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ABS TRAEGE T

A general review of the theories concerning the
critical region is presented. The major experimental
results of PVT measurements in this region are discussed
-: - 3 4 . L4
in particular for He and He . Finally an experimental
technique 1s described., This technique makes possible
simul taneous measurements of Pressure, Volume and Temperature
of a fixed sample mass., The volume changes would be observed

by the variation of the inductance of a coil.
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I. INTRODUCTION

The critical phenomenon was discovered in 1822 by de la Tcur.l

In 1869 Andrews measured the critical temperature of CO His inves-

e

2439440

tigations led to the concept that each gas has a lowest tempera-

ture above which it cannof be liquified  no matter what pressure is
exerted. This is the critical temperature.

The phase equilibrium curve in the T, P plane terminates at the
critical point, as shown in Fig. l. The temperature of this point is the

critical temperature T., while the pressure is the critical pressure. Of

C

the most recent values for the critical temperature and the critical
4 3
pressure of He and He are:

For He4éTc = 5,1894°K as reported by Edward56

or TC = 8. 191 j_O.OO2OK as reported by Roach and Douglass7.

While P = 170.8 + 0.3 cm Hg (from Roach and Douglass’ ).

For Heg: TC = 3.3095OK (Zimmerman and ChaseB)

or T = 3.316°K (Elwell and Meyerg)

or TC = 3.3436%% (Kerr and Shermanlo)

P. = 86.75 cm Hg (Elwell and Meyerg)

or P. = 88.88 cm Hg (Kerr and Shermanlo)



Fig. l.--The phase equilibrium curve



Fig. l.--The phase equilibrium curve






An interesting feature of the 1iquid-vapor phase equilibrium
appears if we draw the graph of the densities of the liquid under its
saturated vapor pressure and of the saturated vapor versus the tem-
perature. The two branches tend to meet at one point at the critical
temperature. If we draw the curve:

zipy + bl &
we will get almost a straight line which is nearly horizontal, slanting
a little towards the saturated.liquid b:anch of the graph. See Fig. 2.

The two branches of the density curve were extrapolated to find

the density of helium at the critical point. From such extrapolations

the values of the densities at the critical point were found to be:

i 4
0.06948 + 0.0030 gm/cm for He

[

Pc

8

3
0.04134 gu/on® 1OF He,

I

Pc



Fig. 2.--The densities of saturated liquid and
saturated vapor, showing the rectilinear diameter,.
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11.- THEGRY

At temperatures below the critical temperature a gas can be
liquified Dby isothermal compression. Above this temperature the
transfer from the dense gas to the liquid takes place without any
discontinuities in the density or any higher order singularities
in the density or other variables. As the temperature is increased
towards the critical temperature the difference between liquid den-
51ty pL and the density of the gas Pq tends to zero g#gcontinuously.
The limiting density 1s P.o the critical density, and the corresponding

pressure is P., the critical pressure. Fig. 3.

C!
Van der Waals equation gives a qualitative description of con-
densation and the critical point provided it is supplemented by Maxwell's

rule which ensures that p is a single valued function of P .

Van der Waals equation 1s:

- SRSy

2
i - T - & (1)

The van der Waals isotherms of P versus p look similar to those

Eieny 3
of a real gas which are drawn schematically in/except for the horizontal

lines corresponding to the two phase region for an equilibrium transition



Fig. 3.--Schematic isotherms for a simple fluid in the
critical region.
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of a real fluid. The van der Waals isotherms are continuous in
this region, each including a maximum and a minimum. The Maxwell
equal area rule removes_this difficulty by stating that the area
between the van der Waals isotherm and the horizontal line which
falls above the equilibrium horizontal line is equal to the area
which falls under it. See Fig. 4.

The isotherms grow flatter and flatter as they approach the

critical point while the 1sothermal compressibility

=1
)T E'(ﬁg)T (2)

becomes infinite at the critical point.

Three principal predictions about the critical region follow
from the van der Waals equations

a) The coexistence curve follow a square-root law, i.e. the

difference between p and Py vanishes as

9
2

P

k (T = rcp (3)

o
Pe A(T - Tc)

Where T _9.TC

means approaching T. from values less than TC'

C

: £ p o
(Since for T > TC, pl pg 0)

b) The compressibility along the critical isochore diverges



= 11

Fig. 4.~-Schematic isotherm for a van der Waals fluid
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as a simple pole

IR

- (

5 G

k.

¢c) The specific heat at constant volume rises to a maximum

at the critical point then falls discontinuously:

+
- - W (5)

« P lE =7 7

A1) = C. |

with C_ - c: AG D By

The compressibility of the liquid and the gas along the coexis-
tence curve, i.e. at condensation, also diverges as a simple pole as
T ~» Tg‘according to the van der Waals equation, but the amplitude
corresponding to B is smaller than that in equation (4). The constants
A, B, ci; 5tcan be written explicitly in terms of the van der Waals
parameters a and b.

