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Abstract

The objective of the multidimensional knapsack problem (MKP) is

to find a subset of items with maximum value that satisfies a number

of knapsack constraints. Solution methods for MKP, both heuristic and

exact, have been researched for several decades. This paper introduces

several fast and effective heuristics for MKP that are based on solving

the LP relaxation of the problem. Improving procedures are proposed

to strengthen the results of these heuristics. Additionally, the heuristics

are run with appropriate deterministic or randomly generated constraints

imposed on the linear relaxation that allow generating a number of good

solutions. All algorithms are tested experimentally on a widely used set

of benchmark problem instances to show that they compare favourably

with the best-performing heuristics available in the literature.

Keywords: multidimensional knapsack problem, heuristics, LP relaxation
∗Corresponding author

1



1 Introduction

The multidimensional knapsack problem (MKP) concerns a set of items N =

{1, . . . , n} to be packed in a knapsack that has a set of dimensions M =

{1, . . . ,m}. The knapsack has a limited capacity in each dimension i ∈ M ,

denoted by bi. Each item j ∈ N has a weight in each dimension, denoted by

aij , and a value, denoted by cj . The objective is to find a subset of items that

yields the maximum total value subject to the capacity constraints of the knap-

sack. Formally, the problem can be formulated as:

MKP:

max
∑
j∈N

cjxj (1)

subject to

∑
j∈N

aijxj ≤ bi i ∈M (2)

xj ∈ {0, 1} j ∈ N, (3)

where aij ≥ 0 and bi > 0. Following Freville and Plateau [8] we will also assume

that cj > 0 ∀j, aij ≤ bi ∀i, j, and
∑

j∈N aij > bi ∀i. If some of these conditions

are not satisfied, the problem can be easily reduced by eliminating constraints

or fixing variables to 0 or 1. It can also be assumed without loss of generality

that cj , aij , and bi are integer numbers ∀i, j.

Bertsimas and Demir [2] point out that the MKP arises in many real-world

applications such as combinatorial auctions [18, 4], computer systems design [5],

project selection [16] and cutting stock and cargo-loading [10]. Moreover, many

complex problems can be transformed to MKPs or have close kinship with the

MKP.

The practical and theoretical importance of the MKP has led to a large

body of literature on both exact and approximate solution approaches. Freville

[6] provides an excellent overview of the literature on the MKP and Freville

and Hanafi [7] provide a survey of recently developed methods. Subsequently,

Hanfi and Glover [11] offered an exploitation of nested inequalities and surrogate

constraints on the MKP better than that proposed by Osorio et. al. [15], but

did not offer computational results. Also, Akcay et. al. [1] proposed a greedy
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heuristic ordering items by their value multiplied by the maximum number of

copies of an item that could be accommodated with available resources.

2 Existing fast heuristics

Primal heuristics for the MKP begin with an empty solution and add items in

a certain order without violating constraints. In contrast, dual heuristics begin

with all items selected and remove items in a certain order until feasibility

is achieved. A dual heuristic is usually followed by a primal heuristic that

reintroduces items that have been removed unnecessarily.

Both primal and dual heuristics are greedy approaches. Many priority func-

tions to order items have been suggested in the literature [6]. These are usually

dynamically recalculated at each step of the heuristic, taking into account cur-

rently remaining slacks (or violations) of constraints. A static approach, i.e.,

computing priorities and ordering items once at the beginning, is faster but is

thought to lead to inferior solutions.

