—
953
AMERICAN UNIVERSITY OF BETRUT

FIBONACCI SEQUENCES MODULO m

By

Agnes Andreassian

Approved:

Advisor

/fﬂw‘ﬁ ) F/M%OL

y Ullllber of Committee
(\/)\ nasa r\’\ﬁ\ A J-L'

Member of Committee

¥emrber of Committee

Date of Thesis Pressntation: F-Qg. 5~_L [ 7968




FIBONACCI SEQUENCES MODULO m

By

Agnes Andreassian

Submitted in Partial Fulfillment for the Requirements
of the Degree Master of Arts
in the Mathematics Department of the
American University of Beirut
Beirut, Lebanon
1968



FIBONACCI SEQUENCES MODULO m
By

Agnes Andreassian



CONTENTS

Page
INTRODUMON Se SIS0 NRECedOCRRC000e0RROIEORSIROANDRBRABO RO RAR: 1
MERI -E‘.SIC FA.CTS PONBI0OB 0B EREsRsRenOe BBt sROr s Bodan 4-

Preliminary Results Concerning Fibonacel
Sequences

Lengths of Periods of Fibonacel Sequences
Module m

CHAPTER II - NUMBER OF SEQUENCES OF A GIVEN LENGTH cevevesseess 34
The Problem

Moduli of the Form p® Where p = 2 or p a 10x ¥ 3

Moduli of the Form 5°
Moduli of the Form p® where p = 10x + 1
Composite Moduli of the Form Trpzi
Summary
REFERENCES «0eccccccesssccssssesssscscesssasssossscsstesscasssss 00

mn .......l.....'...‘.l......'..l.l.‘...'.‘.l........... 61



INTRODUCTION

The Fibonaccl numbers are named after the thirtReenth century
mathematician, Leonarde Pisano. In his work, Liber Abacci, he proposed
the famous rabbit problem which is stated in the following form:

"Someone placed a pair of rabbits in a certain place, enclosed
on all sides by a wall, to find out how many pairs of rabbits will be
born there in the course of one yesr, it being assured that every month
a pair of rabbits produces another pair, and that rabbits begin to bear
young two months after their own birth," {1

Listing the total number of pairs of rabbits at the end of each

month produced the following sequence of numbers:
11, 2, 3, 5, 8, 13, 2, 34, 55, 89, 4, 233, 377}

This gave rise to the recurrent sequence called the Fibonacci
sequence defined by up = 0, u; = 1, and u, = W, .1 + W,_oe The numbers
in the sequence are called Fibonacci numbers.

Many other Fibonacci type sequences can be produced by starting
with any two integers a and b and using the same recurrence relation,

Thus, general Fibonacei sequences are of the form
.’ b’ a +b’ a +2b, 2“‘\"3b, 33+5b’ s8c

which may be defined by fy = a, f) s b, and f,, = £ 1 + £, 2.
We can show by mathematical induction that fj = w,_; & +u, be
It is clear that f; = b = uya + ujb. Assuming that the formula holds
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for all positive integers less than n, we have

fn-2 ® Une3a -+ Up.2b

and
fnl = W2 * upb
But
fn = fha1 + fn_z = (un-z . o un-a)! * (“n-l + un_z)b
and so

fn = Up-18 + upPe

Hence the formula holds for all positive integers n,

Also the recurrence relation used to define Fibonacci sequences
(ifn% can be used to extend the sequences to terms with negative subs-
cripts. Thus f_; = f3 = fo, f-2 2 fo = £.3, fu3 = fu1 = fo2, ete.
We can show that f_, = («1)? (u, ,q8 - upb)s It is clear that this
is true for n « 1, Now assume that the formula holds for all positive
integers less than n, We have f_ .- = (=1)P=2 (uyq8 = un_gb,)
2 (=1)® (up.12 = up.zb) and £ 12(=1)""1 (upa = up-1b).
Since f_, » f_, o ~f_h, 1 We obtain

t,ze (D% - (1" u ] - b[(=1)? uy_pm(-1)2"2 tge1l”

or

£ 58 () (ugey )= b D™ (ap.p + wg)l
or
fup = (=1)%(u, , 18 = uyb)e
In particular if a = 0 and b = 1, this becomes u_, g(-1)°+1u.n.
Using this result we see that the formula for f_, is a special case
of f, = u,_18 + uyb where n has been replaced by =n.
Now suppose a general Fibonacci sequence is reduced modulo m,

using least non=negative residues, It is sufficient to perform the
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division for two consecutive terms and then work directly with the
remainders using the same recurrence relation.

When we divide by m, there can only be m possible remainders,
and twe remainders in a given order determine what happens in the
rest of the sequence. Since m quantities can be paired among
themselves in m2 ways, there can only be m® possible pairs in sequence.
So we will eventually arrive at a pair that we had before thus
resulting in periodicity of the sequence, Now, for any Fibonacei
sequence there are many values of n which give fy., n ® fy and
f

renyl ®fr s
will be called the period of the sequence mod m, It follows that

1 (mod m)s The smallest value of n satisfying these

all other values of n satisfying these congruences will be multiples
of the period.

Let k = k(m) denote the length of the period of the
Fibonacci sequence ju,| for which uy =z O and uj « 1. The lengths
of the periods of the general Fibonacci sequences depend on a and
b as well as m, and will be denoted by h = h(a,b,m). Since
f, = up-18 + upb, fn repeats after k terms. Hence h(a,b,m) is a
divisor of k(m).

Our problem is to determine the number of ordered pairs (a,b),
with 0 <a <m, 0 <b < m, that produce the various possible values
of h when reduced modulo m.

In Chapter I, basic material relewant to the problem is presented,
including preliminary results concerning Fibonacci sequences and what
is known asbout the lengths of the periods of Fibonacci sequences
modulo m., Chapter II discusses the problem for meduli of different

forms.



CHAPTER I

BASIC FACTS

In the first section #»f this chapter a number of lemmas concerning
Fibonacel sequences are presented. These results are used in the second
gsection to establish the properties of the lengths of the periods of
Fibonacci sequences modulo me The lemmas and theorems are numbered
for easy reference and proofs are given for completeness.

In writing Chapter I, the paper by D.D, Wall, "Fibonaccl Series
Modulo m" KZ} has been used as a guide and his methods of proof have
been used in establishing properties of the lengths of the perlods of
Fibonacel sequences modulo m, There are a number of other mathematical
papers that deal with the properties of k(m), the period of the
Fibonaccl sequence %nni withuye Cand u; = 1 [3 - 10_]. These have
not been used directly but are of interest. The preliminary results
concerning Fibonacel sequences can be found in various forms im all
elementary texts discussing Fibonacei numbers [1] , [11] .

General Fibonaccl sequences with f5 = a, f;7 @ b, and £, = f 7+ %55
will be denoted by jf;| » The Fibomacel sequence with uy = Op u; = 1
will be denoted by 3u,{ . Another special Fibonacci sequence, called
the Lucas sequence, will be denoted by |vy,’ where vy = 2 and v = 1.
The letter p will be used to represent a prime and e a positive integer.
k 2 k(m) will denote the lemgth of the period of {un% reduced mod m,

-‘-
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The length of the period ofi fni will in genersl depend on a and b
as well as m, and will be denoted by k g h(a,b,m). In some cases,

if 1t depends only on m we will write h g h(n). "The length of

| fn [mod m" will mean the length of the period of (£, | when reduced
mod m.

Consider now the Fibonacci sequence f e ’xroduced modulo m, using
least non-negative residues.

Lepps 1: If the greatest common divisor of a,b, and m is g,
let a = ga', b = gb', and m = gn' so that a',b',n' are relatively
prime, then h(e,b,m] » h(a?,b',n'),

Broof: If h = h(a,b,m) is the length of the period of | rn}
mod m, then fy g £, and £, , g £ (mod m). Also if h' = h(a',b*,m')
1s the length of the period of i £r }nod m', then f!' g £} and
fli,q v f] (mod m*). But f, e gff, £, = gff, f; = gf{, and
fn+1 = gff 1, and so gf} 3z gff) and gff  , z &f] (mod gn'), Hence
£f g £} and £}, ; 3 £] (mod m') and thus h(a®,b%,n')| h(a,b,m).

Also fjy g £ and £}, :f] (wod u') imply that n'| (£} - £1)

and l'i(fl'lu 3 * r'l) and so gl'fg(f;l, - rc')) and gn'lg(fl'l,+1 - ri).
Therefore gff: g gf) and gff, ; 3 gf] (mod gn*), or £, « £, end
f,0, 1810 (mod m)s Hence h(a,b,m) ; h(a',b* ,m*), Therefore
h(a,b,m) = h(a',b*,n'),

Thus in the discussion of h(a,b,m) we may assume a,b,m relatiwve-
ly = prime. This will be denoted by (a,b,m) 2 1, In the rest of this
paper, undess stated explicitly, it will be assumed that (a,b,m) = 1,

The Fibonacci formulas given in the following lemmas will
be proved for terms with non-negative subscripts, However, the proofs

can easlily be extended to show that they apply for negative subscripts



as well,

Legma 2: Any two consecutive terms in in,& are relatively
prime,

Proof: Since u, and u; are relatively prime, we can use
induction., Assuming that (“n-l’ u,) = 1 we shall show that (un,um_l)g 1
Suppose “"'n and g\un+1 where g>1. We have u, .7 = u,_;+u,. Hence
g\un_l and (un_l,un) # 1 contrary to assumption, Hence (u,, w.q) = le

Lemma 3: u, . o= Wy, Uy VY, Y

Proof: We shall use induction on te For t = 0, we get
Up 2 Upy] Ug YU, Uy & Wy because ug = O and u_; = 1. For t g1,
the result is u, , 1 = uy 1 U] ¥ Uy U = Uy, ) since uj = 1 and
ug = 0. Now, assume that the formula holds for all positive integers

less than t, Therefore

Uy te2 ® Uny ] Uge2 T Yy Uga3

Up =1 2 Uny] Yl + U Uge2
But

Uyt T U a2 *Un ptel 2 Uny1(gay vugay) Fup(uggug )
and so: Wit T Y] U YUp Uy for all positive integers t.
Lemma 4t The subseripts of the terms for which u, 2 0 (mod m)
form a simple arithmetic progression,
Proof: If u; 0 and uj; & 0 (mod m), using the formule in
Lemma 3, we obtain

“1+j'u1+1“j+“1“j-1;0 (mod m)
and

u = u},_l ui_j + uj ui_j_l where 1= j.
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Henoe uy , y uy gy 80 (mod m)s But by Lemma 2 (uj, us41) = 1 and since
uy; 30 (mod m), (Ilj+1,l) = 1. Therefore uy_; g 0 (mod m) »

We have shown that the subseripte of the terms for which g, = 0
(mod m) are closedunder addition and subtraction, They form the
non-negative terms of an ideal and so are of the formn g xd. Since
the sequence is periodic, uy is not the only u, 0 (mod m], and so
d >0, That is, n 2z xd for x 2 0,1,2,,.. and some positive integer
d 2 d(m) gives all n for which u, £ 0 (med m).

legme 5t If r and s are the roote of 12 = x+ 1, then

& - "

reg

u, =

Proof: We shall use induction. Since the formula is true
for n g O and n = 1, agssume that it holds for all positive integers

lese than n, Hence

-2 _ =2 L1 | o=l

Y2 # reg "t “p-1 ® —-I‘_:-E—
Therefore ad -l n-2 n-1
My 8 Uy + g e )= li e )

But r and 8 satisfy the equntionxz:erl and sor2:r+1
and 6% g s + 1, Multiplying the first by r®2 and the second by
s2"2 we obtain r® = Pl pP"2 ang 0 .n-l_'_ an'z. Hence

lemmg 6: If r and s are the roots of x* = x + 1, then

n n
Vp2T % 8,

MI '.ha"'o'ro-l- ’O-Z.M'l’r'{‘lgl:ztri.fl- ZJ—i:l.

