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MULTINOMIAL POPULATIONS

By
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PREFACE

The multinomial distributicn appears tc be an appropriate model
for a variety of practical prcblems where observations are made on

categorical data, Its wide applicability raises a number of new
inference prcblems, some of which are direect extensions of standard
procedures in bivariate populations, while others require special

treatnent,

This thesis treats twolproblems of inference connected with

several multinomial populations. One problem is to decide whether or
not several random samplss belong to the same multinomial population,

If they do not, the questicn arises as to which subset, if any, of

those samples may be considered as belonging to the same population,
This problem is then essentially the problem cf homogeneity of
multinomial populations,

The other problem arises in situations where one wishes to

select a subset of the populations which, at a preassigned confidence
level, coﬁtains a "best" population. The selection of such population
has recenily recelved considerable attention fqom statisticians,

The solutions offered in this thesis toc the two Problems

lend themselves easily to numerical applications.

iv
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CHAPTER I

REVIEW OF RELATED LITERATURE

The first of the two prohlems considered in this.thesis is the
problem of homogeneity of several multinomial populations. In
particular, we consider m multinomial populations, each consisting
of k classes, with parameters Trij (£ 2 Tynnestis J 8 1iscank)
where W;j is the probability that an individual from the ith popula-
tion falls in the jth class, The hypothesis that the m populations
are homogeneous is then the hyposthesis H;Jnij 2 0es m s for j = 10005k -
Given independent random samples of sizes ni'(i 2 1,000,m) from the

populations, the usual test for H 1is based on the statistic

s - 2
x° s (nlj - nian) where njj is the frequency in the (i,j) th

i,] ni Py m
cell, and Pj = Eﬁl with n_5 = gﬂi nijs, N = ff; Dy 50
= ’

Under H, X° is asymptotically distributed asa chi=square variable
with (m=1)(k=1) degrees of freedom (see,for example, Cramer 1946). |

Goodman (1964) proposed a test for the hypothesis H based

(ng; = ny, Qj)2

on the statistic Y2 a / __ , mhere the Q, are obtained

i,] s
by minimizing Y? subject to -%: ¥ Qj = 1, The values of Qj are
- J=l
Pj - N
found to be Q; = —g—2=— , Where P, z=—p—————= (Jj = 1,004,k),

Nne
the weighted harmonic means of the proportions pij = ;Ei occuring in
1s
the jth class over all the m populations, Under d, 22 is

asymptotically distributed as a chi=square variable with (mel) (k=1)

- ] =



-2‘

degrees of freedom, so that it is asymptotiecally equivalent to Xz.
1
A useful computational formla of Y is T° = N5 - V. It is
jal

important to note that Goodman's Y2 - gtatistic is undefined in the

presence of zero frequencies in some cells,

The aduantages of Y° over X~ lie: in that the Y° = statistic
admits certaln properties similar to those of ths F-test used in the
analysis of variance context. Theseproperties will be cited in the
following pages.

In the event that the hypothesis of homogeneity is rejected,
one is usually interested in more detailed decisions as to which
populations are alike and which are not, In other words,it is then
desired to divide the populations into distinet homogeneous
subgroupse

Goodman's (1964) technique of multiple contrastsamong the
multinomial populations is one way to deal with the above problem,
(contrasts in this problem were first discussed by Gold 1963). A
contrast among the m multinomial populations is defined to be

a linear function of the T/,., 8 = 7 c 3 WTij subject to the
i,]

1J
m
condition that J cjj =20 for j @ 1, oo, ko Then it is easy to
i=1

see that the hypothesis of homogeneity H 1is equivalent to the
hypothesis that all possible contrasts equal zero,

The maximum likelihood unbiased estimate of @ is
2 0 for jm 1l,..0,k3

A m
8= ) cij Pj j subject to the condition that Zijci

1,] ns i=l J
and where the Pij = E&i are the maximum likelihood estimates of
i.
Mg (i 21, coey 3 J =1, 0oey kK)o Simple calculations lead to:
J
’ = 1 5 2 - T 22
var(e) = Z 'ﬁ; [Z cij Wij - (Z cij Hij) :] and its consistent

i=1 iml 1l
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e A el )2
estimate 57(0) = - Cis DPii = Ci i Py ;
iﬂl n‘ln j=1 lj J j:l J lJ

Goodman, in the same paper (1964), also proved two important
theorems about the multiple contrasts and about the Y° - statistic,
These theorems will be used to develop a procedure for dividing the set
of the m populations into homogeneous subsets, The first theorem
giveé simudtaneous confidence intervals, based on the chi-square
distribution, for sll possible contrasts ©. If the confidence interval
for some contrast © does not contein zero, the estimated contrast 8
is said to be significently different from zero,

The second theorem relates the 32 - test to the simultaneous
confidence intervals, It asserts that the Y2 = gstatistic rejects
the hypothesis H if and only if at least one estimated contrast
is significantly different from zeroe

Goodman points out that in view of the second theorem the
simultanecus confidence intervals presented iﬁ?%irst theorem for all
contrasts. can be used to supplement the test for the hypothesis of
homogeneity based on Y2 in the following way: If the test based on
Y2 leads to acceptance of H, then all confidence intervals would
contain zero., But if the test rejects H, we could then calculate
the simultaneous confidence intervals to determine which particular
contrasts are significantly different from zero and thus determine
the particular ways in which the multinomial populations are not
homogenecus. Before exgmining particular contrasts one should
calculzate Yz to determine whether there are significant contrsst
at all, Finally, Goodman points out why a result similar to the

second theorem does not hold for the ususl X2 - gtatistics.
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Theorems analogous to those of Goodman were earlier obtained by Scheffé
(1953, 1959) in the analysis of variance context. In this case the
F=test plays the role of the Y2 test, and the F-distribution takes the
place of the chi-gquare distribution., If the F-test rejects the
hypothesis of homogeneity (equality of means) of normal populations,
the Scheff€ multiple contrast technique is used to detect the reasons
for heterogeneity,

Both Scheffé's and Goodman's contrast procedures may be
criticized on the grounds that one cannot examine all possible
contrasts since there are infinitely many; hence one would be umeble
to decide whether a particular subset of the m populations (whether
in the normal or multinomial case) is homogeneous or not.