Very good results are reported by Bertsimas and Demir [2] who introduce

an adaptive-fixing heuristic based on the LP relaxation of the MKP. Initially,

the heuristic fixes to zero or one all variables that in the LP relaxation have

values equal to zero or one, respectively. To speed up computation, all variables

that are smaller than a pre-set parameter, γ, are also fixed to zero. The linear

relaxation is then repeatedly solved. At each iteration, all variables that have

a zero value are fixed to zero, all variables that have a value of one are fixed

to one, and additionally the variable with the smallest fractional value is fixed

to zero. This process is repeated until all variables are fixed. Bertsimas and

Demir compare the performance of their adaptive-fixing heuristic with the pri-

mal gradient heuristic of Toyoda [20], the dual gradient heuristic of Senju and

Toyoda [19], the greedy-like heuristic of Loulou and Michaelides [13], and the in-

cremental heuristic of Kochenberger et. al. [12]. They show that their heuristic

is much more effective than all the others. Hence, comparing the performance

of our heuristics with that Bertsimas and Demir’s, in addition to others not

considered by them, should suffice.

The dual heuristic of Magazine and Oguz [14] was not considered by Bertsi-
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mas and Demir. It begins with all variables selected. Variables are then removed

one at a time, according to a priority list based on Lagrange multipliers, until

feasibility is achieved. Subsequently, variables are added if possible in the order

of non-increasing cj . Volgenant and Zoon [23] improved this heuristic by calcu-

lating more than one Lagrange multiplier at a time and Volgenant and Zwiers

[24] further improved it by adding partial enumeration.

3 New fast heuristics

In this section, we present several new fast heuristics developed in the current

work.

3.1 Primal LP-selection heuristic

This heuristic proceeds from the solution of the LP relaxation of MKP, with

items ordered by non-increasing values of variables, breaking ties by non-increasing

values of reduced costs. In effect, this amounts to selecting all the items that

have a value of one, some of the items that have fractional values with priority

given to larger values, and possibly some items with a value of zero with priority

given to higher reduced costs. However, sorting all items in a definite order is

important for a posteriori improvements that are based on removing items in

the reverse order in which they were added (see section 3.3).

Since the reduced cost of a variable, xj , is c̄j = cj −
∑

i∈M λiaij , where λi is

an optimal value of a dual variable associated with ith constraint, this order is

similar to one achieved by sorting items by non-increasing cj/
∑m

i=1 λiaij (see [3],

for example). However, our approach has the added advantage of ordering items

with zero reduced cost by the fractional values of the corresponding variables.

This is extremely important, since items for which xj = 1 in the LP relaxation

are all selected and resources become scarce only when the items with fractional

xj values are considered; making the order with which these items are considered

what matters most.
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3.2 Primal LP-adaptive-selection heuristic

Algorithm 1 below shows our heuristic. X denotes the set of indices of relaxed

variables, X0 and X1 denote the set of indices of variables fixed to zero and one,

respectively. Items in X1 are also kept in list L in the order with which they are

selected. Additionally, a(X) is a vector of total resource consumption of items

j ∈ X, and b is a vector of resource availability.

The LP relaxation of MKP is solved (SolveLP) first. All variables xj = 1

are fixed to one and the respective items are added to list L. Moreover, all

variables that cannot be fixed to one without violating constraints are fixed

to zero. Then, repeatedly until all items are fixed to zero or one, the linear

relaxation is resolved; the item with the highest variable value is added to L,

breaking ties by the highest reduced cost, c̄j and the corresponding variable

is fixed to one; and variables that cannot be fixed to one without violating

constraints are fixed to zero.

Algorithm 1: Primal LP-adaptive-selection heuristic
Output: List of items selected L
X0 = X1 = ∅;
(x, c̄) = SolveLP(X0, X1);
X1 = {j ∈ N |xj = 1};
X = N \X1;
L = items X1 ordered by non-increasing c̄j ;
foreach j ∈ X|a(X1 ∪ {j}) � b do

X = X \ {j};
X0 = X0 ∪ {j};

while X 6= ∅ do
(x, c̄) = SolveLP(X0, X1);
j = arglexmaxj∈X(xj , c̄j);
X = X \ {j};
X1 = X1 ∪ {j};
Add j as the last element in L;
foreach j ∈ X|a(X1 ∪ {j}) � b do

X = X \ {j};
X0 = X0 ∪ {j};

This heuristic is similar to the one proposed by Bertsimas and Demir [2].

