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This study aims at introducing a problem-specific modified Genetic Algorithm (GA) 

approach for optimal well placement in oil fields. The evolution method used in this 

algorithm includes a novel genetic operator named “Similarity Operator” alongside the 

standard operators (i.e. Mutation and Crossover). The role of the proposed operator is to 

find promising solutions that share similar features with the current elite solution in the 

population. For the well placement problem in oil fields, these features include the new 

well location with respect to pre-located wells and the porosity value at the proposed 

location. The presented approach highlights the importance of the interaction between 

the nominated location and the pre-located wells in the reservoir. In addition, it enables 

systematic improvements on the solution while preserving the exploration and 

exploitation properties of the stochastic search algorithm. The robustness of Genetic 

Similarity Algorithm (GSA) is assessed on both the PUNQ-S3 and the Brugge field data 

sets. 
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CHAPTER 1 

INTRODUCTION 

 

Throughout the different stages of oil field development and planning, decisions have to 

be made continuously to maintain the sustainability of the project’s dynamic nature. 

These decisions main objective is to extract the hydrocarbons from the reservoir at the 

highest possible profit. Hydrocarbons are recovered through different stages and 

mechanisms known as the Reservoir Drive Mechanisms [1]. The first hydrocarbon 

recovery mechanism is the “Primary Recovery” whereby the natural pressure is 

sufficient to sweep the hydrocarbons towards production wells. This pressure results 

mainly from the fluids expansion within the reservoir (i.e. Solution gas drive, Gas cap 

drive, Water drive and Gravity drainage). Since the primary recovery stage may not last 

throughout the entire lifetime of the reservoir or may be insufficient in terms of 

production rates, “Secondary Recovery” mechanisms and techniques are employed. In 

the Secondary Recovery stage, a fluid is injected in the reservoir to provide an 

additional pressure and facilitate the oil displacement towards production wells (i.e. 

Waterflooding and Gasflooding). The production from the field under the Secondary 

Recovery stage will continue until a threshold whereby production rates are insufficient 

or do not meet the required target. Therefore, “Tertiary Recovery” or as commonly 

known “Enhanced Oil Recovery, EOR” mechanisms are employed to improve flagging 

production. These mechanisms are extremely expensive and mainly fall under three 

categories, the Thermal EOR, the Chemical EOR and the Miscible Gas Flooding. The 
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main objective of the EOR techniques is to make it easier for the oil to be swept towards 

production wells by adjusting the medium properties (i.e. reducing heavy oil viscosity). 

Moreover, if all of the aforementioned mechanisms failed in extracting the 

hydrocarbons, the “Infill Recovery” is employed whereby the unproduced oil is 

accessed directly through additional wells.  

The economic efficiency of the recovery mechanisms discussed above is mainly 

dependent on the production plan employed in the field. Oil field production planning 

ultimate goal is to find strategies associated with the highest return at the lowest 

possible cost. Mainly, production planning uses a production forecast in assessing the 

different strategies performance. This forecast is obtained through a reservoir simulator 

as well as a simulation model for the field. The reservoir simulation model is generally 

composed of a fluid model (i.e. Oil, Gas and Water), a well model (i.e. production or 

injection, vertical or horizontal… etc.) and a geological model representing the soil 

properties in the reservoir.  

Since the soil properties are highly heterogeneous and field measurements are not easily 

obtained, the geological model suffers from uncertainties. These uncertainties are 

attributed to the use of interpreted data in order to fill up the missing data (i.e. Kriging) 

and the use of model upscaling which is a technique employed to convert the fine 

geological model into a coarse model in order to leverage the computational cost of the 

simulation. Solving for uncertainties in the geological model is an important task due to 

its direct impact on the accuracy of the production forecast. However, this also comes 

with a tradeoff of an additional computational cost [2, 3, 4]. This computational cost is 
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determined by the computational time and capacity required to accomplish the task. 

Moreover, solving for oil field planning problems (i.e. finding an optimal location for 

additional wells) requires employing a search algorithm that may need an exhaustive 

number of computationally expensive simulation runs. Therefore, a significant 

proportion of research in oil field development and planning was devoted towards 

obtaining a reliable and economically efficient production plan at the lowest 

computational cost. 

Several oil field planning problems were addressed in the literature, and a big 

proportion was devoted for the well placement problem [5, 6, 7, 8, 9, 10]. Prioritizing 

the well placement problem was due to the high costs associated with decisions related 

to drilling and adding new wells.  

Searching the reservoir simulation model for optimal well locations is a difficult task, 

due to the high nonlinearity of the search space, the multiple local optimal solutions, 

and the need for a production forecast (simulation run) to evaluate the location 

efficiency. In addition, the uncertainty in the reservoir data also adds to the problem 

complexity as it reflects directly on the accuracy of the simulation model forecast. The 

aforementioned factors combined have contributed to the computational cost and 

complexity of the problem. To depict the basic procedures in reservoir engineering, 

(Figure 1) illustrates the major operations related to collecting and collaborating field 

data in order to build a reservoir simulation model that can be used for field planning.  
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Figure 1: Reservoir Engineering Framework 

Following this chapter, in Chapter 2, a comprehensive literature survey will cover the 

main aspects in the aforementioned reservoir engineering framework (Figure 1) as well 



 

 

 

5 

 

as the scope of work for this study. Chapter 3 will provide a detailed description for the 

proposed optimization approach along with other different methodologies used in the 

literature. In Chapter 4, results and analysis of the numerical experiments are shown 

using two reservoir models (PUNQ-S3 and Brugge) to validate the efficiency of the 

proposed approach. The numerical experiments will include comparisons among the 

different methodologies covered in Chapter 3. Finally, the conclusions of the analysis 

will be presented in Chapter 5. 
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CHAPTER 2 

LITERATURE SURVEY 

 

The literature survey was divided into three sections; the first section will tackle 

uncertainty quantification and modeling techniques, the second section will highlight 

some of the previously applied optimization methods as well as problem formulations 

addressing well placement in oil fields, while the third section highlights methods 

concerned with reducing the computational cost associated with the geological model. 