In the analysis of varlance context the difficultly of applying
Scheffé's procedure is overcome by a technique proposed by Gabriel(1964).
Essentially, he suggests that to determine the homogeneity, or lack of
it,in a subset R of the normal populations, we need only examine a

single statistic. The statistic is chosen such that some estimated
contrast in R 1is significantly different from zero iff this
statistic is significantly large. Gabriel's statistic is the
between samples S.S. in the set R, S;. R 1is judged significant
iff S; ;>32(m-1) F.; (m-1)(n-m) where s° is the sample estimate
(error §.§) of the common unknown variance of the populations.
Gabriel also describes a systematic way for classifying the popu=~
lations into homogenecus subsets.
A technique analogous to Gabriel's is developed in Chapter II

to deal with the similar problem in the case of multinomial populations.

A second directicn in which a statistician may wish to go
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beyond the traditional tests of homogenelty (e.g. Fisher's analysis
of variance, Bartlett!s test for homogeneity of variances, homogeneity
in multinomial populations, ete.) is the problem of ordering the
populations in some order of preference, In an agricultural
experiment, for example, the prospect is to choose a best variety
among several,

One of the first attempts to deal with such situations is that
by Mosteller (1948) who considers the hypothesis of homogeneity
against a specific alternative, known as the slippage alternative,
Formally, given populations, f(x = a1), ess, f(x = a ) which are
identical except for translation; it is required to test the
hypothesis H: a7 = ... = a, against the alternative K: for soms i
ay > max (a7, seoy 85_75 8y {1» secy 8y)e While the hypothesis
H implies homogeneity, K implies that the ith population, which
may be called the best population, has slipped farther to the
right than any of the others, Mosteller gave a nonparametric test
for this problem,

Paulson (1949,;1952) devised, in the first paper, a rule for
classifying m normal populations intc a "superior", and an "inferior"
group according to the values of their means, If all populations fall
into one group, he calls it "neutral" and decides that the populations
are homogeneous, In the second paper a procedure is given for
determining the best among normal populations, and among binomial
populations using the inverse sine transformation,

Bechhofer, in a series of papers starting in (1954), formulates
the problem of ranking populations (with special attention paid to

normal populations) as follows: The experimenter singles out a
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parametsr-ui(i 2 1, sies m) according to which the populations,
should be ordered., He then specifies an indifference zone in the
paraméter space, . - <4 (‘for sorg pair (i,r)The main point in
the procedure is to di%ermine'the common sample size n which
guarantees that the probability of correct ranking is at least a
preassigned value P, Then samplesof size n are drawn from each
population and the estimates ﬁi for u; are calculated. The
population associated with the largest u; is asserted to be the
best, the one with the second largest ﬁi is asserted to be the
second best, and so on, Values of n are tabulated to carry out
the procedure in different situations., Sequential procedures are
given by Bechhofer and Sobel (1954), Bechhofer (1958), and Bechhofer
and Blumenthal (1962).

A similar approach involving the selection of a subset of the
given populations differs from Bechhofer'!s in that it assumes that
the number of observations from each population is given, The
approach is due to Gupta and Schel(1958)., The sample estimates
ﬁi for the u; (i = 1, +.s, m) are computed., Then the procedure is
to retain every population for which u; ;;m%xr(ﬁi) - ¢, where ¢ 1is
a constant chosen so that the probability of retaining the population
with the largest u; is at least a preassigned level P, The final
decision is then,the selectlon of a subset of the populations which
is asserted to contain the best population,

Gupta and Schel (1960) have tabulated the different values of
the constant c¢ appropriate for carrying out the procedure in different
situations,

Guttman (1963) supplements the Gupta=Sohkel procedure with
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a sequentlal procedure where at each stage we retain fewer populations
until we are left with a single population asserted to be the best.

A Baysian approach to the best population problem is adopted
by Guttman and Tiao (1964). Exponential and normal populations are
considered with special attention,

Studden (1967) discusses the selection problem in terms of
decision functions and characterizes optimal selection subset rules.
Denoting by L; the loss when the ith population is retained, and
considering the additional loss when an incorrect selection is
made (i.e, the selected subset does not contain the best population)
he finds a formula for the risk R; and the problem is to find the
procedure which minimizes R. Among invariant decision rules

Studden characterizes the best invariant decision rule.



CHAPTER II

DIVIDING A SET OF MULTINOMIAL POPULATIONS

INTO HOMOGENEOUS SUBSETS

Suppose that we have m multinomial populationsof k classes
each, with true parameters (1Til,1T12, n-n,1Tik), 121, seey M
Given samples (nil’ Diny ooy nik)’ 121, «osy B, Of sizes

k | _
I T n, from each population, it is required to divide the

i
g:;ulations into homogeneous subsets. By homngeneify in a subset
R of the m pbpulations is meant that the hypothesis H: -”}j = 'ﬁgj
holds true for all j = 1, ees.y k and all r, s ¢ R¢ A procedure for
testing the homogeneity of any subset of the m populations is given
here, and by this procedure it will be possible to distinguish the
homogeneous subsets.,

The procedure is parallel to that of Gabriel (1964) in the
senge that Gabriel's procedure is based on Scheffé's contrasts among

normal populations, while the present procedure is based on Goodman's

contrasts among multinomial populations,

The Procedure:
As it was defined in chapter I, a contrast among the m

multinomial populations is a linear function of the parameters

Ty

5582 2 cjj 'Mij subject to the restriction that
>J

m
> _cj3 =0 for all j. The maximum likelihood unbiased estimate
i=1

-8-
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of @ is 6 = EE:,cij Pijs where Pij = E%i are the maximum likelihood
unbiased estim;ies of 'H'J, Twml, wid, ;; j=2l1l... k¢ Before
examining subsets of the m populations, one should test the
homogeneity of the whole set of populations to see whether differences

exist at all. To accomplish this we propose to use Goodman's

- 2
statistic Y° = Z (nij - mi, Q3) N(g—-—--l) where N = izj n; ;
3

73 3 = j
~and P j’ Qj are as defined in chapter I, Under the hypothesﬁs
H: TTij ='ﬂ‘ = oo =7Imj for all J, Y 2 has chi-square distribution
with (m—l}(k-l) degrees of freedom.

We need the following two theorems due to Goodman (1964,
pp. 718 and 721):

Theorem 1; As Z n; = N tends to infinity, the probability
isl

will approach (1 =) that simultaneously for all functions ©
0 =80} L B (OABOIL  veveerrininersonnes (1)

where L 1is the positive square root of the upper o point of the
chi-gquare distribution with (m=1)(k<1) degrees of freedom, and
_5(3) is the estimated standard deviation of 5, whose explicit
form was given in chapter I.
From?Thequalitﬁm(l), it ie seen that the confidence interval
for a contrast © does not contain zero if and only if | 6| f>'S(§)L
2
2(9) sz(e) o
it is said that the estimated contrast © is significantly different

which is equivalent to B2> Sz(a)Lz, or > 1t el

from zero or,briefly, significant.,
Theorem 2: The test of homogeneity based on the Y2 statistic

rejects the hypothesis of homogeneity of the m populations if and



only if at least one estimated contrast is significant,

Therefore, to determine the reasons for rejecting the hypothesis,
one may interpret theorem 2 as suggesting a search for a significant
estimated contrast; this, however, cannot be done by examining all
the possible contrasts, since there are infinitely many.

