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NOTATIONS

— it implies
— -daes not imply
A there exists
€ x€ A (x is an element of the set A)
ACB A is a subset of B
for every

G

iff  if‘gnd-only if
ﬁ =0 (x) iffﬁ—;-#o as . —> 0
R

reals
0 real number zero
- vactor zero

Lx,f > denotes value of f at =x.
therefore
X, Y, Z Banmach Spaces

A, By, C open subsets of X, Y, Z respsectively

X1 X5 -_-{xt"xt = Xy + 'I:(x2 -x7); t €[00, 1:(}C X
f: J—=R where J C R ordinary function

f: X . R functional

f: J_ ., Y abstract function J CR

f:+ X_ . Y operator

L oSgx... Lot Hhal,s.-olsl
P alx 3 oo x)c X

/f(x, Y) _-_&L

L: X—>Y; L 1linear continuous mappingz

J

iv



\Hx“ norm of X

G=variation, G=differential, Fe=differential denote Gateaux variation,
Gateaux differential and Frechet differential respectively.,

Vf (x; h) ; Df (x; h) ; df (x; h) denote respectively first order,
Gevariation, Ge=differentisl, F=differential of f at x with incerement h
f'(x; h) or f;(h} may denote any first order differential of f

at x with increment h the type meant should be clear from the
context.

¢" (t) ne-th Riemann differential of ¢ at t.

Qn (t) n=-th ordinary differential of ¢ at t.
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ABSTRACT

This study deals with some problems of higher order differen-
tiability of nonlinear operators on normed real linear spaces. Our
main interest is the possibility and consequences of local approxi-
mations of nonlinear operators by abstract polynomials, In addition
to the familier notions of n~th order Fréchet and Gateaux differentials,
we define in Chapter I the concepts of (Weak and Strong) Peano, Taylor,
Riemann and direct n-th order differentials, Some implication relation-
ships among these concepts are established,

Two different approaches to some problems of Caleulus related
to the mean value theorem and Taylor's theorem are discussed in
Chapter II, The first method makes use of the results of the
related problems from the Calculus of ordinary functions and generalizes
them to operators by using a standard technique which is based on a:
corollary of the Hahn-Banach theorem, The second method treats the
problems directly without recourse to the Calculus of ordinary functions.

In Chapter III, we consider the converse problem to Taylor's
theorem, Stated in terms of ordinary functions, the problem is the
following: If there exisis constants ap, a;, ..., a,.1 and a

function M, (t) defined in a deleted neighborhood of t = O by

2

f(xo%— 't) - &O + E.lt =+ &zt + eeo9 -+ 3n_1tn“1+ mn(t}’

what conditions should be imposed on Mn(t) to guarantee tie existence

nwel
of f(a)(zb). It is found that besides the natural conditions Mé )(t)

exists in a neighborhood of t z O and 1lim M,(t) = O, one needs
t—0

vi



1im t(j) Mtgj) (t) = 0 1], We shall treat this problsm for
t—-0
operators using Gateaux variations, Gateaux differentials and

Fréchet differentials.
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CHAPTER T

SOME NOTIONS OF N-TH ORDER DIFFERENTIABILITY

In this chapter we review some notions of differentiability
of operators on normed linear spaces that will be used in this
paper. Several notions of neth order differentials generalizing
the definitions of Peano, Taylor, Riemann and direct differentials
to nonlinear operators are introduced. We also prove some
implication relationships among these n-th order differentials,

and relate these differentials to the n-th order Frechet, Gateaux

' differentials,

For an exposition of calculus in Banach spaces and a study
of fundamental properties of various notions of differentials we
refer to Dieudonne.[3] , Nashed | 9], Vainberr[ 137 , Lusternik and *

WOorks
Bobolev [ 8,Wiener [14] and to the oldersof Graves and Hildebrandt

(45 5, 6] .

I, Preliminsries
Definition 1, ILet X and Y denote normed linear spaces a

mapping f: XY is said to be linear if it is gdditive, f(x+y)
= f(x)+ £(y) for all x, y in X and homogeneous 4 £( )\ x) = \ £(x)

for all x in Xy and scalar),

Definition 2, A mapping Iyt X3 x X5x ees x X, —>'Y where
X;j (i 81, ees, n), Y are normed linear spaces, is called multilinear

if it is additive and homogeneous in eacﬁ argument,

il
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Remarks 1, a. A linear operator is continuous on the
whole space iff it is continuous at x = 6,

bs A linear operator is bounded iff it is continuous,

c. Additivity and continuity of an operator imply boundedness
and homogeneity of the operator,

Theorem 1., (See, for instance [3],p. 104 .),ZT}R; X) the
space of all linear continuous operators from R into X 1s naturally
identified with X, by the mapping x—>L," which is a linear

isometry (norm preserving) of X onto ﬁZf(R; Xl s

Theorem 2;]:3] o For each u in aZf(Xi % Xp3 Y) and each
x; in X;, let U, be the linear mapping x, —>u(xy, x5). Then
s xl_%,uxl is a linear continuous mapping.of Xl into-¢Zf(Xé; Y)

‘and the mapping u— >1u is a linear isometry ofgif(xi x Xo3 Y)
ontoi(xl; L@; 1.

Note. By induction on n it follows from the’above theorem
that Z (xl x Xy xi ees x X 3 Y) can be naturally identified (with =
conservation of the norm) with ﬂZf(Xi;§Zi(12; ...,.ii(Xh; ) e

Definition 3, Let Xl 2 X, 2 ¢oo = X, = X A mapping

H : I Y 45 ealled homogeneous of n~th degree in x = (X7,X5,se0,X,)

it L{)\x) s A (2.
Definition 4, A multilinear mapping f is said to be

gymmetric if X; = X5 = 4.0 = Xn and

f(xl, Xz, so ey xn) - f(xil, xiz, eves xin)

where il’ esey 1 1s an arbitrary permutation of the indices 1,2,...,ns

Remark 2, Let H, and X, be n-termed homogeneous linear
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forms from X to Y if Hn(xp) = Ko(x') for any x in X then

Hﬁ - KH i:eu Hﬁ(xl’ xz, @09 Xh) - Kn(xl, xz, soe 9 Xh) for
arbitrary X3, X9, eecey Xjo
i
Definition 5. Let Hy: XY where H; a homogeneous

n
forms of ith degree. A sum Pﬁ(x) - EZ;_Hi(xi) is called an
_ | 1

abstract polynomial of n-th degree in h.

A detailed discussion on abtract polynomials is given in
Hille and Phillips [ 7] . '

Before we proceed any further we state the Hahn-Banach
theorem, which plays an essential role in the study of calculus
of operators,

Theorem 3. [ 8] Each.linear functional f defined on a linear
manifo*d G of a normed linear space X can be extended onto the
whole space with preservation of the norm,

Corollarye ILet X be a normed linear space and x. an

(e

arbitrary but fixed element in X, Then there exists a linear

functional f defined on X such that |[f] = 1 end |£(x))| =[x,
Proof: _

Let G ;{x |x = tx,, t ¢ R}; G 1is a linear manifold
of X, Let ¢ be a mapping on G into R defined by @(x) = t | x|

where x = txg. Then QTxb) = be“ and\ d(x)| = ltH!xbh = Htxb|1=HxH

\

i-Q- i H = 11

Applying the above theorem to ¢ we arrive at the desired
functional f: X— R with [[f] » 1 and |£(x)}| = x| .

2e N=th Order Gateaux and Frechet Differentials

For convenience, we follow the definitions and notations



used in [9 |,

Definition 6. Iet F:s A .Y, where A is an open subset
of X, Y are normed linear spaces: Let xoe:'ﬁ and h an arbitrary
nonzero fixed element of X. Then X, + th is in A for [t|< € ("o”h)'
Let C = Sup aﬁilt[é-.&:é' X, + th € A}. Then @(t) = F(x, + th)
is defined for ltl‘if: b

g(t) - g(o) d_
1im - - F(x0+ th)|

-0 gx =0
exlsts, it is called the Gateaux variation (or the weak differential)
of F at xp with increment h and is denoted by VF(x,; h).

If F has a Gateaux variations, at every point x in X,
then F 1is said to have a first variation on X.

Definition 7. F has an n~th variation VnF(xb; h) at a point
X, if the function F(xy + th) has an n-th derivative with respect
to at t =0,

Remarks 3, a. VHF(xO; h) is a homogeneous form of neth t
degree in h.

b. If VF(xy; h) exists them F is continuous in the
direction h, but not necessarily continuous at Xqe

ce VF(xy; h) is not necessarily linear in h, |

Definition 8, If VF(x,, h) is linear and bounded in h, it
is called the Gateaux differential of F at x with increment h
and is denoted by DF(xy; h).