 

1. Literature Survey 

1.1   Uncertainty Quantification 

Uncertainties in the reservoir simulation model arise from the lack of an accurate 

representation of highly heterogeneous, yet essential reservoir properties (i.e. porosity 

and permeability). This underrepresentation of the properties can be improved through a 

technique known as History Matching. The objective of History Matching (HM) is to 

tune uncertain properties in the simulation model such that, the simulation results match 

the field observations over time. The adjustments are either done manually (Manual 

HM) based on experience or automatically (Automatic HM) by employing an 

optimization algorithms [2]. Commonly, two methodologies were assessed in the 

literature: the Gradual Deformation Method (GDM) and the Ensemble Kalman Filter 

(EnKF).  
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The Gradual Deformation Method (GDM) is a geostatistical parametrization technique. 

GDM creates realizations that evolve smoothly while preserving the global 

characteristics of the data. These realizations are updated through an optimization 

algorithm to match the production history of the field [4]. 

The other automatic HM approach is the Ensemble Kalman Filter (EnKF), which is a 

Monte Carlo based methodology for history matching and real time updates of reservoir 

realizations. EnKF consists of a forecast step and an assimilation step, in which the 

variables of the reservoir state vector are updated to honor the field measurements [3].  

An extension to History Matching with EnKF, Lyons et al. [11] introduced the pseudo 

history matching using EnKF. In the pseudo history matching, field measurements (pre-

located + newly added well logs) are estimated from the realization corresponding to the 

most likely oil recovery estimation (P50 realization). This allows integrating the 

probable future uncertainty within the reservoir production forecast.  

 

1.2   Oil Field Development and Planning 

Different optimization algorithms were suggested to solve oil field planning problems 

(i.e. Allocating additional wells, optimizing flowrates through existing and additional 

wells)
 
[12, 13, 14, 9]. The efficiency of these algorithms was measured by solution 

robustness, convergence rate and the total computational cost of the optimization 

process. Handles et al. [12] and Sarma et al. [13] applied gradient-based optimization 

with variations in an attempt to reduce the prospect of converging to sub-optimal 

solution. The gradient-based search algorithms have a systematic convergence due to 
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having a search direction. However, these algorithms may suffer from limitations and 

drawbacks that weaken their reliability; namely, difficult implementation, high 

computational cost (i.e. calculating search direction), inability to explore the search 

space efficiently, and a tendency to converge to the first sub-optimal solution. For the 

aforementioned reasons, derivative-free algorithms present themselves as a more 

reliable option in solving the problem. Derivative-free search algorithms can be mainly 

categorized in two groups: local search methods which apply local adjustments on the 

solution candidates (i.e. simplex method) and global search methods (i.e. population-

based algorithms) [15]. Different population-based algorithms were applied in the 

literature to solve the problem of well placement in oil fields [16, 9, 17, 6]. Montes et 

al. [16] applied Genetic Algorithm (GA) search to solve for well placement in oil fields 

and assessed the impact of different parameters on the algorithm performance (i.e. 

mutation to cross over ratio, starting point…etc.). Onwunalu et al. [17] applied a 

Particle Swarm Optimization (PSO) algorithm to search for optimal well location and 

type (production or injection). Afshari et al. [6] assessed the performance of an 

Improved Harmony Search (IHS) algorithm (Mahdavi et al. [18]), which has a better 

local search performance than the standard HS, in solving the well placement problem. 

As the aforementioned algorithms have a general context that doesn’t account for 

computationally expensive objective function, variations to these algorithms were 

introduced aiming at improving the convergence rate at a minimum computational cost. 

Bittencourt et al. [14]
 
used a hybrid algorithm of GA and polytope method to solve for 

optimal well placement. Da cruz et al. [10] introduced the Quality Map approach to 
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present a different way of evaluating well locations while limiting the use of the 

reservoir simulator. Güyagüler et al. [9] used Hybrid Genetic Algorithm (HGA) 

(Genetic Algorithm + simplex method + surrogate model) to search for optimal location 

and flow rates for the added wells.  

Although population-based algorithms have had a superior performance in terms of 

usability and convergence rate, the search-space of the well allocation problem still 

imposes difficulties that may hinder the efficiency of these algorithms. For example, 

population-based algorithms might evaluate and propose locations of a low quality for 

wells, such as locations adjacent to pre-located wells or locations not within the active 

cells of the reservoir model. This is due to the stochasticity of the operators used in 

nominating locations for wells. Also, early convergence or premature convergence of a 

population may contribute to increasing the number of ineffective simulation runs. 

These factors combined consume a significant portion of the total computational cost 

required to find an optimal well location. 

Customization techniques for these algorithms were applied to make them adapt to the 

search-space of the problem [19, 7]. This was mainly achieved through the objective 

function formulation or applying constraints on the search space.  

One of the commonly used approaches in formulating the objective function is the 

penalty and reward approach. This approach suggests adding a penalty parameter to the 

objective function to account for the problem non-practical solutions. Although this 

type of formulation can aid the search algorithm in identifying the less plausible 

solutions, it does not contribute in finding new good solutions.  
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1.3   Uncertainty Assessment  

Throughout the optimization process, comparing the inputs efficiency is based on their 

corresponding outputs. Since the reservoir model has multiple geological realizations, 

each realization may have a unique production curve over time. Thus, for each single 

input (i.e. well formation), multiple outputs are obtained (Figure 2).  

 

 

 

The common approach in dealing with this problem is to consider the average of the 

outputs as a correspondent to the evaluated input scenario. However, some studies have 

had extended investigations with other factors such as the standard deviation of the 

output as well as the number of geological realizations used. 

