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ABSTRACT

A group may fail to have a certain property, although each of
its proper subgroups has this property. Many subgroups of this nature
are studied: Finite, non-abelian groups all of whose proper subgroups
are abelian are studied by G.A, Miller [_5 ] o Infinite abelian groups
all of whose proper subgroups are finite are knwon, but the existence
of an infinite, non-abelian group with this property is still an open
question[3,p.-57] -

In tﬁis thesis we are concerned with non-~cyclic groups G
satisfying one of the following two properties: (i) every proper
subgroup of G is cyclic, (ii) every proper homomorphic image of G
is cyclic.

We show that the only abelian groups with property (i) are the
direct sum of a group of prime order with itself and p=quasicyclic
groups, We show also that the only finite, non=gbelian groups with
property (i) are the quaternion groups, the non=abelian group of

order pg, and all groups G of order pnq such that G :I:a, ﬁ]

la! - pn,| b| = q, aba"l = a¥ (k » 1) and aPbaP = b, For the
infinite, n@n-=abelian case, we prove that the existence of such a
group with property (i) yields a solution for the Burnside problem
when the center of the group is non-trivial. Then we shall give a
characterization of all infinite, non-gzbelian groups G with property
(i) when the center of G is trivial, on the assumption that such

groups exist. In Chapter III, we prove that the only abelian group
with property (ii) is isomorphic to the direct product of group of

prime order with itself, We also characterize all finite, non-abelian,

solvable groups with property (ii),
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CHAPTER I

ABELTAN GROUPS WITH CYCLIC SUBGROUPS

In this chapter we determine all abelian, noncyclic groups
G with the property that every proper subgroup of G is eyeclic.
It will be shown that these groups are either p-quasicyclic or
isomorphic to the direct product of a group of prime order with
itself.,

In this chapter we shall adapt the following standard
notation: Abelian groups will be written additively. lGl will
denote order of G and 'a' the order of the element a & G,

G PG B... QGn- will denote the du'eak sum of Gy, Gp, eeey Gy,
and @%I G; will denote the weak direct sum of the family
of groups {Gi li & IS » <The group generated by a .éet M will be
denoted by EM] » and in particular the cyelic group generated by
a Wwill be denoted by'[ﬁJ . C, will stand for a cyclic group of
order n, If S 1is a proper subset of T, we shall write SCT.
The symbol (nj,e..,ny) will denote the highest common factor of
the integers ny, eeep My . Z and R will denote the additive
groups of integers and rationals respectively,

T.1.1 Definition: A group G is said to have property P

if and only if:
(1) G 4is non-cyclic, and (ii) Every proper subgroup of

G 1is cyclic,



1.1.2 Examples of infinite abelian groups with property P:

T L MR e S e e g e e kR - < [

Let Cpi denote the additive cyclic group of order pi whers

p 1s a fixed prime and 1 is a positive integer. For every
a1 oo Cpi+l has a unique cyclic subgroup Hi of order pi.

Let fi,i-}l be an isomorphism of Cpi onto Hy;, and let
R
. i — . jand H. |
G = J:{ fi,i*l(cpl} where we identify f1,1+1(cp1)a" Hi. Let
X, Y& G, Then x, y & fk,k—]—l(cpk) for some k and we define

X®y=x¢y, vhere "4" is the operation in the group

fk,kf‘l(cpk)' Clearly G 1is an abelian group with respect to the

loperation @ . MNoreover since fi,i+1(cpi) G'.fi_} 1,i+2(cpi+1)’

it follows that G is infinits. We now show that G has property 2.
(1) 6 is non=cyclic: Suppose G is cyclic and let g be

its generator. Then gé& f5,3+1(0 s) for some s. Since g is a

subgroup of cps+l’ ’G'é p° +1. This contradicts the fact that G

is infinite. Hence G 1is non=-cyclie,
(ii) Every proper subgroup of G is cyclie: Let H be a

proper subgroup of G and let S = ZIg, [ g ‘;HJ. Since S is a

non=enpty set of positive integers, it has a least element pk. We

shall show that H has no elements of order pk. oince ﬁkE} S,

there is an element g ¢ H such that lg’ = pk. Suppogse H has an

element g7 of order pk. Then g and gy are two distinct

subgroups of G of order pk. But g and gy are contained in

fn,nivl(cpn) for some n. This contradicts the fact that a finite

cyclic group cannot have two distinct subgroups of the same order.

Hence H has no elements of order pk and therefore is contained

in the cyclic group fk-l,k (Cpk-l)' Hence H 1is cyclic,
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I.1.3 Definition: For a fixed prime p, the group generated
by{an, el 2 sos ag +1 = & a? = 1} is called a p=quasicyclic
| ETroupPe

p=-quasicyeclic groups are discussed in[G_]. An example of
p=quasicyclic group is the group ZE; which is defined as follows,

+

let R and Z Dbe, respectively, the additive groups of rationals

and integers. Let p be a fixed prime and let Zgga be the

= . -
subgroup of R/Z generated byé %n \n &1, 2, 3, ....3 , where

‘g i

n

denotes the coset 1%51— 7.

Another example of a p-quasicyclic group is the group G
constructed in example I,1,3. To see this we note that G 1is
generated by'IghL,n.; e 3, ...j , Where each g, 1s the generator

of the cyclie group f (¢ n)'
P

n,n¢ 1
We shall now show that all p=quasicyclic groups are
isomorphic,
Ie1l.5 Iheorem: All p-quasicyclic groups corresponding to
the same prime p are isomorphic,
froof: Let H and G be two p-quasicyclic groups generated,
respectively, by {hn, B =l 27 3 s ‘ hf:-;-l = hn’ hE = 13 s and
ign, 2=1, 2, 3. i en ’g§+l z Zny gi = 15. By induction we
define isomorphisms ﬁn: [hn]_g[gn], n=1 2, ..., such that
#os1(8) = g (b) for every h e [hy] (i.es each @, is an
extension of ¢/ ). Let ¢: H=IG be defined as follows: For every
he H h € hk for some k and we define @(h) = gk(h). Since

each ¢ 1is an extension of @ 15 it follows that ¢f is well-defined.,

It is not difficult to show that ¢ is an isomorphism of H onto G,
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I.l.éucorollggzz For every prime p, the group Z;’is
isomorphic to the group G of Example 1.1.3.