Theorem 4, Let A be an open subset of X and let F be

a nonlinear mapping from A into Y, A necessary and sufficient

condition for F +to be Ge=differentiable at x is that the following

representation holds

F(xg + h) - F(x5) = L(x,; h) + R(xy; h) (1)
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for every h in E for which xy+ h is in X, where L(xy; h)

is linear and continuous in h and

R(x.; ¢ h)
T el . = O for every h (2)

——

7+ 0 e
In this case we have L(xy; h) = DF(xy; h).

Before we define the second order Gateaux differential let
us note that

DF( ; ) is a function of two variables,

DF(x; ): X—>Y is a linear and continuous mapping for every
fixed but arbitrary x in A,

DF{ s h}: A _-Y wh;re h is arbitrary but fixed eléﬁent
in X,

DF( ; ) itself could be thoughtof as a mapping from A into
AL, 4, _ | |
and PF( 5 J):s x > DE(x; ),

Definition 9 F 1s said to have a gecond order G=differential
at x if DF(x ; h) exists and DF( ; h) has a first order G=dif-
ferentisl at x,

Thus the second Gateaux differantial has the following

representation

DF(x + k; h) = DF(x3h) = D°F(x; hk) R(x; h, k) | (3)
where
1im w =0 (4)

t.0

Similarly one can define higher order Gateaux différentials.
Definition 10, The operator F 1is said to be Fréchat

differentisble at x, if the representation (1) p'. 5 holds where
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L(xy; h) is linear and continuous in h and moreover

1im ” R(Kﬁ; h)” = 0 (5)
h—6 || k]

The following theorem exhibits an intrinsic difference between
the G= an@ Fedifferentials. \

Theorem 5, [91 s The operator F 1is Fedifferentials at x,
iff the representation (1) holds where L(xy; h) is continuous and
linear in h and

-]
1im Rix.; Ch)| =0
= =7 ,l (xb )“

holds uniformly with resﬁéct to h on each set HhH = constant,
Definition 11, Suppose for m > 1 the meth order F=differen=
tial dmiF(xb; By, eesy hy) of the mapping F: A—>7Y, has been

defined for all m + 1 tuples (x,, hy, eee, h ) of element of X >
m
Xy + 3_ h; in As. Then F 1is said to have an Fedifferential of
i=1
order m + 1 ;? ior every (m 4 2) tuples of elements (xb, hyy eoe, h. 1)
+ L &
of X > X5+ ) hy in A, the following representation holds
i= 1

a®F(xy + hy 13 By, eees Byl = de(xG;_hl,...,hm)

m+l
- a F(XO; hl’tli’ hm+1)+R(IO; hl,'gn’ hm-l'].) (6)

where the mapping dm+‘1 F(xb; Byy seay hm-kl} is linear and continuous
in h 1 and
m+
-1
1im Ilhm.+1{[ H R(xb; hl""’ he s hmﬁil)U = 0 (7)

hm+l

If such a representation exists, it is unique and

dm'?l F(xo; hy, scey hm-rl) is called the m + 1)=th F=differential
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of F at x,. The operator am+1 F(x5, see) is called the (m + 1)th
Fréchet derivative,

Remarks 4., 8. a" F(x; By, ose; hn) is linear and continuous
in by, e.e; h, respectively, |

be If 4f is a continuous mapping from A into < (X3 Y)
and if it is twice differentiable at Xy then the bilinear mapping
. (b1, hy) —dF(x,; hy, h,) is symmetric im hy, h,.

By induction we can prove the theorem for the me=th order
differential,

ce If F has an mwth order F=differential at x,, then
the m-th order G-differential exists at x, and hence the m-variation

exists as well and moreover

1]
A" (x5 Byyeces by) = 2o Pxg+ ) _ tihy) (8)
gtln . @ ‘atm iﬂl ti=t2=. = =tm=0

de Counter examples are svailable to show that
G-variation —%= é-differential:=;£¥;*F-differential, (see,[},?,l&j ).

ey If the n=th G-variation, G-differential, F-differential of
g function f exists at a point x then all lower order differential
exists as well at x.

We note that the Frechet differential enjoys most of the

properties of the ordinary derivative [3] .

3. Taylor's Expansion for Operators
Propogition 1, If f:X_>Y has an expansion at Xy of the form

f(x0+ h) = H0+- Hl(.xo; h)+ "'{'Hn(xﬁ; h)*‘D(n(xo; h)

where Hb is a constant funection Hy 1is homogeneous of i=-th order
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in h, 1 21 <nand X(x; th) = 6(t®) where t € R then the

expension is unique.,

Proof':
Assume there exists another expansion of f(xo + h) with the

properties stated in theorem, say,

£{xy+ h) = K5+ K(xy5 h)+ eea + K (x55 B} + 'ﬁn(xo; h)

where K; is constant K; is homogeneous of i=th degree 1< i< n
and /ﬁn(xo, th) = o(t®),
Then

f(10+ th) = Hy + tH(xo; h) + ...+thn(xo; h) + “n(xo; th)
= Ko+ Ky (xg5 b ove 7K (x5 h)+/5n(x0; th)
Letting t — O it implies Hb = Kp

e tHl(xoih)-f- see +thn(x0;h)+Mn(X0;th) - tKl(xO; h}+— eee +tnKn(x0;h)+

_:./Bn(xo; th) . {‘

Dividing by t and teking limit as t-—> O implies Hl(xo;h) - Kl(xo; h)

Continuing inductively we obtain desired result.

Froposition 2, A multilinear continuous form H,: 7
has F=differential of all orders at every point of $ed

Proof':

Iﬁt X = (Xl, X2, o9 xn) &nd h 1 (hl’ ey hn) 'thel’l

x; h) = 1lim gﬁﬁfﬁ:ﬁki = Eh(¥l
VHa )'t..:..o t

{x; h) = H-n(xl, seey Xn_1y hn)+Hn(xl, ey -xnﬂzyhnﬂl’ xn)+ ®e o

+ Hy(hy, X5y oo, e H == (9)
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This is clearly linear and continuous in h, hence VH, (x; h)
= DH (x; h) . MNoreover

Hh(thllﬂﬂﬁithn:xh)
R!KI th!_ Hn(xl’thl""’thﬁlﬂ- Hn(thl,XELthz’. -q,thn)—}- -il-I-Hn(thl’.II ,thn,xn)—i—
L % = s

e Ylwe - .
i tn ZH.n(Xl, hZ’ CE R B hn)'f' ﬂll—i—t Zﬂn(hl’ ...,hn_l,xn}+tn lHn(hl,ij,hn)

ELE%_EEl,ﬁ? 0O as t _..0 independent of h,

DH, (X3 h) = dH, (x; h) .
Moreover simnce (9) is n~l multilinear continuous operator we can
differentiate it again and obtain de (x; h) as an n=2 multilinear
continuous operator, continuing inductively we can prove thaf
a'f (x; h) is independent of x and hence F-differentials of

H, ,n = 2 at x exist and are the appropriate zero operators.

Propogition 3, Let F be an oOperator from the space X into

Y whose n=th G=differentials exists and let e be an arbitrary but
fixed element of Y = jf (Y ,R). Then H = eF has an n-th differentials
et x and DPH(x; h) = eD"F(x;h),

Proof':

For n=1

Ly Hx o th) - H(x)

DH(x 3 h)

e

>0 ®
= eF (x + th) = eF(x)
£ 0 -
.o 1in Dixzth) o El3) eDF (x;3h) .
t->0 b | \

Sirilarly for higher order differentials,

Theorem 6, Assume F: A __ Y has Gateaux differentials up to
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the n + l=st order for every x € A, Then for every x, h ¢ A with

xh = {x + th’ tc e, 1]-1 C A the following expansion ig walid

F(x + h) = F(x) + DF(x;h)+—%1 DzF(x;h}+ Gen ik %T'DQF(X; h)+

1
Tﬁl:'ﬁ! PP Plx -7 hy h) with 0<5<1 (1)

Define ¢: [0, 1| — A by ¢(t) = x + th.
Let e be an arbitrary element of I* and consider the

composite mapping.
H(t) = e(F(¢(t)) = e(F(x +th)).