Chang et al. [20] applied Quality Map assisted with NSGA-II (modified GA) search 

algorithm to solve for different oil field development problems. The NSGA-II is a 

multi-objective non-dominate sorting genetic algorithm. In their study, Chang 

accounted for model uncertainty by maximizing the mean while minimizing the 

standard deviation of the model response distribution.  

Rashid et al. [21] improved previous work based on Pareto Optimal concept to assess 

the risk of selecting and comparing different output distributions. The Pareto optimal 

concept is used to assess the tradeoff between maximizing the mean and minimizing the 

standard deviation in contrast to the risk averse and the risk greedy decision makers. 

Figure 2: Input evaluation under uncertainty 
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Mishra et al. [22] suggested reducing the number of realizations through generating 

representative realizations. Mishra used the statistical moment equations to find weights 

(w) for a set of realizations such that the statistical properties of all realizations are 

preserved. 

Shirangi et al. [23] used Optimization with Sample Validation (OSV) method to reduce 

the number of realizations by selecting a representative sample of realizations from the 

available realizations of the model. 

Wang et al. [8] introduced the Retrospective Optimization (RO) framework to be used 

in oil field development and planning. The RO framework solves a sequence of sample-

path optimization problems. The number of realizations (sample size) is increased from 

sub-problem to sub-problem, and the initial solution for the current sub-problem is 

simply the returned solution from the previous sub-problem. 

 

2. Study Objective 

In this study, a new genetic operator named “Similarity Operator” is proposed to 

efficiently solve the well placement problem in oil fields. The operator will function 

alongside the standard genetic algorithm (GA) operators (i.e. Crossover and Mutation) 

and aims at searching for solutions that share similar features with the current elite 

solution in the population. This new framework will be referred to as Genetic Similarity 

Algorithm (GSA). The addition of this new operator will provide potentially good 

solutions while preserving the exploration and exploitations properties of the standard 

operators. 
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The use of Genetic Algorithm was mainly intended to demonstrate the significant 

performance-improvement that can be obtained in contrast with a standard 

implementation of the algorithm. Since population-based algorithms have a general 

context and their performance is highly dependent on the parameter settings as well as 

the problem description, every search algorithm may have an edge in solving for a 

certain problem [24, 25]. Therefore, the customizations introduced in the GSA 

framework accounts for the broad generality of the previously applied approaches by 

incorporating information about the search-space of the problem when searching for 

new solutions. 
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CHAPTER 3 

METHODOLOGY 

 

1. Genetic Algorithm  

Introduced by Holland et al. [26], Genetic Algorithm (GA) is a stochastic search 

algorithm motivated by the principle of evolution. GA has an efficient performance in 

problems with high number of input variables as well as high number of local optima. 

The algorithm explores the search space through a population (generation) of solutions 

(individuals), and these solutions evolve based on a fitness value obtained from the 

objective function. The fittest individuals within a generation will undergo genetic 

operators (i.e. mutation and crossover) to generate a new generation replacing the 

previous one. Figure 3 illustrates the different stages in GA search for solutions. Since 

this study is suggesting a change in the GA framework, it is convenient to tackle the 

role of each stage and operator within GA. The following is a brief description for the 

GA main stages. 
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Figure 3: Genetic Algorithm Structure 

1.1   Initial Population 

The initial population of individuals can be generated manually using a set of selected 

individuals or randomly from within the search space of the problem.  

1.2   Selection 

After evaluating all the individuals in a generation, the algorithm will rank these 

individuals based on their fitness value. The ranking determines the individual 

probability of survival in the selection process. Different selection techniques were 

developed in the literature (i.e. roulette wheel, tournament, uniform …etc.) [27], 

however, the choice of a selection technique is highly dependent on the variation in the 

fitness function values.  

1.3   Genetic Operators 

Genetic operators perform operations over individuals that survive the selection stage. 

Each genetic operator contributes to the next generation with a predefined proportion of 

individuals. The following are some of the commonly used genetic operators: 
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 Elitism: The Elite operator role is to move the best individuals in the population 

to the next generation without changes. This operator helps preserving good 

solutions in the population; however, it may also contribute to the occurrence of 

early convergence in the population due to replicating the same individual(s) 

multiple times in the next generations.  

 Mutation: The goal of mutation is to reassure the diversity in the population. The 

operator alters values within a single individual at different locations in the 

encoded string. Different instances of the mutation operators were developed 

(i.e. Gaussian, uniform and bit flip), accounting for different types of problems. 

Mainly the choice of the mutation operator is dependent on the search space 

properties (i.e. integer or continuous). 

 Crossover: The crossover combines and merges the selected individuals to 

generate new individuals. Similar to the Mutation operator, many instances of 

the Crossover operator (i.e. single point, two point, arithmetic …etc.) were 

developed and used depending on the problem being solved. 

 

2. Hybrid Optimization Framework 

The hybrid optimization framework is commonly used in solving optimization problems 

associated with a computationally heavy objective function [9]. The framework’s main 

components are a light computational cost surrogate model (i.e. ANN) and a search 

algorithm (i.e. GA). The role of the surrogate model is to nominate potentially good 

solutions to be evaluated and validated by the simulator. The surrogate model is 
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constructed and trained simultaneously based on data generated from the search 

scheme. This will allow the surrogate model to become a better replica for the heavy 

simulator as the search algorithm explores new locations in the search space. A general 

structure of a Hybrid Genetic Algorithm (HGA) framework is shown in (Figure 4).  