I.1.7 Corollary: Every p=quasicyclic group has property P,

Proof: Every p=-quasicyclic group is isomorphic to the
group G of Example I.l.3 which was shown to have property P,

I.2 Finitely generated asbelian groups with propertiy P:

In this section we determine all finitely generated groups
with property F. Itlwill be shown that these groups are isomorphic
to the direct product of a group of prime order with itself,

I.2.1 Lemma: The group G = Gnl@ Cn2$ ...@an, where
each Cni is the cyclic group of order n;, is a cyclic group if
and ohly if (ny, e.o, my) = 1,

Proof: Suppose G 1is cyclic, Let C; be a generator of
nlnz C B nk

Cni. If (n.l, n2’ se ey nk) =t d i 1, than —— d e (01’ eongy ck}
LR | - n -
= ( Elnz_é Tk B, sonsy _122_3,“_EE ck) = O, Hence the order of

(eq, Cos seey ck) is less than nyjn, ..s np. But (g, ¢y, eee, )
generates the group G and hence has order njn, ... 0. This
contradiction shows that (nj, n5, e.e, my) = 1,

Conversely, if (ny, wee, my) =1, then l.cem. of ny, Do, eeymy
is nln2 cos . Now D05 e nk(cl, Chy evey ck) = O and if
l(cl, cecy 02)' = n, then n 'n1n2 ees D). But n(cl, seey ck) -
(ney, nez, oe., ney) = 0, Hence nil n forall i =1. ... k.
It follows that Nih, eae nk:'n since NNy sees Ny = €.c.m of
(ny, eeey ny)e Hence n = NyD, eee Dy, and G is cyclic since it

is of order NN, .ss B; and has an element (cl, sooy ck} of order

n1n2 L N nki
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I.2,2 Proposition: A finite abelian group G has property

P if and only if G is isomorphic to Gp@ Cp for some group of
prime order p.

fxgggﬁ Suppose G = GPGB-CP; thag G 1s non=cyclic by
lemmas I.2.,1. Since every proﬁer subgroup of G is of order
1l or p, it is cyclic. Hence G has property P, Conversely, suppose
G has property P. Then by the fundamental theorem of finitely
generated abelian groups[l[ J, G = Gnl@ Cho @ ses @an, where
each Cni’ is cyclic of order n; and nil ny4qe If Kk ~ 3, then
Cﬂi@ an is a proper, non-cyclic subgroup of G since
(nj,np) £ 1. Also k £ 1, otherwise G would be cyclic. Therefore
k = 2, Now A, is a prinme, ofharwise it would have a prime diviseor
p such that (ny,p) = P ¥ 1, and CHIEB'CP would be a proper, none
cyclic subgroup of G. Therefore M,a prime % n; = ny, since
ny 'nz. Hence G ¢C,@ Coe

I1.2.3 Lemma: Every finitely generated abelian group G with
property P is finite.

Proof: Let G be a finitely generated abelian group with
property P, By the basis theorem for finitely generated sbelian
groups [ ], G = [c]_] D... D Lf’i:] @[Eﬂ@ - ..QEED,where
egch C; is cyelic of infinite order and each E; 1is of order

e-

3 with eil Eii-l' Two cases are to be considered:

(i) G has no non-zero element of finite order. Then
¢z [c1]@ v @ [cr]. Since G is non=cyclic, r & 1. On the
other hand, if r > 1, then f2c]_]@ [cr] would be a proper, none

cyclic subgroup of G contradicting the fact that G has
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property P. Hence case (i) cannot occur.

(i1) G has elements of finite order, If G also has
elements of infinite order, then r ?, 1, Hence [2c1]$[El] is
a proper, non-cyclic subgroup of G contradicting the fact that

G hes property FP. Hence G has no elements of infinite order
aﬂd G‘ — l-El] @ eeoe 9 [Er] L Hencﬂ G iS finite-

1.3, Infinite abelian groups with property P:

It will be shown in this gection that an infinite abelian

group has property P if and only if it is p-quasicyclic for some
prime P. The following theorem is known. It is stated without
proof in [ G] »

o
I.3+1 Theorem : The group R/, is isomorphic to the direct

 sum of p=quasicyclic groups, one for each prime p,
Proof: Let P be the set of all primes. From corollary
Tel.6; Zﬁn is p=quasicyelic for every pe& P, It will be shown
+ +
that R/Z?-:" GZ Zea. Let x € R/Z be represented by the coset
peEr P A, > oy
Z +-% , where n{ m and (n,m) = 1; m = Py Py oecee P with

the Pi‘s distinet primes, Now

[ 4

n .
— :A—% + A—é* I'l*é'k ®93 Whare (Ai, P-l) b= l;
m pll p2 = pk“" : 1

since if p; divides Ai for some 1 2 1, ..., k, then

o o «, « % o
2 k =3 k : =1 “k
E-Al p2._ LR k:_‘_ Az PJ Pz f-lrt Pk + s 80 "- Alﬁl 2o e Pk =
m ] &2 &k

: Pl p2 -3 - ] Pk

and P; divides both m and n which contradicts the fact that

..'.
(n, m) = 1. Hence Z + 2 = (Z -J% )+...+(Z+3-‘l‘), and R/Z is

D 1

1 Py
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generated by izq,lp € P]. Now suppose ] n [plZJ Zn] £ 0;

Al

Let x £ O be in the intersectmn' ther x = Z-t—ai - 7= )52‘_ ---+A

P ;;-5 k
o KX 063

Al Pz’-ltl Pk = ®eeve Akpl P2 ﬁitpkl
— -€ Z,

By Py eee B

Hence

X
But this would imply pil divides )\ and this contradicts the fact

r
that x § 0. Hence R/, £ @) = L Lo
pe€

Ie3.2 Definition: A group is locally cyclic if each of its
finitely generated subgroups.is cyclie,
Locally cyclic groups are discussed in[G]from which the
proof of the following theorem is adapted.
I.3.,3 Definition : A group G is said td be torsion
(periodic) each of its elements has finite order. It is torsion =
free if no element, other than the identity, has finite order
I1.3.4 Theorem: If a group is locally cyelic, then it is isomorphiec
elther to a subgroup of R+ or of R*./Z.
Froof: If G is locally cyelie then G is abelian and,
moreover, either a tersion group or torsion=free; for if a is an element:
. of non-trivial finite order, and b an element of infinite
order then[a, b] is [a]@ [b] which is not cyclie, If G is
a torsion group let Gp=‘la & Gl Ia[ = :p for some n} and this is
clearly a subgroup of G. G_ has at most one subgroup a; of

