scratched and handled roughly

without noticeable degradation of images.



Some of the properties described above may be understood by
recognizing the fact that the hologram represents a dispersion of the
original object. By this we mean that each resolution element (detail)
of the object is transformed into a function over the entire hologram
plate. Such transfomation is fundamental to all reconstruction

techniques.29

With diffuse illumination, the diepersion is much
greater than is usual in previously used technigues, This explains
why a small fragment of the diffuse illumination hologram contains
information about the whole object,

So far, no rigorous analysis seems to have been glven of the
diffuse illumination reconstruction technique. Qualitatively we
may say that the hologram of a diffusely illuminated object reconstructs
not only the object but also the diffusing plate, which makes it possible

for the observer to see the reconstructed image as if it were illumi-

nated by a diffuse source.



IV, APPLICATIONS OF WAVEFRONT RFCONSTRUCTION TO OPTICAL TFSTING

A. Basic Concepts

An idea which should be useful in optical testing comec to
mind on reconsidering the hologram reconstruction illustrated in
Fig. 22, Assume, for the moment, that during the reconstruction,
we allow the source to illuminate the point aperture also, Tn
this case the hologram will be illuminated bv two coherent wavess
(a) the usual illuminating wave shown in Fig, 22: (b} the wave which
emerges from the point aperture, As we have already seen, *he plane
wave, after being scattered by the hologram, vields a component which
looks like the wave emerging from the point aperture. We have now +o
see what happens to the wave emerging from the aperture when it js
scattered by the hologram, Reexamining the holeoram transmittance
equation (19}, of Section ITL, we see this wave also will consist of‘
three components, These, foo, will be propagating in distinect direc-
tions and will, therefore, be separated at sufficient distance from
the hologram. The component which concerns us now is the one which_
arises from the constant terms of equation {19)., This will he iden=
tical to the reconstructed wavefront of center Or {Fig. 22} in all res-
pects except, perhaps, amplitude, 7Tf an observer places his eve so as
to receive light from these waves, he will see a uniformly illuminated
field produced by interference of the two cophasal wavefronts.
Assuming that the same analvsis holds for an extended obiect,
as it must by the superposition principle, this idea mav be applied

to optical testing.

- T8 -
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1f an extended object im the form of, say, a lens ie used
in place of the point aperture and if a hologram is made of this
object, one can at a later time observe interference fringes
between wavefronts that come from the lens then, and those which
emerged when the hologram was made, Alternatively, one can observe
the interference fringes between the original lens ard another bv
placing the latter, at the time of reconstruction, in the position
which was occupied by the former at the time of producing the
hologram. The above procedure allows the possibility ofs
(a) keeping track of the progress of a polishing operation bv
ohserving the changes in shape as polishing goes on: (b) comparing,
interferometrically, an optical element with an accurate eslement
which is no longer at hand: and (¢) comparing the wavefront
emerging from an optical element of one aperture with the one from a

different aperture component.

B, Applications to Optical Testing

1. A Way of Testing a Spherical Mirror of TLarge Aserture

Consider the arrangement illustrated in Fig, 2?. Tn this
arrangement C is a point source formed by focusing the coltimiated
light generated by a laser. This point source is at the center of
curvature of a perfect spherical mirrer ¥ and alse at the focus
of the well-corrected lens L, Tart of the spherical wave from

passes through the beam~splitter S and travels towards +he mirror M
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Fig. 23.--Testing a spherical mirror using the
methods of wavefront reconstruction. € is the center
of M and the focus of L.






.

where the wave i:c reflected back towards the beam-splitter which
reflects part of the light, The wave reflected by S forms an image
F and is received by the photographic plate H placed at a distance
f from F,

Another part of the spherical wave from C is collimated
by the well-corrected lens L and strikes the photogranhic plate
obliguely, as shown in the fiqure, forming the reference beam,

The two coherent waves interfere at H., As the photsgraphic
plate is exposed and developed a hologram of the mirror M is formed,
The transmittance a{x) of the hologram will be given by Eguation (19}
of Section TIT, provided that the amplitude of the reference beam is
much greater than the amplitude of the spherical wave that comes from
F. 1t is easy to meet this requirement by controliing the silvering
of 5.

