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NOTATION AND CONVENTIONS

The symbol I will denote the set of all integers, and the

set I=- {0} will be denoted by Z.
alb means that a divides b.

The greatest common divisor of two integers a and b is

denoted by (a,b),

Unless otherwise specified all symbols used represent

integers. If A 1is a subset of I, then =A -.-.-{-n :ng€ A }.



ABSTRACT

The thesis is mainly concerned with the discussion of
Diophantine equations of the form P(x, y) = ¢(z) that define a
binary relation, R, over S, a subset of the integers. We say that
aRb if and only if there exists an integer ¢ € S such that P(a, b) =
#(c) where a, b< S, If R is an equivalence relation, the equation
is said to define an equivalence relation,

We determine equations that define equivalence relations,
and we characterize the equivalence classes associated with these
equations., In Chapters II and III equations, of degree n <3,
satisfying the reflexive énd symmetric properties, are discussed,
some of the results obtained are then generalized to equations of
arbitrary degree,

Determining the equivalence classes, in general,is a
difficult task. In Chapter IV we obtain an inequality satisfied
by N(R), the number of equivalence classes, for equations of

the form P(x, y) = mz.

vi



CHAPTER I

INTRODUCTION

Bagic Definitions:
A Diophantine equation is one of the form P(x,y,2,ee.,u) = O,

where P(x,y,240..,u) is an integral polynomial in the variables
XyY9ZseeesUs Moreover we assume that the variables have integral
values onlye
Definition i.;: A binary relation R defined over a set
A is said to be an equivalence relation if and only if the
following three conditions are satisfied for all a, b, and ¢
in A:
(i) aRa (Reflexive property)
(ii) If aRb, then bRa. (Symmetric property)
(1ii) If aRb, and bRe, then aRc. (Transitive property)
In case a 1is not related to b we write afb,

Definition 1,2: If R 1is an equivalence relation defined

over a set A, then a subset B of A is called an equivalence
class if and only if the following two conditions are satisfied:

(1} =xBy ferall x, vyc B, . and

(ii) If x€ A, y€ B, and xRy, then x € B.

Definition 1,3: An equivalence relation over 2 set A is called
a universal equivalence relation over A if and only if xRy for all

X, yE A,



T

Definition l.4: For a relation R defined over a set A,
N(R) denotes the number (or cardinality) of the set of distinct
equivalence classes determined by R. If R is not an
equivalence relation, N(R) @ O,

An equivalence class B 1is denoted by'[b]R, where b € B,
In general, the element b has certain properties, and is referred
to as the representative of the equivalence class.,

In this work binary relations are defined over the ring
of integers. Unless otherwise specified, the representative is
the smallest non-negative integer in the equivalence class., If
the equivalence class consists of negative integers only, we take the

smallest in absolute value as the representative.

Preliminary results:
la: b e [a]g if and only if (b]; = [a];.
1b: [a]g = |blp if and only if aRb,
le: \a]p N [b:]R = @ if end only if afb.

1t [a], N4, #9, then [a], = {8]..

Statement of the Problem:

1d

Let ¢(z) and P(x,y) be two integral polynomials in one
and two variables respectively., We define a binary relation R
over a subset A of I as follows: xRy if and only if there

exists an integer z « A such that:

P(x,y) = @(z2) Saemeieiiis erenase et v s Ul 1)

In this paper we consider Diophantine equations of the
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form (l.1) that satisfy the following conditions:
Botaill x eI, Pl xl- . O(x] .. ciiviinonvensiss LI)
For all x, y, z €I, if P(x,y) = @(z), then P(y,x)=¢(z)... (II).

The first condition ensures the reflexive property of R
and the second ensures its symmetric property. We are interested
in the case when R 1is an eqﬁivalence relation, Thus the only
property to be considered is transitivity.

Definition 1,5: If P(x,y) = ¢(z) satisfies the reflexive,

symmetiric, and transitive properties we say that the equation
defines an equivalence relation.

Definition 1,6: Two equations are equivalent if and only if
they define an equivalence relation and have the same equivalence
classes,

L, M. Chawla ( [l] and [2] ) discussed some equations of
the form (1.1), of degree n < 3, that satisfy conditions (I) and (II).

In this paper we investigate more equations, answer some of

the questions raised by Chawla, and generalize certain results,



CHAPTER II

FIRST AND SECOND DEGREE EQUATIONS DEFINING

EQUIVALENCE RELATIONS

The general Diophantine equation of degree equal to or

less than two, and of the form

P(x,y) = ¢ (2)
ié

2

2
81X + asX 4-a3xy'+-a432 + 85y = blz + boZ 4+ by ceceeecee (2.1)

If conditions (I) and (II), referred to in Chapter I, are

satisfied, then:

he
o’

E.l-l- &3 + 8,4 1
32+a5 - b2 @2 000 e 00080800800 (2;2)
g - b,
and
E.l = &4
e 00088000000 000080 (2.3)
"2 55

The sets of equations (2,2) and (2,3) imply that:

2&14"&3:131

2802008000000 8 e 89 (2;4)
8., = b2

Thus the general form of equation (2.1) reduces to:

-/ -
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al(xz—l- yz) -+ az(x"*' Y)-l" aBXY s (2&1+ &3) 224' 2&23 P9 0ecco0 0080 (2I5)

Altogether eight different cases of the above equation
arise depending on the values of the coefficients. They are

listed in table 2,1,

Table 2.,1: Equations of degree n < 2 satisfying

conditions (I) and II),

a, G a3 2a1ﬂ-a3 28,

-__; a; __:; = ; 284

——— — -

0 0 a5 a5 0
0 a5 : 2 4__-L33 : 28,
ay a, 0 2&1 2&2 =
& e e ae g =
& ¢ £
i | .
;; 32* : ay é&l-k;; = 23; e

Theorem 2,1: The equation

x-}-y: 23 200000392 00P000 0000005088088 0e (2;6)

defines an equivalence relation over I, The equivalence classes are

given by: [O:IR :%211 s I} s and ﬁ-ﬂR = SL2H+1 tne Ijz.
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Proof: Let A, :izn : n (-:Ifand Al =3L2n+1 : n c—:I_?.
First, we show that if X, Y€ Aj, 1 2 0, or 1, then xRy,

If i « O, then x = 2n7 and y = an. Hence x4 y = 2nq + 2n2 =
2(111 + né). Thus we take z = n7 4+ ny and =Ry,

If i=1, then x m 2n7+ 1 and y = an, + 1, Hence x +y =
21 +1 +2n, +1 = 2(n1f} n, +1), Thus we take =z = n+ np+ 1,
and xRy,

Now, we show that if x € Ay and y € Ay, then x®y. Let x z 2m
and y = 205 + 1. Hence x+ ¥y = 2n)+ 2n5+ 1 = 2(ny + no)4 1 # O(mod 2),
and xH{y.

| Similarly, if x € Ay and y € Ay, then xRy,

Thus xRy if and only if both x &and y belong to the same
set A;, 1 2 O, or 1;

To establish transitivity, let aRb and bRe, Using the
above result we see that a, b, and ¢ belong to the same set Ays
consequently, aRc.