P
order Pk; for if a and b are elements of order Pk then

[[a, b_]l:Pk and [a, b] =[a] =[] Since[k 1])[ k]

either there is a maximum 8, and Gp is eyelic of order p y OT

Gp is an ascending union of cyclic groups of order Pk and G
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is p=quasicyclic, Since G = @ p%P Gp and each Gp is a subgroup of

a p=quasicyclic group then G is a subgroup of R/Z by Theorem I.3.1l,
If G 1is torsion=-free, then for any element a € G and any

n € Z, there is at most one element x € G such that nx = a; for

if nXx 2 ny=a; thenn(x ~y) =0 and x =y, Now let ¢ £ 0 be a

fixed element of G and define ¢, to be the element of G such

that ne, = ¢, if ¢, exists; otherwise define ¢, to be zero,

Then [cn, n e Z] a G; for if x € G, since [x,c] is cyelic, there

is a generator ¢, of [&, c] and a natural number n with

ne, = ¢ and x = k¢ = kne, . If now for each integer i 21, G, is

n n

the cyeclic group [cl, Chy esey ci] = [ai] s then Gi Q- Gi-l-l and
there are natural number mj such that 8y ® MeBs 4 70 By induction

n
we define isomorphisms an Gn-—h[;']; E’llk] by 9’ (a ) - Since

kel “‘k :
a; = Mj854 1 then gn-rl(g) = gn(g) for every g€ G . Let §J: G—R
be defined by J(g) = ?.(g) since g € Gy for some k., ¢f is well=defined

since a; = maj, 3. It is easy to show that ¢ is an isomorphism into

~
R. Hence G 1is isomorphic to a subgroup of R‘t

ls3e5 Lemmas: No subgroup of R has property P,
Proof: Let G be a subgroup of R. Suppose G 1s not
finitely generateds Then G 1is generated by an infinite set
é#, ':131'5_' 3 sens } such that no finite subset of S generates G,
There is no loss of generality in assuming that m, £ My £ one £y f oue
Let Py be a prime factor of m, P, £ Pl e prime factor of
Ty esos Pi,-# P; 7 2 prime factor of Moy oes o

Consider H -[ L %5 S 44 ] Clearly H is a proper subgroup

of G since p" e G and i ¢ H, H 1is non=cyclic since if H :[ﬁ]
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with m = Pl P2 ses P (Pi‘s are distinet primes), then
L = 92 gnd this would imply that ﬁvkﬁ'l is a prime factor of m,
PRE..I-]_ m - k+1 .

.'-

thc% a contradiction. So G does not have property P.

I.3.6 Theorem: If G is an infinite, abelian group then
G has property P if and only if G is p=quarsieyellic for some
prime P,

Proof: Suppose G has property P, then every proper

subgroup of G 1is cyelic, In particular, since G 1is not
finitely generated (Lemma I,2.3) every finitely generated

subgroup of G is cyelic, i.e. G 1is loeally cyelic. By Theorem
I.3,3 G 1is either isomorphic to a subgroup of R’ or of ﬁ?ﬁ. By
lemma I.3,4 G 1is isomorphie to a subgroup of ﬁ?é. By Proposition
I.3.1 G is isomorphic to ®Z G. where P 1is a set of primes

p&eP P

and each GP is a subgroup of a p=guasicyclic group, i.e. Gp is

either finite ceycliec or p-quasicyclic, Now we prove that not all
G, are cyclic, Since if they are, then P 1is an infinite set

P
otherwise G 1s cyclic, Consider H = ez G,. where po G P,

peP= {py P
Clearly H is a non=cyclic subgroup otherwise P = {poj is finite
contradicting P is infinite. H is also proper since H has no element
of order PL. This contradicts the hypothesis that G has property
P; and therefore at least one G, is p-quasicyelie, It follows
that G & Gp, otherwise Gp will be isomorphic to a proper, non=
cyclic subgroup of G, The converse of the theorem is just corollary
.l

To sum up dhe results of this section, we state the

following theorem:
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I.3.6 Theorem: An abelian group G has property P if and
only if G = Cp @Gp for some cyelic group of prime order p or

G 1is isomorphic to p=quasicyclic group for some prime P,



CHAPTER TII

NON-ABELIAN GROUPS WITH CYCLIC SUBGROUPS

In this chapter we investigate non-abelian groups with

property P, It will be shown in section 2.1 that the only finite
non=abelian groups with property P are: The quaternion group,

groups of order pq and groups G of order pPq on two generators

a and b with [b]q G, apn S b« e and ab = ba®, In section
202, 1t will be shown that the existence of an infinite non-abelian
group G with property P‘ recduces to Burnside problem when the
center of G 1is non-trivial, When G is not periodic and Z(G) = e,
we shall give a characterization of such groups if they exist,

In this chapter, we shall use the multiplicative notation,
The identity will be denoted by e and the center of g group G by
Z(G)e H4A G, where H is a subgroup of G, will mean: H is normal
in G, The direct preduct of the subgroups Hy, H,, ..., Hy, will be

II.1 Finite non-abelian groups with proverty P:

First we show that the only p=group with property P 1is
the quaternion group., To prove this we need the following propo-

sitions and lemmas.

II.1., Proposition: ILet H be g normal, cyeclic subgroup of G.

If H; is a subgroup of H, then H;4 G,

e L
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Proof: case (i): H is finite cyclic, Let g € G; then
ngg'lg H, since HQ G, 1f ngg"l £ Hy, then the cyeclic group
H would have two distinct subgroups of the same order, namely
Hy and ngg"l. This contradiction shows that ngg“l = Hy, hence
Hy < G.

Case (ii): H is infinite cyclic. Let H = [a]and let
g € Go Since H< G, the inner automorphism ’T; of G maps H
into itself, Since ff; maps a generator of H dinto a generator

of H, frg‘(a) = a or a~l, Now Hy = {ak for some k; hence
T, () =[’r’g(ak)1 ,-._-,[91‘] or [_a-k] . Hence T (H;) = Hy and F;Q G,
I1,1,2 Lemma: If G 1is a non=abelian group having property
P, then G 1is generated by two elements,
Proof: Since G 1is non-cyclic, G 1is generated by at
least two elements, But G is non-abelian, so there exist a, b& G
such that ‘ab £ ba, [a 5 b] is not a proper subgroup of G because
if it were then it would be cyclic and this would imply that ab = ba.
Hence[a, b] = G,
IT,1.3 Proposition: Let G be a nonwabelian group with
property P, If H is a subgroup of Z(G), then G/ has property P.
Proof: First we show that G/y is non-cyclic. Suppose G/y
is eyclic and let G/H = [cH] e 9ince G is non=abelian there
exist a, b € G such ab £ ba, Clearly a, b ¢H IConsider the
cosets aH, bH€ G/y. Since G/y is cyclic, aH = c®H and bH = c"H

for some integers n and m., It follows that ac™® ¢ H and be™™ & H.

Now (ab)c™@® ¢™B 2 ac™ be™@ (be™e¢ HE Z(G)).

bac™@ M (ac"Re HC Z(G)).
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Hence ab = ba which is a contradiction, Therefore G 1is non=
eyelic,

Next we show that every proper subgroup of G/y is cyelic.
Let Gy Dbe a proper subgroup of G/y. By the second isomorphism
theﬂrem[q ]Gl = A/H where H C AC G, But G has property P;
therefore A and H are cyclic., Hence Gy is isomorphic to the
homomorphic image of a eyelic group. Hence Gy 1is cyeclic,

IT,1.4 lLemma: A non=-abelian group G of order PB, where
P 1is an 0dd prime, does not have property Pe.