The above predictions are not only reached at by the van der Waals
equation but all other approximate equations of state reach to the same
conclusions. (See for example Landau's theory of the critical point
and second order phase transitions, ref. 17). Indeed they are essentially

a consequence of the implicit or explicit assumption that the free energy

and the pressure can be expanded in a Taylor series near the critical



o d =

point. That is the free energy is not a singular point when
expressed as a function of p and T (provided Maxwell's rule
is applied for T < TC)'lQ
The predictions of the classical theories can be tested by the
data on the coexistence curves of simple gases. Guggenheiml3 showed
that the gases Ne, Ar, Kr, Xe, N, and O, obey closely a law of corres-

2 2

ponding states of the forms
bl 2P, T AL Tl T T (6)

with B = % . In earlier work on COQ, Michels, Blaisse, and Michels
found that the coexistence curve near the critical point could be
fitted by (6) with the index p = 0.357. In a very careful study
of xenon, Weinb;rger and Schneiderl4 obtained data which obey accurately
the relation (6) with a nonclassical value of the index B near the
critical point. Analysis of their measurements indicates that

p = 0.345 % 0.015
which is not inconsistent with a value of exactly %.

While it is possible that measurements taken much closer,than has

been done,to the critical point may still yield the classical value %
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The accurate experimental measurement of the isothermal
compressibility of a gas near its critical point is not easy. The
: ; 16
experimental results, (e.g. those of H.W. Habgood and W.G.Schneider "),

however, indicate KT diverges more sharply than a simple pole, i.e.

B

(L) # B =pox Ty 1) (8)
X 2
i | (/1) - 1 . ;
with ¥ greater than 1.1.
One of the theories based on Taylor series expansions is the
Landau-Lifshitz theory of the critical point.17 Their assumptions
are that the conditions
gp.
2
P
0 (10)
oV
and
3
a P
E— ) < © (11)
oV

hold at the critical point, where V is the molar volume. Introducing

the notation t =T ~-T., v=V -V they expand (aP/BV)T ass

B c’

@) = At + B (12)

for small values of t and v.



a1

Equation (12) may be integrated to give, for the

equation of any isotherm

P = -=Atv - %—BVS + flt) (13)

To solve for the values of vg and v, of saturated vapor and saturated

t

liquid in equilibrium, they use the two conditions

By = pg: (14)
where Y is the chemical potential, and
B. = F . (15)

Equation (14) is used in the form:

| 1
(dp = év(ap/av)t dv = 0 (16)
¢
9
where .S means the integral along the transition curve from a
4

state with one phase to a state with the other phase. Evaluating

equation (16) using equation (12) gives

1 2 2 E 4 4
T = - =
SAt (vg vL) * 3 B(vg vl) 0 (17]

Equation (15) combined with equation (13) gives

1 3 3 3
At (vg 5.7 % 3B (vg - VL) = B (18)

Simultaneous solution of Equations (17) and (18) gives

+ = B 19
L% & (19)
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i,
v = - (-3At/B)® or vf = -3At/B (20)

and

i
vy = *+(-3At/B)¥ or v2g = -3At/B (21)

Thus, Landau and Lifshitz predict that along the coexistence curve,

v and v, should be equal and opposite, and that

at temperatures TC’ - L

vf and vé should be equal and proportional to -t = TC = T,

Analysis of the experimental measurements of Edwards and Woodburyll

show that the predictions of Landau and Lifshitz are 1in fault. Neither for
the vapor nor for the liquid is the curve of v2 versus (-t) a straight

line. The graph of vg s, ol against -t should be a horizontal line

L

through the oriéi? if the equation vg + vL = 0 were true. The experimen-
tal results are a clear contradiction of the Landau-Lifshitz prediction
on this point.

In order to overcome the difficulties met by the Landau-Lifshitz
theory when tested by experimental measurements, Edwards and Woodburyll

modified the Landau-Lifshitz theory. Thus expanded

oP Z 2
—  — =
(6V T At + By + Giy + Bt (22)

and stopped after reaching the second powers in t and v. Following the

same procedure as that of Landau and Lifshitz they get the results:



N S

¥ + e %t (23)
a4

- e L 3t2 02 D 3Att=

AT 2B —2 - E - T (24)

4B
8 SO g% . - D A
........—g = — (——5 — E)t 4 E (25)
-3T 4B

Analysis of the results of Edwards and Woodburyll shows good

agreement between the equation for Vg + VL and the experimental points
up to 110 mdeg. from TC' As regarding the volume-temperature curves
better agreement than was reached at with the Landau and Lifshitz

theory. But this expression leads to inconsistencies when applied at

points away from the coexistence curve.

Tisza and Chaselg, to overcome these difficulties, at least

partially, suggested interchanging the role of the variables N and V,
(N: number of particles). Instead of considering a closed system with N

fixed and v = variable, as was done in the Landau-Lifshitz theory

g o<t

and its modifications by Edwards and Woodbury, they consider an open

system with V fixed and p = g'variable.

The analog of equation (12) is theng

2

VoG B, = B, = a1 % Bt F . (26)
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By a treatment exactly parallel to that of Landau and Lifshitz in

reference 17, they find,

: 3
b oo — o regien == - 3 2
P P B ™ L (3at/p) (27)

This expression fits as well with the Edwards and Woodbury results
as thelr four -parameter expression.

