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ABSTRACT

This thesis deals with the structure of bivariate distri-
butions, The properties of a bivariate distribution can be
studied easily by an expansion in a canonical form, i,e. in a
series bilinear in the appropriate orthogonal polynomiale,
Mehlsr (1866) gave an expsnsion of the bivariate normal
distribution in terms of the Hermite=Chebyshev polynomials,
Similar expansions of other bivariate distributions are spread
over the period (1900 - 1967).

In Chapter I of this thesis, some special orthogonal
polynomials are discussed briefly, These are the polynomials
used in the canonical forms of the bivariate distributions.

In Chepter II, the various derivations of the Mehler
identity for the bivariate normal are given (1900-1958), Some of
these proofs originated in the course of the study of correlation
in fourfold tables (Pearson(1900)) and the properties of the
generating functions of Hermite = Chebyshev polynomials (Hardy
1933).

The aim of Chapter II is to bring these proofs
together for easier reference and comparison, Besides, these
proofs are reproduced in a simple and straight forward manner,

Chapter III deals with the expansion of the bivariate

ganma distribution in terms of the Laguerre polynomials, This

iv



expansion is due to Kibble (1941),

Chapter IV deals with the canonical forms of the bivariate
Foisson (Campbell (1934)), the bivariate binomial and the
bivariate Hypergeometric distributions (Aitken end Gonin (1935)).
Campbell's derivation of the bivariate Poisson frequency function
is indirect. An alternative direct derivation was given by
Hamdan (1963}, The author gives another direct derivetion based
on the limiting form of the bivariate binomisl distribution,

Finally, Chapter V gives a series form of the bivariste
beta distribution (Hamdan (1963)). This form is used by the
author to give series forms of the bivariate t and F distributione,

The thesis dces not give any statistical applications of
these cenonical forms, However, we refer to their use in the
choice of classes in the Chi-Square test (Hamdan (1963)) and in
the estimation of correlation in contingency tables with non-

measurable characters (Lancaster and Hemdan (1964)).
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CHAPTER I

SOME ORTHOGONAL POLYNOMIALS AND THEIR

GENERATING FUNCTIONS

1. Orthogonal Polymomials. Let et(x) be a fixed non-decreasing

function, not constantyin [a,b).

Definition 1,1, The class of functions f(x) which are

measurable with respect to o (x) and for which the Stieltjes-
Lesbegue integral ‘(b ,f(x)fp d®(x) exists is denoted by L2(e; b).
a
Definition 1,2, gy(x), 81(x)y eevee 8. (x), k finite or

infinite, is seid to be an orthonormal set with respect to
&« (x) if
b
(gn’gm) L J gn(x} g.‘(x) d“(x) .‘m, n’m - 0’1,...,k
a

where
‘nm 21 ifnegm

e §,. =0 ifngm

Such functions are necessarily linearly independent,
Theorem 1,1, Let

(1,1) folx), £1(x), £3(x), see £ (x)

be linearly independent real valued functions balonging to the class
Li (a,b). Then an orthonormal set

(1,2) &(x), g1(x), gr(x), ous g (x)

exbsts such that, for n g 051,25400,k

-1-
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(1.3) qn(x) = anofo(x) + anlfl(x)f seee fannfn(x), ann)'O

and the set is uniquely determined, (Szegd, (1939)) -

Definition 1.3. The procedure of deriving (1.2) from (1,1)

is called orthogonalization, commonly referred to as Schmidt's
Process of orthogonalization, (Jackson (1941)).

Definition 1,4. Let &X(x) be fixed non~decreasing function

with infinitely many points of inecrease in [ a, bJ and let the moments,
b

(104) cn - 3 j xn d“(x) » n = 0,1’... Oxi!t.
a

If we orthogona%iza the set of non-megative powers of x:

(1.5) l,x,xz,...,xp,..., which are linearly independent,

we obtain a set of polynonialq,

(1.6) Po(x), pl(XJ, pz(x), voe pn(x), s+s, uniguely determined
by the following conditions:

(a) pn(x) is a polynomial of degnee n, where the coefficient
of x' is positive;

(b) the system {pn(x{} is orthonormal, i,e,

[0 Pl 2,0 k() 2§,y s nm = 01,20,
a

The existence of (1,4) is equivalent to the funetions
x* , n=20,1,2,,.., belonging to the class Lg (a,b) .

A similar definition holds if we have a density function
w(x), which is integrable over (a,b) with the following properties:
(1) w(x) is actually positive on a set of points such that its
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definite integral over (a,b) is positive; (ii) the moments must exist;
(1ii) w(x) is continuous, The set *pn(x” is called the set of
orthogonal polynomials associated with ®(x) (or w(x)). If the

distribution is of type w(x)}, the system

{[w(x) JJE pn(x}} s 0z 0,1,2,.0..

is orthonormal in the usual sense. isae Jackson (1941)).

If w(x) is a nonenegative weight function, integrable over
(a,b) and the integral is positive, the pmduct{[-(x)])" xk};
k = 0,1,2,... will be taken as the functions f,(x), the corresponding
funetions gn(x) which are linear combinations of these will be

[,(x)Jﬁ‘ Pn(x), which are the normalized orthogonal polynomials, i,e,
J" Pp(®) P,(x) w(xax 2§, m,n 2 0,1,2,..,
a

Each polynomial is of degree indicated by its subseript,

2,The Hermite-Chebyshev Polynomials. Let @(x) s ﬂ;‘_

exp (= %xz) be the standardized normal frequency function,

Definition l.4. The n*® standardized Hermite~Chebyshev

polynomial, H (x) is defined by (Szegd 1939)
(1.11) p(x) §x) = (-a/an)® P(x) [{aT, hence
(112) H (x) = 79:'7 fx" - giﬁll xn=2, nlo=1) (ne?) (ne x“,...} .

2 , 21}

Alternatively, [. I 21
n X h n !n-Zh
(1,13) Hy(x) = - o (<) ((n-zh)l 2hn

e
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If Hy(x) is the coefficient of t®/ynl in the expansion of

k(x,t), then

e /2]

1 h ! x5:-211 0
k(x,t) = k(t) = rgv—'—n‘ E (=1) (ﬁ-&h) ToE m
o [nf2] | n-2h n-2h ,.2.h
" (=1) x) t (t5)
g 5 (n=2h) § b} 27
2]

-El'.;\s

n=2h 2 h
Exﬂ !-t )
=0 n=2h) ! 2% ht
Z—“ n-2h (] 42h
- N
(n=2h) ¢ hY

n=2h

™Ms

b=

o

2 oxp (xt) . exp(= 3 t2)
(1.14) = exp(xt = 3 t3),

Lemma 1,1. Let G(t) be the generating function of the set
{pn(x)} orthogonal with respect to the weight function w(x). Then
4%

Pp(%) py(x) wix)dx = coefficient of (+)™(u)™ in the
o B

expansion of jG(t) G(n) w(x)dx.

-]
Proof' - = o
j G(t) a(u) wix)dx = jz t%p, (x)ax 3. u"py(x)s w(x)dx
-0y nz0 lg(}

=f7__f 8 " P, (%) p,(x) w(x)dx
n m

- gg tn yh /pn(x) pm(x) w(x)dx, it follows

Qo
/ pn(x) pn(x) w(x)dx is the coefficient of t® u™ in the

-0
expansion of .

/ 6(t) lu) w(x)dx.
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Theorem 1,2. The set {Hn(x)} is orthonormal on the standar-
dized normal distribution, +oo

Proof: Using Lemma 1,1, it follows that (1,15) 4..Hr(x)I:Ia(:uc)(i(x)dx
is the coefficient of t* u¥ /Yris! in the expansion of.

F
jk(t) k(u) @(x)dx , which is equal to

- on 1
_l\i'i .:xp(xt -3 t2) exp(xu = % u?) exp(~ % x%) dx

. _\ﬂ;—_;' exp {- %(tz-r uz)} exp(xt ¢xu = % x?) dx

%'-_ ,_ exp{- '2]‘(1’.‘?' +u2)}jaxp{- % [:'zx(tfu)fxz-]}dx

exp {- %(tz-&' u2)] . exp{%(t-t u)zi

= exp(tu)
r,s
Le®s (1.15) is the coefficient of #—; in exp(tu)
8.
= & .

rs

3. The Laguerre Polynomials, Let

(1,16) g(x) a X xP~1 /’T(p) s 0&x < oa be the gamma
frequency function with parameter p,

Definition 1,5, The r®! Laguerre polynomial denoted by
Lr[p'l)(x) is defined by (Szegs (1939))
(1.17) Lf.p'l)(x) g(x) = 3T [ g(x)]/rl . So that

Lc()p'l}(x) sl,
L{p"l)(x) 2 X~p,

Lgp-l)(x) - %[xz . zx(p + 1)" P(Pf 1)] eee 8te,



Generally,
- - h
I e AL L

The generating function of +he set-{L(P-l)(x)* is

«© g2
k(t) = E“'Lf.p'l)(x)l«tf : E(r”"i) ‘%)rh tT

= l'-O

But

= I -1y h (1.4)h
- hf-ﬁ_ fh{ﬁ%) /nt J(FRE) gk b,
=0 rs
o
E
rah

(TFE™0) (Qat)B#P g7=h (3 1y=P . equal to

2 (1 =1t)"P | It follows,

(-]
A /nba- g

k()

(L19)  k(t) s (1=, exp(axt /1 = t), where L1 (1) 1s the

coefficient of (-t)T in k(t).

1)
Theorem 1.3, The ‘8¢t of Laguerre polynomials {L&p- (x) }

is orthogonal on the gamma distribution,

Proof: Using Lemma 1,1., it follows that,

(1, 20) J L(p-l)(x) Lsp-l)(x) g(x)dx = coefficient of (=t) T (au)®
in the expansion of
o8
[ x(®x(w g(x)ax « _[(l-t)-p(l-'u)-p exp(TX} = 8-) g(x)dx,

2 (1=t)"P (lew) P o/oxp{-x(t/il-t)t u Al = u+1)} xp'l/mp)dx.

2 (1et) P (1ew)"P { exp {=x(1out) /(1-t) (1~u) } xp'l/,.(p) dx,



& 7 s
(1.21) (Lat)"P (1en) P [Tﬁ)t_ﬁrﬁ):’-p 2 (leut) P,

It follows (1,20) is equal to the coefficient of (=t) T (=u)®

in the expansion of (1.21).  Hence L. H, 5. of

r
(1.20) becomes (p'i* o srs - —F((lﬁl;l grs .

Mmﬂnmﬂmﬂnmmr__.(_)_sj_)_(p'l) X) gix)s

(p=1)
The moment generating function of the product Lrp- (x) g(x) is
Lad
Gpl) = [ &* LPD () g(x)ax

which is equal to the coefficient of (=t)T in

Lz g fo %% 1-0)"F expent/iet) o-% P-L gx

= (1-t)"P exXp J X = 7& ~x} xP~1/ ['(p). ax
/0 { 1-t) 3
= (1-t)"P /V.GXP{"‘ fl/(1-t)"WJ}"p‘.l dx/ ['(p)
)

_ oe
= (l-J:t -%)°P . 3}";?-2 A exp{-x(l_i" -R’)} .

-%)

[x( Lo .w) JP‘I ax(

1
1=t 1-1%

The quantity under the integral is equal to [ (p). Therefore
(1.22) 1s equal to

Q-0 (L5 -0)® 1w -4)) P
= [(1-0) +at3P

- -p
= (1 -a)7P (1“1%';-)
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It follows that G,.(&) is the coefficient of (=t)' 1n

r

(o) (1e LE)P L (PoT ) ()"

It follows

(L23) o) = R Q)P ()T

In particular, the moment generating function of g(x) (i.e. where r =0)
is Gyle) 2 (1 =er)”P,

The relation of Hermite polynomials to those of Laguerre,
established by Szegs (1939), i

1
(1.24) Hon(x) = (-1)® 2%y 1" 5){x"—/2) / Vom!
(1.25) B e1(® = (=) mi 2% Lfl%) (x/,) / V(zme1)

4e Jacobl polynomials, Consider the weight function

(L) w(x) 2 (0 Qen”?, xel-1,1], apd, g£re1

so that w(x) is integrable for x & L=1,1) 5

Definition 1.6, The n*h Jacobi polynomial Pn(q : ")(x) is
(Szegd (1939))

W) BT L () g {1 Y e n) pd SRS N Ny |
: .

or

(1.28) i Mebd g Z(zj‘;‘ (" (Zh " (@gdyne

"

¥y 2l D B =] =1, h
(M%) (Eth Eo?ilﬁ(mlt%ﬂ—m T T

. (n;")(!g—l)“ F(on, -n=g;et+1; g':}).
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Another form of (1,27) (Szego (1939) is

(o,8) 1 (nta -1 \D#R -n=1
(1.29) Pn ’ ( ) - m/(lf%—- 2) (11""5—) z da,

where we assume that x £ 3 1. The integration is extended in the
positive sense along a closed curve around the origin, such that the
points =2(x ¢+ 1)-'1 lie neither on it nor in its interior, (We define
the first and second factors of the integrand to be 1 for z z 0).