The most important difference is that instead of fixing at each stage the variable

with the smallest value to zero, we fix the variable with the highest value to

one. As a result, when our heuristic is finished, no item can be added to the
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solution without violating constraints, while at the termination of the adaptive-

fixing of Bertsimas and Demir, it may be possible to reintroduce items that were

unnecessarily fixed to zero, which is something they do not mention.

3.3 Improving last added items

The simplest way to order items for a primal heuristic is by non-increasing

values of cj , but this approach usually leads to very poor results, since it ignores

item sizes. However, if after adding some items, the remaining slacks are very

tight, choosing the rest of the items by highest value may actually be the best

approach. Therefore, we suggest the following procedure. At the termination

of any primal heuristic, the solution may be improved at minimal CPU time by

removing the last added item and filling the residual capacity by adding items,

when possible, in non-increasing order of cj . In the worst case, the item that

has just been removed is reintroduced, but in many cases, it is replaced by one

or several more valuable items, leading to an improvement of the solution value.

Loulou and Michaelides [13] introduce a similar idea. In their primal heuris-

tic, which utilises a sophisticated priority function, they suggest switching to

selecting items by non-increasing value when at least one of the resources be-

comes scarce. Our approach differs in that we first complete the primal heuristic

and then backtrack by one item.

An extended version of our algorithm considers removing a number of items,

ranging from one up to a certain limit. In every case, the solution is completed

by adding items, when possible, by the non-increasing order of cj and the best

solution achieved is adopted.

A further extension is to perform enumerations of possible completions.

First, the last added item is removed and all possible completions are enu-

merated, with items considered in the non-increasing order of cjs. Enumeration

is then performed after two, three, . . . items are removed, and the algorithm is

terminated when a certain limit on the number of additions (i.e., items added

that are later removed to enumerate combinations) is reached.

A similar partial enumeration has been applied by Volgenant and Zwiers

[24]. However, their termination condition does not ensure termination in a

reasonable time.
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3.4 Cardinality constraint

Vasquez and Hao [21] and later Vasquez and Vimont [22] use, within their tabu-

search algorithms for the MKP, an additional constraint on the cardinality of

the set of selected items. In effect, they divide the search space into a number

of subspaces, each with a different cardinality constraint,
∑

j∈N xj = k, noting

that this may be useful in guiding the search towards good solutions.

With either of the two LP-based heuristics described above, a cardinality

constraint with different right-hand-side values may be used to determine several

solutions. We start by solving the LP relaxation and calculating the base cardi-

nality as kbase = b
∑

j∈N xjc. The LP-based heuristic is then executed without

a cardinality constraint, and its solution becomes the incumbent. Subsequently,

the LP relaxation is solved and the heuristic is executed with a cardinality con-

straint having various values of k. The incumbent is updated whenever a better

solution is found. In the first phase, k changes from kbase + 1 to kbase + kmax,

and in the second, k changes from kbase down to kbase− kmax + 1. Either phase

is terminated before k reaches the limit if the objective value of the cardinality-

constrained LP relaxation drops below that of the incumbent.

Our approach differs from that of [21] and [22] in the way the values of k are

chosen. In their work, kbase is calculated by rounding the sum of variable values

to the nearest integer and then varying k from kbase − kmax to kbase + kmax.

However, our analysis of the quality of solutions for different values of k shows

that our approach is better centred around good solutions.

With our primal LP-selection heuristic, using a cardinality constraint with

a different right-hand-side value each time leads to different fractional values

and reduced costs, and to different solutions. Similarly, with our primal LP-

adaptive-selection heuristic, items are selected in a different order each time.