We shall use induction, Assuming that the formula holds for all positive
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integers less than n, we have
Vo2 ® P2, g0*2  gng Vp.l = o=l =1,
We find by addition
Vp 2 Vpao + V1 3 (=24 1) 4 ("2 4 ) 2 PPy P

as wag shown in the proof of Lemma 5.
Lemma 7: v, = ol-a un(Kng + av:'l) where X 1is an integer,
Proof: Since r:l-;zs_ and a=1-=§-{-5_,r-a= V5

— Uein
and the result of Lemma 5 can be written as un.lirg..ﬂ. sing
this and Lemma 6 we may solve for r” and s” in terms of u, and v,

We obtain
r® u st(v,, +{5 up) and an:é(vn - V5uy)

Hence
n

o 2 Pt o [y +ru% Sy [Supl

By using the binowial theorsm snd combining similar terms we obtain

7
o ELL L

LI 2l=a unllui 4+ av:-l)

where K 1is an integer.

Lewna 8: % sy S 2"(!\1 +aunv +v‘) where K is
an integer,
an +1 an +1
Proof: We haveun, . , =& }5! o Using the values

of r® and s® found in the proof of Lemma 7, we obtain

20+ B) o o 5 0) %2720 (B)wym [Bup®)
5

Ygn +1 =



or

“ant+1 ® z':lt';; i[('n +[Fug)ee(v,- 5 un)‘] +J?[(1n + V5uy)®
¥ v, = G%).] }-

By using the binomial theorem and combining eimilar terms, we find

L (3-1}/2 - - —— ¢ J/2 ) _a-]
Uppyq 220 ijm()s ;hvmﬁs % Yn
or. a (3=1) /2 3 (8a(-1)I(1= 5

and so

Uil = 2"(Ku§ +au, ';-1{_ v:)
where K 1is an integer.
Lemma 9: v, 2 vy, 9ty
Proof: We have vy = r” + &" = ?E-.- (r® + &%) (ree)

and so

v s ;l-; { n+l -t 1_ ra(ru'l . ‘n-l)].

But
-rg=-%(1 +J§j(1' \I'r_g) z 1,

P +u

Hence
(a+1_ a+ly o nel | nel
v :—LE(r s )+ (r s ) ni1 " Yhare

Lemma 10: The congruence x> & x + 1 (mod p) has a double
root only when p =z 5.
2 - 2 <2 2
Proof: If we have x“* = x = 1 3 {x = ) 2 x* = 2rx + r
then 2r 3 1 and r° & -1, Hence 4r2 3 1 and 4r° 5 =4. Subbracting
we find 52 0 and so p =2 5.

Lemna 11: u, = A (3}5(.1-1)/2
J odd

Proof: We know thatun,-,xs—s—;g when rlLIz—JE
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and s z 1=/5, Substitating, using the binomial theorem, and
combining similar terms we obtain:

7}-[(1——5) -(&= )J Zr[z()rs + 20575 +2D52 5+ |

or.
- l-n <= 5(3-1)/2
w2 222+ 50 + 520+ een [a2 i D5 :

n=1

Lommg 12: u,, w1 Uy = (=)
2
Proof: For n z 1, thls becomes u, = u, . ug = (-1)0
which is true, Assuming that the formula holds for some positive

integer h -~ 1, we have
2

Uy - Uy Upap = ()77
We know that Uni1l ® Yy uyy and w o wu =W,y and so
%2 e M “nz - (u, + “n-l)“n_l ) 9% “n2 “ Y41 Y -1
s “n(“n - _q) - %-12 su, 0, - “n-12‘ Using the hypothesis,
this becomes
-(-l)n.zj

2
un. - un & 1 unol
e n-l

w2 - w w2 (51)

1]

Lemma 13: The number 5 is a quadratic residue for primes of
the form p 2 10 x + 1 and is a quadratic non-residue for primes of
the form p 2 10 x * 3,

Proof: By the law of guadratic reciprocity {12, p.68:| , 1f p

is an odd prime, p f 5, then

(gl (g) < (o1) (p=1) /2 « (5-1) /2

5 1
(;) - (‘g) I(-l}p.‘ = ('g) ‘
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This gives the following possibilities:

L 1tpzl(mds), B @ -1
2, If pg2 (mod 5), (g):(%):—l
3. 1t pZ3(mod5s), ()a(:-1
bo 1tp34(moas), B :(h:2

Since p is an odd prime, this implies

(g) el if and only if p 3+ 1 (mod 10)

and
(g) s =1 if and only if p & + 3 (mod 10),

Thus, 5 is a quadratic residue of primes of the form p = 10 x * 1 and

is a quadratic nonresidue of primes of the forms p » 10 x * 3,

Per i L 8 o_m:

The results in the first section will now be used to establish
the properties of the lemgthe of the periods of Fibonacecl series modulo
m,

Theorem 1: If m > 2, then k(m) is an even number.

Proof: Suppose k 1s odd; let k = 2x + 1. By working both

ends to the middle we then have for mod m:

-u.k?_-o-;no

W
L]
[
11}
[
-
=4
[

2uy+u 29

{
4
_+.
o
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(-n* ey = (D) gy T Yoy 150 Ty

[ ] [ ] L] L] L L] ] - - - L] . - L ] L]
X=2 -
(=1) ux +2 = ux-1
X-l -
(=1) Bl ® U

Now, if x isoddn . Fu, butu  , =su +u, g andsou, 20

and 1f x is even -u, ., Fu bat u 5 zw g ru, end so u_, , 8 0;

x=2
and since (=1) U Lo

for which u, 3 O (mod m) are mltiples of sone positive integer

- u,_y We have againu, , % O, Since all n

d = d(m), we must have dt(x-l) and so d\(2x - 2); also d|k and so
@)(2x + 1), Hence d\(2x + 1 = 2x + 2) and 0 d = 3. Therefore
uyysu3s230 (nod m). Thus the assumption that k 1is odd gives
mae 2, Hence if m > 2, k must be even,

The next two theorems give upper bounds for k(p) for primes
of the form p w 10x ¥ 1 and p = 10x + 3, However no nontrivial
lower bounds can be given for k(p).

Theorem 2: If p 2 10x *+ 1, then k(p) | (p = 1).

Prooff By lemma 10, we know that the cengruence x? 3 x + 1(mod p)
where p is of the form 10x * 1 cannot have a double root, Thls
congruence is equivalent to (2x = 1)? 3 5 (mod p)., By Lemma 13, #e
Inow that 5 is a quadratic residue for primes of this form, Hence
thig congruence has distinct roots r and s, By extending Lemma 5 to
congruences (mod p) we have u, § z:_:__:f (nod p)o

Let g represent the least common mmltiple of the order
of r (mod p) and the order of s (mod p), Hence r€ 21 and s&€ 3 1(mod p).

Now,

u, g2 8- "¢ . 2 axb e 6% "8 3w, (mdp)
+8 re-s . res res
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+g+l n+rg+l n+1l g n+1 g
Mu'ﬂ.i-' *lirn r.g! resg

rn-l-]_ +1

e |un+1(ll°dp)-

Thus u (mod p) repeats after g terms and so k(p) | g. But since
ptr and pks, rP°1 g 1 end s?1 4 1 (mod p) by Fermat's Theorem.
But g 1is the least common multiple of the orders of r ahd
s(mod p). Hence g | (p=1). Therefore k(p) l (p=1).

Theorem 3: If p = 10x *+ 3, then k(p) | (2p + 2) and
k(p) g 0 (nod 4).

Proof: By Lemma 13, 5 is a quadratic nonresidue of primes of the
form 10x *+ 3 and hence 05) # -1 (mod p). But (g) g 5(P1/2 (4oq p),
and so 5(PV/2 3 .1 (nod p),

By Lemme 11, u, s 22~ Tt* ) 5(3°0 /2 1¢ we 16t n = p,
we obtain uy 3 21°P, 5(p=1)/2 (g) (lod p) because for 1< j < p, |
(3 ®) % 0 (mod p)e But 2P"1 3 1 (mod p) by Fermat's Theorem,
Hence up & 5"0(1"1)/:2 & =1 (mod p).

Now, i we substitute h = p +1, we obtain u ; #2°P [(P +1

P*“l) 5(9‘1}/?} (mod p) because for 1 < j< p, (P, f 1y g0 (mod p).

Since 5 (p=1)72 ¢ 5 1 and 2P"! 3 1 (mod p), we have LI '1[(p+1
3 (P*bl)] 50 (mod p). Hence, for mod p, u, , z iy +uy 18 =13 -

“p+3’“p+1‘*“p+2"13'“2

§=-28«u

u su 5 +U 3

P+4 P+ p+3

L] L - - . L] L] a L]
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and so0
Yp+1l ® Yp+(p+l) F-u, el
Uap+2 Wpe(pr2) ¥ Upal FVp EO
Uapr3 T Upa(pey) Ty, ¥y EL
Thus

“2p1‘2§u0 and n2p+3!u1

indicating that u, (mod p) repeats beginning with ugp .. Hence
k(p) | (2p + 2).

This also shows that k(p) & 0 (mod 4), for otherwise
k(p) | (p+1). Thus up,1 @ O mnd u;, , 3 1 which implies that
up 2 + 1 contrary to uy, 8 -~ 1 as proved above,

Theorem 4t If t 1is the largest integer with k(p%) = k(p),
then k(p®) = pe't x(p) for e > t, In particular if t s 1, then
k(p?) # k(p) so k(p®) = p®1 k(p).

Proof: The proof is by induction, The case where p 1is an odd
prime will be discussed first, and then the proof for p = 2 will be
given meparately.

(1) Let p be an odd prime.

If o = t, we have k(p¥) = p¥ k(p) which is true by hypothesis.
Now we wish to show that k(pt*1) = p! k(p) for 1 any positive
integer. Let us first show that this is true for 1 = 1. That
is, we must prove k(p**1) = pk(p).

Let u be the first term & 0 (med p%). Hence k(pt) = nx for
some x, We know that k(pt™1) # k(pt), Since k(p?) Ik(Pt+1),
we have k(pt*1) = ck(pt) where c >1, Hence k(p**1) = enx with ¢ > 1.

We have u,, m O and u,, . ® 1 (mod pt). We will show that



k(p**1) pnx. By Lemma 7, Uy ® 2l-s n.n(Kun2 + avn"l). If we

replace a by p and n by nx, we obtain

Uonx = 24P upy (Kupy® 4 PP )

Sines pt \ and p \(Iunx2 + pvnxp“l), we have pt* 1| “-nx(x"'nxz + PV, P-1)
and so u_ . &0 (med pt*1), YNow, by Lemma 8, u, ,q = 2 "‘(Kun +au,vp” L vi)e
Putting 1 for a and nx for n we obtain

Eu <
u = . * Tnx
nx+1 2

- Vnx -
And sou 50 andu, ;51 (med p*) tmplies 8% 31 (mod pt).
Hence (_'_g;)p 71 (mod pt*1) K_IJ, Pe 50] » Using again the formula
Ugn 1 = 278 {Inﬁ +aunvnn'1+ v,") and putting p for a and nx

for n we have

Yonx 41 = 2P [%x (Kuy,, + P’nxp-]') + 'upl °

pt \unx and p \(Ku,,Jc )

this gives uw, . ., 2 (-—-)p (mod p**1), And so Upnx+1 3 1 (mod i

Thersfors since upn, #0 and u . ) # 1 (mod p**1) k(pt*1){ pnx,
But k(p**1) 2 cnx with ¢ > 1. Thus cnx\pnx, or c\ p and since
¢S1, ¢ a p» Therefore k(p**1) o pnx 2 pk(Pt) = pk(p).