The two sets Ag and A satisfy the two conditions of definition 1,2
It follows they are equivalence classes.

To prove the next theorem we need the following definition
and lemmg:

Definition 2,1: P denotes the set consisting of the integer 1
together wiih all integers J, expressible in the form:

J = P1 Pp +ss Py, Where P15 Pos ses, P, are different primes,

Lemma 2,1: Every positive integer a is uniquely -expressible in

the form:

a s an, where J € P,
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Proof: By the unique factorization theorem, we can write:

Gl 82 e
& = pl pz ) mm’ where P15 ngtﬁﬂrpm

are different primes,

If all of the exponents were even, then

8 = th, where J =1 and n = pzz pé__z e p;z 5

If some of the exponents ej, €55 eses, € Were odd, then

m
rearrange the prime in the canonical representation of a such
that €15 €5y oss, € denote the odd exponents.

a 1s now expressed as:

61-1 ey-l o=l €4 em
a =« P-l P2 280 pk Pl P2 N Pk :ka+l eeo s Pm ®
= 2
S0 that: e1-1 eg=l =1 G | en
e ) e 2 2 e
- "l 2 s D Pk Pl P2 L B Pk L Pk+1 @o8 pm
- ani

The uniquessof this representation follows from %the unique
factorization theorem,

Theorem 2.2: The equation

xy:zz se2B8De0roe et 00 000 BEEOES BEB (217}

defines an equivalence relation over Z. The equivalence classes

are given by:
], {J® s ne 2f, where J € P, or J < =P,

The equation does not define an equivalence relation ovér I,
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Proof: To establish transitivity, let aRb ang bRé,

2

where a, b, ¢ € Z, Then ab = 295 for some Zy €2, and be 3 zg,
2159, 2 2 2152

for some z, € Z, Hence ac = —Eﬂ—) = Z3, Where z; = — 7

Thus aRe,
We proceed now to show that the above listed classes arw

really equivalence classes. Let
AJ-;{ananZj,JeP, Or J € =D,

Let x, y ¢ AJ, then x = th » for some ny € 4, and

y = Jhg, for some n, € Z, Hence xy = (th)(Jng) - (J.ninz)2 - zg,
where z = J;ni e05 € Z, and xRy,

Let x ¢ AJI, and y € AJ2, and let xRy. Thus we have
S, and Xy = JiJz(nlnz)2 = 52, for some z ¢ Z,

This implies that J']_J2 is a perfect square,

2
X = Jlnl, Y = 3211

Noting that, if J;, J, € P (or J1y Jp € =P} and Jye75 1is
a perfect square then d1 = Jo; it follows that AJl = AJé.

By lemma 2.1 any positive integer a belongs to one and
only one class [JJR, where J< P, Similarly, any negative integer

belongs to one and only one class ['ﬂR’ where J € =P, Hence

Or J € <P

Thus for all x, y € Z, xRy if ang only if x, y € A,
To show that equation (2.7) does not define an equivalence
relation over I, let Xy = 5, Xp = 0, and X3 = 2 XqRx5, since

5.0 = 0 = 02; and XoRx3, since 0,2 = O = 02. But xiakB, because



Be2 J'zz, for all z ¢ I,

Theorem 2,3¢: The equation

&2(3:-{-?) +a3xy=3332+ 2823 c0cosBes 0ot DOEB GOSN (218}

defines an equivalence relation over:

ol 21 gr oY
)y I { &3} g AT 8, | 8ge
The equivalence classes are given by:

[J-az]R=%Jn2-azznc-:Z},where Jd € P, or J € =P,

(11) I, if aBT a,.
Proof: Assume that ap and a; are relatively prime, because we
can divide both sides of the equation by their greatest common divisor.
Case (i): If a, | a5, then az = ¥ 1. We consider the case when
a3 # 1, the other case is treated similarly, Equation (2.8) reduces
to:

XY=Z2 P OO PO S 0860058800 00000°0 0S8 (2.85)

where X =X +a5, Y=y +a,, and Z = 2 + 850

Equation (2.8a) defines an equivalence relation over 2,
where X, ¥, and Z are not allowed the value zero; that is, x and
y are not allowed the value =a,.

Using theorem (2,2), the equivalence classes are those

listed above,

Case (ii): If a3 T a5y, multiply equation (2.8) by a3 and

add a% to both sides, The equation reduces to:

(&31{—}-&2) (&33 +3=2) = (ﬂjz—l' 32)2 sse0sev0p0e D0 (2.8b)
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Iet aRb and bRe, then
(aza +-a2)(33b + 85) = (agzy + az)z, for some zy € I
and

(agb + ap) (aze +ay) = (agzy + a2)2, for some z, e I,

Hence we have:

( }( ) (8.321 s 8.2) (8.322 ~+ 32) 2 5
8.8 + & a4C + 8 -1 B e -
3 o 8 (aBb + ag) s
whers ( ) ( e
aq%27 -+ @& ana a
q = ——éml___ug 3 2 2 = I-

(33b i 32)

Let g & r{(mod a3), where O < r <ag. Then q = asm + T,

for some m < I. Hence

(a3b 4—a2)(a3m +P) = (aBZl-+ az)(a332 + a5)

or
a%(bm = 5132) +_33br _Lazajm - azaBM - 3233(31'4 52) -

32(&2 - 1’} R R RN TR e (2#9) |

Since (a,, a3) = 1 and a; is a divisor of the left hand side
of equation (2,9), then a3 l(az-r). Thus 8, =T = aBk, for some
k<I,andq=agm+r=azmiay - agk = ag(m = k) + a5, If we

let z3 = m = k, then
(ala i 32)(330 4—a2) = (3323 4 a2)2

i.e. aRec, which establishes transitivity,

In the eguation

al(x o Y)2‘f az(x *'Y) - 5 2&25 @esro0DEsPEssee Do (2-10)
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we assume that (al, 32) = 1, and that 85 is positive,
The following lemmas are needed in the next theorem:

Lemma 2,2: If x® 2 y? g O(mod m), where m and n are

positive integers, then:

(ax + by) & O(mod m), for all a, b < I,

Proof: x” £ O(mod m) and y? 2 O(mod m) imply that x? = qqm

and y? = q,m, where dy5 A3 € I. Therefore,
| 1 1
n
X = (qlm)n and y = (qzm) o

For any integer r, O < r < n, we have

;L- = I* l—r e
[(qlm)n:r lngm)n

xn—r yI‘

But

n
(ax +by)" = E s B (Liae T

1]
o
3
2,
!
®

Lemma 2,3: Let m and n be two positivelintegers. Let
q be the smallest positive inteier such that (qm)n is an integer,
and let S = 5,;0, 1, 2, seusy tgm)” = lj » Then the only solution

of the congruence

(x = y)® 2 0(mod m) su s ssisvsns Busc e 2ol LE)

in S 15]{:?1

Proof: x = y is clearly a solution of the congruence (2.11@%
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Let now x £ y, with X, ¥ € 8, such that (x - y)n = O(mod m),

We may assume x >y, Hence
i
n
(x o F) = l, 2’ eedegy (qn'i) - 1.