However, in this case, the cardinality constraint may lead to an infeasible LP

relaxation after some variables are fixed. If this occurs, the cardinality constraint

is dropped and the heuristic is continued without it. Thus, in every attempt, a

feasible solution is generated.
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3.5 Random constraints

Use of cardinality constraints may be generalised to other integer-valued con-

straints; in particular to randomly generated constraints. Preliminary experi-

mentation proved the following approach to be effective. The LP relaxation is

solved and the values of the variables are recorded. To generate a constraint,

every variable is included with a coefficient equal to 1 with a 50% probability

and to −1 otherwise. kbase is then calculated by rounding down the fractional

value of the left-hand-expression of the constraint to the nearest integer. The

LP-based heuristic is then executed without the random constraint and subse-

quently repeatedly with the random constraint having the right-hand-side, k,

change from kbase + 1 to kbase + kmax in the first phase, and from kbase down to

kbase − kmax + 1 in the second.

The advantage of using randomly generated constraints is that the approach

may be repeated for more than one constraint, allowing for continued compu-

tation and further improvement of the incumbent. In fact, the algorithm may

be executed as an anytime heuristic, terminating when a certain computation

time elapses.

4 Computational study

4.1 Experimental setup

The benchmark problem instances of Chu and Beasley [3] are used in our nu-

merical experiments. These were generated following the procedure suggested

by Freville and Plateau [8]: m = 5, 10, 30, n = 100, 250, 500, aij are integer

numbers drawn from U(0, 1000), bi = α
∑

j∈N aij , where α = 1/4, 2/4, 3/4 is a

tightness ratio, and cj =
∑m

i=1 aij/m+ 500qj where qj is a real number drawn

from U(0, 1). For each combination of m,n, α, there are 10 problem instances,

giving altogether 270 problem instances. All these were used in our computa-

tional experiments, unless otherwise stated specifically.

The problem instances were chosen for two reasons. First, they are cor-

related problems instances (for each item j, cj is correlated to its aij values)

which are generally more difficult to solve than uncorrelated problem instances
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[17, 9] and have been experimentally shown to be very difficult to solve to op-

timality [3, 2]. Secondly, they are available from the well known OR-Library

(http://people.brunel.ac.uk/~mastjjb/jeb/info.html), which makes it easy

for researchers to compare their results with those presented here.

Computation has been carried out in C#.NET on a Dell Latitude D610

with a Pentium M 2GHz processor. The LPs have been solved using ILOG

CPLEX 10.0.2, although any other linear programming solver could have been

used. Processing times are reported in seconds, and deviations are calculated

as 100(LP value − solution value)/(LP value), where ‘LP value’ is LP relax-

ation upper bound. Some authors use best-known solution values as the base

for comparison; but these change over time, which makes future comparison

difficult.

4.2 Heuristics not using LP relaxation

To put our LP-based heuristics in perspective and test the impact of the improv-

ing algorithms, we first present in Table 1 results on all 270 problem instances for

some fast heuristics that do not involve solving the LP relaxation. The heuris-

tics include dynamically applied primal heuristics ordering items by: value times

maximum number of copies, cj mini∈M |aij>0 bsi/aijc, as suggested by Akcay et.

al. [1]; value divided by the maximum relative item size, cj/maxi∈M {aij/si};

and value divided by the sum of relative item sizes, cj/
∑

i∈M aij/si, where si

denotes the current slack of the ith constraint. The latter heuristic is applied in

a static and also in a partially dynamic manner. The dual heuristic of Volgenant

and Zoon [23] is included for comparison, with the two versions of additional

partial enumeration suggested by Volgenant and Zweirs [24]. All processing

times reported are for Pentium M 2GHz processor, except for the heuristics of

Volgenant and Zoon, and Volgenant and Zweirs that were tested on a Pentium

1.7GHz.

The heuristic of Akcay et. al. [1] and the second heuristic order items in a

very similar manner and both achieve poor results compared to other methods.