It is important to note the parameters which determine the
phase of the reconstructed wavefront at any point x. These are 'a?
which is a function of 6, and f, If these are given the phase of
the reconstructed wavefront is determined.

From the discussion of Qection TV-A we recall that if the
photographic plate is developed and replaced then, with everything
else as it is, an observer locking in the direction of F, from a
distance sufficiently far, will see a uniformly illuminated field.

If M is replaced by an aspherical mirror then the observer
will see an interference pattern which will depend on the departure

of the mirror from sphericity.
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I1f we do not have a perfect larage aperture spherical
mirror, as is usually the case, the problem of making the
hologram in the plane is not insurmountable, The following
method suggests itself.. The small aperture system illustrated
in Fig. 24 can be used to produce the holoaram of a perfect
spherical mirror., 1In this arrangement S is a beam-splitter,

L is a well~corrected lens and M is a good optically flat mirror,
The hologram is formed at a distance f from the focus F of the
lens L and with the rcference beam making an angle © with the
normal to the hologram as shown in the figure.

Next we use the arrangement of Fig. 23 where now ¥ is the
spherical mirror to be tested, The center of curvature should be
determined first (approximately) and the hologram, as prepared
in the fashion of the previous paragraph, is placed at a distance
f from the position of hest focus F and with the proper orientation
relative to the reference plane wave,

With the observer looking towards F from a sufficientlvy
far position the interference pattern will reveal the aualitv
of the mirror. For egample, if a few fringes aprear in the field
then the mirror is only a few fringee from perfection. If a large
number of fringes appear the quality of the mirror under test is
still poer.

An advantage of this method ie¢ that the reference spherical
wavefront that is implicitlv ueced is produced bv a small aperture

system,
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Fig. 24,~-Preparation of a hologram to be used
in the testing of a spherical mirror {schematic).
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Fig. 24



2, Testing of an Aspheric Mirror !'sing an Artificiallv

Produced Hologram

In this section we trv to extend the idea of *the pravions
section to the case of a general aspheric surface., The basic
problem to be colved if one is to test an aspheric surface bv
wavefront reconstruction is the nroduction of the holoaram of
the correct surface before the surface is produced, This is
necessary so that the correct surface can be compared interfero-
metrically with the actual surface which has been produced,

One way of solving thic problem is the following. First,
by ray tracing from a point source to the aspheric mirror desired
and then to the plane of the hologram (see Fig, 23 whers M ic
replaced by an aspheric mirror) one can determine the phase at
the photographic plate of the wavefront reflected from #, T+
is then a simple matter to determine the location of the inter-
ference maxima of this wavefrent with the reference wavefront,
With this information, it is possible to make, on a large =scale,
a drawing of these interference maxima. This arawing can then
be scaled photographicallv to the proper reduced size, The
photograph prepared in this fashion is an artificially made
hologram of the perfect aspheric surface,

To test an aspheric element of the previously determined
design, the arrangement of Fig. 22 is used, where, now, M is the

element to be examined and F is the hologram prepared in the
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manner described above, As the observer looks through the
hologram, from a proper position, interference fringes will
show the difference between the actual element and the desired
one.

It should be noted that the line drawing of the holooram
will have the form of a high contrast negative holegram. The
fact that gradual shading in the artificlal holoaram will be
missing is of no consequence in determining the phase of *he
reconstructed wavefront, although it will have an effect on
the intensitv distribution, This can be seen from eovation
{17) of section IIT R-1, where it has already been noted that
the magnitude of I" is not important for the reconstruction.

In the interest of keeping the line spacing in the
holeogram as large as possible, it is desirable to choose 8
{Fig. 23} cuite small. The question of tolerance in the
position of the lines of the drawn hologram remains to be
investigated., Hnowever these tolerances should be no more

severe than those of a zone vlate.
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