Since congmuence (2.11?)13 satisfied, (x = y)" =

rm, for

some r >0, and (x - y) = (rm)® ¢ I. But

m = (x - F)n = (:(qm)% - 1} né [(qm)%] - = qm.
1

Thus we have an integer r smaller than q such that (rm)nef L
a contradiction to the hypothesis of the lemma,
Lemma 2,4: Let ac<I, then there exists a unique integer
b € S, of Lemma 2,2, such that (a = b*n =0 (mod m),
| fgggfz For any given integer ai there exists an integer E,
0 <b ¢~(qm)ﬁ, such that a & b(mod (qm)H)e Thus a = b 20(mod (qmiﬁ),

and (a = b)? 2 0(mod qm) or (a =~ b)™ = O(mod m),

To prove uniqueness, let by and b, belong to § such that

(a = bl}n 'E 0 (IﬂOd m) A AR R AN E R TN A R T R R R Y (2.11b)

and
0 (MOd m) ®90so0enceceBocsteaBoseoe o (2911‘3)

(a - bg)n

By lemma (2.2), the congruences (2,11b) and (2.11lc) imply that
(by - b2)" Z O(mod m). Then by lemma(2.3) b, = b,

In the following theorem m and n are any two pogitive
integers, Condition (I) is not satisfied except when k = 1,
Condition (II) is satisfied when n is even. We assume that ay
and a, are relative prime, and a, positive.

Theorem 2,4: For any positive integers m and n, the




-~13 -

equation

&l(X“Y)n+ az(x"l' Y)n= 2322 o9 %cs 0o 0orROOO S (2.12}

defines an equivalence relation over I such that:
(1) If a; = a, (mod 2), the equivalence classes are

given by:

[J]R = {n t n 3 J (mod (qaz)-ﬁ )JZ’ 1

where q 1is the smallest positive iﬁteger such that (qag}n is an
integer, and J = 0, 1, 2, ,.., (qaz)n - 1,

(ii} If ay # a, (mod 2), the equivalence classes are given
bys
. 1

[J]R :S‘Ln : n = J (mod (anz)n}’ .

where g is the smallest positive integ?r such that (anz}n is
an integer, and J =z 0, 1, 2, ..., (2qa,)" = 1,

Proof (i): If ay = ap (mod 2), then a; and a, are both even
or both odd, The first possibility is ruled out since 21 and aj

are assumed to be relatively prime,

Iet xRy, then

ay({x = y}n4aaz(x'%-y)m = 2a,29, for some 21€ I seeee (2.12a)

We note that the right hand side of equation (2.12a) and the term
ar(x + yi'are both divisible by a,. Hence azl ay(x = y)". But
(aq, a,) = 1, then (x - y)* 2 0 (mod 32).

Conversely, if (x = y)n 2 0(mod az), then

a1 (x-7)" + as(x+y)™ 20(mod 85 slvesinsess (2,178)

Noting that the left hand side of congruence (2,12b) is even for all
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x and y, we see that

&1(X - * 4 az(x %‘y)m = 0(mod 2&2).

or

al(x - )Ry az(x.+y}m'= Rayz,,

for some z, € 1, and xRy,
Thus for all aj and 85 odd, xRy if and only if
(x = 7)* 20 (mod a,),

Reflixivity is satisfied since (x =x)" g0(mod a,).

Symmetry is satisfied since (x = y)® 2 0 (mod a,) implies
(y = x) 2 0 (mod a,).

To establish transitivity, let aRb ang bRe, we have then

(a = b)}"™

O(mﬂd 32) ®e®ccertrsecoovensnan g (2#120)

andg -
(b = e)

O(mOd &2) LA R AN ER EE N T (2.1201)

By lemma 2.2 we heve Y_(a =b) + (b = c)] " = 0(mod az} or
(a = ¢} 2 0(mod a,), and aRe,
Lemma 2.3 shows that the listed classes are equivalence

classes, while lemma 2,4 shows that they are the only ones.

Proof (ii): If a; Z a, (mod 2), then either a) is odd and a,
is even, or a1 is even and a, is odd. In either case we will show
that, xRy if and only if (x = y)? 2 0(mogd 2&2). Using the same
reasoning as in part (i}, we get the desifed result,

Let a; be even, a, be odd, and let XRy. Then

a1(x = ) + as(x + YT - 2apz3, for some zzeI .... (2.124)
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Since aj(x = ) and the right hand side of (2,12d) are both even,
then az(xupy)m is even; consequently, x = y (mod 2), Furthermors
ap divides the right hand side of (2.124) and a,(x + y)®, Hence
a1(x = y}? 2 0 (mod a,), and (x = y)™ 2 0 (mod ay)s But
x 2 y (mod 2), therefore, (x = y)2 = 0(mod 2a5) o

Conversely, if (x = y)® 2 0 (mod Ra,), then x 2 y(mod 2)

and aq(x = y)? . a,(x = ™ 2 0 (mod 2a ); that is a,(x - y)B, a (x. y]®
1 2 2 1 2

2a224, for some z; € I, and xRy,

Let a; be odd, as be even, and let xRy, Then
< e m
al(x - y) +.a2(xu+y) = 2&225, for some ZSEZI sesicinoee 21 2%a)

Since as(x + y)™ and 28,25 are even, then a;(x = y)? is even; conse-

y (mod 2). Furthermore a- \al(x ~ yJ2, Hence

L]

guently, x

(x = y)2 2 0 (mog 2&2).