Using formula (1.29) the generating function of
pl %2 8)(y), Z: R 8 (e i

ne

Q1) = 2 B{Yr By en

"

/(1r L-a)q (1-|p-’~=-z) zfz'l[(l-r"’l z) (1+¥-—)g dz,

n=0

3
2w

"

t is an infinite geometrie
But < [(1+x.t_ ,){1,.&1 ) ] g r

N =~

seriss with sum
101 /0 - faex3l e 2L 0)]F
z

Hence the generating function is

Q(t) = 1 (l*‘z*—lil (11-!'5;5)

T2TL) 5 . (1 5L1)(1+3'2'—1=)

(1,-%.1: (loﬁ%z)
(1.30) 2;71 - t(1* ;5__)(“35;,)

The denomenator of the integrand is

.ds-

%(12-1) 22 = 3(xtel)at %(l-xz)t(:-zo)(z-zo)
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Where
- 1+R
(1,31) 30230(1‘)31_2,(2 . Xt t* ’
(1.32) R =R(t) = (1 = 2xt « tz)l/z,
P
(1-33) zo - ] zo(t) 32 L] Ei_______B

£ 3
2., and R are regular analytic functions of t provided /t/ is suffiociently

0
small, taking R(0) = 1, At t =0 , zp(t) has a zero and Zg(t) has
a pole, For sufficiently small /t/ » 3y lles in the interior,
and Zg in the exterior, of the integration curve of (1,30). So
by Cauchy’s theorem for integrationy

¥, -1 ¥ o
(1. 34) gl’( M w2 (2Pt I B o) (105
-

. (50 - ZO) -1, where

1+£§?-130:2(l-tfa).1 »
1 r2=b, = 2(1 + trR)'l .

2 0

1
0=2% =4t (1~ xR, it follows

(1, 35) Q(t) = i Pr(l“’ p)(x) t" = 2“"‘ R™L(1-t+ Ri* (1+ t #R)
ne

2" (Qaaxt ¢ tz) { 1=t f(1-2xt-t £2) 1/ *

{14t e (1e2xt +t’-)1/2}
Therefors (Szego (1939));
v {4841

/(1-::) (1¢x) P(q ,a)( x) Pﬁd’ﬂ)(x)dx ¥ gn,.‘,,]:%nr*l%ll:?:fi;int]}r%

-/

® / / Stands for the absolute value.
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Hence the set {qu', ’)(x) }is orthogonal with respect to the
of
function w(x) = (1 = x) (1+x)‘

5. The Tchebichef polynomials and Legendre polynomials,

Definition 1.7. The n®? Tchebichef polynomial of the

first kind 1s (Szegé (1939)).
{1.36) To(x) = Bosn @, 1f x a Cos © , which is a special
case of the nth Jaco'pi polynomial with at= g = = % .

Definition 1;8. The Tehebichef nth polynomial of the
second kind is defined by (Szegd (1939))
(1.37) Un(x) = Sin(n+ 1) 8 /Bin® if x g Cos @ which is

& special case of the n®h Jacobi polynomial with o = £ = % .

Definition 1,9, Legendre nth polynomial is defined as

Ry Ll i
(1.38) py(x) = ] 'ngﬂ_ (x2 = 1)® ,  which is a

special case of Jacobl polynomial with of = A= O,
The relations of polynomial (1,36) and (1.37) to the Jacobi

polynomials are (Szegd (1939))

(&;ﬁ') !.].“,‘2!1 - 1! Sin [ * 1 2]
(1.39) (x) = 204 o0e 28 Sin 102; 2) o/2

and

() dadusani -2} 2nr1) 0/2
(1.40) (0 = S Cos (0 / 2
(1.42) P.g-%’-ﬁ(") o popell L@

(Li2) PPy . 41“%——-}2.4"_.23 U, (x)

Definition 1,10, Jacobi polymomials with ®s8 are called

ultraspherical polynomials., It follows that Tchebichef and Legendre
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polynonials are ultraspherical polynomials.
The Tehebichef polynomials i1, 's and {Un', are orthogonal
with respect to

wilx) = (1 - x)-% (1« x)-%, wo(x) = (1 = x)% (L+x)

respectively, i.e. for n & m (Szegs (1939))

1 ) T
j Tn(x) Tn(X) (1='X2) % dx = /COB ne COBO II!G_-,: 0
0

f Up(x) Up(x) (1-x?) “dx = j Sin(n+1)e Sin(m+1)6 48 = 0.
-] 0
So substituting for § = @ = 0 in (1,35}, we get
(1.43) H' (x,t) 2 (1 = 2xt+1?) -4 ad the generating function

of Legendre polynomial,

6. The Poisson = Charlier Polynomials. Let x be a

Poisson variable with parameter m, i.e. with frequency function
(1044) P(I) L P(X,m] = U-m m* / x! y X =m O,I’Z’loo

Definition 1,11, The r'M Charlier polynomial kp(x,m) 2 k.(x)

is defined by
(1,45) k.(x) p(x) = («1)T @ p(x)

where
Tp(x) = p(x) = p(x = 1) g &Ap(x = 1),

It follows that
k() 2 [x() < rax(rD) 4 (mym2 (D) yrer )t

where
) g x(x = 1) coere (xor 1),
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An alternative form of k,.(x) (Szego (1939)) is:
(1.46) k(x) = éo (D)™ (B)(®) n} wb
Definition 1,12, Define k;(x) as

r/2
k;(X) - ?m kr(x)a

The generating function of k;_(x) is G(x,t) = G(1)

ot = 5 (-1)"“’ T/2 () (X1 m7h 4T
% go pF MR A nE

waere k!(x) is the coefficient of tr/ n’/2 y7i in the

expansion of G(t),

- reh ryoxy hi ™R 4T
G(t) ’Eo h)';'0(--1) (w) (3) “Gr

{gl (JJr-h r«h } (x) {2 ph

- h) !

23 el (D.(t /)b

=0

(1.48) G(t) = exp(-8) (1 4t /m™

Theorem 1.4, The set {k;‘(x) }ia orthonornal on the
Pisson distribution,

Proof's

B
(1,49) Zx: p(x) kL(x)ki(x) is the coefficient of r/2::/2 e
in

Zx-P(x) g(t)e(n) 2 2 o™ wX(x1)~Le~t(14 t/m) e~ (1+ u/m)
X

- e""t"‘l exp [n(lo t/m) (1 on/l)J
(1.50) = exp (tu/m).



“«lle

r. s
It follows (x) k'(x) k" (x) = to the coefficient of 7-&%—
;p r s m*/ %S/ 2 Vris!

in (1,50) and (1.49) becomes equal to
(1,51) = 8 .
Therefore the set {ki(x)} 1s orthonormal on the Poisson distribution,
and when x is referned to the mean as origin and to the standard
deviation as a unit, the Charlier polynomials tend to the Hermite =
Chebychev polynomials as m —poee,

Lemma 1.2, If P(t) is the probability generating funetion
(pegefs) of an ihtegral valued random variable ¥, then P(1+t) is
the factorial moment generating function (femeg.fs) of X,

Proof: let pp(X @ j) w f5 s0 that

oo
(1.52) P(t) m I £5 ¢,
iz 0
Hence

P(1+t) = T fj(ln;)j
J= 0

- o«
=2 f Z(i]tj
Jj=0 J ia0

s B I £y 30l (et )
120 20

1,0
(1.53) :51: pm/u

where F.[i] is the 1% factorial moment, Hence P(1+t) is the
fom.g.f. ,‘the factorial moment of order i being the coefficient of
t1 /11 in P(1et).

Lemma 1.3, The factorial moment generating function of
the Polsson distribution with parameter m is exp(mao)
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Proof: By lemma 1,2, the f.m.g.f. of p(x) is

F(a) = i” (1 ¢ar )X g=m mx(x!)-l
x=0

= f— [(1 »o)n]" exp(emends nat ) / x}
x=0",. .

= exp(na) T ((1+ & )m)" expfom(1+ o )Y/xt

(1.54) z exp(m o« )
A bivatiate fem.g.f. corresponding to a bivariate frequency

function p(x,y) is similarly defined as

F(e,8) e T (1+%)% (1 +£)Y p(x,y)
x ¥

«P(lex,1¢8),
Where P(t,u) is the bivariate p.g.f.
Lenna 1,4 The fem.g.f. of kr(x) p(x) is T exp(met).
This is called Campbell's lemma because it was proved by
Campbell (1932),
Proof: By lemma 1,3,

CO i;_(l +«)* pix) = exp(m o).

Hence

T (1 +a)* x (x) p(x) 251 +0) (1) 97 p(x)
x x

= (DT ZQ + o) fo(x)=(]) plx-1) #(5) p(x-2) 4 ...
+(=1)7 p(x=r)].
2 (=¥ exp(m & )[1=(D (1 o) #(Z) (1 ¢ @)y ...,

#(-1)T(1+a)"]
a (=1)F exp[lq)[l-(li «)]" (by the binomial theory)

® (=1)F exp(me) (=o)T
(1.55) = off exp(mof),



s 16 =

7+ Krawtchouk's polynomials and the Factorial Moments of

the Binomial Distribution. Let x be a random variable with frequency

funetion

(1, 56) b(x) = b(x;n,p) a2 (g) px qn-xn x =2 0,1,2,,44 n,

where
0O<pxl and g gl = p,

Definition 1,13, The r™® Krawtchouk polynomial G.,.(x,n,p) .Gr(x)
is defined by

(1.57) G.(x) b(x) & (=g)T A" x(r)b(x) y it follows that

(1.58) Gn(x) = x(r) . (D plner {.l)x(r'l)‘r{g) pz(n_nz)(z)x(r-Zl e

. (.1)1‘ pr n(r)

An alternative form for (1,58), is

r - -
(159)  G(x) & xt T ()" * OO g

X = 0,1,2,¢oo Ne
The generating function of the set {Gr(x)} is
n .
(1.60) k(x,t) 2 JTG.(x)t" / r!
ra0

in the sense that G.(x) is the coefficient of t¥ / r! in k(x,t),

We have

n r
k(x, t) (=) TR (X) (BB (py) TR 4h

ot o
r=h n«h r=h h
:5 E; GDTPET 0™ ] @y
Q0

=2 (D (1-pt)"k 4h
he0
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- t h
(1 = pt) h=£0(hx) (1 -pt)

s (lpt)? (14 2 )X
1l « pt

(1-pt) "™ (1 = pt 4 t)*

(1,61) = (1=pt) ™% (1 & tq)*¥

Theorem 1,5: The set {Gr(x)} is orthonormal on the binomial
distribution,

Proof:  CGr(x)Gg(x)b(x) is the coefficient of u™v® / r! s! in the

expansion of
oo

(1,62) zggk(x,u)k(x,v)b(x)
=20 PN qu)® (L q0) S(1epn)E (1op) ™
2z

= Z_(:J [p(14 qu) (1+qv)]* [a(1=pu) (1-pw)] "~
X

[P(l‘l' qu) (14 qv) + q(1=pu) (1-pv)]"

(1.63) (1 ¢ pquv) ™.