This is surprising given the fact that Akcay et. al. report robust results for the

MKP, although their heuristic is mainly intended for the more general integer

version of MKP. The heuristic of Volgenant and Zoon achieves slightly better
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Table 1: Simple heuristics not using LP relaxation
dev. (%) time (s.)

heuristic postproc.
avg. max. avg. max.

value×max.n.copies (dyn.) [1] – 4.79 13.47 .0190 .11
value/max.rel.size (dyn.) – 4.41 11.77 .0197 .13
Volgenant & Zoon [23] – 4.03 � 1 � 1

enum. [24] 3.76 < 1 < 1
more enum. [24] 2.80 a few 13.60

value/sum.rel.size (static) – 3.88 18.29 .0002 .02
IL1 3.72 17.27 .0002 .02
IL5 3.14 12.15 .0002 .02

value/sum.rel.size (dyn.) – 1.53 8.47 .0146 .09
value/sum.rel.size (part.dyn.) – 1.53 8.47 .0044 .03

IL1 1.41 8.22 .0045 .03
IL5 1.36 7.41 .0045 .03
E1000 1.08 6.14 .0090 .05
E10000 .99 6.14 .0256 .11

results, which are further improved by partial enumeration, albeit at a significant

computation time. The surprising discovery here is that the first three heuristics

(without enumeration) are on average worse than a simple primal heuristic based

on ordering items in a static manner by their value divided by the sum of relative

sizes. Note that the static application of a priority rule takes on average 0.2ms,

which is extremely fast compared to dynamic priority rules that require almost

100 times more time on average.

The primal heuristic using the value per sum of relative sizes priority (value/

sum.rel.size), dynamically recalculated, achieves overwhelmingly better solu-

tions compared to all the above heuristics, even the ones with partial enumer-

ation. The partial enumeration is effective, but cannot reach the quality of

solutions achieved by a significantly better initial order of items.

Dynamic recalculation of priorities increases the processing time of the heuris-

tic using value/sum.rel.size priority to 14.6ms compared to 0.2ms for the static

approach. To save on computation, we apply the priority rule partially stat-

ically and partially dynamically, with the switch from static to dynamic oc-

curring when the balance ratio, calculated as (mini si/bi)/(maxi si/bi), drops

below 0.8. This approach decreases average processing time to 4.4ms, with the

average quality of solutions remaining almost the same as in the fully dynamic

case.

The static and partially dynamic heuristics using the value/sum.rel.size pri-
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ority have also been tested with different versions of the postprocessing pro-

cedures described in section 3.3: improving last item by highest price (IL1),

improving up to 5 last items by highest price (IL5), and partial enumeration

with the number of item additions limited to 1000 (E1000) and 10000 (E10000).

The parameters of postprocessing were chosen after preliminary experimenta-

tion to balance quality of solutions with processing times. It is noteworthy that

the very simple IL1 postprocessing procedure significantly improves the quality

of solutions with an infinitesimally small impact on processing time. IL5 im-

proves the results even more, with the processing time still almost unaffected.

Partial enumeration improves results considerably, but at a cost of increased

processing time. Note that unlike the partial enumeration of Volgenant and

Zweirs [24], the time taken by our partial enumeration is very well controlled

by limiting the number of additions.

To summarise, the static priority rule of value/sum.rel.size followed by IL5

achieves very good results, with an average deviation of 3.14%, in only 0.2ms

on average. The same heuristic applied partially dynamically and also followed

by IL5 achieves 1.36% in 4.5ms on average. Following this heuristic by partial

enumeration limited to 1000 additions decreased the average deviation to 1.08%

while doubling the processing time. Increasing the limit on partial enumeration

to 10000 additions achieved an average deviation of 0.99% in an average time

of 25.6ms per instance.

4.3 Heuristics based on LP relaxation

Table 2 presents the results of three heuristics: the adaptive fixing of Bertsimas

and Demir [2], our primal LP-selection, and our LP-adaptive-selection. All three

have been tested on all 270 problem instances, without postprocessing and with

four versions of postprocessing.