Now, let us assume that k(pt *1) 2 pl k(p) for all positive

integers less than or equal to j, That is, we assume

k(p®*1) = pk(pY 2 pk(p)
k(p* 72) = pk(pt*1) » p2(p%) = p%(p)

k(p**3) 2 pk(ptv2) 2 p3x(pt) = pk(p)

L] - L] L] L] L L] Ll *

k(pt*J) = pk(pt *I-1) 5 plk(p®) = plk(p).
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Ne must prove that
k(p¥ T3 1) o pk(p¥+d) 2 pI T k(pY) « pI+T k(p).

Let u, be the let term 3 0 (mod p®+I*), Hence k(pt*J-1) 2 nx
for some x, Therefore k(pt' H) . pk(pt 4"’"1) s pnx, Since
k(pt*J) \k(pt"'j"'l), we must have k(p**J*1) - pnxy, for some y.

Since k(p®*J) 2 pnx, we have
Upnx 2 0 and Unpnx+1 & 1 (mod pt*+J),

In the formula u, . ., = 2"(!;,12 + ooy vp® i v,®) put 1 for a

and pnx for n. We obtain

2
s . Sapny ’r%mz +Ypnx

end so lﬂgﬁ 31 (mod p**J). Henes (!E“I’-‘)p 31 (p**tI*Y) 13, p.5§l.

Now, in the ssme formula if we put p for a and pnx for n, we

obtain
-p | p-1 P
up2“+l 2 2 ‘.um (Kupnx+ P¥onx ) + s ].
Since
ptr | Umnx @M P \(Kupnx ¥ PYprixP™ ),
this gives v
P t+j+l
= mod
upzu ‘1 - ('%‘) ( P )
and so
21 mod t +j + 1 -
“Pznml : ( P )

Also, putting p for a and pnx for n in the formula

we obtain
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w2, 80 (moa pt+i+ly,

Therefore
k(pt*3 *Y | pPnx, or pnxy |pPnx, or y|p.

Now, either y 3 1 or y = p. We will show that if y = 1, we arrive
at & contradietion.

If yal, k(pt*3*1) 2 pnx, and so

Uy 80 @nd w81 (mod pt+ J+1)

Now elther
) (@) p*H | w,

or
() p**d fu,

(a) 12 pt*+J [up, u, 20 (mod p¥*J) and so uy, 80 (mod p*+J).

(8 1f p**J fun we will show that u_, is the first term 3 0 (mod p*")

and not 2 0 (mod p* I 1), Let g be the greatest common divisor

of u, and v,. By Lemma 9, v, s u,, 7 +u,.; and so g\un and

8 |ugy1 Fona1e Bubup, g muptouy and 8o g 2uy 4 upe

Since g | u,, we must have g\ 21 ;. But by Lemma 2, (u,.;, uy) =1,

and so g}g u 1+ Hence g \ 2, and so g 1is elther 1 or 2,
Putting p for a in the formula u,, = 21=2 un(!{ulzI 4 av;"l)

we obtain u, 1 21"Pun[xun2 & pvnp-l). g '1’1\ u, and

P \(Kunz +pwnp'1). Therefors p®+J ‘“pn' but since (w,,v) =1

or 2, pt+3+1 jl’“pm

To shew that u

Now p

pn 18 the first term 3 0 (mod p* ¥J), let r be

the first subseript such that u. 2 O (mod p**J), Then r \ pn, But
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u. 8 0 (pt+j'1) and so n | r, and since u, ’ 0 (mod pt+Jd), n $ T
Hence r = pme

Sinilarly since u, 1s the first term 20 (mod pt+J) and
not 2 0 (mod pt +i+1), w5 is the first tern £ O (od p*’ Irly
and not 5 0 (mod p*¥J *2), Hence for this value of n the terms
Upp, for 2 30y 1, 2, o.o are the terms 30 (mod p®*J) and LT
glves all terms 3 O (mod pt+i+l),

Now 1f k (p** J +]') » pnx then pnx = p°ns for some value of z,
And so for this value of s,x-p:andunx:u.mz. Butupmlo
(nod p**d); hence uy, 3 0 (mod pt+ ),

Thus, in Both cases we have shown u,, % O (mod pt+J), We will
now show that w, . 31 (mod pt*1J),

We have

Putting p for a and nx for n in the formula

Uan 41 ® 20K 24 auv &7l v @),

we obtain
Yomx +1 ® 2°P [“nx(xunz + p'mtp-l) + Vx| -
We have
pt*i\u  and p | (Kup, + A
and so

pt+i+1| w, (Fu + pvnxp'l).

v

This gives u,. ., & (_ga)p (mod p**I* 1Y), Hence (:%-x)p =1

(nod p**J *1), fTherefors, since p 1is an odd prime !%-! 11

(mod pt*J) 113, Pe 50] « Also, putting 1 for a and nx for n in



Yanyl 2 2"8 (Ku.n2+ nunvn"'1+ v,%)

we obtaln 2

+ + v
Ynx+1 ® 2

Hence % o4
Unx+1 ¥ 5 (mod pt*J).
This gives u,, .7 21 (mod p“rj,’.
Therefors k(p®™ j)l nx, This is impossible because k(p®™*J)

e pnx. Thus y 2 1 leads to a contradiction. Hence y = p, and so
k(pt "I 1) o pPnx 2 pk(p® ) 2 pIt1 k(p).

(2) For p s 2, we first obaerve that k(2) = 3, k(29 = 6, and
k(23) = 12, Therefors k(2%) ¢ k(2); moreover k(2%) = 2k(2) and
k(23) = 2k(2%) = 2%(2). We have thus verified the formula

k(2%) = 2°°1 k(2) for ¢ 2 1, 2, and 3, Suppose the formula holds
for all positive integers less than or equal to j, That is, we

assume that

k(22) = 2k(2)

k(23] = 2%(2%) = 2%(2)

L L L] L L L

k(2)) = 2&x(23°1) ¢ 201 x(2).

We wish to prove that k(29 "1 ; 2x(29) & 27 x(2).

Let u, be the first term i 0 (mod 23*1), Therefore k(ZJ'l) = nx
for some x. Hence k(2J) = 2k(23"1) 4 2nx. This gives uy. = 0 and
Upyyq # 1 (mod 2J), We will first show that k(2 1) | 4nx.



.20-

By Lemma 3, up . ¢ = w, j Yy + Uy ug.)e Putting 2nx for n
as well as for t we obtain u,; =uy,, (u, ) +uy, 5). We hnow
that 2J| Uy e Sinee (uy ., uy .. q9) =1 end (nan.l’ w,. ) sl
Unnx 41 and u, .1 are both odd and so their sum is even and
2 \“me-l. + Uy, 1. Hence 2J +1\ Uunxs OF Uyn. 50 (mod 2itY),
Fow, if we put 2nx for n and 2nx+ 1 for t in the formula

2
Wnx+1 % Unx41t “zux2°

2

n2nx+1
#1)| 2

But 2] lupye g =1 and 2|ugy, 1+ 1. Hemee 20*1\wf -1

Mo know that 20 *1\uy 2, Therefors u,,  , Z (moa 2111y,

and s0 u2mc2+-l 31 (mod 29 %1), This gives u;, 1 81 (mod 29 "1y,
Thus we have shown that k(2J *1) | spx. But x(2) | k(29"

and k(2J) » 2nx. Therefore k(2% 1) is either 2nx or 4nx, We will

show that k(2J " 1) . 2nx leads to a contradiection,

Suppose k(2J ¥1) - 2nx, then

(mod 20 1),

Uy # 0 Uonxt1 ¥ 1

Putting nx for n as well as for t in the formula

Up 4 2 Uy, ) Ut Up Upa) p We obtaln my . zuwp a4+ wp ).

Now, either (a) 2J lu.n, or (b) 23 fu.

(@) I¢ 23 |uy, u, 20 (mod 2J) and uy, 3 0 (mod 29).

(b) 1£ 24 f[’un, we will show that again, u %0 (mod 2J). We have
2001 u luyy, g 0 p), 00 2j+1\“nx'nx and 2| vy,. But
(Byxs Tx) = 1 or 2. Hence for j 23, 23°1| u . implies that

22 /\’ Vox+ Since we have 2i+1 \“nx Vnx, this gives 2d \ | -
and 80 upy 3 0 (mod 2J),



This in either case we have shown that my, 3 0 (mod 29). We
will now show that u,, .7 & 1 (mod 2d).
The formula W ® Y%l Y+ U0 ug.) glves u, . g = unxril + unxz
1f we put nx for n and nx+1 for t. Since n, . .4 §1 (mod 23 %1
and un'z 2 0 (mod 29 *1), we have “nxz-bl # 1 (wod 21+1), or
(g * 1) (tpsy =1 50 (woa 29 ). We know that 2/ upyyq + 10
We will show that 22 } ey 1o
Now, sinee § >1,u _ 5 0 (mod 29) tapliee uyy 50 (mod 2%,
1t 22| ugy 1 +1, we have upy 4y ¥ - 1 (mod 2), or wy, 4q %3
(mod 2%), But for mod 22 we have the seguence

0, 1’ 1’ 2’ 3’ 1, 0’ 1’ 1’ 2’ 3’ 1’ 0’ LR 2 L

Thus, gy for y £ 0, 1, 2, ess gives all the terms that are ¥ 0
(mod 27), and Ugy+1 18 always i1 (mod 29, Hence 224 uy, 4q + 1.
Therefore the congruence (u,, .7 +1) (w47 = 1) &0 (mod 2+l
tmpliss u,_,1 =180 (mod 29), or uyeyq 31 (moa 2)).

We have thus shown that if k(24 fl) « 2nx then k(2j) | nx. But
this is impossible because k(2J) s 2nx. Therefore k(2J 1y ¢ 2nx,
Hence k(21 1) 2 inx 2 2c(29) w 2] X(2),

For all p up to 10,000 it has been shown that x(pR) ¢ k(p),
but it has not been proved that k(p?) = k(p) 1s impossible.

Theorems 1 to 4 have given us seme properties of k(m). Theorems
5 through 12 will discuss the relationship of h(m), the period of
{ £,} (mod m), to k(m).

Theorem 5: 1If (b2 = ab = 2%, m) = 1, then h(n) = k(m).

Proof: We know that £, w au, ; + bup, If h s h(m) is the
length of the period of ifn} (mod m), then we have fj, & & and



- 22 -
f,+1 80 (mod m), which may be written as

fh-ugbnh+a(uh_1-1)io (mod m)
and
fa+1~bs (a +b)up +bluy.y = 1) 30 (mod m).
If we consider a and b as coefficlents, the determinant of the

systen is

Dg ab?eaba- 52
| a+b b
Now if (b2 = ab = .2’ m) 2 1, then D 40 (mod m) and so the system has
the unique solution
u, #0 &nd u, , F1 (mod m).

Hence k | h, But also h|k and so h(m) z k(n).

Theorem 6: If p s 10x t 3, then h(p®) 2 k(p®).

Proof: We must show that (D, p®) z 1, Now D 2 0 (mod p) is
equivalent to (2a +b)? 3 5b° (mod p). We require (a,b,p®) = 1, and
80 if D 4 O (mod p) then b § 0 (mod p) becauss otherwise we would have
a 80 (mod p) and so (a, b, p®) ¢ 1. Hence if D 8 0 (mod p), then
5 1s a quadratic residue of p. But p 2 10x¥ 3 and 5 is not a
quadratic residue of primes of this form. Hence p { D, and so
(D, p®) = 1, Therefore by Theorem 5, h(p®) = k(p®).

Theorem 7: h(2%) = k(29%).