Proof: There are two non-abelian groups of order P3 for

an odd prime p([Q ], p. 51):
2
(a) G =[a, b], aP" 2 bP = o, b1 abza’ TP,

(b) G-_-!_-a, b, cJ, a¥ 2 bP = cP = e, ab = bac, ca = ac, cb = be,
(a) G, being a p=group, has a non-trivial center. Moreover,
72(G) #[b]and z(a) # [a], otherwise G would be abelian, It
follows that Z(G) = [ap} , otherwise we would have Z(G){) [a] = (e},
hence G 2 Z(G) ® [ a] contradicting the fact that G is non=abelian,
Now since [a.p] = Z(G') and b% fa] , 1t follows that [ap][b} is a
proper, non=cyclic subgroup of G, Hence G does not have property
P in this case,
(b) In this case ¢ commutes with a and b. Hence
fc:fg z(G). Hence [c][ a] is a proper, non=cyclic subgroup of
G, Therefore G does not have property P.
II,1,5 Lemma: The only group G of order 23 which has

property P 1is the quaternion group.



w1/ =

Proof: There are two non-abelian groups'of order 2°

(a) Dihedral group: G = [a, b] ’ a = b? = e, ba = ab,
(b) Quaternion group: Gs= [a, b:], a? = b2, ba = a’b.,

(a) The multiplication table of G is:

‘1:
0
| P
[
|
o’
8
o’
mh}
U
fo
L)
o'

e |e a a® 8’ b ab ab a3b
a |a a2 33 C ab a<b a>b b
a?|a? a’ e a a<b a3b b ab
a3 |a> < a a2 a’b b ab a<b
ab |ab b a b a°b a e a’ a?
a%b |a?b ab b a b a® a e aB
a3b |a3b a?b ab =D a’ a® a e

It is readily verified from this table that
H = {e, az, b, 2% bi is a subgroup and that\a?'] = (bl =
)azb] = 2, Hence H is proper, non=cyclic subgroup and this
shows that the dihedral group-of order 23 does not have

property P,
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(b) The following is the multiplication table for the

Quaternion group of order 23.

= & _ _ﬁaz :=a3 b - _ __ab qzb afb_
e |eo a a” a3 b ab a<b a’b
a | a a2 a3 e ab a~b aBb b
a* | a? a’ e a a<b aBb b ab
a’ | a3 e a a” a’b b ab a<b
b |e a’b  ab ab '32 a e a3
ab | ab b ajb a<b 8’ a® a e
a%b | ab ab b 33b & a’ a2 a
a3b ajb b ab azb a e 33 a®

It is readily verified from this table that:

‘32’—_-2 and ,al :laBI -..-[b'g [ab{ :-.[azblg'ajbl =22.

Thus every subgroups of order 4 must contain an element of order 4

and hence is cyclic., Therefore the Quaternion group has Property P,
II,1,6 Lemma: No non=abelian group of order 24 has property P,
Proof: It is shown in Carmichael [1] that there are just

four abstract non=abelian groups of order 24 each of which contains

an element of order 23.

(&)G:[P, Q]’ P23=11 QZHPZF’ Q-IPQ=P-'1

(this is derived on the assumption that G has only one subgroup of

order 2).
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(b) G =[P, Q] ) Pz = Qz 1, QPQ = P

() Gu[® 0, P =1, (W

(@ =[P a], . % ; ()% s L.

In (b), (¢} and (d): lPI = '23, 'Ql - 2 and[P]ﬂ [QJ: 8.

Now 2(G) £ e, since G 1is a p=group. On the other hand,
Z(G) ,![P] and Z{(G) ;! [Q], otherwise G 1is abelian. Therefore,
7(G) C [P] otherwise G is abelish. Let Z(G)®][Q)]z H. Then
H is proper, since it does not have any elements of order 23.
Also H is non-cyclic since [Z(G)‘ and lQ\ are not relatively
prime, Hence G does not have property P, for the cases
(b), (¢), (d)e Suppose that the group G, given in (a), has
property P, Let Gl be the unique subgroup of order 2. Then
Gy < Z(G), since ,Z(G)[ is at least 2. Also since Gy& Z(G),
Gy G. Hence by If.l.B, G/bl has property P and IG/bl' = 23.
By lemma IT.1,4, G/bl_is the quaternion group, hence G/él has a
unique subgroup of order 2, By the second isomorphism theorem,
G has a unique subgroup of order 22 containing Gl. It follows
that [Q] = [P2J , since both of them are of order 2" and contain
Gi. Thus Q€& [ P], hence P and Q commite; i.e. G is
abelian which is a contradiction. Hence G does not have property P,

I1.1.7 Propesition: A non-sbelian, finite p-group G has property
r it anddﬁiriP(}is the quaternion group,

Proof: Let G be a non=gbelian group of order pp. Since
G is non-gbelian, we may assume that n 2 3. Also in view of

lemmes II.1.4, II,1,5 and II.1.6, we may assume that n » 3 if p is odd,
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and n » 4 if p = 2, Suppose G has property P. G, being a
pgroup, has a non-trivial center. Let HjC Z(G), where H; is
a subgroup of G of order p. By proposition II.1.3 G/hi = Gy
has property P, and 'Gll = pnﬂl, Gy, again has a non-trivial
center; so let H2§;LZ(G1), where H, is a subgroup of Gy of order
ps By LI 1.3, G/H2-= G2 has pr0p§rt3r P and [ GEI = pn"?“.
Continuing in this way we obtain Ghyé of order p4 and having
property P, So if p = 2, this already contradicts II.l.6., If

P £ 2 we continue to obtain Gn-3 of order p3 and having property
P and this contradicts II.l.4.