Congider a subset R of the m populations. A contrast among the

m k

populations in R is a linear function @ = S Ei: ¢ij TTij subject
izl j=1

to the conditions: > Cij = O for all j. and Cij = O for all 1

i€R
not in R, So that a contrast in R is also a contrast in the set

of all the m populations, say M,

The subset R is homogeneous if and only if all contrasts in R

m k
Bqual zero, For, assuming homogeneity, we have ® = > > ¢ 5 Tﬁij
il a1
=Z( Tl:j § — cij) = 0, where Trj is the common value of the
J L :

probabilities in the jth class. Conversely, assume that all
__contrasts equal zero and suppose Tl 3 £ vsj for some &, s in
R and some j. Then the contrast TTej il 3 #Z 0 which contradicts
the assumption that all contrasts equal zero.

Horeover, in view of theorem 1, if an estimated contrast is
significantly different from zero, then the(l - x) confidence
interval for the true contrast does not contain zerc; hence the
probebility is at lesst (1 - X) that the true contrast is not
zero., So it is reasonable to judge the subset R heterogeneous
if and only if at least one estimated contrast in R is significantly

different from zero,

We recall that an estimated contrast © is significant if and
a2
5

2
> L7, so that to detect the existence of a singificant
s*(8)

only if
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estimated contrast we need only examine the meximum of the ratios
‘égzgy. If this maximum is smaller than Lz, then all other ratios

are smaller than L2 and, therefore, no estimated contrast is signi=-
ficant, which implies the homogeneity of R. On the other hand if the
maximam is larger than Lz, then the particular contrast associated

with this maximum ratio is significant, beside possibly other contrasts,
which implies heterogeneity of R.

02
The problam, then, reduces to maximizing -:%EY—

(2:. EE; ¢ij Pij)

= _il_.]w  — —  with respect to ¢
% }'Ji"‘ Z cljzpl;l ']ii ( chJplj)z .
i=1 L8 j=1 iﬁl g A

subject to the constraints: Z~ e 1] = 0 for all j, and e5§ = O
i€R

for 1 £ R, Let Wy, Wo, ..., W and by 35 L £ B, T ol con ks B

constant multipliers. Let

~2
=
F(c' ) - ™ "Tw Z C. e -—‘-w Z C 280 -\-W Z__ C
17 7 82(8) Lap fep 87 Eien
k
Z bi C
ifR j= J

Differentiating F(cijl with respect to ¢,  for all r ¢ R and

s = 1, ceoy kK, and squating the results to zerec, we get:
L At 1_{25 a2(h . 282(CrsPrs . Prs P, )}rw 2D e
e, 'SZ(E) (8) prs ( Nw, Ny, jal ‘] r]
multiplying (2) by —== “Ie and- supming over r in R we get:
Prs

2 [n 2.1 n2 .

— |6 8°(8) T n (e Zc ]+WZ
s*(8) o8 reR jml rJ r;] Prg -

__fg_EE: - -2%, where Nﬁ :E:; nr c0esceces00se0 08000 (3)

R reR
|2 S pI‘S



We get:
——2,\—[ 332(3)’1"%? + w ﬁ_go.
s4(8) R pR
Solving for wg, we find wy = = Eﬁs l:% 32(5)-+§2:) and substituting
this value in (2) we get:
1 [jza 52(5) 82 (Srs Prs Prg .2%: P,
2 (5) Prg ~ 2 H%: j=l = J

S R
P_(8 s2(6 5-3)] 0
- 2 P (8o e) +NR =

which can be written as:

k

; A a2
52(8)pyg = O(-TEE . pre ;21 ey Prg) = Ba(S°0) A1) 2 0 eures (4)

Summing (4) over S = 1, 2, ..., k we get:

5 k ; .
$28) - > B (8%e) + 2
S=l - NR
from which we see that
2 n a n2
1 s=(e) +x— )
- = :' 1 + m-_:_"“ poeesBBOBe (5)
< B —V0 N, 5°(6)

From (4) above we sblve for Coi to get:

A 242 éprs - 2 52
® Crg Prg = D, [-S (Q)Prs + T % CpjPrj = P (S (Q} o5 )

A K
2,2 e P s 12
= nr. [s (G) (prS_PS) + ...-.-...I.ﬁ. § crj‘prj e g] ee o889

. T- j-l
k
How s Z > CroPrs f_- S G D3 s Z‘ QC D
92 - rE-R S= e )(1.1 j_jﬂl:l xJ ) 3 TcR 5 s i‘s
() s*(8) s2(3)

and it attains its maximum when 50 p is given by (&),
B2
Substituting for chsprs from (6) in the expression for _ZE_Y we
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have

k A | - A k
rax —g'(’j' —Zzay = R ; [32(9) nrﬂ(PrE-PS} -+ Qprs % erpl‘j

e j J

we note that:

k -
=7 n -
(p. =P ) = 2.2 n (I8 =« P) al(Tw e
ER s-.-.-Zl r.'*rs 8 Te n,. R = 842
k e k h2
o G?rs(iiicrjpr ) =987,
rel Enl j=1
and x 1o
> haP et et B,
reR s=l MR Sel
So that

L (1-> PN 808 +9°
ggz-(sy( EJ(R (8) +07)
Sul
k= 'bz
= N.(1 - jé; PS)(l—%ﬁg-gzzgy— }s

Using (5) we get:

Sal Z-
. s=1 2
That is -
S k.1 2
= ),

dence the procedure is: "The set R 1s judged hetercgeneous if
and only if %; }rLz"; where L- iz the upperiéqintggfgﬁnﬁichi‘éﬁﬂaﬁﬁféiﬁtribUtiOH
with (m=1)(k=1) degrees of freedom, When R is the whole set of the
m populations, it is clear that I§ is identical wit;#§2 statistic

used to test the homogeneity of all the m populations. So that the

procedure contains the Yz-tast as a component. Moreover, if Ry is a
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subset of R, then Y2 ‘<;Y§ since a contrast in Ry 1is also a conirast

R %
1
in R, This result leads to the following property of transitivity of
the procedure: Any set containing a heterogeneous subset, is itself

hetetogeneous, Otherﬁise stated: If a set is homogeneous then all its

subsets are homogeneous.