The choice of the value of γ for adaptive fixing is almost insignificant. It

affects both the quality of solutions and the processing time only slightly. The

best results are achieved when γ = 0 is chosen. Hence, this version of the

heuristic is also tested with the postprocessing procedures and compared to

other heuristics.

The processing times of all three heuristics are very similar, because most
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Table 2: LP-relaxation-based heuristics
dev. (%) time (s.)

heuristic postproc.
avg. max. avg. max.

adaptive fixing [2] γ = 0.25 – 1.17 7.39 .0101 .16
γ = 0.1 – 1.16 7.39 .0105 .16
γ = 0.05 – 1.16 7.39 .0102 .16
γ = 0 – 1.16 7.39 .0102 .16

IL1 1.10 7.16 .0102 .16
IL5 1.03 6.60 .0104 .16
E1000 .80 5.04 .0135 .17
E10000 .74 4.89 .0333 .17

LP-selection – 1.27 7.75 .0078 .16
IL1 1.13 7.23 .0078 .16
IL5 1.05 6.84 .0084 .16
E1000 .81 4.95 .0120 .17
E10000 .74 4.67 .0314 .25

LP-adaptive-selection – 1.19 7.15 .0111 .16
IL1 1.06 6.73 .0111 .16
IL5 1.00 5.69 .0111 .17
E1000 .79 4.96 .0153 .17
E10000 .73 4.45 .0347 .22

of the processing time is spent on the initial solution of the LP relaxation. The

primal LP-selection heuristic is the fastest, since it solves the LP relaxation only

once. The other two heuristics solve additionally several postoptimisations of

the LP relaxation, with some variables fixed. In adaptive fixing, more variables

are fixed in every postoptimisation, and, thus, the postoptimisations are slightly

faster than in the LP-adaptive-selection heuristic. When no postprocessing is

applied, adaptive fixing achieves better results than our LP-adaptive selection,

but this is due to the fact that we complete the adaptive fixing solution by

considering items for addition in the order of non-increasing prices. With any

postprocessing procedure our LP-adaptive-selection heuristic finds on average

better results than the adaptive fixing of Bertsimas and Demir.

It is interesting to note that all the LP-based heuristics presented here are on

average faster and achieve on average better solutions than all the dynamically

applied heuristics not using LP relaxation presented in section 4.2. Repeated

computation of priorities is overall slower than solving the LP relaxation and

postoptimising it several times. Thus, if a modern LP solver, like CPLEX, is

available, LP-based heuristics would be the methods of choice.

12



4.4 Heuristics using constrained LP relaxation

Table 3 shows the results of our two LP-based heuristics and the adaptive fixing

heuristic [2] applied with additional constraints. For each algorithm, the origi-

nal LP-based heuristic is applied first without additional constraints, and then

applied several times with an additional constraint, varying the right-hand-side

(RHS) values. CC10 uses a cardinality constraint with 10 RHS values ranging

from kbase − 4 to kbase + 5, RC10 uses a random constraint with the same 10

RHS values as CC10, while RC20 uses a random constraint with 20 RHS values

ranging from kbase− 9 to kbase + 10. The postprocessing procedures are run for

every solution computed and the best solution overall is reported.

Running an LP-based heuristic repeatedly with additional constraints im-

proves solutions significantly, as can be seen by comparing the results in Table 2

with those in Table 3. Adaptive fixing and LP-adaptive-selection give compa-

rable results that are significantly better than those achieved by LP-selection,

albeit at the cost of longer computation time.

It is worth noting that in all heuristics the first LP-relaxation is solved fully

by simplex method, whereas each of the following LP-relaxations is solved by

dual simplex post-optimisation; a fact that explains why processing time does

not increase α-fold for α repetitions. Thus, running the LP-selection heuristic

with an additional constraint 10 or 20 times roughly doubles the processing

time. However, the increase for the other two heuristics is significantly higher,

which is caused by repeated fixing and unfixing of variables. As a result, the

CC10 (RC10, RC20) LP-selection with E1000 postprocessing is faster and gives

better results than CC10 (RC10, RC20) LP-adaptive-selection with IL1 or IL5.