Proof: We must have (a,b,2) s 1 and so we cannot have a § 0
and b 30 (mod 2), We may have a # 1 and b 3 1 (mod 2) in which
case D g b2 = ab = 8% 5 1 (mod 2); or we may have one of a or b E1
(mod 2) and the other & 0 (mod 2), and again D = b? =~ ab - 82 31 (mod 2),
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Hence in all cases, 24 D and so (D, 2°) = 1 and by Theorem 5,
h(2%) = k(29).

Eoeorem B: If (b2 = ab - &2, 5) z 1, then h(5°%) = k(5°), and
1£ (b2 = ab = a2, 5) = 5, then h(5%) = £ K(5°).

Proof: The first statement is a direct comsequence of Theorem 5,
In the second statement we have D 3 0 (mod 5) which is equivalent to
(2 +b)? 3 5b° (mod 5)s Since we require (a,b,5°) = 1, b # 0 (mod 5)
and so D # 0 (mod 52), Consider mow the congruences f, = a 0 and
fi, .1 - b 30 (mod 5°), Assuming e >1, we obtain the solution
up # 0 and uy , 1 &1 (mod 5°=1), and so k(5°=1) | h(s,b,5°) and
hence h(e,b,5%) is either k(5®) or £ k(5°). We will show that the

decond value always holds.
D20 (mod 5) implies b z ~2a + 5t

Since k(5) = 20 and k(5%) = 5°°! k(5) we have Jg x(5%) = 4e5°°1,

If we take n » % k(5%) 1in the formuls u, = 2l é (?) 5(1'1)/2

j odd

we obtain -1 .01
o 245" (457 (noa 59).

(5%

e=1
But by Euler's generalization of Fermat's Theorem 243

21 (mod 59).

Therefore
u%“(sa) 2 20405°1 2 (3+5)5° 3 35° (mod 5°).

Now take n = %k( 5¢) + 1 ,or n g 4 5"":L + 1 in the same formmla,

We obtain
- 'l L] e-1
27457 (14457 (mea 59).

ulsk{ 58) + 1

Stncs 24*5° ¥ 1 (mod 5, we get mék(S’)-fl =1 +405°% (mod 5°)s



This gives

. . 5a-l',l.
%k(s')-l n];k(ﬁ‘) + 1

u s 1t %
15&(5‘)' T (mod 59).

Theref:
(il t 3 (-2a + 58)+3+5°1 4 a(14+5°°Y) (mod 5%),
%k(S')
oT.
r%k(j'] 2 34e5% wge5' - a2 (mod 5.),'
- 1 1 e
Ilkts’J i b (=22 + 5%) (L +4°5°"%) 4 a(3+5°"") (mod 5),
ox. 5
' ¢ 3 (=28 + 5t)+ 4t5° - aes® (mod 5°),
%ku') +1
or
2045680 (mod 5°) .

f(se) 41
5
Since these for.lnlu require ¢ >1, consider now the case
¢ wl. We are interested in the cases where D 3 O (mod 5).
Eammnerating all such cases we find h(5) z 4 = ‘%k(S).
Honce whenever D 3 0 (mod 5) we have h(5%) = $k(5%).
Theorem 9: If for p > 2, there exist a, b such that
h w hi(e, b, p®) = 2t +1, then k(p®) 2 4t+ 2.
Eroof: We have

fh - asg by + l.(tlh_l -1) 30 (mod Po)
fpy1 ~bablyy,) =1+ e 20 (mod p°).

Since (a, b, p®) = 1, considering a and b as the unknowns, the
determinant must be zerc, Hence uhz - (uh+l. - 1) (uh-l -1) 80

(mod p®)., Using Lemma 12, this becomes
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(.1}h+“h+l+ o, =120 (mod p?),
@, q + oy 31D (mod p°).

But by Lemma 3, putting n for t we cbtain us, = “n(“zu- 1+ “n-l)
end hence we have %ﬁh sl + (-l)k (mod p®). Therefore if h 1is odd,
vy 20 (mod p*)s Now cinco{ fnf (mod §®) repeats after h terms,
it also repests after 2h terms, Had we started with this condition
ve would heve obtained up, , 3 +ugp.3 21+ (-1)‘2h 2 2 (mod p®). We
bave uy 2 O (mod p®), and 80 ugy, | + Vg ) ® gy, y - Uy F Ay, 1F 2
eni hence uy, , 1 21 (mod p®)e Therefore k| 2h. But for m > 2, k is
even and since h 1is odd and hlk we miet have k 2 2h » 4t + 2,
Theoren 10 If p 2 p® with p > 2 and if k g 4t+ 2, then
kv 2t +1 for some a, b.
Proof: If k(p®) = 4t + 2, we have u;y, |, o § up and u;y, 3 2y
(mod p®). By working both ends to the middle as in the proof of
Theorem 1, but now with k even, we obtain usy, , ¥ = upg (mod p%®).

llcn'ifwelotc-fD!-uzt+1-uﬂ(nodp')and

bafy 8upy=w (mod p®)
ve have

fn 'l (-u2t+ 1" 'Jo)un_l 4 (llgt - ul) U, (mod p®),

fo @ = Upp, ] Upal F U2 Uy = up (mod p®).

Using the formules w, 4 = up ] U4+ Uy Ug.] and u,, = (_1)n+1 Uny
ve may write

fn 2 (1)%F uppi1ep =y

fat41 FW0o-u2t1 2,1 " Y=Y



and
fzt +2 g - u“l = oy 4+ 2 s = 'ﬂlf Uog = fl* Therefore

h |2t +1 and this implies by Theorem 9 that k = 2h = 4t + 2, and
go h @ 2t + 1 for these values of a and b,

Finally we must show that (a, b, p*)e 1. Since a & = Ups 41 20
and b 8 uyy -~ uwy, i£e 2b #0 (wod p) we must have uyy % u; and
Uop el B = Wy (mod p), and hence k(p) = 2t+1 which is impossible
for p > 2,

The following theorem and its proof are gquoted from the paper
by D.D. Wall, "Fibemseci Series Module m" [2, p. 531] .

Theorem 11: "If m = p®, p>2, p ¢ 5, and h 1is even, then
hw ke

. Proof: We use the condition vy # 1 + («1)? (mod m), from
Theorem 10 [Theorem 9 in our paper| , and the relation vy = r” + s"
where r and s are the real roots of the equation x2 s x+ 1, Then,

gince h 1is even, and since rs = -1,
rd P2 30 (zod m),
r2b 420, 4o 2(re) - 4rPesa® 30 (mod w3),
22 224 s g (PPea®? 30 (med w2),

Now r = g is not an integer, but is of the form xv5; and since

p# 5assures 5 3 0 (nod m), we may divide by 5 = (r - s)? to obtain

[(rh- &) /(r - nﬂ 2=u§=o (mod -Z),uh:o (mod m).
Finally u, 8 O and v, § 2 imply up_y & w1 2 1, which is turn
implies h ¢ k ,"

There 1s one step in this proof which dces not seem to follow;
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?h 2 0(mod ). Since

namely the step which esserts that r 2 o 2+ 8
r2h .2 p @23 4(rh 4 o0 - 2) (mod m) end X4 6" - 25 O (nod m),

1t L5 clear that r2 = 24 528 3 0 (mod m), but the conclusion that

1t £5 3 0 (mod m?) does not seem to be justified.

The possibilities for some misprint in the proof have been
investigated, but nothing has been founde We have also written to
the author asking for clarification, but we have not received any answer.
(See appendix)

Even if the proof of the theorem as given is ineorrect, the
stetement of the theorem seems to be true, and we shall assume this
in the rest of this paper., This assumption is used specifically in
the discussion of moduli of the form p° where p = 10x* 1 on p. 44
and on p, 46 as well as in Theorem 12,

Theorem 12: If (s, b, ) = k(p), then h(a, b, p°) = k(p®).

Proof: We know that h(a, b, p®) mist be a miltiple of
h(e, b, p) = k(p) and & divisor of k(p®) = Y k(p) where t is
the largest integer with k(p®) « k(p). Therefore h(e, b, p®) must
be of the form p~¢ k(p®) for ¢ = 0, But in Theorems 9 and 11 it
wes shown that for p 4 2and p ¢ 54if h is odd then ha & and
if h is even then h = k. We know that for p > 2, k(p) 'is even and
hence h(a, b, p) is even. Therefore h(a, b, p°) is even and so
h(a, b, p®) = k(p®), The cases p = 2 and p = 5 are covered by
Theorens 7 and 8,

Theorem 13: If hy = h(s, b, py °1) dcnotu the length of the
period of {f,| (mod P, i) then h = h(e, b, TF pii), the lemgth of the
period of }£,} (mod ~n—p1 %y, da3hh Taah Saibed maliiple of 4 Ky,

n e
Proof: Since tha length of the period ot%t (mod 'Trpi 1

is h, {fn} (mod p;i) repeate after h terms for all values or ie
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But the length of thke period of{r,,g (mod pgi) is hy, and so {rng
(mod p:i) can repeat only after blocks of length ch;. Hence
by | b for all values of i, But {f,] (mod 1 p2%) will repest
efter any multiple of all the hy, Heace h(s, b,jh!‘ p:i) is the
lesst common multiple of the hy. 9

We slso conclude that for any two moduli mq and my such that
(my, wp) = 1, h(=, b, m mp) is the least common multiple of
h(s, b, ny) and h(a, b, my). Or more generally, if m; for 1 a 1,.ce,n,
ave pairwise relatively prime, then h(a, b,i]:ni) is the least common
multiple of the h(a, b, m5) vhere i m 1, oevp M

Now, lst £(n) demote the smallest positive integer, n, for
which u 3 0 (zod m). The next two theorems, which are proved by

Vinson (5] , show the relationship of k(m) and f(m)e

Theorer 14: For n > 2

(1) if £(m) is even, then k(m) = f£(») or k(m) = 2f(m),

and
(2) if £(r) is odd, then k(m) = 4f(m)e

Al so
k(1) « £(1) and k(2) a 12(2).

Conversely, k(m) = 4f(m) implies f(m) ie odd, k(m) = 2f(m) implies
£(n) is even, and k(m) = f(mw) implies f(m) ie even or m = 1 or 2,

Proof: For m 2 1 and = = 2, we verify that k(m) s f(m),
Now suppose m > 2, By Lemme 12, um2 -Upi) U = (=1)n-1,
Putting f(m) for n + 1 we obtain

u?[i}i}. = Yo (m) “f(n)=2 * ('I)f(.) g (“l)r(.) (mod m),

If £(n) is even we have u%(n)-l i1 (mod .n). low by Lemma 5,



ol - and u =1'j+1"!j+1

Tr-8 J+a res

Solving the system for 1-'1I and a'1 and using the relation r+ s = 1,
we obtain

rd = Uy, q = Sug (l-a]uj+ Ui

I"l.'l.j + uj_l

P 4y, " Tu; 3 (1--1-)11:l + uj-l = suy t Uy e

We also have rnj+1 _Jnj+i
Unj+1 3 e ’
or
(r-s)unj+1 . (\'.'uJ + uj‘_l)n . (:smj ' uj-].)n si.

By expanding and recombining we obtain

B n t net
unj+i=t%‘ (t)uj Ui Uy

If we put f(r) in place of J, we have

Une(e) +1 . u;':l:}-l ! (rod =),

Now since ui(m)-l £1 (mod m) we have Yop(m)+ 4 = uy (mod m),
This gives uge(y) # U0 and e 4 1 "u, (md m), and so k(m) | 2£(m).
Also since £(m) | k(m), we have either k(m) = f(n) or k(=) = 2f(m).