However, a heterogenecus set need not contain a proper subsst

which is heterogeneous.

Overzll size of the test and type I errors:

Suppose that the Yz-tsst for all the m populations is carried ocut
at level o, A type I error is committeéd whenever a subset R is
judged heterogeneous while it is not. But judging R heterogeneous
implies that the set M of all the m populations is heterogeneous.
Hence under the hypothesis of homogeneity:

p.(R judged heterogeneous) < p.(M judged heterogenous) = X

This means that the overall size of the test (supremum of type I errors)
is emactly < .

To find the exact probabilities of type I errors, we assume that
R contains o§ p0pulationg. By the above procedure, R is heterogeneous
if and only if I§ ;>L2a:5(m-l)(k-1)' Hence the probability of type I
error is equal to pr(I§ >yL2ﬂ2;(m—1)(k-1)| H) = o<q, say. But under
Hg,Yé is asympt@tically distributed as a chi-sguare variable with

(g=1) (k=1) degrees of fresdom (this is because ig is identical with

Goodman's 22 defined for g populations only).,

Hence 5 5

Therefore, the point L2 gl i 0ean) is the upper '“:q point



- 15 =

of the chi=gsguare distribution with (g=1) (k=1) degrees of freedom,
2 2
Hence, we have the relation Lec = L _ » The
; a3 (q=1) (k=1) ~ 73 (m=1) (k=1)
~right hand side is known, and (g=1) (k=1) is known, therefore we
can use tables of the chi=square distribution with (g=1) (k=1) degrees
of freedom to determine the point satisfying the above relation, and

hence obtaincx:q. This may be done for any q = 2, 3, ees, Mo

Applications

| To divide the set M of all the m populations into homogeneous
subsets, we first caléulate the overall.Yé_to test the homogeneity of
the whole set M, Upon the rejection of the hypothesis of homogeneity,
theorem 2 asserts that there is at least one signifieant estimated
contrast, which in terms of our procedure means thatl there exists at
least one heterogeneous subset of the set ¥(the only one may be M
itself), With M containing m populations, there are 2@ - m = 1
subsets of M, each containing at least two populations; and we
have to examine all these subsets. However, the transitivity of the
procedure saves us the trouble of calculating the relevant 32 for
every individual of the 2" = m - 1 subsets. For example, if one

2 for any

of them is found homogeneous then we need not calculate ¥

of its subsets because they must all be homogeneous; while if one

set is heterogeneous, the Y? for any set containing it need not

be caleulated since transitivity implies that it is heterogeneous too.
Following Gabriel (1964y pp. 46), we call a set minimal

heterogeneous if all its proper subsets are homogeneous; and a set

is said to be maximal homogeneous if any set containing it properly

is heterogeneous (notethat Gabriel calls a heterogeneous set significant,
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and a homogeneous set nonsignificant). Given either one of the class
Ef minimal heterogeneous sets or the class of maximal homogeneous sets,
'~ the homogeneity or heterogeneity of any set of populations can be
established immediately. There are two methods that can be adopted
to accomplish the division of M into homogeneous subsets:
(i) Augmenting sets: calculate Y? for each of the (g) pairs cf popula-
tions, extend all homogeneocus pairs to triplets; and all homogeneous
triplets to quartets, and so on until no sets remain to be tested. This
method leads to identifying the maximal homogeneous sets.
(i1) Reducing sets: calculate Y2 for each set of size (m-1), reduce
all heterogeneous sets to sets of size (m«2) and so on. This method
leads to identifying minimal heterogenecus sets.

The following relations are given to simplify computaticns:

For a set My consisting of my populations, Y?Ml = le(“zl'§f - 1);

J

2
where Hﬁl - : n; with n; being the sample size from popilation i,

and

So that, one first catculates Pl’ ?2, ose Pk and it 1is easy then to

calculate Yy .
1

Denote §J for the set M; by ﬁm to indicate that it is based

s
on my pepulations,

1, A relation suitable for the method of sugmenting sets:

Suppose R, is a set of ¢ populations, and R 1is exactly Rj

plus an additional population,
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and

Gy J nq +1,]

This allows us to calculate the P ’s for the larger set from the P ’s

of the smaller set, which have been obtained previously., And the new

Y%R would be

1
L ety =1,

j nl Pq+l 2 j

2. A relation suitabls for the method of reducing sets:

If the P's for the larger set R have been caléulated, then the

P.'s for the smaller set Ry should be calculated from the following

relation:
q,J ~ 2%: S g;% Ei% B e Ng L -
—a g 3 B oy
ic1 T3 i "3 Fgil] gfl,]  ail,
And the smaller
2 1
YR - NR ( E P - 1)-
1 i ﬁ Qsd

A Numericgsl Example

To illustrate the method obtained above, we apply it tc a set
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of data taken out of a bulletin entitled MAgriculture and Arts and
Sciences Distribution of Grades" and issued by the Registrar's
Office of the American University of Beirut for the second semester
of the academic year 1966=67,

Our set M of populations consists of the six courses :Chemistry
161, 206, 208, 210, 216 and 218, and the obserbations on them are given
by frequencies of students in the four final grade groups A, B, C, and
chorresponding to grades in the 90's, 80's, 70's and 60's, respectively.,
Here, m = 6 and k = 4., The first four columns of the table below
glve the frequency distribution of students in the six coursss and
the four grade groups., The additicnal five columns of the table
centain results of calculations that will be used to obtain the
various P's. The results are included in the table, because they
will be used asgain and again in the calculations. The subscript 1
appearing in the table refers to the six rows. The subseript
refers to the first four columns., The n; (I w1, il
J =1, s0s, 4) are the frequencies of students in the respective

cells,

The Pj(j = 1, ¢sc3; 4), based on the six samples, are found to bes:

Pl - 0.0862, P.?, - .2638, PB = '-3299, P4 = 0-15341

Then the over all

22 = W= - 1) = (438) (.2000) 87,6000,

P,
]

s
The upper (.05) point of the chi-square distribution with 5 x 3 = 15

degrees of freedom is 24.9958. Hence, the set of the six populations

is heterogeneous.
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FREQUENCY DISTRIBUTION OF STUDENTS IN SIX

CHEMISTRY COURSES AND FOUR FINAL GRADE GROUPS

i

Popula=
Yion

i A

T L

G]_a_tss Total
3

B

G- =1 N

I 11 22 28 2 55

e

9

d

Ili_‘

3025 275,0000 1375,0000

15,876 1443.2727
1156  192.6667
-5929 741.1250

16,384 2340.5710

324  108,0000

IT 1} 2/ 35 36 126
III & 8 1 9 3
IV & 13 28 332 -7
v T 41 49 31 128
VI 8- 2 v & 18
Tolal - .o - s as L30

i < s e - ar iy asm TS S - e e ]