Conversely, if (x = y)™ = 0(mod Ra,), then x g y (mod 2)
and a3(x - y)? + a(x + y)™ 2 0 (mog 2a5), or ay(x = )%+ ay(x+y)™ -
28,Z¢, for some z¢ € I, and =Ry,

Corollary 2,1: The equation

al(x 2 37)2 + 32(X+Y) = 2322 Pev®0crro00000 0000000 & (2|13)

defines an equivalence relation over I such that:

(1) 1Ir aj = as (mog 2), then the equivalence clagses are
given by:

[J]R = %n.: n £ J (mod qang where q 1is the smallest integer
such that qay is a Perfect square, and J & Uy s 2 e Qa, - 1.

(ii) If ay # a, (mod 2), then the equivalence classes are
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given by:

[J]R = {p s nsJ (mod V 2qa2) s Where q 1is the smallest
positive integer such that 2qas is a perfeet square, and
J'-'-'O-: 1, 25 3, ooy N 2qay = 1.

L, M, Chawla |1| proved that the equation

xz—i—'yz‘.:zzz P00 De0e 0RO OOO 00 808008000 (2-14)

does not define an equivalence relation over I,

ITheorem 2,5: The equation
al(xz+ yz) st a3xy - (2&1+ 33)32 83 0ctooerB00COROD® (2:15)

is equivalenﬁugquation (2.6),_if az = 2273 and does not define an
equivalence relation over I, if 8) = -aj.

Proof (i): If a3 = 2a;, equation (2.15) reduces to
(x + y)z z (25)2. Hence x+y = 2z, or x+ y = = 2z. The second
possibility is ruled out since condition (I) would not be satisfied.

Proof (ii): If 83 = = a;, the equation reduces to
(X-Y)2+KZY: 22 8880 00coc00000000ROD B0 S0 (2.15&)

Let x7 = 2, X, = 0, and X3 = 3. Then

x1Rx5 because (2-0)2—+ 9.2 = 2~ z

XSRXB because (0-3)2 + 043 = 32 = 22.
x1Rx; because (1-3)° + 1.3 = 7 £ 27,
for all z € I, and transitivity does not hold,

Theorem 2,6: If a; divides a,, the equation

al(x2+ yz) "'_3.2(}: & 5") = 23122+ 23‘22 S o000 0 0 (2;16)
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does not define an equivalence relation over I,
Proof: Multiply both sides of equation (2.16) by 4a, and

add 2&%, to get

2 2 22 2

. 22
Aalx AL Aalazx +-Aaly aL 4alazy—+-2a2 = 2(4&12

2
-+ Aalagz =k az)
which simplifies to
(2&11‘+—az)2.+~(2aly +~32)2 = 2(2alz—+a2)2 i 124168

There is no loés of generality if we consider ay to be
positive and O < a5 < 2ay. For if a,< 0 or aj,=> 2a,, then

8o, a%(mod 2a7) , where O iéa% < 2ay. Then

2 2
(2alx + 2a1q %—a%) +~(2&1y-+2a1q- a%) = 2(2&15~L231q+-a%)2
or

2 1.2 T2
(2a1X-+ a%) +~(ZalY¥raz) - 2(2alz4ka2) s svieneeein e 6]

where X =2xX1+q, Yay . q,8nd Z z 2 4 g,
Equation (2.16b) is of the same form as equation (R.168).
Under the above agsumption if alf a,, then aj = 1, and
ap = 0, or 1, If a, = C, the equation reduces to
(22)° (2y)2 = 2(22)2, or x°+ y2 = 222, which does not define

an equivalence relation, If a8, = 1, the equation reduces to
2 2 2
(2:( 3 l) _f_" (2y+ 1) : 2(2z = 1) R T oGO0 e 8 O e (2.]60)

Let x = 0, x5 = 3, and x5 = 11, Then xjRx, because

(2.6~ 1)+ (B3 1 s als = (2.2 1) « 2(22q +1)2,
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x,Rx3 because (2.3 ) el ) s 2 i 1)
2(2z, +-l)2, where 2z, = 8 However xjRx, because (2.0 =)
(.11 +13° n 20265) i 2(2z . 1)°, for a1l 2z < T,

Thus equation (2.16e¢) does not define an equivalence

relation,

Theorem 2,7: The equation

al(x2.+ yz}ﬁ—az(x +-y)4=a3xy = (2al-ka3)z2+ 2857 sevessesas (2:17)

is equivalent to equation (2.6) if 2a; = aze If a) z =aj and aj | ay,
the equation does not define an equivalence relation,

Proof: If 2ay = a3, the equation reduces to

al(x+Y)2+ ag(x-l-Y) - zl-alzz-’t“ 2323 S0 o0 e s 00 CesBse 0 @ (2;173)

2

lultiply both sides of equation (2.17a) by 4a; and add 5

to get

2 2 = 2
@%(x +y) & A,alaz(x-n-y) o a§ = léalz + 8a1a23 t+ a5

or 3 5
K_zal(x +y) -} 3.2] g (4&12 == az) T 000 8o oBeecn e B8 (2@1%)

Hence
221 (x + y) + a5 = 4ayz + &y, or 2a)(x+y)+ &, = =4ayz - a,.
The second pcssibility is ruled out since it contradicts condition (I},
The first possibility implies that x +y = 2z, which is equation (2.,6).
Ifaj= = a3 and a, = qaj, for some q « I, then the equation
reduces to

(x - P2+ (x +q)(y +q) = (2 _%qu s i N 21 0e)

2 2
Let x3 2 0, x5 = =g, and x3 = qo Then (0+q)™+ (-g +q)(q+q) = (q)° =

(zl + q)z, wiaere zy = 0, and x1Rx50
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(= = @)%+ (g + @) (g + @) 2 (20)% = (3, q)%, where 2, = q,
and XoRX3s

(6 =~ @) 4 g « o) (0 +4) 5 3a% £ (xca)2,

for all z < I, and xfx;.

Thus transitivity does not hold.




CHAFPTER III

THIRD DEGREE EQUATIONS DEFINING

EQUIVALENCE RELATIONS

The general cubic Diophantine equation of the form

P(x, y) = ¢(2) is

&13{3-1- &2X2+ a.3x+ a4x2y+ a5xy +a6y3+ a7y2+ 38y+ agxyz — b123+ b222+ b3Z + bl;.

Condition (I) implies that:

L}
o

al+ 3.4 —1—&6 “i"ag

85 +~8a7 rag = bs

s e e e L)

33 +&8 = b3

C

]
o’
I~

Condition (II) implies that:

#1 = 86
a2z =%
i el e (3.2)
3‘4 = 35
Equations (3.1) and (3.2) imply that:

2a) + a, = by

B3t GE by o ks s (3.3)
45 3 0o

- 20
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Thus the general form of the equation reduces to

al(x3+.y3)4-az(x2+-y2)4ﬂ33(x.ky)4ra4(x2y4.xy2)+-a5xy =
(2al+ 34) 23‘?— (23-2"‘_&5) 32+ 2azz Pes o0 ertes (3;4)

We assume throughout the discussion that a; and a, are not zero

at the same time; otherwise the equation wbuld be of the second degree.