Mistura and Settezo extended Tisza's expansion so as to

include second order terms. They write

1 .B%E

L e G o 2 2
= (E’Z)T,V = (ap == ok b BT Migk & 44

(28)

and by-developmeﬁt exactly analoguous to that of Landau and Lifshitz in

reference 17, they ebialn,

2
- N 2 A 5 3a L
S e = = - 2 29
F 2p “[ (452 Ei) B ] e
where the negative sign is for the vapor and the positive for the
liquid. According to this law the coexistence curve must be symmetric
about a rectilinear diameter whose equation is
= Tr) = gL YBR (30)

Considering these results, better agreement with the experiment is

reached at than when the two terms expansion of Tisza was used.
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Griffiths, however, pointed othl that if such an expansion

as that of Mistura and Sette exists, it in itself and of itself
precludes the possibility of any infinite singularity in C , at

the critical point. His argument is as follows:

If one differentiates with respect to temperature the equation

0 A S)
. = = [a-%p—]T

), (1)
(where S is the molar entropy), the result,
2
Ty = 5 eCv) (32)
2 ‘p op {1
0T
may be integrated along the line of constant temperature T>TC as
shown in Fig. 4 to obtain
a2
e G, (pes T) - p G (% T) = -TJ- (—‘*) dp
52 Pc 53 |
= T(p - p.) (& e =~ 1 (b - p) =) dp (33)
}% p'ﬂ‘ P07y

% %
where p 1is a density near to but not equal to p.. Since Cv(p sl

2

and (gT L ) x are smooth (presumably analytic) functions of temperature
P

e =%

*
for T > T, the temperature at which the p 1isochore intersect the phase

boundary, one concludes, in particular, that they are finite and bounded
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Fig. 5.--Phase boundary in the p,T plane. The path of
integration in (33) is shown by the dotted line.



- 23 -
T i
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T Two phase
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for temperatures above and including TC' Thus 1f Cv is to diverge

to infinity as T approaches TC above the critical isochore, both

integrands in (33) must diverge in contrast with (28) which implies

3
that (a L) approaches the constant value § .
aT2 ap

This result is not unexpected since the van der Waals equation
of state, Landau theory of second-order phase transitions (Chap. XIV
of reference 17), etc., lead to simple jump discontinuities in the
specific heat. Since Moldover and Littlefsz2 measurements of Cv in
He4 near to the critical point suggest a singularity similar to that
observed at the )\ point, there remains some doubt as to the significance
of the parameters a, B, etc., used by Mistura and Settezo in fitting the
data of Edwards and Woodburyll for the coexistence curve., The originalll,
and more recent analysis of these data suggest a coexistence curve which

9,23 8 dlenci parabOliC24 at the tep. This result is net

is parabolic
directly related to whether there is or there is not an infinite singue
larity of C_ at the critical point. Equation (28), however, includes more

information than the shape of the coexistence curve, and this is why 1ts

validity is questioned.
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Griffiths proof breaks down if the expansion in (28) is
terminated after the second term, as was done by Tisza and Chaselg,
since then the required singularities in (33) could be provided by
the second temperature derivative in the remainder term. However, it
1s not even safe to assume the expansion can be carried out this far.
Griffith521 1llustrates with a simple example taken from the class

of "homogeneous functions"® di scussed by Widom.25

- 1
b = wo(T) + fatp’ +5p> + cpt° Re [id A ]2} (34)

where “o(T) is the chemical potential along the critical isochore; Re

means the real part; 1 = V:E; a, b, ¢, and d are positive constants.

The coexistence curve, defined by vanishing of the expression in the

curly brackets, is parabolic and Gv as a function of T along the critical

1sochore has a logarithmic singularity plus a superimposed discontinuity
25

at the critical point. It may be verified that no expansion of the

form (28) terminating after the first two terms is valid for (34).
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Thus, in conclusion, if, as is now believed, singularities
occur at the critical point, the whole expansion procedure is ques-
tionable, since the coexistence curve cannot, in principle, be
represented asymptotically by a Taylor series in the density about
such a nonanalytic point.

Euckingham26 discussed the nature of the singularity to be
expected at the critical point of a 5ystem which could be said to
have a "classical™ critical point in what he called the "zeroth
order" approximation. He showed that the specific heat diverges
logarithmically. He obtained a first order approximation of which
the preliminary results lead to a coexistence curve different from
the classical one, which is a quadratic relationship between the density
difference between the two phases and the temperature difference from
the critical temperature. The coexistence curve resulting from
Buckingham's theoretical derivation is:

dp = 2w e (-t Plntf% . (35)

or, equivalently,

(88)>

- IinAp

et (36)
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Buckingham26 suggested the use of the natural variable

X = (PL g pgl{bL T pg} E':i!.,-t.rajr*c:l52£jr pointed out the usefulness of

this variable:

(1) x ranges from 1 to O as T ranges from zero to T.

for any substance.

(2) There is equal symmetry using either the density or

- OPE R |
the molar volume, since x = i\ Pq = E .
S LR

(3) While for the customary use of the quantity S

& 2a pd»QpC as a function of (TC - T), the slope of the "rectilinear
diameter," differs from substance to substance, so that the similarity
of the coexistence curves may be obscured by comparing experimental data
in that matter, the use of x removes entirely this effect of the "rec-
tilinear diameter.”

(4) We can plot x| against T without previous knowledge of TC
0T p, OT VC. In fact TC may be determined by such plots.