Hence the only p=-group with property P is the quaternion group,

Finite non~abelian groups in which every subgroup is abelian
are discussed by G, A, Miller in [ 5 ]. The following theorem is
proved there:

II,1.,8 Theorem: The order of a non=-abelian group which contains
only abelian subgroups cannot be divisible by more than two distinct
primes and if such a.group has more than one sylow subgroup, one of
these subgroups is of type (1, 1, esey 1Y and the others are cyelie,

II1.1.9 Proposition: A non=abelian group G of order pnq(n) 1},
P and q are distinct primes with G - [a, b] ’ aP" s b4 = e,

b:b'l = aP and a~lbs = X for some k »1, has property P,

Froof: A typical element g G is of the form

k k
g = aklb 2 el o ThED

= ks k k =k, k., -k~ =k
: 152 .., pA1 g Myp(a "y 0- “a 1)

b I B N b a
k k..1 k.~-1 = -
b < e b la A (aba l)a b

= (a
ki
a

gbg
=

ky k k k =1 <=k = =k
- lb 2...b n-la n (b Ta kn 1 h n-1

ki k Knall, oty - wlo
a - Lt Ty

Des b a ®
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Continuing in this way, we see that gbg™l

integer m. So gbg"lg [b] for all g € G, Hence [b]d G,

3

reduces to b™ for some

Now suppose that G satisfies the hypothesis of the theorsm,
Let H be a proper subgroup of G, If l Hlf:__ q, then clearly H
ig eyelle, If l H] = p%, m&€ n, then H is contained in a sylow

subgroup SP( ¢ ,p.!.m', and since Sp is conjugate to [a} 5

S, and hence H are ecyclic, Thus we may assume that [Hl = qpk,

P
1€ k< n,

Since [de G,[b] is the only subgroup of G of order qe.
Since H has a subgroup of order ¢q, it follows that Ih] ¢ o,
Moreover, [b]c} H, since [b]q Go H also has a subgroup K of order

p*, but we shall now show that K& Z(G), K is contained in a sylow

subgroup Sp. Since Sp is conjugate to[a] s there is an inner

automorphism T’of G which maps [a] onto Sp. Since aP commutes

with Db, aPe 2(G). Hence[aplq G and ’rmaps (aP]onto itself,
ne=1

P i Pl . _
Thus [a ]QSP. Since ’a l = p —, and the cycliec group SP cannot

have two distinct subéraups of the same order, it follows that
kG [aP] C 2(a).

Now H has two normal subgroups [b] and K whose intersection
is e. Hence H :[L] @K and sinca‘[b}‘ and \Kl are relatively
prime, H 1is cyclic, This completes the proof of the proposition,

I1.2.10 Theorem: A finite non=~abelian group G has property
P if and only if

(2) IG’ = pq where p and q are distinet primes, or

(b) G is the quaternion group, or

(e) /Gf = p’qg, p and q are distinct primes and ny 1,
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where G -_-,[ a, b] with aP” = b9 = e, aP = bPb™! and a™lba = bX
for some k P 1,

Proof: Suppose G has property P. Then every proper
subgroup of G is abelian and hencal GI = pPg™ by theorem
IT.1.8, By the same theorem, m and n cannot be both greater
than 1, otherwise G would have a proper subgroup of type
(1, 1, oee,1) which is not cyclic, Hence m = 1 or m = O, If
me=0, then G 1is a p-group and by II,l.7. G is the
quaternion group. If n s m = 1, then lGl = Pq and the only
possible proper subgroups are of order 1 or p or q which
are cyclic, |

The only case left is that where |Gl = pgq (h> 1), The
sylow subgroups of G are cyclic since G has property P. So
there are a, b € G, \a‘ = p°, \bl = qg and ab £ ba (otherwise
G would be abelian), We claim that [a] is not normal in G,
Suppos'e [a]q G. Since [a] is eyelie, [al"]q G (Proposition 2,1.1).
Hence [b][ap] is a subgroup of G of order pn"'l ge 9ince G
has property P, [b][ap] is eyclic; hence aPb = baP,. Now since
[a ]d G, b"lab = ak, where k< p?. Thus b~LaPh - akp; and since
aP commutes with b, aP = 2P, Hence p{k = 1) 20 (p®). Hence
p*"! is a divisor of k = 1, Thus k = 1 = Ap™™L, where 1 & A< p
since k = 1 £ p®, Thus b~la » = gk = a"pn:]i, Hence
sba o ba P Pn'l' Hence ‘bahpnull - Iaba"l,: |bl = g But
a Apt~t = (aP) Apnﬂze [apj o Hence aAPnﬂl commutes with b
and e = Iba)‘pn-l)q = bqaaqpn_l = &qun-l. Hence qun-‘}._ = O(mod p%)a

But this is a contradiction since . D and q are relatively primeomd ).(F-r
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Hence [a] is not normal in G, Now we prove that [b]d G, It is
known that a group of order p?q is non-simple [2,292]. If G has
a normal subgroup H of order pkq (k 2 1), then the subgroup of
H of order q is normal in G and hence [b] g G, So the only
case left is when G has a normal subgroup Hj of order ﬁh for
some k4 2 1. Now if Gy = G/ﬁl has a normal subgroup of order

pﬁq for some 8 2 1, then by the second isomorphism theorem, G
has a normal subgroup of order pgq, hence [b]q Gs. Therefore

i-
Gy has a normal subgroup of order p'2¢ Hence G has a normal

i14 1
subgroup of order pll* 2, Continuing in this way, we get
L2]<Q 6, which is a contradiction, Hence [b]qG. Hence

a'lba v bk

. It remains to prove that aPb = baP., Now G/[bJ is
a p=group of order pn and so it has a normal subgroup of order pn'l.
By the second isomorphism theorem, G has a normal subgroup H
of order pn"lq. Let K Dbe a normal subgroup of H of order pn"'l-
Since H is cyclic, K G (II.1.1). It follows that XK & [a]
(since K G, K is contained in every p-sylow group)., Hence
K = [ aP ] since Lap_] Ls the only subgroup of [ a] of order pn"l. But
aP€ H and [b] CH since H has a subgroup of order q and the only
subgroup of G of order q is [b] ([b]d G). Hence aPhas ba®,
since H 1is cyclic.

Conversely, if [G[ = pq, then G has property P since every
proper subgroup of G is of prime order. If G is the quaternion JYoup,

then G has property P by I1,1,7. If G is as deseribed in

(c}) then G has property P by II.1.9.
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II.2. Infinite Noneabelisn groups with property P
II.2,1 Lemma: Let G be an infinite, non~abelian group with

property P, If 1 L IZ(G)] oo, then G is periodic,

Proof: Since Z(G) is cyclic, every element of Z(G) is of
finite order. Let a & Z(G) and consider C(a) = Z X ‘xe G,
xax~L = aj . Clearly Z(G) S_C(a) . But C(a) is cyclic and has an
element of finite order ¥ e, namely the generator of Z(G). Hence
C(a) is finite cyclic and this implies that the order of a is
finite, Hence G 1is periodic.

IT.2.2 Lemma: Let G be a non-abelian infinite group with
property P such that I Z(G)[ is infinite; then Z(G) is a maximal
normal subgroup of G.