It follows that
Gp(x)Gy(x)b(x) = coefficient of u'™v® / ri s! in (1.63)
L ] Sr’ﬂ’ - 0,1,2,..- n

The factorial m,g.f, corresponding to b(x) is given by
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(1.64) F() = & (1 +a)" b(x)

JC:O

n
= L (1 2a) () p* 7F
x=0

2T O [p(1 + )]
x=0
=L@ 0] (-
=(pepa+l-p”a(Lepa)’
(1.65) F(of) = (14 poy)”
The f.m.g.f. of the product Gn(x) b(x) is
xf_;(l +¥¢)%* 6. (x) b(x) = é’s(l ur)"(-q)"j[_x(")b(x)]

-;(1 * %)% o (xe 1) ) Bxer)

2 Qe e D@ pxeroneeer

(r) !
» .‘:r‘q:'prg(:r +r) (n-x-r)'; el pan"r"x(lﬂ ) X

e (aqp) " Z xtr) (s oy %
aqp)” & (xer) (:-rfx)!xg [p(1 +e)] 7%

: )" EAmtll gy g% o

= (ofgp)T a(?) [a +p(1= a) )"

(1,66) = (otqp)T n(r) (1 4pa)?°T

In particular, the fum.g.f. of b(x) itself is (1 « pa)?,
as may be seen directly by substitution 1 4 % for ¢ in the peg.fo(pt+ 9",
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8, The Aitken=Gonin polynomials and the Factorial moments

of the hypergeometriec distribution,

Under simple sampling n times without replacement from a
population of size N of which Np indivivals possess the character
A and Nq possess I, the probability of x indivivals possessing A is
the hypergeometric frequency distribution,

(1.67) h(x) = h(xzn,N,0) « ()M / ¢y

Dofinition 1,14, The r*" Aitken<Gonin polynomial

U, (x) = Un(x;n,¥,p) is defined (Aitken and Gonin (1935)) as

(1.68) U, (=) b(x) 2 (=1)T AT [x(r) (No-n o) (P h(x)] / (Ner '1)(:')-
It follows

(v) _ :(g-?+1HNg- 1) (r=1) r__m(n-r+2)(2)
(1.69) U (x) = (x) N=2r 1-2)r' el (N=2r ¢ 3)

(re2) ... 4(-)T __L(_’_n(r) (wp) (v) .
i A (Ner ¢1) \T

: Ef -0B(E) () (T) (Mgone xoh) ) (npy o pft)
= (Ne2rah +1) (k)

Alternatively (1.69) can be written symbolically (Aitken< Gonnin
(1935)) as

(1.70) Up(x) a F(n = rel, Np = r 41, N = 2rq2; -A)x(r)

Theorem l.g + The set {Ur(x)} is orthogonal on the
hypergeometric distribution,

Proof: To verify the orthogonality it is enough to consider

(1,71) E:(N -r +1)(r) x(') U.(x) h(x),
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Applying summation by parts ( Z denoting indefinite summa tion)

in the form (Milne Thomson (1933))

2 2 3
tuxvx = ux fvx- dux : Vx,..l"‘ﬁ uxt 'sz Toses
We derive,for & ¢ r, the expression

(L.72) [x('} Ar'l x(r) (Ng = n+x) (r)h[x) - sx(s-l} Ar‘z(xfl) (x)

(Ngen +x + 1)(1') h(x*1) deceee #

)
(-1)®s! A (xte) b (Ng=n #x ¢8) (e?

1
h(x+s) ];* .

Now h(x) venishes for integer values of x »n, and so the product
\
x( (Ng = n +x) (r) h(x)

and all its differences vanish also for these values, Hence at
the upper limit 811 terms in (1.72) vanish, At the lower limit

all terms except the last vanish through having x as factor, But

(r)

(x -qa)(r) (Ng=n4x ¢8) ~ h(xes) = 0, x = 0,1,,.r=s=1,

end so when x 2 O

mgel
Ar - (x ¢8) (x) (Ng=n +x+8) (x) h(ix+s) » O,

Hence all terms vanish at both limits, and (1.71) becomes
zero for s { r.

Again, when r = 8, summation by parts ylelds terms which
vanish as in (1,72), except for the last term, which takes the
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form

n
(=1)F ri¥ (x+7) (r) (Np=n+x ¢ 1) (r)h(x ),
§)
and this reduces without difficulty to

. (r) (r)
r! n(r)mp);:lgi =) ) S h(xgner,He2r,Nper)

(1.73) . 1™ @p) () (Nen) () (ng) (P / n(2)

The orthogonal properties may be therefore expressed as

(r) (g (T) (r) (r)
5 _$ rin (Np) \*/ Nen) (Ng)
(1.74) f(; U (x)Ug(x)h(x) = & i AR 8

Factorial Moments in the Hypergeometric 8y

The fem.g.f. of U (x) is

F(o) un'? (Np) (r) (N=n) (r} (Ng) (i] «* F(enar,-Npy r,
77 T YA #H(h RPN &

Proof: We use Campell's lemma: if F(o¢) is the f.m.g.f. of a

function f(x), then T F(al) is the fomeg.f. of (-1)T A" f(x-r),

hpplying this to the present case, we have
.- X
Flee) = 22 (1 2a)” U (x) n(x)
0

T & tgenen) PG /e 1)

= z'(l'l' @)X (=1)T(x 1) (r) (Ng=n #+x #r) (r)h(x) /(Naral) ()

(x) (g1 () (=m) () (ig) ™) &
(1.75) : MWL—_

XF(=ner,~Nper~N+2r; =of),
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The case r = 0 gives the f.m.g.f. of h(x) which will be
F(=n,=Np,=N;=®), which is the coefficient of 2™ in the expansion
of
(1.76) [1+(1+a )z]Np (1 +z)Nq/(§)

Proof for (1,76): The fem.g.f, of h(x) is

2 Np Ngq
Flof) (1 +o)" < G /(
=) (1 =+ -

It follows
n
M 1) = Eo(“ «)* )9
Eence hacd
T () - f f’ (1+a) ("B (39 ) 5"
n=0 ne0 x=C
= Z’ y MR Go] (X IP)
ngX
2 Nq Np
e 2 (142 9GP [ +e0)s)
x=0
= (11»z)Hq [1+(1¢+a )z]NP g
It follows

F(&) is the coefficient of z" in
L+ 1+ +0)2" / (.

9 Bessel$ functions,

Definition 1,15The Bessel function I,(x) is defined as

) P P | x? xh Seaans
(1.77) Ip(x] ol [ e D T 2.4(m *2)(21:1-4)* J

Alternatively
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o0 2i4n
! ! (x/2)
(1.78) In(x ZO r ifﬂfl

lenma 1.5, I-n(x) = (=1)P In(X)

\ (L i (x/2)2i-n
Prooft Len(x) = iZ:— il j-n+ 1)

1[“1](‘:1 ’z-lixz""“
- {20 il P(i-n4 1) fon 114 i'%i-n-l-li
But the first term is equal tc zero, it follows that
2i-n
Ien(x) = iam i' Fii-nqli
5 M i ¢ 77 Mol
kel (kfh): %{k"’lj

k k4 n
n -1 x/2
(=1) 50' kan) ! P(ce1)

Therefore e 1 woidi
o o (=1)° (=1)* (x/2)°
Ien(x) w (=1) E; il P(i 4 n=1)
(1.79) e (=D In(x).

L (x/2)2tR
IHx) -Eou%——i!rz*i
a1}l xRiel
= L TR A D (1D
o
i 2i+l
’-'Vgxr:z.o. (21 -fxli!

4 2 i.n .
(1.&)) — "'x 8 X
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Similarly we can show
(1.81) I-%(x) = (?"3;)# o8 X

Jackson (1941) showed that the set {1 (% x)} is
orthogonal on the interval (0,1)., Hence, the set{In( 'l x)} is

orthogonal with respect to x as a weight funetion.

j; X In(\x) In(ux) dx = 0, £ u and

(1.82) Il x [In(mx)Jz dx = a constant,
0



CHAPTER II

THE BIVARIATE NORMAL DISTRIBUTION

le Introducticn., Let x,y be two random variables jointly

normally distributed with zero means, and wunit variances, and a
coefficient of correlation p .

The univariate normal distribution has an exponential function
2
#(x) = - - .-)‘hx with a quadratic exponent that iz never
V7

positive. To obtain & bivariate extension, it seems natural
to meke the exponent quadratic in two variables the result is

the bivariste normal distribution f£(x,y,/)

1
(2.1) =m expf{-} (x% +3°% = 2/x7)/1 - 72}

In general ,(aee Lnderson),the density function for a multivariate

normal distribution is

l L _1
~HX - U") X =1,
(2.2) (27—/;/2. exp{-#(X = UL~ (X - D)

where ‘xp) U . 17} and 9 is the covariance matrix,
ﬁp

A specisl case of (2.2) is the bivariate normal distribution
when 3 = (9) , - i ’ ) and (2,1) will follow by substitution.
Mehler (1866) derived a series expansion of the bivariate

normal frequency function, known as the Mehler identity.
o~
(2.3) £(x,y, ) = #CIF(y) E’i H, (x)H; (y)
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where {Hn(x)‘ and {Hn(y)} are the sets of standardized Hermite
Chebyshev polynomials in x and y and they are given by (1,11).
In this chapter five proofs of the Mehler identity spread over the
period 1900-1958, will be reproduced with a reference to & sixth
proof,

2, First proof of the Mehler Identity. This proof was given

by Pearson (1900). It depends on expanding £(x,y,p) as a power

series in p .

f(-“p?”) - 2 ;(Ué*ui'+ %él ,2f .t.l) .

Let
U, = exp[3(x? ¢ ¥°) Ul , it follows
(xR ¥°)
(204—) f(xpy’,) = ;—'e é- o y2 (UO f%r" %22 ,ZQ .oo.)
where

U, = exp }(!‘24 32) . (N £/ ),n),- 0
Diffrentiating f(x,y, ) logarithmieally with respect to £ , we get

Vlog flx, v, L) = 1 D F(x,y. L)

\f f(Isz,) ] f
L *(l=x~9 2 X 2 - 3
(1_,2)2 r
It follows that
(2.5) (1~ p3)2 ’%; s [xve POPa3yD +22 3 -LO)e(x,7,0).

Differentiating (2,5) n times with respect to A and puttingp = O,

we get
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(2.6) U, 41 @ n(2n=lex?-y?) U = n(n=1) (0=2)U, 5 »
x[Up* n(n=1)0,_,7
so that
U, = 1
U, = xy
Uy = (x2-1) (y2-1)

- 3(12'3)]'(}?2-3). 'L ete.

L=
W
|}

Generally, we write

Up = Vp(x) Vo (y) , where

(2.7 Vo(x) = 2@ - E—%‘—l'l x02 M‘%ﬂ ol S

Substituting for the values of U, in (2.4), we get

(2.8) tlx,y, p) = Lo o HZH 1. £ ?1(x)v1(y)ongV2(x)vz(y)+--- ]
Obviously,

(2.9) V,(x) » Yoi E (),

it follows

(2,10) Hy(x) = Va(x) / ¥m!

so (2,8) becomes

(x5, p) = FDF() [1+ P B (DE (Y)+ 22H,(0H (V) eees ]

o
= ¥(09(y) 3:; P (0 (5,
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which is the Mehler identity.

3. Second Proof of the Mehler Identity.

Watson (1933) gave two proofs of the Mehler identity, The
first proof is due to Hille (1926); it uses the relations (1.24) and
(1,25) bstween the Hermite Chebyshev and the Laguerre polynomials and
it used the following result. If

Hx +y)

(211) K(x,5,4) £ nie () 2T (01 (y)
i .nz-ﬁ: [fineael) o) I 5T

then k(x,y,t) can be written in terms of the Bessel functions

of imaginary argument (definition 1=15) in the form

L 2 Yyt
(2.12) k(x!y’t) = I 't .xp{-ﬁ-(x*,) %ti Iq (1 - t

Hardy obtained this result but it had been discovered earlier by
Wigert (when® = 0) (1921) and by Hille (1926) for general values
of of, But Watson (1933) gives a direct proof of (2.12) merely
by expanding (2,12) as a series of powers of t.

The second proof is due to Watson himself, it involves only
(i) rearrangement of absolutely convergent multiple series,
(ii) the use of the formula of Saalschutz for generalized
hypergeometric functions

(2,13) s asbye) , L0=ds0) [(1o o)
? [(@) 'Te) >, d" )"(d-h) [(e-b) ['(a-a) [((e=a)

whered 4e g a+ b s+c+1l and one of a,b is a negative integer,
Omitting the trivial factor —i-

_ exp [-i-(xz.r ya)J from the
Vir
Eehler identity, we see that we have to prove when /P/ &1,

’
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qigr owtlavpr (e y2 2%/ (g7
(2414)

= ioj’n Hn(I)Hn(y) = ;O—mfntif-llrxn—zr r’l[mz_(;l!'xn'zs

r ri(n=2r) } 2 8 g}(n=-2s) §2°
where the surmations with respect to r and s ext®nd over each inte-
gral value: as do not give rise to negative factorials in the denomi-
nators.