 

Figure 4: Hybrid Genetic Algorithm (HGA) framework 

As shown in Figure 4, the initial population is generated using one of the Design of 

Experiment (DOE) approaches (i.e. Latin Hypercube sampling) and thereafter it’s 

evaluated using the reservoir simulator. After each simulation run, the fitness function 

associated to the input is computed. The input-output data are stored sequentially in a 



 

 

 

17 

 

database at the end of each generation, so it can be used later to train the surrogate 

model. Following the training step, the surrogate model can provide estimates for the 

objective function value at unobserved input data. Since these estimates have a 

relatively low computational cost, an extensive search for an optimal estimate can be 

conducted. Thereafter, the input corresponding to the optimal estimate will be validated 

using the reservoir simulator. If the validated input data had a better fitness function 

value than the worst individual in the genetic population, it will replace it. Following 

this step, selection and genetic operators can operate on the final (updated) population 

and scores to generate a new population.  

 

2.1   Surrogate Models 

Surrogate models are used to emulate the response of computationally expensive 

functions. These models are built using input-output data; therefore, the accuracy of a 

surrogate model prediction is highly dependent on the quantity and quality of the data 

used to construct it. Different types of surrogate models were used in the literature [28, 

29, 30, 31]. The following are some of the commonly used models for oil field 

development problems,    

 

2.1.1 Artificial Neural Network (ANN) 

Artificial Neural Networks (ANNs) were influenced from the biological nervous 

systems of the human’s brain
 
[32]. ANN models are commonly represented graphically 

with a sequence of nodes (inputs, hidden neurons and outputs) connected through links 
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(weights). The inputs and outputs are taken from the training data (observations). The 

weights in ANN are tuned such that, for a given input in the training set, the predicted 

output using ANN comes close to match the output provided in the training set. 

Moreover, the number of hidden neurons reflects on the level of complexity of the ANN 

model, as an increase of hidden neurons will result in an increase of weights to be 

learned and subsequently more computation time will be needed at the training stage. 

(Figure 5) illustrates the mathematical structure of ANN. 

 

Figure 5: Artificial Neural Network (ANN) with one hidden layer 

2.1.2 Support Vector Machine Regression (SVR) 

Support vector machine are class of algorithms with applications to classification and 

regression problems [33]. The initial concept behind Support Vector Machine algorithm 

is to generate a hyperplane separating two classes of data points with the largest 

possible margin. The points’ tangents to the hyperplane sides are the support vector that 

decides the hyperplane boundaries. Support Vector algorithms are characterized by the 
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presence of a deterministic unique solution. This solution represents the unique linear 

maximum margin separating the different classes in classification problems or the 

unique linear minimum margin for regression problems. In cases where the data can’t 

be separated by a linear margin, Kernels are employed such that the data are projected 

to a higher dimension where it can be separated linearly.  

 

3. Genetic Similarity Algorithm (GSA) 

The proposed search algorithm presented in Figures 6a and 6b is based on the 

aforementioned GA with an additional operator named “Similarity Operator” to help 

explore the search space more efficiently. The Similarity Operator aims at finding 

promising solutions by exploring the search space in a systematic manner. The solutions 

proposed by the operator share certain search-space features with the current elite 

solution in the population. The techniques used in building the operator will be 

described in details in the following sections.   
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(a) (b) 

Figure 6: (a) Similarity Operator Flow chart; (b) Genetic Similarity Algorithm 

3.1   Similarity Measures 

Similarity measures are distance-based measures which reveal how quantitatively 

different two data objects are from each other. The type of similarity measure used 

depends on the type of the data being measured (i.e. categorical, binary, 

continuous…etc.). One of the commonly used similarity measures is the Minkowski 

distance which can be defined as follows: 

𝑑(𝑖, 𝑗) = √|𝑥𝑖1 − 𝑥𝑗1|
𝑞

+ |𝑥𝑖2 − 𝑥𝑗2|
𝑞

+ ⋯ + |𝑥𝑖𝑛 − 𝑥𝑗𝑛|
𝑞𝑞

 (1)  



 

 

 

21 

 

Whereby 𝑖 and 𝑗 stand for the first and the second n-dimensional objects respectively, 𝑞 

is a positive integer and 𝑑(𝑖, 𝑗) is the measure of difference between the two objects. 

For 𝑞 = 1, 𝑑(𝑖, 𝑗) becomes the Manhattan distance and for 𝑞 = 2, 𝑑(𝑖, 𝑗) becomes the 

Euclidean distance. The value of (𝑑(𝑖, 𝑗) = 0) indicates that the two objects are exactly 

the same, whereby for any value greater than zero, the two objects have differences in 

their respective features. 

Similarity measures are considered the core routine for some major data mining 

techniques such as clustering (i.e. k-means clustering) [34] and classification (i.e. kNN) 

[35]. In the proposed approach, we used similarity measures to identify locations in the 

reservoir model that share similar features with the location corresponding to the best 

objective function value. 

 

3.2   Similarity Operator 

The proposed operator shown in Figure 6a aims at finding individuals with features or 

properties quantitatively similar to the elite individual in the current generation. These 

features are selected based on their impact on the problem solution.  

Injection and/or production wells formation in the reservoir have a major impact on the 

search process for a new well location. As this formation is fixed throughout the search, 

it can be used as a guide for the search algorithm. To illustrate the interaction between 

an added well and pre-located wells formation, a spatial point-distance approach is 

used. In this approach, the Euclidian distance for each cell to the nearest wellbore is 

calculated and stored in a new raster. This raster can reveal the cells that share similar 
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distances from a nearest pre-located wellbore. Figure 7 illustrates the distance to 

nearest-wellbore concept for a given well formation. Green cells represent locations that 

are in the proximity of existing wells, and pink cells represent further away locations.   

 

Figure 7: Distance for each cell to nearest pre-located well (example data) 

Another significant feature (property) that can be used by the operator is the porosity 

value at the cell. The porosity value is dimensionless and can provide information about 

the flow within the model grid through its correlation with the permeability. Figure 8 

shows a porosity data set for the same well formation example shown above. 
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Figure 8: Porosity raster for a reservoir (example data) 

Combining and normalizing the two aforementioned features in a single scatter plot 

(Figure 9) can provide a non-biased visual representation for the selected features 

(properties) in the reservoir model.  