Since this mapping is from the reals to the reals and has the

n-thordinary derivative at every point of [0, 1| s We can write

HOY - BV 0y L 72 0y, ... . L gim) oy, 1 Eeal s -
(1) =H(0) + B(1) (0) = B0 . Lo (O)r =ty B (£);0¢5

%

or, using proposition 3,
e(F(x+h) = eF(x) + eDF(x, h)+ -;—-; eD(Z)F(x; oo == eD(n'l)F(x;h)'+

nt

& E

L ®™r(x+ £n;n)

n

= = 1~ +1: .
e [:F(JL'+ h)=F(x) = ki_l ﬁ DkF(x,h) - m DR+p(x . = h; h)] = 0

applying (corollary to the Hahn-Banach theorem) ——s- I, e 6__>/f_9

ﬁ a*{F(xfzw h)-F(x) = 12%1 %{:—EDIFF'(x;h) - -(n_r_llﬁ s 1F(x+ ¢ h; h)}f

I =3 : L D+ = -
= |F(x+h) = F(x) = gglﬁ DkF(X,h)- G 1t D lF(x-f % hj h)“ =0

hence

n +
F(x+h) = F(x) + = §7 D (x5h)4 gty D ¥(x+ £ b; n),
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Note: The expansion could be obtained without the assumption
that it is known for ordinary functions,

We shall now pass to introduce several notions of differentials
of order n, m > 2 which are variants of the notions used for ordinary

functions.

4s Rlemann, Peano_and Taylor n=th order Differentiasls

Definition 12, The n=th Riemann Differential

(a) Weak form
Let £f: A__-Y and define
A £(x) = Zn (=) " () 2(x - (k= Bn).
h kel

n _
If 1lim L A (£(x)) exists then we call it the n=-th weak
£ .0 £ th

Riemann differential of f at x and we shall denote it by R™ f£(x; h)
(b) Strong form

If 3 a function r® f(x; h) >

| A% £(x) = rBe(x; b)f
AP —_— . 0 as h-~©
| &7

we call r® f(x; h) the n=th strong Riemann differentials of f at x,

Definition 13, n=th Peano differential

f: X—Y, If H a polynomial

II—‘

P (h) = Hy(h)+ 1 s = wee +

> H (h) where H; is homogeneous

n

of 1i'th degree in hy >

f(x+ h) = £(x) + P (h)+ °<ﬁ(h) ;

where | |
K (th) = 0(t") then H (h) = P'f£(x; h)
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is called the n-th weak Peano differential,
(b) Strong form.
f is said to have an n-th strong Peano differentials at x

if J a polynomial
P (h) = Ll(h)+ 7 La(B)+ oo +;—- L,(n)

Li is a linear continuous form in h >

f(x + h) = £(x) + Pn(h)+ﬂb<n(x; h)

e I (x5 B |
e . @ a® h-o0

then

L u =7:F £(x; h).

Definition 14, The n=-th Taylor Differentials

(a) Wesk form f: X__ Y,
If the (n = 1)st. Gateaux variations exist then the n=th

weak Taylor differentials is defined by

ll"-'

ni n-l
T°f(x; h) = lim —~ [f(x + th) - , vEE (x; th)]
t—>-0 t kﬁO 2

=

whenever this limit exists.
(b) 8trong form
If J a function: of h 2f(x; h) >

n-1
[ lf(xen) -5 L af(x b) - ~ £(x; h) &
s = .

n
I k|
where d% f(x; h) is the k=th Frechet differentials of f ath Xo

Definition 15. If f(x + th) = ¢(t) has an n-th Riemann

differential at every point t € [0, 1]
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and 1 n 1 n
= Zsf?h f(x +th) = 1im = A  ¢(t)
= T h
T—0 ¢ -0 |
is uniform in the neighborhood of every point t then R®f(x +th;h)

is called the weak ' Uniform Riemann differential ‘of order n,

We shall prove that we have the following order for the above.
defined n-th order differentials (listed in order of desdending generas=
1ity). |

Weak Riemann Weak Peano Weak Taylor G=variation.

W- R wt P' wo T- G-V

Theorem z,. If the n~-th Peano differential of f at x
exists then the n-th Riemann differential of £ at x exists
and the two differentials are equal i.e.(W.P.—>W.R.).

Since f has an n=th Peano differential at x, then
Proof: I

£f(x + th) = £(x) + tH(h)+ +-E-r;— Hy(h) + o (x; th) (12)

where | <. (x: th
11mn’)

= O
t->0 tn

now

=

s T 60 | 1T (D™D (x5 thenl- BT)| 420
(-1)275(R) o<, (x; h(k = B)T)

s

a
1
’C‘n k::O

But ( ( n}
e (x3 hlk = 5} T s
i

nmo —_’_Z,‘Ln_ .f(-l)n'k(i) X (x; h(x - -’f-zl)"'C) z O,
c k=C

hence taking the n-th Riemann differential of (12) at x we obtain

b e th 0t evesOr B H (0)  2im Ae X Lth)
lim -;1 Aj(x* ) a0 - oF +O+ﬁ£ H( }.,-'Z:‘LFO T
7T—>0 C G = <@

= Hy(h).
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Hence the n=th wesk=Riemann differential of f at x = n~th weak PEano
differential of f at x,.
Lemma, T®f(x; h) is homogeneous in h of n=-th degree

Proof':

T'f(x; Ah) & lin 22[f(x+t A h) - Z ; V(s 6 ) h)]
t>0 § k=0

n at n-l ‘
5 tifo Wﬁ'(x+t> h) - ka(x t)h):(

-]
= >\%m0’f' [f(x +’Ch)-:O ka(x fh)j

& " £(x; h).

Theorem 8, If the n-th weak Taylor differential exists and

is finite then the n-th weak Peano differential exists.<.e¢(W.T, —> W,P.)

Proof':

Definition (14a) can actually be written as

f(x + h) = £(x) + V£(x; h) + '”+(n_-17_ v le(x; n) + -T—{-(—’—{i-p-)- + % (x;h)

where X (x; th)

lim LF__ = 0,

t >0 t
Applying the above lemma it follows that the n=th weak Peano differential
at x exists and is equal to the n-th Taylor differential at x,

ITheorem 9, If the n=th Gateaux variation exists at a point x

then the n-th weak Taylor differential exists and the two are equal.
Proof:

See Chapter III, Theorem 1,

We shall show by counter examples that in general

(F.R.) —= (W.P.) == (W.T.) —~=>(G=V)
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1, Let fl@) &=x |x|
where X € R

then the second Riemann differentisl exists at x = O.

R210; n]alin ACLBCE TE R TRl o

-0 @
The first order ordinary differential of f at x = O exist
and is equal to zero hence the first order Pesno differential exists
and is equal to zero, However the second order Peano differential

does not exist at x = O because otherwise;

. 2
t |t = ay(0)t+ ay(0) &5 +o(¢?)

42
but a;(0) t = 0, hence t |%| = ay(0) 31
which implies that a,(0) depends on t
a,(0) = 2 for t > 0O

ar(0) = =2 for t< 0

hence the second order FPeano differential at x = O does not exist

iieﬂ WtR- # W. P-

2. Let

£(x) -

Then the third order Peano differential at x =« O exists and

is equal to zero. Because we can have

“h=2 , 2 3
o R sin e ° = 0+ Oht 2= +082 | o(n

213 34 3)

hence aB(O) =0,
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However the third order Taylor differential does not exist
at x z O because the second order ordinary differential does not
exist at x = O,

.- WP =4 WT

3. Let
f(x) =
Phen it is easy to show that £'(0) = 0, Define Mz(h} by

£(h) = £(0) + £1(0)h + My(h)h? , h £ 0

i'EI, 2
f(h) = 0 + O,k + Mo(h)h

Then
1im ﬁz(h) =1lim h sin= =90

h—-0 h—0

=l Lo

exists; hence the second order Tayior differential x = 0 exists and
is equal to O,

But f£"(x) does not-exist at O,

Hencé wl TI -7‘—/——\77 Gf V .!

Sufficisnt conditions under which

W.R. '-:_77 G.-TJ-* W&Pt ——_‘/\> W.T', W...T. -____"; G.*—V.

are given in Theorem 10, 11, below and Theorem 1 Chapter ILI, respecti-
vely, F

Theorem 10, If f: I .Y has a uniform n-th Riemann
differential at t, c I and is uniformly continuous in a neighbor-
hood of t_, then the ordinary mn~th G-variation exists at s ;hd the

two differentials are equal,
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Proof:
Let e be an arbitrary but fixed element in ijdefine the
composite mapping

g(t) =z ef(t)

then n nele,n =
RY(ty) w i —Lg oy (1) I, + (k- B T)
1 - Nek N n
2 e lim —%— («1) ;) £(t = (k « 3} T)

>0 {38 kat

because e 1is linear and continuous
n n
R™ g(t,) = e R” £(t)).