Now, when /p/ &£t &1 end / x /& A< , /y/ €B&*™ |

the expansion of

VT}:? exp {3 [-2xyP ¢ (P+¥2) £2)/ (1= £ }

which 1s obtained by writing it in the form

o0 2 N
(2.15) s P L7+ ey %)
N=0 Ny (1-p2) VT2

and then expanding the numerator by the multinomial theorem and the

wllia
sxpressions (1= £2) 4 by the binomial theorem, is dominated by

1 exp[aBt=(a%8%)¢% 5
1-t2 -2(1 - t2)

the corresponding convergent expansion of

so it is permissible to expand the function

2
(2.16) 71—%—,1 G@‘m“%_‘éiﬁm }

into the quadruple series just described and then to arrange the terms
of the quadruple series in any convenient mamner, Writing o (o(+ 1)
cose (Ofwmael) = (Q)(") for brevity, we find that (2,16) will

be equal to
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(2.17) go ..ZN; ); (-p"* 2*!.&):;"::2&2: if:)l“(wt) (m)p2m
.55 z".(_l (N +3) (W) pNoNe2m NoM-2R Neki¢2R
NMnReO M (Now-mw!(a-RIRIm
Wirite,
M+N+2m = n Mzres=2m
Rem =T Nenera-s
M=Re+mzs Rerem

The summations with respect tc m,n,r,s then rangelover all such

integral values as do not give rise to negative factorials in the

denominators, and we have,

1 expi-& [ =252+ (X ¢ 3°) £? 3 {

Vi- p? 1-p°

1-1) T8( nras o §) (W) J20-r-8 n,N=2r n-2s
Z-Oii'an (ne2m = 2r = 28) L (s = m) § (r = m) ! m!

(2,10 i n% s t(-l)rnz-r-s poxh=2r n=2s £ -r, n-r-gn %—r-a)

(n=2r=2s) ! r! s! PR

Now, so long as n is not a negative integer, it follows from the
formula of Saalschiitz that

1 =T,=8,N=r=g ¢ % Mo +1)

(2.19) [la-2r-2s 4D 32 (4o s fores, fu b Livopeg) ® Nn-2r) n-2s)

Then when n ‘-i& .., an integral value, (2,19) becomes

" (n=2r)? (n-2s) !
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So long as / P/¢le (2.18) becomes equal to

g;o Zr'z; ’n ot (-1)r+’2-r-sxn-2izn-2’nl
ris!(n«2r)f(n =281

as required,

Le Third Proof of the Mehler Identity,

Watson (1933) gave m proof due to Hardy(l932) who gave his
proof in lectures on Orthogonal polymonials. This proof involves a

use of absolutely convergent infinite integrals. We have
* w0

/exp(itx ~2tYat = V2l exp(~322),
80 that = .
(2,20) oxp(=3x?) = fuxp(ixt - Hiar / Yo

-
Differentiating (2.20) n times with respect to x using definition

(1.4) of Hermite“polynomials, we get

Hy(x) = (=1)% exp(43x?) /t“ exp(ixt=3t2)dt /Y2 n}

-

and hence

(2421) oxp [=3(x*+ ¥ ] %fﬂ H, (x) H, (y)
n

o aQ 2 -
e e [ fn entmeieine® g,
n=0 .24 2 nl

The convergence of
80 % - n
// {f 1'—'?3!)— }axp(At-tBu-ﬁ‘tz-iuz)dt du
-ob D.IO
--

for /P/< 1, (A and B are constants), shows that rearrangement of

the order of the summation and integration in (2,21) is permissible,
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Hence we get
-
oxp [=3(x*4 y2)) Z;;f“ H,(x) H,(7)
n

(2422)

" eo
- //exp(ixt - 324 iyu = $u?- Atu)dt du
- 2”‘ - <M

we integrate first with respect to t after completing the square

in the exponent:

+ 30
=i /exp[%(ixu « Pu) 2edu? 4 iyu] du
2T Yoo

exp(=3x?) 3212 2) = » 2
= i -‘exp Hu2(1- )= 2u(iy uf)J}d .

Next, we complete the square in the exponent, and integrate with

respect to u:

F —V%’., expl(=3x* - MRaxyp - 2°L3 /(1 - 23]
= 2 flx,y,P).

It follows ( yz)
~Mx“e -
f(’-’s?:f) '—i——'— Z-f Hn(I)H (y)

as required,

5. Fourth Proof of the Mehler Identity.

This proof was given in A.C. Aitken's lectures for a number
of years., later Kendall (1941) presented the same proof unawars of
Aitken's proof. The proof depends on the l=1 correspondance between
distribution functions and characteristic functions.

The characteristic function corresponding to f(x,y,)’) is
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N
//exp(itx ¢ iny) £(x,y, p)dx dy

(2.23) Y(t,m) =
= exp {-é—(tz-r 2ut P + u?) i
o0
(2.24) a oxp (=#2) exp(=#a?) z'; («£)2 " u%/n}
n

so that W(t,u) is an infinite sum of functions of the form

(2.25) oxp(-3t21(1t)" exp(=dud)(1uw)" |

m n!

2 n
The idea of the proof is to show that the function EPL%-“” - 1) "

is itself 2 characteristic function. Now, if I(t) is the

characteristic function of ¥(x) Hn(x) then
+00

(2.26) x(t) = /oxp(itx) g(x) Hp(x)dx,

o
Using the generating function (1,14) of the Hermite
polynonials, it follows

0

X(t) = coefficient of ﬁ‘;n-i in ./exp(itx)ﬁ(x) oxp(xs-}82) dx.

-l

The integral is equal to
o

je@ {1t +8)x} F(x) exp(=}s?)ax

-l

= exp(=43%) exp{ H(it+s)?§

(2.27) z exp(=3t2 +1ts).
It follows

X(t) is the coefficient of ﬁ, in (2.27). But (2.27)

= 342 (14)0
is equal to ‘)5 (s81)® 12 4% pollows  X(4) = m.(_%l.(_ij)_ .
n nl n!
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Hence the product (2,25) is the characteristic function of
@(x)g(y)H, (x)H, (y); and hence Y (t,u) is the characteristic
function of

ot
#(x) §(y) I A Hy(x) Hyly),
n=z0

but W(t,u) is the characteristic function of f(x,y,f).

Therefors;

o
t(x,y,#) = #()¥(y) ):’0 P B (0H, (7)

as required,

6, Fifth Proof of the Mehler Identity.

This proof was given by Lancaster (1958)., Pearson (1904)
introduced GQ as the "mean square contingency" of fbivariate distri-
bution in order to derive a measure of associatlon independent
of the sample size, N, He wrote ol %E . Pearson saw that
x? (or rather 9?) has a use as a descriptive measurs, where it
was usually thought of as a criterion of goodness of fit,

For a bivariate distribution with a distribution funetion
F(x,y) and marginal distribution functions, G(x) and H(y),

Lancaster (1958) defines:

Definition 2,1,

(2.28) 92 o / j[dr(x.:r),?2 / [aG(x)ak(y)] -1

- //.n.?(x.y) dG(x)ai(y) = 1, where

S (x,y)z dF(x,y) / [ac(x)aH(y)]
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is to be taken as zero if the point (x,y) does not correspond to
a point of increase of beth G(x) and W(y). @2 can be regarded as
ii:— fij2 / (j_‘i . f.j) - 1 where fij is the weight of the bivariate
distribution corresponding to marginal sets, A; and Bj- and where
£, and f. j are the weights of the marginal distributions correspon=
ding to the same sets.

In the case of the bivariate joint ncrmal distribution.
We may write g(x)dx and hly)dy in place of dG(x) and dH(y)

respectively and I‘(x,y) dx dy in place of dF(x,y) i,e.

//fz(x.y)/ﬂt(x)h(ﬂ] dx dy = 1.

By completion of square and integration with respect to x first and
then with respect to y, we get

(2,29) ﬂz = ﬁ! where / P /< 1.

-f
1f / P/ = 1, the bivariate normal distribution is singular and
g2 is mmbounded. Indeed [12 is unbounded for any bivariate
distribution along a straight line, with infinitely many
points of increase,

Definition 2,2, Let fx(i) }and iy(nf be complete
sets of orthonormal functions defined on G(x) and M(y)

respectively, i,e,

@o f D ,/,(1),(1) ) + §,

and let ’ij be the coefficient of correlation of x(ﬁ and y(i) y 1.e,
(2.31) Pi4 = Corr. =, y@) o [P gp(y,y)

o that P, 21, Pig=fo 20 forifo,
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Theorem 2.1. If F(x,y) is a 9% = bounded distribution

function and if S, « Sm(x:,y) = E_; ﬁ ﬁij x(i)!(j):
ie0 j=0

then

(2.32) Uy * //(J‘ Spn) 2 46 (x) aH(y)

15 minimized by teking Nyj = fij for 12 0,1,.00,m and J = 0,1,000ms

Taking the limit as m —y c® and n—pe0, we get

o o
S{z,y) = S(x,y) « & & ’)U MEVMEY
120 j«0

(2.33) o,
. 1.?: Zfij SCOE)
2l jel

almost everywhere.
Squaring (2.33) and multiplying both sides by dG(x) dH(y)
and then integrating with respect to x and y, we get
s 2
(2.34) R Z T V1
1=1 j=1
which is called Parseval equality.
Lancaster gave a definition of canonical variables which
is an extension of Fisher®s (1940) definition.

Definition 2,3. The canonical variables (or functions)

are two sets of orthonormal functions defined on the marginal
distributions in arscursive menner such that the correlation
between corresponding members of the two sets is maximal.
EPLN {x‘ (1) } end Jy'u,' are called the canonical

variables if
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/x*(” ac(x) .fy"‘m dH(y) = 0 , 1 =21,2,.44
(2.35)

/( c-(i)) a6 (x /( o1 ) dH(y) w 1,1 2 1,2,...

[ 20 iy ./y“(”y‘man(y) .0

for i ¥ | and f; s Corr (x'(i), y'(i)) -//x’(i)y*(” ar(x,y)

is maxime]l for each i,

The §; are called the canonical correlation of the

canonical wariables,
Theorem. =.2.The canonical varlables obtay a second set of

orthogonel conditions,

(2.36) corr. (M), )y //‘(i) *() ar(x,y) 20, €PJ

Proof. Let j )i, by definition 2,3, corr. (x* *(1) y’(i)) /
and is maximal, Suppose Gorr.(x*(i), y‘(j)) ® fi tan@ £ 0. f‘j)
has been defined according to 2.ﬁ~and so the function Cos® y*(i).'.
8in8 y‘(j) , obeys all the necessary orthogonal and normalizing

conditions, and its correlation with x.'(i) is equal to

f/x'(")(y*(” Gos 0 4 y®J) Sin 0)aF(x,y)

-,i_CosﬂtOf ~°-' 8in®

- f 995294'811320
i Cos @

2 __ri'_._ = fi Secl ) fi contradietion,
Cos ©

because ,1 is maximal,
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Now, in terms of the canonical variables, (2.33) becomss

(2.37) aF (x,y) =[1* Z:Pi 2@ # D 7 g5 ati(y)
im
where
o= 2
(2038) 912 - E fi .

The result expressed by (2.37) is a generalization of the work
by Fisher(1940) and later by Naung (1941) and Williams(1952),
where G(x) and H(y) are restricted to have finitely many points
of increase,

The converse of the result (2,37) is also true, i.e, if
a bivariate distribution can be written in the form (2.37) where
{x‘(i)l‘ and (yt(i)i are complete sets of orthonormal functions
defined on the marginal distributions and ffi is finite, then

i
the fi are the canonincal correlations, x’(ﬂ and y"(i) are

2
the canonical variables and ffi = ¢2. (See Lancaster (1958))
i

In the case of the bivariate normal distribution with

2
coefficiant of correlation f, we have shown g2 = f,.‘! 8o
1le
that F(x,y) is @ = bounded for / /< 1. The canonical variables

in this case are the standardized HermiteeChebyshev polynomials
(Lancaster (1957)), defined by l.4. The Canonical correlations

are P i,since

SR VAR

flf = E(fi)z, fi =fi

it follows
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By (2.,37), it follows that

ol
£(x,y,P) = [1+ E PL o (08 (N]FIE()

o
s () 2 P H; (0H; (y)
i=0

es reguired,



CHAPTER III

THE BIVARIATE GAMMA DISTRIBUTION

1, Introduction., Kibble(1941l) showed that a twoevariate

distribution function in which sach of the variates, x,y has

the frequency function

(3,1) g(x) = !%153 0 &x<ve

may be represented by

= 2r - (p=1) , , (p=1)
(3.2) h(x,y,P) = g(x)ely) [11-2: rlé(g T L. (0L, (» J

r=1

where-{Lﬁp‘l)(x)} is the set of Laguerre polynomials defined by 1,5,
and P 1s the coefficlent of correlation. Krishnamoorthy and
Parthasarathy (1951) generalized Kibble's work to the multivariate
gamma distribution, Other derivations of the bivariate gamma
distribution (not in canonicsl form) are due to Wicksell (1933), who
applies Fourier's inversion theorem to derive an integral form of
the distribution; and Cherian (1941), who uses the additive property
of gamma variables. As we ars interested in the canonical forms of
bivariate distributions, Kibble's derivation of (3.2) is given in
this chapter and the analogy with lehlerﬁidontity is pointed out,

2, The Bivariate Gamma Frequency Function, If X is a

-iX
standardized normal variate, then 4¢(X) a L 8 ¥ dx.
5 ’ (2m)?
Now if we let x =« 3X", then

-w-



glx) = x o™X / [}, hence x is a gamma

variable with parameter p = +.
Generally, if X;,X5,es. Xp are mutually independent standardized
normal veriates, then ﬁ'(li * Ig-r aoe &Xi) is a gamma variable
with parsmeter B. So the bivariate distribution of the squares
of two variables normally correlated would lead to a bivarlate
gemma distribution,

let (X,Y) be a bivariate normal variable with probability

elament

(3.3) £(X,Y, £)dX ay = m exp[~3(x2-2 PXY +Y) /(1- A)) axay;

and maks the transformation

x:é'le Yli'Yz

so that ¥

ax aY g dx dy / 2(xy) “.