Altogether 38 different cases of equation (3.4) arise depending
on the values of the coefficients. They are listed tables (3.1)to(3.Z).

Table 3.1: Equations of the form (3.4) with aj = O.

aq 8, ;; aA = 8 (2al +-34) 2&21+—a5 233 ==
0 0 0 a, 0 28, 0 0

0 0 0 &, 8 2a4 a 0

0 0 a3 &, 0 2a4 0 2a3

O 0 a3 &, &, 2a4 -GS 2a3

O ar O a, 0 234 220 0

0 apr O a, 65 2a4 2&2-+-a5 O

0 a5 0 8, =28, 234 0 0

0 a5 #3 & =28, 2a4 0 2a3

0 &y a3 &, 0 234 Ra.o 2a3
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Table 3.2: Equations of the form (3.4) with a; = 0

;1 -;2 B 34r a (:’Zal:a4 2§;~pa5 28,4
aj 0 0 ‘_O 0 287 0 0
a1 0 0 0 a5 Eal ag 0
ay 0 a3 0 0 2&1 0 2&3
ay 0 a3 0 8z 2aq a5 233
a1 as 0 0 0 284 Ra o 0
a7 8, 0 0 as 284 28, + as 0
ay a8, 0 0 =2a, 28y 0 0
aj 8, 84 0 -2&2 2&1 0 2a3
8y 8- a3 0 0 2a4 285 233
ay 85 ag 0 35' Raq Ras+ as 2a 4
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Table 3.3: Equaticns of the form (3.4) with

2&1 =-a,
a; 4, ﬂ;B a, ag 1 (2a1+-aZ) 28, + 85 28,
ay 0 a3 : =84 0 - 0 = 0 2a3
2, 0 0 -84 ag 0 8 0
a, 0 83 =8 &z 0 a5 233
ay 8o 0 -84 O O 2&2 O
a4 a, 0 -84 ag 0 2&24-35 0
a4 a, | 0 O 232 233
ap &, az =a; =2a) 0 0 2a3
ay a5 a; =8 85 0 2&24-35 233
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Table 3.4: Equations of the form (3.4) with

a1a4(2a1 + a4) Z O,

a, a, a3 a, a (2 aq 4 a4) 285+ a5 28,
a;_ 0 O. a, 0 € ap+ a4) 0O 0
a; O 0 a, 8 (2'31%&4) 8. 0
ay O a5 a, 0 (2 a+ 9%) 0 233
a7 O a3 8, ag (z ay+ 8,) as 284
ay] a, O a, O R a;+a,) 2a, 0
a; &, 0 a, as (2 fa1+ a4) 28, + 8 0
8 & O a, =2a (2 a, + 34) 0 0
a] az a3 a; ~2,| (2a,+a)) 0 28 5
a; a, a3 ay 0 (2 ay + 34) 2&2 2a3
a). a, =B a, ar (z al+34) 283 + 85 284
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Theorem 3.1: The equations

s . o D)

XEF +-XY2 - 223 992 0002000000008 2008008 (3.6) '

define equivalence relations over Z. For every integer neZ the
equivalence class LQ]R consists of the integer n only,

Proof: Equations (3.4) and (3.5) are impossible in integers,
except for the trivial solution x = y = z., Therefore, xRy if and
only if x = ye

Transitivity holds, since aRb and bRe imply that
a = b= c, and hence aRc,

If ac (mp, then aRn. Henece a = n, and the equivalence
class [n|; consists of the integer n only.

The following lemmas are needed for later discussion in
this chapter,

Lemma 3,1: Iet m ahd n be two positive integers and

P a prime, If any two of the following three congruences ars

satisfied, then the third is satisfied:

(x-fy)m (x - Y)n - G(MOd P} --ot:;u--nnnnn.n-(317}

(7+2)" (7 = 2)® 2 0(00d P} secnesncrossessoslIed)

(x +2)® (x = z)°

O(mcd p) eeedsscensnoos B (3-9)

Proof: We prove that the congruences (3.7) and (3.8) imply
congruence (3.9)., The other cases can be proved similarly,

Congruence (3,7) implies that p | (x+y), or p|(x = y),
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Congruence (3,8) implies that pz (y 2) or p ;(y - Z)e

If p |[(x+y) and p] (y z), then p ((x - z). Thus
(x = 2)? 2 O(mod p) and (x+2)® (x - 2)? 2 0(mod ﬁ).
If p 1(x-+y) and p {(y - z), then p:!(xd—z). Thus
(x +2)™ 2 O(mod p) and (x +2}® (x - z)® 3 0(mod D) o
If p \(x - y) and p/(y +z), then p \(x+z). Thus
(x +2)" 2 0(mod p) and (x+2z)™ (x - 2)B = 0(mod p),
If p !(x - y) and p \(y - z), then p\ (x = 2)o, Thus
(x « )R S O(mod p) and (x+z)™ (x = z)? = 0(mog D)
Lemma 3,2: Let m ahd n be positive integers, and p

a prime, If any two of the following three congruences are

satisfied, then the third congruence is satisfied:

PRl e b

(x+y-+_l)m (x = 2
(7+2 1) (7 = 2)™ 300200 B) vevnerreernsannenn (3.11)

(B2 1) (xma)” 200000 BF covenvion o i (3.12).

(F1

Proof: The proof is similar to that of lemma (3.1},

Now we discuss the conditions under which the equation

aj{x+y)(x = y)2~%-a3(way) = R83Z seseeecccesess (3413)

defines an equivalence relation, and characterize the equivalence
classes. It will be assumed that (aj, a3) = 1, and a3 is positive,

Theorem 3,2: Let a3 3 1. If a7 1is even, then equation (3,13)
is equivalent to equation (2,4), If a1 1s odd, then it defines 3

universal equivalence relation over I,
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Proof: If ay = 2&%, then equation (3.13) reduces to

23.]l‘(x+y}(x - y)2+(x+—y) ¥ 2% Lahciincesisess (3112a)

Zai(x-ky)(x - y)? is even and so is the right hand side of equation
(3.14a)}, Hence if xRy, then x + y = O(mod 2), and x 3 y(mod 2),
Conversely, if x & y(mod 2}, then x +y 2 O(mod 2), and
2&%(x4ey)(x - y)2-+-(xu+y) 2 O(mod 2}, and hence xRy,
Thus xRy if and only if x E_y(med 2), and (3.14a) is
equivalent to equation (2,6),