Proof: Let NG and N DZ(G). Now N :[x] where

x¢ 72(G)e. Let m be the smallest positive power such that

x* & 7Z(G), then Z(G) = [xm] . Consider C(x) alg }g € G, xg = gx S
and let y é C(x). Sinde NQ G, yxy"l = x< for some k 721,
Now (yxy D)™ = ¥® = y"L, But PMe 2(a), so yy L = yy i =
xmk. Hence k = 1 since Z(G) is not finite. This contradicts
the definition of k,
IT.2.3 Lemma: Let G be a non=abelian infinite group
with property P, such that l Z(G)I £ 1; then G/Z(G) is periodic,
Proof: Let a # e be the coset in G/j;(g) represented by a,
Since the subgroup [aJZ(G) is abelian, it is proper and hence
cyclic. Thus if[a](} 2(G) = e , then [a}z(e) :[a]@Z(G)
which is not cyclic. This contradiction shows that [a]f}z(c) £ e .

Hence a" &€ 7z(G) for some positive integer n. Hence l E{ = n end
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As a result of the above lemmas we conclude that if G 1is
an infinite, non=abelian group with pfoperty' P, then the following
hold:

(a) T£ 1 4 IZ(@’(M , then G is finitely generated,
infinite, non=-abelian group which is periodic (Lemma II,2.1).
Whethar such groups exist or not is the unsolved Burnside problem( [2 j’l?u‘)s.

(b) If 1 £ [2(G)| is infinite, then G/j(gy is periodic and
has property P (proposition II.1.3). If G/z(g) is infinite then
we have the same situation as in (a); that is G/é(G) is a Burnside
group. If G/é(G) is finite, then G/j is simple, otherwise there
would be a normal subgroup of G containing Z(G) properly which
contradicts II.2.2. Since all non-abelian finite groups with
property P are not simple, G does not have property F,

Thug the existence of an infinite, non~abelian group with
property P and non-trivial center yields a solution to the
Burnside problem, Hence we shall assume that Z(G) = e . We shall
give a characterization of infinite non-abelian groups G with
property P when Z(G) = e, , on the assumption that such a
group exists, But first we shall prove that such a group is simples

II.2. Lemma: Let G be an.infinita, non-gbelian group
with property P; then G is simple if and if Z(G) = e o

Proof: If G is simple then clearly Z(G) = e. Conversely,
let Z(G) = e, and suppose that e £ HQ G.‘ Clearly H is cyclie,
so let H = [h] . Consider C(h) = zgeG lgh = hgg . Then C(h) ’;G,
otherwise ¢ # h & Z(G). Hence C(h) is cyclic. Let C(h) =[a] . It
is not difficult to see that if b d‘[a]_, then G = Ea, b]. (If

[a, bJC G, then [&, b] is eyclic; hence b & [a] )o We consider
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two cases:

(1) Hefa] ana (11) H=z[4].

(1) Since H G[al it follows that H = [an] where n > 1,
Let b $[a]. Then we claim that H[b] is a proper subgroup. For
if it is not, then a ¢ H [b‘] . Hence a = (an)k bm; hence al-nk e b
Now if b™ = e, then o1=nk e, and hence & = ank. Hence a € {anl = H,
contrary to our assumptions that H C[a] . Hence @ £ b€ [a] ’
hence b™ commutes with & and b and so e ¥ b2 € Z(G) which is a
contradiction, So H[b] is a proper subgroup of G and hence
cycliec, Therefore b cnmmuﬁes with a® and this implies that
e § a® € 2(G) which is a contradiction,

(i1) H = [a} : If La_] has a proper subgroup H! i,e.
( e £AH! C[a]), the same arguement as in case (i), with H*
playing the role of H, _will-give the result. Suppose [a] does

not have any proper subgroups. Then ‘a| = p for some prime p.

Then as was shown above, G = [a, b] ; and since[a]d G, G = (][ v] .
If |b|€ea, then [G]=- p | [b}|is finite which is a contradiction,

It follows that [ b se. Now [a]{b2]c 6, otherwise b s a¥p™"

“ and this would imply e # bl-22¢ [b](Ya]C z(e).

Hence a] [b?“l is cyelic and so e £ b2€ Z(G) which is a

and soO bl-2n = 2

contradiction,
I1.2.5 Theorem: Let G be an infinite, non-abelian group
such that G 1is not periodic and Z(G) = e, then G has property

P 1if and only if:
G = iLeJI C(ai), where {ai‘iﬁ I) is 8 subset of G and

for every i€ I, C (ai) = {g [ G( gay = aigl , and where



e -

(1) For all i€ I, C(ay) is a maximal cyclic subgroup of G.
(11) cag) () clag) = o if 1 # ;.

(111)1f & # x€ Claz), o # y€ Clag) and 1 # j, then G = [x, y].
(iv) I is an infinite set,

Proof: Suppose G has property P, Clearly G = g& C(z)e
If H is a subgroup of G such that C(g) € H €G, then gH is
cyclic and hence H = C(g). Thus C(g) is a maximal subgroup of G
for every e £ g € G. h & C(g), then G = [h, C(g)] , otherwise
[h, C(g)] would be a proper subgroup containing C(g} properly.
From this it follows that for everj g, h &€ G, C(g)n C(h) = e
or G(g) = C(h). Thus we can choose a subset [ai li eIi of G
such that G = ileJIC(ai), where each C(a;) is maximal and eyclic
and where C(a;) ()} Claj) = e if 1 £ j. It remains to prove
(ii1) and (iv),

(iii) Let x &€ C(ai) and y & C(aj), where x £ e and y £ e
and I £ 7. If [x, y] # G, then [x, yJ is cyclic and generated by
an element in C(ay) for some k. It then follows that
o £ clag)( Y ola) € 2(6) or o £ cla [} clagC 2(@).

(iv) I 4is infinite: For every i€ I, let Ca;) 5[&}_] :
Since G 1is not periodic, let a‘i be of infinite order and let

3‘3‘2 £ e be such that ,a:’g , = n (a similar arguement will hold if

=l - $ -8 § -t $ o 7
lazl =cg ) ::nd 8y Z 3.2 al. Then a; &, i!al l, otherwise
a3 32 _(&l) hence 8’ z (al}; s 80 either 8, = € or zZ(G) £ e

and both conclusions contradict the hypothesis,
= 1Yk o1 t] [t]
Similarly &y a 2& [&2] and (al) ay €F [al and ¢ az for all k » 1,

t 1 : - 192 t]
Hence aj a, (S [aj} (say) i.e. aja, = a3, Now (&l) a5¢[33 ’
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. EE e - af ot | t(at)2 o
otherwise (aj)” a} = (33) . Hence aj a] al = (a )", Hence &1(53) -
(aé)m. Hence a' (a') and this is a contradiction,

Similarly (al) a‘é[aé] for all k 2 2. Since
(ai)z a2 al] U[ ]UE"I (a')2 al € [a‘] (say)
By a similar arguement (ai)B al & [a']U{ ]U[ 2]U[ ]]
[+

Now ai is of infinite order, sc we can have infinitely many

By induction it follows that for every k, (a}) azﬁr =

(a') a‘ If i £ j then al afi £ a;‘]. a! because if

vl e g corend e sl ext®d g i=]
_(ai) az(al) a) = (a}) a) (al) a then (al) a) : & (al)

i.e. a} commtes with (ai)i“"j and (ai)i'je C(a;). It follows that
(ai)i‘j = e and so (ai)i = (eaxi)"j which contradicts i £ j. Hence I
is an infinite set,

Conversely, suppose that the conditicns given in the theorem
hold, Clearl¥y G is non=cyclic, Let H be a proper subgroup of G
and suppose H () G(ai) £ e and Hﬁ{‘C(aj) £ e, where 1 £ j. Let
e £ x€H nC(ai) and e £ y € Hn C(aj). Then by (iii) [x, y] - G
and hence H 1is not a proper subgroup of G contrary to our choice
of H. It follows H CC(a;) for some i and so H is cyclic
since C(ai) is eyelice by (ii).