Noting that there are four pairs of wvalues of X and Y corresponding
to one pair of values of x and y, two with positive and two with

negative (XY), the joint probability element of x and y is

(3.4) g(x,y, pldx dy = (=7 1 exp[~{x=2 fﬁ—ti-ry)/(l-})]dxdy

...% exp[~(x+2 £ Vi3 +)/(1=£?) ] axdy

where O £€x £o» and 0 £ y< o0 and the pesitive sign must be
taken with each root,

ow, the joint moment generating function of x and y is
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o o
¥y p)dxd
(3.5) Go(t,yu) :/ogoxp(tx +uy) g(x,y, p)dxdy
o0 oo
- //oxp [#(tx® + urd)] £(x,Y, p)dxay

-0 =00 o

1 , 2
"t _[_/J;{'ffx (1-t(1-£?))

253/ A} ewpfilra(1- Y)Y/ PP arar.

By completing the square in the exponent then ‘integrating with

respect to X, we get

2(Len=t +tu(1=L ?)) _1} ax

= = / oxp | i
T (mEVi-rd 4, 1 - t(1 =f?)

(346) Go(tyu) = (Leust $tu=tup?) - e[(1-t) (1-w) =tu £ 2] -t

Generally, if (X;,¥;), $X,,75),0.0(X,,Y,) is a sample of n mutually
independent observations from a bivariate normal population with
frequency function f(X,Y,f ), then the joint moment generating
f\mctionofxgﬁ-z{-!:mdygﬁgti is

(3.7) G(t,u) = l:(l-t)(1..u) - taf 2_]-:;/2

where each of x and y is 2 gamma variable with parameter p = g .

3. The Candnical Form of the Bivariate Gamma Distribution,
Let G(t,u) be written in the following form
(3.8) G(t,n) 2 (1-t)"F ()P 1 - ""M—".] -P.
(1-t) (L=u)

By the negative binomial expension we get
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o

\ ) *P (1ay) “P p4r-ly rtu p2 i
(3.9) G(t,u) » (L=t) " (1eu) 25; T )l.(l-t)(l-u) ]

f2r jr !r

(1et)T(leu) ¥

oo
e (1-t) PQeu)P T
r=0 rl

o
= (1-t) -p(l-u)-pfli- Z;E!L%tf)'(ﬁﬁ)r(ﬁ'{)r fz-"‘J .

But by (1.23) G, (%) -J:%Ee—l (1=1t) -p( l' )r is the moment generating

function of Lrp'l)(x) g(x) and ,I'"p‘ (l-u) P (-H-)r is the moment

generating function of Lrp ~1) (y) g(y), and by one-to-one correspon=-
dence between moment generating functions and distribution functlons,
it follows that the bivariate gamma frequency function h(x,y,f)

has the series expansion

0
(3.10) h(xy, p) = g@ey[1+ 2 ti bl _p2r 1{p-D) (51(p- (5]
rgl

ParT

there 0 &Lx, y<o0 .,

Now let us derive the megression lines of x on y and
y on x, The regression line of x on y can be found by finding
E(x/y) (Kendall, V,II p,285),

ol oo
(3.11) E(x/y) = /xh(x/y)dx = [xh_(_.{..f.lx dx
/xz(x) [11- Z fI‘)
w
s

The integral is elways zero except when r = 1 because of the orthogonality

L7 oD (P (y]ax
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of Lip-l}(x) (Theorem (1,3)). Hence (3,10) becomes

- -]
(3.1) = p,%ﬁ.)_lfz 4 x 8P (9 ag(x) 1P (7).

By (1.L7) Lgp.l)(x7 2 (p = x) and L{p'l)(y) =p=~y, it follows

(3.11) becomes

on

2

(3.12) p-o-'!- (p=y) /(xp-xz)g(x)dx.
P 0

Becuase the first and second moments of the gamma distribution are

p and p(p+1) respectively, then (3.12) becomes

2
= P-li(_i-l)— [p? - p(p 0-1)1

B(x/y) = p +P° (y-p).

S0 the regression of x on y is

(3.13) (x-p) = L2 (y =1

8imilarly the regression of y on x, is

(3.14) (y =9 2 P2 (= p

(3,13) end (3,14) are straight lines passing through the double
mean (p,2). So, the coefficient of correlation, R, i: daefined
in the usual way as the geometric mean of the regression

eoefficlents is given by (Kendall, V,II, p,287),

(3015) R 2 ’20

Hence

e
(3.1 bz, p) = s@e@[1t 2 r-h;‘tf}_) RL{PD) (1P (5],

rel



“ AS -

To compare (3.16) with the Mehler identity, we let the
set {Lip-l) (x)} be standardized in the form

r . 3
(3.17) 2D oy 2 1PV C—'—;{-‘;—f—ﬁ]
with iip—l) () - defined similarly. It follows that (3.16) becomes

oo
(3.18) n(x,2) = el0s[1+ 2 2 el e (]
so that the cancnieal correlations are

(3.19) Rl 2 corr. [ ﬂp-l)(x), Egp-l) (y)] .

4. Representation of the Bivariaste Gamma Function in

terms of Bessel's Function., Using (2,12) (Watson(1933))

oD
(3.20) P gy Bt y) -Hp-1) (p=1) , , (p~1)
5 [EXT) Gey) I, 0L &)

)o-(P'l) LapP?
= -—-i-;—,—z— OIP{‘%(X?Y) ]__-.-_,_2} I(p-l)(zﬁi)’

it follows that

= (£H)" (p=1) (yy r(p=1)
(3.21) h(x,7, p) gﬁﬂm P () Pt (y)

(xy) 3(P=1) - 1922
T p-pP D oxp{ -Hxy)) -fzg

"(pe1) (i--f'g )

5. Extensicns of the Bivarimte Gamma Disktribution,

Kibble (1941) (Hamdan (1963))extends the above analysis to
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derive the canonieal form of the bivariate distribution where
one of the marginals is gamma and the other 1s normal, Moreover,
he derives the canonical form of the bivariate gamma distribution with
different marginal parameters,

Let (X,Y) be a bivariate normal variables with frequency
function £(X,Y,£). Making the transformation x z 3X° and y = Y,
ve notice here that (~X,Y) and (X,Y) give the same pair of values

for x end y, we derive the joint frequency of x and y as

-+ 2
3:2)  xunp) e BT foo{-bx - 225 VEyA/027) )

+ oxp f~b(2xs 22 7V B 452 /(1= PP }]

vhere 0 £ x<oo and =9 <y <os , and the positive sign must
be taken with each root. Obviously, the marginal distribution of
x s gamma with parameter }, while the marginal distribution of y
is normal (0,1). It follows that the joint moment generaing
function of x and y is

(3,23) Go(t,u) = //exp(tx+uy)k(x,y,f)dmy

j/exp(ﬁ- + uY) £(X,Y, P)dXdY,

- - 00

___.__..._ xz_ +Fxy
2’_(1 -7 )—5 [ IP( ﬁx_.___zl Yo

o exp(uY = _w_L?;)dIdI

Integrating with respect to X first, we get
k-

1 g 2 % e f2 i
022'31-1(1-’35) !;Ip{ % [r (1..’2 : (1_,2)(1.1:(1_ ,;5-5 21!Y]}d!.




-.[‘_74

The sxponent can be written as

.xp{.g .(1_4)1__ - 2aY + u? [k‘f_o.(.l_'_L).] 1}
[1-t(1-P?)] (1=t)

_ PR
. exp 3{n? [-—(-—)-le tll-t £},

Next integrating with respect to Y we get

(328) Go(t,) = exp[h2(1e £25) 1 /00)

In general, if (X,Yy), (X3,¥5),00e,(X;,Yy) is a
semple of n mutually independent observations from a bilvariate normal
population with frequency function f(X,Y,f) end if x w ¥ f X2
and y = :Y /¥n, then the joint moment generating function of

xand y is
(3.25) Bt = (10) ™ oxp Liu? (1o 2£2) ]

where p = g , X is a gamna variate with parameter p and y is a stan-
dardized normal variable,

Let us expand G(t,u) in the form

on
6t0) « (1) exp(hA[1+ St E2) /er]

rel (1- t)
(5.26) e (1-6)"P exp(hd[1 + ')'_'3"2" % -2-133-:-,].
ral o)

Since (let) 7 (-—L)r is the moment gensrating function of

_I':.%ELD_ f.p"l)(x)g(x) (See(1.23)) ard u? exp(éuz) is the
p4r)
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moment generating function of V(Zr) ! Hyn(y)@(y), and by the
uniqueness theorem, it follows that k(x,y, f) has the canonical

expansion

(3.27) k(xﬂ".’) 2 E(X)G(Y) [1 ZEE_ELE)' f2r (p-l)H ( )]

Mper)

for 0 €£x< 00 and -~WL y <%0,

Now, we derive the line of regression of x en y (Kendall),
oo

(3.28) E(x/y) = jat_.k.im.Ll dx
(¢

/ {x g1 Z'_' Viar)s Bo) p2ry (0D (i, (1Y

2F I'(pl- r) b

=p +Z‘.\[(_).T_:l(2).f2“a (y) [x L(p )(x)g(x)dx 2

rel 2 [Mpar)

The integral is equal to zero for all r except when rzl,

this is so because of the orthogonality of Li.pﬁl} (x) and (3.28)

becomes

ob
(3.29) 2 p*gfz Hg(y) {x(x-p)g(x)dx. But
(3430) Hy(y) = %(yz-l) (See(1,12)), it follows, by

substituting (3,30) in (3.29) and integrating, that
B(x/y) = p + 5 L 20,

hence x = p = & )"z(y2 = 1) is the line of regression of x on y,
which is a parabola, Similarly the regression of y on x is derived
by
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oD

(3.31) E(y/x) = ﬁk(xdn.ﬁ)/g(x)d!
oo - 6o

(oo = L el et / i, (974,

r=0 2T f'(p'l-r)
Because of the orthogonality of Hzr(y) (Theorem 1,2), the integral

is always zero i.e.
oD

(3.33) /7 Hzr(r)ﬂ(y)dy =0
o

s 0’ 1’ 2’ see
Hence (3.32) becomes
(3.34) E(y/x) = 0

It follows that
(3.35) y = 0 is the straight line of regression of y on x.

Hence the coefficient of correlation of x and y is zero, (This is
an example of a zero correlation not implying independence) .
Finally, Kibble (Hamdan (1963)) derives the moment

generating function of a pair of gamma variables x and y with
different parameters M and N respectively in the form

(3.36) 0 - L]

(1-4) (o)~ °
The derivation of (3,36) is similar to that in the first proof but
here the parameters are different.

Hence the canonical form of the corresponding distribution

has the farm

2r -1
o telatr) [lft (p) ['(u fr)lr(NrHr)f f'l-l)( )L(N ( ]-
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Proof: The expansiocn of (3.36) is
e (1-t)"¥ (eu)”F f:f

F!M-Ogl -l St
- o (T

is the moment generating function of Ll(.lﬂ-l) (x)g(x) (See (1,23))

But

and similarly L (1a4)"F (_B..)r is the moment generating

N) s
function of Lt(,N -1) (y)g(y), and by the one=-to=one correspondence

between moment generating functions and distribution functions, it
follows that the bivariate gamma freguency function h‘(x,y, p) can

be written in the form

(3.38) &7, ) = glx,Wely,M eI rtFper) P My £2
wrrp) e elx itz Z: 1 (o) Pigr) (Nar)

. Li“"l) (x) LE_N'D () ]

where p is half a positive integer and M,N ) p, so that (3,38)
remains positive for every positive x and y.