Using this variable the expression for the asymptotic coexistence

: 26
curve 1s

at. (37)
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But this is not suitable for comparison with experiment because
of the spurious jump at x = 1. An expression with the same

asymptotic form, but with the correct limit at T = 0 is,
2
X

1 - Iknx

at.

This expression (in which the coefficient unity multiplying
Anx is arbitrary) has been compéred by Edward524 with his measurements
for the coexistence curve. He also compared his measurements with the

analytic relations,

xz-mt (38)

and x3 ot (39)

He found that the nonanalytic relation

2

. .
1 = Bax g (40)

is the best asymptotic form, fitting well above 0.96 TC.
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The Critical Exponents and Quantum Deviations

A. Theory
The critical exponents a, B, ¥ have been defined above.
The exponent b i defined in the following relations
P -P P T=T1 (41)
I c-' = ]r.p pcl, Tl
Some experimental evidence (see section B, p. 32) tends to
indicate that the critical exponents characterizing the 1iquid-gas
phase transition are markedly different for the light substances He,
H2 and D2, when compared with the results for the heavier elements
Xes Rry Aoy NQ’ O, and Ne. 1In particular, while the coexistence curves

2

of Xe and 002 may be described accurately over a wide range of T

approaching TC

by
(b, = p,)/%; = D1 - /1)

12,114,442

with B lying in the rarge 0.33 to 0.36 > the apparent value of B

(e.g. on a log-log plot) for He3 and H94 seems to increase to values in
> 24, 27 -

the range 0.40 - 0,50 when T/TC > 0.98.; . Similar changes towards

"van der Waals - like" behavior appear to take place also in the other

critical-point exponents (¥ and Y° for the compressibility above and

below T, Blga)e 7 2 If we assume for the moment that the experi-



=

ments are correct in indicating this difference then we must look for
a parameter which measures quantum behavior. It is quite reasonable
to assume that the different behavior of the light elements is due
to the quantum-mechanical dispersiongo in the position of the molecules,
which occurs when the kinetic energy of the molecule is comparable to
its effective potential energy. To give this statement some quantitative
substance a discussion of the law df corresponding states is helpful.
Considering first the classical problem, as formulated by de Boer.Sl
Assume the interaction between the molecules was given by the
potential energy (@ (r). We can apply a law of corresponding states if
for different fluids
@) = Af(z/¢) (42)
where f(r/o ) has the same form for all fluids, that are not necessarily
only monoatomic, but behave as molecules with a spherical potential field
@ (r), given above, as for instance hydrogen, deuterium and nitrogen.
For such fluids, however, the additional assumption that the vibration

and rotation of the molecules are not influenced by the position of the

neighbouring molecules, should be made. Then A and w are the characteristic
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energy and length for the fluid in question. We may compare different

fluids by using the reduced variabless

i T/ 4 V*:V/Nq"’ g B = Be* /i (43)

Since the potential energy function (42) determines all of the statis-
%
tical properties of a classical fluid, P should be the very same
* x

function of V and T for different fluids as long as quantum
corrections are unimportant. The values of the critical reduced
pressure, temperature and specific volume are found to be nearly the
: ; 32
same for the heavier fluids.

The kinetic energy, however, is important in quantum statis-
tical mechanics. If a particle is localized in a volume of order ¢ 5
it has a kinetic energy of the oxrder
}12 m gt (44)

according to the uncertainty principle. The size of the quantum
correction can be estimated by comparing (44) with the typical poten-
tial energy A. The ratio of these two energiess
¥, 2

)

(A = h2/m ot A (45)

$s a dimensionless measure of the importance of quantum effects in



W

*
the liquid-gas transition. As A becomes larger than unity

4
(in H., He and Heg) the critical reduced pressure, temperature

2!

and volume deviate from their classical values.32

B. Experiment
Moldover and Little22 measured the specific heats of He

and He4. Kadanocff et al32 fitted the results of Moldover and Little

to the formula

- &

C = ae€ + b foxr T > T, (46)
-a '
= a* (=€) + bt fer T < I,
€ = 2
where (T TC)/TC (47)

and a, a', b and b! are adjustable parameters. a4’ then lies between
0.0 (logarithmic singularity) and 0.2 and a between 0.0 and 0.3.32
This conclusion, however does not include a possible perturbation due
to gravitational effects. According to a calculation based on the

33 . 1 :
Landau theory ~, using the data of Edwards and Woodbury ", a 1% density va-

riation might exist in this experiment for € <E§}:10_4. This could

cause a rounding of the specific heat peak.
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The critical exponent B was measured by Edwards and Woodburyll

for He4 by using a Jamin interferometer. They measured the index of
refraction of a "slice" of Helium 1 mm thick and from this determined
the density using the Lorentz-Lorenz = equation. The correction to

this equation near the critical point has been estimated to be neg-

S
ligible using a theory of Larsen, Mountain and Zwanzig .34 The results

of this experiment have been fitted to many analytical expressions.llalg,20,24

Unfortunately, this experiment does not permit an unambiguous conclusion

about B. By varying Tb the assumed range for the critical region within

reasonable limits, it is possible to have B between 0.40 and 0.50.32

The results of recent measurements by Roach and Dougla5535 are that

B = 0.35 + 0.0l for 4 x g

(€ ) € 2 % 10-2. They measured the
dialectric constant of helium between two plates and obtained the density