IT.2.6 Example: The following is an example of infinite,

nonssbelian group which is the disjoint union of countably many

cyclic groups. Let M be the group of 2 x 2 non-simgular

1 0 1
matrices, and let G = [a, b] , Where a = (0 l) and b = (0 ;’_)
=@ et 1 -1
be a subgroup of M., Then ab = ( -
g P (0 -1)( 0“1) - (m 1) and
P =0 1l =i
ba = (O -1) ({J _1) B (0 l.), thas ab ¥ bay, It can be checked
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easily that‘.a! = lb’ = 2, and that elements of G are of the

form: (ab}k, (ba)n, (ab)k & 60 (ba) b, where k and n are

2 L 2
arbitrary integers, Now (ab)”™ = ( o 1) and by induction

(ab)¥ & (; E) so ab is of infinite order.

(be)? = (; "i)

i8 of infinite order alsc.

and by induction (ba)® = (; "i) so ba

Lkt -0 1 =k

) ( ) ( ) and (;

k
M b -
oreover, {ab)®a - (0 e —

hence i(ab)k al = 2.

1 38
) = (

1 n.2 130
= ]

)" =

1 wny /1
By
And (ba)? b = ( )(o 0 =1 5 1

| g 3
hence ‘(ba)n b\ = 2,

n
_1) and (

All subgroups of order 2 are necessarily disjoint. An element
=K
of infinite order is of the form (ab)¥ or (ba)*, Now (ba)X « ((ba)'l) -
(a~t bfl)-k = (ab)-k. So we have only one subgroup of infinite order

namely [ab] . Now we prove that _[ab]q G,

(ab)? g (abk a~1l(ab) ™" - (ab)?(ba)k(ab) e [ab]

nd
= (ab)™ b(ab) o"L(ab) ™ = (ba)®(ba)%(a) 2 € [ab] .

So for any g €G, g(ab)g'l & [ab] . Hence [’& b]d Ge

Now the number of subgroups of G of order 2 is infinite
since ,(ab)k al = 2 for every k and (ab)¥ a L "t thernine
aba = a and ab = e, It should be noticed that G does not have
property P since [Iab)z, a] is non=cyclic (ab is of infinite
order and a of finite order), Furthermore, [kab)z, a| is proper,

Otherwise ab € [(ab)z, a], hence ab = (ab) 2ka (Since [ab]d_G,
[(ab} 2]4 G and [(ab}z, a.] = [(ab) 2_1 [a] ). Hence (ab) L = a which
is a contradiction since ab 1is of infinite order and g of finite

order, Hence G does not have property P,



CHAPTER IIIL

GROUPS WITH CYCLIC HOMOMORPHIC IMAGES

In this chapter we shall be concerned with non=cyclic groups
G with the property that every proper homomorphic image of G 1is
cyclic. For abelian groups, it will be shown that the only group
with this property is the direct sum of a group of prime order
with itself, Nonwabelian, finite groupé with this property seem
to form a large class of groups, for example all finite symmetric
groups S, with n2 5 and simple groups. We shall give a charac~-
terization for non=abelian finite solvable groups with the above
propertiy,

The ﬁotation for the abelian case (section III,1} is the
same as in chapter I, and for the non-abelian case(section III,2)
as.in Chapter II, G' will denote the commutator subgroup of G,

G" the commutator subgroup of G! and so on,

11,1, Finite Abelian Groups With Property Q@:

Il,1.1 Definition: A non~cyclic group G is said to have pro-
perty Q if and only if for any non-trivial, normal subgroup N of
G, G/ﬁ is cyelice

II.1,2 Proposition: A finite abelian group G has property Q
if and only if G is isomorphic to GPQ GP for some group of prime
order D

Proof: Suppose G = CPG Cp; then G is non=cyclic by

= 27 w
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lemma I.2.1. Since every proper subgroup of G is of order 1 or
P, 1% follows that any‘proper homomorphic image of G 1is of order
p or 1 and hence cycliec,
Conversely, suppose G has property Q. Then by the funda=
mental theorem of finitély genserated abelian groups [‘l] ’
G = Cnle ane e @an, where each Cni is cyclic of order n;
= Gn1@ an @gn-@-.,-ﬁatﬂ,,,, is

non=cyclic since (nq, nz) £ 1.. Morecver k £ 1, otherwise G would

and n; divides n If k» 3, then G/Cn

i$l®

be cyclic, Hence k =z 2 and G =z C, & an. Suppose that n, is not
i

a. prime and let p be 2 prime such that p ]nl and pl N Let

n
- A O -
m = . and let C, be a subgroup of an. Then G/Gm = dnle Cp.

But Cnle C, is non=cyclic since (ny, p) = p ¥ 1. Hence n, =z p
and n) =z n,, 80 G = CP@ Cp.

IIl.1.4 Lemma: Every finitely generated abelian group

with property Q is finite,

Proocf: Let G be a finitely generated abelian group with
property Q. By the basgis theorem of finitely generated abelian
groups (4] , G = rC]b... Q(CTIQ[E]]Q 050 @[En]whera each
C; is of infinite order and e, 4 1|ev(v al, ..o, n~1) (B ] o),
Suppose G 1is not finite, Then‘__ r> 1; and since | G is not cyclie,

either r l orn2>1l, Ifr p1, then [2c1] is a subgroup of G

and G/[zsl'l = f Gl;’ [2()]]@ 108 @EI‘] & [El] Do Oﬁn]' But

) '
[1 [ECJiB of order 2. Thus }/E.'C]] contains elements of finite

and infinite order, hence not cyclie. Thus we may assume that

r=1landngl. Let m = ejes 4.6 €,. Then
mGC

G = Cl" .I 31% lle[E]_] @ - @[En]. Since l cltmcl]F m,
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G/[mcﬂis.not cyclic hy lemma I.2,1. Thus the assumption that
G 1is infinite contradicts the hypothesis that G has property
Qe This completes the proof,

IIT.1,5 Lemma: No infinite abelian group has property Q.