The regression line of x on y is derived by finding
E(x/y) (Kendall V,II)

E(x/y) = {x w¥(x,, £)/ely,Nax
(3.39) - EO-Z t P(ps fzr (N-1) ( )[xln(u )(x)s(X)dx.

o) Plivr ]'N-lr)

Because of the orthogonality of the set {Lﬁu‘-l) (X)l (Theorem 1,3),

the integral is zero except when r = 1, (3,39) becomes

(- -]
= ur2-p? V() (w1 () gl axs
(3-“) - I"'m f Ll y /OXLI X)g\xjdx
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But

(3041) L:(ln-l) (Y) ey~ N and Lg.u‘]') (x) e X =M

(see (1,17)). Substituting (3.41) in (3.40), then integrate,
we get

Ex/y) s ¥4 P (y - W]

Hence (Kendall V,I1I)

(3.42) XK= Mesp f2 (y = N) /W 1is the regression line
of x on y.

Similerly, the lins of regression of y on x is
(3.43) y=NeppP?(x=-¥ /N
It follows that the coefficient of correlation is

(3.44) Rep p2 /N0

In order to compare (3,38) with the Mehler identity, let the set
{1 (x) | be stendardized in the form

(3445) L () \ﬁ(fﬁ'[—’&gﬁljé "“'fm) 1V ),

nd ™ 5 -
Guo ) T @R S D)

(N+r)

It follows that (3.38) becomes

ofts
(3.47) x,y,R) = glx,Wely,N [l-t}:l pt L:{“'l) (x)L:(N'l) (y)]
re

so that the canonical correlations are

Guit) 2 woorr (Y@, £V 0]



CHAPTER IV

THE BIVARIATE FOISSON, BINOMIAL AND

HYPERGEOMETRIC DISTRIEUTIONS

1. Introduction. Campbell (1934) derived the bivariate Poisson

fraquency functicn by teking the limiting form of the factorial moment
generating function (f.m.g.f.) corresponding to fourfold sampling with
replacement, Campbell then wses a theorem relating the f.m,g.f, of

the Poisson distribution to Charlier's polynomials (Campbell (1932))

to expand the bivariate Poisson frequency function as a series bilinear
in Charlier's polynomials, Aitken and Gonin (1935) derived the
bivariate binomial frequency function as a series bilinear in
Krawtchouk's polynomials (Krawtchouk (1929); and derived the

cenonical form of the bivariate hypergeometriec frequency function,

Campbell's derivetion of the bivariete Polsson frequency
function, like the earlier derivations of Wicksell (1916) and
MicKendrick (1926), is rather indirect, Aitken and Gonin's series
for bivariate binomial and hypergeometric frequency functions are
incorrect (Hamdan (1963)), because of two minor algebraie mistakes,

In this chapter, a direct derivation (Hamdan (1963)) of the
bivariate Poisson frequency function is given; and hence Campbell's
method to obtain the corresponding canonical form is given, The
correct form of the series for the bivariate binomial and hyper=

geometric distributions are also derived (Hamdan (1963)).
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2. The Bivariate Poisson Frequency Function. When each

{ndividual of a population of N= numbers can be classified as
being either A or I, and at the same time either B or E, the
relative proportions, or probabilities, of four types AE, Aﬁ,

IR and AB can be set out in the fourfold table

B B
b Py P10 Py
A p01 Pog 93
Py q 1

The probebility of type AB is p;;, that of AB 1is Py
and so on = summing the rows and entering the sums marginally
we denote by p, end g, the total probabilities of A and Iy

when B and B are disregarded; thus,

(4e1) Py #P10 ® P1» Pa*Poo = 910 PLe a1 = Lo

In the same way, summing the columns, we enter marginally Py and gqqe

Under random sampling n times, the numbers of occurences of
A and B are jointly distributed in a bivariate binomial distribution
if repladement is permitted and in a bivariate hypergeometric
distribution if replacement is not permitted. Campbell (1934)
derived the bivariate Poisson frequency function by using the fact
that, 1f pyy, Py and pp are all of order n'l, then in the case

of replacement the limiting distribution as n =9 % ig the bivariate

Poisson,
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Now, since the p.gef. of the bivariate binomial distribution
is
(402) [Z1 Pyy sy -é " (P, 8 8,+P10%1 *P10%2 +Pg0) "
]
The substitutions s, = 1 + t, &, = 1+ u give the f.m.gef.F (t,u),
1 2 n

which ia virtue of the marginal sum relations of the table takes

the form
(4.3) Foltyu)  (L+pt + pju+ ppytw)”
. n
s (L+p,6)" (1+pm)" [143113;2&21-tE | -

(1+ p,t) (1+p,u)

Under the assumption that p,., and p, are all 0(n"1), we
1 P 2 s

have
P (t,0) = (1 &) (Lep)™ [L4(pyy=pypy) tu(d p ) p )
= (14p8) (140,01 #(py -pyp)) tu(L4-py b+ (p 0)Ee0)
(1+pu+(pm...)]"
(4et) 2 (14 p,8)?(1+pu) " [1 ¢ (p)y=pypy) tu+0(n™?) ]

and as n-»%we get the bivariabe Polsson f.m.g. in the form

(4¢5) F(tyu) = exp(np,t + npju + npyy =~ pypy) tu)

™ oxp{llt + mou + & tu)
where

(446) m, z npy, W, = np, and e n(pn - plpz)o

By definition of the f.m.g.f. the joint Poisson frequency function
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p(x,y;%) satisfies the equation

(47) exp(my t+ mou ¢ W) e 2 3 (1+ ) X1+ u)¥p(x,y;m)
x y

writing

(408) myte mpu ¢ Btu o (my=K) (Le t) + (ny=F) (14 u)

+ 851+ 1) (1+u) = (my+my = &)

we get
exp {(ny=X) (1 ) 4 (Bx-1) (Law) ¢ B(1+ t) (14 0)
- (memy -9}
- =i i = j
(4.9) @ exp -(m1+ m =) Zi: (nl-n)i('lf ¥ Zj (ngli) (1e u)J

S (Q+8)"Qew” o
r ri

To find the corresponding bivariate Foisson frequency, p(x,y;®),
we have to find the coefficient of (14 )X (Law)” in (4.9). Hence
in (4e9) the sum of 1 and r must be x and j and r must be y, It

follows that the eoefficient of (1 41)X(14u)Y in (4.9) is

-(nl-v- mo=Ti) ( *ﬂ)x-r (nZd‘)y-r i—r
(4.10) pP(x,y;®) = e rz..; T (y=r) ¢ rl

nhere the upper limit of the summation is the lesser of x and y,
Putting m equal to zero and summing over all values of x (y) we
get the marginal distribution of x (y) as a Poisson with parameter
nl(or mz) .

3; A Direct Derivation of the Bivariate Poisson Freguency
7

Function, We shall give now a direct and easy derivation of p(x,y;m)
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using the additive property of the Folsson distribution,

let uy,up,ug be three mutuslly independent Poisson variates
with parzmeters Qq1,Q5,Q3 respectively, i.e. with joint frequency
function

v u
Q1+Q24~Q3) 1Q2u2Q3 /(ul! uzl u31 )

(4411) f(ug,up,uz) = e
Meke the transformation
(412) X = up 4 up
¥y = up ¢ u3
. 12

so that x and y are Poisson variates with perameters m; = Q; + Q,

and m) = Qp # Q3; moreover, we have
my * E(xy) a2 Eluj+ up)(upeujy)
o E(u; - uy) # E(u3)+ Elup-us) + E(uy ug)
. Q) Qu v Q2% Q5 4+Q2 Q3441 O
(4013)  (Q+Q5) (Q4Q3)+ 4,
and
m = Elxy) = 3(x) E(y)

e (G +Q)) (Q2+Q3) #Q = (Q Q) (Q #Q3)

(4e14) = Q)
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Sinee the Jacobian of the tramsformation (4.12) is unity, the
joint freguency function of x,y and u; is

-(Q+ Q2 +03) QF "2 V%5°

(415) £(x,y,2,) = e
(I-uz) !(Y-ug) hlg!

(zn 16) ‘- (ml + mz_m) (.l_u) x.uz(mz-m) y=us -uz

(xem,) b (y=up) tup!

Summing f(x,y,u;) for all values of uy, we get the joint fre=-

guency function of x and y in the form

X=u2 y=us _ug

~(m) + mp=F) 29_"_ med) . Pmgem) - B
oo (x=u2) | (y-ua)! up!

(4.17) plx,y;m = e
R

where the upper limit of the summation is the lesser of x and y.

Ls Another Direct Froof of the Bivariste Poisgon Distribution:

Let
B B
Ay P M
(4018) IR, Pp 9
P2 92 1

be the fourfold table given in section 2 of this chapter,
We may regard this distribution (Kendall V, I) ae a multino-

nial arrayed by

(419) (o + By +P10+ Poo) »
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The probability of having x A's and y B's, where we get
i (AB)'s, -li € nin(x,y) ]’ , is

n i x-1 y-i ne4i-x-y
PO

.20
(44 20) 1,x-1,y-14 P11 P10 P01

Hence, the probability of x A's and y B's is
x=1i y=1i néi=x-y
.21 ( ) p L
(4 )i { xet,yotJP1L PO POL PO

For fixed x and y let n -)eoe and pll,plo,pOl.)O i,e. they

are of order in such & manner that np

17 m, np;y = my-8 and

n b

npy, = My = % remain fixed, then with

m m -7 m, - ®
Pll Zn? plo - n and p01 - _2-.-;1-_—_
(4422) A gy
Poo = 1= & s 1t follows that

n i L g - X~ mpe V™
(4023) tf:oﬂ IT (x=1){ (y=1) ! (n g i=x=y) ! (:) ) X )

né¢i=-x=-y

xh-{mem2)

< 1lin n(1e1)seo (n=iel) (n=1) o oo (n=xtl) (n=x) s0. (n=x=yeiel) (n=x-yei) !
L 00 1) (x=1) ! (y=i) (n4iex~y) 't

v = y=i N i=x=y
x(BElen " me) T [y (mane® ]

n

LM b L AT A D finXey=i=l
(In 24) - lim T
n = 0 it (x=1) ! (y-9)!

5 & - n#iex~y
]{ (ai (nl-!)x 1(-2 - i)y . [1 - '(m' +' __:2_“)]
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But
" (my 4-mp = B ]n -(m1+m2 - m)
lim [i - .o
n-pod

Hence (L.24) becomes

gy (= DT (mged)
(4.26) e 1T’!‘ n(x-i?' Sy

(4e25)

Therefore; (4.21) becomes
— i ox=1 y=-1i
~mq=mop I = (m =) (m,=m)
(427) SR L e T
i

where the upper limit of summation is min(x,y) (4.27) is exaetly

the same as (4.17).

5, _The Canonicsl Form of the Bivariate Poisson Distribution,
Let the bivariate Poisson f.m.g.f., F(t,u) be expressed in the

following form

F(t,u) = axp(nlttmzlln--itu)

o0
exp(m;t + mpu) Z- (tu)r & /r!
o re0
(44 28) :E [tr axp(mlt)] [prxp(nzu)] .y / r!

By lemra 1.4, the f.m.g.f. of k. ({x)p(x) is t"exp(mt), It follow
that F(t,u) is the f.m.g.f. of

o
(40 29) Zgl;:r(x)P(x)] k.px)] & /x
I's

But F(t,u) is the f.m.g.f. of p(x,ys;m; so by the

uniqueress theorem, it follows that
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o
(4430) p(x,y5,®) = plxsm) plysmp) [14 k,(xml)k,.(y;mz)ir et ]
Tz

which is the canonical form of p(x,y;m).

Theorem 4.1 ™ is the covariance of x and y. Prooft

w e
(4031) E(xy) = fEty plx;m;)p(y;my) [lf):lkr(x;ml)kr(g;nz)ir/r!]
Xy T'e

Becsuse of the orthogonality of the set {kr(x)} (Theorem 1.4)
it follows that the summation in (4Le31) is zero for all r except when

ra=l,
(4432) E(xy) z mm * B I;E:kl(x;ml) ko (y,mp) p(x3mp) pysmy) % &

Using (1.46) , we can find

(4.33) Ky (x5my) @ ——
and e
(1&-34) kl(y;MZ) " z;;g .