360,8181
L44,s 5000
456,0769
399.6097
162,0000

Toines 2 - g
nthn 0ty ntAys ngdhy,

e SR P R TS T - iz

151, 2500
4536000
105.0909
237.1600
33443673
46,2857

1512, 5000
44,0000
128, 44244
191, 2581
528, 5161

54,0000
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We reduce the six populations to sets of five elements each,
The new fﬁ's are calculated easily, from those previously obtained, by
means of the appropriate relation; it is found that all these sets are
heterogeneous except the set R = (II, III, IV, V, VI), For the set

R it is found that:

Ny = 383; By = 0,0m7, B, = .2515, By 2 L3256, P, = 0.2852,

o

and Y - 23,5928 which is less than the significant value 24.9958.

i

0

Further, we examine pairs of populations, Because of the
homogeneity of the set R, the only pairs that need to be examined
are: (I, II), (I, III), (I, IV), (I, V), and (I, VI). The results
of calculations are the following:

(5, T B = 181; B, = 0,1054, §2 = 3632, By = .2992, P, = 0.0927;

[5,10)

Y%T II} = 29,3401, Hencs, (I, II) is hetercgeneous,
3

(I, III): N(I III)= 89; Fl - 0;1903’ §2 - a3156p §3 = n3472, P4 e 000542;
2
2

Y(I r11) = 9.0958, Hence, (I,III) is homogeneous,
b |
(I, IV): Nir 1v) © 132; By = 0,1299,_92 = o222/, P3 2 03398, B, = 0,0775;
I%I ) = 39,5208, Hence, (I,IV) is homogeneous.
>
(1, V) Nery) = 183; Py = 0,0700, P, = .3407, Pj = .3768, ?4 = 0,0896;
I%I 7) = 25,6383, Hence, (I,V) is heterogeneous,
b
(1, VI): Np gpy = 735 Py = 041906, P, = 42437, P3 = 23695, B = 0.0466;
»
Y?I vI) = 12,8407, Hence, (I,VI) is homogeheous,
?

Therefore, the pairs (I,I1I), (I,IV), (I,V) aie heterogeneous,
ind the pairs (I,III), (I,VI) are homogsneous; we augment these two
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pairs to triplats. The only triplet that need to be examined is
(I, III, VI), since any other triplet would contain a heterogeneous
pair which implies that it is heterogeneous.

We obtain the P.'s of the set (I, III, VI) from the P.’'s of
the set (I, III), or the set (I, VI) by applying the appropriate

relation, The results are the following:

(1, TII, VI): N 107; P, = 0,1859, B, = .2410, B; = .3536,

(T 0% Vi) S

2

e

= 19,8378, Hence, (I,III,VI)
(1,500, VI)

FA = 0.0631; X

is homogeneous,
 There is no need for augmenting (I, III, VI) to sets of four

elements, since any such set would contain a heterogeneous pair which
implies that it is heterogeneous, That finishes computations, and we
conclude that: the sets (I, II), (I, IV), (I,V) constitute the class
of minimal heterogeneous sets, and the sets (I, III, VI), (II, III, IV,
V, VI) constitute the class of maximal homogeneous sets, The homoge=-
neity or lack of it of any other set can be infervéd from either of the
two classes.

The above results indicate that population I is the main reason
for heterogeneity of the six populations. Recalling that population I
correspocnds to the course chemistry 101 which is a freshman course,
our results agree with the general idea that the freshman class is

different, in some sense, from the higher classes,



CHAPTER III

SELECTING A SUBSET CONTAINING THE BEST OF
SEVERAL MULTINOMIAL POPULATIONS

This chapter and the next deal with the problem of selecting
a subset of several multinomial populations which is asserted to
contain the "best" population with probability greater or equal to
a prsassigned value P, The definition of a best population is
somewhat arbitrary. In the present chapter an exact procedure is
given for a rather restricted definition of "best"., With a more
- general definition, an approximate procedure is given in the next
chapter, The two procedures are of the same nature as the one given
by Gupta and Sobel (1960) for selecting a subset containing the best
of several binomial populations, where they define the best binomial
population as the cne with the highest probability of success..
Suppose we have m multinomial populations of k classes
each, with true paramaters(_ﬁil,'ﬁiz, n.q,"ﬁik), Lowmdy 2y sweny Do
Let aj and a; be real numbers such that 87 "7 8. Define the
linear functions hi = al('ﬂ'il_lr e -—\*Trir) + 32( Tri,r+1 A o80 '*Trik)’
where 1 = 1, +.0, @ and r is a positive integer such that 1  # <ik,1

The ranked h; are denoted by hiy) < h(z} L \gh(m)a It is assumed
that ths correct pairing of the hiy) with the m populations is

o - == ==

There ‘is no loss of generality in assuming that aj > 82, sine one
can renumber the classes of each population so that the first r
classes are always associated with the larger ai(iul,a) which we call ay,

- 27 -



.23 e

- not known, The best population is defined to be the cne associsted
with h(m)'

An instance of the application of this definition of best
multinomial population is where one is interested in compaiing the
m populations with respect to a subset, say the first r, of the k
classes. Then one choosss a, small enough in absolute value, may be
zero, so that the contribution due to the remaining (k =« r) classes
to the function h 1is negligible,

For example, if the first class is the only class of interest
and the population with the highest probasbility in this class is
considered to be the best, then the choice a1 =21l,a,a0and r=1
gives hy = MM37(i = 1, ..o, m), which is what we need to compare.

Adopting the "linear function" definition of best multinomial
population, a procedure is given below for selecting a subset which
contains the best population with probability at least P, regardless
of the true parameter values.

Suppose that independent random samples (nj1, see, ngy) Of

k
sizesny = > nj5 (121, ..., m) are drawn from the multinomial

j=1
populations, Let the unbiased estimates of the h; be

vy S al(Pil-f ceo ﬁ’pir)'*“az(Pi’r_kl_—bpnh ﬂ~Pik), where Pij = E%%
B 21, couslll Jnl, aaes B} Lot Vipax = B8X(Vy, seey vo)e Then

the procedure D 1is: Retain the ith population if and only if

Vi > Vmax = ¢, vwhere c¢ 1is a constant depending on m, n;(i = 1,s00,m)
and P, We say that a correct selection (GS) is made if and only if
the retained subset contains the best population. And it is required

that pr(¢S | T;;) > P for all possible configurations of the true
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parsmeters "ﬂij(i 21, ecoy M3 j =1, cuo, k)o The constant ¢ is
chosen to be the smallest non-negative number such that the infimum

Loy 1),

of pr{CS), taken over all n; and T(ij(i Ly ceey B
is greater than or equal to P, In order to find pr(GS), we adopt the
convention that when there is more than one population agsociated
with h(,) (i.e0,more than one best population) we consider one parti-
cular "tagged" population as being the best.