The n-th ordinary differential of f at t 1is equal to

a(f(n)(to)) as well but by ( [8] p. 216).
I® ) 0 0™ e)
o2 (1)) = o(£™ (1))
applying Hahn Banach theorem we can find an e < Y 02

He™ @) o ™G] 4.

Theorem 11, If f: X_>Y has an n=th order weak Peano
differential at x and if the n=th Gevariations of f at x
exists then the n-th order weak Taylor differential at x exists.
Proof:

This follows from ° Propogition 1,

5. Direct and Difference Differentials

The Rismann differential is one form of a difference differential.
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Another form is the direet differential defined below.
Let f be a mapping from A an open subset of X into Y,
Let

Afﬁ f(x;h,h’) :f(x;f_{ehj—h') « f(x+h')=f(x+h) +Ff{x),

Definition 16, We shall say that f 1is directly second

order differentiable in Gateaux sense at x if

1g AL flxg th, 108 . . -
tytts O tt! e

exists for any h and h', Assuming this limit exists, we shall
denots it by & P! f(x; h, h'), Clearly 5 £(x; h, h') is homogeneous
in h and h', If $§f£(x; h, h') is linear and continuous in h
and h' we shall denote it by DD'f(x; h, h'}.

If 4 a continuous bilinear transformation g ¥ x X ¥
depending on f and x >

lim J.l.jz}_f(if.i h, h') = g(x; h, ht)..”: 0
h*,h 8 Ml W A"

»

then we shall say f is directly second order differentiable in Frechet's

sense at the point x and by definition @¢f(x; h, h'}) is the direct

second order differential in Frechet's sense, We shall put
g(x; hy h') = d'd f(x; h, h'),
Let <if; e > denote the value of e at f

Remark 6, T2 f: X—~ Y has a direct second order G-differential

at x then the following mean value theorem holds

2 : : o
(ABE(xsh,h')y o> & L5'S £(x+0+0%hsh,ht)y €5,0¢8,0's1 e Y

using the Hahn-Banach theorem we can actually write
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| &5 2(xs b, B || < IS5 2(x+0h+ 8'htsh,0) ]|

1P 555 f(x; h, h') is linear and continuous in h and h?

we can moreover write
\]A;.ﬂ £(x; h,h')” < In|lll ntll | Drof(x+ 9h+9'h‘;...)“

Theorem 12, If S S £(x; h,ht) axists in a neighborhood of
a point x, and is continuous in x at x, and continuous in h
and h' at @, then S'S f(x, h, h') is bilinear and continuous
in h and k', f
Proof: _
Since §'S f(xo; h, h') is continuous at h = @, h! \= @ im> 0,
m' > 0 and M > || h][.:_; m and || ht Hé m! imply H Ss f(x; b, h')”::i; M.

But since S’S f(xo; h, h') is homogeneous in h and h',

Ml o n h‘>”s___ (all | el

| Sselx, b at) || = ) T 1TE'1T' IR ]

f _
Therefore  $SSf(xy; h,h') is a bounded operator,

We shall prove that s'S f(xo; h, h'} is additive in each of
h and h', We carry the proof for h', We shall put s'S f(xo;h,h’)‘

s 55 (h, ht).7hen
o

/ A A f(xy; th, t! h‘)
) o 3

/ / - K
558y, (hyy BY) 2 AL £(xy5 thy, t'h')
o t¢! %

5’5 £ (y + hp; hY) (88 2(x5, thy + thy, t'h') e
£t

where lim (480 forisl, 2, 3.
t,t'> 0
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Co S a0 - S5y () - 8T8 g (hpan) S5 +

0 H f(xo + thy + thy +t! h'}-f(xo-k thy + thz) -f(xo + thz‘f“t‘h)

+ £(xg+ thy)=£(xyr thy + t1hY) + £xg -+ thy)+ £(x,+ $'h1)=£(x )

We shall show that the last term . 0 as t!, t_—> O,

*f_
Let e be an arbitrary but fixed element in Y then making

use of the mean value theorem.

to7 (£ (xg+ thy + thy +£'R1) =£(x, + thy + thy)=f(x,+ thy +4'h') +
£(xy + thy) =f(x + thy + t'h*) + £(x, +thy) + £x, + t*ht) -f(x,), e >
. £(x,+ thy+ @,h™+ 6,h", hl?i) =5 flx, - @1hy + @oht shqh?) ,e>

where 0% ©;, 85,% t and 0 ¢, ¢, & t'.

Applying the Hahn-Banach theorem we can find an e =

£(x5 + thy) =f(xg+ thy +t'h') 4 £(x, + thy)+ £(x,+ t'h')-f(xo)j

1.3 -
e k] £t 4y g 1RO, -ty )ty Sy 200

£(xo+ thp)=f(x5+ thy+ t'h*) + £(x + th;) . £x, + t'h')-f(io} J'
< 3 £(xo +thy +O1hy+ 050" By,h') = £(x + goh ;th' By,

as t —0 because 55 iz 1_:;:‘) is continuous in x,
Similarly we can prove that 5’5 f(x; h ,h') is addetive in ht,

Propogition 4, Under the conditions of Theorem 125 d’df(x sh,ht?)

exists,



T

Proof':

Let f3: X—> Y
f(x,+ h+h'} « £(x + h}=f(x+ h')+ £(x,} = D'Df(x,;h,h'} +R(x_,h,h')

we shall show that ”%W .0 as h, h' - o,

*
Let e be an arbitrary element of Y

then, ,
< R(x,; hyh') &> =< f(x + h+h') =£(x,+ h)-f(x,+ B') , £(x,), e>

- < D'D f(x_; h,h'), e >
= (D'D £(x,+6h+6'h'; h,h'), e> =D'Df(x,; H,yh'),0>

0< 8,08'< 1

I a] ) at)

2 [[ R(x_; hat) | | D'Df(x,+ ©h+8'h', ...)-D'Df(xy, «so)

But since D'Df is continuwous at x

| R(x_; h, ht)|

= llhjl [wt =

as h, ht . @,

The following simple example shows that the direct second
order Gateaux differential does not imply the existence of the
first order variation of the function: let f:R —— R be defined
by f£(x) = |x| then one can easily check that 5 5 f£(0; h, h') = O

where as £'(0) does not exist,



CHAPTER II

MEAN VALUE THEOREM AND VARIANTS OF TAYLOR!S THEOREM

IN GENERAL ANALYSIS

We shall discuss first various forms of the mean value
theorem which is "probably the most useful theorem in analysis"
It should not be astonishing that the mean value theorem will
appear in the form of an imequality rather than an equality as in the
case of ordinary fuﬁctions, where we have f(b) - f(a) = (b = a)f!(e)
where ¢ €|a, b] C R. The reason for this is that division is not
allowed once we are dealing with vectors. At any rate that is not
a disadvantage on the contrary, "... the real nature of the mean
value theorem is exhibited by writing it as an inequality and not
as an equality ..." for the equality "... completely concels the fact
that nothing is known on the number ¢ except that it lies between a
and b, anfl for most purposes, all one needs to know is that £'(c) is
a number which lies between the g, 1, b, and 1., u. b, of f! in the
interval a, b (and not the fact that it actually is a value of f!)
[jj, Pe 142] » We then apply the mean value theorem to prove a
generalization of the difference quotient differential. In the
second part of this chapter we consider Taylor!s expansion for
operators and show how one can prove it without recourse to the

expansion for ordinary funections,

- 22 =



- 23 -

l, Mean Value Theorem and Difference Quotients
Theorem 1, [13] Let A be a convex subset of X. If the
operator f: A—Y has a Gateaux differential Vf(x; h) at each point
of A, then for every x, x + h in A we have “ f(x—p h) - f(x)l[éMVf(x #{h;hﬂl
where 0 < T < 1,
Proof:
Let s I —~ A be defined by @J(t) = x + th and e be an
arbitrary element in Y. Then e(f(@(t)) » H(t) is a function whose
domain and range are the re al numbers and

H'(t) g 1in H{t -2 ':l = H(8) . o(velx + th, B)).
-0

But H(1) = H(O) = H'(T) for some ¢ , 0 < T<1, by the mean value

theorem for ordinary functions, Hence,
e(f(x + h)) = e(f(x) = eVf(x +h; h).
By the Hahn-Banach theorem an e &€ Y#ean be found >
Jot(x+ ) = ot(0) | =l 2(x+ 1) = 20 [ <l ve(x T )]

Note: Stating the same theorem replacing Vf by Df we

can write above result in the following form
| £(x+ b) = £(0 ] < |pe(x+ T 0yl ],

which looks closer to the mean value theorem for ordinary functions.
In the sequel, we shall use the following notations inter=-
changably; df(x; h) , f£'(x; h), £t (h). The choice of a particular

notations depends on what we think fits best the situation at hand.
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Dieudonne proves the same theorem without preassuming the
knowledge of the mean value theorem for ordimary functioms his proof
depends on the following theorem,

Theorem 2, | 3] Let J = [ % ] be a compact interval in R,
f a continuous mapping of J into X, ¢ a continuous mapping of
J into R, We suppose that there is a denumerable subset
D ’3{,%? € J=D, f and ¢ have both a derivative at ¥ with
respect to J and that

s dss o) lPe gt 1)
Then
| 2(p) - £(=0)|l < #E) - §(<).