1fa; = 2&% + 1, equation (3,13) reduces to

Zai(xﬂ-y)(x - y)24ﬁ(xury){'(x - y)%+ ;} % 2% ceeesesstIpllib)

Note that (xnky)ji(x - y)2+-1} is even for ail x and y. Hence
{Zai(thy)(x - y)2a+ (xﬂ+y)g(x - y)2+-13:}is even for all x and vy,
Thus equation (3.14b) is solvable for any choice of x and 1y,
Consequently, xRy for all x -and y, andlthe conclusion of the

theorem follows,

Theorem 3.3: If a3 = p, an odd prime, then equation (3,13}
defines an equivalence relation over I such that:

i 1. a1 1s odd, the equivalence classes are given by [J]R -
p=-1

nsJ, or =J{mod p}} s where J 2 0, 1, 2, .., T

If a,, is even, the equivalence classes are given by‘[J]R.=

3n

n=Jd, or =J(mod 2p)} » where J = 0,1,2, +.a, P,

SLn

Proof: Case (i). Let a; be odd and let xRy, Then
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p(x+y)

2p(z7) 2 O(mod p). Hence ay(x¢ y)(x = y)z'ﬁ O(mod p)
and (x + -

) {(x = y)2 5 0(mod p).

Conversely, if (x+y)(x = 3)2 = 0(med p), then

ay(x+y) (x =~ 7)% + p(x+y) 2 0(mod P) eeerenase (3.15b)

The left hand side of congruence (3.15b) is even for any pair

of integers x and y, then aj(x+y)(x = y)2ﬁ~ p(x+y) = 0(mod 2p),
and xRy,

Thus xRy if and only if (x + y)(x = y)2 = 0(mod p).

To show that transitivity holds, let xjRxp and x;Rx3. TWe
have then:

0%, (1 = )% 2 0(06d P} . .oocnenecineice (Belbe)
(x2+x3}(x2 i x3)2 E O(mod P) o990 oedeoeatecodd (3;15(3)

In lemma 3,1, if we let m

1l and n = 2, we get (x1-+-x3)(xl ~ x3)2 =
0(mod P)j and lexB'

Let Ay =3in : n 2

J, or "'J (mﬂ'd J)} 9 J o O, 1, 2,- e®e )
p=1

5 To show that AJ is an equivalence class, let xiy'é‘AJ, then
x & J(mod p) or x £ =J(mod p), and y 8 J(mod p) or y  =J(mod p).
If x =

= J(mod p) and y & J(mod p), then x

2 y (mod p), and
x = y 2 0(mod p); consequently, (x + y)(x = y)2 = O(mod p) and xRy,

If x 2 J(mod p) and y 2 =J(mod p), then x 5 -y(mod p) and

(x+y) 2 O(mod p); consequently, (x+y)(x = y)* = O(mod p) and xRy.

=J(mod p) and y = J(mod p), or
=J(mod p) and y & -J(mod p), then xRy,

Similarly if x =

X =

Now, let x ¢ AJl’ y € AJz, and let Jy £ Jp, say J1> Jo.
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Suppose xRy, then we have (x+J7) (x . J1)% 2 0(mod pr and
(y + Jo) (y = J2)2 2 O(mod p)., By lemma (3.1}, we get
(9 +32) (3 = 3)% & O(mod p). Therefore, Jy + I, & O(mod p)
or J3 = J5 2 O(mod p)e The two congruences are impossible since
0 <:Ji + Jo<p-1 and 0 <'Jl - Jz‘f-E%l « Hence xRya
Cage (ii): If a] 1s even, then it can be shown as in
case (i) that xRy if adg only if (x +y)(x - y)2 = 0 (mod 2p),
To establish transitivity, let xjRxp and xoRx3. Then

we have:

O(HlOd 2p) ee0esso000es ssa (3-153)

(xq + %x2) (x7 = x2)2

G(mOd 213) $e20000s00en0ee (Bnlsf)

(1]

(x2 o x3)(x2 - x2)2

From (3.153) and (3.15f) we have X] 8 X5 § xj(mod 2. TP Xy = 2X3+1,

Xo = 2X2+ 1, and x3=2XB+1, then

(X7 + X5 *‘1)(X1 - X2)2 g 0ned-p) e, (3.15e')
and 5
) O(Iﬂﬂd P) B0%oseessenae (3#151‘1)

(33

(Xé +—IB +l)(X2 - Ié

By lemma (3,2), with m= 1 and n = 2, we get
2
)

(Xl~+ X, +—1)(Xi =~ X5)7 2 0(mod p) ssssssccceg (3.15¢g)

Congruence (3.15g) implies that

%(Xﬁ X5+ 1)][2(1(1 - XB)JZ 8 0(mod 2p) ...... (3.15g")

2 =
or (x; + x3) (%7 - :{3) = O(mod 2p), and x1Rx3,
2 2 x1_= Xy, X5 = 2%, and X3 = 243, then lexB follows by

using lemms (3,1),
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The remaining part of the theorem can be shown as in case (i},
A generalization of theorem (3.3) is provided by theorem
(344):: in which m,n, and k are any three positive integers.,
Condition (I) is not satisfied except when k = 1, while condition
(II) is satisfied only when n is even,
Theorem 3.,4: Let p be an odd prime and (ay, p) = 1. Then
the equation
ap(x + 7)) (x = 7 + plx 4 Y)k 8 2D% gesscesncecs Lisl0)
is equivalent to

ay(x + y) (x - 3’)2+ p(x + y) = 2pz.

Proofs If a7 1s odd and xRy, then

ay(x 4+ y)™(x - y)n+_p(X'+~y)k = 2pzq, for some 27 € I ,.o (3.16a)

a1{x+ y)™(x =~ y)®, Therefore

k
P Jszl and p’?(xn+ y) "« Hence p

P /(X +~y)m(x - Y)n; and p ,(x-+ y) or p )(x = ¥). In either case

O0(mod p),

(x +3) (x = )7

Conversely, if (x + y)(x = y)2.§ O(mod p), then p |(x 4+ y)

or p |(x = y)s Thus (x +y)™(x = y)® 3 0(mod p), and

iz 3%z e 7" Fple + 70" 5 0056 B} vonrncensns (3.165)

Noting that the left hand side of congruence (3,16b) is even for all

x and y, we see that a;(x + y)™(x = y)®+ p(x + y)¥ 3 O(mod 2p),

and xRy,
Thus 1if a, is odd, xRy if-and only if (x + y)(x = y)? = 0(mod p).
Similarly if a5 is even, then xRy if and only if

(x +y)(x » y)2 = O(mod 2p), and
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the conclusion of the theorem follows.