Now if f(m) is odd, we have ug(n) .y &l (mod m), Since

m 72, ui(n}-l $ 1 (vod m) and hence u d t1 (mod m), Also

£(m)~1 ’
ng(n)-l g - U (m)=l and so u?‘(u)-l 2*1 (mod m), However,
n;’(.)_l g («1)2 21 (mod m), Now since Ypp(m)s 4 8 “;(m)-l u; (mod m),
this gives ul.f(n} o4 oy (mod m). Thus ¢ (n) 2 u, and We(m) +1 H uy

(mod m), but u ’ul (mod m) for n < 4. Hence k(m) | 4£(m) and
nf{m)+ 1 .

£{m
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£(m) | k() imply that k(m) = 4f(m).
Since the theorem includes all possible cases, the converse
follows,
Theorem 15t Let p be an odd prime and let e be any positive
integer, Then
(1) if 2 4 £(p), then x(p®) = 4£(p®);

(2) £ 4 | #(p), then k(p®) = 2£(p®);
(3) if 2 | £(p) but 4 4 £(p), then k(p®) = £(p°);
(4) (22 = £(2%) and for e >3, k(2™ = 2£(29).

Converssly, if ¢ represents any prime, then k(q®) = 4£(g°) implies
£(q) 1s odd; k(q®) = 2£(g®) implies 4 |f(q) or g = 2 and & =3; and
k(q®) = r(g®) implies 2 | £(q) but 4 } £(q) or q* = 2 or 4.

Proof: If prtl I Up (ghY? then £(p? *1) 2 £(p"), 1If Rt

oo (pn)’
then, as was shom in the proof of Theorem 4, upf(pn) is the first

term whish is divisible by p°' 1 and W (o)

P12, Hence £(° ™1 = pt(p®). It follows by induction that

is nct divisible by

7(p®) = p°f(p) where & 1s some non-negative integer, Hence since

p is an o3d prime, £(p®) and £(p) are divisible by the same power of 2,
Thus in (1), f(p) odd implies that £(p®} is odd, and so the

result follows by Theorem 14,

In (2) ard (3}, £(p®) ie even. Using the formula Une(m) +1

= .0 e - 1p(pe
2wy M (mod m) and putting p® for m, 1 for n and 2f(p) for

i, we obtain “@/2)f(p°)l = Up(p®) -1 - (/22 (p®) (mod p®). But

h/3r(p®) +1
<1)8 +1 u, and so ‘T-l/%'ﬂ?‘) e (=1) P “@/Qf(pq'

u_nl(



- (»®) +1
This gives Bp(p€)-1 ‘tl/?(Pe) = (-1)(‘-/2’ p "(j_/*(p‘) (mod p®).

We have éf(p’) - %p’f(p) where ¢ is some non-negative integer,
Since % p® is not an integer, £(p) 4 %r(p'). This implies that

Uﬂ. /2 (p®) $ 0 (mod p). Therefore ve may divide the congruence

(/3 (o2

B (p0)-1 "1/2e(s®) ¢ () %/appe) 0 P

by nﬁ/¢(p°)' This gives uf(p‘)-]_ s (_1)(1—/?’1'(Pe)+ 1 (nod p®)

Yow in (2) since 4 | £(p), we have 4] £(p®) and so % £(p®)
1s even, Thus

-1 (mod p*)

Ye(p) -1 F
Hence 2 ( )
u =1 mod
£(5%) = 1 ’
s e =
and 80 Lop(p®) 44 T M (mod §®)e This gives L) = Yo and

Wr(pe)+1 2 W (mod p®), and so k(p®) | 2r(p® . But £(p®) [ k(p®)
and k(p®) 7 £(p®) because Up(pe) -1 ? 1 (mod p%). Hence k(p®) = 2£(p®).

Now in (3), Jz'f(p) is odd and so —ir(pﬂ is odd, Thus we have
U (p8)1 31 (mod p®). Thus Up(®) 4 1 Py (nod p®), which gives
up(gey 8% 804 Up(pey,q A Uy (nod p*), Hence k(p®) | £(p®).
But £(p®) | k(p®), and so k(p®) = £(r%).

To prove (4) we can easily verify that £(2°) - k(2% = 6,
Also ne find £(2) = 3, £(23) =2 6, £(2*) =2 12, and £(25) 2 2. We
shall prove by induction that £(227®) 5 2® £(2), We have already -
verified this for a = 1, 2, and )}, Now assame that it is true for
all positive Integers less than or equal to b where b =2, Thus
e(227P) 2 221 £(2) and £(22 ') 2 2 £(2), et r g 2°7T £(2);

thus ne have £(2°TP"1)o r and £(221?) 2 2r,
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Ne have shown in Lemma 2 that any two consecutive terms in

22"‘ b-1

i u, hu'e relatively prime, Now since u, U, is even and

8o both nr-&}, and 1 are odd., Thus their sum, which by Lemma 9

Tl
2+b lu

is v, 1s even, Similarly, since 2 v, 1s even, and sc

2r) 2r

both Rypq and n,, . &re odd and Vo is even, But in the preof of

Thecren 4, it was shown that (un, 7,) = 1 or2, | Hence 2 l v, but

22* v, snd 2‘721. but 22* Vo Tow, by Lemma 3, w44 = Upy 10+ Uplpoge
Putting r for both n and %, we obtainu, =u (ur* 1+ Yy 1) or

. = uw,e Stnoe 2242w tut 227D K u, amd 2 |v, but 224y,

240 |y, but 22727 1) u,  Now, in the formile

we have 2
Woog ? W B4+ Wy TVeoys if we put 2r for both n and t, we
obtain u,. = ¥y Vope Hence, since 2 \ v, but 22* Vo WE obtain the

2+t b+2,.ru

result 22 b+l l Yy and 2 4r® That 1s, we have shown that

(227" 1y 4 2r and £(2°7F 1:)“‘1)"t 4r. Since £(2°7 PT1) must be a

b*l

pultiple of £(2°* ®) = 2r, we rust have £(2212*2) 2 4r o £(2) .

Thus we have established that for all positiva integers, f(22 "
e 222(2), or £(2%) = 2°2 £(2) for e = 3.

By Theorem 4, we have k(2°%) = 22=1 (2), Hence for e = 3,
k(2%) 1 21(2%),

Since the cases in the direct statement of the thecrem
are all=inclusive, the converse fellows,

Theoren L& If p § 2 and k(p®) = 4t-+ 2 then k(p®) = £(p®)
and uy, 4 4 fO (mod p)e

Proof:s Since k(p®) = 4t + 2, 4¥ k(;%). This ipplies that
£{z) must be even because if F£(p) is odd, then k(p®) = 4f(p®) and

20 4 I k(p®), Also, I,zﬂ’ £(p) because otherwiss k(p%) = 2£(p®) and



sgaln 4 | X(5°). Thus 2| £(p) but 4 | £(p), and mo X(p) = £(p°),

The result uyy, 1 § 0 (mod p) follows from the fact
that £(p) 1s even because if up , 1 3 0 (zod p), taer £(p) |2t + 1
which is impossitle.



CHAPTER II

NUMBER OF SEQUENCES OF A GIVEN LENGTH

The Problem:

With a kmowledge of the possible lengths h(a,b,m) of general
Fibonacci sequences Ef’ng (mod m) we are mow in a position to discuss
the number of possible sequences of a given length with 0 < a < m
and O < b <m,

We first note that if we have an oriered pair (a,b) which
glves a sequence of length h when reduced mod m, then there are
h = 1 other pairs in this sequence which could have been used instead
of (a,b) and would have produced the same length h, However these h
periodic sequences are indistinguishable if we consider them as infinite
sequences,

There may of coarse be other pairs, mot found in the sequence
containing (a,b), which elso produce sequences of length h when
reduced mod me But it is clear that the total number of sequences of
a glven length h must be a mltiple of h gnd the number of
distinct sequences of length h can be found by dividing the total
number of sequences of length h by the langth h,

For a given modulus m, there are m possible non-negative
residues, These can be paired emong themselves in n? different ways.
Therefore whatever the modulus, there will be =~ sequences in all,
The number of distinct sequences will depend on the possible values
of h, But the following relation will always hold: If n; represents

-3 -
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the number of distinet sequences of length hy then <, ng hy = n?,

Throughout the discussion in Chapter I, it was assumed that
(a,b,m) = 1. It was shown in Lemma 1, that for the parpose of
studying possible lengths of periods of sequences this could be
assuned, However we are now interested in the number of distinct
sequences of a given length, and so we should also include sequences
for which (a,b,m) £ 1.

First congider the case when the modulus is a prime p, Since
D<a <pand @ <b<p, there 1s just one sequence thet gives (a,b,p)f1,
namely the pair (0,0). This will give one sequence of length 1,

Now suppose the modulms is pz. In addition to all the
sequences for which (a,b,p?) = 1, we cbtain all the sequences for
mod p multiplied throughout by p. We have seen by Lemna 1 that this
does not change the lengthsof these sequences, The following example
L1lustrates this,

For rod 3 we have

By By dinin
0,1,1, 2,0, 2, 2, 1, 0, eee

Thus we have one sequence of length 1 and one distinct sequence of length 8,

Now for mod 3° we have
(1) 0, 0, ...
(2) 0,1,3,2, 3, 5, B, 4, 3,7, 1,8, 0, 88, 7, 6, 4,1, 5, 6 2, B; 1,0,40s
(0,2, 2,4,6,1, 7,8,6,5,2,7%0,7,7 5, 3 8 2,1, 3, 4, 7, 2,0,ee.
(4) 0, 3, 3,6, 0, 6, 6, 3, 0y 4ue
(5) Oy 45 45 8, 3,2, 5,7, 3,1, 4,50, 5,5 1,6,7, 4 2, 6, 8, 5, 4,0,000
We obserws that (2), (3), {5) are sequences for which (a,b,3%) = 1;
(1) and (4) sre sequences for which (a,b,3%) # 1. These correspond
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to the sequences for mod 3; that is, the sequences for mod 3 multiplied
throughout by 3 produce the sequences for mod 32 for which (a,b,8°) & 1.

This can now be generalized, If the modulus is p®, we obtain
in eddition to the sequences for which (a,b,p®) = 1, all the sequences
for mod p®1 mltiplied throughout by p, Thue if we know how to
determine the number of distinet sequences of a given length when
(2,b,p®%) = 1, we can find the total number of such sequences including
the cases when (a,b,p®) 4 1.

The next three sections will be dewoted to a discussion of the
problem for prime power moduli for primes of different forms., We
shall be assuming that k(p?) o k(p) and so k(r®) e p®=1 k(p). As
wvas shown in Theorems 2 and 3}, upper bounds have been found for
k(p). There are many cases where k(p) has this maximum value,

The following table lists p and k(p) for 5 < p < 3000 where k(p)

is smaller than the maximum value permitted by Theorems 2 and 3

[2,3] . Thus if a prime of the form 10x * 1 is not listed ite period
is p = 1; and if a prime of the form 10x + 3 ie not listed its period
is 2p + 2.