Corollary, If there is a denumerable subset D of J EB,'%Z

¢ € J=-D, f has at £ a derivative with respect to

o[£, £ M then

I f(/ﬁ) - 2(x )] « M( B =),

Note: Dieudonne considers only F-differentials but since
f: J—> X then the F-differentials, G-differentials coincide in
this cass, |

Theorem 3. [3] Let f: A—> Y be a continuous mapping of A
a neighborhood of the segment S joining two points X, and Xo+ h
of A, If f 1is differentiable at every point of &, then

[£x,+ B) - £(x ) < Infsup | £0(x vk 450
0ol
Proof:
Let s I > A be defined by @(t) = x, + th and let
g(t) = £(g(t)) then giR—> R. Differentiating this composite



S

mapping g;(- ) = fé(t)(g%( -) )} see, [3, P. 145]

g;(- ) = f; +~th(h( S
O
Hence | ] \ 1 H é_\ l " " H
“ gt(' )1 < ﬁpt$ - fx0+ th(h( 3 ) < h\ gtg:)t& : fxo-}-'th( : )

By corollary to Theorem 2 it follows that

g(1) - 80)| =] 2(xge B) = 2Cx )l < (1-0) [lnll sup I £t ().

6< tz1 ot B
The mean value theorem could be expressed in integral form
as well, To do this we shall define and briefly discus the notion

or integration for abstract functions.

Definition 1, A continuous mapping g: I —-Y is a primitive

of £ in I 1if there exists a denumerable set D C I za,%%?wal - D,

g 1is differentiable at £ and g'(%¥) = £(s ).

It follows immediately that if gy, 8o are two primitives of
f in I, then gy = g, is a constent in I,

Theorem 4. [ 3. Any continuous mapping of I into R has a
-primitive in I, and this primitive has at every ¥ € I a derivative
with respect to I equality f£(% ).

Definition 2, If g 1is any primitive of a continuous functions,

the difference g(}g) = g(x ) for any x B € I is independent of the

P
particular primitive g which is considered; it is writtenkf‘f(g Yas

(=23

end called the integral of f between'mfandjﬂ-

Any formal rule of derivation can be translated into this
notation and yields a corresponding formula of "integral éaléulus",
for details sse [3, p, 1560 ,166_] :

In particular the mesn value theorem has the following translation.
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Theorem 5. [ 3]/.For any continuous function f in a compact
interval [}g ﬁ:]
ff(';“)dsll 4f|ff(‘§)”c"f<(,6 <y wis hece)l .

gel
Proof
Lot F'(f.) = (§) and §(5) afmup £(5) then g"(5) :sugf[f(f )
ge 5€
Hence |

”F'(?)H=“f(*§)J lon (e "gsullj[f(g) %fC T

| 7(p) - 7)) < [ 9tp) - g0

Therefore

” j@(f)d? S (/3 X} sup]f(‘}’)”

We shall apply the mean value theorem now to prove a
generalization of a difference quotient differential,
let £ be an n times F-differentiable mapping of A

into Y, Let x ¢ A, hEX(l‘?.’L“n) be > x,+ L = € A

i=1
for 0< §, <1, 1<1ign We define by induction on k(1 < k < n)

] hi
;ﬁ f(x s h ) - f(x:_F hlj - f(x )

k k=1
A f(xo; hl, ecs g hk) s A gk(xo; hl’li" hk-l)

with _
gk(x) = fx+ hk) - £(x)

using the above terminology we state.

Theorem 6 l.“Jng(xb;hl,...,hnfﬂléﬂlhlﬂ |Jh Isup || &" f(z)ﬂ
EP
where n =
ZSHIERESIDER RS 1}

and
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2: “ Anf(xoi hl, ooy hn) - dnf(xo; hl, seey hn} ”

< byl e Ingll sup | aPe(z) = aP(x )
%z € P
n
Proof:
l. By induction, If n = 1 it immediately follows from the mean

value theorem that

| £ 20xo5 B | 2l £0xg+ b)) = £(x))] < 1fnyl :upP“ ate(z; )l
&

P]_:{z[z=x0+3"1hl;05; gls.l}

assume statement true for n =z k i.e. for every function gt A Y

which is k~times Fedifferentisble one has

“ A,kg(xg; hl’ se ey hk) ” = ” h]_“ “ hZH R ” hk” sup “ dkg(z,...) ” e

= P
8c e
Let
g{x) = f(x + hy ) = £(x)
where hk+-1 in X satisfies the condition
el
x0+i)_‘i 5 3h. € A LI =5 <« k £

The function g(x) = f(x+ hk—kl) - £f(x) has a k=th differential at every
point of A,

k k k.o

d g(xoi hl’ AR R | hk)' d f(xo“f'—' hk+ I;hl,'i-,hk)'d f(xﬂ;hl"'.’hk)’

and
k k+1
/_'_\}g (XO; hl'."hl} - A f(XO; hl"tu,hk’ hk-!—l)

But |

11 k k

| d g(z;hl,...,hk)” =|ld f(z4'hk+.l;hl""’hk)‘dkf(z;hl""’hk)” ;

za;Pk_Fl




..ulfhkﬂ sup JJ akg(z;...)“ é{{hlﬂ ...Ifhk4,1\Lsup I dk+lf(z,...ﬂ[.

h |l
[ 2y a€ P o

The proof is again by induction,

e For n 2 1, we have to prove

| fla, s it £(x) = df(x; b)) || < | h, || sup las(a; )-af(x_, ) |

z € %o 91
Let | “M(2) = £(z) - f;lb(z) then A/u(z;hl) s pf(z; hy) - fj';o(h})

since f; (z) is linear in 2z angd
o

/44j(z; hl) = (3 hy) - f;b(hl)

the result then follows by applying the mean value theorem,
Assume the relation true for h = k-1

kel _ k-1
s s By oo & 33 0 hysassshe o]

_{_‘” hl” eoe ” hk-l” Eﬁp ” d f(Z,.u-)"ﬁk-lf( O,unt)(}

;eﬁk_l
Define
M (2) 2 A"lf_'f(z;hl,...,hk“l)-fﬁo(hl cee by _q,32)],
b Az ) = A¥e(z; b, ... b1 By = £, () .. by,

AMzsh ) = a f “te(z; hl,... hy_1);5 hy)- f (b5... hkj’

g(x) = Df(x; h),

and

then

' k=1
é{’(z;hk) = /—/_S E(Z; hl, so ey hk_.l) -

1
(hl,' [ hk"‘"l) .
(&

Using the first part of the theorem, we can write

?Mz;hk}f} = | ﬁff(z;hl oo hy) - kao(hl hk)/f:éﬂhkll g U/“}(z; )
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= H h ” sup ” =t (Z;hl soe hk_l)*gx;]'(hl coe hk-l) ﬁ
< Wiyl Mngllees [y ol sup | d*lg(z; ...)-ake1g(x,,...) |
T
=) byl eee i)l sup | etz ..0) - e, .00 ]
ZQPk—kl

Remarks 1. a. If n = 1, then statement (2) would read

n £(x,+ b)) - £(x;) - df (x53hy) J!E“ hyll sup I af(z3. ..} -df(x, 00 )
Z€ Xo By

which is another form of the mean value theorem for operators.

b. Statement (2) could be written as

Ip 22(xg5hy o oo by)-a"e(x 03By «-. By)l
B

\-.
o

” == g "2(z; ) - d"rlx
1” 2 [ % P

Hence if dnf(x; ) is continuous in x one obtains

n = - = e
” é f_(.xo,hl see hn) d f( hl 'r E__)_} -0  ag hi——,:--g
” hl” e se ” h J

In this case d"f(x_; hy ... hn) is the n-th direct differential

in Frechet sense [ 11].