To determine the probability of a correct aeleeiion, we write

vi = 87(Pgq + eee 4 Py) az(Pi,;r+1 + see + Py

as
'i']i"i' [ﬁl(nil-{ﬁ eeoo ni_r) =[x az(ni,r-—fl X swo & nik) —S

- %.i_ [(al = 32) (nil + ece nir) —‘-—azni] 9 i = l,n--,l!lu

Def'ine ui M_: 32) = (nil X peo nir}- Then it is known that
Tl
uj has the binomial distribution B(nj; Qi,n)s where

Qgrgvﬂﬂwn-%Whag%;g,i.lnum,
For simpliity we denotes Qi,r bY Qi
Let Q(1)» B(i)? V(1) and u(j) be those particular quantities
Qi» B4y, V4 and @4, respectively, which are associated with the
population corresponding to h(i)’ is21l, ¢oc, m« Then, using the
procedure D, a correct selection is made if and only if

v(m)fgi?max = ¢ which is equivalent to

V(1) < Y(m) t © for all i ¢ m (for i = m the inequality is satisfied with
G
probability 1)

or

n(jl(?giz - 32)

a] = a2

<;n£12(v(m)-32)ﬁ. n(i)e

b a] - a3 a] - a2
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.or (i) S n(i)( ”E%_% —-——:E;;—-) fer all Lo B soisivess (1)

Since the u(4)'s are independent binomial B(n(i); Q(i)) variables,

it can be seen that the probability that (1) helds true, i.e. pr{(CS |1Ti j)

is equal to:

n(p) e [n(i) (tr('m) + 'E—qa—):' =
ZO (nlgm)) Q?m) {1 « Q(m))n(m) ;ﬂ; ; ( e b ))Q(i) (]__Q(i))n(i)
us = X=

herochcvsnns h2)
Here, [ 2] denotes the largest integer less than or equal to 2z,
The problem of intefestﬂnow, is to minimize (2).
Each one of the (m=l) factors in the braces appearing in (2)
is a non=increasing function of Q(i) as can be seen by exprassing
each factor as an incomplete beta function., Recalling that Q(i)ﬂ-iil__z

1 = 82

together with the assumption that a, = 8o >0, we see that the

15

ranking h(l) h(5) < q-u,ékh(m) is equivalent to the ranking

&
Q1) < Q(2) < seo» Q(m)* Therefore, for a fixed Q(p), each factor
in the braces is minimized by taking Q(i) = Q(m), 121, eeoy M« Then
we consider the infimum of (2) over the range of Qm) = Q, say, which
is 0  Q g 1. To achieve the absolute minimum of pr(CS), we must
further minimize (2) with respect to n(g) which is an element of the
aet'{nl, N5y esey nm3 » Because all the Q; are taken equal to Q,
any manner of pairing the other (m =~ 1) n(i)'s with the remaining
ni's (after selecting a value for n(p)) will give exactly the
same minimum value for the product of the (m = 1) factors. The
condition that the infimum of pr(GS)is greater than or equal to

P, is then:

)
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' n(a) T syt ay o) )
aia nt > (CWyquag) ) B ("8)g*(129) ©
n(m)e{nl,.u,nm} Bé-Q:{‘,l;uzo Sﬁ(m} x=0 E ‘

i;,P ceceeesce el (3)

For equal sample sizes n z n;(i = 1, +es, m), (3) becomes:

n g AR m=1
inf (MR ~ QR 1772 (®qX(1-g) "% .
0&;6&%“ Q- Q [ = ()9%(2-Q) } JZ (2)

The constant EEE%_EQ = d is taken to be the smallest non=negative
integer such that (4) is satisfied., The values of d satisfying (4)
have been tabulated by Gupta and Sobel (1960, pp. 242 = 45) to carry
out their procedure for selecting a subset containing the best
binomial population, where they define the best binomial population
as the one with the highest probability of success. The tables
give the values of 4 for P = 0,75, .90, .95, 0,99;
n =1 (1)20, 25(5)50, 50(10)100, 100(25)200, and 200(50) 500;
m = 1(1)20, 25(5)50,

Then, after obtaining d = ;EE%_;E from the tables, we solve
for ¢ which enables us to carry out the procedure D, that is to

retain only those populations for which vy 7 Vmax = Ce Better still,

the procedure D in the case of equal sample sizes can be put in the

ne

form: Retain the ith population if and only if u, 2 Ymax < 87 . 85 °

nivse=a
where ui - Ei('_é-_a'g')- = (nil + oea -+ nir) and umax od m&}C(Ul’--t ,U.m)o
This last form of the procedure D is more convenient for computations
than the first, because it is easier to compute the u; rather than

the Vi(i - 1, csey Ei)a
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In the case of unequal sample sizes, there is no general
rule as to which particular value cf n(p) minimizes the left hand
side of (3), above. Gupta and Sobel (1960, pp. 230=231) empirically
found that for some interval of the constant-value, | O,dy | , the left
hand side of (3} is minimized by taking n(y) to be the largest of the
ni(i =1, .es, m)-But this is not true when d is larger than dje.
In practical applications, they suggested tc take the arithmetic mean
n of the sample sizes as the common sample size and to use the
appropriate table with n = n to obtain the value of the constant;
this value may be improved by further computaticns depending on
the specific situation, Since the present case of multinomial
populations is similar to that of binomial populations, we follow
this approach of taking n = fi to deal with situation in which the
sample sizes are not equale.