 

Figure 9: Scatter Plot for Normalized Distance to Nearest Well vs. Normalized Porosity (example data) 
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Figure 9 allows deciding graphically how similar two (or more) locations in the model 

are to each other with respect to the selected features. The Similarity Operator will act 

in a similar manner when deciding the similarity level between two locations. The 

operator will take as an input the current elite individual in the GA generation 

(highlighted in the plot), identify its features, and then look up individuals with the most 

similar features based on the following distance measure: 

 

𝑆𝑂𝑖 = √(𝑋𝑖 − 𝑋𝐸)2 + (𝑌𝑖 − 𝑌𝐸)2   ;    𝑖 = 1,2,3 … 𝑛 

 

(2)  

Whereby 𝑛 is the number of active cells in the model, 𝑆𝑂𝑖 is the resulting vector of 

similarity values, 𝑋𝑖 and 𝑌𝑖 are the vectors representing the normalized distance and the 

normalized porosity respectively for the n cells in the model, 𝑋𝐸  and 𝑌𝐸  are the 

normalized distance and the normalized porosity respectively from the elite individual 

only. The cell corresponding to the minimum value in the 𝑆𝑂𝑖 vector is identified as the 

most similar to the elite individual. Thus, it will be proposed by the operator in the next 

generation. This approach will enable systematic improvements on the solution 

throughout the generations along with preserving the population diversity. Figure 10 

presents a pseudo code for the sequence of operations within the similarity operator. 
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Similarity Operator 

Var. 1: N = number of grid-blocks in the search space. 

Var. 2: n = number of individuals proposed by the operator. 

Input: Elite Location (x, y)  

Output: new individuals 

1: Extract Elite location features: e (distance to pre-located well, Porosity) 

2: for i=1: N  do 

3:       Procedure S(i) = similarity(e, grid-block features (i)) 

4: end for 

5: Procedure Sort (S, Ascending)  

6: for j = 1: step = n: N/n do 

7:       if   S( j : n ) ∉ Output  

8:             Output ← S( j : n ) 

9:             Procedure re-map features to location indices S( j : n ) → L( 1 : n ) 

10:           new individuals = L( 1 : n ) 

11:           BREAK 

12:     end if 

13: end for 

14: END 

Figure 10: Pseudo code for the similarity operator 
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CHAPTER 4 

RESULTS AND ANALYSIS  

 

The efficiency of the presented methodology along with other algorithms will be tested 

on two different models, the PUNQ-S3 oil field model and the Brugge oil field model. 

Each algorithm performance is tested and compared under MATLAB platform using 3 

machines with 12 cores (24 hyper-threading) each at frequency of 2.0 GHz and 32 GB 

of RAM.  

 

1. Reservoir Optimizer Software 

The software used in this study entitled “Reservoir Optimizer” was developed using 

MATLAB along with fully functional GUI to process the different computer 

experiments. This software facilitates the exchange of input/output data with the 

reservoir simulator Schlumberger ECLIPSE (Figure 11) along with enabling the use of 

different optimization algorithms to solve oil fields planning problems. The reservoir 

simulator was employed in batch mode and the results were reported through an ASCII 

formatted log file organized by the Reservoir Optimizer software. Figure 12 illustrates 

the architect of the Reservoir Optimizer whereby each level in the flowchart represents 

the different options available at the current window. 
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Figure 11 Communications flowchart between Reservoir Optimizer and ECLIPSE Simulator 

The ECLIPSE simulator suite consists of two separate simulators: ECLIPSE 100 (used 

in this study) specializing in black oil modeling, and ECLIPSE 300 specializing in 

compositional modeling. ECLIPSE 100 is a fully-implicit, three phase, three 

dimensional, general purpose black oil simulator with gas condensate options. 

ECLIPSE 300 is a compositional simulator with cubic equation of state, pressure 

dependent K-value and black oil fluid treatments. Both programs are written in 

FORTRAN and operate on any computer with an ANSI-standard FORTRAN90 

compiler and with sufficient memory [36]. 
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Figure 12 Reservoir Optimizer Software Flowchart 
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2. Numerical Experiments 

2.1    PUNQ-S3 Model 

PUNQ-S3 is a small-size reservoir that was taken from a study on a real field as part of 

PUNQ project [2]. The model contains 19×28×5 grid-blocks, of which 1761 are active. 

The field is bounded to the east and south by a fault and by a strong aquifer to the north 

and west. A small gas cap is located in the center of the dome shaped structure. The 

field initially has six production wells located around the gas oil contact. Due to the 

strong aquifer, no injection wells are operating as the aquifer pressure will provide 

enough pressure for production at the current stage. The geometry of the field has been 

modeled using corner-point geometry. Figures 13 and 14 show the field geometry and 

porosity distribution for the PUNQ-S3 model, respectively. 
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Figure 13: PUNQ-S3 Oil Field Model 

 

     
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

 

Figure 14: Porosity Distribution in PUNQ-S3 model 

 

2.1.1   Optimal Allocation for a Single Injection Well:  

In order to assess the convergence rate of the proposed approach, the simple problem of 

optimally allocating a single injection well in PUNQ-S3 model is considered. The 
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objective of the problem is to maximize the total cumulative oil produced from the field 

over a specific period of time. As the total number of possible solutions for this problem 

is relatively small, thus brute force solving can be used to identify the optimal location. 

Brute force attempts to try all the possible solutions for a given problem. In the case of 

optimal well placement, the method will consider evaluating all the possible locations in 

the model. In PUNQ-S3 model, the number of possible locations in any layer is 532 

(active + inactive) cells. The Brute force approach is guaranteed to find the global 

optimal solution; however, it requires an extensively large number of simulation calls. 