2. Taylor's Expensions for Frechet Differentiable Operators of Crder n

We shall show mow that one can actually obtain Taylor's
expansion without the assumption that such an expansion'is known
for ordinary functions,

Lemmg 1, Let f, g be two n-times continuously differentiable
mappings of I into X, Y respectively and let [.] s X x Y. -2
be a continuous bilinear mapping., Let h(% }=[f( £, g(?)j‘f;/f & X,

Then
dME;D=ﬁT@)@Wn]+Dg (1).g( £)].
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Proo_ 3
We first note that the mapping g'gl;fiI, Y} could be identified
with the vector gé(l) of Y Theorem 1, so above equation is meaningful.
Define the composite mapping h by

e ¢
he I . (2(e), g(x)) Je(s).e(e )]

Hence
dh(% ; 1) = ¢ (e'(1))
e(g)

dh(g 3 1) = @ (£1(1), g'(1})
: e Lyl

=[£(2).g (1] « [£1(D).e(5 )] .

Lemma 2, Let f, g be two n=times continuously differentiable

mapping of I into X, Y respectively and let Lot X Y 7 be

a continuous bilinear mapping. Define

n=1
hy () =]2(s). &g (1)
'hz( <P =[df§(1}. dn"‘?gg(lﬂ
h (<) = (---1)]“"1[6“"1:'g (1).g(z ) |
Then

[£(5).als(D)] - (-0 [, (1).4(5)]

= ahy(£31) - aby(550) ... (D™ an (g5 1).

Follows easily by straighf-application of Lemma 2,

Theorem 7, Let I be an open interval in R, f a function

by B
of j5:}((1) then for any pair of points x g€ I
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2
£(£) = F(u)+(5-x)V(x 31) 4 (s =l Gt s o) ST

21
= : n-1
(5 =xX)B™"  pal ; o) Jlnsl)y 3
%
Proof':
' (5=-r)01
Let f: I X and g: IR, defined by g(*) = =
e e

smd let [.7 ¢ I x X =X, be defined by [ .7 (A,x} 2 5 x. To

gel desired result, apply Lemma 2 and integrate between X and Se
Theorem 8, Let f be an n-times continuously differentiable

mapping of A into Y., Then if the segment joining x and x + h

is in A, we have

f(x-’r"h) - f(X)—f"f'(x;h)'f‘%—- f“(x; h’ h)+ ese —f‘z_—” 1- 1) ¢ f(n“l)(x; B h)‘f"
|
il
f 1 “ja)nm. f(n)(X-;-f By by oo h)df.

n-1)1
| thg: |
g 1-1
J.(il_-_jp_:Llf(“)(x+f hsh ,.. h)df =( %;lf%;i- £'(x + ¥ h)d| ., "
ne-11)I1: = :

Define @ I — A by ¢(F) = £(x, ¢ h). The result follows
by applying Theorem 7, to this function g .
Iheorem 9, With the same given as in Theorem 8 , we can

obtain the following result : Jf& OJr>0 31/hﬂ:§: rs re R

With the result of Theorem 8, all that we need to pr&ﬁe

is that |
I

L (a =1} x47
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From the continuity of fin)( Jiax < v 0O
}1 e®) (3. fié)( J < nte for 0< ¢ 1 and ||h|< r.

since 11 f(n)( ) 1is independent of 1

X
|
1 n 1k n
JE-E fx( )ar =01 fx( =
b

Meking use of Theorem 5 we can write,

| l
” jﬂ L% -;ilnﬂl f(n) = - f(n)( )dlﬁ < sup

= e
H*l)l X+ h Bt X

)(1 -:flf-l ¢(n)
(= 1}! X +rh

nt x+7 h

- L fi“)( )

(5; i sup”(l -f’)nﬂl n f(n) ( )-fi?)( )’I£=5-
- |

Proposition 1, Theorem 8 and 9 could be obtained by employing
a method similar to the one used in (Chapter I, Theorem é) we illustrate

for Theorem 8. Let

#g(2) s 2lx.=h), scl0, 1]

and let e ¢ Y, The mapping H, H(<) = e #(=) = ef(x+s h) is
continuous om [ O, 1] and has derivatives up to the n~th order;

moreover H(k}(E) =8 [ff:?g h(h)j .for 0SS k< n,

Applying Taylor's expansion with integral remainder for the
ordinary function H, and noting that e commutes with the integral

sign we can apply the Hahn_Banach theorem and get the result namely

|

w

i
fleem) D+ T b (h)+;-10/ (-r)g (WAl , 0<F<L

Bo far we have been imposing gloval conditions on the n-th = .
differential, However we can obtain'a variant which require the existence of the

n=th order differential at a point,



-33-

Theorem 10, Let f be an operator form X into Y, If

D"f (x,; h) exists then the following expansion holds.

£(x + ) = £(x)) + Df (xo5 B) + 23 D3 (x5 h)vees+ 25 DO (Xo3 h)+ Ry (xy5h)

2 nt
where lim fn (Xos th) = O,

t—>0 £

[ =%

Proof':
Define H(t) = ef(x,+ th), where e is an artistrary element

¥
in Y. Thean H is an ordinary function whose n-th derivative at O

exists, Hence we can write

BO + ) = BO)+ B0 weurds 8 (01 <005 0

& A0 %)
where lim R -
t.-0 £

Replacing H{t) by'ef(xo4ﬂ th) we obtain,

:0-

ef (x,+ th) =z ef(xy) + eDf(xy; th)+ oo Leb'r(x,; th) + % (0;1t)

n!
Hence ‘ - (1)
O(\H(O; t) = e{ f(xo-_k 'l:h_) - )1:_;0 T];-i £ (xo; I:L)J2 - eRn(xO; h).

Applying the Hghn-Banach theorem we obtain
n
f(x,+th) s £(x)+ Df (x5 th)rees + %’1—3 Df (xo; th) + R, (x,; th)

where lim EEJLEQE_EEZ = O
t>0 "

Theorem 11, ILet f be an abstract function whose n=th
Frechet differentisl at X ¢ I exists, Then the following

expansion holds:

2 f(Z)(D<

£(5) = £+ (s =x )@ + 25 (5 =2) )+ venr ke (5 2) R )iny 6)
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where lim _n_(_*g) = O,
g ol (= ax)®

Proof:
For n = 1, this is simply the definition of the first order

Frechet differential at < , Assunia that the theorem is valid for

every function whose k=th differential at o exists, i.e. f(k) (< )
exists then tie LEECE ) =
Foot (gax)E :
where R, (<) z £(s) = £(x) = (5 =x) t((x) - ... - E;—f—:-l- f(k)( ) .

Hence J;?Z£>/ 0] al >

IR (<) |
(5= 00k

Rk(i)”<6 (%-K)k whenever Jg*o(]dxﬁ ;

< & vwhenever |Sa=«[<J ,

i.e. \

et £ be kel times diffeventiablo st s , then £, 05, .. f

exist and are continuous in a neighborhood of« , Let

k k+1
R, (x) 2 £(x)=f@)m{x=u )£ (&)= oou = (_xl'é-il- £ (). %ﬁ%.;_ = )

kel
TR AR RS 0 e f(k)(x)- (x =" & "N
k -1 (k=1) ! k!

But £'(x) is k times differentiable at < , hence | R}‘: l(x)“g £ ‘:(x-‘x)k,

-+

by induction hypothesis, Applying Theorem 2 we obtain

k+1
) .

| (g) = () < Lome
]( Rk+l 5 kafl “ S (k+1)

k+1
¥ i(’ flg) = £(«) = (5 -«) £1(x) - n A5 'D()k*lfkfl(ﬁ)“é (E;D{)l S
3+



-35-

Theorem 11, Let f be an operator form X imto X, If the
n=th order F=differential at X exists, then the following expansion

holds,

f(xoi- h) = f(x0)4-f'(xb; h)+ --:-f%? f(n}(xo; h) + R,(x,; B)

where lim __H__._Rn;__ﬁ____( ;h)H = O
h-8  (py "

Proof':

For n = 1, this is simply the definition of the first order
F-differential of f at x,., Assume that the theorem is valid for
nes Then if £27 1 (x ; b) exists £5(x ; B), £57 (x5 h),eee, £(x,)

exist and are continuous in a neighborhood of x,. Let

Ry, 1(x5 sh)ef(x, + 5 h)=f(x,)-£" (x5 Sh)= vuu = —tm f(s+1)(xo; s h),

(s+1) ¢
P s o ]
Suppressing the x  and differentiating again
1 s t1
t # - o : - ' * £ -
Rs+1(3h, h) = df(x, + < h; h) - df (5 h; h) TueTe af™ " (s h;h).

but df (x,+ £h; . ) is s times differentiable at x, hence

IRy Cshs-) ] <lnlle
Applying Theorem 3, we obtain
- 1
| Rs+1(h)-Rs+ l(O)H < ”hn sup I R! ({_‘;)hl )” s & th\s : .