using the Clausius-Mosotti equation, Edwards6 has repeated his measurements,

-+
They evaluated corrections to the Lorentz-Lorenz equation, due to long-range

density fluctuations, using Yvon's statistical-mechanical theory of the
refractive index, together with the Ornstein-Zernike asymptotic form of
the two-particle correlation function. For argon, with experimentally
reasonable values for the numerical parameters, the correction is smaller
than one part in 104,
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and his most recent result is that B = 0.37 + 0.02 for 2 Xx 1 e (-€) 4152.
Thus it appears that p is about the same for He4 as in the classical gases.
The coexistence curve for He3 has been determined by She:u:‘nwurmz'7

by measuring the pressure as a function of temperature using a constant
volume bomb with 23 different densities. The pressgre—temperature rela-
tions are nearly linear, and are extrapolated to the known vapor-pressure
curve to obtain temperature-density data. This method has the advantage

of giving the entire shape of the PVT surface in the critical region and

not only B. Furthermore, the effect of gravity and the infinite compres~

sibility is avoided since no part of the fluid is at the critical point.

However, the extrapolation to the vapor-pressure curve is questionable,

since it is not known definitely that the isochores (constant volume)

continue to be linear in the immediate neighborhood of the critical point.g2

o2 1

Kadanoff et al,  Iitted Sherman‘s27.data tar 2,5 X 10_29((-€)< 2.5x10
with p = 0.36 + 0.02. Since Sherman's published dat327 include only two
data points for (- &) ¢ 2.5 x 10_2, Kodanoff et al. did not feel justified
in estimating B in this region. However the data suggest a possible

increase in B towards 0.5.32
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Fisher23 proposed an explanation for the apparent dependence on
of B which was noted by Sherman. He suggested that the variation of B
might reflect the behavior of a system in which quantum corrections are

not very large. The value of B for large €, i.e. far from TC will be

-

then classical B = = , while near the critical peint, the more delicate

quantum effects are important and B changes its value to that characteristic
of a quantum system.
This apparent dependence on € of B seems questionable in view of
4 : 35 x
the results for He obtained by Roach and Douglass, They found that B
*
is independent of A , the quantum correction parameter, over the range

0.06 < A € 2.6 (Xe to Hed), so that p would have to change very rapidly

over the range 2.6 ¢ N ¢3.1 (He" to He>) to explain the apparent '

B = 0.48 in Heg.
The coexistence curve for hydrogen has been determined by the

isochoric method,Sé and the data can be fitted with g = 0.36 + 0.01 for

2

€ > 10 °. There is an indication that p becomes larger (=0.50) for

541£f£2 but this might be due to the effect of gravity.
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Considering now the exponent“{ for the isothermal compres-
L 21 €% 44 -
sibility. From Sherman's compressibility data ¥ = 1.09 + 0.05.
/
Below T Yis evaluated along the two branches of the coexistence

C

curve. This yields two different Y values:

[

¥él 1.00 + 0.05 (gas)

¥, = 1,184 8,10 (1iquid)
These values of ¥ are obtained from derivatives of PVT data, so they
necessarily have large ﬁncertainty. Also uncertain are the size of
the critical region and the extrapolation procedure to the coexistence

curve. 1In view of these difficulties one must conclude that a definite

measurement of Y probably closer to the coexistence curve and for smaller

values of € is required.32

The shape of the critical isotherm is characterized by the exponent 8 .,
Sherman27 interpolated his data to the critical isotherm to obtain the
density as a function of pressure and found b= .4 + 0.2. Chase and
Zimmerma%gmeasured § more directly by measuring the dielectric constant
of He3 as a functien of pressure at T = 3.324°K, Then using the Clausius-

Mosotti relation to find the density, they determined $=3.5 * 0.1, Ihelr
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data indicate that the coefficient A in the equation
B = 4 - b '

(=~ B/l = Al = gl (48)
is twice as great for the high-density fluid as for the low-density
fluid. This difference between high and low density is also seen
in Sherman's determination of YLand Yé. The shape of the critical

isotherm for H,. has been calculated from the data of Johnson, Keller

2
; 37 A (8 G
and Friedman™ by Widom and Rice , who found 8 = 4,2, However, these

29, which therefore may

data required a long extropolation to find §
be unreliable.
In conclusion,-there 1s no strong'indication that the quantum

fluids behave differently from the classical fluids in the critical

region,
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Difficulties Encountered in Measurements in the Critical Region

Measurements in the critical region are difficult to make.
This is true for all fluids, but it i1s especially difficult to perform
experiments in the critical regions of fluids with very low critical
temperatures like HeB and He4.