Substituting (4.23) and (4e24) in (4.32) and suming over all values
of x and y, we get (/. i)E(xy) = n1m2-|-i.
Hence covariance of xy = E(xy) = E(x)E(y) =z m.
In order to find the regression line of x on y we first
find E(x/y)
o _r
(44 35) E(x/y) = Jxp(x/y) -gxp(x;ml)[l +21-k1.(x;1)kr(y,m2)%! ]
;4 rs

r
= e kar(x)k,(y)p(x;ml)f':
. !

= e rxk‘(x)kl(y)p(x;ml)i
X
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Using (4.33) & (4.34) we get

= m (3"‘2”2) Z-_X x—;? p(x;m;)

T

(4036) - m RS . 1

Therefore

(4437 =X =m = % (y - “2) is the regression line of

x on y.

Similarly

(4e38) y=m, = El(x-l) is the regression line of y on x,

Hence the coefficient of correlation p , if defined in the usual
manner as the geometric mean of the regression coefficients, is
given by

(4439) Pei/ (mlmz)% :

To compare (4,19) with the Mehler identity let the set

ikr(x;nl)‘ be standerdized in the form

(4040) KM xymy) = kp(xymy) (n] / r!)&

with K¥ (ysm,) defined similarly, Tt follows (4.29) becomes
(4441) plx,y; p) = p(r;nl)p(r:nz)[“rzz?rkﬁxi'l)k?-(%‘z)]
so that the cancnical correlations are

(4es2) P e corn[1} (ymy), Kirm) ]

6, The Canonical Form of the Bivariate Binomial Distribution,
We have (equation (4.3)) the fum.gef. of the bivariate binomial
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distribution is given by

(py1=PyP,)tu
n n 11" ¥1F2

(4.43) F,(tyu) = (14 pyt) (¢ pou) [1*(1+ p ) (14 qu;l
Puttdng

(4odd) €d=p_=PpP.P

11 12

we expand Fn(t,u) in the form

(4045) F (tu) = Zn% (:) (tud)™ (1+p1t)“'r(1+ p2u)n-
rz
(4e46) (r)p§ qi r{li-plt)n-r

is the f.m.g.f, of the product Gr(x;n,pl)b(x;npl), therefore;
F (t,u) is the fum.g.f, of

[a ~(2b(x) 1.y bly) ]

r n{*)p r of L sz q

(4e47)

and by the uniqueness theorem, the bivariate binomial frequency
function, b(x,y;d) say, should be identical with the series (4.47),

i.ei dr

n
(4 48) b(x,y;d) = b(x!nnpl)b(Y3“’p2)[;.;E; r! n(r)(plpquqz)r

+ 6, (06, )
whiech is the canonical form of the bivariate binomial frequency

function, Aitken and Gonin (1935) made an algebraic mistake

(discovered by Hamdan (1963)) in the derivation of (4.48), which
led to a wrong series with no (r!} in the denomenator of the general term,
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Equation (4.48) shows that when d m O or p;; =2 PPy, X and y
are statistically independent.

In order to find the regression line of x on y, we need to find E(x/y).

(4o49) E(x/y) g);&ﬂpﬁ-m .

Using equation (4.48), we get

(4-50) E(I/y) = rxp(x),'_Zi xdr GI(X)GP(Y)P(X)
x X r= r! nh') (plpquqz)r

Because of the orthogomality of the setﬂ Gr(x)} (Theorem 1,5),

we get
(4.51) E(x/y) = npy# & (y) m) ; x Gl(x)p(x)-
But Gl(y) is given by (1,58) as
Gy (y) = (y~np)
It follows that (4.51) becomes
d

E(x/y) = np; + (y = npy) a(prppa790) (npyqy)

- d
2 t -
(4052) 2 npy (pZ a) (y-np,)
Hence
(4+53) X =mp = - (y=np,)
P2 Q2

is the regression line of x on y.

Similarly

(4 54) y = mp, "rf? (x = np,)
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1s the regression line of y on x, It follows that by (4.53) and
(4e 54) the coefficient of correlation P , if defined in the
usual manner as the geometric mean of the regression coefficients

is given by

(44 55) Ped/ (plpquqz)t.

To compare (4+48) with the Mehler identity, let the
set -‘Gr(x,n,pl) }be standardized in the form

(4e56) G:(x;n.pl) = Gr(x;n,pl) / (r} n(')p; qi)&

vith G (y;n,p,) definied similarly, It follows that (4.48)

becomes
(4.57) b(x,y;£) = b(x;n,p;)b(y;n,p,)

[in:l " 4 G:'(x;n,P]_)G:'(nnypz))
go that the canonical correlations are

(4458) ji = GOTT. [G:(x;n,pl), G:(]’;n,pz)] .

Distribution. Generalizing the result (1,76), the f.m.g.f. of
the bivariate hypergeometric distribution (resulting from
fourfold sampling without replacement) is the coefficient of

2" in the expansion of

N N
(4+59) F,(a,b) [l (1ea)(141) ,] pllﬁ-.-(lfa)s] F10

Liezsv :_]"’01(1.- s)"pm/ (z) .
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Let us write 4 for p,y = PiPy ® Pog = 9195 = 7 (plo - 1’1‘12)

- (P ~ P,a,) -

The f.m.g.f. is then the coefficient of 2" in

(4.60) (1+ :)N-Hp".upz(h s-tu)Npl(n %+ bs)npz
I orists §e
+34a2)(1la z 4bz)

For brevity we write

v = eba(lez vaz) (e s4be) "

Qs (py = ) (9p, = 1) (N = 2)7 = Noyp,
go that F (a,b) becomes the coefficient of z” in

(1+3) N-Npl'ﬂqu' z +u)Npl(1+ 2z ¢bz) sz(l* w) "P1pz Nd/(:) :
Now let
(4.61) (1 Q-I)Nd =1 1-01'(11- w) Q14. c2w2(1+ ')Q2+ ¥ e

This gives a set of equations for the c,, in terms of Nd, for which

the coefficlents c, can be determined successively. For example

Nd
ey =z Nd, e = (2 ) - Q;Nd, «ee . Hence (4.60) becomes

N=Np =¥ Np Np N
(4.62) (1+2) 1 pz(lr % 4 83) 1(1+s+bs) 2(1+I) P1F2

Q Q
Ll"' °1'(1+') 1 cen coo...cr'r(l ') : '.J/(ﬁ)

1£ d 2 0, x end y are uncorrelated and hence the coefficient of 3"
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in H=Npy =N N N Np,./
@ en P20 an) e aens) e w) L2/
is
(4.63) F(-n,=Np, ,=N;-a)F (-n,=Np,,=N;~b),
Genersl term in (4.62) is
(Npl-r) (EPQ'T)
N-Np, =Np N =
6w Arn) E P(esean) Tew  ORE) o/
Using the identity
D e
(464) becones (Ne2r) = (Npy =r) ~(Bpo=r)
Nea2r)=(Npq=r)= - Np,= Np.=
(4.65) . era"b"z"(l-u) L (1+ 2z +az) P1 r(l-u-rbs) P2
(Np]:r) (sz-r) .,
¢ ) (o) (T) N-2r
N - 2r n\Y (a-m) ( .
. (1rw) . =5 / n-r)

By (4.63) and (4.65), it follows that the coefficient of z® in the

general term of (4,62) is

(4. 66) cral'br dﬂ-;%'sn%-(ﬂ F(-n q-r,-l‘plf r, =N+2r, =a)

F(-n+r, -Np,tr, sN+2r, «b).

Hence F (a,b) is
= () (§an) (T)
(4e6T) = rz.% ora*‘b" “—;{%—,&1— F(=n + r,=Np, +1,-N #2r; -a)
X F(-n¢ r,-ﬁpzf r,=N #2r; =b)

where the upper limit of the summation is the smaller of n and (Nen) ,
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By (1.75), the f.m.g.f. of U (x) h(x) is

n{®) (py) () (8-n) (*) (8gy) (r)gr

(4.68) F(ﬂ) ) N(Zr) (H'l‘ 1) (I')

F(~n4-r,~Np;+r,
-N + 21‘; -‘) .

and then by the uniqueness theorem, it follows that the bivariate
hypergeonetric frequency function, h(x,y;d), has the canonical

expansion

> n(zr)l(n-rﬂ)(jyu (x)U(y) Y
o6 ’ = t - (
(4269) h{x,y;d) = h(x)h(y) (1’3;1% n (™) (N=n) (&) (p;) \F/ (Wp,) (¥ (Nag ) (Nqg)"

where the coefficients ¢, are given by (4.61) and the upper limit of
the summation is the smsller of n end (Nen), Aitken and Gonin
(Hamdan (1963)) made an algebraic nistake in the derivation of the
above geries (4.69), thus getting an incorrect series with a factor
(Ner 1) (r) nissing from the general term. To find the regression

line of x on y we need to find

(4.70) mdﬁ:Z}hﬁgﬂl.

Substituting for h(x,y;d) by (4.69) we get

oo
(4.71) E(x/y) -rx h(x)+]_ 2 xc,,
x x r=l

1) foree v1) ) w @)
1 () (Kem) (¥) (Np,) (r) (Np,) (x) (Ngy) " (Ngp) ™

By theorem(1,6) it follow that (4.71) becomes

(2) 42
n(N-n) (8p,) (¥p,) (Ng;) (Ngp) X x Uy(x)n(x).

(1&0 72) < np1+
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By (1.69) Uy(x), U;(y) are given by

Uy(x) = x - np; and Ul(y) =Y = np, .

Substituting ¢ = Nd we get

E(x/y) = a(8-1) (y-np2) 2 x(x=np,)h(x)
Bhidaian = 1o e e e

(4.73) - np, 4 (3 = np)
1 Poq '
2142

It follows that

(4474) x-np, z—4—(y-np,)
P,
is the regression line of x oh y.
Similarly
(4.75) Y - np, :-;lﬁ-l— (x-np;) is the regression line of y on x.

(4474) and (4.75) are the same regression lines as those of the
bivariate binomial distribution given by (4.52) and (4.53).

(4¢74) and (4.75) are straight lines, and pass through the double

mean (np;,np,) of the distribution; while the correlation coefficient A,

1f defined in the usual way as the geometric mean of the regression
coefficients, 1s given by

-3
(4076) P - d(plpquqz) .
which is identical with that of the bivariate binomial distribution

given by equation (4.55).



CHAPTER V

THE BIVARIATE BETA, t AND F DISTRIBUTIONS

1. Introduction, Watson (1933) derived an expression for
the sum of a series, bilinear in Legendre Polynomials and generalized
the result toultranspherical polynomials (definition 1,10)1, Rice
(1945) derived the characteristic function of the bivariate

distribution of two sine waves of the form
(5.1) X=co8Wt
y = cos w(t +0)

and hence derived the corresponding frequency function £(x,y,w).

Barret and Lampard (1955) expanded f(x,y,w) in the canonical

form

s ]
(5.2) #(x,7,%) = B(x) B(y) [1+ 7:; 2 cos(n w8) T (x) T (y)
where o

B(rx):(l-xz)-#/f,-lg.x!_-l

and {Tn(x) } is the set of Chebyshev polynomials of the lst kind
(definition 1,7). Leipnik (1958) derived a bivariate frequency
function in the form of a series bilinear in the transformed

Legendre Polynomials p,(x) defined by 1.9 (orthogonal on (0,1),

1, They are sometimes called Gegenbauer's Polynomials,
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00
(5.3) h(x,y, p) = 14 Z:lf; P, (%) p,(¥)
nz
wle-2pP-2FflogG(x,y, 0Lxyel
where G(x,y) is Green's kernel
(5.4) G(x,y) = x(1=y) , x2¥

= y(l=x) , x gy
s
(5.5) £ 2 L2yt / {ie 1 [(20) 1P}

and 0 & P &€+ so that h(x,y, £ )2 0 for all 0 £x,yg 1

Now, the following question arises: "Is there a
generalization of the above results in the form of a series
bilinear in the Jacobi polynomials (definition 1.6)?" (Hamdan
(1963)). Because of the complexity of the generating function
of the Jacobl polynomials (equation 1,35), it is difficult to
approach the problem by using the g.f, similar to the approach
used in the previous chapters.