0¢s;<1 8+1

But Rs_fl(O) = 0, hence the result.



CHAPTER III

CONVERSES OF TAYLOR'S THEOREM

In this chapter we consider the converse problem to the
Taylor's expansion for operators. For ordinary functions we
know that if f(n)(a} exists and if the'function Mn is defined in

a suitable deleted neighborhood N(0) by
n=1
fila 6} ta) + Edhe +f7__(§l ho=L, b, (h) B° (1)
n=1) !

then

(n)
lim M (h) a £ (a)
h 0 n.
The converse problem |11 is to find conditions on Mn(h)
so that f(n)(a) would exist in case f has an expansion of the

form (1), The example

y - sin 1 x £0

b
£(x) = (2)
. 0 x 2 0
shows that the conditions lim M, exists; M}, MEs oo ME_l exists
h—-0

are not sufficient for the existence of the n-th differential of ¢
at a,

It is of some interest to note that Graves[ 4 ] mentions that
W, H, Young in a paper published in the proceedings of the London
Mathematical Society Vol. 7 (1909) p. 158 states that if a function
has an expansion similar to (1) with the condition that 1im My (h)
exists and is finite then the n=th derivative of f at h;?oexists

Graves gave (2) as a counter example to Young's statempent. For a

- 36 =
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discussion of the problem for ordinary functions consider [1] . We
shall carry a similar proof with a slight modification in the form,
At the end of thiés discussion we shall prove that both forms L]
and the form that we shail use are equivalent,

Theorem 1, Let f be an operator from A(an open subset of X)'
into Y where X, Y are Banach spaces and h he any fixed element
_‘in X, Choose (- T ;C)c R > ’Eiﬁé (7 . X, + th e A, Define
d(t) = f(xoﬂk th), t e («T ,T). If ¢ 4is continuous at t = O
(i,es f continuous along the ray h), then an(xb; h) exists
ige 3 &, Hi(xb; h), s.e, H(x,; h) where H; is a homogéneous
form of i-th degree in h, i = 0, 1, ..., n and a function 0<n(xb; h)

where X (x,; th) = fﬂgt) is defined in a deleted neighborhocod of t =0 by -
£z, + th) = Hy + Hylx; th)¢ ove B (x5 tB)c f3n(t)

and where ﬁgn(t) satisfies the following conditions

I, /égqu(t)hexists in some deleted neighborhood of t o o;ﬁica)
i ai =
11, /i—éﬁ- = 6(t) ng t ¢ N(0)

(3)
111, ﬁ : (t) o(t) ’VL £ c U} jal viey mwl,

B - j
Moreover in this case H_, Hy, s..; Hp, ﬁ%n(xb; h) are

uniquely determined and

k
v -
H (h) = f(iq’hh) Bl . n B

We prove both parts by induction, proving first the sufficiency

of the conditions, If n = 1 we thus agssume that f is continuous at
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x, (along the ray h), and that 3 H and Hy and a function X (xb;h)

where & (xo, th) = /81(t) is defined in a deleted neighborhood of

t =0 by
£(xo+ th) = Hy + tHy(x_; b) + 5, (%),
Now lim /(1) = P1(t) - t = 0. Hence letting t—>0 it
t>0 t+0 o

follows that f(x )} = Hy.

Hence = t
lim f(xb-rth) .f(xb) - Hl(xb; h)_p 1im /31( ) - Hl(xb; h).

>0 t : t_,0

But Hl(zb; h) = Vf (x,3 h) by definition,
Agsume conditions sufficient for n = k, we shall prove that

they are sufficient fon = k +1 1i.e., we assume that 7,

Ho, By(x5 b) ooy B (x5 b), ¢<k%_l(xb; h)

with

f(xo+ h) = H +—£;i Hy (x 3 h) + E:_l(xc; h) (3)

whers 9<k+_1(xb; th) = f§L+_l(t) satisfies, I, II, III,

We shall prove that f(k'rl)(xb) exists,

f(x, + th) = +£;1 v E (x5 0) s B L (8) (4)

Since the first k G=varistions of /Sk l(t) exist we can
+ :

differentiate (L).

f(x0+ th) = Hl(h)+ ses T (k"l“l)tk Hk—’r l(xo; h) +g.£ (% k+ 1(t)- (5)

ﬂalﬁh
o

We shall prove that the induction hypothesis apply to (5). EE f(x th)

is continuous at t = O because 1im 9- f(x-f th) = Hl(h) from (5)
t >0 4%
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. and from (3) H = f(xb}'

Hence

H(b) = lim £f(xo +th) - f(Xb} [

f(x + th) = Vf(x_:h)
“l'.——:*O t dt } =0 0,

We shall show that Bjk(t) = %%’f?k+ ,(t) satisfies I, II, III,

A | k=1, .
Since /9k+_l(t) was assumed to have a k-th G-variation Bfk (t) exists,

The 1im - ¥, (t) = 1im i &L £ (t') = 0 by IIT hence II
t->0 -‘EE K t >0 ;‘E as - k1 e
. dl 1 gt
[ ] 1 R i =
holds for U k Finally the tjém e Y K t dt-j* /5 s 1

:O for j=l’.2, soe 9 k‘l’l

Hence induction hypothesis apply to EE f(x,+ th). Hence

dt f(xb-rth) has a k-th G=variation at t = C which means that

vEHL £(x,; h) exists.
it Vf(xb; h) exists then f is continuous at x_ along the
h-ray. If we define Hy = f(x,), H, (x5 h) = Vf(x s h) and
vﬂ(xb; h} by f(x + h) = f(x Y & Vf(X' h) + x(x,; h) then
/6 (t) =X (x,; th) is defined in a deleted neighborhood of t = C,
and lim.léi—l = O from the definite of Vf(x,; h), Hence the conditions

t-0
are necessary for n = 1. Assume that the conditions are necessary for

ek, 1If Vk4_l £ (xg3 h) exists then vk f(xb; h) , Vk*lf (Xg3h),
iseiy f(xb) are defined and continuous in a neighborhood of x, along
the h ray.

Hence aik (x_; h) is well defined by,

1

f(xoﬁ~h) = f(xb)—f Vf(xb; Bt sest %1 ka(xo; h) + T - Vkizlf(xb;h)

e

v ok (x5 B, (6)
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Recall that ka( X3 hu) is homogeneous of k-th degree in h,

II follows easily., III had been already treated see chapter II

Theorem 10,

We shall prove III, Differentiating (6) we obtain

%; f(x,+ th) = Vf(xb; h)+-...4-£i Vk*’uf(xb; h) + %E Xy 1(x53 th).

But the k=th variation of g% f(x0+-th) exists in a neighborhood of

t = 0. Hence *ﬁkﬁt) = g% D<k-+l(xb; th) satisfies conditions

I, II, III in particular,

j i
1 d S
1im — Y (t) =2 0 for t € N(O)
t-0 t59  atd g

: .1
T T ;f‘j'l“i"“‘ e 1(%3 ) = 0,

Theorem 2, Let f be an operator from A into Y, Ghooaa_
(T, T)C RO te(-T,C), x +thc Awhere h ¢ X, If f(xy+ th)
is continuous at t = O %A hec X, then f has an n-th order G-differential
Iat X, € A, ifr o Hyy Hyy eeey Hﬁ where H; is a multilinear cbntinupus
operator of i=th degree, i « 0, 1, 2, ..., n and a function °<n(xb; h)
where Dén(h) (suppressing xb} is dgfined inﬂa deleted neighborhood

of Gx by
2z, b « B v Bi(x,; B} .., A (2,5 B} + X o (h)

and where X ,(h) setisfies the following conditions as well.
T X 2(B3 o.0) exists J[;/ h ¢ S(8) a deleted neighborhood
of (o). |

Ix, 14 12X nlxg3 th)”:.:o,,’ﬁl heX
t- 0 tn
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| ; .
it 14n _fﬂ._.fi_ X p(ths .. | o
t—->0 P

for jael, eesyn=1 and ¥ heX,
Ther H; and &, are uniquely determined.

le(x s
Hi = Ej—%-::l fOI‘ i o= O’ 1, e 2@ n

1

Bimilar to theorem (1).