The total field production time simulated in the experiment is 28.5 years, with 22.5 

years of initial production depending only on the aquifer pressure, followed by 6 years 

of water injection by the new injection well. The optimal location obtained under the 

experiment conditions is (I=19, J=17, K=5) corresponding to cumulative oil produced 

COP = 6.357  10
6
 m

3
. Figure 15 shows a response surface for the COP resulting from 

placing the injection well at each cell in the model. 

 

Figure 15: PUNQ-S3 Single Injection Well Allocation Response Surface 
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After identifying the optimal location, the convergence rate of the proposed approach 

compared to other search frameworks used in the literature [16, 5, 37, 38], can be 

assessed. These algorithms are: standard Genetic Algorithm, Hybrid Genetic Algorithm 

I (GA + Artificial Neural Networks) and Hybrid Genetic Algorithm II (GA + Support 

Vector Machine Regression). The setup of each search algorithm is given in tables 1, 2 

and 3.  

Table 1 Genetic Algorithm Configurations 

 

 Table 2 Surrogate Models Setup 

 

 

 

 

 

 

 

 

Table 3 Genetic Similarity Algorithm Configurations 

Genetic Similarity Algorithm 

Pop. Size 10 10 10 10 10 10 20 20 20 20 20 20 

Elite 10% 10% 10% 10% 10% 10% 5% 5% 5% 5% 5% 5% 

Crossover 60% 50% 40% 30% 20% 10% 65% 55% 45% 35% 25% 15% 

Mutation 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 

Similarity 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60% 

Case 

Label 

GSA-

A1 

GSA-

A2 

GSA-

A3 

GSA-

A4 

GSA-

A5 

GSA-

A6 

GSA-

B1 

GSA-

B2 

GSA-

B3 

GSA-

B4 

GSA-

B5 

GSA-

B6 

 Genetic Algorithm 

 GA-A1 GA-A2 GA-A3 GA-A4 GA-B1 GA-B2 GA-B3 GA-B4 

Pop. Size  10 10 10 10 20 20 20 20 

Elite 10% 10% 20% 20% 5% 5% 10% 10% 

Crossover 70% 50% 60% 50% 75% 55% 70% 55% 

Mutation 20% 40% 20% 30% 20% 40% 20% 35% 

Surrogate Model 

ANN 

# Layers 2 

# Hidden Neurons 20,20 

SVM Regression 

Kernel Type RBF 
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Since the reservoir simulator consumes the largest proportion of the computation time 

in any assessment, the number of simulation calls is considered as the comparison 

metric in the experiments. 

Each algorithm was seeded with the same initial population. The optimization runs were 

repeated 100 times and the number of simulation calls until reaching the optimal 

solution was monitored for each run. Comparison of results for different cases is shown 

in tables 4 and 5; whereby µ is the average number of simulation calls until reaching the 

optimal solution, σ is the standard deviation of the number of simulation calls when the 

optimal solution is reached and % is the percentage of the number of times the 

algorithm converged to an optimal solution under the given stopping criteria. It is worth 

noting that for the cases where premature convergence was encountered, the number of 

simulation calls until reaching the optimal solution will be unknown, thus, it was 

omitted from the statistical analysis. 

 

Table 4 Comparing Results for Population Size = 10 

 Population Size = 10 

 GA-A1 GA-A2 GA-A3 GA-A4 HGA I HGA II 

µ 167.7 175.2 166 173.5 188.9 178.2 

σ 192.6 166.2 202.13 204 169.1 146.2 

% 88 96 82 90 99 100 

 GSA-A1 GSA-A2 GSA-A3 GSA-A4 GSA-A5 GSA-A6 

µ 130.8 123.5 127.4 132.5 112.8 107.8 

σ 83.4 68.5 71 72.6 54.2 49.8 

% 100 100 100 100 100 100 
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Table 5 Comparing Results for Population Size = 20 

 Population Size = 20 

 GA-B1 GA-B2 GA-B3 GA-B4 HGA I HGA II 

µ 182.7 192.6 210.6 179.2 219.7 186.3 

σ 135 87 220.97 89.62 144.8 111 

% 96 100 93 100 100 100 

 GSA-B1 GSA-B2 GSA-B3 GSA-B4 GSA-B5 GSA-B6 

µ 177.3 162.5 145.5 144.4 127 128.7 

σ 86.1 85 69.6 66.3 56.7 51.3 

% 100 100 100 100 100 100 

 

Figures 16 and 17 illustrate the improvement achieved by using the proposed Genetic 

Similarity Algorithm compared to the standard Genetic Algorithm in different 

configurations. This comparison was chosen because GA similarly to GSA has no 

dependency on a surrogate model. 

 

Figure 16: Genetic Algorithm vs. Genetic Similarity Algorithm with different fractions of Similarity Operator for 

Pop. Size = 10 



 

 

 

35 

 

 

Figure 17: Genetic Algorithm vs. Genetic Similarity Algorithm with different fractions of Similarity Operator for 

Pop. Size = 20 

It’s evident that GSA has outperformed other approaches in terms of convergence rate 

and solution robustness. Also, it can be noted that increasing the contribution of 

Similarity operator in a population is likely to yield an overall improvement in the 

algorithm performance. 

To breakdown the operator workflow in the previous example, Figures 18a and 18b 

show the two selected features representing each cell in PUNQ-S3 model. 



 

 

 

36 

 

  
(a) (b) 

Figure 18: (a) (NP) Normalized porosity raster of Layer 1 (PUNQ-S3); (b) (ND) Normalized Distance from each cell 

to nearest pre-located well (PUNQ-S3) 

Combining the porosity raster (Figure 18a) with the distance raster (Figure 18b) through 

a weighted sum will result into a new raster shown in Figure 19. This raster can visually 

assist in identifying cells in the model with similar features (porosity and distance). The 

operator will identify the current elite individual value (i.e. location E shown in Figure 

19) in the raster and thereafter will search and find locations having similar values (i.e. 

locations S1 and S2) in the raster. 
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Figure 19: Similarity raster approximated from combining (0.5 NP + 0.5 ND) 

It can be noted from Figure 19 that cells with extreme values, such as values near 0, are 

less likely to be proposed by the operator, as they represent cells adjacent to pre-located 

wells and/or cells with a very low permeability medium. 