Finally we comment on the expected size of the retained subset,
E(S), In the case of binomial populations and where the best
population is defined to be the one with the highest probability
of success p;, Gupta and Sobel (1960, pp. 231=34) derived agn
expression for E(S) and tabulated the values of Eé§l for the
particular case where it is assumed that p(, 1) = .e0 2 P(7) =2 P
and p(m) = P+ , where the P(i) are the ranked P3 and 0 1) Zoks
OgKpgl=2%. Inaddition,it is assuned that the sample sizes are
equal, In order tc control the size of the retained subset one

should consult the tables for the values of Eégl to determine the

nessecary value of n which guarantees that the size of the
retained subset is at most a preassigned positive integer, Then

this values of n is used to find the constant required to carry
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out the procedure, In the present case of multinomial populations we
first note that h‘i - al( TTil ~ ""‘:‘Tir) “ 32( _[Tj_,p 41 F soo -\"vj_k)qg a7
Then we assume that h(p_7) = eee = hyqy = h and h(py = h + e, where

h ay -eand e 1is a specified positive number, Hence,

= e =L Ee
Up) = 9 *Fal - a5 ? Tt 1) = #3.» 8 -~ il Yoo +lly, 8s

was defined before, Noting that the Q; correspond to the p; in the
2
812

tables can be used with 5 =§"'§“E" to give the common
Lot

sample size necessary to guarantee that the retained subset of the

binomial case, we ses that

corresponds to ® ; hence the

miltinomial populations is of at most a preassigned size.



CHAPTER IV

A TARGE SANPLE PROCEDURE FOR SELECTING
A SUBSET CONTAINING THE BEST
MULTINOMIAL POPULATION

Suppose we have m multinomial populations of k classes

eaCh’ With -bme Parame‘tars ( ‘-‘Til’ so0gy Wik)’ i - 1, ‘.i, P

Let a;, oo, @y be non-negative real numbers such that iZi aj = i
=
and ag 4 ag for at least one pair r,s = 1, ..., k. Define the

linear functions h; = al-jTil + see + 8 TTik (R0 I, wosy Wi
and denote the ordered hy by h(i)‘$;...;$‘h(m), The correct pairing
of the h(j) with the m populations is not known., We define the
best multinomial population to be any particular population that is
associated with h(m)' This definition is more general than the one
adopted in chapter III, However, because of the @ifficulty in
working with multinomial distributions, a large sample procedure based
on the normal approximation to the multinomial distribution is given
here. The final decision in the procedure is the selection of a subset
of the populations that is asserted to contain the best populatiocn with
a preassigned probasbility P, regardless of the true values of the
parameters jTij(i 2 1, cany B3 1 8 15 snes K

The h; may be interpreted as weighted sums of the class
probabilities in each population, and the interest is assumed

tc be in the population with the largest such welghted sum, As

- 20 =



- 30 =

an application of this interpretation of the h;'s, congider m
population strataand the following categories of expenditure:

food, clothing, medieal cars, and schooling, i.e9.,k = 4. Suppose
that the true expenditure proportions on each of the four categoriss
are: fﬁil, ‘19, TTi WW'A, = 1, ossy My ouppose, further, that
with respect to a certain base year, the price indices are now:

110 for food, 105 for clothing, 100 for medical care, and 90 for
schooling, The question, now, is: which stratum is most affected
(i.e., suffers the most) by this change in prices? An answer may
be provided by considering the gquantities

Ry 2100 T, + 105 T, +100 W, +oo Il ) (1.1, ..., W,

405
where we have divided by the sum of the indices in order to render the

sum of the coefficients of the parameters TTij equal to one. Then,
we may regard the stratum with the highest h; as the one that suffers
the most by such change in prices.

Suppose that independent random samples (nil’ vy nik)! where
ng 3 denotes the fregquency in the jth class of the ith population
(1 21, sve, m3 j =1, cee, k), have been drawn from the populations,

Then, the maximum likelihood unbiazsed estimates of the hi = j%i aj'TTij

k ~ k
ares Vi = = aj Pij» Where Pij = Eﬂ and n; = e nij(i ly, s0e, m;
j=1 i j=1
j - l, eeody k—)ﬂ
et v = = max(vy,ee0,Vy)e Then the procedure R 1is given by :

retdin the ith population if and only if \£] ;,»/ Vmgx = C» Where c¢ 1s a non=
negative constant to be determined such that the probability of a
correct selection (CS) is at least a preassigned value P regardless

of the true configuration of the parameters TTij(i=1,,..,m; I8l neal)n
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To determine the probability of a correct selection, we need tc know
the distribution of the v4( 1 21, +.0y m).

Mood (1950, pp. 215) proved that for large samples, the
vector (P11’ P pi,kﬂlfﬂ is approximately distributed according to
the multivariate normal distribution N( m , =), where
Wy )t end Te | g7 Tagl 855 - T |

(js8 ® 1000y k=l) and 5}3 = 1, O when j =s, j # s, respectively,

M :( “il)---,

Furthermors, by the definition of the singular normal distribution
(Anderson, 1958, pp. 26), it follows that the vector (pil,...,pin}’
is approximately distributed according to the singular normel distri=

*
bution N(.g%} Z), where #4;} ( i3, 0oy [43)" and

.*
..\(l-— Tf--( 5- - M|l (i, =1, ove, K)o With simple algebraic
k

computations, we obtain the result that v; _gz; a3 Pij is approx1ma;ely

distributed aceording to the univarlate normal distributiﬁn W(hi, —-—),
k nj

wherehinzmﬂwj_']andv‘z ZazT--(Za 132;
jel j=l j=1

this is true for i = 1, esoy Lo

Let qr%i), n(i), and V(1) be those particular quantities:
<fi, n,, and Vs, respectively, that correspond to the population which
is associated with h(y) for 1 =1, essy Mme Then, using the procedure
R, a correct selecticn is made if and only if V(m):Z’vmax - C,

Or, equivalently, a correct slection is made if and only if

v(m)+c fOI' alli<m #os s00evpORre BeowOenses (1)

V(1) S

Upon standardizing the variables V(1) (i 21, seey m), (1) becomes:

V(1) " h(i’* < Y (m) \ = “.h F_ for all 1 <m,
Wy YW/ WAl
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Yy =S ven Wy EOag Vi 0 F Ugg 2 R0y
V) "‘g I : n(m) £ (1)
(1) /% (1) (m)/ 7 T 2 *

for all 1 < M sicsvnnsosanee ﬂ(2)
Denote the standard normal density and cummulative distribution
fanctions by f£(z) and F(z), respectively. Then,given
T, .(i =1, seey M5 J = 1, eea, k), the probability that (2) holds
3

true (i.e., pr(CS | liJ}) is equal tos

on

e *.
ff(z) nﬁ{y @)% ) o ) © A1) }dz = =

R i)’ ) S() / at)

As in the problem of chapter III, we want to choose the constant
¢ such that the minimum value, taken over all pcssible values of the
TTij‘s, of (3) is equal to the preassigned value P. Thus, we are
interested in minimizing (3). First of all, it is seen that each

factor in the braces appearing in (3) is an inereasing function of

by = h(i)’ iel, soey, m =1, Recalling that h(m) is the largest
of the h(i)‘s, it follows that the whole product of these factors
is minimized by taking h(m) - h(i) =0 for all i ¢ m; that is
taking all the h(i)ts to be equal to each other,