From a statistical point of view, (5e2) is a special
form of the bivariate beta distribution since by change of
variables x » 2X = 1 and y = 2Y = 1 the marginal frequency
functions become I-é(l - I)'ﬁ' /B8(%,3) and I'%(l - I)'ile (4,3
with orthogonal polynomials Pn('i"’})(zx « 1) and Pn('%’.ﬂ (2v-1),
0 &X, Y £1,

In this chapter, we give a series form of the bivariate
beta distribution in general by transformation from the bivariate
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ganma distribution, This approach is due to Hamdan (1963).
However, the result is not in canonical form, This result is

used to derive series forms for the bivariate t and F distributions,

2 Bi te Beta Digtribution., It id well known
that if x and y are independent gamma variables with parameters
p and g respectively, then the variable z = x/(x +y) has a beta

distribution with frequency function
(5.6) B(z; p, @) = 2°1 (1- 037/ B(p,0), 0838,

Now, let x; and x, be independent gamma variables with parameters
p and m; and let ¥y andl L) be another pair of independent gamma
variables with parameters q and m, such that x; and y, are
independent, x, and yj are independent, but x, and y, are
distributed in a bivariate gamma distribution with Boefficient
of Correlation P . The joint probability element will be

(X174 Xo+y1+Y2) "
(5.7) 1+ 2471172 x;a-lx;-lyq-lyl 1

1 "2

1

(e [P ]° M) °
o
é f,—é;%;— L Lf,“'” (xz)Lf,""l) (y,) dx;dx,dy,d¥,.

Make the following transformation
Xz2x / (xl * x,)
Yeyy/ (5747
(5.8) Xy = Xg

Y22 Y2
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g0 that
. Xx,/(1-X s Yy,/(1-Y) and 3711 _Xp ey
Hence, the joint frequency function of X, Y, x, and y, is

m p-l “"l’ q=1

1 x
(5.10 — (= _2_ 2.)
) [ w17 S
ol L owilw pri(mDy, LD (y,)

QoI+ T ™ Mm +r)

We integrate (5.,10) first with respect to x5 from -0toao , we

get (leaving out quantitiss not containing x)
>

(5.11) /0 exp(222) x; +2-1 1(00) (4 )ax,

By equation (1,19), LI®L)(x ) 1s the cosfficient of (=t)T in
r 2

(1-t)™™ .xf[-xzt / (lut)] « It follows that (5.11) is
o0

xo(1=tX) 4 p=l
= coefficient of (=t)T in (let)=® /ozp (—lfm) xy T dx,

= coefficient of (=t)T in f(m+p) 1-0"*P (1-¢)P/(1-tx)™ P

(5.12)

"

P+ 2™ P alP® ()

where

"ip’.)(l) s coefficient of (=t)T in (1-t)P/(1-tx)™+P

(5.13) = g ()t (4P #L (P

is 2 polynomial of degree r in X,

We integrate (5.10) again with respect to Y,» thus getting the
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bivariate frequency function of X and Y in the form

(pym) (q,m)

(50 14-] k(I’Y’ .’} -

(=]
e T sflel pr 22 ) pem ]
rzl

-
(5.15) - B(X,p,m) B(Y,qm [1a T zilml p7 (oo \(0m)

ral [(mer)
It can be easily verified that each of the marginals is a beta
distribution, since (Hamdan (1963))

|
(5.16) / Af,p") (x) B(X,p,m)dx
[-]

. 3; DI CP) R v1,m) /R (p,m)

, i; DY EOP h . & (DG

iz
(5.17) = coefficient of t¥ in (1 + t)P (1 +4)"P 2 0 for t £ O,

Now if we make the transormation x ¢ 2X = 1 in the
Jacobi polynomials we get
(5.18) oL x 2 1) o . (AT H T e
r 120 r-i i
vhich is orthogonal on the marginal distribution of X,
Obviously,the set !Aﬁp’.) (1)} is not identical with the
got {Pﬁ""’l)'p'l)(zx-l)} o Hence (5,14) is not in canonical form,
The problem of deriving a bivariate beta in canonical form remains

12 be solved,
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2, Bivariate 4 Distribution. Siddiqui (1967) derived a
form for the bivariate distribution, he used the joint distribution

of (%, 7, 8), 8, T) to work out the dietribution of (ty, ty 1)

vhsre %, corresponds to the x=cbservations and t, to y-observations

from a bivariate normal distribution with a correlation coefficientf.
Siddiqui egalusted the exact distributions only for

n gl, and 3 (sample size N @ 2 and 4). He indicated that the

sxact distribution for arbitrary n can be worked out, following

the method for n = 3.

The exact distribution for n « 1 iss
(5e19) by (t,t55 P) .[h- r?) Soea® / 4112 (1 +t§)(1+t§)]

e [1+(7-0) cot 8],
Cane Cos @ & 2/(1 = P?) (1+t; )14 ti)-&(l?tg)-i
@ a 0 (t7,t,) 1is between O and 7,

Making use of the bivariate gamma distribution and
following the lines of the proof in section one we can find a simpler
form by an easier method without using the distribution of
(3, 7> 8y» 82, r)e

Let x, yy5 ¢ss ¥, be & samplé of n 4 1 from the normal
distribution (0,0%), A +t variate with n degrees of freedom is
defined as

( 5020) t s : or nt? = _x.z_.._
(Trfm? n?
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with a density funetion

f
(5021) g(t) o FEZD) (1 fi,z?-)' =

vn '3
It follows that
2 %2
(5,22) 2.1,
n ;E

It can be easily shown that a 12 variate with n degrees of freedom
ie a gamma variable with parameter n / 2, hence (5.22) can be

expressed as

(5.23) o

Now, let xy, x, be independent gamma variables with
parameters ¥ and % respectively, and let y,, y, be another pair
of independent gamme variables with parameters # and % , such that
x; and Yy, are independent, X, and y, are independent, but X, and
Jo are distributed in a bivariate gamma distribution with a coef-
ficieht of correlation P, The joint probability element will be

~(x1+ X2 4y, +72) ~F 2'1 - &-1
(5024) > A
[re mr)]2 ’ 1%
.1 .1
Z }:(:(.-)) r 5 (":2)1'5 (y5)dxydx,3y,dy,.
r

Let us make tho following transormation

_l._l
N



(5.26) 2. 4,
n Jz
xz : Iz »
end
¥, = Toe
It follows that
tf
Xl H -—;— Xz »
2 dx, By,  4tqt
(5, 26) = Ez.. and 271 971 x i
N1 I‘32 3t §t2= (3% X2 72

Noting that there are two values of t; and two values of t2

corresponding to each pair of values of (x;, y;) and (x,,y,),

it follows that the joint probability element of t;, t5, x5

and ¥ is -
=(x; ﬁ—- +x072 2 vy,)
(5027) = 1 ——. —z e "
wr [ ]
2 -3t b Bl 1
L R PR R
) ( “1) (3-1)
ri 2 2
Z |1(3+r) a (xz) Lr (72)
A tl 2 X3 ¥ dtl dtz dx, dy,
2 '
(5.28) = . exp[-x,(1+ -%—) =y,(1¢ —é')] y22

T [F(z)
@ -1 (3-1)

.Z_ () er (x)L_ (y,)dt,at

r=0 ['(n +r)

X

g.}

2

2

L dxz d’z .
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Integrating first with respsct to x, from 0 to °0 , we get an

integral of the form (eaving out quantities not containing x,)
o

3 +1 . (B -1)
(5.29) /cx‘p [-12(1-1 -IJ;- )] x, Wl < I.r5 (x,) dx,

e
e coefficient of (en) in (l=u)” 2 I’(ufl )
2 -(21d)

t -
['1*_&-‘- 1=u J

n+ 1
PR S
= coefficient of (~u)™ in ['( > Y(1+ _n—) (L-u)
8 =B
- [1 - h—T] BTL
(14%)
n
t - Al
(5.30) = coefficient of («u)” in [(EFL)(r+-3)
4, 9
A (t,)
where
, 3)
A:_% 5 (tl) = coefficient of (=u)¥ in (l-u)t

';“L—]

(a3 s Z (1) ,._L)w“zl 3 dytaeth™,

Then we integrate (5.28) with respect to ¥, and the result is

ntl 1
(5.32) -[-!'-(——-)]— (1*—::'-) 3 (1+
o (rej 2

W{"l ri (%, g) (é':a)
B Tgen T



Hence,
(3,3 (%,%)
(5.33) £(ty,t,) = g(t))a(ty) T _xal@)pr a2 () ’!(t s
r«0 r( tr)
# 3]
Unfortunately A (t ) is not a special case of the Jacobi
polynomial
(5034) ’;- LD 4 +1)- Z:( 1) ("2'1) ctE-
2 wad 42
)™ A ey
n

which is orthogonal on the marginal density function

nEotd) 2/t
ol @ (1+4D) e

.

2
E(tl) -
If we let X, and y, at the biginning of the Proof a
pair of gamma variable with different parameters n/2 and m/2

respectivwly, the joint probability element (5.25) becomes equal

to (using equation 3,37 for the bivariate gamma distribution)

(5435) L Sarxener) 4 31 -4 31
7 D r(! 1 %2 17
[11 - riPeer) T

e r(gn-) PGer
(3-1)

Lr (12) I-! (72)] d!l dxz dyl dyz.

If we follow the same proof we will get



-ﬂ-

ol
ra) p=
( 5.36) £(t,4,) = g(t)g(t) [ Tzt Mp ar) r(!)J_
5¢3 1:%y) = gltje 2[ ral [\(p) r(%.pr)

5, . 3,9
L) " ) ]

where 3 N
A "2(t)  (1s given by (5.31) and g(t;), g(ty)

are the marginal density functions with D.F. n an m respectively,

3, Bivariate F Distribution. Generalizing the work in the

previoue sections, we can'derive a series form for the bivariate
F distribution,

Let x7, ¢.s, X, and y7, «vo ¥, be independent samples of
n and m from the normal distribution 0, ¢* , We consider the
following ratio of mean squares:

(xf'foc. + 2) /n

(5.37) F =
(554 ere +30) /n

Letting xf and x; designate independent Chi-Square random variables
with n and m D.F, respectively, we can represent the distribution
of F by

Cxi/n _ XB/n

(5038) F = =
VX/a 1/n

from which it is appatent thet the parameter G2 does not effect
the distribution,

Because a 12 variable with n B F is a gamma variable with
parameter n/2 it follows that



nm-

(5.39) Fg_r'ﬂzg._/i. or Gg:l‘._ﬁi{g

luso/ » [a/2
with probability element,
+
(5.40) d K(@) = M =

dG,
rOrG o™

If we let x,, Xa9 ¥1» T be the same variables as in the
previous section with parameters n1/2, nlfz, n2/2 and m,/2
respectirely, The Joint probability element of these variates
is
(5441)

o(x+ X% 71t ¥,) 21 ot 15,
1 e R R e 3

L
ny n n m q 2
= 1) M3 M@

23 Bap s i fern (EDIED =
Yy Y5 E-"nl ) r(!;T = I‘l(!;:r)

L:!%-l) : (~8-1)

x,) L, (72)] dx, dx, dy; dy,.

Make the following transformation

n X
1 1
Gl"]. rl’x—z’ X, ®m X,

and

The joint probability element becomes



n
(5.43) (Gl)g‘l(ﬁg)'%'l s [x,(1406,) + y,(1t 6))]
® - - -
r(-%) r(-%) _H_ 1 nzr "2 1

: e . y (-%-1) (%-1) )]
+ e L (12) L
sl [ Sen) G4 7 7

+dG, dG, dx, dy,.

We integrate with respect to x, (leaving out the terms without xz)
o8 (Z.1)

we get m
x(1ta) DLt T2

(5.44) e x, L(x) dx,
= coefficient of (=t)" in

- W meh .
(1.-1;)'il / exp -12(11- G, =t Gl) / (1-tﬂ x, : dxz.
0

n
L) (1et) 2

ny ¢
= coefricient of (=t)" 1n [I(—

-2+ W . Sk |
(1t6,) (-8 "7

146,
(5.45) z coefficient of (=t)T Lnl‘(m) (1rc,))" ﬂi;l
23D g
where
(5.46) - B:,%,:b (6,) = coefficlent of (=t)” in
-8y oy {1-t}n1/2

1-|-Gl
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n
(5047) -T:Qw-l-z—- “)(Ifrlé") j).

Similarly, we 1ntograte with respect to y,. Hence (5043) becomes
I F1 pmes, gl
I‘(JQ [‘(—g (16, YT (14 ¢ )'2'23

(5448)

n; ml Ry M,
I*Zr Pper) f:rB (-i :-%:x) B(—%!-(-g))
' 103+ (S0 T ks »

m ar
| e . 23) p
(5449) = k(G)) k(Gy) [1"?.—:-1 ['(») \‘( tr) [ )

% &3
B 2 %) s * %(cz)].

r r
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