If, in theorem (3.4), p = 2 then the equation (3.16) is

equivalent to equation (2,6), For in this case the equation

reduces to:

ay(x+y)"(x = y)n4-2(x+-y)k R e e (fh ),

with aj odd. It can be shown that, xRy if and only if x 2 y(mod 2),

and hence the two equations are equivalent,

Iheorem 3,5: Let a; be odd, Then the equaticn

1
al(x+y)(x " Y)z—'f" 2m(X+y) - 2m+ % 280 0000w s (3;18)

is equivalent to equation (2,6), if m= 2, If m = 3, the equivalence

classes are given by:
[J]Rz{z,n+J=neI}, J = 0, or 2,
{I]R =i4n§l:nc—:I}.
Procf: Let m = 2 then the equation reduces to

a1(x+7)(x = P« 4(x+y) = €3 oesevsvvvevens (3518a)

Let xRy, then aq(x+y)(x - 7)2 = 0(mod 2), Hence x = y
(mod 2). Conversely, if x 5 y(mod 2) then a1(x+5) (x = )2 2 0(mod 8)
and 4(x+y) = O(mod 8), Therefore, a;(x+y)(x = y)° + 4{x+y) 20(mod 8).

Thus xRy if and only if x § y(mod 2), and the conclusion

follows,

When m = 2, the equation reduces *o

s gz gl Blry) 2165, ... . Gt
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Let A7 = {!;.n +J ¢ n EIZ, J =2 0, or 2, and A4 a%&n‘-’t-l:n eIf.
First we show that, if x c A; and y < A5, with 1 4 J, then xiy.

Note that, if x & y(mod 2), then a1 (x+y)(x = )% 1s odd.
Consequently, a, (x +y)(x - y)2“P 8(x+y) £0 (mod 16), and xfy.
In view of this remark we nead only consider the case when
120 and J = 2,

Let x ¢ AO and y < Az, then x = 4x1 and y = Ayl—r 2

Substituting the values of x and Yy in equation (3.18b) we get

1

8&1(2x1+—2y1+—1)(2x1 - 2y = 1)%+-16(2x1ﬂh2y1_k1) = 16z,

Therefore 5
8&1(2xl4-2y1-+1)(2x1 - 2yl - 1) 2 0(mod 16) ,
and hence aj 2 O(mod 2), a contradiction to our hypothesis that
ay is odd. Hence xHYy.

Second we show that, if x, y < Aj, where 1 = 0, 1, or 2y
then xRy, We give the proof for i = O, the other cases sre

gimilar, Let x = 4xl and y = Ayl. Then we have
2 ' 1
aq(4xt & 4yl) (4xt - )" Bl 4y) [64(xl+ yl)(xl -y =
32(:{1—1- yl)J 2 O(mod 16), and xRy,

Thus xRy if and only if X9y €44, 1 20, 1, or 2,

To establish transitivity, let aRb and bRe. Then a, b, c<hy,
for some k = 0, 1, or 2, and aRe,

Finaglly, the sets Ay, Ay, and A2 satisfy the two conditions
of definition 1.2, hence they are: equivalence classes,

In general, theorem (3.5) does not hold for all positive

integers n . Ws give an example whers transitivity is not
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satisfied for n = 4,

Example: Let n = 4, Xy = 25 X & 27, and X3 = 7« Then

a1 (5+27) (5 - 27)2 2%(5 +27)

il

2521, where 2z = 484a,+ 16, and x;Rxp.

a1(27+7) (27 - 7% 2%(27+7) 2522, where zp = 85a, +17, and xjRxg.

a1(5 + 7}(5 - 7)2+—24(5 +7) = 24(31~F12} £ 2z, for all z c I, since

a] 1is odd, and xRx3.

Now we discuss the equation

aj(x+y)(x = y) % az(X*y)+~a3(X+ Y) 2 2832 ceseseenns (3.19)

which satisfies condition (I}, but not (II)., There is no loss of
generality if we assume that a3 is positive,
Let a; 2 by (mod 233) and a, 2 by (mod 2a3), where 0 < by, b,
b, by < 283, Therefors, ay z by + 2qja3 and a,, = b, + 2985, Thus

equation (3.19) reduces to

2q133(x+-y)(x—y)2+-2q2a3(x-y)4—b1(xq;y}(x-y)2+~b2(x~y)+~aB(Xﬂ~y} = 2a3z
or

bl(x+y)(x-y)2+b2(x-y)+a3(x+y) 2 2857 siecicecnnonscnes (3020)

where

AP ql(x +3) (x=7) % & o (x=y) .

Equations (3.19) and (3.20) are equivalent, We will assume
throughout the discussion that (bl, bs, 33) = 1,
In case bl = b2 =0, we get x4+ y = 24, and equation (3.20)

is equivalent to equation (2,6)
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In case b, = 0, equation (3.20) reduces to equation (3,13)
which has been already discussed.

If by = 0, the equation reduces to
bz(x = y) -+ 5-3 (x'f‘Y} = ?-a-az 2800 esPorsOe0e s 0 B0 (3.20&)

In this case, if by 3 a3 (mod 2), then by and a; are both
odd, since it is assumed thaf (by, b, a3) = 1. Let xRy, then
X =y = 0(mod 33}. Conversely, if x = y 2 0(mod 53), then
bo(x = y) +a3(x+y) 2 O(mod 33), Noting that b,(x = y)-pa3(x y)
is even for all x and y, we see that ba(x=y) + a3(x +y) =20(mod 2a5),
and xRy,

Thus xRy if and only if x 2 y(mod a3)e Therefore, the
Bquivalence classes are [J]R =5in : n & J(mod 3312 y J = 0,1,2,...,33-1.