- Proof: Suppose @ is an infinite abelian group with property

Qs By ILl,l.4, we can agsume that G 1is not finitely generated.
Let G be generated by an infinite set S and assume that no
finite subset of S generates G, Let a; ¥ e be in G and let
Hq :[a]j e v©ince G 1s not finitely generated there is a, €& G
such that 32¢ Hy. Let Hy = [al, 3.2-]; then H]. CHy, CG, Let
a3 € G such that a; & Hy. Let Hj = [&1., as, a3]; then H) € H, € H; € G,
Continuing in this way we can construct an infinite ascending chain of
subgroups Hy € Hy, Q.o QH, oo

Suppose .G has property Q. Then G/'H1 ts cyclic, And, by
the second isomorphism theorem [‘( ], G/Hl has an infinite ascending
chain of subgroups EZ CEB €... Cﬁ'ﬁ €... . Let a be a generator
of G/'I_I1 and for eyery n, 1et‘Eﬁ be a ganaratorﬂﬁ;. Then each
h, = () for some k,. Since Ez C -H; for every n » 2, we have
kr, pk,y for every n » 2, This contradiction completes the proof.
We summerize the forgoing results in the following theorem:

3.1.6 Theorem: An abelian group G has property @ if

and only if G dis the direct sum of a group of prime order with

itself,

III.2 Finite non=agbelian groups with Properiy Q:

In this section we shall give some examples of finite

non=-abelian groups with property Q. Then we shall give a
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characterization of solvable groups with property Q.

Examples: (i) The symmetric group S, has property Q,
for all ng& 5. In this case 4,, the alternating group, is the.
only non=trivial normal subgroup of G. But IG/ﬂnl = 2, SO
G/Anx is cyclie, Therefore S, has property Q for all n) 5+

(ii) A non=abelian group G of order pg has property Q.
Since G 1s non-cyeclic, only one sylow subgroup is normal, say H
of order p. Then G/g is of prime order and hence cyclic,

(iii) Simple non-abelian groups have property Q since
they do not have noﬁtrivial normal subgroups.

In proposition II.1.3. we proved that if G is non-abelien
and H CZ(G) £ e, then G/Y has property P; in particular G/y is
non=cyclic, Clearly in this case G does not have property Q. We
state this as a lemma for reference,

IIT.2,1 Lemma: Let G be a non-abelian group with Z(G) £ e,

Then G does not have property Q.

I11.,2.2 Corollary: No p=group has property Q.

Now we give a characterization of solvable groups with
property Q. First we recall the following definition and theorem c -3 j :
ITT.2.3 Definition: Let H and K be two groups and suppose

that for every h € H there exists an automorphism. 7;1 of K such

?hz(nl(k)) = 7.1'11}12(1«:) for every k &€ K, Then the symbols

(h, ¥), h € H, k& K form a group under the product rule

called the semidirect of K by H,
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"III, 2.4 Theorem: G 1is the semidirect of K by H if

and only if
(1) kx4 G

(ii) G = HKX.
(111) EQAK o e,

I1I. 2.5 Theorem: Let G be a non-abelian solvable group

Bl 32 ey
of order Pq p2 eeee D, » Then G has property Q if and only

if G 1is the semidirect produet of a group H of order Pi:‘L for one

i=1, 2, ..., ke and a cyclic subgroup M of order

ok
Se= ek

_ @
3 O & 92 eee P, where (i) H is abelian of type

P1 Py so0 Iji
(1, 1, ooy 1)s- (ii) H 4is a normal subgroup of G which is
contained in every other non=trivial normal subgroup of G.

Proof: Suppose G has property Q. Since Gi"a G, G" = e
or G/G" is cyclic. Suppose G" £ e; then G/gn is cyclic. Hence
G" ) G'. Hence G" = G' contradicting the solvability of G. Hence
G" = e and G' is abelian, If e £ K4 G, then G/k is cyclic and
so XK 2G' i.e, G' is contained in every normal, nontrivial subgroup

of G. We prove now that G' is of order ﬁ:i sndtype (1, 1, see, 1),

"1 42 «k
pl p2 *e 8 pk

subgroup of GT for all i = 1, ..., ke P. g G' (G' is abelian) and

Suppose ’G" = . Let Pi be the pi-sylow

e &«
G'<Q G, Now for every g € G, g P;g 1Q G'. But ‘gPig"ll-_; pii and
P; 1s the only subgroup of G' of order pii. Henceég?ig“léz Pi“
and Piq G for all 1 =1, ..., k., Since every normal subgroup of
G contains G', it follows that G' has only one sylow subgroup,

thus G' = Pg for some E, $¢igk. Consider C =}g{g € G‘,]g[f pi‘.
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C is a subgroup of G, since G' is abelian. We now prove that
cAG, Let c €C and g & G; then (gcg—llg (C't p;e It follows

C C and consequently CqQ G, Hence C ; G' and consequently

e

that glc

G' = C, since C 1s a subgroup of G'. Therefore G' is an abelian

LY

p;=group with no element of order graatef than p,. Hence G' is
o
of order pii and type (1, 1, .oey L),

We prove now that G 1is the semidirect product of G
- (4
e, pk': Now

., e
G/gr is cyclic and of omder p 8 s 2 p];_ Tot

= i
C‘/G‘ :[aG'] » Hence (aG')
e °1-% €x 87 =8 Sy

L P- S0 pk P --.p- " ea
- =G! inalal = Pke GI|

and a cyclic subgroup of order plel sae pi

(aGt) L

Congider [G‘, a] and suppose it is a proper subgroup of G, Let e ;fb%.[ﬁ' ,a]*
It follows that bG' = (&G‘)k for some k. Hence ba"ké G'., Hence

b& [G', a] since ékG[G', a-l and this is a contradiction, Hence

[G', a] = G, Now G’n [a] = e, otherwise e = G‘n [_ a] g 7(G)

since any element in G' n [a] commutes with any element in G' and

with a. Thus Z(G) £ e contradicting Lemma III.3,1. It follows that

G is the semidirect product of G! and a and this completes

the proof in this direction., Conversely, let G satisfy the

hypothesis of the theorem. Now G/ﬁ is cyclic since [G/hl =

= e -w- e
pl 1 Se B S e pk k and a (where a is the generator
i

8; =X, e
of ¥) 1s of order p,"l 4o B, * T .ee D, kK. Let ¢ £ N be a
proper normal subgroup of G. By (ii) N2 H. Hence by the second

isomorphism theorem %ﬁ% = G/y. Therefore G/y is cyclic since it is

the homorphic image of a cyclic group. Hence G has property Q.
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