Now, if the modulus is composite and of the form m = 'ﬁ“pi'ai
ve have seen by Theorem 13, thet the lengths of the periods for
mod pii for a given (a,b) determine the length of the period for
nod'ﬂ"pi'i for that same (a,b) irrespective of whether (a,b,m) z 1
or not, We shall show later how this can be used to determine the

number of distinet sequences of a given length,

¥odull of the Form p® Where p s 2 or p s 10x * 3:

We have seen in Chapter I, that if (e,b,p®) = 1, then h(2%)sk(2°)



557
563
619
661
677
691

743
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Lengths of Periods Smaller Than The

k(p)
32

I~

=]
RIVERRBBE AR

Upper Bounds for 5 < p < 3000,

P
76l
769
97
809
811
829
859
881
911
919
941
953
967
977
991

1009
1021
1031
1049
1061
1069
1087
1097
1103
1109
1151
1217
1223
1229
1231
1249
1277
1279
1289

k(p)
380
192
228
202
270
276
78
176
7
102
470
212
176
652
198
126
510
206
262
530
356
128
732
96
554
230
812
816
614
410
624
852
426
322

P
1291
1307
1361
1381
1409
1427
147
1483
1511
1523
1549
1553
1579
1597
1601
1621
1669
1699
1709
1721
1733
1741
1789
1823
1861
1871
1877
1913
1951
1973
1999
2027
2029
2069

1216
374

1252

1276
1316
1352

1014
1034

P
2081

2161
2179
2207
2221
2237
2239
2251
2267
2269
2281
2333
2371
2389
2417

2447
2521
2591
2621
2659
2663
2687
2689
2729
2731
2749
2753
2717
2789
2801
2861
2969

k(p)
1044
198

148
1492
746
750
1512
324

1556

398
124
1220
1632
120
518
1310

1776
1792

682
916
1836
1852
164

1230
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and h(1®) 2z k(p®) for primes of the form pw 10x + 3, Now if
(ayb,p®) A 1, then we etill have h(a,b,p®) ‘\ k(p®). Since

k{pt) = p® 1 k(p), h(a,b,®) mst always be a divisor of pe-lk(p).
lente ite possible values are 1, k(p}, pk(p), p?k(p), «.., p®=1 k(p).
Ve lmow that there is always one seguence of length 1, namely when
ewOand b 2 0,

Now for mod p® let n; be the number of distinct sequences of
length p! k(p) where i = O, 1, ..., ® = 1, We will show that all of
the n__, sequences come from cases where (a,b,p®) = 1, We know that
the sequences for which (a,b,p?) £ L are the same sequences as for
xod p*~l miltiplied throughout by p, and these sequences have the same
length as the corresponding sequencss for mod p®~!, Since none of
the sequences for mod p® L has a length greater than k(p®-l)
= p"'2 k(p), no sequence for which (a,b,p®) £ 1 can have a length
of p®1 k(p). Moreover all the sequences for which (a,b,p?) = 1
have leagths of p®l k(p) and so are included in Ngule

We have thus shown that for mod p®*l the mumber of distinct
sequencss of length pl k(p) is given by ny whers L = 0,1,,..,0=2,

Since = nih; = w° where h; are the different possible
dlength: and ny are the corrssponding numbers of distinet sequences
of wach of these lengths, ve must have

a=1
1+ = np k(p) = p*®
i=0
1+ ;é‘: n; pt k(p) = (p°°H)2 4 p?*2,

Subtracting we obtain
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1 pe-l k(p) s PZC . p2.-2 2 p29-2(p2 1)

)
n_‘l,%_n

Now since n,_oy B,.3, ecs, By represent the numbers of the
sequences for which (a,b,pe) £ 1, they corrsspond to the sequences for
mod p®°L. But for mod p®"l, the seguences that have lengths of
p®*2 k(p) are those for which (a',b',p®"l) z 1 where a = pa' and

b + pb', The number of these sequences gives n, . Hence we may

use the formula derived above and obtain n,.3 = -&i%‘%—'—u .

Thus in general for mod p® we have n; = - 3 ; = distinet
ssquences of length pl k(p) for L =0, 1, .va, & = 1, We can verify
that this gives the total mumber of sequences equal to p?®, We have

e=1

. ‘1
< = et - 1) e a2 .
-——’“1“1-1+2130, P——Em—pik(p).ué P (p° = 1),

frie hecomes 1+ (p% = 1) + (p* = PO & ouu + (pR0 - pRe=2) 4 poe,
Thus a knowledge of k(p) enablesus to find all possible lengths
of sequences for mod p® as well as the number of sequences corresponding
to each of these lengths.
Example 1: Let m = 27, We have k(2) s 3, Therefore in
addition to the sequence of length 1, there are nj = Zﬂ%.ll 2t
distinet sequences of length 3. 2l for 1 s 0,1, 2, 3, 4« This gives

4 1 10
atotal of 1 + =, 3¢2% 21 +3(1 + 4 +16 + 64 +256) = 1024 & 210,
i=0

Ixample 2t Let m g 7°. We have k(7) = 16, Therefore in
A (72 -1

addition to the sequence of length 1, there are ny = 1 2 3 7°
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distinet sequences of length 16'-’?:l for 1 « 0, 1, This gives 3
distinet sequences of length 16 and 21 distinct sequences of length 112,

Noduli of the Form 5%

With the assumption that (a,b,5®) = 1 it was shown in Theorem 8
that if (b = ab = a%, 5) 2 1, then h(5°) = k(5°) and if
(b2 = ab = 8%, 5) = 5, then h(5®) m % k(58),

We can show that the assumption that (a, b, 5%) 2 1 is
superfluous in the first case because if {(a, b, 5%) £ 1, then
(a,b) 2 5" where ® < r = e and =0 5 |a and 5\1); hence 5 \bz-ab -a?
contradicting (b° = ab = &2, 5) = 1, Thus, if (b2 = sb = a2, 5) s 1,
then (a, b, 5°) = 1,

28 . p**°2 paire (a,b)

In general, we know that there are p
with (a, b, p°) = 1, Here we have 5°° = 522 pairg (a,b) with
(a, b, 5%) = 1, We shall determine how many of these give

(b2 « gb - 12, 5) = 5, This is equivalent to

b2 - ab - a2 20 (mod 5),
or 2
(22 + )% 3 52 (mod 5))
or.
(22 +b) 30 (mod 5) -
Hence
b3-2a (mod 5),
or
b3 3a (mod 5).

Now if @ 2 1, that is m « 5, it 18 clear that a can take values
1, 2, 3, 4and b the corresponding values 3, 1, 4, 2, Thus there
are 4 pairs (a,b) such that (a,b,5) = 1 and (b? = 2b - a%, 5) z 5.
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If e s 2, that is m = 25, a can teke the 20 values 1, 2, 3, 4,
6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24 and
corresponding to each value of a, 5 values of b can be found;
¢.ge when a 2 1, b may be 3, 8, 13, 18, or 23; similarly when a g 2,
b may be 1, 6, 11, 16, or 21; etc. Thus there are 20e5 3 4052 pairs
(a,b) such that (a,b,5%) 2 1 and (b” = ab = 8%, 5) » 5.

Thus in general for mod 5%, a can take 5% = 5! different
values and corresponding to each value of a, b can have 5°~! values.
Therefore, there will be 5%-1 (58 . 5°°1) _ 52¢-2 (5 _ 1) _ ,.52e-2
pairs (a,b) such that (a,b,5%) = 1 and (b? = ab = a2, 5) 2 5,

Since the total number of pairs (a,b) for which (a,b,5°) z 1
1s 52° = 5%°°2 .14 411 the cases for which (b2 - ab = a%, 5) w 1
arise from thess, the number of pairs (a,b) such that (b2 = ab = a2,5)

¢ 1 is given by

52. - 52!-2 . 4.529-2 . 529 - 5.520-2

z 52 . 52e-1 4.520-1

This is the number of sequences that have length k(5%°). However,
not all of these sequences are distinct. We know that the number of
distinct sequences of a given length can be obtained by dividing the
total mumber of sequences of the given length by that length,

We have k(5) s 20, Hence k(5°) = 51 k(5) = 4+5°. Since we
have 4°5%e-1 sequences of this length, ‘if§§:} = 521 45 the number
of distinct sequences of dength 4.5°,

We have also shown that there are 4+52®=2 gequences with
52e=2

e

(2,5,5°) = 1 of length % k(5®) = 4°5°~1, Hence
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distinct sequences of length 4t§°'l.

Finally there are also the casss for which (a,b,5%) # 1 im which
case h(a,b,ﬁ')\ k(5%), But we have explained that the sequences
mod 5® for which (a,b,5%) ¢ 1 are the same as the sequences mod se-1
multiplied throughout by 5. To see what the pattern is, let us look
at a few simple cases:

For mod 5, there is only one sequence for which (a,b,5%) 4 1,
namely when a » O and b « O, This gives one sequence of length 1,
We also have 5%1 & 50 4 1 aistinet dequence of length 4+5¢=l 2 4.50 2 4
and 51 5 50 & 1 distinct sequence of length 45 u 4*5 z 20, These

sequences are

1, 3, 4, 2, e
0,1, 1, 2, 3,0, 3, 3,1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, c6s
Now for mod 25, the cases for which (a,b,5%) 4 1 are the following:
0, 0y e
5, 15, 20, 10, ..o
o, 5, 5, 10, 15, 0, 15, 15, 5, 20, O, 20, 20, 15, 10, O, 10, 10, 20, 5,.e.

These correspond to the sequences for mod 5, But if (a,b,5%) 2z 1 we
have 5"1 x 5 distinct sequences of length 4+5°=1 = 20 and 501 4 5
distinct sequences of length 4+5° = 100, Thus the total number of

distinct sequences of esch length is given by
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1 distinct sequence(s) of lemgth 1

50 = l L] n n n 4
545026 " " "oon 20
5 n n " it 100.

Now for mod 55, if (a,b,53) = 1 we have 5°"1 g 25 distinct cequences
of length 425°<1 4 100 and 5°°1 & 25 distinct sequences of length
4+5% = 500, The cases for which (a,b,5°) #$ 1 are the same sequences
for mod 5° multiplied throughout by 5, Therefore the total number of

sequences for mod 53 1g:

1 distinct sequence(s) of length 1

50 S1 m , nom

5+5% 2 6 " " " "
545230 ¥ . " " 100
52 .25 m " " " 500

Thus in general, for mod 5% we get

1 dlstinet sequence(e) of length 1
2 21 o " "om 4es0
5450 2 6es0 . L BRPAY
52+ 565 " ' LA A

4use-l
se~1 " " " " 4e5e

se=ly 56=2 gpes50-2
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Example: For mod 56 we have ® = 6, Hence

1 distinet sequence(e) of length 1
5021 " " w450 ey
6050 o 6 " " " " 45220
65 = 30 " v n " 4e52 2 100
6e5° 4 150 " ' L A
653 g 750  m " w45k g 2500
6e5h 93750  m m mom 4e55 4 12500
5527125 " mooom o 4esb 4 62500
iof t ® wh - +

We know that k(p®) is even, and so it is either of the form
4t or of the form 4t + 2,
We shall first consider the case for which k(p®) = 4t.By Theorem
9, k(p®) = 4t implies that h cannot be odd; and if h 1is even then
by Theorem 11, h(p®) = k(p®)., Thus or condition (a,b,p®) =1,
k(p?) = k(p®) = p*~1 k(p).
We know that for primes of the form p s 10x * 1, k(p)l (p-1).
Hence we may write k(p) = 231 wvhere d 1is some positive integer greater
than or equal to 1, Now since =, mjh; = p=°, and for mod p all the
sequences except the case a = O, b = O give (a,b,p) = 1, we obtain,

1 sequence of length 1, and

d(p + 1) distinct sequences of length Edl .