One of the problems to be faced with in such measurements is
that the system is usually very susceptible to minute amounts of
impurities. A further complication arises from the large heat capacity
of a fluid near critical conditions. Equilibrium times become very long
near the critical point as a result of this, necessitating waits of
perhaps days before it is reasonably certain that equilibrium condi-
tions have been attained.32 For example in the measurements of

5

Bagatski, Voronel and Gusakl of CV for argon near the critical

point, they had to wait 5 - 6 hours for each measurement to reach
equilibrium, continuously stirring the liquid in the calorimeter.
Failure to do this leads to nonreproducibility of the data. The
time found necessary to attain equilibrium near T, for measurements

C

on CV of Oxygen by Voronel' et al39 was 3 - 4 hours if the liquid is

= 08 .
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simul taneously mixed. Amirkhonov and Gurvich40 measured the heat-
capacity of water-phenol solutions through the critical region with
and without stirring in the calorimeter. Careful temperature measure-
ments in the calorimeter indicated the presence of large temperature
gradients when no mixing occurred. It 1s suggested that the decreased
heat transmission throughout the solution is a result of the experimen-
tallylobserved increase of viscosity of solutions near the critical
point which would result in a decreased intensity of convection.
Moreover, near the critical point one must contend with the
extremely large compressibilities. Due to the weight of the fluid,
only a very narrow range of vertical height achieves critical pressure
at one time in a sample bomb: (theoretically of course, only a single
horizontal plane of the sample could be at critical pressure at one
time). Therefore, in a PVT measurement what is measured is the average
condition of the fluid. Unless special precautions are taken, this may
be quite different from the critical condition, and can lead to a flat
41

top in the coexistence curve ~, (liquid-gas density difference as a

function of temperature. One of the most elegant methods of dealing
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with this was devised by Lorentzen41’42,'who used a long vertical

tube as this cell and measured the density of the fluid as a function
of height near the critical region by the refraction of parallel light
beams passing through the cell.

To obtaln satisfactory results in such measurements, temperature
control is critical. In some of the experiments involving the critical
points in fluids, the data do not seem to settle down to its asymptotic
critical behavior until ¢ = (T - TC)/Ib gets smaller than 1072, A tem
perature control system must be able to maintain and reproduce temperatures
to perhaps one part in 104 of Tb in order to provide meaningful data over
a two decade range in &€ within this region. Since this control is most
easily achieved near room temperature, the most complete data are available
- 304;ODK)?2

for the classical gases Xe (TC = 289.6°K) and CO, (T

A

The difficulties encountered when dealing with helium, at the
critical region, apart from the usual problems of gashandling at low
temperatures, are due to the lack of a suitable cryogenic liquid that

can be kept at the critical temperature of He4.
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So far, most of the research investigations at low
temperatures made use of the dielectric constant8’9’35 orT
the refractive indexll of the helium isotopes. The densities
are then obtained from the dielectric constant by means of the
Clausius~Mossotti relation, or from the refractive index by
means of the Lorentz-Lorenz equation. In both cases the po-
larizability is assumed to be constant. "To what extent is the
polarizability dependent on density and temperature?" is a ques-
tion which Kerr and Shermanlo attempted to answer. They reported
a deviation in the polarizability, of the order of 2% in compres-
sing to the critical density. This ought to be accounted for when the
experimental values of the dielectric constant or the refractive index
are to be used to obtain density data.

The method suggested in this thesis for acquiring PVT data
has the advantage of being a direct method. The volume measurements,
made by a magnetic technique, require no use of equations which assume
constant polarizability. Therefore, the problems of correcting for the
deviation of the polarizability does not arise in this case. Thus, by
making measurements with such an apparatus, the validity of the optical

and dielectric methods can be checked.
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The Apparatus

An apparatus was constructed for PVT measurements in the
critical regions of He3 and He4. The sample is contalned in a
bellow (Fig. 6 - part 1), the pressure in which is to be measured
with the help of a mercury manometer (see Fig. 7) connected to the
bellow and a Texas Instruments fused bourdon tube gauge (Fig. 7 -
part 14) connected to the space outside the bellow (Fig. 6 - part 3).
The temperature is to be monitored by means of a germanium thermometer
(Fig., 6 - part 7) glued to the cell which surrounds the bellow (Fig. 6 -
part 4). The volume measurements are to be taken by observing the
inductance of a coil (Fig. 6 - part ) which changes with the posi-
tiom ef & ferro%cube (Fig. 6 - part 2) inside it. The ferroxcube
is glued to a disc soldered to the bottom of the bellow and thus
changes its position according to the volume of the bellow, The
necessary low temperatures are obtained by means of a liquid helium
cryostat (Fig. 7 - part 10). Cooling of the sample is achieved with
the help of a regulated flow of cold through a copper rod (Fig. 6 -

part 18) from the liquid helium in the cryostat to the pot. A heater
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(Fig. 6 - part 9), which is carefully designed, controls the
cooling to the desired temperature. The heat flow from the
top of the cryostat is eliminated by a vacuum shield (Fig. 6 -
part 11 and 14), which is cooled in the same manner as for the
pot, The main parts of the apparatus are discussed in more
detail below,

1. The Bellow and the Cell that Surrounds it

The bellow is that part of the apparatus which contalns
the sample of fluid on which the PVT measurements are to be
made. It is a flexible box of 12.5 mm length, 12.5 mm outside
diameter, and 8 mm inside diameter. It is a Servometer Corporation
electro—deposited“type nickel bellow. Of its advantages is 1its
retained toughness at very low temperatures, its negligible hys-
terisis, its absolute leak tightness and its ability to withstand
a net pressure of two atmospheres. Fig. 6 illustrates the main
part of the apparatus, which includes the bellow. The bellow is

connected via a very narrow stainless steel capillary of inner
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diameter 0.172 mm and outer diameter 0.35 mm, of length 33 cm,
soldered to a copper capillary of inner diameter 0.600 mm. The
purpose of using the copper capillary is the large heat conduc-
tivity of copper. By protecting the copper capillary from the
cold gas stream with wool, it is kept at room temperature. The
temperature of the lower end of the copper capillary can be
checked. This allows us to make accurate corrections for dead
space. The copper capillary is connected to the gas handling
system which contains the mercury manometer and through which
He gas is pumped into the bellow. To the free end of the bellow
a brass disc with a little rod in its middle is soldered with

“ piece of
soft solder. To this little rod a/ferroxcube is glued. The
ferroxcube is of 4 mm outside diameter and 11 mm length. The
ferroxcube is surrounded by a coil whose inductance can be
measured by means of an AC Anderson bridge. The temperature

dependence of the ferroxcube has to be accounted for by measuring

+he inductance of the coil as a function of temperature only,
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repeating with different differential pressures over the bellow.