Theorem 3, Let f be s mapping from A into Y, X, € A, If

f 1is continuous at x,, them f has an n-th order F-differential at

Xo € A 1ff the following representation holds %Z he X 5 X, + hec A
f(xo + h) = Hy+ Hl(xo; h)+ ...+Hn(xo; h)+ &n(xo; h)

where H, 1is constant in h; Hy is an i=-th continuous linear operator

in h and an(h} (suppressing x,) is defined in a deleted neighborhood

S(6} of h = 8 by (7) and satisfies the following conditions,

X, qvi % (b5 ...) exists ¥ he B(e)

1. 1in! %a{%os B z

h— 6 Hh{ln

j [ ]
Ter, maa | LN TR e
h-© | nllBd .

in this case H,, ...pHn,“ n 8re uniquely determined and

i
Hi(') — d—-f(xg; .:—:-)- i =l, eoe Ile

if

7
R

|

The conditions are sufficient for n = 1, see[ 9] .

Assume conditions are sufficient for n = s and suppose that
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Hyy Hy(xg B)y eouy Hg 1(x53 B), X <, 1(Xo3 B) where Hy is an

i=th continuous linear operator for i = 0, 1, 2, see, 4 +1 , D

f(x,+h) = Ho+Hy(h)» oo +Hy q(B)+ X 4(h) (8)

S+

where f%s+ l(h) satisfies I, II, III we want to prove that

s +1

d £(x_, «..) exists. Since X o, 1(h) has the s - first F-differential

for he S(8) we can differentiate (8) to obtain
af(x,+ hs k) = 0 + Hy (W) + eeur dHy 5 (hs K)+ a4 (h; k) (9)

but by (Chapter I Proposition 1) we know that dH,(h; k) is linear in h;
dH3(h; k) is bilinear in h etc, Noreover df(x, + h; k) is continuous
at x,. Because iife df(xo+ h; k) = Hl(k) from (9) and Hl(k)

= df(x_; k) from (8}, Moreover let }fs(h} sdr. 1(h; k) then

& J glbs o0} 2% o (h; k, ...) exists.

1im ﬂ )/ S(h)“ = lim |l Ms+1(h; k}ﬂ
he@ [l h-© gl 8

because of III. And

vin i k|

lldj+-l&f l(h' k -atti--)”
= 11 SNEEEE Sk e e ks
h>9 IR s EZR

T (];:.lff“)"‘ -0 by III.
*- 8 15|l

Therefore df(x, + h; k) has an s = order F-differential at x . i.e,

da'%l'f(Xb; -nt) BXiEtS!
The conditions are necessary for n = 1 see [ 91 . Assﬁme that

the conditions are necessary for n = s and assume 4° i f(xb; sl

s=1

8
exists then d £(X,, «ee), d = £(X,, eee), oee df (x,, ) and £(x,)
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are defined and continuous in a neighberhood of X Hence we defihe
H = f()[} Hl - df(x ), see HS+ 1( ) = d5+lf(x°’ -#u) and

therefore X l(h) is well defined in a deleted neighborhood of h z @

S

ey
£(x + b) = £(xo) + df(x 5 B)+ oeur d® Le(x 5 B) L o0, ,(B). (10)

dE “754#1(h5 vee) Clearly exists because we assumed that f has the

s + 1 F=differential existing at x,. I follows easily.
II, is satisfied see (Theorem 12 Chapter 2).
To prove III differemtiate (10)

gs* 2

df(x,+ hy, k) w df(h; k); eeo + e

== f(hy k). doly, 1(h; k)

since the s=th F=differential exists at x,— d Ms¢>1(h k) satisfies
in particular IV

1im | dj+_1o(3_kl(h K coe )lJ « 118 I diﬂ(g 1(h; k -.-)]'_ 0.
=4 |h | 8 " b0 s :

Hence conditions are necessary for s + 1l

We shall show, that if we consider the conditions of Theorem 2
and require that they hold uniformly then they imply conditions of
Theorem (3) and conversely.,

Theorem 4. (1) f(xb+-th)—4-f(x6) as t— 0 uniformly %% h
| B]| = 1 is equivalent to f(x,+ h) - £(x,) as h—6.

(2) 1im | % n (x5 ) | = 0 uniformly ¥ h
t-© £n
|hil =1 is equivalent to lim UELEEEEE_EZQ
h> © I n)l ®

J :
(3) 1im /! d f}(n(th: n--)“ = 0

t-—} 0 .t'n"'j

uniformly 7 h, || hll s4,is equivalent to
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vim | ad (ny .. )

=

g
e
)

1. AssmnexvZ E-0 ) a0 0 >
\| £(x+th) = £(x)|l <€ for || <5(c) and every h 5| h[ = 1

Let k be any vector ¢ X 2 || k|l <S then k EHIdH?EF_ :
k

holds for ﬁ =lk||] amd h = "Wiﬂ' .

Co e el ) - 2] a | e(x - 1) - 2]

whenever llk“é}g

3w flx ¢+ k) = f(x),
" k9O

Conversely. If lim f(x + h) « £f(x) =0
h>©

(2) (teee Mgy 0 38 3)ttx+n) =2 < forllnl< s ).

Consider a subset of X whose element are of the form tk where

\t) < § and | x|l= 1 them (2) holds for all element of this

subset of X
i.e. |flx+gh) -2 < for [ thla [8l<5 .

Proof of (2) assume

lim :f_nif%_fgl = O uniformly ¥ h; | hll = 1
t->0 t :

.0, If £50, 5500, 5ic) > 18 0 L4845

then
T;%_T H‘Xn(x; th) || <;i'%zh | nll = 1.

Let k c A, ||k|<5 then



ke klla. o €14t

with

t' = llkll <§ and ” ”1]:“ “: lht] = 1

hence (3) holds for this t' and ht

Ll o (2 0 < K30 [l kiics,
i |

Conversely, Congider a subset of A whose elements are of
the form tk; |t|<S and lkll = 1 then [tk]| <S5.

| RGes )l IR Gx; tkl[4¢gfbr s o

FeR il HR

(3) could be done similarly,
Proposition, For ordinary functions Theorem 1, 2, 3 reduce to:
If £ is contimuous at a, then £{®) (a} exists (finite) iff:

1. 3 constants aj, 81, eee, 8p_1, 8y and a function X

defined in some deleted neighborhood N(0) of O by:

f(a+h) = a, + alhﬁ‘....%an_lhn'%+ anhn.+ mfn(h).

for h édﬁ(o) where

(2) 5% extsts in N(0)

n
e ane S
h>0 e
o
(4) 11m.__n£El =0for j=1,2, eso,n =1
h->0 hi"J -

Moreover in this case a_, a7, .s., 8, and (h) are

n

k
uniquely determined and ap = _fzgﬂl for k=0, 1, soe, R

We shall prove that these conditions are equivalent to:
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if f 4is continuous at a, then f(n)(a} exists (finite) iff:
1. 3 comstants ag, &1, +os, 85.] and a function M, defined

in some deleted neighborhood N(0) by

f(a+h) @ a+ 8yh+ ees + &y 0 Bl W (B)W? for h ¢ N(0)

where ; (n-1}

a3 W

exists in N(O)

3. 1im M(h) exists
h->0

4? lim  h’ Mﬁj)(h) 2 for j =1, 2, eos, 2 - 1,
h—> O

Moreover in this case, a,, 81y eeoy 8, 1 and M, are uniquely

(k
determined and a, = -E-ELE) for k = 0, 1, ¢esy n - 1, While

1im ﬁn(h) - (n)(a)
h-0 n{

Proof's
Let M(h) h° = anhn%- « n(h) then conditions 1, 3, 3 are clearly

equivalent to 1, 2, 3 we shall prove that 4’z 4

L

(i
fim WA (2} )=o or ps 12 .., A=,

h-0 h
Let w = h™" o (h),

—he j=1 (n+j=1)! -na=j+1 (1)
oid) o 1)3—-1—52*_;) hnjmn+(}(l) —imj'rhn“ Xy +

es o +h“n O<(j)
n

24
Rl h'n[(-l)j 1—";1)— X+ (?) e S%;—_JF%)-‘ h 0(1(11)+

(n -
sos hY O (iﬂ

lin &I w(j) #w0; j=1, 2, .eo n =1 implies that lim h“n[h35<(j?z 0
h-=>0 | h—->0

4# Z:f ( ) j = 1,, 2, .-.,n
lim b9 mnj (h) = 1im hJ wld) (h) = 0,
h—0 h— 0
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