 

2.1.2   Optimal Allocation for Multi Production Wells:  

For this example, allocating three additional production wells along with the existing 

wells in PUNQ-S3 model is considered. The wells operate at the same production rate 

of 150 𝑚3/𝑑𝑎𝑦 with a BHP constraint of 120 𝑏𝑎𝑟. The production time was taken over 

a period of 16.5 years. A single realization for the field was considered in this 

assessment whereby the porosity and permeability were assumed to be the true state of 

the reservoir. Two optimization variables for each well, {x, y}, were defined, which 
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lead to a total of 6 optimization variables for the three wells. The size of the initial 

population is 10 individuals and the maximum number of generations is 200. A set of 

10 complete optimization runs were performed, whereby each time the algorithms were 

seeded with the same initial population. The objective function in this assessment was 

to maximize the cumulative oil produced (COP) throughout the imposed production 

plan. Table 6 shows the setup for each algorithm used in this assessment. Under the 

aforementioned conditions, the GSA performance was compared against GA 

performance based on the number of simulations required to reach an optimal solution.  

 

Table 6 GA and GSA setup for solving multiple production wells placement problem 

 

 

 

 

 

The average performance of 10 GA optimization runs is shown in Figure 20. The 

algorithm has reached an optimal solution (on average) after 1760 fitness function 

evaluations (simulation calls) corresponding to COP = 6.016 10
6 

m
3
.
  

On the other hand, considering the GSA average performance shown in Figure 21, it is 

evident that GSA outperformed GA in convergence rate and solution robustness. GSA 

has reached (on average) a solution greater than GA optimal solution after 400 fitness 

function evaluations. Furthermore, the best optimal solution under the experiment 

 

Genetic Algorithm Genetic Similarity Algorithm 

Pop. Size 10 10 

Elite 10% 10% 

Crossover 70% 40% 

Mutation 20% 20% 

Similarity - 30% 
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conditions, was obtained by GSA algorithm and corresponds roughly to COP = 6.074 

10
6
 m

3
. Table 7 shows the statistical details of the comparison.  

 

Table 7 Optimal solution analysis based on 10 optimization runs 

 Average (m
3
) Std. Max. (m

3
) Min. (m

3
) 

GSA 6.059 10
6
 15,640 6.074 10

6
 6.032 10

6
 

GA 6.016 10
6
 34,231 6.069 10

6
 5.959 10

6
 

 

 

Figure 20: GA average performance over 10 optimization runs for optimal well placement of 3 production wells in 

PUNQ-S3 model  
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Figure 21: GSA algorithm average performance over 10 optimization runs for optimal well placement of 3 

production wells in PUNQ-S3 model compared with the average of max solutions reached by GA 

Figure 22 shows the optimal solution obtained by GSA for 3 added production wells 

under the experiment conditions. 
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Figure 22: Optimal solution obtained by GSA for 3 added production wells under the experiment conditions 

 

2.2   Brugge Model 

The Brugge field [39] is a (139489) grid-blocks synthetic oil field, surrounded by an 

inactive aquifer. The field initially has 30 wells (20 production and 10 injection wells). 

The structure of the field consists of an E-W elongated half-dome with a large boundary 

fault at its northern edge (NBF), and one internal fault with a modest throw at an angle 

of some 20 degrees to the NBF. The dimensions of the field are roughly 103 km. 

Figure 23 shows the 3D model of Brugge field, and Figure 24 shows the porosity 

distribution in the field.  
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Figure 23: Brugge Oil Field Model 

   
Layer 1 Layer 2 Layer 3 

   
Layer 4 Layer 5 Layer 6 

   
Layer 7 Layer 8 Layer 9 

Figure 24: Porosity Distribution in Brugge model 
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2.2.1   Optimal Allocation for Injection Wells:   

In this example, slight modifications to the Brugge field well formation are introduced. 

The modified Brugge model in this study will have initially 2 injection wells only and 

20 production wells.  

For this model, the objective is optimizing the allocation of 5 new injection wells over a 

period of 20 years. The production wells will operate at a fixed flow rate up to 320 𝑚3/

𝑑𝑎𝑦  and BHP pressure equivalent to  50 𝑏𝑎𝑟 . On the other hand, the initial and 

optimized injection wells operate at 650 𝑚3/𝑑𝑎𝑦 and 500 𝑚3/𝑑𝑎𝑦 respectively with a 

BHP pressure set up to 180 𝑏𝑎𝑟.  

The objective function in this assessment is the total Net Present Value (NPV) over the 

aforementioned period of production. As a single realization of porosity and 

permeability was considered, the NPV can be defined as follows: 

 

𝑁𝑃𝑉 =  ∑
𝑝𝑜𝑖𝑙  𝑞𝑜𝑖𝑙

𝑖 − [ 𝑝𝑤𝐼 𝑞𝑤𝐼
𝑖 + 𝑝𝑤𝑃 𝑞𝑤𝑃

𝑖 ]

(1 + 𝛾)𝑖

20

𝑖=1
 

 

(3)  

Whereby 𝑝𝑜𝑖𝑙 and 𝑞𝑜𝑖𝑙
𝑖  are oil price (80 USD/bbl) and total oil produced (bbl/year) per 

year 𝑖; 𝑝𝑤𝐼 and 𝑝𝑤𝑃 are the prices for the water injected and water produced respectively 

(  𝑝𝑤𝐼 = 𝑝𝑤𝑃 = 5 USD/bbl); 𝑞𝑤𝐼
𝑖  and 𝑞𝑤𝑃

𝑖  are the total water injected and produced 

(bbl/year). The yearly discount rate was taken as ( 𝛾 = 10%) [39].  