The coil is separated from the walls of the copper cell, to which

the bellow is soldered by soft solder, by a teflon spacer. This

helps to hold the coil firm in its position and to minimize the

eddy currents which may form in the copper walls. The copper pot
surrounding the bellow is to be filled with H94 to provide the pressure
required to keep the net pressure on the walls of the bellow less than
two atmospheres. Increasing the pressure in this pot reduces the
volume of the bellow, while the volume of the dead space remains
constant. At the critical point, where the compressibility is infi-
nite, the change in the volume of the bellow can still be observed,
even though the pres;ure remains constant. The part of the copper pot
which is on top of the bellow is a separate chamber to be filled with
liquid hydrogen. This chamber is connected to a hydrogen reservoir

via a stainless steel capillary. This capillary is enveloped in another
capillary of a larger diameter and the space between them is evacuated.

With the additional help of two copper radiation shields soldered to

the outside capillary near to the top of the pot, the non-blocking of
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this capillary 1s ensured. The blocking of the capillary due

to the freezing of hydrogen could be a problem. The copper

cell is surrounded by a copper vacuum jacket which serves as

a radiation shield. Soft solder was used for soldering all the

capillaries. Woods metal solder was used in soldering the liquid

hydrogen pot to the pot which surrounds the bellow. Woods was

also used for soldering the top of the vacuum jacket while its

bottom was soldered with hard solder,

2. Germanium Thermometer

As is seen in Fig. 6, a germanium thermometer is glued to
the side of the pot which surrounds the bellow. This is a Texas
Instrument glass éncapsulated model with two platinum leads, the
shorter of which is glued to the body of the pot. The germanium
thermometer is useful for its accurate, reliable and rapid measure-
ment of temperature between 1.0°K and 40°K and for its good reproduci-
bility. At liquid He temperatures, thermometer resistance is about
2 K ohms or more., At room temperature its resistance is about 10 ohms.

The reproducibility of this kind of thermometer is better than +0.05% T.
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The germanium thermometer is to be calibrated against the

4
He vapour pressure between, say 2°K up till just below T., for

C!
example till 5.10K. Then the thermometer is calibrated between

14°K and 20°%K against the H. vapor pressure. (The hydrogen 1B

2
placed in the chamber above the bellow.) Interpolation is then
used for calibration of the temperatures in between., The error

due to interpolation will not exceed 0.5 - 1 m°K per 0.1°K of
interpolation.

The temperature is to be measured by measuring the resistance
of the germanium thermometer connected to the cell, the temperature
of which is assumed to be equal to that of the bellow., The resis-
tance of the germanium thermometer is measured with the help of a
Keathley 150 AR micro-volt ammeter and a D.C. bridge with very

special resistance boxes. (Electro Scientific Industries, type DB62.).

3. Temperature Control System

In Fig. 6 two stainless steel discs (parts 17) are soldered
to the bottoms of the vacuum jacket and a copper box with hard solder.

The copper box is in good heat contact with the pot that surrounds the
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bellow, The stainless steel discs are each of 2 cm diameter and

0.25 tm thicknessf- They are soldered to two copper rods (Fig. 6 -
parts 18), in the case of the disc soldered to the bottom of the
copper box with hard solder, while in the case of the other disc

with soft solder. The copper rods are about 37 cm long and have

1 cm diameters. The copper rods are immersed in the liquid helium
bath, and serve as heat dissipators. The rod which conducts heat
from the pot that surrounds the bellow is soldered with soft solder_
to a thin-walled stainless steel cylinder (Fig. 6 - part 20) which

is soldered at its other end to the vacuum jacket. This cylinder redu-
ces the heat conduction from the vacuum jacket to the bellow surroun-
dings. The cross-sections of the stainless steel discs and copper
rods were chosen to be of value large anough so that the heat supply
through the capillaries from the top of the cryostat is balanced by
the heat dissipation in the liquid helium bath. Because of the large
difference in the heat conductivity between copper and stainless steel

at low temperatures, most of the temperature drop will be through the

stainless steel discs. The copper rods will not have much difference

-
The stainless steel parts that were used in the already built apparatus

are of 035 cm diameters and 2.4 cm length. More careful calculations
show that these dimensions are not sufficient for heat dissipation. When

the apparatus is to be used, these parts should be replaced by discs with
the dimensions suggested in the text.
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in the temperature from one end to the other. This eliminates
the effect of the height of the liquid helium level in the rate
of cooling, which otherwise might be affected by how much the rods
are immersed in the liquid helium bath.
The calculation for the heat input and the heat dissipation
is discussed belows
Using a log-log graph of the heat conductivity of stainless
steel versus temperature, the heat conductivity of stainless steel was

found to be:

A, = 0.000617 2l for T in the range 1 - 18%K
X, = 0.00263 274 o7 T in the range 18 - 70°K
lS = 0.00485 TO'60 for T in the range 70 - 300 K

The rate of heat transfer is given by the formula

: 15
& — :§= i
Iy

where Q is the rate of heat transfer, A is the corss-sectional area, L 1is
the length of the heat transferring element, X is the heat conductivity and

T is the temperature.
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Applying this relation to the heat transfer through the

largest capillary in the system, which is soldered to the vacuum

jacket, and through which the significant portion of heat is

transferreds
18 70
g = f‘( § o.000617 T2 ar+ § o.00263 %7 ar
3 18
300
+ j 0. ebdss T - dT)
70
18 17
A .745
= = T
: 0.000617 (2 577 T 0.00263 (T~ 745)1"1
2 18
300
+ 0.00485 ( ) phab
70

&

= L 2T = 30

& (27,5

The length of the capillary = 60 cm,

The thickness of the capillary = 0.025 cm.

The mean radius of the capillary = 0.375
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A = 0,025 (88 v8.875)
= 0.0589 cm2
= 0.05820x D . ooapi weidids

This amount of heat should be dissipated through the stainless
steel disc and copper rod. Since most of the temperature drop occurs
in the stainless steely rod, calculation of the heat transferred
through it is discussed neglecting the temperature drop in the

copper rod:

3
§ = 2 | emesely T A
=
3
.k ey 2.0
L 4
1.3

[

A
T (0.0027)
The radius ef the disc = 1 cm.

The thickness of the disc = 0.25 cm.

AR = 3.14 cmg.
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Q 505 X 0.0027 = 0.0234 wattis
0,034
T = e

Thus there is sufficient cooling to get rid of the heat

transferred through the capillariesX

4, Gas~handling System

A vacuum system was constructed, using an oil vapor diffusion
pump (Edwards, model E02) backed by a rotary pump (Edwards, model ED75).

The minimum pressure that can be arrived at in the system is 1 x 1075 mm

mercury which is satisfactory for our purpose.

The temperature of the He4 bath can be reducéd to about 1.2°K
by the help of a three-inch central pumping line. Thilis temperature
allows us to cool the sample in the bellow and outside it as low as
desired for calibration. The temperature of the sample being controlled
by the heaters described above.

When Heg is to be used as the sample, it is pumped by a rotary

pump (Welch, duo-seal model 14025), which is equipped with an oil seal

_%_
There is, moreover, additional cooling by the cold gas stream.
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to prevent air from leaking in or H93 from leaking out. The‘He3
cylinder is mounted on the pump which can be connected to the in-
let of the mercury manometer, through which the He is transferred
to the bellow,

When He4'is to be used as the sample, a He4 cylinder, with
a:mﬂhningvélve,is connected to the inlet of the mercury manometer.
The uée of a pump with the cylinder is limited to Hes since it is
much more expensive and it is wished to pump it back to its cylinder
after all measurements have been made on it.

A sketch of the gas-handling system is shown in Fig. T« Ihe
pressure inside the bellow is measured with the help of the mercury
manometer shown in the figure. An opening to the atmosphere adds
one atmosphere to the pressure of one branch of the manometer when
necessary. This branch is to be 150 cms long so that pressures of
about 3 atmospheres (when opened to atmospheric pressure)can be
maintained. The three glass chambers (Fig. 7 - parts 11) are to be
calibrated for their exact sizes with an aceuracy of 0.01 ml., Their

sizes are around 200, 300 and 500 ml.
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The pressure in the space outside the bellow is read
using a Texas Instruments fused quartz bourdon iube gauge with
a range of 13.6 atmospheres.

The main part of the apparatus is now ready to be used.
We encountered many problems in its construction. The apparatus
had to be designed to stand the large drop of temperature Irom room
temperature to liquid helium temperatures. This was quite difficult
to achieve, for leaks kept appearing, necessitating resoldering,
and sometimes rebuilding of whole parts of the apparatus. Moreover,
at times, it was quite difficult to locate some of these leaks.

Unfortunately, time did not permit taking any data before this

thesis was written.
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Fig. 6.=--The main part of the apparatus:

bellow

ferroxcube

space outside the bellow
copper cell

ceil

teflon spacer

germanium thermometer
ligquid H. chamber

2
9,10 heaters

oL IR o B T U TR

11 vacuum jacket

12 capillary leading to H. cylinder

13 radiation shields :
14 stainless steel capillary

15,16 capillaries leading to He cylinders
17 stainless steel discs

18 copper rods

19 copper box

20 stainless steel cylinder
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Fig.‘T.—-Gas—handling System

1 bellow

2 ferroxcube

3 geil

4 liquid H2 chamber

O caplllary leading from the bellow
6 capillary leading from H2 chamber
7 capilllary leading from space outside the bellow
8 wvacuum jacket

9 copper rods

10 1liquid He cryostat

11 glass chambers

12 mercury pot

13 1nlet to the mercury manometer

14 Texas Instruments manometer

15 manometer

16 small known-volume valve
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