When the cardinality constraint in CC10 is replaced by a random constraint

in RC10 (as described in section 3.5) the quality of solutions is improved, while

the processing times remain roughly the same. Further improvement at some-

what increased computation time is achieved when 20 distinct values of RHS are

used instead of 10 (compare RC10 and RC20 heuristics). Overall, the RC20 LP-

selection heuristic achieves slightly worse results than the RC20 LP-adaptive-

selection or RC20 adaptive fixing, but has significantly shorter processing times.

13



Table 3: Heuristics based on constrained LP relaxation
dev. (%) time (s.)

heuristic postproc.
avg. max. avg. max.

CC10 adaptive fixing γ = 0 IL1 .88 5.22 .0789 .34
IL5 .85 5.17 .0791 .34
E1000 .72 4.30 .1064 .41
E10000 .67 4.01 .2586 1.16

CC10 LP-selection IL1 .90 4.91 .0175 .17
IL5 .86 4.91 .0197 .19
E1000 .72 4.67 .0481 .19
E10000 .67 4.20 .1972 .81

CC10 LP-adaptive-selection IL1 .89 4.56 .0833 .45
IL5 .84 4.56 .0809 .44
E1000 .70 4.30 .1108 .50
E10000 .66 3.92 .2627 1.19

RC10 adaptive fixing γ = 0 IL1 .80 4.87 .0940 .42
IL5 .78 4.87 .0944 .36
E1000 .66 3.73 .1370 .50
E10000 .64 3.73 .3488 1.25

RC10 LP-selection IL1 .85 5.72 .0128 .19
IL5 .82 5.72 .0139 .19
E1000 .69 4.02 .0545 .20
E10000 .65 4.02 .2598 1.02

RC10 LP-adaptive-selection IL1 .77 4.38 .1045 .55
IL5 .76 4.38 .1043 .52
E1000 .67 4.11 .1459 .61
E10000 .64 3.92 .3605 1.38

RC20 adaptive fixing γ = 0 IL1 .78 4.67 .1785 .72
IL5 .76 4.67 .1804 .75
E1000 .65 3.73 .2618 .94
E10000 .63 3.54 .6621 2.21

RC20 LP-selection IL1 .82 5.49 .0177 .19
IL5 .79 5.11 .0202 .19
E1000 .67 4.02 .0959 .28
E10000 .64 4.02 .4972 2.00

RC20 LP-adaptive-selection IL1 .75 4.38 .1964 .84
IL5 .74 4.38 .2005 .92
E1000 .66 4.11 .2785 1.09
E10000 .63 3.84 .6838 2.52
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Table 4: Average percentage deviations with various time limits
time limit (s.)

instances heuristic
2 10 60

all Multi-run RC20 LP-selection + IL5 .576 .546 .536
MIP in CPLEX 10.0.2 .611 .568 .545

n = 100 Multi-run RC20 LP-selection + IL5 1.115 1.083 1.075
MIP in CPLEX 10.0.2 1.149 1.097 1.078

n = 250 Multi-run RC20 LP-selection + IL5 .412 .371 .359
MIP in CPLEX 10.0.2 .451 .399 .372

n = 500 Multi-run RC20 LP-selection + IL5 .203 .185 .173
MIP in CPLEX 10.0.2 .234 .206 .186

4.5 Anytime performance

As mentioned earlier (section 3.5), the heuristics employing random constraints

can be executed as anytime heuristics, i.e., they may be run repeatedly, with

a different random constraint each time. Even though the RC20 LP-adaptive-

selection gives the best results in terms of average deviation, it takes significantly

longer than the RC20 LP-selection. Hence, when both are used in multiple runs

within a specified time limit, the latter produces on average better results.