A set of 10 complete optimization runs (total of 20,000 simulation runs) were 

performed using each algorithm (GA and GSA). The population size in the assessment 
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was set to 20 individuals and the maximum number of generations (termination criteria) 

is 100. The search space shown in Figure 23 was constrained to cover the area saturated 

with oil as well as a small portion of the aquifer. Both algorithms had the same initial 

population seeded in each of the 10 optimization runs. The setup for both algorithms is 

shown in Table 8. The average performance curve of both algorithms at each generation 

is reported Figure 25, and the end results statistical details are reported in Table 9. It’s 

evident that GSA outperformed GA with a two times faster convergence rate and a 

more robust solution. Figure 26 graphically presents the optimal solution obtained by 

GSA for 5 added injection wells under the experiment conditions 

 

Figure 25: GSA and GA algorithms average performance over 10 optimization runs for optimal well placement of 5 

injection wells in Brugge model 
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Table 8 GA and GSA setup for solving multi injection wells placement problem 

 

 

 

 

 

Table 9 Optimal solution analysis based on 10 optimization runs 

 Average (USD) Std. Max. (USD) Min. (USD) 

GSA 6.174 10
9
 1.467 10

7
 6.197 10

9
 6.151 10

9
 

GA 6.133 10
9
 2.928 10

7
 6.188 10

9
 6.094 10

9
 

 

 

Figure 26: Optimal solution obtained by GSA for 5 added injection wells under the experiment conditions 

 

 

 

 

 

 

Genetic Algorithm 
Genetic Similarity 

Algorithm 

Pop. Size 20 20 

Elite 5% 5% 

Crossover 75% 45% 

Mutation 20% 20% 

Similarity - 30% 
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CHAPTER 5 

CONCLUSIONS  

In this study, a novel genetic operator within GA is introduced to design a problem-

specific search algorithm named Genetic Similarity Algorithm (GSA). The performance 

of GSA is compared against standard GA in solving the well placement problem in oil 

fields. The comparison metrics were the convergence rate as well as solution 

robustness. A variety of example problems were investigated, involving placement of 

injection and production wells in two reservoir models. A first example tackled the 

simple case of optimal allocation of a single well, and showed the better convergence 

rate of GSA compared to other approaches. Subsequently, more difficult problems were 

addressed, whereby two cases for multi well placement were considered in the two 

different reservoir models. Not only, GSA has outperformed GA’s performance in 

convergence rate and solution robustness in all studied cases, it also proved to be less 

prone to straying (premature convergence).  

Although GSA proved efficient for optimal well placement in the investigated 

examples, it can be inferred from the structure of the presented algorithm that increasing 

the problem dimensionality (i.e. the number of wells to be optimized) may limit the 

search efficiency achieved by the Similarity Operator. This is attributed to the increase 

in the number of solutions with high similarity to the elite solution. In such a case, if the 

elite solution remained the same for a high number of generations, the solutions 

generated by the Similarity Operator will diverge from the elite solution at a slower rate. 

Consequently, the exploration efficiency of the operator will decrease. Nevertheless, a 
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slight improvement in the performance may still hold over the standard approaches as 

the operator will still contribute with diverse and potentially good solutions to the next 

generations.  

The results presented in this thesis demonstrate that the addition of the proposed 

Similarity Operator can significantly improve convergence rate as well as solution 

robustness at an insignificant computational cost, which is only required initially to 

compute the similarity between the features representing the various cells.  
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APPENDIX 

A. ECLIPSE Input File Sections 

 

Section Description Type 

RUNSPEC 
Title, problem dimensions, switches, phases present, components 

etc. 
Required 

GRID 
Specification of geometry of computational grid (location of grid 

block corners), and of rock properties (porosity, absolute 

permeability, etc.) in each grid block. 

Required 

EDIT 
Modifications to calculated pore volumes, grid block center 

depths and transmissibilities. 
Optional 

PROPS 

Tables of properties of reservoir rock and fluids as functions of 

fluid pressures, saturations and compositions (density, viscosity, 

relative permeability, capillary pressure, etc.). Contains the 

equation of state description in compositional runs. 

Required 

REGIONS 

Splits computational grid into regions for calculation of; 

• PVT properties (Fluid densities and viscosities) 

• Saturation properties (Relative permeabilities and capillary 

pressures) 

• Initial conditions (Equilibrium pressures and saturations) 

• Fluids in place (Fluid in place and inter-region flows) 

• EoS regions (For compositional runs) 

• If this section is omitted, all grid blocks are put in region 1 

Optional 

SOLUTION 

Specification of initial conditions in reservoir - may be: 

• Calculated using specified fluid contact depths to give potential 

equilibrium 

• Read from a restart file set up by an earlier run 

• Specified by the user for every grid block 

(Not recommended for general use) 

Required 

SUMMARY 

Specification of data to be written to the Summary file after each 

time step. Necessary if certain types of graphical output (for 

example water-cut as a function of time) are to be generated after 

the run has finished. If this section is omitted no Summary files 

are created. 

Optional 

SCHEDULE 

Specifies the operations to be simulated (production and 

injection controls and constraints) and the times at which output 

reports are required. Vertical flow performance curves and 

simulator tuning parameters may also be specified in the 

SCHEDULE section. 

Required 
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B.  User Interface Design 

 

 

Figure 27 Main Interface for Reservoir Optimizer Software 
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Figure 28 Search Algorithm Preferences 

 

Figure 29 Specifying Optimization Parameters and Constraints 
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Figure 30 Optimization Parameters and Constraints for the Well Placement Problem 

 

Figure 31 Net Present Value (NPV) Parameters 
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Figure 32 Current Wells and the Initial Setup for Added Wells 