For mod pz, the sequencee for which (a,b,pz) i 1 are those
for mod p mltiplied throughout by p, Since ‘21. ny hy = p‘ and

x(p?) = pk(p) = ﬂ&ﬂl , we have

1 sequence of length 1,
d(p+1) distinet sequences of length Eil , and

dp(p + 1) distinct sequences of length E%EJ- i

For nod p3, the sequences for which (a,b,p3] 1 1 are those for

mod p? miltiplied throughout by p. Since = njhy = p® and
2
k(p3} = -L(éhl}- » we have in addition to the sequences obtained from

those for mod p<, dp?(p + 1) distinet sequences of length 'LZLFD- .
Hence in general, for mod p®, in additior to the sequences
obtained from those for mod p"l, we have dp"]‘(P+ 1) distinet
sequences of length ﬁéﬂl » Thus for med p® we have 1 sequence
of lemgth 1 and dpl(p+1) distinet sequences of length Liﬂazll
with 1 20,1, ,.., 06 =1,
Example: For mod 893, we have @ = 3 and k(89) = 44; that is
d = 2, Hence we obtain 1 sequence of length 1 and 20891e90 or
180291 distinet sequences of length 59_%§§ or 444891 with 1 1 0,1,2,
Bhis gives 180 distinet dequences of length 44,

16020 @istinet sequences of length 3916,
and
1425780 . " "M 348524
Next we consider the case when k(p®) is of the form 4t + 2, By
Theorem 10, we know that h ¢ 2t +1 for some (a,b), Therefore if
k(p®) = 4t +2 = 2;-1 then h 2 2t +1 = %‘} for some (a,b), It was
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shown in Theorem 5, that if (a,b,p®) = 1 and (b2 = ab = a2, p%) s 1,
then h(p®) 5 k(p®). Now if (b2 = ab = 22, p®) 4 1 and (a,b,p®) = 1,
then h(a,b,p®) \ k(p®). We can show that in such cases the only
possible values for h(se,b,p®) are k(p®) or % k(p®). If h(a,b,p®)
is even, Theorem 11 shows that h(a,b,p®) = k(p®); and if h(a,b,p®)
is odd, Theorem 9 shows that k(p®) = 2h(a,b,p®), and hence
h{a,b,®) = & k(p*).

Let us first consider the case for mod p, We will determine
the number of pairs (a,b) for which (b2 = ab = a2, p) $ 1. This is
equivalent to the condition b2 « ab = a% 3 0 (mod p))

. (@ - a)? ¢ 5a% (mod p).

Since 5 is a quadratic residus of primes of this form, x* 8 5 (mod p)

has two solutions + c. Thus, the condition is squivalent to

2b =~ ag t ca (mod p},
or 1t ¢
be (F37) a (mod p) )
or
by & ra and b, & sa (mod p)
where

,!L_;_G and s 8 -]‘—g-—g(nodp).

Note that r § s (mod p) for this would imply ¢ 3 O and hence c2 3 9 (mod P
To heve (a,b,p) = 1, we must have (a,p) = 1 because if (a,p) f 1,

then p lr but b @ (LZJ)a (mod p), and so b # 0 (mod p) and p|b°

hence (a,b ,p):#l.
Therefore for mod p there are p = 1 possible values of a that

will give (8,b,p) m 1 and (b2 = ab a?, p) $# 1; and corresponding to
sach value of a, thers are two values of b, Hence there are 2(p=1)
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pairs {a,b) with (a,b,p) = 1 and (b? « ab = 2%, p) 4 1, We obtain

If adal, bjar and by, 3 8 {mod p)
If a@a2, by#82r and bye2s (mod p)

If a a3, by 83r and b, ¥ 3s (mod p)

If asp=1, by & (pel)r and by 3 (p=1X% (mod p),

It is clear that no natter what a is, for mod p,the pairs (a, ar)
will all produce sequences of the same langth as the pair (1,r), and
similarly the pairs (a, as) will all produce sequences of the same
length as the pair (1,s).

Now, we know thet since k(p) = 4t + 2 there exist (a,b) such
that a(s,b,p) = % k(») = 2t + 1. But 1f there is one pair (a,b)
satisfying this, there are at least p -~ 1 psirs (a,b) with
h(a,b,p) s 2t +1, We will show that there are only p - 1 pairs
(a,b) with h(a,b,p) s 2t +1,

Without loss of generality we may assume = +to bse 1., This gives
by § rand b, & 8 (mod p). Now either (1,r) or (L,s) will produce a
ssquence of length 2% 4+ 1 when reduced mod p. We wish to show that
not both of these can produce sequences of length 2t + 1,

Now suppose that both (1, r) and (1,s) produce seguences of
length 2t + 1, We have

1, r, l+r,l+2r, 2 43000, un_1+ U,Ty emss (‘M P)

l, B, 1+ﬂ,l+2ﬂ, 2"!‘3!,0.., un_l-'-uns, ewis (M p)t
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Therafore we must have

Uop+ gy qr ¥ 1 (mod p)
and

Uopt Uoy 418 L (mod p)
Herce

LT l(T -8 0 (mod P)-

Sirce by Theorem 16, uz4, 1 § O (mod p), we have r 5 s (mod p), and
we have shown that this is impossible, Thus, the pairs (1,r) and
(1,s)! cannot both produce sequences of length 2t + 1.
An alternative proof is the following: Since b2 = ab = a< 3 0
2 it 2
(mc3 p) we must have r* = r = L 2 0 (mod p)y1+ r 3 r* (mod p).

Using the recurrence relation ) = f,7 + 1,5 we obtain
r+r? 2r(le ) 203, (mod p)
i er(r +19) 814, (mod p, ete,
Thuas the sequence

1, r, 14 r, 14+ 2r, 2+ 37, eee (mod p)
zay be written as

1, r, 2, »3, ¥4, ,... (mod p)
Similarly, the sequence

1, 8 148, 1+28, 2+38, eoe (mod p)
may be written as

1, s, 8%, 33, 54, sse (mod p).

Therefore, the assumption that these two sequences have periods



of length 2%t 4+ 1 when reduced mod p, implies that
26+l g1 ana e?t+l g (mod p).

Multiplying these two congruences we obtain

(r8)2** 1 g1 (mod p)
But 2
res AE9A59 o 25T 501 (mod p)
because

¢35 (mod p), and so (-1)2**1 g1 (mod p)

which is impossible,

Hence again, if (1,r) produces a sequence of length
é k(p) = 2t+1, then (1, 8) cannot produce a sequence of length
% k(p) = 2t + 1.

Therefore of the 2(p = 1) pairs (a,b) for which (b? = ab = a2, p)§ 1
and (a,b,p) = 1, the p = 1 pairs produce seguences of length i k(p)
and the other p = 1 pairs produce sequences of length x(p). Howsver,
not all of these are distinct, If k(p) = -E!'-, then there will be

d
Pl 4 daistinet sequences of length Egl and %!:i- = 24 distinet

p=
T 24
sequences of length L-Eil :

Since the total number of pairs (a,b) with (a,b,p) = 1 is given
by p? = 1, we can now find the number of paire (a,b) for which
(a,b,p) ¢ 1 and (b2 - ah - az, p) = 1. We obtain (p? = 1) =2(p = 1)
=22 «2p+1 g (p=1)2, 1411 of these have pericds of length

2
k(p) = L;—]* + This gives -L‘ﬁn— 2 d(p = 1) distinct sequences of
.
length E.a'._l

Therefore for mod p we have



-50¢l

1 distinet sequence(s) of length 1
=1
2& n n n " m
d +d(pl)dp " " " " L__; 1

Example: For mod 151, we have E(151) = 50 which is l-BE; that

is, d = 3. We obtain
1 distinct sequence(s) of length 1
6 » " " " 25
453 " " _ " 50,

We shall next consider the case for mod p®. The condition
(62 - ab = a2, p% # 1 is equivalent to (b2 = ab - 12, P $ L
Therefore we mst again have b 3 (;—';—9) a (mod p). We know that
(a,b,p®) =2 1 if and only if (a,p®) = 1. Hence there are p® = p®~1
possibls values of a, and corresponding to sach value of a there
are 2p®*1 values of b, Thus there are 2p**1(p® = p®°1) pairs
(a,b) with (m,b,p%) = 1 and (% = ab = &%, §®) 41, Ifa sl

by #r +jpand b, 85+ jp (md p®)

where 1
j = 0’ 1’ 2, seny pﬂ' - l,
If
8 $2,b22r+Jp andb=2s + jp (mod p®)
wheres

Jmo, 1, ¢uuy P.-l - 1.
These are equivalent to
by 2 2(r +Jp) and b, & 2(s +Jp) (mod p®)

where
j = 0’ 1’ 2’ sery p°'1 - 1.



Sines for smy a, the sequences (a, u(r+.1p))and (a, als + jp))
will a1l have the same length as (1, r + jp) and (1, s + jp) respective-
AF, for § # 0, 1, srep P*1 = 1, it 1s sufficient to consider the
seqaences (1, r + jp) and (1, s + jp) for § 20, 1, .40y e

Since k(;®) = 4t + 2, we know that for at least one value of
j, at least ome of (1, r + jp) and (1, s + jp) produces a sequence
of Lemgth 2% + 1,

Suppose for some valie of j, h = h(1, r + jp, 7% =z 2t +1,

We will show that then for aay 1 where 1 1is one of 0, 1, 2, ...,p"]'-l,
h(1, s +1ip, p*) ¢ 2t + 1, Suppose for some i, h z h(1, r+ jp, p®)
e (1, & +ip, P') = %k(p‘) s 2t + 1, We have

1, v+ Py cesy un_1+ n.n(r i jP}, sane (mod P.)
1, 8 i"LP, 1oy un-l'i" ln(' ¥ LP), con e (IOd P.)s
and so

u,q g (r + jo) 18 L uy(s+ip) (mod ),
or
u(r +§p) F uy(s +1p) (mod p%)-
Since by Theorem 16, u, ¥ ® (mod p), we may cancel u, and obtain

r tjpEetip (mwod pe),
or.
r g (mod p)

which 1is impossible,

Hence Lf for some value of j, h(l, r + jp, p®) = 2t +1,
then for no value of 1 ecan h(l, & +1ip, p®) be equal to 2t + 1,
Similarly, if for some valze of j, h(l, s + jp, p®) = 2t + 1, then
for no value of i ecan h(l, r+ ip, p°) be eqal to 2t + 1.
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Next, we will show that only one value of j gives a length
of % k(p®) or 2t + 1,

Suppose both (1, r+ jp) and (1, » + ip) produce sequences
of length h « 2t + 1, where 1 and j are two different numbers

fm 0’ 1’ avey p.-l - 1- Thoﬂfoﬂ

Wyt uh(r +jp) 81z U+ nh(r + 4p) (mod p®),

” ap(r + 38) 3 uy(r + 1p) (wod p?).

Since by Theorem 16, u, # 0 (mod p), we have

r+jpEr+ip (mod p®),

or
Jpuip (mod p®),
or 1
jei (mod p®=*)

which is impossible,

Therefore of the 2p°~! values corresponding to each value
of a, only one can produce a sequence of length 2t + 1, But there
are p® = p®~l possible values of a, Hence there are p° = p"'1 or

p®*1(p=1) pairs (a,b) that produce sequences of length

%k(p'} :%1’%‘29- 22641,

-1
Therefore, the number of distinet sequences of length =% 3

pe-L(p-1) “l(n@ _ ne=ly_(.e_.0=1
is given by p9-1(po1) /22 2 2d. The remaining 2p®~(p® - p®* ") =(p®=p""")

or p®*1(p=1)(2p®=1 = 1) pairs (a,b) that have (a,b,p®) = 1 and
(b2 =~ ab = a%, p°) $ 1 produce sequences of length k(p®) = 2._.____‘-:(9"1)

= 4t + 2, Therefore, the number of distinct such sequences of length
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9-1( 1 e=1 1) -1
2.....!2'_. is given by 12"%%;2:1)/ s d(2p*1 - 1),

Since there are p2® = p?®=2 pairs (a,b) for whieh (a, b, p®)= 1,

we have (p?° - p?-2) & 2p°1(p® - p*"1), or p?*~2(p-1) (p+ 1)-2p2*"2(p-1),
or p2®"2(p=1)2 pairs with (b2 = ab = a2, §*) = 1, All of these produce

sequences of length k(p®) = L&E].'_ Hence there are pﬂf:'?(zli-‘)/:
P

= ap®*l(p=1) distinct sequences of this kind,
In addition to these, there are the sequences for which
(2, b, p®) £ 1. Thewe are the sequences for mod 71 multiplied

throughout by p. Thus for mod p® we have 1 distinct sequence  of

length 1
21 distinet sequences ' of length 2;—3-
dp " n n n ‘Edﬂ
24 o n " " E_(_E}l
alp+ p=1) " " LI 2‘231).
" " " " (p=1)
- 2d

24 " " " " nﬂ%tll

a(2p®*1=1)+ ap®1 (p-1) sd (p®+ p®1-1) dlstinct sequences of length L"'lép-_-l)

That is, we have 1 sequence of length 1, 2d distinct dequences of each
of lengths Pi&F)-, and d(pt*1 4 pi = 1) distinet sequences of length

ph{p=1)
d fori-o’l’ 0-.."’1.