For the same reason the IL5 postprocessing has been chosen in preference to

enumeration. In consequence, it is the RC20 LP-selection + IL5 that is adopted

as the base of our multiple-run anytime heuristic.

Table 4 shows average deviations achieved by multiple runs of RC20 LP-

selection, each followed by IL5. The heuristic is compared to the MIP formu-

lation solved in CPLEX. Both algorithms were given 2, 10, and 60 seconds per

instance. The results are presented for all instances and additionally partitioned

into three subsets depending on the number of items.

The question of which parameters of CPLEX to use arises naturally. Short

of carrying a full-factorial experiment, which is hardly feasible, the best that

can be done is to test individual options. We have done this and found that the

default CPLEX settings give the best results. In particular, changing ‘emphasis’

to ‘feasibility’ or ‘hidden feasible solutions’ had a marginal negative effect on

the average deviation.

Our heuristic finds on average better solutions than CPLEX given the same

time limit. In fact, our heuristic run for 10 seconds finds solutions that are on

average of the same quality as found by CPLEX run for 60 seconds. CPLEX
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Table 5: Comparison with best-known heuristics on n = 500 instances
algorithm avg.dev.(%) avg.time processor

Multi-run RC20 LP-selection + IL5 (60s.) .173 1m. Pentium M 2GHz
GA of Chu & Beasley [3] .178 34.67m. SGI R4000 100MHz
Fix+Cuts of Osorio et al. [15] .169 3h. Pentium III 450MHz
LP+TS of Vasquez & Hao [21] .160 8.67h. Pentium IV 2GHz
Fix+LP+TS of Vasquez & Vimont [22] .142 16.37h. Pentium IV 2GHz

competes well with our heuristic only on small instances (n = 100), particularly

within a 60-second time limit, because it manages to solve many of them to

optimality. For larger instances, for which CPLEX terminates while far from

proving optimality, our heuristic has significantly better performance.

For the set of the largest problem instances (n = 500), Table 5 compares our

multi-run algorithm executed for 60 seconds with the best performing heuristics

available in the literature, which are the ones that achieve an average deviation

of less than 0.2%. Compared to our algorithm, the GA of Chu & Beasley [3]

gives a slightly inferior average deviation. However, it is not possible to compare

processing times. The other three algorithms achieve better results, but need

significantly longer processing times, even taking into account the relative speed

of the various processors. The best solutions are achieved by the Fix+LP+TS

algorithm of Vasquez and Vimont [22]. However, their computation takes inor-

dinately long times, with some instances solved for more than 3 days.

5 Conclusions

The multi-dimensional knapsack problem (MKP) is an eminently difficult com-

binatorial optimisation problem. Yet, the present work has succeeded in forging

fast and effective simple heuristics based on priority rules. However, the success

of this approach seems to be contingent upon the judicious choice of the priority

rules. If the priority rule chosen is appropriate, then, as we have shown, it would

outperform less effective rules, even if the former is applied in a static manner

and the latter are applied dynamically.

An interesting aspect of the current work is that it shows how the implicit

information provided by the LP relaxation can be used to fashion effective pri-

ority rules. This approach may very well prove to be useful in developing fast,
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effective heuristics for other combinatorial optimisation problems.

We have shown that appropriately chosen deterministic constraints imposed

on the LP relaxation can be used to partition the solution space effectively,

leading to good solutions. Likewise, we have shown that randomly generated

constraints, again appropriately designed and imposed on the LP relaxation, are

exceedingly effective in randomising the search of the solution space. It would

seem at this stage that this approach may indeed be generalisable in order to

form the basis of a new metaheuristic.

An appropriate conclusion of the current work is that the power of modern

MIP solvers, like CPLEX, is such that it is difficult to outperform them when

they are used in an anytime heuristic mode, even though we have succeeded in

doing so by a respectable margin for the MKP.
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