Moreover, for fixed (but arbitrary) i,s = 1, ..., my taking

h; = ?%i aj'TT tc be equal to hg j%i a3 WTSJ for all possible values
of the coefficients 855 impliss that .%Tij = TTéj forkall jo This is
because, a necessary and sufficient condition that ZZi a5 1Tij

s gii aj TTSj holds true for all values 84 is tha’cj‘2 #ﬁij 2 TSsj

L 1]

for all jq But’ -TTij - —W J

hence takigg h; = hg for all pairs (i,s), implies that T, = w5

for all j dimplies that qri = T4



- 33 =

for all i, s =2 1, ces, m, With these simplifications, (3) becomes:

oo

i) -1
/fﬂf(z)ﬁ%hr F(z(ﬁlnl)%;~2%%l%;2)dz Rl R WS T ity U e (]
e iel (m) (1)

The above expression can be further reduced by substituting

an upper bound for the (L 21, e0e, m«1), Dropping the

N
(1)
subscript i, we are interested in finding an upper bound for

N = 2:: a% TTj - (?Z; a-'TT-)z, where Y is considered as a function

of the [ 's, while the aj‘s are fixed, Because of the form of ¥,
o

it was not possible to maximize N subject to the condition that
:Z:-ﬂﬁg 1, It was also not possible to find a very sharp upper
bound that can hold irrespective of the values of the aj'a, The

fellowing two upper bounds for < were found to be the best that I

could achieve:

Za.

jel
k 2
This upper bound neglects the term (jz: aj TTS) » 1t should be
j=1

admitted that.Bl is a rather rough upper bound since the neglected

Ny

term is an appreciable guantity compared to a.2 TTj, so that

1 9
is really much smaller than Bio Using By may lead to unnecessarily

Cls
(] |

large values of the constant ¢, However, B; has the advantege that

it holds irrespective of the values of the aj‘s.

2
2 kw2
The second upper bound is By = l(:i: a3 _RS__zém_), B2 holds
4 juml == g
j=1 73
as an upper bound for ﬁrk, pravided tEat ajf#:o for all j. It was
obtained by maximizing ZZ: aJ j:-Zi: a?'TT§ subject to the
jel j=l
k
condition that > ﬂTﬁ = 1. Thus, B, 1s sharper than B, provided that
J=l
no a. is equal to zero, It is seen that B, overestimates Y by as much

J 2
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as ?:j aj ag T T, which is a small quantity.
%S

Replacing 921) by B, where B 1is either By or By, the

expression in (4), above, becomes:

e i 5
_[:(Z) _ill-r F(n"‘!"r(il':l—g'i.)')2 =F Em%"—g ) dz BDesSve0BecoDseDLe B e (5)

ial *(m)

Assuming that the sample sizes gre all equal, n; = n(i = 1, ..., m),

(5) becomes:

= 5 ol
ﬂZ:;CZ) EQ(Z'fEE“Ei] 2 dz.

Hence, the constant ¢ is obtained from the equation:

lﬁ‘(z) [F(z +“% °] pia Pl e B (6)

B

Here, P 1s the preassigned level of probability of a correet selection,
1

2
The values of the constant c! e gﬁ—ﬁ satisfying (6) are given by

Bechhofer (1954) for m = 2(1)10, and by Gupta (1956) for m = 2(1)50,

Then, solving for ¢, ¢ = %ET% o!, we can carry out the procedure R:

retain all populations for which vi.)’ - Co

> Vmax

In the case of unequal sample sizes, it is seen that (5),

above, is minimized by taking n(;) = min(ny,eeey ny) 2 0 . , and

min

n () = max(nl,.,u,nm) Zn___. S0 that, instead of equation (6), we

max

obtain the equation:

e : i
L [t il 0Pl g, e,

B
ma x

However, since tables that give the values of the constant that
satisfy the above equation are not available, we suggest to take
the arithmetic mean n of the sample sizes as the common sample size.

Therefore, (6) would be exactly the same except that n is replaced
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2
L} 2 i
The same tables,-naw give M = n/ ¢ from which we solve for. C-

and carry out the procedure as before.

A Numericsl Example

To illustrate the procedure numerically, consider again the
gxample given in chapter II,

Let aj(j = 1, soey 4) be a numerical description of the jth
grade class, for instance aj = 95, ap = 85, a3z = 75, a, = 65, Thus,
for the ith chemistry course, hsy ﬂ%igaj 1j may be interpreted as
an average numerical ‘grade for the courses The "best" population would
then be the chemistry course with the largest average numerical grade,

However, we take

aj j‘l

hy = -*“ (;E?aj (£ 2 1y0e36)
i

so that the sum of the new coefficientsis equal to 1; and it is seen
that this does not affect the comparison among the populations with
respect to the hy (1 =2 1, .00y 6),

L
Calculations: The valuess of the v; _1-15- :E: 8P4 3 (181, esey 6) ares

Jal
jﬁl £
'?1 - 0.2582’ 1?2 = 1'2418, : VB = 124.45
Vé = 12336, V5 - qzlfpoz, VG ¥0i2378.

Therefore, v = 0.2582, The upper bound for V is: Bz = 0.049%1,

max
Referring to the tables (Bechhofer 1954, table I), the
constant ¢! assumes the values : 3.,1519, 2,7100, and 1,9674
corresponding to the probability levels P: 0,95, .90, and 0.75,
respectively. The procedure R is given by the rule: retain only

B .
those populations for which v; },vma}: - ¢, where ¢ =__%:_ et s
n
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Since the sample sizes are not equal, the value of n 1s taken to

be i = Agﬁ = 73, so that n%'g 8. 5440,

Results:
Probgbility level c Vaax™C _Populations retained
0.75 0,0113 042469 I, only
.90 »0125 » 2457 I, only
0,95 0,0182 042400 g lly ELE, 1

Therefore, we can claim with 90% confidsnce that population I is the
best population, and with 95% confidence that the best population is
one of the four populstionss I, II, TIII, V,

It is seen that these rssults are in fair agreement with the
results obtained in chapter II, There, it was shown that the six
populations (i.e., chemistry courses) could be divided into two
homogeneous subsets one of which consists of population I(i.e.,
chemistry 101), and the other consists of the remaining populations.
Similary, the present results indicate that population I is different
from the others, in the sense that it has the highest numerical
average grade. This may indicate that (in some situations, as the
present one) the selection procedurs gives the same information that
was given by the homogeneity test and, in addition, it orders the

pepulaticns which is a desired information in many situations.
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