Exanple: For mod 1393, ¢ = 3 and 4 = 3,
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Ve have
1 distinct sequence(s) of length 1

6 n " LB 23
ALT n n O 46
6 " « " 3197
58377 " " " o 6394
A " n L] n m 3
8114817 ° " * m 88876

oy
Composits Moduli of the Form || p,

For any prime p, we have given rules for obtaining the number
of distinct sequences (mod p®) of each of the possible lengths. Thus,
oar problem is now reduced to a discussion of the case where the
podulus is of the form"[‘."p;i. The notdion involved will ba considerably
sinpler if we consider the equivalent problem of the modulus being of

tas form ’Wli where the m; are pairwise relatively prime,

let us first discuss the case where m = my ™, and (my,my) = 1.

Ve have seen in Theorem 13, that if a pair (a,b) produces a
ssquence of length h, vhen reduced mod my and produces a sequence of
length h, when reduced mod ., then it will produce a sequence of
length b vhen reduced mod m™; where h 1s the least common
maltiple of hy ard h,.

Fow suppose by = h(a, b, my) and b, z k(e, d, m,). By the
Ghirese Renainder Theorem, we know that each pair (a,b) (mod m)
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and each pair (e¢,d) (mod ‘2) gives rise to a unique pair (e,f)
(mod my m,) such that e S e, £ ¥b (mod my), andedec, fid

(mod m;). By Theorem 13, h(e, , my m,) is the least common multiple
of h(e, f, my) and h(e, f, ;). ButeFaand f2D (mod my) imply
that h(e, £, m) = h(e, b, my) = hy, and eimilarly h(e, £, n,) = hy,
and so h(e, f, my my) 1s the least common wultiple of h; and hj.

Let n(k, m) denote the mumber of distinct sequences of length
h(mod m), and let N(h,m) = hen{h, m). Then N(h, m) represents the number
of pairs that produce sequences of lemgth h(mod m). The least
common multiple of hy and hy will be denoted by (hy, hy] .

We have seer that each pair of pairs (a, b) (mod my) and
(e,d) (mod my) gives a unique pair (e, £) (wod gy m,) of length
hw [_hl, hz] 3 8o there are N(kj, mj). N(hy, my) such pairs (e,f)
with length hy (wod m;) and length h, (mod my). Now any pair (e,f)
(mod my m,) with length h when reduced mod my produces a sequence
of length h) and when reduced mod m, produces a sequence of length
hy such that [h), hy] = h. Hemce

N(h, m, 12) - Z N(hy, m). ¥N(hp, mp),
[y, by] =k

and the number of distinet sequences of length h = [hl, hz] (nod my my)

is given by
n(h, m; my) = Zs ‘(hlp ‘;[r] +N(hp,mp) ,
(b1, p]m (B B2]
or
n(h,m my) = 2 by n(hy,m)=hsen{hp, n3) :
by, bz] = b [y, Bp]
or

b, s ) = i Al W e his &
n(h, my, my [hl,h;)]:ll!ll.l n(hy, my)e(hy, hy)
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where (hy, h,) denotes the greatest comnon divisor of hy and hy.

By induetion, this result is nov essily extended to the
case I ® il; my where n > 2, and all the my are palrvise relatively
prime, Thus we obtain

n
N'{h, ’1?“ ni) 2 i‘ w ![hj_; 'i)

1l LoM{by) =k 1al
and x n
n =1 1 ¥(hy, my)
nl{h,”“‘ -1.) - <1
izl LoM(hy] = b 1]
In particular, if my = p;‘ for 1 g1, euey 0, we have
n e: 47/- n ;
Nk, T Pi't) ] =3 a n(hiy P;i')
sl Lok[bg)ah 12l
and

n )
¥(hy, pid)
=, Swn

o
n(k, 1[‘1 P;t) = e =
Exepple: Let m 2 180 w 2% 320 5. We have n(l, 2*) o :
a(3, 2% 2 1, 0(6,2%) x 2, n(1, 39 =2 1, n(e, 39 = 1, 0(24,39) = 3,
n(1,5) = 1, n(4,5) = 1, and n(20,5) a 1. Therefore for mod 180, we
have ni(l, 180) ¢ 1, n(3, 180) = 1, n{(4,180) = 1, n(6,180) » 2,
n(8,180) 2 1 + 4 = 5, n(12,180) w L + 4 « 5, n(20,180) = 1,
n(24,180) = 3412+ L+4+9+36+4+16+ 364144 = 265, n(40,180) = 4,
n(60,180) « 1+, = 5, and n(120,180) = 12+ 4+36 +16+144 & 212,

Summary:
We have shown that if k(p®) is Jnowm, it is possible to
deterwine all possible valuee of h(a, b, m) as well as the number of

sequences corresponding to each h, mo matter what the form of m may be.
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The problem of determining the value of k(p®) is reduced to
that of knowing the velue of k(p) 1f it can be proved that for all
p, k(pd # k(p), or £f for every p the value of t 1is known where
t 1s the largest integer for which k(p%) = k(p).

Using the notation of the previeus section where n(h,m) denotes
the number of distinct sequences of length h(mod m) and N(h, m)
= hen(h, m), the results we have found are summarized below, We
will sbbreviate n{h, m) as n(h) and k(p) as k when necessary. We
first give the formulas based on the assumption that k(pz) $ k(p)
and so k(p®) « p®1 k(p)., Note that for any h that is not

mentioned below n(h, m) » O,

1. a1, 2°) = 1 and n(3%2%, 2°) « 21 for 1 = 0,1,.4e,0-1s

I a(l, 5% =1, nl4, 5% = 1, n(4e5t, 59) = 6e5'1

for 121, see, 8 ~1, and n(4+5°, 5%) 2 5°°1,

111, If m = p® where p % £ 3 (mod 10),
then k(p) = ZLP—E-JJ- for some d =1, We have

ir,.2
!I(]L,pe) :l and n(pik) - LLLE:—I)' for i1 = 0,1,...,0-1

or

n(1,p%) =1 and n(2pi(p +1)/d) = ﬂi(-;y- for 120,1,4ee,0=1s

IV. If mw p® where p 3 1 (mod 10), then k(p) = Ed—l- for some d = 1,

A, 14 | k(p),
n(1,p°) = 1 and s(plk) = ﬂl]i—‘ll for 1 2 0,1,,.0,0=1,

or
n(1,p°) = 1 and n(p'(p-1)/d) = dpt(p +1) for 1z 0,1,...,e=L,



B, It 41 k(p),

a(l, p® : 1, n(p'k/2) = ZL‘FJ‘)' , end

(p1) (pith 4 pt = 2)
k

n(pik} for 1 o 0, 1' ssaoy e-1,

a(1, p®) : 1, n(p'(p=1)/2d) : 24, end

n(pi (p—l)/d) * d(p1+1+ pi -1) for 1 .O' 1’ secy 8 = 1
n @
L i» F3

-_—

Lﬁij; h h

n ;
v. olh, T p3) =
i1

We vill mlso give below the corresponding results for the
case wrere t Iis the largest integer such that k(p') = k(p) and
t>1, ad so k(p*) = p" Y k(p) for @ =t. Since k(22) ¢ k(2)
and k(59 ¥ k(5), this will only sffect our results for p 3 * 3
and p 8+ 1 (med 10),

I. Porm=p ,p 3 +3 (md 10), k(p) -‘ﬁ%ﬂ for some d > 1:
1

n(1,7*) =1, a(k) o=, Eﬂ@l , and
ig0

¢ %1 ap>t(p=1)
) 1) 2 ]. d s ’
n(l,p") = n(2(p+1)/4) : _LT_ and

i+ t=l
o2t 1) /a) o B (BL) gor 3 4 ¢,..00e1,

II. Forme p*, P2+ 1 (mod 10), k(p) -91':---l for some d > 1:

4, If 4)\Xp,
t=1

(1,7") « 1, n(k) = = 1(p? - 1) s and
i=0
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for 1'. t’ LR Y .-1.

. Ltt=l(2 o1
a(pi=t+1) o B £p 1)

t-1

n(1,p®) = 1, n((p=1)/a) -.z.o dpzs' (p+1), end
i

n(pi-t +1(Pl)/d) - ap1+t-1(p+ 1) for i = t’.oo’.'lo

1t 4 A k(p),

n(1,p*) = 1, 1n(k/2) ’f:o 2pt(pel)

n(k) -g pi(?-l)(p1+1+ pi =3 y
120 k

Lt

n(pi-t+l x/2) = ﬂ i‘(P"l) , and

a(pt~* +1x) o B2 (poL) (P:+1+ B 1) for 1 s tyees,e-l.

t-1
n(l,p®) = 1, n((p=1)/2d) -é-g 2ap’,

n((p=1)/d) 5 = d apt(pt*1 4 pt = 1),
1-0

n(pt~* ¥ 1(p-1) /2d) = 2p%1, ana

n(plt 1 (p1)/a)e aptL(pt T P pt - 1) for 12 tyuu.,0-1s
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APPENDIX

In answer to Ghe letter sent to D,D, Wall regarding the proof
of Theorem 11, we have received from him the outline of a proof using
a different approach tGhan the ome he had used before, The following
proof is suggested by his outline,

Thecrem 11FP I = s P%, p > 2, P45, and h is even, then
h - k.
Proof: 45 in Theoren 9, we must have

uh+l“\‘ Yol =1+ ('1)" (mod p.).
Since h is even and Yhel 2 U YU 4, this gives
2up 2+t @2 (mod P,

up 2z 2(l=w _,) (mod p®),
We have f; gaand f, .,z b (mod p®) and £, = 2y, + by, and so

fn-8zbuy raly,. 3 -1) g0 (md p®)
and

f41 = V= (a b + b(ub_l « 1) 20 (mod p®.
Now, ae it was shown in Theorem 5, if b2 = ab = 4= 4 0 (mod p) we
obteln the unique solution uy z O and w, , 3 1 (nod p®), and so h = ki
Next consider the cases for which b2 = ab = a2 s O (mod p), Since

wog AL = o) (med ¥°) we must have

-61-
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. - e
0 -y Jbals , -1 F0 (s ),
or
- - = e

(2 «a) Qam )20 (mod p®).
We will show that (2b = a, p®) 2 1, The condition b2 = ab = a2 § 0O
(mod p) cen be written in the aquivalent form (2b - a)? 3 582 (mod p).
Fow if p l 2b = a, then p \5(2; but p § 5, hence pla. Therefore
P ]215, add sirce p > 2, p|b. Thus (a,b,p®) $ L contrary to
aspumption., Fence p * 2b « m, add 80 we may cencel 2b - a from the

a - - e

sbove congruerce obtaining 1 LR 0 (mod p®), or WA 8 1 (mod %),
Since uy, g 2(1 - “11—1) (mod p*), this implies that uy g O (mod p®),

and so again b w» k,