Again, if b, = 0 and b, £ a, (mod 2), then it can be shown that

xRy 1if and only if x = y (mod 2a3), Hence the equivalence classes
are [;]R ={n : n 2 J(mod 2a3l} s Where J = 0, 1, 2. ..., a5 = 1,

If neither by; nor b2 is zero and by, b2-<'2a3, then with
a3 = 1, by =2 b, = 1, equation (3,20) reduces to (x+y) (x=y) %+ 2x = 22,
which is equivalent to equation (2,6), because xRy if end only if
x 8§ y(mod 2)

If a3 = 2, then 8 different cases of equation (3,20) arise,
depending on the value of the coefficients. They are listed in

table 3,5,
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Teble 3.5¢ Equations of the form (3.20) with az = 2

and (bl, bz’ 3.3) = l:

T, el
=% oo e

1 2 2 4

1 3 2 &

2 1 2 4

2 3 2 4

3 1 2 4

3 2 2 4

3 3 2 4
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Of the equations listed in table 3,5 the following do not

define equivalence relations over I:

(x +3) (x=3) %+ (x=y) + 2(x+ y)

Z;,Z ecosseneeenD B0 (3'213«)

3(x+y) (x=3) %+ (x=3) +2(x+7) 2 42 sveesencssese (3.21b)

(1]

3(x+3) (x=y) 2 3(30=y) +2(X +7) 2 42 vescesscsease (3s2lc)

(x+7) (x=3) 2+ 3(x=y) +2(x+F) 242 oeovercoeeees (3.21d)

In equation (3.,2la) OR1 but 1RD,
In equation (3.21b) 4R1 but 1fA.
In equation (3.21e) 1RO but ORI,
In equation (3.21d) 4R1 but 1R4.
Of the remaining four equations the following two are

equivalent to equation (2.6):

(x+y)(x-y)2+ Hemgl s My o lo . eeisvinis (32210

and

B(xﬁ~y)(x-y);+ 2{xmy) - 2(x - F) 2 4% cevsvnsesses [3.21F)

iB

The equivalence follows from the fact that in both equations Ry
2
if and only if (x4y)(x-y) 2 O(mod 4).

The last two equations are:

2(x+y) (x=y) (xey) +2(x 9] 502 ivvicoines 3a20%)

and >
2(x+y) (K"‘y) =F B(X"y) +2(J{+ YJ HAZ Desssevo e o B (3u21h)

In equations (3.21g) and (3.21h) if xRy, then x & y(mod 2),

Therefors 2(3—%?)(3‘?}2 = 2(x+y) 2 (mod 4); Consequently,
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x =y = O(mod 4) 1,e. x & y(mod 4). Conversely, if x = y(mod 4),
then 2(x+y) (x = v) % + bo(x = vy} + 2(x +y) 2 O(mod 4), where
by =2z lor 3., and xRY.

Thus 3Ry if and only if x 3 y(mod 4). Therefore the
equivalence classes are [_J]R = {n : n 2 J(mod A)} s Where

J=0’1’2’3ﬁ




CHAPTER IV

NUMBER OF EQUIVALENCE CLASES OF Rg

This chapter is devoted to a discussion of equations of
the form

P(X, y) prs ma #o9 0o ta o0t ePrserOeOOe dDOoOSB S (4#1)

where P(x,y) is an integral polynomial in x and y, and where
conditions (I} and (II} do not necessarily hold. For conveniencs

we will deal with the congruence
P(]{, Y} E O(mﬂd m) CoDB OGS RO0 GOV O POB D (4-2)

rather than equation (4.1). Without loss of generality we may
assume m 1o be positive.

Definition 4.,1: P(x,y) is said to be favorable (mod m) if

and only if equation (4.l) defines an equivalence relation over I,
In this case the equivalence relation is denoted by'Rg, and the
set of distinect equivalence classes by E(P, m),

Definition 4,2: For a given x = a, N(P, a, m) denotes the

number of distinet solutions of the congruence P(a, y) = O(mod m),
: m
Note that if {g]Rm_is an equivalence class of RP’ then there

P
exists an integer b, 0 = b < m such that [h]Rm - \élqm s and
- &

H(P, s, m) = N(P, b, m), Thus, in definition 4.2, we may assume

that 0 < a < nm,
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Theorem 4,1: For any divisor d of m if P(x,y) is
favorable (mod m), then it is favorable (mod d) and N(Rg)éﬁﬂ(Rg).

Proofs If P(x,y).is favorable (mod m), then it is favorable
(mod d), because P(x,y) Z O(mod m) implies that P(x,y) = O(med d).

To prove the inequality, let

E(P’d) - %@i]Rdt ¢ =1 1, 2, 3, 200 N(R%)} |
P

and

E(P, m) #¢ b :1:z1,2 ..., N(RD) ¢,

111
Rp

Lot =% Q’iPi]Rm , then P(x, bi) 2 0(mod m), Hence P(x, b;) 20(mod 4d),

P

and xR? bi' Thus

& b B B b' -
£ [ iLd ut K-i]Rd {?k;lﬂd
P L o)
for some k; depending on i and where, 1 < k; _«-::N(Rg). Therefore,

F

If [b i 1 , then \fkﬂﬂd #%JﬂRd
P P

and k; = J;. That is every equivalence class in E(P, m) is
contained in exactly one equivalence class of E(P,d),

Sine 5 +
%_{ b a2 L) g =5, 8= N(Rg)

and t = N(Rg}, then every equivalence class in E(P, d) contains an

equivglence class of E(P, m),

The mapping f:E(P, m) >E(P, d) defined by
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B Lﬁi]a?) P =

is well defined and onto, Therefore, N(Rg);&:m(ﬁg).

Theorem 4,2: Let P(x, y) = Pl(?f; y) Pz(x, Fle i Pl(x, y)
is favorable (mod m), then N(R?)fé;NCR%l).‘

Proof: If P(x, y) is not favorable (mod m), then N(R?l) - O,
and the inequality is satisfied,

If P(x, y} is favorable (mod m), then it can be shown as
in theorem (4.1) that every equivalence class in E(Pl, m) is
contained in exactly one equivalence of E(P, m), and that every
equivalence class in E(P, m) cﬁntains an equivalence class of

E(P;, m). Thus N(R?l) < N(R}“,z).

Iheorem 4.3: If P(x, y) is favorable (mod m), then

N(Rid:,) < (m +1 - max iN(P, a, m): O <a<m}), for any
divisor d of m.

Proof: Let A = iLﬂR% : _J - 0, 1, 2,' vteag Il = lj‘ be a set
of equivalence classes that are not necessarily distinct., In
particular if y 2 s(mod m), 0< s < m, is a solution of the

congruence

P(&, y) E O(BlOd Hi) CA000 000 eI tB 000 ta e (4:3)

then P(a, s) = O(mod m)., Consequently, Eﬁlﬁﬁ = Eﬁ]Rm .

Noting that y = a(mod m) is a solution of (4e3), we see
that there are-{N(P, 8, m) = ljaincogruent solutions (mog m) of (4;3),

all different from s,

Hence there sre at most (m - SN (P, a, m) = 1})distinct
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m

classes in A. That is N(RP) < [m +1 = K(P, a, m)} for all

a

a

Rl
‘o

e
.

= |
0, 1, 2, ses, m =1, and N(R;) < (m +1 =~ max SLN(P, a, m):
0, l, 2, see,y I = l})- By theorem (4;1),

N(Ri) < (m+1 - max ¢N(P, a, m)2 O< a <m ).
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